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Abstract Body 
 

Background / Context:  
 
Hierarchical or multilevel linear models (e.g., Raudenbush and Bryk, 2002), are widely used for 
longitudinal or cross-sectional data on students nested in classes and schools, and are particularly 
important for estimating treatment effects in cluster-randomized trials, multi-site trials, and meta-
analyses. The models can allow for variation in treatment effects, as well as examination of the 
reasons for treatment effect variation. For example, random-effects meta-analysis (DerSimion and 
Laird, 1986) allows the treatment effect to vary between studies to accommodate differences in 
populations, treatment implementation, and measurement of outcomes. Meta-regression can then 
be used to investigate the sources of treatment-effect heterogeneity. In hierarchical linear models 
for cluster-randomized trials, differential effectiveness of treatments for different subpopulations, 
such as English language learner (ELL) and non-ELL students, can be investigated by including  
cross-level interactions between indicators for ELL status (level 1) and intervention group (level 
2). Such models typically allow for residual between-school heterogeneity in the gap between 
ELL and non-ELLstudents, that is not explained by the intervention, by including a random 
coefficient of ELL status.  
 
A practical problem often encountered when using these methods is that the number of groups 
(studies in meta-analysis, schools in cluster-randomized trials, and sites in multi-site trials)   is 
small and that cluster-level variance parameters are estimated as zero. 
 
Such boundary estimates can cause several problems. First, they can go against prior knowledge 
of researchers. Hierarchical models are typically used because it is known that there are 
processes operating at the group level that are not completely captured by the covariates. 
Omitted group-level covariates will lead to residual between-group variation. 
 
A second problem with boundary estimates is the resulting underestimation of uncertainty in 
fixed coefficient estimates. For instance, in a cluster-randomized study or meta-analysis, 
researchers might be overconfident in concluding that a treatment is effective. Similarly, 
overconfident conclusions regarding differential effectiveness of interventions for different 
subpopulations can result when variances of random coefficient are estimated as zero. 
 
Third, group comparisons are often of interest to researchers, but when the group-level variance 
is estimated as zero, the resulting predictions of the group-level errors will all be zero, so one 
fails to find unexplained differences between groups. 
 
 
Purpose / Objective / Research Question / Focus of Study: 
 
We propose a method that pulls the group-level standard deviation estimate off the boundary 
while producing estimates that are consistent with the data. The idea is to specify a weakly 
informative prior distribution for the standard deviation and to maximize the resulting posterior 
distribution, a method that can also be viewed as penalized maximum likelihood estimation. 
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Significance / Novelty of study: 
 
Bayes modal estimation has previously been used to obtain more stable estimates of item 
parameters in item response theory (e.g., Mislevy, 1986) and to avoid boundary estimates in 
log-linear and latent class analysis (Maris, 1999; Galindo-Garre and Vermunt, 2006). To our 
knowledge, this idea has not yet been applied to variance parameters in hierarchical models. 
 
 
Statistical, Measurement, or Econometric Model:  
 
For subject i in group j, we consider the model 

 
where  is the response variable,  a p-dimensional vector of explanatory variables with 
regression coefficients !,  is a group-level random intercept, and  is a 
residual. We further assume that  and  are independent. 
  
We specify a prior  only for , implicitly assuming a uniform prior, , on  and 

.We find the parameters that maximize the marginal log-posterior density (with random 
intercepts integrated out). The marginal posterior density for  can equivalently be 
regarded as a penalized likelihood. 
 
We propose a gamma (not inverse-gamma) prior on , defined by  

 
with mean  and variance , where  is the shape parameter and  is the rate parameter. 
 
For any , the prior is zero at the origin and this ensures a positive estimate of the variance 
parameter, even when the maximum of the likelihood is at 0. If  is 2, the prior allows the 
likelihood to dominate if it is strongly curved near zero since the prior has a positive constant 
derivative at zero. Our default choice is gamma  with  and , which is the 
(improper) density . This default bounds the posterior mode away from zero while 
keeping it consistent with the likelihood. 
 
 
Usefulness / Applicability of Method:  
Theoretical results 
To examine the effect of " and # on the posterior mode analytically, we treat  as nuisance 
parameters and assume that the profile log-likelihood can be approximated by a quadratic 
function in  around the ML estimator, , 
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Here  represents the estimated asymptotic standard error of  (based on the 
observed information). 
 

• With the default prior, the Bayes modal estimate is  if the ML estimate is at 
the boundary. That is, the prior shifts the posterior mode away from zero but only by 
about one standard error. The resulting change in the log-likelihood is about 1. 

• When the ML estimate is not at the boundary and the default prior is used, the difference 
between the Bayes modal and ML estimates is less than one standard error.  

• When the posterior density is asymmetric, a transformation of  can make the density 
more symmetric so that the posterior mode will be located near the posterior mean which 
has good asymptotic properties. With a gamma prior on , maximizing the posterior of a 
Box-Cox transformed is equivalent to maximizing the posterior of  with a gamma 
prior with an adjusted value of . 

• A gamma prior on  is equivalent to gamma  prior on .  
• In a model with r group-level covariates, the gamma  on  (equivalently 

gamma  on ) approximately matches the restricted maximum likelihood 
(REML) penalty, particularly when the group-size n is large and  is close to zero. 

 
Data Analysis 
Rubin (1981) analyzed results of randomized experiments of coaching for the Scholastic Aptitude 
Test (SAT) conducted in eight schools. The data consist of an estimated treatment effect and 
associated standard error for each school (obtained by separate analyses of the data of each 
school). 
 
The model for the estimated effect size  of study i can be written as 

 
The ML estimate of the between-study standard deviation is at the boundary, . With the 
default prior, the between-study standard deviation is estimated as , close to the value 

 that we expect based on the quadratic approximation of the profile likelihood. At the 
Bayes modal estimate, the log-likelihood is -30.18, only a little bit lower than the value -29.67 of 
the log-likelihood at the maximum likelihood estimate. Therefore, the Bayes modal estimate is 
consistent with the data.  
 
Importantly, accepting the ML boundary estimate instead of using Bayes modal estimation, 
would lead to a much narrower estimated confidence interval (CI) for the main parameter 
estimate of interest, the overall effect size . Using ML gives an estimated 95% CI for  from   
-0.3 to 15.7, compared with the 95% CI based on the Bayes modal estimate from -1.3 to 17.2. 
Using maximum likelihood estimates with robust standard errors (sandwich estimator), gives an 
estimated confidence interval from 1.2 to 14.2, even narrower than the interval using the model-
based standard error. 
 
Simulations 
Simulations have been performed for model (1) with one covariate that varies only within groups 
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(group-mean covariate constant across groups) and one covariate that varies only between 
groups. The number of groups was set to with J=3, 5, 10, 30, the group size (constant across 
groups) to n=5, 30, and the residual intraclass correlation to !=0, 0.25, and 0.5. For each 
combination of J, n, and !, 1000 datasets were generated. For each dataset, we obtained ML, 
REML, and posterior mode estimates with gamma  and gamma  priors on , where 

. The REML penalty corresponds to  since the model contains one group-level 
covariate. 
 
When , the bias of  is as low for the Bayes modal estimators as for REML depending on 

. The RMSE of  is uniformly lower for the Bayes modal estimator with both gamma priors 
than for the REML and the ML estimators. Coverage of the CI for the regression coefficient of 
the covariate that varies between groups is best for the Bayes modal estimator with  and 
comparable to REMLwith . Importantly, neither prior ever produces a boundary estimate 
( ), whereas ML and REML have quite a large proportion of boundary estimates. At the 
same time, the change in log-likelihood between ML and Bayes modal estimates tends to be 
small. 
 
 
Conclusions:  
 
We considered linear varying intercept models and suggested specifying a gamma prior for the 
group-level standard deviation to avoid boundary estimates. We showed that this prior is only 
weakly informative and that the Bayes modal estimator has good frequency properties. 
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