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It is my great pleasure to write an introduction to the CMESG/GCEDM Proceedings from the
2002 meeting, held at Queen’s University in Kingston, Ontario.

A necessary part of the introduction to the CMESG/GCEDM Proceedings is an attempt
to explain to readers, some of whom may be newcomers to our organization, that the vol-
ume in their hands cannot possibly convey the spirit of the meeting it reports on. It can
merely describe the content of activities without giving much of the flavour of the process.

To understand this, one needs to understand the uniqueness of both our organization
and our annual meetings.

CMESG is an organization unlike other professional organizations. One belongs to it
not because of who one is professionally, but because of one’s interests. And that is why our
members come from mathematics departments and faculties of education, from universi-
ties and colleges, and from schools and other educational institutions. What unites them is
their interest in mathematics and how it is taught at every level, and their desire to make
teaching more exciting, more relevant, and more meaningful.

The 2002 meeting was a special one: This was our 25th meeting which was held at the
very place where our first three meetings happened. Since such an anniversary is an excel-
lent opportunity for both celebrations and reflections, the meeting included, in addition to
all the regular components, several special sessions which followed the central theme: Les-
sons from the Past, Questions for the Future.

The opening session included a panel which brought back three keynote speakers
from the first CMESG/GCEDM in 1997: John Coleman, Claude Gaulin, and Tom Kieren. All
three were asked to reflect on the topics of their 1977 talks from today’s point of view.

Tom Kieren, whose 1977 talk was titled “The state of research in mathematics educa-
tion”, spoke first. He reflected on some of the work done during the part 25 years in math
education in Canada, on mathematical learning, on the development of mathematical know-
ing and understanding. And he also recalled the words of David Wheeler, the “spiritual
father” of our organization: “Could we, as CMESG, publish something others will be inter-
ested in?”

Claude Gaulin, the only one to have attended all our 25 meetings, spoke in 1977 about
innovations in teacher education programmes. In 2002, he remembered how he spoke then
about teacher education in Quebec, where in-service education was (and still is) very strong
and world renowned. He said that we need a broad picture on what is happening in teacher
education—both in-service and pre-service—across Canada, and to reflect on what is needed
now.

John Coleman, the one mathematician in the panel, spoke in 1977 on the objectives of
math education. He said that the objectives are basically the same now as they were then.
Possibly the most important one is to have students learn the joy of “mathematicizing”. He
cited a statement from the book “Enjoying Mathematics” by Keith Devlin, which was recently
reviewed in Mathematics Monthly, to the effect that 85% of elementary school teachers in North
America have math anxiety. This is something we need to change. Students pick up emotions
quickly and they often “inherit” their attitudes towards mathematics from their teachers.

Introduction

Malgorzata Dubiel - President, CMESG/GCEDM
Simon Fraser University



x

CMESG/GCEDM Proceedings 2002 • Introduction

Three special Anniversary Sessions continued the theme Lessons from the Past, Ques-
tions for the Future throughout the conference.

The first session featured two mathematicians, Frédéric Gourdeau and Eric Muller,
describing what our organization means to them and how it has influenced their under-
standings of the nature of mathematics, its teaching, and learning. Frédéric also shared with
us some of his frustrations on being a mathematician in a group of math educators, trying to
understand their view of the world and being bewildered by their language.

In the second session, Carolyn Kieran gave us a historical perspective on the emer-
gence and growth of a community of mathematics education researchers in Canada.

In the third, Brent Davis and Roberta Mura attacked the topic of Lessons from the
Past, Questions for the Future from the math education point of view. Or was it more a
philosophy of math education perspective? Questions from the past and questions about
the past: Can we learn from the past? Can we change the past? Can we change the future by
changing the past? These, and many others questions asked there, will stay with us to re-
flect on for the next 25 years.

The most festive event of the anniversary celebrations was the Presidents’ Dinner, held
at the historic Fort Henry, with toasts to all the CMESG/GCDEM presidents and treasurers.

But of course all the exciting anniversary events were only additions to the traditional
components of our meetings.

Working Groups form the core of each CMESG meeting. Participants choose one of
several possible topics, and, for three days, become members of a community which meets
three hours a day to exchange ideas and knowledge—and, through discussions which often
continue beyond the allotted time, create fresh knowledge and insights. Throughout the
three days, the group becomes much more than a sum of its parts, often in ways totally
unexpected to its leaders. The leaders, after working for months prior to the meeting, may
see their carefully prepared plan ignored or put aside by the group, and a completely new
picture emerging in its stead.

Two plenary talks are traditionally part of the conference, at least one of which is given
by a speaker invited from outside Canada who brings a non-Canadian perspective. And,
traditionally, one of the talks is given by a mathematician, the other, by a math educator.
This year, our non-Canadian talk turned out to be a double pleasure—two speakers instead
of one, speaking of their collaboration and presenting both a mathematician’s and a math
educator’s perspective on their topic.

All plenary speakers participate in the whole meeting; some of them afterwards be-
come part of the Group. And, in the spirit of CMESG meetings, a plenary talk is not just a
talk, but a mere beginning: it is followed by discussions in small groups, in which questions
are prepared for the speaker. After the small group discussions, in a renewed plenary ses-
sion, the speaker fields the questions generated by the groups.

Topic Groups and Ad Hoc presentations provide more possibilities for exchange of
ideas and reflections. Shorter in duration than the Working Groups, Topic Groups are ses-
sions where individual members present work in progress and often find inspiration and
new insight from their colleagues’ comments.

Ad hoc sessions are opportunities to share ideas, which are often not even “half-
baked”—sometimes born during the very meeting at which they are presented.

A traditional part of each meeting is the recognition of new PhDs. Those who com-
pleted their dissertations in the last year are invited to speak on their work. This gives the
group a wonderful opportunity to see the future of mathematics education in Canada.

The 2002 meeting in Kingston was a memorable one, both due to all the anniversary
events, and to the great program of the conference itself. We all took back with us wonderful
memories of the hospitality of Queen’s University and of a great, thought-provoking pro-
gram. Our warmest thanks to the local organizers, Peter Taylor and Bill Higginson, and to
David Reid, our conference coordinator, for giving us a meeting which managed to pre-
serve all the traditions of the CMESG meetings and to combine them effortlessly with all the
retrospective and anniversary events.
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Toward a Practice-Based Theory of
Mathematical Knowledge for Teaching 

1

Deborah Loewenberg Ball and Hyman Bass2

University of Michigan

Mathematics professor: The situation is terrible: Only one of the students in my mathematics
content course for teachers can correctly divide .0045789 by 3.45.

Fifth grader: Ms. Ball, I can’t remember how to divide decimals. There’s something my stepfa-
ther showed me about getting rid of the decimal point, but I can’t remember what he said
and, besides, I don’t think that would work.

With all the talk of teachers’ weak mathematical knowledge, we begin with a reminder that
the problem on the table is the quality of mathematics teaching and learning, not—in it-
self—the quality of teachers’ knowledge. We seek in the end to improve students’ learning of
mathematics, not just produce teachers who know more mathematics.

Why, then, talk about teacher knowledge here? We focus on teacher knowledge based
on the working assumption that how well teachers know their subjects affects how well
they can teach. In other words, the goal of improving students’ learning depends on im-
proving teachers’ knowledge. This premise—widely shared as it may be, however—is not
well supported empirically. We begin with a brief glimpse of the territory in which the
problem on which we are working fits. Our purpose is to set the context for our proposal for
reframing the problem.

The Problem: What Mathematics Do Teachers Need to Know to Teach Effectively?

The earliest attempts to investigate the relationship between teachers’ mathematics knowl-
edge and their students’ achievement met with results that surprised many people. Perhaps
the best known among these is Begle’s (1979) analysis of the relationship between the number
of courses teachers had taken past calculus and student performance. He found that taking
advanced mathematics courses3 produced positive main effects on students’ achievement in
only 10% of the cases, and, perhaps more unsettling, negative main effects in 8%. That taking
courses could be negatively associated with teacher effects is interesting because the negative
main effects are not easily explained by the criticism that advanced mathematics courses are
not relevant to teaching, or that course-taking is a poor proxy for teachers’ actual mathemati-
cal knowledge. Such claims support finding no effects, but not negative effects.

So why might these variables be associated with negative effects? One explanation
might rest with the compression of knowledge that accompanies increasingly advanced
mathematical work, a compression that may interfere with the unpacking of content that
teachers need to do (Ball & Bass, 2000a). Another explanation might be that more coursework
in mathematics is accompanied by more experience with conventional approaches to teach-
ing mathematics. Such experience may impress teachers with pedagogical images and hab-
its that do not contribute to their effectiveness with young students (Ball, 1988).

Observational studies of beginning and experienced teachers reveal that teachers’ un-
derstanding of and agility with the mathematical content does affect the quality of their
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teaching. For example, Eisenhart, Borko, Underhill, Brown, Jones, and Agard (1993) de-
scribe the case of a middle school student teacher, Ms. Daniels, who was asked by a child to
explain why the invert-and-multiply algorithm for dividing fractions works. Ms. Daniels
tried to create a word problem for three-quarters divided by one-half by saying that three
quarters of a wall was unpainted. However, there was only enough paint to cover half of the
unpainted area. As she drew a rectangle to represent the wall and began to illustrate the
problem, she realized that something was not right. She aborted the problem and her expla-
nation in favor of telling the children to “just use our rule for right now” (p. 198).

Despite having taken two years of calculus, a course in proof, a course in modern
algebra, and four computer science courses, Ms. Daniels was unable to provide a correct
representation for division of fractions or to explain why the invert-and-multiply algorithm
works. In fact, she represented multiplication, rather than division, of fractions.

Many other studies reveal the difficulties teachers face when they are uncertain or
unfamiliar with the content. In 1996, the National Commission on Teaching and America’s
Future (NCTAF) released its report which proposed a series of strong recommendations for
improving the nation’s schools that consisted of “a blueprint for recruiting, preparing, and
supporting excellent teachers in all of America’s schools” (p. vi). Asserting that what teach-
ers know and can do is the most important influence on what students learn, the report
argues that teachers’ knowledge affects students’ opportunities to learn and learning. Teach-
ers must know the content “thoroughly” in order to be able to present it clearly, to make the
ideas accessible to a wide variety of students, and to engage students in challenging work.

The report’s authors cite studies that show that teacher knowledge makes a substan-
tial contribution to student achievement. They argue that “differences in teacher qualifica-
tions accounted for more than 90% of the variation in student achievement in reading and
mathematics” (Armour-Thomas, Clay, et al., 1989, cited in National Commission on Teach-
ing and America’s Future, 1996, p. 8). Still, what constitutes necessary knowledge for teach-
ing remains elusive.

An important contribution to the question of what it means to know content for teach-
ing has been the concept of "pedagogical content knowledge” (Grossman, 1990; Shulman,
1986, 1987; Wilson, Shulman, & Richert, 1987). Pedagogical content knowledge, as Shulman
and his colleagues conceived it, identifies the special kind of teacher knowledge that links
content and pedagogy. In addition to general pedagogical knowledge and knowledge of
the content, teachers need to know things like what topics children find interesting or diffi-
cult and the representations most useful for teaching a specific content idea. Pedagogical
content knowledge is a unique kind of knowledge that intertwines content with aspects of
teaching and learning.

The introduction of the notion of pedagogical content knowledge has brought to the
fore questions about the content and nature of teachers’ subject matter understanding in
ways that the previous focus on teachers’ course-taking did not. It suggests that even expert
personal knowledge of mathematics often may be inadequate for teaching. Knowing math-
ematics for teaching requires a transcendence of the tacit understanding that characterizes
much personal knowledge (Polanyi, 1958). It also requires a unique understanding that
intertwines aspects of teaching and learning with content.

In 1999, Liping Ma's book, Knowing and Teaching Elementary Mathematics attracted still
broader interest in this issue. In her study, Ma compared Chinese and U.S. elementary teach-
ers’ mathematical knowledge. Producing a portrait of dramatic differences between the two
groups, Ma used her data to develop a notion of “profound understanding of fundamental
mathematics”, an argument for a kind of connected, curricularly-structured, and longitudi-
nally coherent knowledge of core mathematical ideas.

What is revealed by the work in the years since Begle’s (1979) famous analysis? Al-
though his work failed to show expected connections between teachers’ level of mathemat-
ics and their students’ learning, it seems clearer now that mathematical knowledge for teach-
ing has features that are rooted in the mathematical demands of teaching itself. These are not
easily detected by how much mathematics someone has studied. We are poised to make new
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gains on an old and continuing question: What do teachers need to know to teach mathemat-
ics well? But we are poised to make those gains by approaching the question in new ways.

Reframing the Problem:
What Mathematical Work Do Teachers Have to Do to Teach Effectively?

The substantial efforts to trace the effects of teacher knowledge on student learning, and the
problem of what constitutes important knowledge for teaching, led our research group4 to
the idea of working bottom up, beginning with practice. We were struck with the fact that
the nature of the knowledge required for teaching is underspecified. On one hand, what
teachers need to know seems obvious: They need to know mathematics. Who can imagine
teachers being able to explain how to find equivalent fractions, answer student questions
about primes or factors, or represent place value, without understanding the mathematical
content? On the other hand, less obvious is what “understanding mathematical content” for
teaching entails: How do teachers need to know such mathematics? What else do teachers
need to know of and about mathematics? And how and where might teachers use such
mathematical knowledge in practice?

Hence, instead of investigating what teachers need to know by looking at what they
need to teach, or by examining the curricula they use, we decided to focus on their work.
What do teachers do, and how does what they do demand mathematical reasoning, insight,
understanding, and skill? We began to try to unearth the ways in which mathematics is
entailed by its regular day-to-day, moment-to-moment demands. These analyses help to
support the development of a practice-based theory of mathematical knowledge for teaching. We
see this approach as a kind of “job analysis”, similar to analyses done of other mathemati-
cally intensive occupations, from nursing to engineering and physics (Hoyles, Noss, & Pozzi,
2001; Noss, Healy, & Hoyles, 1997), to carpentry and waiting tables. In this case, we ask:

· What mathematical knowledge is entailed by the work of teaching mathematics?
· Where and how is mathematical knowledge used in teaching mathematics? How is

mathematical knowledge intertwined with other knowledge and sensibilities in the
course of that work?

How We Do Our Work

Central to our work is a large longitudinal NSF-funded database, documenting an entire
year of the mathematics teaching in a third grade public school classroom during 1989–90.5

The records collected across that year include videotapes and audiotapes of the classroom
lessons, transcripts, copies of students’ written class work, homework, and quizzes, as well
as the teacher’s plans, notes, and reflections. By analyzing these detailed records of practice,
we seek to develop a theory of mathematical knowledge as it is entailed by and used in
teaching. We look not only at specific episodes but also consider instruction over time, ex-
amining the work of developing both mathematics and students across the school year.
What sort of larger picture of a mathematical topic and its associated practices is needed for
teaching over time? How do students' ideas and practices develop and what does this im-
ply about the mathematical work of teachers?

A database of the scale and completeness of this archive affords a kind of surrogate for
the replicable experiment. More precisely, the close study of small segments of the data
supports the making of provisional hypotheses (about teacher actions, about student think-
ing, about the pedagogical dynamics), and even theoretical constructs. These hypotheses or
constructs can then be "tested" and, in principle, refuted, using other data with this archive
itself. We can inspect what happened days (or weeks) later, or earlier, or look at a student's
notebook, or at the teacher's journal for evidence that confirms or challenges an idea. Fur-
ther, when theoretical ideas emerge from observations of patterns across the data, we can
use them as a lens for viewing other records, of other teachers' practices, and either rein-
force or modify or reject our theoretical ideas in line with their adaptability to the new data.
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Structured data like those collected in this archive can constitute a kind of public "text"
for the study of teaching and learning by a community of researchers. This would permit
the discussion of theoretical ideas to be grounded in a publicly shared body of data, inherently
connected to actual practice. As norms for such discourse are developed, so also would the
expansion of such data sets to support such scholarly communication be encouraged. In our
experience, disciplined inquiry focused on such a practice-based "text" tends to dissipate ideo-
logically based disputes, and to assure that theoretical constructs remain connected to practice.

Even with such records of practice in which much is available to be seen, casual obser-
vation will no more produce insight about teaching and learning than unsophisticated read-
ing of a good mathematics text will produce mathematical insight. Teaching and learning
are complex and dynamic phenomena in which, even with the best of records, much remains
hidden and needing interpretation and analysis. Our approach to this work has been to mobi-
lize an interdisciplinary group representing expertise in teaching practice, in disciplinary math-
ematics, in cognitive and social psychology, and in educational research. Over time we have
collectively crafted well-honed skills for sensitive observation of records (particularly video)
of teaching practice. One of our research aims is to articulate some of the demands, skills, and
norms that this entails; in short, a kind of methodology of interdisciplinary observation of teaching.

Our work uses methods of mathematical and pedagogical analysis developed in previ-
ous research (see, for example, Ball & Bass, 2000a, b; 2003). Using a framework for examining
practice, we focus on mathematics as it emerges within the core task domains of teachers’
work. Examples of this work include representing and making mathematical ideas available
to students; attending to, interpreting, and handling students’ oral and written productions;
giving and evaluating mathematical explanations and justifications; and establishing and man-
aging the discourse and collectivity of the class for mathematics learning. As we analyze par-
ticular segments of teaching, we seek to identify the mathematical resources used and needed
by the teacher. For example, when a student offers an unfamiliar solution, we will look for
signs of whether and how the teacher understands the solution, and what he or she did, and
what the mathematical moves and decisions are. Our coding scheme includes both mathematical
content (topics, procedures, and the like) and practices (mathematical processes and skills,
such as investigating equivalence, reconciling discrepancies, verifying solutions, proving
claims). The goal of the analysis is twofold: First, to examine how and where mathematical
issues arise in teaching, and how that impacts the course of the students’ and teacher ’s work
together; and second, to understand in more detail, and in new ways, what elements of math-
ematical content and practice are used—or might be used—and in what ways in teaching.

What Mathematical Problems Do Teachers Have to Solve?

This approach has led us to a new perspective on the work of mathematics teaching. We see
many things teachers do when teaching mathematics that teachers of any subject must do—
keep the classroom orderly, keep track of students’ progress, communicate with parents,
and build relationships with students. Teachers select and modify instructional tasks, make
up quizzes, manage discussions, interpret and use curriculum materials, pose questions,
evaluate student answers, and decide what to take up and what to leave. At first, these may
sound like generic pedagogical tasks. Closer examination, however, reveals that doing them
requires substantial mathematical knowledge and reasoning. In some cases, the work re-
quires teachers to think carefully about a particular mathematical idea together with some-
thing about learners or learning. In other cases, the work involves teachers in a kind of
mathematical reasoning, unencumbered by considerations of students, but applied in a peda-
gogical context. Our analyses have helped us to see that teaching is a form of mathematical
work. Teaching involves a steady stream of mathematical problems that teachers must solve.

Let us consider an example. Teachers often encounter students using methods and solu-
tions different from the ones with which they are familiar. This can arise for a variety of rea-
sons, but when teachers see methods they have not seen before, they must be able to ask and
answer—for themselves—a crucial mathematical question: What, if any, is the method, and
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will it work for all cases? No pedagogical decision can be made prior to asking and answering
this question. Consider, for example, three alternative methods for multiplying 35 � 25:

A teacher must be able to ask what is going on in each of these approaches, and to know
which of these is a method that works for multiplying any two whole numbers. These are
quintessential mathematical—not pedagogical—questions. Knowing to ask and how to an-
swer such mathematical questions is essential to being able to make wise judgments in
teaching. For instance, a decision about whether or not to examine such alternative meth-
ods with the students depends on first sizing up the mathematical issues involved in the
particular approach, and whether they afford possibilities for worthwhile mathematics learn-
ing for these students at this point in time.

Being able to sort out the three examples above requires more of teachers than simply
being able to multiply 35 � 25 themselves. Suppose, for example, a teacher knew the method
used in (B). If a student produced this solution, the teacher would have little difficulty rec-
ognizing it, and could feel confident that the student was using a reliable and generalizable
method. This knowledge would not, however, help that same teacher uncover what is go-
ing on in (A) or (C).

Take solution (A) for instance. Where do the numbers 125 and 75 come from? And
how does 125 + 75 = 875? Sorting this out requires insight into place value (that 75 repre-
sents 750, for example) and commutativity (that 25 � 35 is equivalent to 35 � 25), just as
solution (C) makes use of distributivity (that 35 � 25 = (30 � 20) + (5 � 20) + (30 � 5) + (5 � 5).
Even once the solution methods are clarified, establishing whether or not each of these
generalizes still requires justification.

Significant to this example is that a teacher’s own ability to solve a mathematical prob-
lem of multiplication (35 � 25) is not sufficient to solve the mathematical problem of teach-
ing—to inspect alternative methods, examine their mathematical structure and principles,
and to judge whether or not they can be generalized.

Let us consider a second example. This example again helps to make visible the math-
ematical demands of simple, everyday tasks of teaching. Different from the first, however, it
reveals that the mathematical demands are not always so closely aligned to the content
outlines of the curriculum (in the example above, multiplication). Suppose that, in studying
polygons, students produce or encounter some unusual figures and ask whether any of
them is a polygon.
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This is an natural mathematical question. Knowing how to answer it involves mathematical
knowledge, skill, and appreciation. An essential mathematical move at this point is to con-
sider the definition: What makes a figure a polygon? A teacher should know to consult the
textbook’s definition, but may well find an inadequate definition, such as this one, found in
a current textbook:

A closed flat two-dimensional shape whose sides are formed by line segments.

Knowing that it is inadequate requires appreciating what a mathematical definition
needs to do. This one, for example, does not rule out (b) or (c) or (f), none of which is a
polygon. But if the textbook definition is unusable, then teachers must know more than a
formally correct mathematical definition, such as:

A simple closed plane curve formed by straight line segments.

Teaching involves selecting definitions that are mathematically appropriate and also
usable by students at a particular level. For example, fifth graders studying polygons would
not know definitions for “simple” or “curve”, and therefore would not be able to use this
definition to sort out the aberrant figures from those we would call polygons.

To determine a mathematically appropriate and usable definition for “polygon”, a
teacher might try to develop a suitable definition, better than those found in the available
textbooks. Consider this effort:

A sequence of three or more line segments in the plane, each one ending where the next one begins,
and the last one ending where the first one begins. Except for these endpoints, shared only by two
neighboring segments, the line segments have no other points in common.

This definition, unlike the previous one in the textbook, is mathematically acceptable, as it
does properly eliminate (b), (c), and (f), as well as (e). But a teacher would still need to
consider whether or not her students can use it. Definitions must be based on elements that
are themselves already defined and understood. Do these students already have defined
knowledge of terms such as “line segments”, “endpoints”, and “plane”, and do they know
what “neighboring” and “in common” mean? In place of “neighboring”, would either “ad-
jacent” or “consecutive” be preferable? Knowing definitions for teaching, therefore, requires
being able to understand and work with them sensibly, treating them in a way that is con-
sistent with the centrality of definitions in doing and knowing mathematics. Knowing how
definitions function, and what they are supposed to do, together with also knowing a well-
accepted definition in the discipline, would equip a teacher for the task of developing a
definition that has mathematical integrity and is also comprehensible to students. A defini-
tion of a mathematical object is useless, no matter how mathematically refined or elegant, if
it includes terms that are beyond the prospective user’s knowledge.

Teaching requires, then, a special sort of sensitivity to the need for precision in math-
ematics. Precision requires that language and ideas be meticulously specified so that math-
ematical problem solving is not unnecessarily impeded by ambiguities of meaning and in-
terpretation. But the need for precision is relative to context and use. For example, a rigor-
ous and precise definition for odd numbers as those numbers of the form (2k + 1), or of even
numbers as multiples of two, would not be precise for first graders first encountering the
notion of “even number”. Because they cannot decode the meaning of (2k + 1) and do not
have a definition of “multiple”, the elements used to create a precise definition remain ob-
scure and unusable to six-year-olds. Needed for teaching are definitions that are both cor-
rect and useful. Knowing what definitions are supposed to do, and how to make or select
definitions that are appropriately and usefully precise for students at a certain point, de-
mands a flexible and serious understanding of mathematical language and what it means
for something to be precise.

Taken together, these two examples show that knowing mathematics in and for teach-
ing includes both elements of mathematics as found in the student curriculum—that is,
standard computational algorithms, multiplication, and polygons—as well as aspects of
knowing and doing mathematics that are less visible in the textbook’s table of contents—
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sensitivity to definitions or inspecting the generality of a method, for example. These ex-
amples also provide a glimpse of how centrally mathematical reasoning and problem solv-
ing figure in the work of teaching.

Examples of Mathematical Problems of Teaching

To illustrate ways in which solving mathematical problems is a recurrent part of the work of
teaching, we turn next to some examples. Each of our examples was chosen to show differ-
ent aspects of the mathematical work of teaching, and to develop the portrait of the math-
ematics that teaching entails, and the ways in which mathematics is used to solve problems
of teaching mathematics.

1. Choosing a task to assess student understanding: Decimals

One thing that teachers do is monitor whether or not students are learning. To do that, on an
informal basis, they pose questions and tasks that can provide indicators of whether or not
students are “getting it”.

Suppose you wanted to find out if your students could put decimal numbers in order. Which
of the following lists of numbers would give you best evidence of students’ understanding?

a) .5 7 .01 11.4
b) .60 2.53 3.14 .45
c) .6 4.25 .565 2.5

Obviously, any of these lists of numbers can be ordered. One possible decision, then, is that
the string makes no difference—that a correct ordering of any of the lists is as good as any
other.

However, a closer look reveals differences among the lists. It is possible to order (a) and (b)
correctly without paying any attention to the decimal point at all. Students who merely looked
at the numbers, with no concern for decimal notation, would still put the numbers into the
correct order. List (c), however, requires attention to the decimal places: If a student ignored
the decimal point, and interpreted the list as a set of whole numbers, he would order the
numbers as follows:

.6 2.5 4.25 .565

instead of:

.565 .6 2.5 4.25

So what sort of mathematical reasoning by the teacher is involved? More than being able to
put the numbers in the correct order, required here is an analysis of what there is to under-
stand about order, a central mathematical notion, when it is applied to decimals. And it also
requires thinking about how ordering decimals is different from ordering whole numbers.
For example, when ordering whole numbers, the number of digits is always associated with
the size of the number: Numbers with more digits are larger than numbers with fewer. Not so
with decimals. 135 is larger than 9, but .135 is not larger than 9. This mathematical perspective
is one that matters for teaching, for, as students learn, their number universe expands, from
whole numbers to rationals and integers. Hence, teaching requires considering how students’
understanding must correspondingly expand and change.

2. Interpreting and evaluating students’ non-standard mathematical ideas:
Subtraction algorithms

Teachers regularly encounter approaches and methods with which they are not familiar. Some-
times students invent alternative methods and bring them to their teachers. In other cases,
students have been taught different methods.

Suppose you had students who showed you these methods for multi-digit subtraction. First,
you would need to figure out what is going on, and whether it makes sense mathematically.
Second, you would want to know whether either of these methods works in general.
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The first method uses integers to avoid the standard, error-prone, method of regrouping. It
surely works, for it reduces the algorithm to a simple procedure that relies on the composi-
tion of numbers, and does not require “borrowing”. The second regroups 307 by regarding it,
cleverly, as 30 tens plus 7 ones, to 29 tens and 17 ones. Asking mathematical questions, a
teacher might ask himself: Even if the methods work, what would either one look like with a
10-digit number? Do both work as “nicely” with any numbers? Skills and habits for analyz-
ing and evaluating the mathematical features and validity of alternative methods play an
important role in this example. Note, once again, that this is different from merely being able
to subtract 307 – 168 oneself.

3. Making and evaluating explanations: Multiplication

Independent of any particular pedagogical approach, teachers are frequently engaged in the
work of mathematical explanation. Teachers explain mathematics; they also judge the ad-
equacy of explanations—in textbooks, from their students, or in mathematics resource books
for teachers.

Take a very basic example. In multiplying decimals, say 1.3 � 2.7, one algorithm involves
carrying out the multiplication much as if the problem were to multiply the whole numbers
13 and 27. One multiplies, ignoring the decimal points.

Then, because the numbers are decimals, the algorithm counts over two places from the right,
yielding a product of 3.51.

But suppose one wants to explain why this execution of the algorithm is wrong:

and to explain why the standard algorithm works? In this typical instance, a student has not
“moved over” the 26 on the second line, and has, in addition, simply placed the decimal point
in the position consistent with the original problem.

Is it sufficient to explain by saying that the 26 has to be moved over to line up with the 6 under
the 9? And to count the decimal places and insert the decimal point two places from the right?

These are not adequate mathematical explanations. Teaching involves explaining why the 26
should be slid over so that the 6 is under the 9: this involves knowing what the 26 actually repre-
sents. In whole number multiplication, if this were 13 � 27, then the 26 on the second line would
represent the product of 13 and 20, or 260. In this case, the 26 represents the product of 1.3 and 2—
260 tenths, or 2.6. Developing sound explanations that justify the steps of the algorithm, and
explain their meaning, involves knowing much more about the algorithm than simply being able
to perform it. It also involves sensitivity to what constitutes an explanation in mathematics.
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What Does Examining the Work of Teaching Imply About Knowing Mathematics for
Teaching?

Standing back from our investigation thus far, we offer three observations. First, our exami-
nation of mathematics teaching shows that teaching can be seen as involving substantial
mathematical work. Looking in this way can illuminate the mathematics that teachers have
to do in the course of their work. Each of these involves mathematical problem solving:

· Design mathematically accurate explanations that are comprehensible and useful for
students

· Use mathematically appropriate and comprehensible definitions;
· Represent ideas carefully, mapping between a physical or graphical model, the sym-

bolic notation, and the operation or process;
· Interpret and make mathematical and pedagogical judgments about students’ ques-

tions, solutions, problems, and insights (both predictable and unusual);
· Be able to respond productively to students’ mathematical questions and curiosities;
· Make judgments about the mathematical quality of instructional materials and modify

as necessary;
· Be able to pose good mathematical questions and problems that are productive for

students’ learning;
· Assess students’ mathematics learning and take next steps.

Second, looking at teaching as mathematical work highlights some essential features
of knowing mathematics for teaching. One such feature is that mathematical knowledge needs
to be unpacked. This may be a distinctive feature of knowledge for teaching. Consider, in
contrast, that a powerful characteristic of mathematics is its capacity to compress informa-
tion into abstract and highly usable forms. When ideas are represented in compressed sym-
bolic form, their structure becomes evident, and new ideas and actions are possible because
of the simplification afforded by the compression and abstraction. Mathematicians rely on
this compression in their work. However, teachers work with mathematics as it is being
learned, which requires a kind of decompression, or “unpacking”, of ideas. Consider the
learning of fractions. When children learn about fractions they do not begin with the notion
of a real number, nor even a rational number. They begin by encountering quantities that
are parts of wholes, and by seeking to represent and then operate with those quantities.6

They also encounter other situations that call for fractional notation: distances or points on
the number line between the familiar whole numbers, the result of dividing quantities that
do not come out “evenly” (e.g., 13 ÷ 4, and later 3 ÷ 4). Across different mathematical and
everyday contexts, children work with the elements that come together to compose quanti-
ties represented conveniently with fraction notation. Meanwhile, their experiences with the
expansion of place value notation to decimals develops another territory that they will later
join with fractions to constitute an emergent concept of rational numbers. Teachers would
not be able to manage the development of children’s understanding with only a compressed
conception of real numbers, or formal definition of a rational number. So, although such a
conception has high utility for the work of mathematics, it is inadequate for the work of
teaching mathematics.

Another important aspect of knowledge for teaching is its connectedness, both across
mathematical domains at a given level, and across time as mathematical ideas develop and
extend. Teaching requires teachers to help students connect ideas they are learning—geometry
to arithmetic, for example. In learning to multiply, students often use grouping: 35 � 25 could
be represented with 35 groups of 25 objects. But, for example, to show that 35 � 25 = 25 � 35,
or that multiplication is commutative, grouping is not illuminating. More useful is being
able to represent 35 � 25 as a rectangular area, with lengths of 25 and 35 and an area of 875
square units. This representation makes it possible to prove commutativity, simply by rotat-
ing the rectangle, showing a � b = b � a. Or, later, helping students understand the meaning
of x2 + y2 and how it is different from (x + y)2, it is useful to be able to connect the algebraic
notions to a geometric representation:
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Using these two diagrams helps to show that x2 + y2 is not the same as the x2 + 2xy + y2

produced by multiplying (x + y)2.
Teaching involves making connections across mathematical domains, helping students

build links and coherence in their knowledge. This can also involve seeing themes. For
example, the regrouping of numbers that is part of the standard multi-digit subtraction
algorithm is not unlike the renaming of fractions into equivalent forms. In each case, num-
bers are written in equivalent forms useful to the mathematical procedure at hand. To add
two fractions with unlike denominators, it is useful to be able to rewrite them so that they
have the same denominator. In subtraction, to subtract 82 – 38, it is useful to be able to
rewrite 82 as “7 12” (7 tens and 12 ones)—also an equivalent form. Seeing this connection is
useful in helping students appreciate that, to be strategic and clever in mathematics, quan-
tities can be written in equivalent, useful forms.

Teaching also requires teachers to anticipate how mathematical ideas change and grow.
Teachers need to have their eye on students’ “mathematical horizons” even as they unpack
the details of the ideas in focus at the moment (Ball, 1993). For example, second grade teach-
ers may need to be aware of the fact that saying, “You can’t subtract a larger number from a
smaller one”, is to say something that, although pragmatic when teaching whole number
subtraction, is soon to be false. Are there mathematically honest things to say instead that
more properly anticipate the expansion to integers, and the accompanying changes in what
is true or permissible?7

One final observation about what we are finding by examining teaching as mathematical
work: In our analyses, we discover that the critical mathematical issues at play in the lesson
are not merely those of the curricular topic at hand. For example, in a lesson on subtraction
with regrouping, we saw the students grappling with three different representations of sub-
traction and struggling with whether these were all valid, and, if so, whether and how they
represented the same mathematical operation. They were examining correspondences among
representations, investigating whether or not they were equivalent. Although the content
was subtraction, the mathematical entailments of the lesson included notions of equiva-
lence and mapping. In other instances, we have seen students struggling over language,
where terms were incompletely or inconsistently defined, and we have seen discussions
which run aground because mathematical reasoning is limited by a lack of established knowl-
edge foundational to the point at hand. These lessons brought to the surface important
aspects of mathematical reasoning, notation, use of terms and representation. Entailed for
the teacher would be both the particular mathematical ideas under discussion as well as
these other elements of knowing, learning, and doing mathematics. We have seen many mo-
ments where the teachers’ attentions to one of these aspects of mathematical practice is crucial to
the navigation of the lesson, and we have also seen opportunities missed because of teachers’
lack of mathematical sensibilities and knowledge of fundamental mathematical practices.

Attending to mathematical practices as a component of mathematical knowledge makes sense.
As children—or mathematicians, for that matter—do and learn mathematics, they are en-
gaged in using and doing mathematics, as are their teachers. They are representing ideas,
developing and using definitions, interpreting and introducing notation, figuring out whether
a solution is valid, and noticing patterns. They are engaged in mathematical practices as they
engage in learning mathematics. For example we often see students whose limited ability to
interpret and use symbolic notation, or other forms of representation impedes their work
and their learning. Similarly, being able to inspect, investigate, and determine whether two
solutions, two representations, or two definitions are similar, or equivalent is fundamental
to many arenas of school mathematics. Students and teachers are constantly engaged in
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situations in which mathematical practices are salient. Yet, to date, studies of mathematical
knowledge for teaching have barely probed the surface of what of mathematical practices
teachers would need to know and how they would use such knowledge.

Conclusion: Learning Mathematics for Teaching

What we know about teachers’ mathematical knowledge, learning mathematics for teaching,
and the demands of teaching mathematics suggests the need to reframe the problem of pre-
paring teachers to know mathematics for teaching. First, although many U.S. teachers lack
adequate mathematical knowledge, most know some mathematics—especially some basic
mathematics. Identifying what teachers know well and what they know less well is an impor-
tant question for leveraging resources wisely toward the improvement of teachers’ opportu-
nities to learn mathematics. What many teachers lack is mathematical knowledge that is use-
ful to and usable for teaching. Of course, some teachers do learn some mathematics in this
way from their teaching, from using curriculum materials thoughtfully and by analyzing
student work. However, many do not. Inadequate opportunities exist for teachers to learn
mathematics in ways that prepare them for the work, and few curriculum materials effec-
tively realize their potential to provide mathematical guidance and learning opportunities for
teachers. Also important to realize is that professional mathematicians may often not know
mathematics in these ways, either. This is not surprising, for the mathematics they use and
the uses to which they put it are different from the mathematical work of teaching children
mathematics. They, too, in helping teachers, will have mathematics to learn, and new prob-
lems to learn to solve, even as they also contribute resources. This summary suggests that
reframing the problem and working on it productively is both promising and challenging.

Our analysis suggests that teachers’ opportunities to learn mathematics should include
experiences in unpacking familiar mathematical ideas, procedures, and principles. But, as
the polygon example shows, learning mathematics for teaching must also afford opportuni-
ties to consider other aspects of proficiency with mathematics—such as understanding the
role of definitions and choosing and using them skillfully, knowing what constitutes an ad-
equate explanation or justification, and using representations with care. Knowing mathematics
for teaching often entails making sense of methods and solutions different from one’s own,
and so learning to size up other methods, determine their adequacy, and compare them, is an
essential mathematical skill for teaching, and opportunities to engage in such analytic and
comparative work is likely to be useful for teachers. As we examine the work of teaching, we
are struck repeatedly with how much mathematical problem solving is involved. It is math-
ematical problem solving both like and unlike the problem solving done by mathematicians
or others who use mathematics in their work. Practice in solving the mathematical problems
they will face in their work would help teachers learn to use mathematics in the ways they
will do so in practice, and is likely also to strengthen and deepen their understanding of the
ideas. For example, a group of teachers could analyze the three multiplication solutions pre-
sented here, determine their validity and generality, map them carefully onto one another.
They could also represent them in a common representational context, such as a grid dia-
gram or an area representation of the multiplication of 35 � 25 (see Ball, 2003).

Seeing teaching as mathematically-intensive work, involving significant and challeng-
ing mathematical reasoning and problem solving, can offer a perspective on the mathemati-
cal education of teachers, both preservice and across their careers. It opens the door to mak-
ing professional education of teachers of mathematics both more intellectually and math-
ematically challenging, and, at the same time, more deeply useful and practical.

Notes

1. This work has been supported by grants from the National Science Foundation (REC # 0126237)
and the Spencer Foundation (MG #199800202).

2. The authors acknowledge Heather Hill for her contributions to the ideas discussed in this paper.
3. An “advanced course” was defined as a course past the calculus sequence.
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4. Members of the Mathematics Teaching and Learning to Teach Project include Mark Hoover,
Jennifer Lewis, Ed Wall, Rhonda Cohen, Laurie Sleep, and Andreas Stylianides.

5. These data were collected under a 1989 National Science Foundation grant to Ball and
Magdalene Lampert, then at Michigan State University.

6. Understanding the development of ideas was implied by Dewey in his distinction between
the psychological and the logical aspects of subject matter in The Child and the Curriculum
(1902). By “psychological”, he did not mean the way in which a particular idea might be
learned, but the epistemological composition of its growth.

7. A group of prospective teachers suggested saying, “We can’t subtract larger numbers from
smaller ones using the numbers we have right now”.
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The Experimental Mathematician:
The Pleasure of Discovery and the Role of Proof *

Jonathan M. Borwein
Simon Fraser University

Abstract

The emergence of powerful mathematical computing environments, the growing availabil-
ity of correspondingly powerful (multi-processor) computers, and the pervasive presence
of the internet allow for mathematicians, students, and teachers to proceed heuristically
and ‘quasiinductively’. We may increasingly use symbolic and numeric computation visu-
alization tools, simulation, and data mining.

Many of the benefits of computation are accessible through low-end ‘electronic black-
board’ versions of experimental mathematics.1 This permits livelier classes, more realistic
examples, and more collaborative learning. Moreover, the distinction between computing
(HPC) and communicating (HPN) is increasingly moot.

· The unique features of our discipline make this both more problematic and more challeng-
ing. For example, there is still no truly satisfactory way of displaying mathematical
notation on the web; and we care more about the reliability of our literature than does
any other science. The traditional role of proof in mathematics is arguably under siege.

· Limned by examples, I intend to pose questions such as follow. And I offer some per-
sonal conclusions.

* Editors’ note: The text and images of this paper are drawn from the transparencies used during
Jonathan Borwein’s presentation. The original transparencies and other resources for the presen-
tation are lodged at:  www.cecm.sfu.ca/personal/jborwein/cmesg25.html. The corresponding
paper is Borwein (2000), and a forthcoming book is Bailey, Bowein, & Devlin (in preparation).

FIGURE 1.
Einstein’s savage certainty
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Questions

· What constitutes secure mathematical knowledge?

· When is computation convincing? Are humans less fallible?

· What tools are available? What methodologies?

· What about the ‘law of the small numbers’?

· How is mathematics actually done? How should it be?

· Who cares for certainty? What is the role of proof?

Favourite Examples

Many of my favourite more sophisticated examples originate in the boundary between
mathematical physics and number theory and involve the z-function,

and its friends.2 They rely on the use of Integer Relations Algorithms—recently ranked among
the ‘top ten’ algorithms of the century.3

Briggs

... where almost one quarter hour was spent, each beholding the other with admiration be-
fore one word was spoken: at last Mr. Briggs began “My Lord, I have undertaken this long
journey purposely to see your person, and to know by what wit or ingenuity you first came
to think of this most excellent help unto Astronomy, viz. the Logarithms: but my Lord, being
by you found out, I wonder nobody else found it out before, when now being known it
appears so easy”.4

Introduction

Ten years ago I was offered the signal opportunity to found the Centre for Experimental
and Constructive Mathematics (CECM) at Simon Fraser. On our website (www.cecm.sfu.ca)
I wrote:

At CECM we are interested in developing methods for exploiting mathematical computa-
tion as a tool in the development of mathematical intuition, in hypotheses building, in the
generation of symbolically assisted proofs, and in the construction of a flexible computer
environment in which researchers and research students can undertake such research. That
is, in doing ‘Experimental Mathematics’.

CECM

The decision to build CECM was based on:

(i) more than a decade’s personal experience, largely since the advent of the personal com-
puter, of the value of computing as an adjunct to mathematical insight and correctness;

(ii) on a growing conviction that the future of mathematics would rely much more on
collaboration and intelligent computation;

(iii) that such developments needed to be enshrined in, and were equally valuable for,
mathematical education; and

(iv) that experimental mathematics is fun.

Ten years later, my colleagues and I are even more convinced of the value of our venture—
and the ‘mathematical universe is unfolding’ much as we anticipated. Our efforts and phi-
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losophy are described in some detail in the forthcoming book and in the survey articles.5

Ten years ago the term ‘experimental mathematics’ was often treated as an oxymoron. Now
there is a highly visible and high quality journal of the same name.

Fifteen years ago, most self-respecting research pure mathematicians would not admit
to using computers as an adjunct to research. Now they will talk about the topic whether or
not they have any expertise.

The centrality of information technology to our era and the growing need for concrete
implementable answers suggests why we have attached the word ‘Constructive’ to CECM.

Plus ça change

While some things have happened much more slowly than we guessed (e.g., good charac-
ter recognition (OCR) for mathematics, any substantial impact on classroom parole), others
have happened much more rapidly (e.g., the explosion of the world wide web,6 the quality
of graphics and animations, the speed and power of computers).

Crudely, the tools with broad societal or economic value arrive rapidly, those that are
interesting primarily in our niche do not.

Research mathematicians for the most part neither think deeply about nor are terribly
concerned with either pedagogy or the philosophy of mathematics.

The Aesthetic Impulse

Nonetheless, aesthetic and philosophical notions have always permeated (pure and applied)
mathematics. And the top researchers have always been driven by an aesthetic imperative:

We all believe that mathematics is an art. The author of a book, the lecturer in a classroom
tries to convey the structural beauty of mathematics to his readers, to his listeners. In this
attempt, he must always fail. Mathematics is logical to be sure, each conclusion is drawn
from previously derived statements. Yet the whole of it, the real piece of art, is not linear;
worse than that, its perception should be instantaneous. We have all experienced on some
rare occasions the feeling of elation in realizing that we have enabled our listeners to see at
a moment’s glance the whole architecture and all its ramifications. (Emil Artin, 1898–1962)7

Aesthetics and Utility

Elsewhere, I have similarly argued for aesthetics before utility.8 The opportunities to tie
research and teaching to aesthetics are almost boundless—at all levels of the curriculum.9

This is in part due to the increasing power and sophistication of visualization, geometry,
algebra and other mathematical software.

That said, in my online lectures and resources and in many of the references one will
find numerous examples of the utility of experimental mathematics—such as gravitational
boosting.

My Present Aim

In this setting, my primary concern is to explore the relationship between proof (deduction)
and experiment (induction). I shall borrow shamelessly from my earlier writings.

There is a disconcerting pressure at all levels of the curriculum to derogate the role of
proof. This is in part motivated by the aridity of some traditional teaching (e.g., Euclid), by
the alternatives offered by good software, by the difficulty of teaching and learning the
tools of the traditional trade, and perhaps by laziness. My own attitude is perhaps best
summed up by a cartoon in a book on learning to program in APL (a very high level lan-
guage). The blurb above it reads:

Remember ten minutes of computation is worth ten hours of thought.

The blurb below it reads:
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Remember ten minutes of thought is worth ten hours of computation.

Just as ‘the unlived life is not much worth examining’ (Charles Krauthammer et al.), proof
and rigour should be in the service of things worth proving.

And equally foolish, but pervasive, is encouraging students to ‘discover’ fatuous gen-
eralizations of uninteresting facts.

Gauss, Hadamard, & Hardy

Three of my personal mathematical heroes, very different men from different times, all tes-
tify interestingly on these points and on the nature of mathematics.

Gauss

Carl Friedrich Gauss (1777–1855) once wrote, “I have the result, but I do not yet know how
to get it.”10

One of Gauss’s greatest discoveries, in 1799, was the link between the lemniscate sine
function and the arithmetic-geometric mean iteration. This was based on a purely computa-
tional observation. The young Gauss wrote in his diary that the result “will surely open up
a whole new field of analysis”.

He was right, as it pried open the whole vista of nineteenth century elliptic and modu-
lar function theory. Gauss’s specific discovery, based on tables of integrals provided by Stirling
(1692–1770), was that the reciprocal of the integral

agreed numerically with the limit of the rapidly convergent iteration given by a0 := 1., b0 :=
√2 and computing

The sequences an, bn have a common limit 1.1981402347355922074....
Which object, the integral or the iteration, is more familiar, which is more elegant—

then and now?

… Criteria Change

‘Closed forms’ have yielded centre stage to ‘recursion’, much as biological and computa-
tional metaphors (even ‘biology envy’) have replaced Newtonian mental images with Rich-
ard Dawkin’s ‘blind watchmaker’. This experience of ‘having the result’ is reflective of much
research mathematics. Proof and rigour play the role described next by Hadamard.

Likewise, the back-handed complement given by Briggs to Napier underscores that is
often harder to discover than to explain or digest the new discovery.

Hardy asked, ‘What’s your father doing these days. How about that esthetic measure of
his?’ I replied that my father’s book was out. He said, ‘Good, now he can get back to real
mathematics’. (Garret Birkhoff)

Hadamard

A constructivist, experimental, and aesthetic driven rationale for mathematics could hardly
do better than to start with an insight from Jacques Hadamard:

The object of mathematical rigor is to sanction and legitimize the conquests of intu-
ition, and there was never any other object for it.11
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Hadamard (1865–1963) was perhaps the greatest mathematician to think deeply and seri-
ously about cognition in mathematics.12

Hadamard is quoted as saying “... in arithmetic, until the seventh grade, I was last or
nearly last” which should give encouragement to many young students. He was both the
author of The psychology of invention in the mathematical field (1945), a book still worth close
inspection, and co-prover of the Prime Number Theorem (1896):

The number of primes less than n tends to ∞ as does    
n

   .

This was one of the culminating results of 19th century mathematics and one that relied on
much preliminary computation and experimentation.

In Part Because …

One rationale for experimental mathematics and for heuristic computations is that one gen-
erally does not know during the course of research how it will pan out. Nonetheless, one
must frequently prove all the pieces along the way as assurance that the project remains on
course. The methods of experimental mathematics, alluded to below, allow one to maintain
the necessary level of assurance without nailing down all the lemmas. At the end of the day,
one can decide if the result merits proof. It may not it may not be the answer one sought, or
it just may not be interesting enough.

Hardy’s Apology

Correspondingly, G.H. Hardy (1877–1947), the leading British analyst of the first half of the
twentieth century, was also a stylish author who wrote compellingly in defense of pure
mathematics. In his apologia, A Mathematician’s Apology,13 Hardy writes, “All physicists and
a good many quite respectable mathematicians are contemptuous about proof”. The Apol-
ogy is a spirited defense of beauty over utility: “Beauty is the first test. There is no perma-
nent place in the world for ugly mathematics”.

That said, his comment that “Real mathematics … is almost wholly ‘useless’” has been
overplayed and is now to my mind very dated, given the importance of cryptography and
other pieces of algebra and number theory devolving from very pure study. But he does
acknowledge that, “If the theory of numbers could be employed for any practical and obvi-
ously honourable purpose ...”, even Gauss would be persuaded.

The existence of Amazon or Google means that I can be less than thorough with my
bibliographic details without derailing anyone who wishes to find the source.

A Striking Example

Hardy, on page 15 of his tribute to Ramanujan entitled Ramanujan, Twelve Lectures, gives the
so-called ‘Skewes number’ as a “striking example of a false conjecture”. The integral

is a very good approximation to π(x), the number of primes not exceeding x. Thus, li 108 =
5,761,455 while π (108) = 5,762,209. It was conjectured that

  li x < π(x)

holds for all x and indeed it so for many x. Skewes in 1933 showed the first explicit crossing
at 10101034

. This is now reduced to a tiny number, a mere 101167, still vastly beyond direct
computational reach or even insight.

The Limits of Reason

Such examples show forcibly the limits on experimentation, at least of a naïve variety. Many

log n
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will be familiar with the ‘Law of large numbers’ in statistics. Here we see what some num-
ber theorists call the ‘Law of small numbers’: all small numbers are special, many are primes
and direct experience is a poor guide.

And sadly or happily, depending on one’s attitude, even 101166 may be a small number.
In more generality one never knows when the initial cases of a seemingly rock solid pattern
are misleading. Consider the classic sequence counting the maximal number of regions ob-
tained by joining n points around a circle by straight lines:

1, 2, 4, 8, 16, 31, 57, …

(Entry A000127 in Sloane’s Encyclopedia.)

My Own Methodology

As a computational and experimental pure mathematician my main goal is insight. Insight
demands speed and increasingly parallelism.14 Extraordinary speed and enough space are
prerequisite for rapid verification and for validation and falsification (‘proofs and refuta-
tions’). One cannot have an ‘aha’ when the ‘a’ and ‘ha’ come minutes or hours apart.

What is ‘easy’ changes as computers and mathematical software grow more powerful.
We see an exciting merging of disciplines, levels, and collaborators. We are more and more
able: to marry theory and practice, history and philosophy, proofs and experiments; to match
elegance and balance to utility and economy; and to inform all mathematical modalities
computationally (analytic, algebraic, geometric, and topological).

This has led us to articulate an Experimental Mathodology, as a philosophy15 and in
practice16, based on:

(i) meshing computation and mathematics (intuition is acquired not natural);

(ii) visualization (even three is a lot of dimensions). Nowadays we can exploit pictures,
animations, emmersive reality, sounds and other haptic stimuli; and

(iii) ‘caging’ and ’monster-barring’ (Imre Lakatos’s terms for how one rules out exceptions
and refines hypotheses).

Two particularly useful components are:

· graphic checks: comparing 2√y – y and √yln(y), 0 < y < 1 pictorially is a much more rapid way
to divine which is larger that traditional analytic methods.

· randomized checks: of equations, linear algebra, or primality can provide enormously secure
knowledge or counter-examples when deterministic methods are doomed.

All of which is relevant at every level of learning and research. My own works depend
heavily on:

(i) High Precision (computation of object(s) for subsequent examination);

(ii) Pattern Recognition of Real Numbers (e.g., using CECM’s Inverse Calculator17 and
‘RevEng’), or Sequences (e.g., using Salvy & Zimmermann’s ‘gfun’ or Sloane and Plouffe’s
Online Encyclopedia); and

(iii) Extensive use of Integer Relation Methods18: PSLQ & LLL and FFT.

Integer Relation methods are an integral part of a wonderful test bed for experimental math-
ematics. Ruling out things (‘exclusion bounds’) is, as always in science, often more useful
than finding things.

To make more sense of all this it is helpful to discuss the nature of experiment. Peter
Medawar19 usefully distinguishes four forms of scientific experiment:

1. The Kantian example: generating “the classical non-Euclidean geometries (hyperbolic,
elliptic) by replacing Euclid’s axiom of parallels (or something equivalent to it) with
alternative forms”.

2. The Baconian experiment is a contrived as opposed to a natural happening, it “is the
consequence of ‘trying things out’ or even of merely messing about”.
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3. Aristotelian demonstrations: “apply electrodes to a frog’s sciatic nerve, and lo, the leg
kicks; always precede the presentation of the dog’s dinner with the ringing of a bell,
and lo, the bell alone will soon make the dog dribble”.

4. The most important is Galilean: “a critical experiment—one that discriminates be-
tween possibilities and, in doing so, either gives us confidence in the view we are
taking or makes us think it in need of correction”.

The first three forms of experiment are common in mathematics, the fourth (Galilean) is not.
The Galilean Experiment is also the only one of the four forms that has the promise of
making Experimental Mathematics a serious replicable scientific enterprise. I’ll illustrate
this point with some examples.

Two Things About √2

Remarkably one can still find new insights in the oldest areas:

Irrationality. We present graphically, Tom Apostol’s lovely new geometric proof20 of the irra-
tionality of √2.

Proof. To say √2 is rational is to draw a right-angled isosceles triangle with integer sides.
Consider the smallest right-angled isosceles triangle with integer sides—that is with short-
est hypotenuse. Circumscribe a circle of radius the vertical side and construct the tangent
on the hypotenuse, as in the picture.

The smaller right-angled isoceles triangle again has integer sides.
This can be beautifully illustrated in a dynamic geometry package such as Geometer’s

Sketchpad or Cinderella. We can continue to draw smaller and smaller integer-sided similar
triangles until the area drops below 1/2.

But I give it here to emphasize the ineffably human component of the best proofs, and
to suggest the role of the visual.

Rationality. √2  also makes things rational:

Hence by the principle of the excluded middle:

In either case we can deduce that there are irrational numbers α and β with αβ rational. But
how do we know which ones?

This is not an adequate proof for an Intuitionist or a Constructivist.
We may build a whole mathematical philosophy project around this.

DISCOVER versus VERIFICATION

Compare the assertion that

α := √2 and β := 2ln2(3) yield αβ = 3
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... as Maple confirms. This illustrates nicely that verification is often easier than discovery.
Similarly, the fact multiplication is easier than factorization is at the base of secure encryp-
tion schemes for e-commerce.

There are eight possible (ir)rational triples:

αβ  = γ ,

and finding examples of all cases is now a fine student project.

Integrals & Products

Even Maple or Mathematica ‘knows’ π ≠ 22/7 since

though it would be prudent to ask ‘why’ it can perform the evaluation and ‘whether’ to
trust it.

In this case, computing ∫  … provides reassurance. In contrast, Maple struggles with
the following sophomore’s dream:

Students asked to confirm this, typically mistake numerical validation for symbolic proof:

    1.291285997 = 1.291285997

Similarly

(1)

is rational, while the seemingly simpler (n = 2) case

(2)

is irrational, indeed transcendental.
Our Inverse Symbolic Calculator can identify the right-hand side of (2) from its nu-

meric value 0.272029054..., and Maple can ‘do’ both products. But the student learns little or
nothing from this unless the software can also recreate the steps of a validation. For ex-
ample, (1) is a lovely telescoping product (or a ‘bunch’ of Γ-functions).

That said in each case computing adds reality, making concrete the abstract, and mak-
ing some hard things simple. This is strikingly the case in Pascal’s Triangle, which affords an
emphatic example where deep fractal structure is exhibited in the elementary binomial co-
efficients.21

David Berlinski22 writes:

The computer has in turn changed the very nature of mathematical experience, suggesting
for the first time that mathematics, like physics, may yet become an empirical discipline, a
place where things are discovered because they are seen.

A sentiment I agree with, unlike others of his, in his A Tour of the Calculus.

Partitions & Patterns

The number of additive partitions of n, p(n), is generated by

(3)

  t
 0
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Thus, p(5) = 7 since

5 = 4 + 1 = 3 + 2 =3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

Developing (3) is a nice introduction to enumeration via generating functions.
Additive partitions are harder to handle than multiplicative factorizations, but they

can be introduced in the elementary school curriculum with questions like:

How many ‘trains’ of a given length can be built with Cuisenaire rods?

A modern computationally driven question is

How hard is p(n) to compute?

In 1900, the father of combinatorics, Major Percy MacMahon (1854–1929), took months to
compute p(200) recursively via (3). By 2000, Maple would produce p(200) in seconds simply
by computing the 200th term of the series. A few years earlier, it required one to be careful to
compute the series for Πn≥1(1 – qn) first and then to compute the series for the reciprocal of
that series!

This seemingly baroque event is occasioned by Euler’s pentagonal number theorem

The reason is that, if one takes the series for (3) directly, the software has to deal with 200
terms on the bottom. But if one takes the series for Πn≥1(1 – qn), the software has only to
handle the 23 non-zero terms in series in the pentagonal number theorem. This ex post facto
algorithmic analysis can be used to facilitate independent student discovery of the pentago-
nal number theorem, and like results.

Ramanujan used MacMahon’s table of p(n) to intuit remarkable and deep congruences
such as

p(5n + 4) ≡ 0   mod 5

p(7n + 5) ≡ 0   mod 7

and

p(11n + 6) ≡ 0   mod 11,

... from data like

If introspection fails, we can find the pentagonal numbers occurring above in Sloane and
Plouffe’s on-line Encyclopedia of Integer Sequences.23 Here we see a very fine example of Math-
ematics: the science of patterns as is the title of Keith Devlin’s book. And much more may
similarly be done.

Changing Questions

The difficulty of estimating the size of p(n) analytically—so as to avoid enormous computa-
tional effort—led to some marvelous mathematical advances by researchers including Hardy
and Ramanujan, and Rademacher.

The corresponding ease of computation may now act as a retardant to mathematical
insight. New mathematics is discovered only when prevailing tools run totally out of steam.
This raises another caveat against mindless computing: Will a student or researcher discover
structure when it is easy to compute without needing to think about it? Today, she may
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thoughtlessly compute p(500) which a generation ago took much, much pain and insight.
Ramanujan typically saw results not proofs and sometimes went badly wrong for that

reason.
So will we all.
Thus, we are brought full face to the challenge—such software should be used, but algo-

rithms must be taught and an appropriate appreciation for and facility with proof developed.

High Precision Fraud

Below ‘[x]’ denotes the integer part of x. Consider:

is valid to 268 places; while

is valid to 12 places. Both are actually transcendental numbers.
Correspondingly the simple continued fractions for tanh(π) and tanh(π /2) are respectively.

[0, 1, 267, 4, 14, 1, 2, 1, 2, 2, 1, 2, 3, 8, 3, 1, …]

and

[0, 1, 11, 14, 4, 1, 1, 1, 3, 1, 295, 4, 4, 1, 5, 17, 7, …].

This is, as they say, no coincidence!
While the reasons are too advanced to explain here, it is easy to conduct experiments

to discover what happens when tanh(π) is replaced by another irrational number, say log(2).
It also affords a great example of fundamental objects that are hard to compute by hand
(high precision sums or continued fractions) but easy even on a small computer or calcula-
tor. Indeed, I would claim that continued fractions fell out of the undergraduate curriculum
precisely because they are too hard to work with by hand.

And, of course the main message, is again that computation without insight is mind
numbing and destroys learning.

’Pentium Farming’ for Bits of π

Bailey, Borwein, & Plouffe (1996) discovered a series for π (and corresponding ones for some
other polylogarithmic constants) which somewhat disconcertingly allows one to compute
hexadecimal digits of π without computing prior digits. The algorithm needs very little
memory and no multiple precision. The running time grows only slightly faster than lin-
early in the order of the digit being computed.

Until then it was broadly considered impossible to compute digits of such a number
without computing most of the preceding ones. The key, found as described above, is:

Knowing an algorithm would follow they spent several months hunting by computer using
integer relation methods24 for such a formula. Once found, it is easy to prove in Mathematica,
in Maple or by hand—and provides a very nice calculus exercise. This was a most successful
case of

REVERSE
MATHEMATICAL
ENGINEERING
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This is entirely practicable. God reaches her hand deep into π: in September 1997, Fabrice
Bellard (INRIA) used a variant of this formula to compute 152 binary digits of π, starting at
the trillionth position (1012)—which took 12 days on 20 work-stations working in parallel
over the Internet.

In August 1998, Colin Percival (SFU, age 17) similarly made a naturally or “embarrass-
ingly parallel” computation of the five trillionth bit (on 25 machines about 10 times the speed
of Bellard’s). In hexedecimal notation, he got

07E45733CC790B5B5979.

The corresponding binary digits of π, starting at the 40 trillionth place, are

00000111110011111.

By September 2000, the quadrillionth bit had been found to be ‘0’ (using 250 cpu years on
1734 machines from 56 countries).

Starting at the 999,999,999,999,997th bit of π, one has:

111000110001000010110101100000110.

A Concrete Synopsis

I illustrate some of the mathematical challenges with a specific problem.25

      10832. Donald E. Knuth, Stanford University. Evaluate

1. A very rapid Maple computation yielded –0.08406950872765600 ... as the first 16 digits of
the sum.

2. The Inverse Symbolic Calculator has a ‘smart lookup’ feature26 that replied that this was
probably

3. Ample experimental confirmation was provided by checking this to 50 digits. Thus within
minutes we knew the answer.

4. As to why, a clue was provided by the surprising speed with which Maple computed the
slowly convergent infinite sum. The package clearly knew something the user did not.
Peering under the covers revealed that it was using the LambertW function, W, which is
the inverse of w = zexp(z).27

5. The presence of ζ(1/2) and standard Euler-MacLaurin techniques, using Stirling’s for-
mula (as might be anticipated from the question), led to

(4)

where the binomial coefficients in (4) are those of              .

Now (4) is a formula Maple can ‘prove’.

6. It remains to show

(5)    

7. Guided by the presence of W, and its series
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an appeal to Abel’s limit theorem lets one deduce the need to evaluate

(6)

Again Maple happily does know (6).

8. Of course, this all took a fair amount of human mediation and insight.

TRUTH versus PROOF

By some accounts Percival’s web-computation of π is one of the largest computations ever
done. It certainly shows the possibility to use inductive engineering-like methods in math-
ematics, if one keeps one’s eye on the ball.

To assure accuracy the algorithm can be run twice starting at different points—say,
starting at 40 trillion minus 10. The overlapping digits will differ if any error has been made.
If 20 hex-digits agree we can argue heuristically that the probability of error is roughly 1
part in 1025. While this is not a proof of correctness, it is certainly much less likely to be
wrong than any really complicated piece of human mathematics.

Fermat’s Margins

For example, perhaps 20 people alive can, given enough time, digest alt of Andrew Wiles’
extraordinarily sophisticated proof of Fermat’s Last Theorem and it relies on a century-long
program. If there is even a 1% chance that each has overlooked the same subtle error28—
probably in prior work not explicitly in Wiles’ corrected version—then, clearly, many com-
putation-based ventures are much more secure.

This would seem to be a good place to address another common misconception:

No amount of simple-minded case checking constitutes a proof.

Four Colours Suffice

The 1976-7 ‘proof’ of the

Four Colour Theorem. Every planar map can be coloured with four colours so
adjoining countries are never the same colour

was a proof because prior mathematical analysis had reduced the problem to showing that
a large but finite number of bad configurations could be ruled out.

The proof was viewed as somewhat flawed because the case analysis was inelegant,
complicated, and originally incomplete. In the last few years, the computation has been
redone after a more satisfactory analysis.29

Though many mathematicians still yearn for a simple proof in both cases, there is no
particular reason to think that all elegant true conjectures have accessible proofs. Nor in-
deed, given Goedel’s work, need they have proofs at all.

The message is that mathematics is quasi-empirical, that mathematics is not the same as
physics, not an empirical science, but I think it’s more akin to an empirical science than
mathematicians would like to admit. (Greg Chaitin, 2000)

Kuhn & Planck

Much of what I have described in detail or in passing involves changing set modes of think-
ing. Many profound thinkers view such changes as difficult:

The issue of paradigm choice can never be unequivocally settled by logic and experiment
alone. … in these matters neither proof nor error is at issue. The transfer of allegiance from
paradigm to paradigm is a conversion experience that cannot be forced. (Thomas Kuhn)30
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... and

a new scientific truth does not triumph by convincing its opponents and making them see
the light, but rather because its opponents die and a new generation grows up that’s
familiar with it. (Albert Einstein quoting Max Planck)31

However hard such paradigm shifts and whatever the outcome of these discourses, mathe-
matics is and will remain a uniquely human undertaking.

Hersh’s Humanist Philosophy

Indeed Reuben Hersh’s arguments for a humanist philosophy of mathematics, as para-
phrased below, become more convincing in our setting:

1. Mathematics is human. It is part of and fits into human culture. It does not match Frege’s
concept of an abstract, timeless, tenseless, objective reality.

2. Mathematical knowledge is fallible. As in science, mathematics can advance by making mis-
takes and then correcting or even re-correcting them. The “fallibilism” of mathematics is
brilliantly argued in Lakatos’s Proofs and Refutations.

3. There are different versions of proof or rigor. Standards of rigor can vary depending on time,
place, and other things. The use of computers in formal proofs, exemplified by the com-
puter-assisted proof of the Four Colour Theorem in 1977, is just one example of an emerg-
ing nontraditional standard of rigor.

4. Empirical evidence, numerical experimentation and probabilistic proof all can help us decide what to
believe in mathematics. Aristotelian logic isn’t necessarily always the best way of deciding.

5. Mathematical objects are a special variety of a social-cultural-historical object. Contrary to the
assertions of certain post-modern detractors, mathematics cannot be dismissed as merely
a new form of literature or religion. Nevertheless, many mathematical objects can be seen
as shared ideas, like Moby Dick in literature, or the Immaculate Conception in religion.32

To this I would add that for me now mathematics is not ultimately about proof but about
secure mathematical knowledge.

Riemann

Georg Friedrich Bernhard Riemann (1826–1866) was one of the most influential thinkers of
the past 200 years. Yet he proved very few theorems, and many of the proofs were flawed.

But his conceptual contributions, such as through Riemannian geometry and the Ri-
emann zeta function, and to elliptic and Abelian function theory, were epochal.

In Conclusion

The experimental method is an addition not a substitute for proof, and its careful use is an
example of Hersh’s nontraditional standard of rigor. The recognition that ‘quasi-intuitive’
methods may be used to gain mathematical insight can dramatically assist in the learning
and discovery of mathematics. Aesthetic and intuitive impulses are shot through our sub-
ject, and honest mathematicians will acknowledge their role. But a student who never mas-
ters proof will not be able to profitably take advantage of these tools.

Final Observations

As we have already seen, the stark contrast between the deductive and the inductive has
always been exaggerated. Herbert A. Simon wrote:

This skyhook-skyscraper construction of science from the roof down to the yet unconstructed
foundations was possible because the behaviour of the system at each level depended only
on a very approximate, simplified, abstracted characterization at the level beneath.33
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Russell

“… the chief reason in favour of any theory on the principles of mathematics must always be
inductive, i.e., it must lie in the fact that the theory in question allows us to deduce ordinary
mathematics. In mathematics, the greatest degree of self-evidence is usually not to be found
quite at the beginning, but at some later point; hence the early deductions, until they reach
this point, give reason rather for believing the premises because true consequences follow
from them, than for believing the consequences because they follow from the premises.”
Contemporary preferences for deductive formalisms frequently blind us to this important
fact, which is no less true today than it was in 1910.”

“This is lucky, else the safety of bridges and airplanes might depend on the correctness of
the ‘Eightfold Way’ of looking at elementary particles.”

It is precisely this ‘post hoc ergo propter hoc’ part of theory-building that Russell so accurately
typifies that makes him an articulate if surprising advocate of my own views.

In Summary

· Good software packages can make difficult concepts accessible (e.g., Mathematica and
SketchPad) and radically assist mathematical discovery. Nonetheless, introspection is here
to stay.

· “We are Pleistocene People” (Kieran Egan). Our minds can subitize, but were not made
for modern mathematics. We need all the help we can get.

· While proofs are often out of reach to students or indeed lie beyond present mathemat-
ics, understanding, even certainty, is not.

· “It is more important to have beauty in one’s equations than to have them fit experi-
ment” (Paul Dirac).

· And surely: “You can’t go home again” (Thomas Wolfe).

Notes

1. See Borwein, Borwein, Girgensohn, & Parnes (1996).
2. See Borwein & Bradley (1997).
3. See Dongarra & Sullivan (2000); Borwein & Borwein (2000). See also Borwein & Corless (1999);

Bailey & Borwein (2000); and www.cecm.sfu.ca/projects/IntegerRelations/
4. Henry Briggs is describing his first meeting in 1617 with Napier whom he had traveled from

London to Edinburgh to meet. Quoted from Turnbull (1929).
5. See  Borwein, Borwein, Girgensohn, & Parnes (1996); Borwein & Corless(1999); Bailey &

Borwein (2000); and Borwein & Borwein (2001). More technical accounts of some of our tools
and successes are detailed in Borwein & Bradley (1997).

6. Our web site now averages well over a million accesses a month.
7. Quoted by Ram Murty (2000).
8. Borwein (in press).
9. An excellent middle school illustration is described in Sinclair (2001).
10. See Asimov & Shulman (1988).
11. In E. Borel (1928), “Leçons sur la théorie des functions”, Polya (1981).
12. Other than Poincaré?
13. A Mathematician’s Apology is one of Amazon’s best sellers.
14. See Borwein & Borwein (2001).
15. See Borwein, Borwein, Girgensohn, & Parnes (1996).
16. See Borwein & Corless(1999).
17. ISC space limits have changed from 10Mb being a constraint in 1985 to 10Gb being ‘easily

available’ today.
18. Described as one of the top ten “Algorithm’s for the Ages”. See Dongarra & Sullivan (2000).
19. In P. Medawar (1979).
20. MAA Monthly, November 2000, 241–242.
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21. See wwu.cecm.afu.ca/interfaces/
22. Berlinski (1995).
23. At www.research.att.com/personal/njas/sequences /eisonline.html.
24. See Borwein & Corless (1999); Bailey & Borwein(2000); Dongarra & Sullivan (2000).
25. Proposed in the American Mathematical Monthly (November, 2000). Described in Borwein &

Borwein (2001).
26. Alternatively, a sufficiently robust integer relation finder could be used.
27. A search for ‘Lambert W function’ on MathSciNet provided nine references—all since 1997,

when the function appears named for the first time in Maple and Mathematica.
28. And they may be psychologically predisposed so to do!
29. This is beautifully described at www. math.gatech.edu/personal/thomas/FC/fourcolor.html.
30. In Regis (1986).
31. From Major (1998).
32. From “Fresh Breezes in the Philosophy of Mathematics’. American Mathematical Monthly,

August–September 1995, 589–594.
33. Simon (1996), page 16. More than fifty years ago Bertrand Russell made the same point about

the architecture of mathematics. See the “Preface” to Principia Mathematica.
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Introduction

As we began to make plans for this working group, we were oriented by a shared concern:
For the most part, we felt, when the terms ‘art’ and ‘mathematics’ are mentioned in the
same sentence, attentions are prompted either to matters of elegance in argumentation or to
such mathematically inspired or generated artifacts as Escher prints and fractal images.

To avoid this sort of tendency, we set out to frame our discussions by borrowing from
Hans-Georg Gadamer (1990) who distinguishes the work of art from other cultural forms.
Gadamer suggests that art, to be art, must fulfill two complementary functions. First, the
work of art must represent—that is, it must call to mind something familiar, the viewer must
be able to identify (with) it in some way. But mere representation is inadequate for an arti-
fact to do the work of art. It must also present—that is, it must point to new perceptual and
interpretive possibilities.

So oriented, our original intentions for the working group were:

· to investigate places where mathematics and the arts can co-emerge, informed by the
intertwining histories of the arts with mathematics;

· to operate on several distinct levels simultaneously. (On the cultural level we asked,
What do the arts and mathematics do? On the level of the classroom we asked, How
might the experience of mathematics learning be artful? On the level of the teacher we
asked, How might art help us reframe teaching?)

We also attempted to articulate the project proscriptively. In particular, we sought to avoid
the temptations:

· to engage in the debate of whether or not mathematics is an art;
· to scavenge for ‘artsy’ activities (this was not a quest for activities and applications);
· to focus exclusively on the arts as our starting places in discussions of the relation-

ships between art and mathematics.

Part of the frame of this working group was a compilation of activities drawn from the
domains of music, literature, dance, and visual arts—other forms of cultural expression
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through which particular aspects of experience are either foregrounded or pushed into the
shadows.

Day 1

Activity: Translating Rhythms

Our first day’s activity had been designed originally as a way to introduce one of the functions of
algebra—the compact, concise, and interpretable representation of some aspect of a real situation—to
students beginning algebra. The activity had previously been used in a workship setting with several
groups of high school students, student teachers, and secondary school mathematics teachers. It in-
volved the ideas of recognition, representation, and translation of a pattern among a number of differ-
ent media, some of which are embodied and which offer the potential of artistic engagement.

Working in groups, participants began with a short excerpt of poetry and were asked to find the
rhythmic pattern in it. The poems, by authors like e.e. cummings, Edgar Allen Poe and Christina
Rossetti, had been chosen for their strong, quite regular rhythms. Participants were instructed, first, to
read the poem as a group and work together to get a feel for its rhythm, and then to “translate” the
poem’s rhythm into movement and sound. Simple musical and rhythm instruments were available for
use. Participants were also encouraged to “do” the rhythm of the poem using their voice without saying
the words of the poem, and to move to the rhythm of the poem, using clapping, stamping, movement
across the floor, body shapes, and so on. After a period of work, each group showed their sound and
movement representations of their poem’s rhythmic patterns to the whole group. (See Figure 1.)

FIGURE 1. Some “translations” of the rhythmic patterns of poetry

The second phase of the activity involved a translation of the poem’s rhythmic patterns to a kind
of self-made algebra. The groups were asked to work together to find a way to write down the rhythm
of their poem symbolically, working through several drafts to improve their written representations.
They were told that a “better” symbolic representation was one that was:

1) more compact,
2) a truer representation of the underlying rhythm of the poem,
3) more generalized, and
4) easier for other people to read and understand.

These instructions were meant to reflect mathematical values for a good algebraic representation of a
physical phenomenon. (See Figure 2.)
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In the final phase of this activity, each small group received another group’s best symbolic
representation of a poem’s rhythmic pattern. First of all, groups were asked to work together to inter-
pret the rhythmic pattern represented by the symbols they had been given, using clapping, voice
sounds, and so on, to re-embody the rhythm and to come to an agreed-upon interpretation of the
symbols. Then they were instructed:

a) to use paints and other art materials to express the rhythmic pattern visually, so that other
people could “feel” it, and

b) to write a new piece of verse using this rhythmic pattern.

At the end of the activity, the paintings, new verses and symbolic notations, and the original
poetry excerpts were displayed in a “gallery showing”.

Commentary

Most of the participants thoroughly enjoyed the activity; there was considerable excitement
and energy in the room, and several attractive paintings were generated. However, during
the discussion, many expressed a general unrest about the mathematical relevance of the
activity. Were we doing mathematics? Was this an activity that could be used in the class-
room? Were we just having fun? And though they didn’t feel like we were doing much
mathematics, there was a sense in which we were acting in a mathematical way, rather than
an artistic one. For example, some felt uncomfortable about translating the poem into a
rhythm and then into the notation. How could we ignore the meaning of the poem? How
could we ignore previous interpretations of the poem? These translations did nothing but
lose meaning, rather than gain any, which did not seem appropriate. There was also a sense
in which the translations were over-analytic, rather than holistic, again not appropriate for
the kinds of artistic activities in which we were engaged.

Many participants saw mathematics being most appropriate and present only when it
came to creating the symbolic notation, which was used to mediate between the poem as
experienced and realizations of its rhythmic content in paintings and new poems. Perhaps
this translation was the most abstract, or simply felt more familiar. However, even the clap-
ping of the poem can be seen as mathematical since it involves identifying, abstracting and
representing the rhythmic structure of the poem—the very same processes used to describe
rational numbers, say. While rational numbers are mathematical objects in the way a poem
is not, the rainbow—which has been repeatedly mathematized—is no more a mathematical
object than a poem.

In a more general way however, participants thought that this activity revealed a fun-
damental similarity between mathematics and the arts. Recalling Gadamer’s description
(noted above), mathematics like art can both provide a way to represent (call to mind that
which has been experienced) and has a potential to present (point to something other than
the immediate experience.

FIGURE 2. A symbolic
representation of the
rhythmic patterns in a
poem



CMESG/GCEDM Proceedings 2002 • Working Group Report

36

Day 2

Activity: Twelve-Tone Composition

The second day’s activity involved composing 12-tone music according to some of the permuta-
tional rules derived by Schoenberg, Webern, and other modern classical composers in the early
20th century. These composers tried to break away from the traditional Western scale and struc-
tures of tonality and melody to create a new atonal music that could express the culture of the new
century.

To do this, they abandoned traditional musical scales and worked with the twelve
semitones of an octave on the piano keyboard, representing them as the numbers from zero to
eleven. A twelve-element tone row was created using each of these numbers once in the se-
quence. Using permutational rules and conventions, the original tone row would be altered to
create new rows of notes and chords, which the composer would combine to create a new
composition.

We set up the room for the working group with a number of programmable electronic
keyboards. Working in groups, and following instructions on a worksheet, participants estab-
lished tone rows and permuted them using the operations of transposition, inversion, retrogres-
sion and compositions of these operations, and created hexachords and other chord patterns from
their permuted strings of tones. By the end of the session, each group had performed and re-
corded their 12-tone atonal composition in concert for the working group.

Commentary

Again, there was much excitement and engagement during this activity. However, the
presence of mathematics was much stronger in this activity. The rules of permutation
were written and presented using mathematical language and ideas. In addition, the
musical notes with which we composed are much like mathematical symbols. One group
even attended to the ideas of modular arithmetic and group theory that were lurking
about.

Many participants noted that we were using mathematics to create music; in fact, we
were using mathematics to place constraints that would give rise to combinations and se-
quences of notes that would be difficult to invent otherwise. The work of Oulipo (a French
experimental literature group) uses a similar strategy by imposing mathematical rules on
writing; for example, the rule ‘n + 7’ replaces every word by the one that is seven places
further down in the dictionary.

The use of mathematical rules to generate music elicited many interesting reactions.
Some participants empathized with how students feel when they have to use algorithms.
There was a sense of following the (arbitrary) rules without really knowing where they
were leading. Moreover, some believed that the sound and expressive quality of the music
was constrained by adherence to these rules. In a way, some participants felt that we doing
neither mathematics nor music.

In fact, we might have been doing neither. We were reminded throughout this hybrid
activity that the cultural project of mathematics and the cultural project of music are not the
same. But our attentions were also drawn to some deep resonances between these two realms
of activity. For instance, melodies of sorts did arise through applications of some quite for-
mal algorithms. Perhaps, we discussed, the difficulty encountered here has to do with the
tension that arises between the opposing questions of “Why are we analyzing this?”, as
commonly met in studies of musical and other artistic forms, and “Why aren’t we analyzing
this?”, more often met in mathematical contexts. As Jeanette Winterson (1997) expresses the
point, “Art takes time. To spend an hour looking at a painting for an hour is difficult” (p. 5).
There is a tension between the desire to move to an explicit formulation and the desire to
linger in the complexity and potential ambiguity of the tacit and unarticulated. And accom-
panying this tension, there is often a forgetting that the original purpose of analysis was to
deepen one’s sense of the whole.
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Day 3

First Activity: Fractal Cards

We began the third session by constructing ‘fractal cards’—simple paper forms that are generated
through recursive applications of simple cut-and-fold rules. Figure 3, for example, shows a card after
three iterations of a single-cut + single-fold algorithm.

Departing somewhat from the structure of the two previous days, where emphases were on
engagements with the activity, the main intention in the fractal cards activity was to frame a discus-
sion of issues around the uses of these sorts of tasks within a mathematics class. Brent opened the
discussion by mentioning his own reasons for using fractal cards and similar activities in his own
teaching. In terms of formal mathematics, for instance, the activity can be used to address a range of
curriculum topics, from simple number patterns though sequences and series.

The activity is also useful for pointing beyond traditional curriculum content—including, per-
haps most obviously, recursion, scale independence, self-similarity and other topics from fractal geom-
etry. In these regards, it was agreed that the fractal cards activity offers a useful example of the art-full
potential of mathematics, in that it clearly fulfills the representational aspect of the work of art while it
presents possibilities to open perception to the not-yet-noticed. For instance, as more and varied cards
are generated, participants typically begin to notice some visual similarities to objects of the natural
world. Trees, seashells, rock formations, and other natural forms might begin to be seen anew.

On this count, Brent mentioned that he usually ‘book-ends’ the fractal cards activity with a “look
for other geometric forms” activity. Participants are first asked to make note of geometric shapes that they
notice around them—a task that has consistently and reliably given rise to lengthy lists of Euclidean
forms. That list is pushed aside during the fractal cards activity, after which participants are invited to
repeat the exercise of looking for geometric shapes. Invariably, there is a certain level of surprise as they
‘see’ plants, clouds, natural surfaces, and others that they simply had not noticed the first time around.

Commentary

As in all the activities undertaken in this working group, there was a strong element of “art
phobia” that accompanied this one. George Gadanidis commented that school art can be
like school math—a matter of reproducing what the teacher does. Florence Glanfield said
that she was initially afraid to try to make fractal cards because it was like “following the
teacher’s art” (and perhaps not being very good at it). She worried that, in both math and
art, the subject may be seen as a completed object, with no room for creation, and that many
children may be “lost” early on for this reason.

On the other hand, George said that creating fractal cards was like “holding infinity in
your hand”. It was noted that there was a delight and mystery in transforming the familiar
and undifferentiated surface of a sheet of cardboard into a representation of infinity. Jon
Borwein talked about the pleasure of presenting new ideas in mathematics, and showing

FIGURE 3. A fractal card
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the “livingness” of the culture. Brent suggested that activities like this one could be “smuggled
in to interrupt the habits of the curriculum”—as curriculum is often perceived mainly in
terms of representing established ideas, and rarely in terms of opportunity to present new
ideas. He took the fractal card activity as an example of “teaching artfully” by opening up
(here, literally) unseen possibilities. The folded paper of the fractal card is in fact an embodi-
ment of the idea “multiply”—as in “multi-ply”, or many-layered. Folded and cut paper
gives a bodily experience of what multiplication feels like.

There was a discussion, led by Paul Betts, of ways that the intentions of the fractal card
activity or any other artful activity could be undermined in classroom use—by ‘worksheeting’
the activity, so that it changes from a living, interrupting, surprising exploration to a dull,
predictable one fully subsumed in the grinding routine of classroom days. Paul was con-
cerned that, by worksheeting an activity, “infinite possibilities are destroyed in favor of one
possibility, which one person chooses for everyone else—an example of the danger of privi-
leged mathematics and a questioning of who decides what mathematics should be learned”.
For most participants in the working group, it seemed that simply writing out and photo-
copying the steps to any activity along with, perhaps, some questions, reduced its effect to
one of prespecified, precooked mush.

There was general agreement, however, that such qualities as aesthetic appeal and the
potential for surprise (as embodied in activities like fractal cards) might help to minimize
the tendencies to reduce these sorts of activities to step-following routines.

Second Activity: Colour Calculator

For our final activity, we moved to the computer lab to work with a computer-based tool that enables
a synaesthetic, sometimes surprising link between the visual and numerical. The goal was to illus-
trate the way in which this tool, the colour calculator, provides an aesthetically-rich environment for
mathematical exploration—not so much by depending on artistic artifacts or materials, but by ex-
ploiting the vivid patterns available in the structure of numbers. Of the four activities, this one was
the most squarely rooted in mathematics.

The colour calculator is a regular internet-based (hydra.educ.queensu.ca/maths/) calculator that
provides numerical results, but that also offers its results in a colour-coded table. Conventional operations
are provided; the division operation allows rational numbers while the square root operator allows irratio-
nal numbers. Each digit of the result corresponds to one of ten distinctly coloured swatches in the table.

The calculator operates at a maximum precision of 100 decimals digits, and thus each result is
simultaneously represented by a (long) decimal string and an array or matrix of colour swatches. It is
possible to change the dimension, or the width, of colour table. Thus, of particular interest in the colour
calculator are the pattern-rich real numbers because they can be seen and understood as patterns of colour.

This graphical representation of number calls attention to and facilitates the perception of impor-
tant classes of real numbers—terminating, periodic, eventually periodic and non-periodic—and some
of their properties. In this following screenshot, the operation 1/7 has been typed into the calculator.
Using the button that controls the width of the table of colours, the different table dimensions have been
selected, resulting in different colour patterns that highlight interesting aspects of the number’s period.

  FIGURE 4.
Different representations of 1/7
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Participants were invited to “play around” with the colour calculator. Some noted the two-way
movement between the numerical and the visual: one can begin with a numerical calculation and
generate a visual representation, yet one can also begin with the visual (stripes, diagonals, solid
tables, checkerboards, etc.) to probe the numerical. Especially in the latter case, the particular, per-
sonal attractions and emphases of the various participants shaped the distinct explorations they un-
dertook and problems they formulated. The visual accessibility of the patterns made possible the kind
of qualitative unity necessary for shaping the conjectures, ideas and abstractions that initiated their
mathematical inquiry.

Commentary

There was a fascination in playing with the patterns generated by the colour calculator that
made it hard to tear people away from their computer screens. Grace Orzech wrote: “This
activity demonstrated to me how mathematical and sensorial exploration can merge. …
Manipulation of the colour pattern raises questions about decimal expansions”.

At the same time, the nature of individual work stations made it difficult to get partici-
pants to share their ideas about this activity. Each person was in contact with a computer,
not with other participants. The mathematical context of this activity was very comfortable
and familiar for all the participants; everyone could remember or predict the period of vari-
ous rational numbers. The sense of surprise that young students might feel when working
on the colour calculator was not available to most members of this group.

Nonetheless, there were moments of discovery of interesting patterns in the colour
arrays—for example, when Susan Gerofsky found doublings in the squares of colour repre-
senting one and eight in the fraction 29/17 and a cycling pattern of digits in its multiples.

Jon Borwein called up his own website’s “π page” (www.cecm.sfu.ca/~jborwein/
Pi_Talk.html) to show us a “colour calculator” representation of 1000 digits of π. After working
with the regularities of rational numbers, members of the group expressed a fascination
with the non-regularity of the irrationals, and saw this graphic representation as a convinc-
ing demonstration of the non-repeating nature of π.

Themes

A large part of the working group was spent in activity mode. While we also attempted to
initiate discussion about the experiences provided by those activities, we were not always
successful in explicitly articulating some of the conceptual frameworks that guided our
planning. At times, there did not seem to be enough common ground in order to probe or
reveal some of the underlying processes and values operative in mathematics and in the
arts—whether common or opposing. Nevertheless, we were able to identify four issues that
emerged, however briefly, in both our planning and in the group’s discussions.

Theme 1: Synaesthesia

The theme of synaesthesia was central to many of the ideas explored in this workshop.
“Synaesthesia” refers to the crossing of sensory boundaries in perception—for example,
tasting colours, or hearing shapes, or perceiving musical sounds as textures.

Although synaesthesia may be categorized as merely a psychological anomaly, it is
actually much more central to our everyday cultural practices than may be obvious at first.
For example, the reading of written text is entirely synaesthetic; it is simply a learned pro-
cess of “hearing shapes”, by assigning phonetic sounds arbitrarily to the shapes of letters or
characters, an assignment that becomes so automatic in readers that the letter “s” seems to
hiss, the letter “p” to pop with a small explosion of air, and so on.

Similarly, the ability of trained musicians to sight-read music involves a training, which
eventually becomes automatic, in “hearing shapes”, so that a pattern of dots and lines may
be heard directly as the opening bars of a symphony or as a popular song, complete with
varied instrumentation.
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Synaesthesia is a kind of translation—a translation among the senses, rather than be-
tween languages. The difficulties inherent in linguistic translation also apply to synaes-
thetic translation, as there is no one-to-one correspondence between the worlds of one lan-
guage, or one sense, and another. Thus “translation is treason” in that there must be differ-
ent features stressed and ignored (or, more strongly, appropriated and discarded) when a
phenomenon is taken from one language, or one part of the sensorium, to another. We are
familiar with this in considering the translation of sensory perceptions to mathematized
realms of statistical data or algebraic models; it is also pertinent in synaesthetic translations.

Many of the activities introduced in this working group were at their core synaesthetic
translations. The colour calculator makes a one-to-one translation between the numbers
from zero to nine and a palette of ten colours. The patterns that appear to emerge with
colour are patterns that were there all along, but in a perhaps less-accessible medium.

Similarly, as Susan comments, “I remember once surprising a psychological researcher
by my ability to remember long strings of random numbers. The trick was that I ‘heard’ the
numbers as the corresponding notes on a piano keyboard, and remembered the pattern of
the melody instead of the strings of numbers themselves”.

In translating numbers to colours, certain features of the numbers are necessarily lost—
for example, we are no longer aware whether the numbers are even, odd or prime. What is
stressed is the regularity of repeated patterns, their period, and perhaps the aesthetics of the
arbitrarily chosen colours (their “beauty” or “boringness”). Relationships between the peri-
ods of different rational numbers can be found, and the colourful patterns created can be
manipulated by changing the array size to create columns and diagonals of the same colour.
Meanings may be added as a result of the translation to colour, and arbitrary features of the
colouring may affect decisions about the aesthetics. For example, the combination of red and
purple could be seen to be “more beautiful” than yellow and purple and thus more interest-
ing, although the numbers they have replaced might not support such an interpretation.

Our first activity was designed as a series of synaesthetic translations, moving from
written to spoken poetry, to music, movement, abstract symbolic notation, then to painting
and the writing of a new poem. Part of the question addressed by this activity was whether
anything would remain invariant throughout this series of translations. (Susan notes that,
having led this workshop several times with a wide variety of participants, she has found
that it is possible to abstract and re-present an invariant rhythm through these many sen-
sory media.)

For many of the working group participants, the idea of stressing and ignoring in the
context of the arts, rather than in mathematics or physics, seemed almost sacrilegious. They
considered artistic objects to be inviolably holistic, despite the fact that artists, of necessity,
engage in analysis, revision, and experimentation in their creation of new works. As math-
ematics educators, many members of our group felt it was wrong to read a poem just for its
rhythm, or to create a piece of music simply by translating permutations on a string of
numbers. In a sense, the media of translation themselves became an obstruction because of
qualities attributed to them as artistic media. It was sometimes difficult to engage math-
ematics educators in artistic experimentation because it they did not consider it a realm in
which they could play.

Theme 2: Aesthesia and Anaesthesia

Throughout the three days of the working group, we played with cognates of the word
“aesthetic”—including synaesthetic, kinesthetic, and even anaesthetic—in the relationship
between mathematics and the arts.

Formally, aesthetics refers to the branch of philosophy that is concerned with matters of
beauty and taste. More generally, the term is often used in reference to the principles and
properties of art.

Much has been said on matter of the aesthetics of (and in) mathematics—perhaps most
commonly articulated in relation to the role of elegance, as, for example, a motivator for
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research and a property that can be used to distinguish good from not-so-good math. In-
deed, some mathematicians think of themselves as artists and aestheticians of pure form.

Such discussions, however, often gloss over the sensorial meaning of the Greek term
aesthesis (feeling or sensation) from which aesthetic derives. This original meaning, in fact,
seems to be better preserved in its cognates synaesthetic, kinesthetic, and anaesthetic. Indeed,
when this cluster of terms is pressed against an instance of “traditional mathematics in-
struction”, one cannot help but be struck my the tremendous anaesthetic qualities of stu-
dent experience—held in place and held apart by rigid desks, presented with abstractions
that are stripped of all contact with the worlds of experience from which they arose. So
presented, numbers numb.

The contribution of a more art-oriented sensibility, then, goes deeper that the explicit
interconnections that might be articulated between, for example, rhythms and arithmetic.1

The issue here is more than a matter of complementarity of cultural forms; it is a matter of
the bodily origins of meaning, a recollection that mathematical understanding arises in one’s
situated engagements with the world. Art reminds us of our sensate beings, just as math-
ematics often prompts us to forget.

Theme 3: Abstraction

The process of abstracting—that is, of selecting certain features of a conception on which to
focus while letting others drop into the background—pervades in mathematics. However,
although abstraction is sometimes more naturally associated with mathematics, the work-
ing group activities revealed the way in which it also pervades in the arts. This should not
be surprising since abstract thinking, which even young children use masterfully, is a fun-
damental, human sense-making strategy. Of interest though, are the particular practices of
abstracting used in different disciplines. When we clapped our poems, we were stressing
the rhythm of the poem while ignoring its content—the words. Even when we added the
sounds of other instruments in acting out our poems, we were in some sense richly abstract-
ing the rhythm of the poem, emphasizing and elaborating on one of its sensory modes—
without necessarily peeling away toward some fundamental representation of the rhythm.
Our purpose was to create an entertaining musical performance.

In moving from rhythm to notation however, we noticed how the mathematical val-
ues of terseness and conciseness influenced the next process of abstraction. Many groups
took particular pleasure in creating a symbolic notation as compact as possible, one that in
most cases lost all connection to the rhythm or meaning of the poem, and that retained only
a symbolic relationship to it. How few symbols could be used? How elegant could the sym-
bolic representation be? What other structures could be well exposed or expressed by using
symbols? The notation frequently emphasized some of the other structures of the poem not
specifically isolated by the clapping; for example, the repetition of verses could be encoded
and compacted into a single symbolic instruction. The rhythm may even have been ignored
while other structures were emphasized. In mathematics, the point is often to abstract away
from all the sensory connections, and to identify the fundamental structures of phenomena
by peeling rather than elaborating.

We note that mathematics and the arts both rely on abstraction, but that the values and
purposes of abstracting are often different. According to Dissanayake (1995), elaborating is
a core human behaviour, one that accounts for the artistic activities of humans in all cul-
tures, which are often so time- and resource-consuming that they must serve a biological
purpose. In reflecting on the nature of mathematical abstraction, and the notorious difficul-
ties that abstraction presents for students, fractal cards stand out as one example of an activ-
ity in which sensory engagement can be coupled to formal abstraction.

Theme 4: The Role of Affect

Emotional excess, particularly the ebullient, creative, vivacious kind, forms part of our im-
age of artists. Of course, the image of the manic, violent, and ego-centered artist exists as
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well. In both cases, emotion is commonly seen as being a central force in artistic endeavour.
Superman may be an artist, but Clark Kent—in his passive, mechanical mode of nine-to-
fiving—certainly is not. On the other hand, the mathematician is primarily asocial, isolated,
and probably a little nerdy. These stereotypes have pat implications: the artist had better be
emotionally engaged, while the mathematician had better remain cool, calm, and rational.
Or perhaps even: the artist had better keep reason at bay while the mathematician had
better leave earthly passions and desires at the office doorstep. Most know that these stereo-
types and their implications are exaggerations and over-generalisations. Many concede that
artists and mathematicians are both reasonable as well as emotional beings. However, while
the role of emotion in artistic creativity might seem obvious, it may be more difficult to see
how the mathematician need rely on affective responses in the course of mathematical in-
quiry.

The first activity highlighted the emotional involvement needed to read poems, clap
them out, and perform them—involvement that was difficult for some to summon due to
anxieties and insecurities. But what kind of emotional involvement did the colour calcula-
tor activity demand? Perhaps feeling surprised by a certain pattern, or curious about a cer-
tain fraction, or attracted to a certain asymmetry, or repulsed by a perceived dullness. In
fact, all these emotions can colour the various features that will be noticed: the stripes of 1/
7 with grid width 14 may evoke sadness in one person whose grandfather wore a striped
shirt while the sunny look of 67/99 may evoke peace and warmth in another. These responses
will guide the decisions that will be made during exploration: How can I avoid stripes?
How can I get a sunnier fraction? While these examples may seem somewhat removed from
the usual objects of higher mathematics, they may be illustrative of the important role of
emotions in the process of mathematical inquiry, a process involving choices that cannot be
based on logic alone (there is no logical reason to be more interested in stripes than in the
colour of the sun).

Concluding Remarks

One of the questions that we’ve avoided in this report—and that we sought to avoid in the
context of the working group—is the all-too-familiar, Is mathematics an art or a science?

For us, this question only makes sense if one ignores some key common factors of
human experience—in particular, the complex, recursive processes that enable the emer-
gence of personal and collective knowledge.

This is not to suggest that there is something to be gained by collapsing such domains
of human activity as art and mathematics, or by attempting to place one in the service of the
other. Rather, the suggestion is that, for us as educators, there is an obligation to attend not
just to the products of human inquiry, but to the sights, sounds, and other aesthetic experi-
ences that have prompted the human mind to knit primal sensations into abstract under-
standings.

As a working group, we came to no consensus as to how this might be done—merely
to an agreement that it is something we must strive to do.

Note

1. We note that “rhythm” and “arithmetic” derive from the same root. For that matter, “art” and
“arithmetic” also have common origins.
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Introduction

The purpose of this working group was to consider a particular approach, called the Phi-
losophy for Children on Mathematics (P4C/M), designed to engage children in a community of
inquiry so that they might have the opportunity to consider philosophical questions that
arise in mathematics. CMESG members from the Pacific Coast to the Atlantic and as far
away as England found themselves drawn to this session for a variety of reasons: the age
group of children that the approach is intended for; concerns with how to draw children
into questioning, how to engage them in discussions; how to encourage students to think
about what they are doing in the mathematics classroom; how to introduce pre-service teach-
ers to the philosophy of mathematics; and to think about the kinds of answers that answer
‘why’ to mathematics questions. In our report we introduce the method that has been de-
veloped to create communities of inquiry for philosophizing on mathematics and the activi-
ties and discussions the working group participants engaged in as they themselves experi-
enced the method for engaging children in philosophy.

Philosophy for Children on Mathematics (P4C/M)

Begun in the 1970s by the philosophers Matthew Lipman and Anne Margaret Sharp
(Montclair University in New Jersey), the Philosophy for Children (P4C approach has been
adapted to mathematics by a research team at CIRADE (Centre interdisciplinaire de recher-
che sur l’aprentissage et le développement en éducation) which includes a philosopher of
education (Marie-France Daniel of the University of Montreal), specialists in mathematics
teaching (Louise Lafortune of UQTR and Richard Pallascio of UQAM), and a resource per-
son in philosophy (Pierre Sykes).

Lipman was a disciple of Dewey and interested in democratic education. He wrote
novels with philosophical issues embedded and used those novels with children as prompts
to foster philosophical discussions. However the CIRADE group was unable to identify
novels that would foster philosophical questions more specific to mathematics. So they took
up the challenge to write a novel that could be used in P4C/M. Their strategy was to write
novels with characters about the same age as those who would be reading the books. The
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characters have reflections and preoccupations; but rather than finding answers they find
questions and paradoxes. Those novels then are the prompt for pupils’ questions and dis-
cussions within a “democratic community of inquiry”. The CIRADE group has been work-
ing with school teachers and pupils to develop these communities of inquiry and have cre-
ated a website, “L’Agora de Pythagore”, http://Euler.Cyberscol.qc.ca/Pythagore/, which
includes a forum for students from different classes to respond to one another’s questions.

Like P4C, P4C/M’s goal is to bring children to reflect on the nature of mathematics
and on what they are doing when they are doing mathematics. Specifically, the intents of
the program are to allow students to:

· philosophize together on mathematical concepts, notions and problems;
· adapt themselves, these concepts and notions;
· transpose mathematical ideas in life contexts;
· become aware of myths and prejudices about mathematics and its learning;
· lessen fears and negative attitudes with respect to mathematics;
· develop an interest and a self-confidence towards mathematics;
· develop autonomous, critical and caring thinking;
· favour cooperation between pupils.

In order to facilitate these intents the P4C/M involves a particular approach for devel-
oping a community of inquiry and for carrying out philosophical reflection and developing
awareness of the nature of mathematics and mathematical thinking. The process involves
the following stages:

· Group Reading
The process begins by a shared oral reading from a mathematical novel. (See Appendix A
for an example.)

· Questioning
Following the reading students are invited to note some questions and then share their
questions with the class. The teacher makes note of the questions on the board so that
they are available for all the students to consider.

· Selection of a Question
One question is selected from the many questions posed by the students. Each student is
given the opportunity to argue for his or her question to be selected as the question to be
considered for philosophical discussion. Once the arguments have been heard then the
students vote on one question to consider.

· Individual Reflection Prior to the Community of Inquiry
Students are asked to reflect on the questions that the class has chosen to discuss prior to
the group dialogue.

· The Community of Philosophical Inquiry
In order to foster students’ thinking around the selected question, the teacher prepares a
mathematics activity related to the question to be considered. As students carry out this
activity, questions are raised and considered. After working through the mathematical
activity students come together in a large group and discuss the philosophical question.
The community of inquiry is one of philosophical dialogue and based on Socratic peda-
gogy. For more details about the community of inquiry see Lafortune, Daniel, Pallascio,
and Sykes (1996).

· Group Review of Thinking Abilities
Once the question has been discussed the process is not over. Rather, students are asked
to consider their own thinking and the kinds of questions that they engaged in. Led by
the teacher students consider both the higher level and the lower level thinking skills
that were part of the process of the community of inquiry (see Appendix B).

· Personal Synthesis of Learning
At the end of a community of inquiry, students are invited to do a personal synthesis,
either of the learning they have acquired during the discussion that took place with the
other pupils—or even to discern the ideas that fuel their thinking outside of the philo-
sophical community of inquiry.
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The working group participants were introduced to the model of the P4C/M (described
above) by means of a video. In this video we followed two groups of students through the
process. From the shared reading a number of questions were raised and one group of stu-
dents settled on the question, “Why were the first philosophers and mathematicians inter-
ested in the construction of geometric figures using only a compass and an ungraduated
ruler?” and another group, “What is the difference between geometry and mathematics?”

Viewing the video raised a number of questions for us concerning the intents and the
process. The questions that were raised in the working group might be categorized as: those
that are related to the students thinking, initiation into philosophical discussion and meta-
cognition; those that question the process itself; and those that ask about the role of the
teacher and teacher education. For example, some of the questions we asked included: How
is the P4C/M related to thinking maths and thinking science out of England that are based on a
Piagetian model? What role does the mathematical activity play in fostering philosophical discus-
sions? More specifically, what role does building a geometrical model have in answering philosophi-
cal questions? What role does the teacher play in this community and can it be democratic if she is
shaping the questions and discussions? Is this approach being taught to student teachers?

By viewing the video, working group members had the opportunity to see the process
in action. In particular, we observed students in the shared reading, question posing, ques-
tion selection, and then in mathematical activity. In the lesson on the tape, students were
building representations of various geometrical forms. We wondered, what is the role of
building geometric models to answer philosophical questions? Such mathematical activity
is a significant part of the community of inquiry since it provides the occasion for thinking
about the question at hand through discussion and by encountering obstacles, paradoxes
and further questions. (See Appendix C for an example of a mathematical activity that is used
to consider a philosophical-mathematical question.) A working group member pointed out
how when doing physical activities they do not often work out right—so then there arises a
need to do mathematics to explain why the thing that did not work is what we say it is.

Observing the highly structured nature of the process leading to a community of in-
quiry led us to ask about the search for criteria and justifications for ideas. We wondered—
Through the process are we trying to get students to form mathematics or the right mathematics? Are
we asking them to form a community of inquiry in ‘the’ right way? Or can the particular community
that emerges take on its own set of criteria? If students are left to decide the criteria for the community
of inquiry how much does the teacher influence that? If we provide the labels for thinking then are we
saying then we are allowing them to form a community of inquiry? What is the agenda and how does it
play out? How does the task the instructor brings to the group direct the inquiry? What happens when
students do something in a particular form? What are the implications of having a method taught?

Richard was able to respond to many of our questions. He pointed out that the P4C/M
method is very specific and is intended to initiate students into democratic processes. Stu-
dents have been observed to ask why we are doing that problem. These students are think-
ing critically. They ask the hard /good questions. The philosophical dialogue and meta-
cognitive work has consequences in other aspects of their lives.

It was also noted how the mathematics and philosophy that are being promoted by
this method are connected back to the Greeks, and we were reminded that democracy and
proof arose with the Greeks at about the same time. However there are differences that arise
in the community of inquiry. For one thing, the historians don’t have any evidence of doubt
with the Greeks. Seeing this method being played out by the children, and the presence of
doubt in their form of questioning, we think that this may speak to the way humanity pro-
gressed.

These are some questions discussed on the “Agora de Pythagore” by a class of 10- to
12-year-olds:

· Is it possible to construct a perfect cube?
· Are the mathematics discovered or invented?
· Are the mathematics useful to construct buildings?
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· Might scientific or mathematic discoveries conduct humanity to its destruction?
· Does chance exist?
· Is the Universe boundless?
· Can we construct straight lines without a ruler?
· What is the shape of a star?
· What is a mathematical thought?
· Why do we find some mathematics in Nature?
· Are some numbers more useful than others?
· Where is the beauty in mathematics?
· Why are there so many rules in mathematics?

There is another dimension that is facilitated by this process; that is coming to an un-
derstanding that mathematics has a story. I am a human being; I can do mathematics; I can
create mathematics, not just discover. Students begin to understand the importance of their
contributions. When writing in their forum (internet discussion group) the students are
writing for someone outside of their immediate community. The context of each has par-
ticulars that the other does not—and, hence, that students do not have as part of their expe-
rience. The students need common experiences (or problems) to create community.

Of interest throughout our introduction to the P4C/M the working group members
was the role of the teacher. What is the extent of her or his participation? Does she or he mediate?
Does she or he vet questions? To what extent does her or his agenda get played out in the discussion?
Is it truly a community of inquiry if all along the teacher’s plan was to have a discussion about the
nature of reality and the students have that discussion? These questions and others around the
process are reflective of the concerns the members of the working group had about the
process to create a community of inquiry. Richard reminded us that this process was based
on the work of Dewey towards educating for democracy and the Socratic method.

Some discussion around the possibility of introducing philosophy for children to our
pre-service teachers led to Richard noting that people are skeptical. It is only when they do
this with students that they realize that children will do this when invited to do so. Another
member of the working group did have some success with his undergraduate students
when he invited them to discuss the existence of a hypercube; this was very rich, he claimed.

Participating in a Community of Inquiry on a Philosophical-Mathematical Question

In the second—or “bridging”—session the working group members had the opportunity to
experience all of the stages of a reflective activity on mathematics:

· collective reading of an episode of a philosophical novel on mathematics. (The Mathematical
Adventures of Michelle and Damian. An excerpt can be found in Appendix A);

· questioning;
· selection of a question;
· mathematical activity;
· community of inquiry;
· review of the abilities used to think.

(We would encourage you, the reader, to read the excerpt provided in the appendices before
reading the account of our experiences with a community of inquiry.)

As required by the method for a community of inquiry, we began the day with a shared
reading from the novel. Then we each posed questions that were raised from the reading. (It
is interesting to note how the energy level in the room went up and down as people posed
questions and considered the questions of others.) Here are the questions we posed. Keep-
ing with the method, each question has the questioner’s name associated with it.

· What do ‘winners’ and ‘losers’ mean? And does attitude influence this labeling. (Gary)
· Is there a finish line? Can anyone know all mathematics and be an authority? (Cathy)
· Is there a relationship between geometry and art? (Tom O)
· Is knowledge fixed? Is intelligence fixed? Are abilities fixed? (Joan)
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· The boy talks about feeling like he failed the test, but how does he know that he failed the test? Is it
possible in mathematics to know for yourself that are correct without outside verification? (David R)

· What kinds of mental images are mathematical? What kinds of mathematical images are connected
to what we perceive as mathematics? (Ann)

· Are we predestined to be good at mathematics? Do visual images in mathematics have to have a
physical connection? (Geoff)

· Can we use mathematical activity to process emotions? (David W)
· In mathematics do all people start with a big idea and have small ideas come from it? (Sue)
· Are mathematical ideas waiting to be brought into focus? (Lynda)
· What role does “looks like” play in mathematics? (Tom)
· Can mathematics be based on predictions? (Elaine)

Once each of us had the opportunity to raise a question we were called on to defend it. This
part of the process requires that individuals make arguments as to the importance or signifi-
cance of their question for consideration by the community of inquiry. This stage of the pro-
cess raised the most discussion about the method itself. People wondered what implications
such a strategy could have on the students themselves. Richard responded to these questions.

What happens to the questions that are not used for the community inquiry? What can the
teacher do with the questions? In this method it is important when students come up with
questions to keep them, to validate them. Questions are displayed (on the board) and shared.
This method teaches students to create better questions and at the same time they are learn-
ing principles of democracy by this. What do we do with all the possibilities that emerge? It
sometimes happens that a group of questions are put together into types and responded to
because they belong to the group of questions that is selected. Often however, questions
that were not selected for group attention are addressed in responding to the ones that were
posed for the group discussion. Questions can be left for the moment and yet still be present
for the asking at later moments. What are the criteria for arguing a particular questions? Must
they come from the text? Children argue based on their preoccupations. But they develop an
understanding of good reasons as they engage in the process.

After responding to a number of initial concerns raised by this process. We had ques-
tions about the process for ourselves. How close do we stay to the text? Can I argue against other
questions rather than defend mine? Can we group questions together and form a new question?
Again Richard directed our discussion. Here are three different ways of philosophizing.
This points to the need to set up the criteria first. The practicing of politics and the process of
saying why our questions are really good is probably really important. If we could speak in
support of our questions then we get to better understand what they are about and if they
are worth pursuing. However, only a few of the members defended the questions they them-
selves posed. A few people suggested why we might consider someone else’s question.
Here is a flavor of that conversation.

“Now I am really interested in mathematics waiting to be fertilized,” said Tom O in reference
to Lynda’s question of bringing mathematics into focus.

“I picked my question on processing emotions because it is new to me and, I suspect, new to
everyone,” Dave W added. “Since we are trying to simulate the experience of the children philoso-
phizing about mathematics, we should talk about a philosophical question that is new to us, just as
the questions would be to the children in Richard’s research.” This seemed to have some impact on
other members of the group.

“I don’t think I would be impacted by a discussion on something that I have heard before,”
Geoff pointed out as he contemplated the questions. “The eighth question is a one that I haven’t
heard or thought of before; hence I would be interested in it.”

“I am also interested in question 8 because we make the assumption that we can get rid of our
emotions through art, etc.”, Sue added.

David R pointed out that, “All of these questions are about knowing things. Therefore we
should begin with a question of knowing things. …”

When no further reasons were forthcoming from members of the working group, Ri-
chard called the vote. But, again, the participants seemed bothered by this process and had
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questions and concerns. A very intense conversation broke out about whether this voting
process was democratic and, even if democratic, was it potentially emotionally harmful. In
particular, there was concern around the notion of public voting for a question. Someone
wondered if this might not be harmful and work against the development of a positive
attitude to mathematics. Another person wondered if this might not silence some students.
Voting on the questions? Does this hurt people? In Richard’s experience working with students
he has found that the students play the rules and easily agree that choices other than their
own are sometimes good to discuss. Often, they can transfer their ideas into the retained
question. It is exactly what we do in our own dialog!

The question on voting was not resolved but the working group members did vote
and chose to consider the question, “Can we use mathematical activity to process emotions?”

The next part of the method involves breaking at this point, leaving the students with
the question and giving the teacher a chance to select and arrange a mathematical activity
that has the potential to foster reflections around the question of inquiry. In a normal class-
room situation the next lesson might be a week away however, in the working group the
break was a mere 20 minutes, just enough time for coffee, When the working group mem-
bers returned, they were asked to break into small groups and consider the following.

Definition: A line is the shortest path between two points.
Task: On a sphere, what kind of “polygons” can we find?

This prompt proved to be a very provocative one for the small groups. Not only was it
difficult for Richard to break into this group’s activity to call them back to the large group
but they wanted to share and consider the mathematics the other groups had come up with.

One group found a one-sided polygon and a two-sided polygon. Take the equator, for
example. It determines a one-sided polygon. Another group suggested that they could get
an infinite number of polygons by dispersing points around the sphere. By example, we can
construct a triangle with three right angles.

Although we found the question very interesting, we returned to the philosophical
question we posed earlier. Can we work through emotions with mathematics? We wondered,
what does mathematics provoke for the mathematician or the doer? What does it provoke for the
reader? What does it provoke for the student?

Art is an expression is mathematics? The writer tries to make us cry. The artist wants us to be
stunned. With mathematics do we want to put others on an emotional roller coaster? Can someone
read the emotions from my mathematics? Do I attribute my emotional response to the artist? The
emotion is engendered by mathematics. But there is the other question: Can we express emotions
through mathematics?

These observations and questions led us to think about if there is a particular set of
emotions associated with mathematics. What emotions does mathematics bring? Puzzlement,
for example—do you think puzzlement is domain-specific to mathematics? Is math a domain that
brings out a different set of responses. Are challenge and frustration the same as puzzlement? When
puzzled, I want to continue. When frustrated, I don’t want to continue. When challenged, I must
continue. There is a demand from the outside. Imperative, I have to do it. In a mathematical activity
when we find something for the first time, we are jolted by it. I think there can be a tremendous
amount of satisfaction in returning to a problem. For the teachers we present mathematics as some-
thing that should be taught because of the joy it brings. Coleman said to mathematize is to be joyous.

For some people their personal experiences spoke to the questions of the emotional
nature of mathematics. There is a therapeutic value of mathematics. Can I immerse myself in
mathematics? I choose problems and they depend on my mood. The way I go in a particular math-
ematics territory is based on the way I feel. There is a story about a mathematician who was saved
from mathematics. A mathematical problem bothered him and his intrigue with it prevented him
from committing suicide. Painting and mathematics distracts. And this is an important part of the
sadness. Mathematics can help the child. It can be liberating. Mathematics is self-checking.

And for others they couldn’t help but think about their students’ emotional responses
to mathematics. They questioned what we, as teachers, should be attempting to achieve with our
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teaching. With math we try to provoke positive emotions. When you share a bad model. There is a big
element of doubt. But as teachers we want positive emotions with math.

This led the group to consider if there is an empirical way to study this question of emotions
in mathematics? For example, divided-page exercises. Give them a problem and on one side they do
the problem and the other side they write thoughts and ideas. Those teachers were using the exercises
to help them work on their emotions. And we used math to help them process their emotions.

Before we broke from our second day of deliberations, we asked participants who had
reflections to jot them down and pass them on to us. These questions and reflections would
provide the starting point for our last day of the working group.

Reflections on a Method for Creating a Community of Philosophical Inquiry

The third session was an opportunity to reflect on our experiences with the process and to
further consider the questions that we raised about philosophizing in mathematics. There
were some questions left from the previous session that we began with.

· What is the role of reasoning by analogy in mathematics? In philosophy?
· What makes an analogy a mathematical analogy?
· What makes an argument “good enough” in a process of inquiry? In a process of math-

ematical inquiry? In a process of philosophical inquiry?

These questions led us to consider the criteria of acceptance within a community of
inquiry. How do we know if a question is a good question? Is there something about the
question or can we only know in the student’s response? We also wondered how does a
teacher facilitate and guide the discussion? Our last day was devoted to responding to such
questions about P4C/M.

Once again we were reminded of the connection to Greek philosophizing; this process
uses the Socratic method and mathematical activities, selected by the teacher, to prompt the
questioning and the discussion. Students learn to participate in philosophizing through
participating in the community of inquiry. When the students discuss the question there are
two factors: experience and argument. In the beginning the teacher is showing what is val-
ued but as students engage in the process they learn what makes a good question and a
good discussion. The teacher is also responsible for shaping the process through her selec-
tion of activities. As it is with any activity in the mathematics classroom, the activity is
facilitated through a suitable set of questions. In these ways the teacher facilitates and shapes
the discussion. The shape is philosophy. Students are not going to solve a particular ques-
tion; but learn how to discuss.

Another question that was raised concerned the relationship between the issues raised
(deliberately) in the novel and those questions that the students ask. What is that relation-
ship? And what did you put in the novel and why? Richard explained that the writers began
with myths about mathematics and learning mathematics and inserted them into the novel.
This was deliberate to prompt philosophical questions.

Fascinated with the method, a number of the working group members were interested
in identifying novels appropriate for older children. A number of suggestions arose in the
conversation. Lakatos’ Proof and Refutations; Abbott’s Flatland; Garader’s Sophie’s World;
Carroll’s Alice in Wonderland; Litman’s The Discovery of Harry Stottlemeier; Fadiman’s Fanta-
sia Mathematica and The Mathematical Magpie. Gary pointed out that the students’ own lives
present a source of stories. Dave W suggested student responses in mathematics could act
as prompts for philosophical discussions.

Again we found ourselves turning to the central concern of the working group, stu-
dents philosophizing. It is apt that we ended our three days of discussion around the ques-
tion of why is it important to develop reflective thinking on mathematics for the student.
Here is a collage of the ideas we expressed around these questions.

Metacognitive skills help students to connect concepts. We begin to create a story of mathemat-
ics. This is important because we need to participate in the language game. This kind of activity
changes the nature of the mathematics children learn. Reflexive thinking changes (builds) founda-
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tions, changes people, changes math. In some way you are forcing yourself to think about under-
standing in a very deep way. It changes what we mean by development. Reflexive thinking is impor-
tant because you can’t make sense without it.

Math as a human activity that is dynamic. Often we get so bogged down in application; here is a
look at people’s journeys. “The unexamined life is not worth living.” Unexamined mathematics is not
worth living. Maybe it is because we do not examine mathematics that we do not have hope, joy, love.

Krummeuher (2000) writes of the necessity of intellectual social activity to construct math-
ematics culture. We created a community of inquiry in front of participants and we talked about the
question why 5/0 gives infinity. Today, I explored 1 and 0 with you!

Mathematics is a domain of human activities that is guided by a set of guidelines that is in-
tended to acculturate children into our way of thinking. At the beginning of this session, I thought
there wasn’t enough time to engage in this process but that was when I was thinking about just me,
and I thought about the fact that there are 15 of us and that gives the question more time.

This process helps make a distinction between doing mathematics and a study of mathematics.
We can study mathematics as a mode of thinking. These are fundamental things we should be doing
in schools. We can learn the mathematics we need for work on the job site but there is no other place
where we can learn what mathematics does or its nature.

So then, we ended our session believing in the value of such a process and asking
ourselves how can we make this kind of thinking happen in our classrooms. The partici-
pants were left with the questions:

1) Why is it important for the pupils to develop reflexive thinking of maths?
2) ... which environment to do that?
3) ... conditions for teachers?

David R —

1) Mathematics is a domain of human activity that involves certain unique values (e.g., In
judging an argument). Reflection on mathematics allows for the application of those values
by students and the guiding of the community of inquiry toward those values by the teacher
(e.g., By questioning). This is an element in the agenda of mathematics educators to accul-
turate children into our way of thinking.

2) RP describes one. Vicki Zack has described another. The common feature is perhaps that
students’ thinking is heard, reheard, and the mode of expression is a focus of the teacher’s
attention, as much or more than the validity of what is being said. In other words the teacher
is correcting the students’ criteria for judging, not the judgements themselves.

3) See #2.

Tom K —

 In what ways are these “ways of thinking” important for knowing maths?

In some sense most ideas/questions/concepts in mathematics are open for treatment as
philosophical. But I think they are rarely treated as such in most mathematics classrooms at
any level. Thus a focus on these “ways of thinking” vis-à-vis mathematical ideas allows the
children, youth, or adults to be embodied in and related to the historical and contemporary
communities of mathematical practice in a needed different dimensions. (To see this practi-
cally look at Brown’s ad hoc question.)

Second such ways of thinking as enacted by individuals with others seem to me fully co-
implicated in mathematics knowing itself. Even if one is engaged in a technical task the nature
of this task is raised by the use of some reflexive thinking (e.g., differences, values, etc.).

Third (like my first point in some ways), such thinking in/about mathematics features math-
ematics as a human science. It prompts us to ask the kind of “emotion” related questions we did.

Fourth, using such thinking deliberately situates mathematics knowing in a collective set-
ting with all of its attendant issues such as human interaction. Thus it is done really to all
mathematics as contributing to central life skills for all.
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Lynda —

 Why is it important to develop reflexive thinking on math?
· To introduce students to the process of evaluating different solutions—what makes them

different? What makes one better (mathematically)?
· To make explicit the process of constructing an argument, proof or narrative about a solu-

tion path.
· To nurture logical thinking, responsible citizens.
· To make “history” come alive—scratch a theory and you’ll find a biography.
· To help students to see value of different mathematical representations and to understand

why some communicate certain ideas better in certain circumstances for different purposes.

 Which environment does that?
· Trusting
· One in which students encounter rich questions regularly
· One in which fertile mathematics resources abound—on walls, on computers, on bookshelves

 Conditions for teachers
· Knowledgeable teacher (in the Shulman sense)
· Invitational teacher
· Reflective teacher

Rina —

 Why is it important to develop students’ reflexive thinking in math?

Reflection helps construct new knowledge and consolidate learned concepts. It does so by
enabling the exploration and discovery of connections (with previously learned concepts
and ideas), and relationships (among various mathematical ideas, topics and structures).

Reflection is also an essential component in problem solving—especially when solving non-
standard problems. Helps explore various possibilities for solving the problem, an evalu-
ate various solution attempts or parts thereof.

Reflection helps in change of attitudes & values.

“The unexamined life is not worth living.”

Reflexive thinking changes math. Ontario curriculum documents forbid teachers from stat-
ing their own opinions/position.

Elaine —

 Why might it be important to develop reflexive thinking on maths for the pupils?

· To engage in meta-cognitive thinking
· To develop critical citizens
· To develop people who take opportunities to step outside & consider consequences.
· To ask structural questions
· To engage students with different interests.

Anonymous —

· Attitudes
· Aware of others’ thinking and feelings in math
· Expand their own definition of math
· Positive attitude   success
· Open to different solutions and opinions

· Problem solvers
· Increase ability to solve???
· Make connections   leads to sense making

· Thinking
· Skills   higher order development
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· Environment
· Supportive

· good, rich questions
· valuable tasks to create common experiences

· Social
· physically encourages discussion

· Tolerant
· language used
· body language

· Time
· to contemplate
· work in small groups, whole group, individual

Dave W —

Why is it important to think reflectively on mathematics?
Socrates is reported to have said that the unexamined life is not worth living. Before relating

this assertion to mathematical activity, I first ask why examining life might make it worth liv-
ing, or at least make it better.

When I examine my activity I gain insight into my particular purposes and desires and
become attentive to the possibility of alternative purposes and desires. Purpose and desire are
intimately related to hope, joy, and love (and to despair, apathy, and hate). Self-examination
opens up possibilities for being an agent of hope, joy and love.

Self-examination also increases my awareness of the particular standards and the values
through which I evaluate my choices, and allows me to consider my standards and values in
relationship to alternative systems. An awareness of the diversity and interconnectivity of value
systems is necessary for peace and for mercy.

Furthermore, self-examination exposes the interconnectivity of authority, experience and rea-
soning. Awareness of these interrelationships is necessary for healthy faith and healthy skepticism.

Now, moving to mathematics, I ask myself the question, “Why is unexamined mathemati-
cal activity not worth doing?” (I don’t mean “examined” in the external assessment sense.)

First, I think about desire and its connection to hope, joy and love (emotions?). Perhaps our
traditional avoidance of thinking about the mathematics we do is related to our unfamiliarity with
emotion in mathematics. Following Skovsmose’s assertion that the way we do mathematics in
school formats the way we solve problems in our world, we might hope that philosophizing about
mathematics will format our society to legitimize emotion in responses to our world’s problems.

With regard to standards and values I think of the work of Candia Morgan who exposes the
apparent arbitrariness of what is valued in school mathematical writing. She suggests that math-
ematics teachers discuss with their students the values that underlie the assessment of their math-
ematical writing. What does such heightened awareness do? Does it relate to peace? to justice?
When we expose the problems associated with justice, people tend to feel violated or guilty. What
would happen in mathematics classrooms? Or, is there an irrefutable standard in mathematics?

There has been much research of proof in mathematics. Proof, it seems to me, has much to do
with authority, experience and reasoning. As mathematics students or other mathematicians be-
come more aware of these three factors in their proving, perhaps they will become more sympa-
thetic to the tension between faith and doubt and more aware of the human face of mathematics.

Ann —

As a follow up to the working group, I decided to experiment with extending the P4C ideas
to the secondary audience. To do so, I wrote the following story for my grade 12 advanced
mathematics class to perform as a play. Readers should note that the play has been designed to
appeal to this audience!

We attempted to do a version of the P4C idea in a 70-minute class. First I explained the idea,
and then four volunteers performed the play unrehearsed, which was surprisingly successful.
Then we brainstormed for questions, first in pairs, and then shared. One young man was sure
his question was “no good” and refused to share it. I finally convinced him to tell me privately.
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I assured him it was a great question, and it turned out to be the one chosen. It was “What
happens to an infinitely big cube? Is it still a cube or does it change shape—can there even be an
infinitely big cube?”

After going through the voting process to choose this question, debate continued for the
rest of the class, about 35 minutes. The conversation still continued when the bell rang! Some
students did not actively participate in the shared discussion, but I noticed them talking about
the subject with their neighbors.

All in all it was a great experience, and the level of discussion was wonderful. I will cer-
tainly do it again. Here’s the play:

Variables in the Alphabet Soup

A short play with 4 characters for (unrehearsed) classroom production, to stimulate
formation of mathematical philosophical questions for classroom discussion.

   Implied metaphors and inspirations:

· Elizabeth Drew’s four “types” of gifted individuals;
· The story Pearls in the Alphabet Soup by Sandy Shiner, featuring the four Drews “types”;
· Individuals in my grade 12 class.

   Characters: Bruce, Vicky, Tom, Karen

   Scene: sitting around the cafeteria lunch table. Karen is sitting at the table working hard
on her math homework with a calculator. Vicky is eating soup. Tom is reading a
race car magazine.

Bruce: [saunters in and slams his books and lunch bag on the table]
Karen: [punching numbers in on her calculator] Thanks jerk! You just messed up my num-

bers.
Bruce: I just had enough stupid numbers in math class with the “Battle ax”. Hey don’t you

ever quit working?
Karen: We’ve got a test next period. I’ve got to be ready.
Tom: The test is on mathematical proof. What’s a calculator got to do with that?
Vicky: You and your stupid questions! I’m not going anyway, I’m just going to fail.
Karen: How can you say that? You know you want to do well.
Vicky: Yeah but it’s easy for you. I’m not good at math. [eats her soup]
Bruce: What kind of stupid soup is that?
Vicky: Alphabet. Wanna word?
Bruce: Cute.
Tom: Why is it always alphabet soup? Why not number soup?
Karen: Numbers, letters, what’s the difference?
Bruce: At least letters mean something….
Karen: Don’t numbers mean something?
Tom: Tell you what Vicky. Put something on that spoon.
Vicky: What?
Tom: Put one character from the soup on your spoon.
Vicky: [gives Tom a weird look but carefully puts something on her spoon.]
Tom: OK so here’s the deal. If it’s a number, you go to math class. If it’s a letter, you skip.
Vicky: Great. It’s an “X”.
Bruce: Ha! You fail. [laughs]
Karen: An “X” can mean a number.
Bruce: Yeah. It can mean ‘wrong’ too.
Karen: No, like I mean a variable.
Bruce: Just what I need, math homework I can eat … barf!
Tom: Cool, Karen. Like, the “X” can be any number! So Vicky I take that back, you gotta go

to class.
Vicky:  [rolls her eyes] Oh brother.
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Tom: [getting excited] Yeah, like, just think how many numbers there could be. Maybe
even infinite numbers of them.

Bruce: Yeah, and they all fit in Vicky’s bowl. [shakes his head]
Vicky: Are you guys on drugs? That’s the stupidest thing I’ve ever heard.
Karen: At least in math you can always tell what’s going on. There’s always a right answer.

You can always find out what “X” is.
Tom: You think so? But what about all those proofs?
Vicky: Yeah, if I could just remember them all…
Tom: You don’t have to remember them. Just figure them out.
Vicky: I’ll never figure math out, I’m not like you. It’s just something you have to memorize.

C’mon, let’s get this stupid test over with.
[all get up and leave.]
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Appendix A • The Mathematical Adventures of Michelle and Damian (Daniel et al., 1996)

Chapter One

Michelle arrives home from school. Kicks off her shoes and goes into the house letting the screen
door slam behind her. She goes straight to her room and as usual dumps her backpack in a corner
and throws herself onto her bed. Ahhh! How good it feels!

Michelle likes her room. It’s small, but comfortable, with a square floor.
“Oh! One could say it’s almost a cube! Mrs. Toyama told us about cubes this morning, in

geometry class. What exactly did she say?” Michelle frowns, tying to recall.
Slowly the words of her teacher, Mrs. Toyama, come back to her. Things always happen like

that in Michelle’s head. At first her thoughts form a kind of large dense cloud. Then, one by one,
her ideas emerge from the depths of the cloud. It is only then that she can grasp and inspect
them.

While continuing to think reflectively, Michelle lets her eyes wander around the room.
 She wonders: “Can a room really be a cube or does it only look like a cube? Mrs. Toyama

told us, I remember now, that on earth it was not possible to have an absolutely perfect cube.
That’s astonishing!”

Michelle tries to reflect further on this question, but she is tired. She gets bogged down in
her ideas, gets impatient, and finally gives up.

“Tomorrow I am going to ask Mrs. Toyama to explain this. After all, she is the teacher! She
must surely know all about geometry.”

Michelle’s thoughts take wing, freed from their mathematical problem. She starts to dream
about Marco. She would so like him to be her boyfriend.

“Ahhh! Marco, what a special boy! He is so different from the others. And I think he’s really
handsome, even if the other girls in the class don’t! And he’s intelligent as well. If only he could
show a little more interest in me.”

Michelle allows herself to be engulfed by her daydreams. Everything is peaceful and pleas-
ant in her room. Then suddenly, she sees a large orange sphere pass just over her head, like a
demolition ball shattering walls. Her heart beats frantically, she opens her eyes and recognizes
her twin brother who has come into her room and has hurled his stupid basket ball at the wall.
What a pain!

• • •
“I have a problem, Michelle.”
“Oh yes? Really, me too. You’re my problem!”
In fact, Michelle adores her twin brother. They often play together. And they rarely squabble.

Michelle very much admires Damian and believes he will eventually become a famous artist.
Only she has never got around to telling him that. On the contrary, she always replies to him
grumpily.

But Damian knows his sister and he acts as if he hasn’t heard anything.
“No, please, listen to me. I have a serious problem. I think I’ve failed my math test again this

afternoon.
“Why do you say that, Damian?”
“What a question! Because that’s what I think, see!” replies Damian a bit surprised.
Michelle continues:
“You said: ‘I think I’ve failed my math test again.’ What made you say that? Your fear of

failing? Or the predictions you spend your time making on the basis of bad experiences last
year? Or what else?”

Damian responds honestly:
“I don’t really know. It’s just an impression I have.”
“But have you, at least, good reasons for believing this?” Michelle demands. “Just because

you failed some tests last year it doesn’t mean that you will fail them all this year.”
“I know, but I so hate math!” Damian replies stubbornly.
“Damian, you keep saying this: ‘I hate math, students who don’t like math are generally

losers, so I am going to fail my tests.’ With an attitude like that, it is not surprising that you suffer
setbacks, you defeatist!”

“I’m not a defeatist but I find that math is good for nothing except provoking stress. And
then, it’s boring, difficult and so requires lots more work outside class time. Me, I prefer to play



CMESG/GCEDM Proceedings 2002 • Working Group Report

56

basketball with the boys in the class. Or to draw, alone in my room. I am very good at drawing.”
“There I agree with you Damian. When it comes to drawing you are really brilliant.”
After a moment’s silence, Damian adds, eyes full of tears:
“So there, that’s what I’m going to do anyway. I am going to draw frustrations in my room.

That will do me good.”

Appendix B • Thinking Skills Occasioned by P4C/M

Lower-order thinking skills

· Statement of opinion
· Explanation
· Description
· Simple definition
· Observation
· Precision
· Example
· Simple Question

High-order thinking skills

· Formulation of a hypothesis
· Doubt
· Comparison
· Categorization
· Justification
· Criticism
· Counter-example
· Nuance
· Contradiction
· Use of criteria
· Concrete syllogism
· Search for meaning quest

Appendix C • CUBE

A. Actvity

· Make up various drawings that could represent cubes.

B. Discussion plan

· Are the drawings you just made, during activity A, cubes or do they just look like cubes?
Explain.

· What are the differences and the similarities between a cube and the geometric shape that
represents it?

· Establish a parallel between a cube and some other elements. For example, take the word
tree. Is the word itself a tree or just a concept that encompasses every type of trees that exists
on the planet?

· What is the difference between the word tree and a real tree?
· Now take the name Mathew. Is the name Mathew a particular boy or simply a name given

to some boys?
· Are there differences between pupils that are named Mathew or are they all identical?
· Now suppose you write a 4 on a sheet of paper and that you loose this sheet of paper. Do

you think you have lost the number 4 forever or just the copy you had made of it?
· Can you draw a parallel between the geometric shape we call cube, the word tree, the name

Mathew and the number 4?
· Could it be possible that shapes, names and ideas exist in a perfect state in our minds only

whereas their concrete representation is only approximate? Explain.
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· Can you answer the question Matilda asks herself, “What is the difference between being a
cube and looking like a cube?”

· Is a cube a square? Explain the similarities and the differences.
· What number does a cube make you think of? 1, 2, 3, 4, 5 or 6? Explain why.
· How many square faces can you find on a cube’s surface?
· How many summits can you find on a cube’s surface?
· How many edges can you find on a cube’s surface?

Does the amount of faces, summits and edges vary according to the size of the cube? Depend-
ing on whether we refer to a small cube or a large cube? Why?

C. Mathematical activity

Give two examples of a development plan from which a cube can be built. Give two more
examples of a development plan from which a cube cannot be built.

· Which of these development plans looks most like a cube? Why?

The pupils, working in teams, must find a development plan that is different from the previ-
ous examples and which will look like a cube when it is folded. Six square pieces of card-
board can be distributed to each team in order to help them imagine their own development
plan.

· Can each development plan form a cube? Why?
· What are the characteristics of the development plans which can form a cube?
· What are the characteristics of a cube?
· Is the development plan a cube or does it just look like a cube?
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Report of Working Group C

The Arithmetic/Algebra Interface:
Implications for Primary and Secondary Mathematics

Articulation arithmétique/algèbre: implications pour l’enseignement
des mathématiques au primaire et au secondaire

Nadine Bednarz, Université du Québec à Montréal
Lesley Lee, Université du Québec à Montréal
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Nadine Bednarz Alex Lawson Tom O’Shea
Malgorzata Dubiel Lesley Lee Tom Schroeder
Doug Franks Anne LeSage Chris Suurtamm
Frédéric Gourdeau Geri Lorway Mélanie Tremblay
Lionel LaCroix Ralph Mason Vicki Zack
Caroline Lajoie Janelle McFeetors

Les membres de notre groupe de travail proviennent de contextes différents, autant sur le
plan géographique que sur le plan professionnel. Le groupe était en effet composé
d’intervenants provenant de l’Ontario, du Québec, du Manitoba, de la Colombie-Britannique,
de l’Alberta et des États-Unis, et donc de lieux où les programmes d’études, en ce qui concerne
l’enseignement de l’arithmétique et de l’algèbre notamment, n’apparaissent pas
nécessairement au même moment ni sous les mêmes formes. Sur le plan professionnel, ils
ou elles interviennent comme enseignants ou enseignantes au niveau primaire ou secondaire,
en formation initiale ou continue des enseignants au primaire et au secondaire, d’autres ont
une expérience aux études avancées, et plusieurs des participants et participantes ont
également une expérience d’intervention auprès d’adultes. Les contextes dans lesquels la
question de « l’articulation arithmétique-algèbre » se pose sont donc multiples : ils touchent
aux élèves de l’école secondaire appelés à faire cette transition (middle school), à la formation
des enseignants, dans laquelle les étudiants sont appelés à se prononcer sur la compréhension
éventuelle d’élèves, et sur leurs différentes stratégies de résolution face à des problèmes, au
travail avec des adultes qui ont reçu un enseignement de l’algèbre mais ne l’ont pas réellement
appris, et qui rencontrent des difficultés dans ce domaine. Cette variété de contextes, de
positionnements vis à vis la thématique abordée dans le groupe de travail a contribué, comme
nous le verrons dans ce compte rendu, à enrichir la discussion.

The First Shared Experience

Two shared experiences on the second day produced rich questions and discussions, rich
perhaps because of the diversity of perspectives in the group. The first shared experience
involved working on the following set of “algebraic problems” arithmetically and considering
the differences between the arithmetic and the algebraic reasoning involved.
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1) Three tennis rackets and four badminton rackets cost $184. What is the price of a
badminton racket if it costs $3 less than a tennis racket?

Trois raquettes de tennis et quatre raquettes de badminton coûtent 184$. Quel est le
prix d’une raquette de badminton si celle-ci coûte 3$ de moins qu’une raquette de
tennis?

2) Luc has $3.50 less than Michel. Luc doubles his money. Meanwhile Michel increases
his by 1/7. Now Luc has 40 cents less than Michel. How much did each have origi-
nally?

Luc a 3.50$ de moins que Michel. Luc double son montant d’argent. Pendant ce
temps, Michel augmente le sien de 1/7. Maintenant Luc a 0.40$ de moins que Michel.
Quel montant chacun avait-il au départ ?

3) The dance troupe Petitpas is giving its annual recital tonight. Tickets were all sold
ahead of time and the caretaker must now organize the hall. If he places 8 chairs in
a row, 3 spectators will not have a chair. If he puts 9 in a row, there will be 27 empty
chairs. How many people are expected to attend the recital?

La troupe de danse Petitpas donne son spectacle annuel ce soir. Les billets ont tous
été vendus à l’avance et le concierge doit maintenant organiser la salle. S’il place
8 chaises par rangée, 3 spectateurs n’auront pas de chaises. S’il en met 9 par rangée,
il restera 27 chaises disponibles. Combien de personnes attend-on à ce spectacle ?

4) By increasing his speed to 5 km/hr, a cyclist saves 37 minutes and 30 seconds. By
diminishing his speed by 5 km/hr, he loses 50 minutes. What is his speed and the
length of the track?

En augmentant sa vitesse de 5 km/h, un cycliste gagne 37 minutes et 30 secondes.
En diminuant sa vitesse de 5 km/h, il perd 50 minutes. Quelle est sa vitesse et la
longueur du parcours ?

5) A man takes five and a half hours to hike 32 km. He starts by walking on flat terrain
and then climbs a slope at 4 km/hr. He turns around at the top and returns on the
same path to his starting point. We know he walked on the flat terrain for 4 hours (2
going and 2 returning) and that it took him twice as long to climb the slope as to
descend it. Find the length of the flat part of his hike.

Un homme met 5 heures et demie pour faire un trajet de 32 km. Il commence par
marcher sur un terrain plat puis il monte une pente à la vitesse de 4 km/h. Il fait alors
demi-tour et retourne au point de départ par le même chemin qu’à l’aller. Nous
savons qu’il a marché pendant 4 heures (2 à l’aller et 2 au retour) sur le terrain plat et
que la montée de la pente lui prend le double du temps que la descente. Calculer
la longueur de la partie plate du trajet.

6) It takes a man five and a half hours to complete a certain hike. He starts by walking
on flat terrain at a speed of 6 km/hr and then climbs a slope at 4 km/hr. He turns
around at the top and returns on the same path to his starting point. We know that
he descended the slope at 8 km/hr and that the length of the slope is 2/7 of the total
distance walked. Find the total distance he walked.

Il faut à un homme 5 heures 30 pour faire un certain trajet. Il commence par marcher
sur une partie plate à la vitesse de 6 km/h et continue en montant une pente à la
vitesse de 4 km/h. Il fait alors demi-tour et arrive au point de départ en faisant le
même parcours qu’à l’aller. Nous savons que la vitesse de descente de la pente est
de 8 km/h et que la longueur de la pente est les 2/7 du parcours total. Calculer la
longueur du parcours.
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Solving the problem arithmetically was not necessarily an easy task for participants. Some
of the problems appear to be quite complex. The hope was that it would contribute to our
understanding of one facet of the interface between arithmetic and algebra in a particular
context, that of problem solving. The two first problems were discussed at length.

Solutions to the First Problem

For the first problem, the rackets problem, the group proposed a variety of solutions and
some of these were the basis of considerable subsequent discussion.

Solution A: This trial procedure consisted of choosing a certain given number for the price of
a tennis racket, then finding the corresponding price for the badminton racket and then the
total amount for 3 tennis rackets and 4 badminton rackets. A new number was tried until the
correct total price was reached.

13 + 13 + 13
10 + 10 + 10 + 10

26 + 26 + 26
23 + 23 + 23 + 23

28 + 28 + 28
25 + 25 + 25 + 25

Solution B: The total number of rackets, 7, was divided into the total price, $184, in order to get
a ballpark number for the price of a racket. Then a trial and adjustment procedure was undertaken.

    184 ÷ 7 = 26 … First trial: 20     20     20
    17     17    17   17    total: 128

    Then adjustment to a lesser amount:     16     16    16
    13     13    13   13    total: 93

    A new adjustment, raising the price …

Solution C: This solution began with the fact that 4 of the rackets together cost $12 less. This
was subtracted from $184 to get $172 (to have 7 rackets of the same price) and the latter amount
was divided by 7 to get 24 and 4/7. The price of the more expensive racket was then fixed at
three dollars more, 27 and 4/7. The price of the badminton racket was multiplied by 4 and
that of the tennis racket by 3 with the result not coming out to $184.

Solution C led to some discussion on the difficulty of controlling the relationship “three
dollars less than” and two corrected solutions (C1 & C2) by the group.

Solution C1: If they all cost the price of a tennis racket, then the bill would be $184 + $12.
Dividing $196 by 7 gave the price of the tennis racket, $28 and thus $25 for the badminton
racket.

Solution C2: This solution began with the fact that a tennis racket costs $3 more than a
badminton racket and so the three tennis rackets would cost $9 more altogether. If they all cost
the price of a badminton racket, then the bill would be $184 – $9. Dividing this by 7 gave the
price of a badminton racket.

It was noted that it is difficult to decide whether to add or subtract—controlling the
relationship “$3 less than” and its influence on the total is difficult—and that sometimes a
drawing is helpful in making the decision. Nadine offered her drawing of the problem
situation and reminded us that at the turn of the 20th century this type of drawing could be
found in the arithmetic problem solving sections of textbooks.
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        _________________ _______________ _ _3_ _
        _________________ _______________ _ _3_ _
        _________________ _______________ _ _3_ _
        _________________ _______________
        _________________ _ _3 _ _ _ _______________
        _________________ _ _3 _ _ _ _______________
        _________________ _ _3 _ _ _ _______________

      Total: 184$

The solution that drew the most attention in the discussion later was the following:

Solution D:

            $184             7B                  9

$184 – $9 = $175
$175 ÷ 7 = $25

Solutions to the Second Problem

The second problem (Luc and Michel problem) also led to a variety of solutions, the most
discussed of which were the two following solutions—reproduced here with an attempt to
reflect the way the solvers explained them.

    Solution A:

· Michel augmente son montant d’argent de 1/7, on va donc choisir au départ un nombre divis-
ible par 7, disons 7$. Luc a alors 3,50$. Il double son montant d’argent, il a donc maintenant 7$,
et Michel 8$ (7$ et 1/7 de 7$). La différence entre leurs deux montants est de 1$, ce qui ne
convient pas puisque la différence devrait être de 0,40$.

· On va donc diminuer le montant de Michel choisi au départ pour pouvoir avoir une différence
moindre à la fin. Prenons 6,30$ (nombre aussi divisible par 7). Luc a alors 2, 80$ (3,50$ de
moins que Michel). Luc double son montant d’argent, il a maintenant 5,60$. Michel augmente
son montant de 1/7, soit de 0,90$, il a donc maintenant 7,20$. La différence entre les deux
montants est alors de 1,60$. La différence a augmenté et non diminué....

· Il faut donc que j’augmente le montant de Michel et non que je le diminue (plusieurs membres
du groupe avaient fait cette erreur, mettant ici en évidence une des difficultés du problème, le
contrôle ici de l’effet des transformations sur les grandeurs en présence). Prenons 7,70$ (nombre
divisible par 7) pour le montant de Michel, Luc a alors 4,20$. Luc double son montant, il a
maintenant 8,40$ et Michel a 8,80$ (7,70$ plus 1/7 de 7,70$). La différence est bien de 0,40$.

Luc Michel
3,50 7
7 8

     différence = 1$
2,80 6, 30
5,60 7, 20

     différence = 1,60$
4,20 7, 70
8,40 8, 80

B B B B T T T

B B B B B + 3 B + 3 B + 3
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Solution B:
· La différence entre les montants d’argent de Luc et Michel au départ était de 3,50$.

· Si les deux avaient doublé leurs montants d’argent, l’écart entre ceux-ci aurait alors été de 7$.
Cependant cet écart n’est réellement que de 0,40$. On a donc réussi à regagner 6,60$.

· Luc a effectivement doublé son montant d’argent, mais Michel n’a pas réellement doublé son
montant d’argent, il a juste augmenté celui-ci de 1/7. Il lui aurait fallu 6/7 de plus pour
effectivement doubler son montant initial. Si on rajoutait 6/7 de la part de Michel, on aurait
donc regagné 6,60$.

· Les 6/7 (de son montant de départ) correspondent donc à 6,60$.

· Michel avait donc 7,70$. Et Luc avait 4,20$ (3,50$ de moins).

       (Montant de Luc au départ) _ _ _ _ _          (Montant de Michel au départ)    _________

           3,50$ (écart)

       (Montant de Luc doublé) _ _ _ _ _ _ _ _ _ _ (Montant de Michel doublé)_______________

            7$ (nouvel écart)
            _ _
            0,40$ (écart réel)
        _ _ _ _ _ _ _ _ _
        6,60$ (regagné sur la différence)

The Second Shared Experience

The second shared experience involved watching a short video extract in which two future
teachers were discussing their solutions to the following problem:

Another version of the Luc and Michel problem (distinct from that solved by the group)

Luc a 3.50$ de moins que Michel. Luc double son montant d’argent et Michel augmente
le sien de 1.10$. Maintenant Luc a 0.40$ de moins que Michel. Trouve les montants que
Luc et Michel avaient au départ.

Luc has $3.50 less than Michel. Luc doubles his money and Michel increases his by $1.10.
Now Luc has 40 cents less than Michel. Find the amounts that Luc and Michel had originally.

Excerpt from a dyadic interview
Éric (EC) «algebraic» problem solver, and Mireille (MI), «arithmetical» problem solver. (A partial
translation of the verbatim1 was provided by Nadine.)

            Notes that Mireille made
            as she explained how she
            solved the problem

MV: Okay. Luc has $3.50 less than Michel does (she writes down L,M and 3.50 as above). Now
to start with, I suppose that ...

EC: Michel has at least $3.50.

 L                3,50           M
?                 ,40            ?

  3,50
–  ,40

              ———
                                3,10
                             + 1,10

              ———
                 4,20
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MV: Well, let’s say ... yeah, you could say that. Okay, Luc doubles his money. ... Well, when you
get down to it, I go about it more using the difference between the two. I know that he, here
there’s 3.50 separating them. Uh, Luc doubles his money whereas Michel increases his
money by $1.10. So I know that here there was an increase of $1.10. But I don’t know the
amount that they had (she writes down the two ?)

EC: Okay.

MV: What I do know is that there was a difference and that afterwards, I’ve got Luc who’s
now got 40 cents less than Michel (she writes down .40). So I know that the difference
between these two (she draws an arrow between $3.50 and $ .40) is $3.10.

EC: $3.10 you say ...

MV: A difference of $3.10, and I know already that...$1.10, here there was an increase of $1.10. So
normally that would give the amount ...

EC: ... that Michel had

MV: Here, that Luc had.

Because time was short, we did not observe the second video clip in which the same two
students worked on the cafe croissant problem (see the problem with contradictory éléments
below). We did, however, discuss the problem (the purpose here was to focus on the control
of the process of solving problems in arithmetic and algebra) and Nadine provided a verbal
description of the student interchange.2

The cafe, croissant problem

Au restaurant, une tasse de café et trois croissants coûtent 2,70$. Deux tasses de café
et deux croissants coûtent 3.00$. Trois tasses de café et un croissant coûtent 3,50$.
Trouve le prix d’une tasse de café et d’un croissant.

At a restaurant, a coffee and three croissants cost $2.70. Two cups of coffee and two
croissants cost $3.00. Three cups of coffee and one croissant cost $3.50. Find the price
of one coffee and one croissant.

One of the students (EC) immediately attempted an algebraic approach, writing three
equations with two unknowns, solving two of them and then replacing the numbers found
in the other one. When he observed that when he put them in the third equation, it didn’t
give him the right answer, he checked his method... He tried again with two other
equations...He attempted three other algebraic solutions to the same problem ....he never
returned to an analysis of the proposed relationships in the problem. On the other hand, the
other student (MI) worked on the basis of the relations in the situation: Here I’ve got one
coffe and three croissants; here I’ve got two coffees and two croissants, I’ve got one coffee
more and one croissant less, and it costs 30 cents more. Then here, I have the same thing, I’ve
got one coffee more and one croissant less. That costs me 50 cents more! That doesn’t work!

Une certaine expérience partagée a ainsi constitué le point de départ de la discussion
subséquente du groupe de travail. Elle portait d’une part sur la résolution arithmétique de
problèmes usuellement présentés en algèbre, et l’explicitation de diverses solutions par les
participants, et d’autre part sur le visionnement d’un extrait de vidéo dans lequel deux
étudiants en formation des maîtres confrontaient leurs solutions (arithmétique et algébrique)
à un même problème.

Les diverses solutions proposées par le groupe à certains problèmes, les discussions
qu’ont provoquées certaines solutions plus spécifiquement, les réflexions issues de notre
observation du vidéo par ailleurs, ont permis d’ouvrir sur un certain nombre de discussions.
Nous reprendrons maintenant quelques uns des points les plus importants.
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Qu’est-ce que l’arithmétique? Qu’est-ce que l’algèbre?

Le travail sur les différentes tâches, notamment la résolution arithmétique de problèmes,
nous a amené à discuter longuement la différence entre arithmétique et algèbre: en quoi
peut-on dire que cette solution est arithmétique ou algébrique? Où s’arrête l’arithmétique?
Où commence l’algèbre? Par exemple certaines solutions arithmétiques présentées au
problème des raquettes ont suscité une interrogation par certains participants: en quoi
pouvait-on dire que cette solution était arithmétique et non algébrique? Ainsi, si une ligne
(voir solution C, dessin proposé par Nadine) ou une boîte (voir solution D) est utilisée pour
représenter les grandeurs en présence et leurs relations, ceci n’est-il pas une certaine façon
de représenter l’inconnue et ne peut-on dire dans ce cas que le processus de résolution est
algébrique? Le fait que certains élèves qui n’ont jamais reçu d’enseignement de l’algèbre
produisent de telles solutions, ou encore que l’on retrouve des illustrations semblables (so-
lution C) dans de vieux manuels d’arithmétique, plaident toutefois en faveur de voir celles-
ci comme des solutions arithmétiques. La question de savoir si une solution est arithmétique
ou algébrique est vite apparue au groupe comme risquant de nous enfermer dans une dis-
cussion stérile, et celle-ci a été abandonnée au profit de l’intérêt qu’il pouvait y avoir à
encourager certaines solutions particulières dans une perspective de transition à l’algèbre.

What is arithmetic, what is algebra?

Some of the arithmetic solutions produced by participants led to challenges by others as to
whether or not they could also be classified as algebraic. For example, if a line or box is used
to represent the unknown amount, is that just another way of representing the unknown
and is the solution process essentially algebraic? The fact that some students who have
never been exposed to algebra produce such solutions argued in favour of viewing these as
arithmetic. Trying to reach a conclusion about whether such a solution was arithmetic or
algebraic was eventually abandoned in favour of a discussion of the interest of encouraging
this particular type of solution as a stepping-stone to algebra.

Potentiel de certaines solutions arithmétiques pour un passage à l’algèbre?

Le travail autour des solutions proposées par le groupe à quelques problèmes nous a amené
à discuter très longuement du potentiel de certaines de ces solutions: en quoi ces solutions
sont-elles porteuses de sens, riches pour un éventuel passage à l’algèbre? Comment favoriser
la transition à partir de celles-ci à l’algèbre? Par exemple, les solutions arithmétiques mettent
dans certains cas en évidence un contrôle très grand des relations en présence ou des trans-
formations sur les grandeurs (voir les solutions C1 et C2, ou D au problème des raquettes,
ou la solution B, au problème de Luc et Michel) ou s’appuient sur des propriétés des nombres
(exemple de la solution A, au problème de Luc et Michel), elles constituent un atout impor-
tant dans la mathématisation des problèmes en algèbre. Ces solutions rendent compte par
ailleurs dans certains cas d’une notation ou représentation globale intéressante (exemple de
la solution C, illustration proposée, ou de la notation utilisée en D au problème des raquettes).
Cette dernière solution apparaissait même a priori pour plusieurs des participants très proche
d’une résolution algébrique (faisant référence à une notation symbolique et semblant opérer
sur ce symbolisme dans la notation même utilisée). Toutefois, la discussion a mis en évidence
que la lettre ici ne joue pas vraiment le rôle d’inconnue. Elle sert juste à désigner les quantités
en présence, c’est en quelque sorte une étiquette (badminton, raquette), ce qui constitue en
fait un obstacle dans la résolution algébrique ultérieure (où la lettre représente un nombre
et la symbolisation des relations exprime une relation entre des nombres qui n’est pas une
traduction directe). La question de la transition à l’algèbre exige donc davantage. Elle peut
sans doute s’appuyer avantageusement sur les habiletés développées en arithmétique et
certaines de ces solutions, mais le passage n’est pas une simple transposition d’une procédure
à l’autre.
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Do certain arithmetic solutions lead more easily into algebraic solutions?

Some arithmetic solutions produced in the group seemed to be more meaningful and offer a
greater potential for an eventual passage to algebra. The question arose as to how to move
from these particular solutions into algebraic ones. For example, arithmetic solutions exhib-
iting mastery of the relationships in the problem or of transformations of quantities (see
solutions C1, C2 and D to the rackets problem, or solution B to the Luc and Michel problem),
demonstrate skills that are important in mathematizing problems in algebra. These solutions
also show interesting notation or global representations of the problem (for example, the
illustration used in solution C and the notation in D). For many of the participants, solution
D appeared to be very close to an algebraic solution in that it involved symbolic notation and
operated on that notation. However the discussion brought out the view that the letter here
did not really play the role of an unknown. Rather, the letter designated the quantities present
and acted as a label (which is considered to be an obstacle in later algebraic work). Thus the
passage to algebra requires additional insights and skills. It can certainly build on arithmetic
skills and solutions but the passage is not a simple transposition from one to the other.

Tension dans la transition arithmétique-algèbre entre contextualisation et
décontextualisation

Un point important soulevé par le groupe et sur lequel nous nous sommes longtemps attardés
est celui de la tension, dans la transition arithmétique-algèbre en résolution de problèmes,
entre la nécessité de partir du contexte, pour construire notamment un sens à l’expression
algébrique élaborée ou à toute autre représentation, et la nécessité de quitter le contexte
pour aller plus loin dans la résolution. Dans nos solutions arithmétiques, nous nous appuyons
en effet fortement sur le contexte, interprétant constamment les quantités et relations en
présence pour pouvoir opérer. Chaque partie de la solution s’appuie sur le contexte, peut
être vérifiée en regard du contexte. Nous reconnaissons que tel n’est pas le cas en algèbre,
où le contexte sert seulement au début de la résolution du problème lors de la construction
de l’équation ou des équations, et à la fin du processus dans l’interprétation de la solution
trouvée. Plusieurs des participants du groupe pensent que cet abandon du contexte est un
des gros obstacles dans la résolution de problèmes en algèbre. Le problème du café crois-
sant, et sa résolution par les deux étudiants en formation à laquelle nous avons fait allusion
précédemment, le montre bien et fournit plusieurs arguments en faveur du maintient d’un
lien avec le contexte. Ceux qui en effet s’engagent dans une résolution algébrique semblent
tourner en rond, essayant de résoudre à plusieurs reprises deux équations à deux inconnues
puis de remplacer dans l’autre équation, sans nullement contrôler ce qui s’y passe. Ceux qui
essaient de résoudre arithmétiquement le problème restent en contact avec le contexte, et
rapidement réalisent que le problème ne fonctionne pas, qu’il n’y a aucune solution.

Nous nous sommes demandés s’il ne serait pas possible de prévoir des allers retours
entre contexte et manipulations algébriques, au moins dans les premières étapes de
l’apprentissage de l’algèbre. Bien que cette question soit restée ouverte, quelques opposi-
tions à cette idée ont été exprimées. Tout d’abord, l’algèbre est un outil pour résoudre une
classe plus générale de problèmes et sa puissance réside justement ici dans l’abandon du
contexte, d’autre part, il est extrêmement difficile, voire impossible, de donner à chaque
étape de la manipulation une signification dans le contexte.

Tension between keeping the context and working in abstract

In our arithmetic solutions we were constantly reading and interpreting the problem situation.
Every line of the solution was or could be checked for sense in the context of the problem.
We recognized that this is not the case in algebra where the context serves only at the
beginning and end of the solution process. Several participants thought that this
abandonment of context was one of the big obstacles to problem solving with algebra. We
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wondered whether it would be possible to move back and forth between the algebraic
manipulations and the context, at least in the early stages of algebra. Although this question
remains open, there was some opposition to the idea: firstly, algebra is a tool for solving
general problems and its power lies in the abandonment of context and secondly, it is
extremely difficult to do—perhaps more difficult than the manipulations themselves.

The café/croissant problem above provided some arguments in favour of maintaining
a connection with context. Those who leaped into an algebraic solution ended up going
around in circles trying to solve 3 equations in two unknowns. Those who looked at the
problem arithmetically or stayed in touch with the context, quickly realized the impossibility
of a solution.

Survalorisation de l’algèbre et dévalorisation de l’arithmétique en résolution de
problèmes

Dans l’extrait vidéo que nous avons visionné, la difficulté du futur enseignant de
mathématiques au secondaire (ER) à comprendre la solution arithmétique produite par l’autre
étudiante (MI), et son absence de volonté apparente à vouloir comprendre celle-ci, ont
questionné les participants. À l’opposé, bien que MI ait eu de la difficulté à suivre le
raisonnement algébrique de son coéquipier, elle a fait l’effort de comprendre celui-ci et a été
tout à fait capable à la fin d’expliquer et de refaire ce raisonnement. Derrière l’indifférence
du solutionneur «algébrique» envers la solution arithmétique de l’autre (qu’il perçoit comme
de la magie), il est possible d’y lire une certaine supériorité de l’algèbre sur l’arithmétique,
ce que le groupe a nommé «une certaine arrogance de l’algèbre».

Venant de travailler nous-mêmes sur des solutions arithmétiques à des problèmes,
nous étions naturellement impressionnés par la solution arithmétique de MI et par le
raisonnement sous-jacent mis en jeu. D’où notre étonnement à voir l’inhabileté du
solutionneur algébrique à apprécier, lui de son côté, cette solution arithmétique. Les
conséquences d’une telle attitude selon nous dans la classe sont importantes. Elle questionne
en effet la capacité du futur enseignant à comprendre les stratégies des élèves et amène à
penser que lorsque l’algèbre est introduite, tout raisonnement arithmétique est de fait évacué.
Ceci peut nous laisser penser que le raisonnement arithmétique est de fait, au moment de
l’introduction à l’algèbre et après, négligé, voire même qu’il régresse. Ceux qui ne rentrent
jamais dans l’algèbre courent ainsi le risque d’être laissés de côté avec aucun outil pour
résoudre les problèmes, et aucune confiance dans leur capacité à résoudre des problèmes.

Du point de vue de la formation des maîtres, un travail important est à faire, en valorisant
entre autres les enseignants qui veulent comprendre les stratégies premières des élèves.

To what extent is algebra over valued and arithmetic under valued in problem solving?

In the video extract, we were all slightly appalled by the future high school teacher’s inability
and unwillingness to understand the arithmetic solution produced by the future special
education teacher. Although the latter found her partner’s algebraic solution difficult to follow,
she did make the effort to do so and in the end was able to follow it. Behind the indifference
of the algebraic solver towards the arithmetic solution, we read a sense of superiority attributed
by both students to the algebraic solution and coined the term “the arrogance of algebra”.
Having just worked on arithmetic solutions, we were naturally quite impressed with the
arithmetic solution and the mathematical reasoning involved. It was worrisome to recognize
in the algebraic solver the inability to appreciate an arithmetic solution. The consequences of
this in the classroom assure that once algebra is introduced, all arithmetic reasoning is
outlawed. Hence arithmetic reasoning atrophies and those who never quite “get” algebra
are left with no tools and no confidence to solve mathematics problems.

In teacher training, it also seems important to value teachers who want to understand
students’ primitive strategies.
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Devrions-nous introduire des problèmes «d’algèbre» en arithmétique?

Nous avons aussi discuté la pertinence qu’il pouvait y avoir à introduire des problèmes
classiques d’algèbre, comme ceux que nous avions examinés, pas nécessairement les derniers
considérés comme complexes pour les élèves, mais d’autres plus simples, avant toute intro-
duction à l’algèbre. Beaucoup d’arguments en faveur d’une telle introduction ont été mis en
évidence par le groupe:

· Il y a plusieurs stratégies de résolution possibles comme nous l’avons vu, dont le potentiel est
riche pour le développement d’habiletés en résolution de problèmes: essais erreurs raisonnés
s’appuyant sur certaines propriétés des nombres; fausse position: on fait semblant que...en se
donnant un nombre et on réajuste; travail sur les relations et comparaison. ...

· Le recours à plusieurs méthodes de résolution fait partie du curriculum (est requis par celui-ci)
· Il semble toutefois important dans ce travail d’aller au delà de la simple procédure d’essais-

erreurs pour forcer une réflexion sur les relations. L’arithmétique, si elle est un appui impor-
tant pour le passage ultérieur à l’algèbre, doit être une arithmétique relationnelle.

· Les notations utilisées, la manière dont nous rendons compte de ces stratégies, dont nous les
explicitons, est aussi un appui important pour le travail ultérieur en algèbre: notations
séquentielles versus notations globales (rendant compte de l’ensemble des relations en présence),
recours à des illustrations aidant à contrôler les relations, présence possible d’une riche variété
de notations, représentations (diverses représentations explicitant l’ordre de grandeur des
notations ou leurs relations, notations symboliques ...)

· Le travail sur différents types de problèmes est possible: travail sur des régularités (exemple
trouver la somme des 45 premiers nombres entiers rapidement...), problèmes mettant en jeu
des relations de comparaison, développant une flexibilité à jouer avec ces relations de
comparaison (se les représenter, les formuler de différentes façons ...)

· Il est possible de discuter certains critères avec les élèves dans le retour sur les stratégies (clarté
à des fins de communication de celles-ci à quelqu’un d’autre, efficacité, certaine stratégies
sont-elles plus efficaces que d’autres?: qu’arrive t-il si l’on change certaines données du
problème, la solution fonctionne t-elle encore? ...)

La question de savoir si nous devrions enseigner certaines de ces stratégies , si nous devrions
parfois insister sur la mise en évidence de certaines stratégies plutôt que d’autres a été posée.

Should we introduce “algebra” problems in arithmetic?

A number of arguments were made for introducing classic algebra problems such as those
examined in the working group before any introduction of algebra.

· As we saw, a number of solution strategies emerge that are potentially rich for developing
problem solving abilities: trial and error strategies grounded in number sense, trial and ad-
justment, work on relationships and comparisons. (It is important though to go beyond trial
and error strategies and move to reflection on the relationships between the quantities in the
problem.)

· The use of a variety of solution strategies is required by the curriculum.
· The notation used (sequential as opposed to global notation, recourse to illustrations, multiple

notations and representations) and the ensuing discussions are important for future work in
algebra.

· Work on a wide variety of problems is possible: on patterns or regularities (for example, find
the sum of the first 45 whole numbers rapidly), on comparisons (expressing and representing
them in different ways), …

· In discussions of strategies with the students, criteria can be established for clarity in
presentation, efficiency in solutions (Are some solutions more elegant than others? What
happens if we change some of the givens in the problem?)

The question arose as to whether or not we should teach certain of these strategies.



Bednarz & Lee • The arithmetic/algebra interface ; Articulation arithmétique/algèbre

69

Devrions-nous continuer le travail en arithmétique après l’introduction de l’algèbre?

Notre travail sur les problèmes nous a amené à la conclusion que l’arithmétique ne devrait
pas être mise de côté dans le travail en résolution de problèmes, après que l’algèbre ait été
introduit. Nous avons trouvé quelques unes des solutions arithmétiques que nous avons
partagées riches sur le plan du raisonnement mis en jeu. Toutefois, encourager des solu-
tions arithmétiques et continuer le développement de l’arithmétique chez les étudiants tout
au long de l’école secondaire ne fait pas vraiment partie des expériences des participants.
Le curriculum arrête en effet l’enseignement de l’arithmétique en général lorsque l’algèbre
est introduit.

Dans le programme récemment introduit en France, on réintroduit cependant
l’arithmétique dans les dernières années du secondaire et même au niveau postsecondaire.
Il reste à voir ce qu’on appelle ici arithmétique. Il y a un intérêt à considérer les raisons qui
ont conduit les responsables de ce curriculum à vouloir y réintroduire l’arithmétique, ce
dernier contribuant selon eux au développement d’une certaine rationalité mathématique.
Les participants du groupe ont mentionné l’intérêt que pourrait avoir un tel travail en
arithmétique, articulé par exemple autour de la théorie des nombres, pour le développement
du concept de variable. La réflexion est ici à poursuivre.

What would be the benefits of continuing the study of arithmetic throughout secondary
school?

Our experiences in the group work led us to the conclusion that arithmetic should not be set
aside in problem solving work after algebra is introduced. We found some of the arithmetic
solutions to the shared problems both simple and mathematically exciting. However,
encouraging arithmetic solutions and continuing the development of students’ arithmetic
throughout high school had not been part of the experience or expectations of any of the
participants. Nadine spoke about the new programs in France where arithmetic has been
re-introduced in the last years of secondary school. There was considerable interest in that
curriculum and conjectures that students would be much better prepared for tertiary
mathematics particularly in the area of number theory.

One learning shared by all was that the meeting of arithmetic and algebra does not
just occur in a year or two somewhere in middle school. It impacts on all of us wherever we
are intervening in the school system.

Notes

1. Pour la recherche plus complète dont est tiré ce verbatim, voir S. Schmidt & N. Bednarz (2002),
Arithmetical and algebraic types of reasoning used by preservice teachers in a problem-solving
context, Canadian Journal of Science, Mathematics and Technology Education, 2(1), 67–91.

2. For more details, see Schmidt & Bednarz (2002).
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Mathematics, the Written and the Drawn

David Pimm, University of Alberta
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Allan Brown Nicholas Jackiw Immaculate Namukasa
Stewart Craven Carolyn Kieran Kathy Nolan
Doug McDougall June Lester David Pimm
George Frempong Peter Liljedahl Luis Radford
Joel Hillel Kate Mackrell Margaret Sinclair
Marty Hoffman Eric Muller Rina Zazkis

The written and the drawn—at first blush, two faces of mathematical communication on
paper. I put pen to paper to express and perhaps communicate my ideas (in words, in draw-
ings) across distance; more ambitiously, across time. But then I find myself putting pen to
paper when doing mathematics by myself, in the moment, for myself. What is it I capture
there, in word and image? And in what sense is it ‘captured’? Words tell stories spreading
across time; images paint pictures spreading across space. Somewhere uncomfortably be-
tween them falls mathematical symbolism, which we read in words; write in pictures; and
imagine thereby to convey meanings that transcend both time and space. Much later, I at-
tempt to communicate mathematics to you. What shall you make of what I have written; of
what I’ve drawn?

In customary manner, our group’s discussions were focused and informed by a series
of group tasks spread over the three days, which is also how this report is structured, that is
to say narratively rather than thematically. We can, as ever, only attempt to provide a brief
taste of the tenor of engagement which occurred in this very coherent and stimulating group,
illustrated/punctuated with comments from the participants (given in inverted commas
and in italics) which were gathered towards the end of the third day in response to the
question of what had stood out for them over the course of the group’s working life
together.

Day 1 • Saturday

Following a general introduction including working on some quotations from artists, a theme
emerged which we explored more fully over the course of the sessions, namely that of the
role of time in mathematics, not only in relation to images but also in the context of textual
proofs. It seems to us an important and relatively unexamined notion with regard to math-
ematics. In order to approach this idea, the following task was offered to the group, who
generally worked either alone or, predominantly, in pairs.
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Task 1: A Euclidean cut proof

The order of the sentence statements in this proof have got scrambled and the first
word(s) of each sentence cut off and placed in a pile. Can you discover the original,
correct order to restore the proof? How did you work on this task?

Prime numbers are more than any assigned multitude of prime numbers.
[Euclid IX. Prop 20]

1. … it also measures EF.
2. … G is not the same with any of the numbers A, B, C.
3. … it be prime; then the prime numbers A, B, C, EF have been found which are

more than A, B, C.
4. … it be measured by the prime number G.
5. … G is not the same with any one of the numbers A, B, C.
6. … the prime numbers A, B, C, G have been found which are more than the

assigned multitude of A, B, C.
7. … if possible, let it be so.
8. … the least number measured by A, B, C be taken, and let it be DE. Let the unit DF

be added to DE.
9. … EF not be prime; therefore it is measured by some prime number.

10. … G, being a number, will measure the remainder, the unit DF; which is absurd.
11. … by hypothesis it is prime.
12. … A, B, C measure DE; therefore G also will measure DE.
13. … EF is either prime or not.
14. … A, B, C be the assigned prime numbers. I say that there are more prime num-

bers than A, B, C.

Choose beginning words from the following list:

Then, First, Let, For, I say that, Now, Next, But, Therefore, And.

For us, one question which this task gave access to was the notion of a ‘coding time’ of a
proof, that is where is the temporal centre of gravity of a proof by contradiction (as this is)
and it was observed how many of the words used as logical ‘glue’, marking the structure of
relatedness among consecutive and adjacent sentences, have both a temporal and logical
sense in English.

“I have never done something like this before. This was wearing a real student hat rather than a
pretend one. But my greatest appreciation was the pedagogic fallout when my attention was drawn to
the word ‘assigned’ in the proof.”

“The struggle with the Euclidean proof. What do you do to begin the task? Try to make sense of the
assertion, identify ‘troubling’ words. Still not sure, but try to connect the opening words at the
bottom of the page to some of the fourteen statements—a few seem to fit. Next highlight all the
statements with a G or a DE in them and begin to see an emerging structure. Still muddy water. Take
a stab maybe statement 14 is first followed by 8. We are triggered to think about the word ‘absurd’.
We began to appreciate how certain words are clues to structure and to appreciate the meaning of the
word’ measure’ in a Euclidean sense and how it contrasts with our present meaning. Finally, we start
to appreciate how pictures/diagrams are critical to understanding words like ‘measure’.”

“I was struck by the fact that even though I knew the way the proof goes, it still took a bit of effort to
reconstruct, partly because the language was unfamiliar. The fact that Euclid proves the general case
by a generic example, using just three primes, led me to think I could be a bit loser in my own
presentation of proofs. A generic case that captures the essence of the proof ought to be enough.”
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Task 2: Drawing with words

FIGURE 1.

Participants were paired and invited to sit back-to-back and to describe a static image (some
of those we used are given above) provided to their partner who had to recreate it with
pencil and paper from the words alone. We were endeavouring to get away from the
oppositional words versus images to examining the differing strengths of both and to work
on discovering the challenges transmuting one into the other. This sequence requires first
images to be translated into spoken words by the ‘encoder’ and then those spoken words
translated back into an image by the ‘decoder’. Another way of describing this is to talk in
terms of description and transcription.

Participants found parts of this task challenging. We discussed the question of a ‘gram-
mar of images’ and how speech is linear in time whereas a diagram is not. What is involved
in ‘reading’ a diagram? There is choice about where to begin and whether a global image is
described, whether there are structured elements to clue into and draw on in the descrip-
tion or whether it is seen as an exercise in drawing with the speaker remotely directing the
pen of the drawer. Words can both trigger and substitute for images. Images prompt words
and reciprocally.

“The A-B back-to-back was illuminating. It reveals the illusion we have as instructors that what we
describe is clear to our students—even though they don’t have our background for interpretation.”

“Word and image are two seemingly interesting dichotomous objects. However, as with all other
dichotomies, they leave unsaid more than they suggest. But the process of generating images or
generating words or of linking images and words involves a dynamic to-ing and fro-ing, often be-
tween words and images (or images and images, etc.). This dynamic process which is at the heart of
our thinking is not captured by the dichotomy.”

“In communicating images to others, it can be very helpful to others to use words in several different
ways: globally, procedurally (how to go about constructing the image using a certain aspect as a
starting point, etc.). there again, images and words work together in a dynamic way.”

“The task of rearranging the steps of the prime number theorem was probably more difficult than that
of communicating an image, but was unseen to our partner because there was less of the visual to
draw upon. The productive dynamic between word and image was, thus, much less present.”

Day 2 • Sunday

Image Archaeology using Dynamic Geometry Software

Day 2 was given over to explorations of the particular form of imagery associated with
educational mathematics software such as The Geometer’s Sketchpad or Cabri. Images in these
environments are (usually) mathematical figures and diagrams that evolve and deform con-
tinuously in response to manipulation by the computer mouse, but that across such defor-
mation maintain defining properties and essential invariances. Others (e.g., Scher, 2000)
have written about how compelling these images are—at once familiar from our imagina-
tions, and yet now, embodied and palpable, and therefore, more certain. In our day’s
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experiments, we used Sketchpad to investigate how much of an author’s story we can recon-
struct from Dynamic Geometry artifacts.

In the first task, pairs of participants worked together to construct as many rhombi as
they could within the Dynamic Geometry environment. While perhaps intended more to
provide an orientation to the software tools than a task in itself, of course in discussion even
this chore became fertile. Since each Dynamic Geometry figure has an unlimited number of
appearances and configurations, participants had to come to a stronger definitions of
“different rhombi” than governs variation in size and angles, in location and orientation.
And once converging to a notion of “different construction” rather than simple “different
appearance”—even to different construction even when appearance was unchanged—we
still needed strategies for generating different constructions, given that many of us were far
from our days of compass and straightedge facility.

This first task became more difficult and thought provoking at its mid-point, when
each pair of participants had a virtual desktop collection of their various “successfully dif-
ferent” rhombi, as well as several partial rhombi or constructions abandoned somewhere
along the path toward possibly becoming rhombi. At this point, opposing pairs switched
computers, and the task became to examine the unfamiliar work now before us, and to
reconstruct—for both the successful rhombi and the failed ones—what definitions of, or
insights into, the nature of the rhombus had illuminated each of our now absent authors’
construction attempts.

Here obviously we were both directed and constrained by the modes of inquiry facili-
tated by the software itself. Over the course of the activity, several clear approaches emerged.
Through Sketchpad dragging, we could probe the dynamic behavior of the rhombus,
almost as if it were a living thing. This takes the authors’ work and invests it with a certain
premise of purpose, and of achievement of that purpose. Through examining the Script
View of a rhombus, we could read a propositional description of the salient mathematics of
the construction—but (as with many a published paper in mathematics) in a format and a
presentation that obscures much of the process through which its results were achieved.

Finally, by stepping forward and backward through the unlimited Undo and Redo
“history” that the program stores of a user ’s work, we could follow and re-enact a step-by-
step transcript of the absent authors’ work, as codified or digitized by the software. This
view far more than the other two was likely to reveal the distribution of the authors’ efforts
across the totality of their work product, as well as the inevitable tangents, digressions and
dead-ends hidden from the final work—but at the same time, in its microscopic detail and
absent any illuminating commentary, this form of inquiry lead to a vision of a process far
more homogenous in texture than either dragging or the Script View, which were more
likely to indicate what was significant or important in a construction even as they cast into
shadow processes by which such attributes came to be.

A second activity revisited these themes from a perspective possibly closer to a typical
student’s. Here we provided Sketchpad microworlds (called “Drawing Worlds”—see Jackiw,
1997) in which the traditional compass and straightedge tools of the program had been
replaced by “broken” equivalents, but in which the manner or effect of “brokenness” was
systematic and amenable to mathematical characterization. (For example, the figure below
shows an example straight line and circle drawn by the broken straightedge and compass
tools of one of these microworlds.) Our charge was to use these broken tools to devise and
execute strategies that explained how they had been broken, and—perhaps—what steps we
might take to fix them. (In our example, the tools are incapable of rendering outside of some
upper-right quadrant, and reflect everything into that quadrant. In this sense, they are
“absolute value” tools—they’ll work fine, provided we limit ourselves to the upper-right
quadrant!)

While the mathematical means by which these suspect tools had been broken were
rarely more sophisticated or involved than the mathematics of our previous rhombi con-
structions, here they were intentionally hidden. In our initial pursuits, participants relied
heavily on the mathematical language of composed transformations and of complex con-
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formal mappings to describe the pictures drawn by broken tools. In many cases, these vo-
cabularies eventually seemed to be overkill, imposing an assumption of a certain level of
complexity on problems usually involving (though not transparently!) simpler geometric
operations.

“On day 2, my eyes were opened to powerful new ways to look at GSP can be employed. Pictures were
constructed then deconstructed. A grid is such a powerful image to attest to in understanding the
essence of unknown geometric transformations.”

“I want to experience my activity in many ways—‘I think by moving the mouse’. I was struck by
how different representations form and illuminate. Language is linear, happening in time. Deliber-
ately choosing to use/not use particular ways of representing a situation (e.g., algebraic, geometric)
can create new connections, possibilities, insights.”

“In dynamic geometry environments, as one is controlling the mouse, one is constantly making
conjectures and testing them, conjectures which are an amalgam of interior words, thoughts, im-
ages.”

“In the rhombus activity, getting into the geometry and having time to play was important; then,
being able to play detective and look into others’ constructions using ‘undo’ presented a new perspec-
tive. It brought to mind an idea about how to delve into the mind of a sketch creator (if one of our roles
as teachers is to unpack the mathematics, then this is a useful vehicle). When you’re faced with a
picture, you can analyse it and derive meaning from it by focusing on various points, colours, etc.,
but you can’t undo to see how it was made. In some cases, you probably don’t care whether the artist
drew the mast first or last, but in a geometry diagram, the unpacking using undo can reveal relation-
ships that promote understanding.” (For more on this point, see Nunokawa, 1994.)

Day 3 • Monday

Task 1: Monstrous visions

In this brief task, the group “confronted” a symbolic expression of no small visual complexity.

The goal of the exercise—which requires some preliminary group preparation—is to attend
particularly to how, as individuals, our eyes track in their first seconds of vision over the
expression’s two-dimensional notational layout; to how we begin, visually, to harvest evi-
dence of sense from the symbolism before (or as a very initial part of) developing a more
thorough understanding of the expression’s formal or propositional meaning. Where the
broad purpose of the task was to add an encounter with symbolic notation, which sits so

FIGURE 2. The Absolute
Value Drawing World

FIGURE 3.  A
Symbolic Monster
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tenuously on the interface between the written and the drawn, to the group’s catalogue of
representational experiments, the task more directly seeks to experiment with Walter
Whiteley’s (2002) observation that, as a mathematician, he sees fundamentally differently
from his students; that not only does (in this case, mathematical) experience shape sense
perception at the most basic and immediate level (as Hoffman, 1998, develops at length),
but that—in the case of the mathematician—this cognitive conditioning affects the appre-
hension of symbolic landscapes as well as iconographic or pictorial ones.

In your first moments inspecting the expression above, how do your eyes move, and
what do you see? Raw alphabetic cacophony? A surface? A sine function? A sum? Second,
how do these differences play out categorically? Whiteley’s formulation distinguishes be-
tween the vision of “the mathematician” and “the student”, but these are more evocative
than rigid taxa. Does the experiment reveal any useful axes of distinction across the some-
what homogenous, somewhat diverse population of a CMESG working group?

Each of the “first visions” mentioned above (cacophony, surface, sine, sum) came from
participants responding in the group, and each clearly construes the expression from a dis-
tinct perspective. To see it as a surface, for example, is to take a poet’s or modernist painter ’s
view: the choice suggests not only the strong preference for a palpable geometric dimension-
ality over the two wooden understudies named x and y, but also indicates a willingness to
forgo all the potential meanings and still shadowy impact of the many symbols beyond x and
y, to transcend that promised specificity in the leap to a geometric “sense” of the expression.

By contrast, seeing the expression as a sum suggests a grammarian’s more clinical eye,
pruning back all of the visual flow—of subscripts and radicals and brackets—to its barest
symbolic skeleton parsed by order of operation (not that of left-to-right processing of writ-
ten English). But many in the group found themselves drawn first to the sin() elements in
the expression, over the square roots and squarings, the additions and divisions, the x and y
and m and n. Is this the readerly eye’s conditioned attention to, and preference for, letter
strings it can concatenate into recognizable words? Or do such responses stem more from
the mathematical familiarity of the syntax of sine functions than from the lexical weight of
three-letter sequences (s, i, n) over solitaires (x, a, m)?

In trigonometry and elsewhere in school mathematics, sine ratios inexorably summon
ideas of right triangles and unit circles, but sine functions invoke contexts in which sin
often binds its neighboring coefficients and arguments into ideas of amplitude, frequency
and phase. When we confront the monstrous expression above, does the associative strength
of such templates offer hope that we will eventually squeeze all the rogue symbolic ink
beyond sin into these supporting roles, these adjectival positions that only qualify or spe-
cialize the sine?

If the most immediate result of the experiment was to document the variety of things
we think we see when we look at the same set of mathematical symbols, perhaps the least
anticipated result was the degree to which our vision comes fully vested with our opinion,
taste and prejudice. The moment the expression in question was revealed on the board,
more than several members of the group issued loud groans—as if the act of beholding the
expression above is itself somehow unpleasant. And—after a moment’s silent feasting on
the expression—once participants began describing the details on which their eyes first
focused and the perceptions those first sights invoked, other participants in the (usually
very collegial) group spoke out several times to object, to argue with or deny their col-
leagues’ offered interpretations. This sort of response and debate would be fully expected if
we were expected to “solve” the expression or “explain its meaning”, but both before first
revealing it and again throughout the discussion, the group clearly understood the task as
“to say what you see”, not “to say what it means”. Thus we neither liked what we saw (the
groans); nor how others saw (the arguments, the rejections). Disturbing.

To turn from the group’s particular experience in response to this task to its wider
concerns—the interplay of mathematical media and mathematical meaning—it is worth
noting the provenance of the particular expression used in this task. This particular sym-
bolic fragment is an end product of a recreational mathematics idyll in which one of us
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(Jackiw) attempted to model smooth water surfaces disturbed by scattered pebbles—to build
a Zen water fountain with dynamic graphing software (Geometer’s Sketchpad). This activity
began in the plane with a simple wave model graphed as y = sin(x). Adding a phase term, t,
that changed over time causes the waves to “travel” with time, and dividing the result by x
diminishes a wave’s amplitude the further it travels from the origin (or “splash”). At this
point, one has a reasonable model of a two-dimensional wave, except for a fracture in the
water surface where x changes from positive to negative. Replacing x in the expression with
its absolute value—in other words, using distance from the origin rather than signed dis-
tance—results in a symmetric and unfractured waveform, symbolically given as

y = sin (|x| + t) / |x|

FIGURE 4. 2-D Portent of the Monster

To translate this idea to three dimensions simply involves replacing distance to the
origin along the number line (the absolute value of x) distance to the origin in the plane (the
square root of x2+ y2), so that the wave radiates across the plane in concentric circles from
the origin. We are now quite close the “monstrous symbolism” of the task, which sums two
such expressions to represent two pebbles splashing (one at the origin, the other shifted
from the origin at some imagined point a), two sets of waves radiating and colliding. Where
the symbolism seems monstrous, the graph of the surface f(x, y) defined by it, delights.

The purpose of recounting this derivation in such detail is not to suggest that the anec-
dote retroactively arbitrates the correctness of the various interpretations that came up dur-
ing group activity, but rather to inspect some of the group’s developments from the per-
spective of one (possible) more fully-realized interpretation of what the symbolism repre-
sents. Where the group spread across (and even argued among) alternate visions of sum,
sine and surface, we see in the anecdote an interpretation that reflects all three visions, with
no one in dominance. (As the title of the previous illustration is “Two waves colliding in a
pool”, the interpretations—of sum, sine, and surface—correspond to alternating stress on
the words “Two”, “Waves”, and “Pool”.)

Second, we note that once we have access to a substantiating derivation, meaning
begins to accrue to various parts of the expression as the geometric backstore shines light on
individual symbolic ornaments: in the radical expressions we now see distances; in the pri-
mary addends, waves. And yet, while we can now relate the mathematical meaning of sym-
bolic details to a larger narrative purpose (“the divisions decrease wave amplitude as the
traveled distance increases”), these mathematical insights really obtain only in the particu-

FIGURE 5.
Two Waves
Colliding in
a Pool
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lar. The overall expression grows out of these sensible significant components (additions,
ratios, the sine function) eventually to become the monster, which then acts only as a vague
placeholder for the ensemble of constituent narratives and meanings of its part. (This middle-
level structuring of component parts evokes the geometric equivalent in the back-to-back
drawing task from Day 1.)

The visualization of its plotted geometry—“Two waves colliding in a pool”—by con-
trast, seems tremendously detailed and precise, and has followed a reverse trajectory, in
which the rather unevocative geometric components of the anecdote’s first visualization (a
few significant points on the plane, a pair of axes, a graph of the canonical sinusoidal curve)
become, over the course of their elaboration, melded into a harmonious, organic and sculp-
tural whole. This all contributes to a rather paradoxical inversion of our normal sense of the
things, where the symbolic is the most exalted mathematical language, where we assume
that symbolic declarations and propositions must invest mathematics with greater specific-
ity, more precisely delineated details and more transcendent truths than can be found in
modest imagery.

Task 2: Working on videotape and closing discussion

The concluding task and discussion drew on two extracts from videotapes: the first is an
Open University tape of Dave Hewitt teaching school algebra, entitled Working Mathemati-
cally on Symbolism in Key Stage 3. In particular, the extract worked on order-of-operations
embodied in space and sound (and is discussed further in Chapter 5 of Pimm, 1995). The
second tape showed examples of the work of British artist Patrick Hughes, specifically his
three dimensional sculpture-paintings which play significantly with viewer perspective and
evoke the spirit of Magritte and his tradition of philosophical painting.

“A common theme for me was the unpredictability of communication from person to person, medium
to medium and form to form (words to images, etc.) By unpredictability, I don’t only mean loss of
information or mis-transmissions, but also the possibility of evoking new insights, images and struc-
tures. In the final videotape session, it was the issue of maintaining the element of time while switch-
ing from verbal to written notation.”

Themes:

Foregrounding circumstances where (as teachers) we are likely to incorrectly assume the
“transparency of translation” (e.g., A to B drawing; Monstrous Symbolism)

Fluidity of Representations. Kinematic Figures; Enriched Images (Sketchpad). Symbolism
as words vs. symbolism as image (Monstrous Symbolism). Dave Hewitt’s sonic imagery.

What is the “grammar of images?” How to become more aware of it in geometry?

Reflections on the dimension of time and how we generally lose sight of its role in teaching
mathematics—how Sketchpad and the operation of “undo” incorporates this dimension in
meaningful ways, including providing insight into the work of the student. How this also
ties into Ball and Bass’ plenary presentation on how teachers (need to) can learn to under-
stand (rather than feel insecure about or threatened by) students’ ways of knowing (and
doing) mathematics.

How writing and drawing have no distinct boundaries between them. For example, an
equation is an image or a drawing in many ways, depending on who beholds it.

The role that time can play: seeing a particular geometric image does not provide a starting
point for the way it was constructed through time.
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Mise en situation

L’objectif de cet atelier de travail concerne les cours offerts par les départements de
mathématiques des universités dans la formation des enseignants et des enseignantes au
secondaire.

Questions initiales

1. Objectifs. Quelles sont nos attentes quant aux cours que nous dispensons aux étudiants
en enseignement (et aux autres étudiants) ?

2. Contenu et pédagogie. Quelles sont les implications quant au style et aux approches à
privilégier pour l’enseignement de ces cours ?

3. Ressources. Comment peut-on s’offrir de tels cours ? Comment s’assurer du meilleur
recrutement ? Est-ce que ces cours pourraient être profitables à d’autres étudiants que
nous avons déjà ? Cette clientèle hors enseignement est-elle moins spéciale et plus
polyvalente que la clientèle en enseignement ?

4. Liens avec les sciences de l’éducation. Que peut-on dire à ce sujet ?

5. Collaboration. Y a-t-il un appui ou une opposition de la part de nos collègues
mathématiciens ? Comment pouvons-nous changer les attitudes, et encourager un
recrutement de professeurs pouvant travailler avec la clientèle en enseignement ?



CMESG/GCEDM Proceedings 2002 • Rapport du Groupe de travail

82

Discussions

Types et caractéristiques souhaitables des cours des programmes de mathématiques pour
les futurs (et actuels) enseignants au secondaire

1.  Fondements pédagogiques.

Un tour de table (brainstorming / remue-méninges) nous a permis de faire ressortir certaines
attentes. Idéalement, ces cours devraient présenter une « vision globale » intégrant diverses
composantes telles que : la métamathématique et la méta-connaissance (incluant l’histoire et
l’évolution des concepts mathématiques), la résolution de problèmes, la modélisation, les
différents modes de représentation ; une réflexion sur les processus inhérents à l’activité
mathématique ; des apprentissages individuels, des lectures et des explorations ; le
développement de la confiance en soi en tant qu’apprenant, et aussi en tant que participant à
des activités mathématiques ; l’habileté pour tous à communiquer (oral, écrit, écoute, lecture),
et l’instauration d’une communauté mathématique ayant des groupes de travail et des liens
avec d’autres communautés ; des projets. De plus, ces cours devraient permettre de faire preuve
d’initiatives (ne pas se satisfaire d’une seule façon de faire un problème, mettre en évidence les
avantages et les désavantages d’une méthode, encourager les discussions avec les autres) ;
d’analyser les problèmes (examiner des cas simples, et d’autres plus complexes, tenir compte
des expériences des étudiants) ; de respecter l’hétérogénéité des groupes d’apprenants ; de
mettre l’accent sur la compréhension réelle des problèmes sans surcharger le contenu.

Il y avait un assentiment reconnaissant le bien-fondé des caractéristiques mentionnées,
lesquelles seraient valables pour tout cours de mathématiques s’adressant aux futurs
mathématiciens, de même qu’aux utilisateurs des mathématiques de d’autres disciplines
(voir les commentaires de Morris Orzech).

2.  Le contenu.

Nous n’avons pas discuté longtemps sur ce point car plusieurs éléments avaient déjà été
signalés (voir 1), mais les participants semblaient d’accord à accepter les notions suivantes
dont certaines étaient jugées essentielles : géométrie, théorie des nombres, modélisation, histoire
des mathématiques, résolution de problèmes et démarche exploratoire, mathématiques
discrètes, statistique et analyse de données, preuves mathématiques, séminaires sur les
mathématiques fondamentales, technologie (intégrée aux cours et réflexion sur son apport).

3.  Difficultés.

En se basant sur le vécu existant dans nos départements respectifs, plusieurs personnes
entrevoyaient des difficultés éventuelles à l’implantation de nouveaux cours tels que suggérés
précédemment. Les discussions ont principalement porté sur les points suivants : a) inci-
dence monétaire - l’ajout de cours « spécialisés » pour les futurs enseignants peut engendrer
des coûts supplémentaires alors que la situation financière de nos universités exige plutôt
une réduction des dépenses reliées au fonctionnement ; b) ressources - la disponibilité de
personnels qualifiés et intéressés à se porter responsables de cours préconisant une approche
basée sur l’exploration, la découverte et l’utilisation de matériel didactique plutôt qu’une
approche magistrale, est problématique pour la plupart des départements ; c) implications
académiques - il y a le danger de ne pas couvrir entièrement le contenu d’un cours qui est
préalable à un autre cours ayant des objectifs différents de formation (mathématiques vs
enseignement des mathématiques) parce que génénéralement les cours à la formation des
maîtres nécessitent plus de temps pour les discussions et les réflexions des notions étudiées
; de plus, pour le personnel enseignant, ces cours demandent habituellement un temps de
préparation plus long, et une disponibilité accrue auprès des étudiants ; plus souvent
qu’autrement, le nombre d’étudiants par groupe est souvent contingenté et le support
d’auxiliaires d’enseignement n’est pas toujours assuré ; les difficultés relatives aux évaluations
risquent d’être amplifiées ; il y a un réel danger de « mise à l’écart » à l’intérieur du département
du professeur impliqué dans ce type de cours ; le manque de coordination dans la gestion
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des cours offerts entre les différents programmes peut amener d’autres problèmes.

4.  Ressources et supports.

Afin de pouvoir créer ce type d’activités, il est nécessaire d’avoir accès à plus de ressources
financières de la part des organismes subventionnaires et professionnels : NSERC, MAA,
GCEDM, centres de recherche en mathématiques, etc. Un inventaire du matériel disponible
sur le web et des volumes répondant aux conditions recherchées, réduirait sensiblement la
préparation de ces activités (voir les commentaires de Peter Taylor). D’autres moyens
favoriseraient grandement cette option : le travail en équipe multidisciplinaire, le
perfectionnement des personnes intéressées (projet NEXT, MAA, …), une amélioration des
communications avec les collègues des sciences de l’éducation (exemples : séminaires con-
joints, planification commune), une meilleure coordination entre les divers ordres
d’enseignement, la création de programmes de mathématiques répondant à des besoins
diversifiés (mathématiques, enseignement, formation continue), l’opportunité pour les futurs
enseignants de vivre des expériences d’enseignement et d’apprentissage par des stages.
[Remarque : au Québec, nos programmes de formation des maîtres répondent à ce souhait
car des stages totalisant plus de 700 heures dans le milieu scolaire sont obligatoires].

5.  Formation continue.

Selon les commentaires entendus, l’incitation à poursuivre des études en prenant des « cours
réguliers » de mathématiques n’a pas les effets escomptés dans la pratique des enseignants en
exercice. Il en est de même pour les cours en éducation. Quel que soit le modèle choisi de forma-
tion continue, il devrait être un projet à long terme et inclure le « mentoring » et la participation
des universitaires dans le milieu scolaire. Que penser d’un diplôme supplémentaire au baccalauréat
? Il devrait être à l’image d’une comète (un gros noyau brillant et une longue traînée) : deux
semaines de travail intensif, suivies d’une journée à toutes les trois ou quatre semaines pour des
discussions. Nous croyons que ce projet est également souhaitable pour les futurs enseignants.

6.  Quelques personnes-ressources.

Plusieurs collègues du GCEDM ont produit et / ou travaillent avec du matériel et des activités
qui semblent répondre aux caractéristiques et aux objectifs souhaités. Les membres suivants
tiennent à être nommés à cet égard : Deborah Ball, Hyman Bass, Peter Brouwer, Sandy
Dawson, Claude Gaulin, John Grant McLoughlin, Bernard Hodgson, Richard Hoshino,
Miroslav Lovric, Morris Orzech, Medhat Rahim, Jean Springer, Peter Taylor, Walter Whiteley.

Commentaires individuels

Morris Orzech

J’aimerais nuancer les propos entendus concernant l’idée « …de mettre l’accent sur la
compréhension réelle des problèmes sans surcharger le contenu » et « …le bien-fondé des éléments
mentionnés, lesquels seraient valables pour tout cours de mathématiques s’adressant aux futurs
mathématiciens, de même qu’aux utilisateurs des mathématiques de d’autres disciplines ». Ce que
signifie « compréhension » et « surcharger le contenu » peut varier en fonction de l’auditoire
visé. Dans certaines universités (ex. Queen’s), les étudiants inscrits au programme de for-
mation des maîtres ont des cours communs avec les étudiants de mathématiques. Dans
certains cours, le nombre d’étudiants inscrits à un programme (mathématiques ou
enseignement) peut dépasser le nombre d’étudiants inscrits dans l’autre programme, ce qui
a pour conséquence que le cours donné semble moins approprié pour un groupe d’étudiants
par rapport à l’autre. C’est un problème, et il ne faut pas le sous-estimer. Peut-être pourrions-
nous offrir des cours dans lesquels les étudiants puissent avoir des projets différents, et leur
laisser croire à l’égalité des chances de succès dans l’atteinte des objectifs visés, mais cette
éventualité semble inacceptable. Si nous avons un cours qui fait partie du programme de
mathématiques (baccalauréat), et que la clientèle est surtout composée de futurs enseignants,
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il faudrait accepter (et défendre ce point de vue, le cas échéant) qu’il y ait moins de contenu,
ou moins d’approfondissement des notions étudiées, de telle façon que cela puisse être un
compromis satisfaisant pour les étudiants de mathématiques.

Walter Whiteley

Une question qui a été soulevée dans le groupe de travail mais pour laquelle nous n’avons
pas formulé de réponses à ce que je me souvienne, était de savoir s’il fallait impliquer les
futurs enseignants dans les organisations professionnelles pendant qu’ils sont encore
étudiants. Est-ce que l’introduction aux activités d’associations professionnelles (publica-
tions, congrès, colloques, sessions d’étude, ateliers) devrait commencer lors de la forma-
tions initiale ? Si oui, comment devrions-nous procéder ?

Peter Taylor

Dans un certains sens, il y a toujours un dilemme à produire un cours qui soit riche sur le
plan pédagogique et sur le plan du contenu, car il faut adopter deux approches conflictuelles.
Je crois que cela provient en partie de notre conception à l’effet que les cours de
mathématiques doivent demeurer conformes à la nature même du sujet qui est formel, et de
ce fait, ils doivent être organisés selon un ordre logique et hiérarchique, être rigoureux et
explicites. L’approche que j’expérimente est l’utilisation d’une collection de problèmes à la
fois mathématiquement riches et concrets, et j’essaie de porter l’attention uniquement sur
ces problèmes, en espérant couvrir les thèmes mathématiques au programme, ou à tout le
moins de rendre les étudiants suffisamment autonomes pour qu’ils puissent être en mesure
d’étudier par eux-mêmes le contenu du programme. Toutefois, cette approche n’est pas
simple ; notre conscience professionnelle et notre perception de ce que sont les mathématiques
font en sorte que nous sommes toujours rappelés à l’ordre afin de remplir toutes les «
ouvertures » (et comme le dit si bien Leonard Cohen, quand ce sont les ouvertures qui laissent
pénétrer la lumière). Évidemment, le grand défi c’est aussi de trouver la collection de problèmes
qui soient riches et valables. C’est la principale tâche du développement de programme.

Il existe, selon moi, une importante question non encore résolue. Le problème des
ressources et de la faisabilité des cours que nous aimerions offrir, dépend en partie de l’obligation
que nous nous imposons à donner des cours différents pour les étudiants qui poursuivront des
études de cycles supérieurs en mathématiques, et ceux qui deviendront des enseignants. Même
si cette exigence est sûrement valable pour les cours de dernières années (du baccalauréat en
mathématiques), je ne suis pas certain qu’il doive en être forcément ainsi dans les premières
années comme nous sommes portés à le croire. Je sais que Morris (Orzech) a discuté de ce
point. Il est probable que les cours destinés spécifiquement pour les futurs maîtres ne soient
pas adéquats pour les étudiants en mathématiques. Mais je crois qu’avec une peu d’imagination
et des activités « qui sortent de l’ordinaire », il serait possible d’offrir des cours satisfaisant les
deux groupes, et bien les servir ! Je crois que la faiblesse de l’argumentation habituelle vient du
fait que nous oublions ce qui se passe à l’extérieur de la classe. Il est certainement vrai que des
étudiants appartenant à différents programmes s’attendent à recevoir des cours différents durant
leurs études. Quand j’étais étudiant, il n’y avait qu’un seul ensemble de cours (programme).
Plusieurs de mes collègues sont devenus enseignants. D’autres sont devenus des gens d’affaire
ou des professionnels (avocats, etc.). Quelques-uns, comme moi, avons poursuivis jusqu’au
doctorat (Ph.D. dans différents domaines), et un ou deux en mathématiques. Je sais que ce que
j’étudiais le soir était différent (je ne dis pas « meilleur ») de ce qu’ils étudiaient. Je n’avais pas
besoin d’un contenu très développé — il y avait toujours du contenu à explorer même dans la
petite bibliothèque de mathématiques au dernier étage du pavillon Carruthers ! Du contenu, il
n’en manquait jamais. Tout ce que j’avais besoin, c’était d’un professeur qui avait une ouverture
d’esprit et qui avait accès à une banque de problèmes passionnants (et j’en avais). Aujourd’hui,
les bibliothèques sont beaucoup mieux garnies qu’elles l’étaient dans les années 60. Donc ça
devrait être plausible de faire autrement. Quoi qu’il en soit, je ne suis pas encore entièrement
convaincu de la possibilité d’opérer ainsi.
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Report of Working Group E

Types and Characteristics Desired of Courses in Mathematics
Programs for Future (and In-Service) Teachers

Walter Whiteley, York University
Harry White, Université du Québec à Trois-Rivières

Peter Taylor, Queen’s University

Participants

Deborah Ball Gila Hanna Medhat Rahim
Hyman Bass Bernard Hodgson Jean Springer
Peter Brouwer Richard Hoshino Peter Taylor
Olive Chapman Miroslav Lovric Harry White
Sandy Dawson Steve Mazerolle Walter Whiteley
Claude Gaulin John Grant McLoughlin
Lynn Gordon Calvert Morris Orzech

Pedagogical Thrust of Such Courses

They should offer:

· the ‘Big Picture’, with meta-mathematics and metacognition (include history of math-
ematics, the evolution of ideas), problem solving, modeling, multiple representations;

· reflections on the processes of doing mathematics;
· revealing (not hiding) the processes;
· independent learning? reading, exploration;
· confidence as a learner and as a doer of mathematics;
· communication of mathematics: oral, writing, listening, reading, by all participants;
· a community of mathematics, including group work, connections of community to

explorations;
· projects;
· never stop at one way to do a problem: highlight advantages/disadvantages, encour-

age curiosity about alternatives of others;
· layered problems: consider simpler versions, extensions, different levels of student

experience;
· respect for the diversity of students, of learners;
· include both simplicity of problem and rich problems;
· work for deep understanding of material, without overcrowding content.

There was a recognition that, implicitly, we believe these are good characteristics of any
mathematics course, including mathematics courses for future graduate students, and fu-
ture users of mathematics in other disciplines. (But see comments below of Morris Orzech.)
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Content of Such Courses

Such courses should cover or address:

· modeling;
· history of mathematics;
· problem solving and inquiry;
· capstone style seminars;
· discrete mathematics;
· number theory;
· geometry;
· statistics and data exploration;
· proof;
· technology (integrated and with reflections on when it assists).

Very little time was spent on this, as there was general agreement on most of these topics as
desirable, and few of these topics as essential.

Obstacles to Offering Such Courses

The following were identified as obstacles (or potential obstacles) to offering such courses:

· money for what will appear to be ‘extra courses’;
· available math faculty with such experience and interest to be course directors;
· lack of these kinds of experience for mathematics faculty, and fear of the unknown;
· courses with too much material;
· prerequisite structures when current courses is prerequisite to following course with

different objectives;
· time for this teaching, reflecting our sense that these characteristics are more time con-

suming for the instructor, per hour of scheduled student contact;
· class sizes and lack of other supports (TAs, etc.);
· constraints on assessment which lead to assessment at odds with the larger objectives;
· coordination among math instructors;
· isolation of individual instructors with these objectives, and sense that when instruc-

tors shift the entire structure of the course is up for grabs (that might not be such a
problem).

Resources and Support to Overcome Obstacles

· more funding sources (e.g., push for change in NSERC)
· MAA/CMS/CMESG/Mathematics Research Centers as sources of support;
· accessible modules, units, web resources to reduce preparation of specific pieces;
· texts designed for courses with these characteristics;
· alternate resources (physical materials, activities, …);
· course design which builds the characteristics in (see comments of Peter Taylor be-

low);
· team teaching;
· community of support (beyond the Department);
· professional development for current and future instructors of such courses (Project

NEXT, MAA, …);
· mathematics/mathematics education connections and liaisons (e.g., joint seminars,

shared planning);
· secondary/post-secondary connections and liaisons;
· joint mathematics/mathematics education post-baccalaureate programs;
· opportunities within Math Departments for pre-service students to have teaching and

learning related experiences.
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Features of In-Service Courses

· Warning that simply taking more ‘regular math courses’ has no measurable impact in
classroom of in-service teachers;

· Warning that simply taking more ‘regular education courses’ has no measurable im-
pact on classrooms of in-service teachers;

· Features should include long-term work (e.g., mentoring, integration with time of the
instructors in the classrooms of the teachers);

· Post-baccalaureate? Comet model (intensive head plus a long tail), which consists of
two weeks of intensive work plus one day every 3 or 4 weeks. We considered this topic
with an implicit understanding that many features of this model would also be desir-
able for pre-service teachers.

Sources of Examples and Existing Resources

CMESG is rich in people who have produced or who work with rich materials, activities,
resources, etc. which seem support the characteristics or features listed above. The follow-
ing members of the group wanted to be mentioned in this regard: Deborah Ball, Hyman
Bass, Peter Brouwer, Sandy Dawson, Claude Gaulin, Bernard Hodgson, Richard Hoshino,
Miroslav Lovric, John Grant McLoughlin, Morris Orzech, Medhat Rahim, Jean Springer,
Peter Taylor, and Walter Whiteley.

Individual Comments

Morris Orzech

I would caution against facile acceptance of the idea that “these characteristics [suitable for
a course for prospective teachers] are good characteristics of any mathematics course, in-
cluding ... for future graduate students, and future users of mathematics”. A characteristic
that needs nuance is that the course “work for deep understanding of material, without
overcrowding content”. What “understanding” and “overcrowding content” mean should
vary with the target audience. In some universities (e.g., Queen’s), pre-service secondary
math teachers will take math courses with prospective math graduate students. In some
courses one group will predominate (in size) over the other, and in each situation the result-
ing course is likely to feel less appropriate to one group than to the other. We should not try
to “paper over” this. Perhaps we can learn to offer courses in which students can do quite
different things and still be deemed to have achieved equal success, but this goal seems
elusive. If we have a course that is accepted as part of a math major degree, and pre-service
teachers are the main intended participants in the course, we should be ready to accept (and
argue for if necessary) less content, or less understanding, of the type that would be suitable
for prospective graduate students.

Walter Whiteley

One question that was raised in the Working Group, but for which we did not formulate an
answer that I remember, was whether (and if so how) to involve pre-service teachers with
professional organizations while they are still students. Should exposure to professional
publications, workshops, and meetings begin in pre-service days? If so, how do we go about
this?

Peter Taylor

In some sense there is always the problem that to make a course both pedagogically rich as
well as content rich is to adopt two conflicting objectives. Partly this is due, I believe, to the
notion that mathematics courses must remain true to the nature of the subject as it is for-
mally recorded—that they should be organized in a logical hierarchical fashion and that
they should be comprehensive and have all the details. They way around this that I am
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experimenting with is to fasten attention of a collection of rich concrete examples and focus
on these and only on these, trusting them to carry the subject, at least to carry it forward
enough for the student that she or he is enabled (and inspired) to continue independently to
develop the subject. By the way, it’s not easy to do this; our mathematical conscience and
our historical notion of what the given subject “is” seem always to call us, siren like, to fill in
all the cracks (when, as Leonard Cohen reminds us, it is the cracks that let the light in). Of
course a big challenge is also to find the right collection of rich examples. That’s the main
task of curriculum development.

There is still a big question which is unresolved in my mind. The problem of resources
and feasibility for the courses we want to be able to offer hinges in part on the assumption
that we need different courses for math students who are going on to do a Ph.D. and those
who are going to become teachers. Now this is certainly true for 4th-year courses (though
teachers do not take many of those anyway) and some third year courses, but I am not
convinced that it is as true as is commonly believed in first and second year, and often in
third year. I know that Morris has argued this point above. It’s probably true that courses
which are designed solely with teachers in mind would not be “enough” or “right” or “ad-
equate” for the others. But I believe that with some imagination and “thinking out of the
box” courses could be designed to serve both parties—and serve them well! I think the flaw
in the usual argument is that we forget about what happens outside of class. It’s certainly
true that different students would wind up doing different things in their study time. When
I was an undergraduate there was only one set of courses. Many of my fellow students
became teachers. Others became business people of different kinds, or professionals, law-
yers, etc. A few pursued, like me, a Ph.D. (in various subjects!), and one or two of those were
in math. I know that what I did in the evenings was different (I am not saying “better”!)
from what they did. I did not need a lot of content—holy cow there was content to burn
even in the small math library on the top floor of Carruthers Hall! Content was never in
short supply. All I needed was a teacher who had some vision and access to problems of
different kinds (and I had that). And resources are much more plentiful today than they
were in the 1960s. So it should be possible. Anyway, I’m not yet convinced.
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High School Mathematics Teachers’ Perspectives
of Mathematical Word Problems

Olive Chapman
University of Calgary

Introduction

Citation of word problems on Babylonian clay tablets provides evidence of their ancient
origins.  They also have a long history of use in the teaching and learning of mathematics.
But this use has earned them a negative reputation, particularly from the perspective of
learners. This likely played a significant role in influencing researchers to focus their inves-
tigations on the relationship between word problems and learner as a way of improving the
teaching and learning of word problems.

Studies on word problems have traditionally focused on the learner to study cognitive
and affective factors that aid or hinder his/her performance as a problem solver. For ex-
ample, studies on arithmetic word problems (Carey, 1991; Cummings, 1991; Debout, 1990;
Fuson & Willis, 1989; Lewis & Mayer, 1987; Reed, 1999; Sowder, 1988; Verschaffel et al, 2000)
have looked at the mathematical and linguistic structure of these problems in relation to the
children’s performance; factors that affect the difficulty of the problem for children; strate-
gies and methods children use; the errors children make in their solutions; and children’s
suspension of sense making in doing word problems. A similar situation has existed for
studies on high school algebraic word problems where, for example, the focus has been on
students’ errors and methods in the translation process (Clement, 1982; Crowley et al., 1994;
Kaput & Sims-Knight, 1983; MacGregor & Stacey, 1993; Reed, 1999; Wollman, 1983).

In recent years, there has been increased focus on researching the mathematics teacher.
This shift has accompanied recommendations to reform the teaching and learning of math-
ematics (e.g., NCTM 1989, 1991) and the assumption that teachers are a significant factor in
bringing about this reform. In particular, teacher thinking is being viewed as an important
factor in determining how mathematics is taught (e.g., Chapman, 1997; Ernest, 1989; Fennema
and Nelson, 1997; Lloyd and Wilson, 1998; Thompson, 1992). This makes knowledge of
mathematics teacher thinking about word problems an important component of under-
standing word problem instruction and ways to change or enhance it through teacher de-
velopment programs. This paper focuses on teachers’ perspectives of word problems based
on the findings of a study of mathematics teacher thinking in the teaching of word prob-
lems. A brief discussion of how word problems are defined in the literature is followed by a
brief description of the research method of this study, the findings in terms of ways in which
the participants conceptualized word problems and implications of these findings.

What Are Word Problems?

Given their long history, it would seem that word problems should be easily recognizable
and easily defined. Historically, in a word problem, a task or situation is presented in words,
and a question is asked which sets out the goal that the solver has to attain. As Gerofsky
(2000) concluded, “The form of mathematical word problems appears nearly unchanged
throughout its long history” (p. 132). But the definition of word problems is not always
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clear-cut. For example, some consider word problems as including problems normally in
symbolic mode expressed in words (e.g., What is 5 from 6? What is the difference between 8
and 5?) Others consider them to be only those that are “story problems”. This is reflected in
the different ways word problems are described in the literature, although the latter case
tends to be the preferred view of word problems.

Leacock (1910), in his discussion of “the human elements in mathematical word prob-
lems”, described word problems as “short stories of adventure and industry with the end
omitted” (p. 118). Verschaffel et al. (2000) offered the following:

Word problems can be defined as verbal descriptions of problem situations wherein one or
more questions are raised the answer to which can be obtained by the application of math-
ematical operations to numerical data available in the problem statement. (p. ix)

Gerofsky (2000) in her study of the nature of word problems from the perspective of genre
theory concluded:

Literary analysis of word problems suggests that they are like religious or philosophical
parables in their non-deictic, “glancing” referential relationship to our experienced lives,
and in the fact that the concrete images they invoke are interchangeable with other images
without changing the essential nature of the word problem or parable. (p. 131)

Word problems have also been described in terms of the structural components that charac-
terize them. Verschaffel et al. (2000, pp. x–xi) summarized these components as:

Mathematical structure, i.e., the nature of the given and unknown quantities involved in
the problem, as well as the kind of mathematical operation(s) by which the unknown quan-
tities can be derived from the givens.

Semantic structure, i.e., the way in which an interpretation of the text points to particular
mathematical relationships …

Context, i.e., what the problem is about …

Format, i.e., how the problem is formulated and presented, involving such factors as the
placement of the question, the complexity of the lexical and grammatical structures, the
presence of superfluous information, etc.

When word problems are viewed as genuine problems, the are also associated with the
position and state of student required to solve them, e.g., the student wants something but
does not know immediately how to get it. The problem still has a situation and goal, but the
problem solver has a desire to attain the goal. In recent years, this added feature has also
influenced the range of word problems in the mathematics curriculum. This range covers
problems of two general categories, one consisting of routine, closed, algorithmic, or trans-
lation problems and the other consisting of non-routine, open, non-algorithmic, real/genu-
ine, or process problems. Charles and Lester (1982, pp. 6–7) provided the following ex-
amples of these word problems, which they considered to be typical in mathematics educa-
tion. They labelled these as simple translation, complex translation, process, applied, and
puzzle problems, respectively.

Jenny has 7 tropical fish in her aquarium. Tommy has 4 tropical fish in his aquarium. How
many more fish does Jenny have than Tommy?

Ping-Pong balls come in packs of 3. A carton holds 24 packs. Mr. Collins, the owner of a
sporting goods store, ordered 1800 Ping-Pong balls. How many cartons did Mr. Collins
order?

A chess club held a tournament for its 15 members. If every member played one game
against each other member, how many games were played?

How much paper of all kinds does your school use in a month?

Draw 4 straight line segments to pass through all 9 dots in Figure 1. Each segment must be
connected to an endpoint of at least one other line segment.



Olive Chapman • High School Teachers’ Perspectives on Word Problems

93

Research Method

The primary objective of the larger project from which this paper is based was to under-
stand the teaching of word problems from the perspective of the teacher. A summary of the
research method of this project follows. Twenty-two participants were involved as the re-
search subjects, consisting of experienced and preservice mathematics teachers at the el-
ementary, junior high, senior high, and college levels. The main sources of data were inter-
views and classroom observations. The interviews were open-ended and dealt with the
participants’ thinking in three contexts: past, present, and future. The past dealt with their
past experiences with word problems as both students and teachers focusing on teacher
and student presage characteristics, task features, and contextual conditions The present
dealt with their current practice with particular emphasis on classroom processes, plan-
ning, and intentions. The future dealt with expectations, such as possible changes due to
personal or external factors. Classroom observations focused on the participants’ actual
instructional behaviours during lessons involving word problems. Special attention was
given to what the teachers and students did during instruction and how their actions inter-
acted. Complete units involving word problems were observed. The data were thoroughly
reviewed by the researcher and two research assistants working independently to identify
attributes (e.g., recurring conceptions/beliefs and intentions) of the participants’ thinking
and actions that were characteristic of their perspective of word problems and the teaching
of word problems. These attributes were grouped into themes. Both attributes and themes
were validated by comparison of findings by the three reviewers and triangulation of find-
ings from interviews and classroom observations. The only aspect of the findings reported
here deals with the high school teachers’ perspectives of word problems.

The Nature of Word Problems: High School Teachers’ Perspective

While the elementary teachers of the early grades insisted that they did not teach word
problems, one of the college teachers explained that there is nothing like word problems,
and one Grade 6 teacher always talked about worded problems, the high school teachers had
no conflict with the term word problems. They resonated with it as a natural part of their
mathematics vocabulary and curriculum. However, there was not always consistency among
them in terms of how they viewed word problems. Thus a range of ways of characterizing
word problems emerged from their thinking. These ways embodied some of the features of
word problems described in the literature as previously discussed, in particular, the struc-
tural features and whether non-routine or routine.  The high school teachers’ perspectives
of word problem are summarized here to reflect the five ways of making sense of word
problems in their teaching: word problem as problem, word problem as object, word prob-
lem as tool, word problem as experience, and word problem as text.

A) Word Problem as problem

All of the teachers considered word problems to be real problems for students depending
on particular circumstances associated with the student and the teacher. There were three of
these circumstances that were dominant in their thinking, collectively.

FIGURE 1
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(i) Relationship between student and problem

A word problem is a problem depending on the relationship between the student and it. As
one teacher explained,

All word problems are real problems if students have not encountered them before. … I
don’t think there’s anything in the problem that makes it necessarily routine or non-rou-
tine. … No problem is routine if you’ve never seen it before.

Other ways in which the teachers described the relationship are:

Students don’t have a predetermined solution process.

It’s a problem you want to have the answer to, that is something that is needed, is practical,
is worthwhile, that has some kind of relevance.

It’s like anything else that you don’t know what the outcome will be and you’re kind of
game for anything else, so you just take your chances and you try and use the tools that are
available to you, see what happens.

(ii) Nature of problem/solution

The nature of the problem/solution influences the relationship between student and prob-
lem and consequently whether or not it is a problem. This was viewed in terms of two
situations. First, there are “problems for which students must deduce a structure to deter-
mine a solution.” The teachers referred to these as traditional word problems, e.g., “you can
type the problem” based on the structure. Second, there are “problems for which students
must impose a structure on problem to create a solution”.  In this case, “you cannot type the
problem, categorize it so that you can read it and do it”. The teachers referred to these as
interesting, intriguing, challenging. They also described them as:

The ones where they have to bring quite a few different tools to solve them … and think on
a lot of levels and have to bring a lot of things into play.

They allow you to think and come up with a solution that may use different areas, tech-
niques that you know about but combine it in different ways.

[It is] one that is interesting, one that makes you see things differently, takes you down
different paths.

It doesn’t require only one specific method, … [It] initiates discussion … promotes dialog.

(iii) Teaching approach / teacher intent

Finally, a word problem is a problem depending on when and how it is introduced to stu-
dents by the teacher, i.e., it is dependent on the teacher’s intent and teaching approach. For
example, a teacher could take a potentially routine word problem and problematize it by
presenting it before the routine approach is taught. As one teacher explained,

If they [traditional word problems] are given to students at the right stages as something
beyond their level of experience at this time… [they] could be used to practice their prob-
lem solving skills.

B) Word Problem as object

Word problem as object refers to the aspects of the teachers’ perspectives that deal with the
structural components of a word problem when they are viewed in terms of universal prop-
erties independent of the student. This view includes that a word problem has pre-existing
or pre-determined mathematics and semiotic structures/contexts. For example, it has/is a:

Concept taught, e.g., equations;

Type of problem, e.g., coin, age, distance, number;

Hidden math concept, …they’re hiding the concept in the form of a word problem;
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Written statement in which mathematics will emerge;

Clear language, written, clear in terms of what it wants.

As objects these properties should be transparent, i.e., the problem:

Must have clear language, no extraneous information, clear about what want, not ambigu-
ous.

C) Word Problem as tool

Word problem as tool refers to the aspects of the teachers’ perspectives that deal with the
relationship of word problems to the mathematics curriculum and the real world. In this
context, there are two levels of word problems. Level 1 consists of situations that are gener-
ally tailor-made to illustrate the application of a mathematical concept or skill. As the teach-
ers explained, these problems are:

A means to apply concept or practice a skill they have seen most recently in class.

Instances of applications of mathematical concepts … the whole point of them is to give the
students experience in practicing that concept, similar application of that particular con-
cept. … They’re a way to make sense of the concepts in a context.

They can be used to demonstrate or as an example, or simple application of a formula that
students have been working with. … It’s a simple way to introduce them to the application
or is of this particular formula or rule that they may have derived … they will help them
understand how that rule is employed in that particular kind of problems. Their role is
basically to teach, help students make sense of mathematical concepts. … Help them un-
derstand what they mean, how they can be used and maybe give them idea of how their
uses can be extended to more meaningful context in their own lives.

It’s a tool that they now have available, they can take to other problems hopefully real
world problems eventually, other situations.

They don’t necessarily develop students’ mathematical power but it’s the first step.

They aren’t all that important, so if you have to cut corners some place and you don’t have
a lot of time, … they can be dismissed.

I would include them to limited degree yes, because I want the students to be aware of
them and to recognize them as routine problems and to know they exist, so even though
they’re not, not all that important for me, they are something that the students I feel need to
be able to solve.

I think the role has been to have kids take all of the content that they’ve seen in a chapter,
unit and apply it to some situation, the belief being that if children are required to do that
and they can do it

They’re extra, they’re not necessary, they’re trivial and they do little, most of the time I
think to enhance a topic.

The level 2 word problems were viewed as providing a means of dealing with new situa-
tions and of fostering mathematical thinking, for example:

They are intended to get at some in-depth thinking … serve to enhance and understand on
a topic or depth of thought.

They are [used] to get the kids to handle a new situation where it does not seem like any-
thing that we’ve done before.

They’re another way of asking you how to do math and they’re designed to encourage
thinking, analytical skills, logical skills, reading skills. They can be applications of math-
ematical concepts, and therefore they can be used to reinforce math skills learned to de-
velop understanding, and word problems have infinite variations.  There’s   infiniteness to
them. They’re open-ended. They just keep going.
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D) Word Problem as experience

Some of the teachers viewed word problem as experience. This refers to the phenomeno-
logical relationship between a word problem and a student, i.e., the components of a word
problem are viewed in relation to the student as a lived experience and linked to intention/
interest/value. Thus the meaning of the problem is personally determined and justified,
i.e., it is dependent on the student and not the author of the problem. In order for students
to accomplish this in the context of a positive experience, the word problems should:

capture their attention;

invite them, intrigue them and prod them to want to solve it;

[be] a discussion or conversation in which something is unknown about the world of math-
ematics in which you are trying to invite the students to become a participant;

[be] the students’ story;

help us experience the world;

[be] a situation that has interest and appeal to student;

have a context that’s relevant to the students, because if they don’t and if they’re contrived
in any way, they’re not interesting to the students.

Without these characteristics, word problems become negative experiences. For example,

You are fearful of those problems because you don’t understand where they’re coming
from, you don’t see they’re connected to the mathematics you know … so it really becomes
a problem because you can’t make sense out of the wording.

[For students] they’re threatening. When they see word problems, they know that there’s
mathematics inherent in it but to them it seems hidden. It doesn’t seem that it’s something
that invites them to apply their skills or to use their knowledge of something, but more
threatens them.

E) Word Problem as text

Some of the teachers viewed word problems as text, i.e., conveyor of knowledge. As one
teacher explained:

Somebody needed to transfer information [about a specific mathematical skill/concept] to
somebody else. So the best way to do it, other then just symbolically, was to write a sen-
tence or a small scenario or a small story in which the information that they wanted to
share was there. Then it became part of mathematical teaching …. In the same way that
somebody originally might have wanted to share this question and they had to explain this
question to somebody else so they could write it down for someone else to refer to later.
Then we decided this would be a good way for us to share our request for students to make
sense of mathematics by putting it into this same kind of a scenario.

Other teachers noted that they are:

a way to share mathematical experience with another;

stories from which you can extract mathematics;

an opportunity for us to share mathematical experience

All of the experienced teachers viewed word problems as problem, object, and tool. The
preservice teachers viewed them as object, problem (only in terms of the nature of prob-
lem/solution), and tool, but with less depth than the experienced teachers. The teachers
who held the perspective of word problem as problem, object, and tool used a more tradi-
tional teaching approach, i.e., a show and tell approach. Those whose perspective included
word problem as experience and text were more student-centred and inquiry oriented in
their teaching. Their range of views of word problems seemed to allow them to select, modify,
interpret, and understand word problems with the flexibility necessary to facilitate student
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understanding of word problems in a meaningful and realistic way. Thus they were more
flexible in their teaching of word problems and more successful in motivating students to
do word problems and helping them to understand how to solve word problems.

Implications

The findings suggest a possible range of ways of thinking about word problems that teach-
ers could hold and that there seems to be an important relationship between the teachers’
perspectives of word problems and their teaching. This has implications for teacher devel-
opment in order to improve the teaching of problem solving. This could be done on two
levels.  First, although these ways are not intended to state how things should be but how
they are and could be, they could form a basis for helping teachers to broaden the scope of
their perspectives of word problems in a similar way. Second, and more importantly, they
offer a structure, something against which other teachers could examine their own perspec-
tives and assumptions, either through reaction against or resonance with what is offered, to
understand their thinking and the relationship to their teaching.

Note

This paper is based on a research project funded by the Social Sciences and Humanities Research
Council of Canada.
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What are Critical Online Experiences for
Mathematics Teachers and Students?

George Gadanidis
University of Western Ontario

Despite major differences in course delivery and focus, I suggest that critical experiences,
whether they are online or face-to-face, or whether they are designed for teachers or stu-
dents of mathematics, are essentially similar in one important aspect, namely, in their focus
on good mathematics. I conclude that the core component of critical mathematics experi-
ence is a good mathematics ‘story’—a mathematics experience that is worth living, in Dewey’s
(1938) sense. Teachers and students are aesthetically drawn to a good mathematics story.

What are critical experiences?

Critical experiences may be defined as those experiences of epiphany that cause us to reflect
on our knowledge and beliefs and to see mathematics and mathematics teaching in new
light. When such moments of epiphany occur for teachers, mathematics education artifacts—
such as curriculum documents, classroom experiences, ideas from professional development
workshops, journal articles, and so forth—can be thought of as inkblots where the image
appears to shift and something new is seen, something that was not apparent before. As one
teacher in one of our studies commented “I feel like [this experience] has cleaned my spec-
tacles”. Similar findings are reported by McGowen & Davis (2001b) where teachers noted
that course experiences “opened [my] eyes to a new outlook on mathematics” (p. 444).

Components of critical experiences

We all have had such “critical” experiences. The challenge is to look back and identify what
are the key components of critical experiences. Hawkins (2000) talks about scientists who in
their childhood and youth experienced and enjoyed “investigative curiosity” that

prepared them for the routines and rigors of didactic coursework that, for most other stu-
dents, has simply turned off the light. But as successful students in formal coursework,
most scientists think that the way they learned was the right way, forgetting the earlier,
more self-directed work, or play, that first got them into good subject matter on their own.
(p. 203)

It seems that although we have all lived through critical learning experiences it is not a
simple task to identify what it is that made such experiences critical. Research on math-
ematics teacher development (Cohen & Ball, 1990; Gadanidis, Hoogland, & Hill, 2002a;
McGowen & Davis, 2001a, 2001b; Stipek, Givvin, Salmon, & MacGyvers, 2001) indicates
that the following are integral components of critical experiences for mathematics teachers:

· Teachers confront their beliefs about mathematics.
· Teachers have aesthetic experiences with mathematics.
· Teachers engage in practical inquiry.
· Teachers consider pedagogical implications in the context of relevant mathematics educa-

tion literature.
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Aesthetic aspects of critical experiences

In collaborative research with my colleague Cornelia Hoogland, a poet and language arts
educator, and my research assistant Bonilyn Hill, we have concentrated on aesthetic aspects
of critical experiences in online mathematics education courses for inservice and preservice
teachers—courses that I have designed and taught. Contrary to the usual alignment of “criti-
cal” with “rigorously intellectual”, participants in our studies demonstrate that critical en-
gagement occurs within an aesthetic context (Gadanidis, Hoogland, & Hill, 2002a, 2002b).
This was true for teachers with diverse mathematical backgrounds and attitudes that ranged
between positive and negative. It is interesting to note that although aesthetic qualities of
critical experiences for mathematics teachers are not explicitly identified in related studies,
aesthetic qualities are in some cases implied. For example, McGowen & Davis (2001b) make
use of phrases such as “we focused on a […] beautiful experience in establishing connec-
tions” (p. 439) and “the atmosphere […] was electric” (p. 440) to describe aspects critical
experiences for mathematics teachers.

The aesthetic is a historically and biologically verifiable human predisposition
(Dissanakye, 1992; Boyd, 2001), a means by which humans make sense of the world (Egan,
1997; Lakoff & Nunez, 2000) and an element of pedagogy and constructed environment
(Eisner, 1985, 1988; Greene, 1995). Within this vision of the aesthetic, people are predisposed
to their senses of rhythm and fit, balance, motion, and symmetry. Dissanakye (1992) talks
about an “aesthetic sensibility” that “acts as one of our primary meaning-making capacities
in all domains” (p. 25). Greene (1995) has characterized the aesthetic as an alertness, a “wide-
awakeness”. Greene says educators can learn from artists, whose way of comprehending
experience is through perception, imagination, feeling and form. Aesthetic engagement has
to do with being open to one’s own sense of curiosity and intuition. As a researcher I value
the open-ended nature of aesthetic questions (particularly important at the beginning of
inquiry), as well as the choices I can make about following their hunches and intuitions.

Gilbert Labelle (2000), professor of mathematics at the Université du Québec à Montréal,
says “I like mathematics because it is beautiful, full of surprises, and gives me complete
freedom of thought.” Feelings of surprise and beauty are emotional. Doing mathematics is
emotional. Students also express these attributes. “Math is just another way of both creating
meaning and describing it. It’s lovely. I’m lousy at it, but I love feeling my brain tumble over
as it understands something for the first time”. The feeling of connectedness to stimuli that
math provides this professor and student should not be mistaken for sentiment or mere
personal expression. Lakoff and Johnson (1999, p. 176) state that emotion is “inextricably
linked to perception and cognition” and “is better understood as the tension or excitement
level produced by the interaction of brain processes of perception, expectation, memory
and so forth”.

The development of an online course

In this section I discuss my development of an online teacher education course [Online
Course], and I make explicit references to the four critical experience components identified
earlier. I also note similarities between the experiences provided in the Online Course and
the critical experiences provided in face-to-face professional development sessions I had
previously designed and implemented. Although this section deals with teacher education
experiences, the discussion of aesthetic experiences with mathematics applies equally to
students of mathematics. Also, the discussion dealing with beliefs about mathematics learning
also has implications for students, as they also have developed beliefs about what it means
to learn and do mathematics that influence their engagement in mathematics activity.

Teachers confront their beliefs about mathematics.

Prior to developing the Online Course I was a mathematics consultant for a large school
district, dealing mostly with elementary mathematics program design and teacher devel-
opment. This experience reinforced research findings that many elementary teachers view
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mathematics as procedures to be learned for getting right answers (McGowen & Davis,
2001a, 2001b; Stipek et al., 2001). One of the goals of district-wide professional development
was to help teachers become aware of these beliefs and to examine them critically. Bringing
teachers face-to-face with their unexamined beliefs about mathematics involved more than
simply telling or showing teachers what mathematics is really like or how it may be differ-
ent from their personal beliefs. Teachers were provided with opportunities to personally
experience aesthetically-rich mathematical contexts where good mathematics stories un-
folded and were experienced, which were different than the teachers’ historical experiences
with mathematics or the experiences they may have been providing for their own students.
Likewise, teachers in the Online Course were provided with similarly mathematics experi-
ences. Such experiences created a reflective context for examining personal beliefs in both
the face-to-face and the online environments.

Teachers have aesthetic experiences with mathematics.

Experiencing good mathematics stories does not have to involve complex mathematics, espe-
cially for elementary teachers. Some of the mathematics experiences in the Online Course
involved teachers in mentally solving arithmetic problems such as 16 x 24 and 156 + 78 + 9.
These activities were chosen based on their positive effect in previous face-to-face workshops
conducted for elementary teachers and parents. In such workshops, typically half the people
in each group were asked to solve a problem like 16 x 24 or 156 + 78 + 9 in their heads and half
the people to use pencil and paper. After a few minutes, people shared and explained the
methods they used in their groups. Then the discussion was opened up and people shared
and explained other methods. It quickly became apparent that the people who used paper
and pencil methods had little to say. One reason for this was that most people used the same
procedure. Another reason was that although they were able to describe the procedure they
followed, they often were not able to explain why. Some people reverted to statements like
“this is how it works—it’s just a rule”. On the other hand, people who solved the problem in
their heads shared a variety of methods and they understood what they were doing and why
they were doing it. They displayed pride in their individual approaches to problem solving.
There was an excitement about mathematical thinking in the room, with people eager to share
their personal methods and quick to express surprise and praise for unique methods that
others shared. A palpable energy was created in this exchange.

The experience of mentally solving 16 x 24 or 156 + 78 + 9 is aesthetically rich in that
the mental processes involved do not demand rule-based procedures. How people solve
16 x 24 depends greatly on how they personally interpret the problem. For example, some
people may multiply 16 and 25 and then subtract the extra 16. Others may deconstruct the
problem as 10 x 24 + 6 x 24. Many other solutions processes are possible—even ones that use
algebraic structures like (20 – 4)(20 + 4). Given such problems, people are eager to share
their solutions, they express interest and sometimes surprise in the solutions of others, and
are motivated to try to come up with different solution processes. Open-ended inquiry,
interest, surprise, and motivation are characteristics of an aesthetic approach.

Teachers in the Online Course noticed that their mental solution processes were “differ-
ent than when I did it with paper and pencil because I solved my problem by starting with the
bigger numbers first (left to right, not right to left!)”. Such experiences appear to have helped
teachers move towards questioning traditional views of mathematics and developing a deeper
understanding of what constitutes mathematical activity and mathematical understanding in
the context of addition and multiplication. “To me, the implications are that doing arithmetic
mentally requires real understanding. The traditional way (on paper, doing the “ones” first)
is more of a procedure to be memorized that requires little understanding”.

Teachers engage in practical inquiry.

In face-to-face professional development, practical inquiry was facilitated through a double-
session structure. Between sessions teachers tried out new ideas in their classrooms and
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shared their experiences and reflections in the second session. Teachers were encouraged to
bring to the second session samples of student work. Many of the insights that teachers
gained and shared arose from observations of students doing mathematics and thinking
mathematically in the context of the new ideas that teachers tried in their classrooms. The
Online Course involved teachers in practical inquiry in that teachers were asked to explore
the thinking of others, including the thinking of their own students, in mentally solving
problems like 16 x 24 and 156 + 78 + 9. They shared and reflected on these observations in
online discussions. Many of the teachers tried the problems with their students and discov-
ered that they too used a variety of methods, and usually not standard paper and pencil
procedures. This helped teachers realize that their mathematical thinking as adults was
similar to that of their students and different from the standard paper and pencil proce-
dures. Teachers were impressed by the creativity of student answers and questioned their
reliance on paper and pencil procedures.

Asking teachers in the Online Course to mentally solve problems like 16 x 24 and
156 + 78 + 9 and to share their solution processes also offered opportunity for practical
inquiry into the nature of mathematics and doing mathematics. This set the context for
discussions of related pedagogy. However, one would expect that practical inquiry would
also involve experimenting with teaching practice, which was not a requirement of the Online
Course. Unlike the face-to-face professional development described above, the Online Course
did not explicitly ask teachers to experiment with new teaching ideas in their own class-
rooms. This is something that will be reconsidered when redrafting the Online Course.

Teachers consider pedagogical implications in the context of relevant mathematics
education literature.

In face-to-face professional development sessions, ideas from mathematics education lit-
erature were shared and discussed. The Online Course gave teachers the opportunity to
read such literature. Two articles about children inventing personal algorithms for arith-
metic operations (Burns, 1994; Kamii et al., 1993) provided a context for teacher reflections
on their thinking when mentally solving problems like 16 x 24 and 156 + 78 + 9 and for
considering pedagogical implications. Questions directed teacher attention to pedagogical
issues. In contrast to the face-to-face professional development sessions where ideas verbal-
ized may be forgotten, an advantage of the Online Course was the ‘permanent’ record of
discussions. Many teachers revisited past discussions and created scrapbooks of ‘good ideas’
by copying sections of online transcripts in word processing documents. As was the case in
the study by McGowen & Davis (2001b), teachers made important connections between
their experiences and ideas in the articles they read.

I do agree with Kamii and Burns’ points of view. I think that by having the student discover
a successful method they will be more likely to internalize and understand the concept. In
coming up with their own methods they are doing the thinking the way their mind works.
We can see [in our discussion] that everyone processes things differently.

Online mathematical romance

When mathematicians describe mathematics it is not uncommon that they talk about the
pleasure of doing mathematics and the beauty that mathematics helps them see and create.
For example, Karen Amanda Yeats (1999, p. 6), a mathematics student at the University of
Waterloo, in Ontario, said “I like math because it’s beautiful, and because working with it is
fun. I considered going into music composition, and I really feel the aesthetics of the two
subjects are very closely related. The search for elegance”. Mathematicians’ love of math-
ematics seems to be shared by young children. Sinclair (2000, p. 4) states that “I have found
that most children love to do mathematics”. In my own experiences of working with chil-
dren in the primary grades, and with my own children at a younger age, I have found that
they have a natural affinity towards mathematics. They love big numbers. They are fasci-
nated by the idea of numbers less than zero, and many other mathematical concepts that we
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take for granted. Yet, somewhere between the curious mathematical minds of young chil-
dren and the elegant mathematical minds of mathematicians, many students lose the joy of
mathematics. Moving through the grades, “mathematics goes further and further away from
the things they know and enjoy. As they start experiencing disinterest and continued fail-
ure, they become afraid of the subject” (Sinclair, 2000, p. 4).

Aesthetic mathematics experiences may be seen as romantic mathematics stories. Such
positive experiences offer students (and teachers) opportunities to fall in love with math-
ematics or to continue and extend a romantic relationship with the subject. For young chil-
dren, we need to provide mathematics experiences that fuel a continuing romance with
mathematics. For many older children and adults, the challenge is to somehow set aside
negative experiences with mathematics and to rekindle a lost romance. One way to identify
the characteristics of romantic mathematics experience is to look at the type of mathematics
that adults identify with various views of mathematics. In one of our research projects in-
volving teachers taking a fully online mathematics teacher education course, we examined
teachers’ responses when asked to share their views of mathematics and to explain some of
the reasons or sources for their views. We found it interesting that teachers responded by
telling us stories—rather than make a list of characteristics.

Teachers’ stories expressed one of three distinct aesthetic orientations towards math-
ematics. A positive orientation was manifested by statements such as “I LOVE math. I al-
ways have”. Note the aesthetic nature of the teacher’s statement—the verbal expression of
delight and the use of capital letters to convey her emphasis. If this had been a face-to-face
dialogue the teacher might have smiled or raised her voice pleasurably. Another teacher
related the following story:

I also acquired my love of mathematics from my parents. As a child, our cottage was 3.5
hours away from our house and my mom and dad kept me and my three sisters busy for
the trip by playing lots of games—counting, logic puzzles and also doing a lot of singing.
At the cottage we played lots of different card games—Fish, Crazy Eights, 31, Solitaire,
Euchre, Cribbage—to name a few. I have taught my Grades 3/4 class the game Digits Place
and they really love it. I gave them a homework assignment to teach the game to 2 people
that night. I had an excellent response from the parents. All the parents really enjoyed
playing it with their children. They also have asked for more “homework” they can do
together as a family.

This teacher created continuity between her childhood experience and her teaching
through mathematical play. One could imagine the teacher vicariously experiencing her
remembered childhood pleasure through her students. Through games she helps create
community among children and parents, and parents and school, and children and math-
ematics. Games offer students the opportunity to do mathematics in their heads where they
are not bound by the rules of paper-and-pencil procedures—in fact, very few children rely
on such rules when operating on numbers mentally (Kamii et al., 1993). It has been our
experience working in elementary classrooms that when mentally adding numbers like 19
and 16 children will transform question to 19 + 1 + 15 or 14 + 16 + 5 or 10 + 10 + 9 + 6, and so
forth. Such mental activity allows students to construct personal and powerful ways of
understanding and to take pleasure in doing mathematics. In a classroom context, such
activity makes for a good mathematics story. The mental methods students use are under-
standable to them and to their peers and they are personal. This stands in sharp contrast to
the standard paper and pencil algorithm for adding number which is typically not under-
stood, learned through rote and which is impersonal—it works the same way regardless of
what the question is or what the student knows and understands. Given opportunities to
share mental methods for adding numbers, students will be eager to explain and they will
express surprise and delight at unique or interesting ways that other students use. They
will be motivated to seek different methods.

Most teachers in the online course expressed a negative predisposition towards math-
ematics, as manifested in statements like “I grew up with very negative feelings towards
math.” In addition, some teachers expressed a passive attitude towards the subject. There
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wasn’t a feeling of dislike or fear but neither was there a feeling of excitement or enthusi-
asm. As one teacher commented, “I did not hate math in school but I didn’t love it either. I
went through the motions”. It was interesting to observe that although negative and pas-
sive stories about mathematics were primarily school based, positive stories of mathemat-
ics were all family based. As one teacher related, “I, like many of you, had many problem-
solving car trips. I still get excited when I see a license plate that I can make ten with (using
any means)”. This is not to say that all home experiences of math are positive and school
experiences are negative, rather, that in our study mathematical activity in the home was
remembered fondly and its pleasurable affects continued to be felt in adult life. Although
negative and passive stories focused on learning procedures and getting answers (or the
difficulty in getting correct answers), positive stories focused on problem-solving processes.
For example, note the aesthetic qualities of the earlier open-ended mathematical problem of
“making ten” using “any means” which contrasts sharply with the more traditional ap-
proach that insists that one finds the answer, to, say, 5 + 5. The person “making ten” has the
opportunity to use her imagination and to find personal, creative ways of looking at math-
ematically combined digits on license plates.

It is not uncommon for elementary teachers to have negative aesthetic associations
with mathematics. Many openly and sometimes proudly admit that they do not like math-
ematics or that they do not feel confident mathematically. Changing teachers’ perceptions
of mathematics is an important first step towards improving classroom practice. McGowen
& Davis (2001a) suggest that we need an “antidote” to teachers’ conceptions of mathemat-
ics as learning procedures and getting right answers. Findings show that such conceptions
are consistently associated with observed practice of teachers (McGowen & Davis, 2001a,
2001b; Stipek et al., 2001) and that teachers who hold such conceptions of mathematics have
lower teacher self-confidence and enjoy mathematics less than teachers who hold inquiry-
oriented conceptions (Stipek et al., 2001).

In another of our research projects we are looking at pre-service elementary teachers’
reactions, in an online component of their teacher education program, to interviews with
mathematicians expressing affection towards mathematics (Labelle, 2000; Sinclair, 2000; Yeats,
1999). It is interesting that almost all of the sixty pre-service teachers in the study—most of
which entered the faculty of education experience with very negative attitudes towards
mathematics—expressed positive aesthetic reactions to the mathematicians’ views of math-
ematics and they shared personal examples of mathematics experiences that they found
aesthetically pleasing. Listed below are excerpts from two pre-service teachers’ reactions to
the mathematician’s views. Similar reactions were expressed by many of the other pre-ser-
vice teachers in the study.

My initial response to the question regarding the beauty of mathematics was one of disbelief!
I honestly never considered such an adjective as applicable to the subject of math. Yet with
a little introspection I can remember …

After reading the interviews with the mathematicians, particularly Nathalie Sinclair ’s, I felt
a creeping desire to tackle math again. The language that she used to describe her love of
math was inspirational, as well as, poetic, appealing to my senses, and the possibility of
actually loving math again. ... Maybe it is possible, after all, to enjoy math again. We’ll see …

We believe that teachers naturally want to improve the mathematics stories they possess,
live and help create in their classrooms. They, like their students, are aesthetically drawn to
a good story and they naturally want to find ways of incorporating it in their lives by retell-
ing it and reliving it and by improving the mathematics story they have internalized—the
story they tell to themselves.

Mathematics as story

Human cognition is story-based. We think in terms of stories, we understand the world in
terms of stories that we have already understood, we learn by living and accommodating
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new stories and we define ourselves through the stories we tell ourselves (Schank, 1990, pp.
218–219). Our lives make sense when shaped into narrative form (MacIntyre, 1984, p. 39).
Story is a human symbol system used to comprehend events and entertain questions, and
represent those events and questions in multi-modal ways. Multi-modal refers to story’s
ability to hold the complexity of experience in a single work, and to present sensory, emo-
tional, and conceptual information simultaneously through image and metaphor. A story
also has its own internal system of validation in that it is not a story unless it coheres, and
complies with its own internal logic. In this way story forces people to concern themselves
with the logic of their stories, with making sense of their own experience. Thus story pro-
vides its own justification, or proves itself.
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Socioeconomic Gradients in Mathematics Achievement: Findings for
Canada from the Third International Mathematics and Science Study

George Frempong
York University

Introduction

A major objective of mathematics education in Canada is to provide opportunities for all
students to successfully learn mathematics. Educational systems in Canada, however, have
not achieved this goal as many students with low socioeconomic status, females, and mi-
nority students fail to achieve an adequate knowledge of mathematics. Much of the discus-
sion regarding this lack of achievement concerns classroom resources and practices, school
policies within educational systems, and the specific domain of mathematics achievement
considered. My dissertation employs the concept of socioeconomic gradient to conceptualize
a successful mathematics education in terms of the level of mathematics achievement and
how equitably achievement is distributed within schools in the system. A gradient refers to
a gap in schooling outcomes between minority and majority groups, or between males and
females. The term “socioeconomic gradient” refers to the relationship between individuals’
school achievement and their socioeconomic status (SES). SES describes a person’s access to
and control over wealth, prestige, and power. It is typically measured through factors such
as income, the prestige of a person’s occupation, and his or her level of education (see White,
1982). The steepness of socioeconomic gradient indicates the extent of social equity since it
highlights the gap in school achievement between advantaged and disadvantaged groups.
Shallow gradients indicate schooling outcomes distributed equitably among children with
varying SES, while steep gradients demonstrate less equitable distribution. The socioeco-
nomic gradient approach allows for an understanding of the processes associated with the
variation in achievement levels and the variation in socioeconomic gradients.

The dissertation employs multilevel models and the 1995 Canadian data from the Third
International Mathematics and Science Study (TIMSS) to address three main research issues:
1) the extent to which differences in mathematics achievement is attributable to gender, fam-
ily background, classrooms, and the province where a student attends school; 2) whether the
variation in achievement is specific to a mathematics domain; and 3) whether the variation
among six provinces (Newfoundland, New Brunswick, Ontario, Alberta, British Columbia,
and Quebec) in the levels of their mathematics achievement is associated with various as-
pects of school policy and practices. By addressing these questions, the dissertation attempts
to identify factors that characterize effective school systems; that is, those with high achieve-
ment levels and shallow socioeconomic gradients. My thesis is that, understanding the pro-
cesses that allow disadvantaged students to successfully learn mathematics is fundamental
to achieving effective mathematics education for all Canadian students.

Theoretical Background

One can view mathematics learning from two complementary perspectives: the “individualist”
perspective, and the socio-cultural perspective. The individualist perspective explains learning
as an acquisition of knowledge through processes that occur within the individual. Individuals
“actively construct their mathematical way of knowing” (Cobb, 1994, p. 13). The socio-cultural
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perspective envisions knowledge as being distributed, and that learning occurs through
interaction with and participation in socio-cultural practices. From the individualist
perspective, the process within the individual is more important, while from the socio-cultural
perspective, the activities within learning environments are more important.

The main argument from the individualist perspective is that, during the formative
years children acquire a network of ideas, and the connections among these ideas allow
them to make sense of new information (see Schoenfed, Smith, & Arcavi, 1993; Siegler &
Klahr, 1982). The conceptual organization of this new information occurs within the
individual. When children encounter new information, they try to associate it with their
existing knowledge and personal experiences (Mayer, 1992) in an attempt to construct a
meaningful link between familiar and unfamiliar information. Sometimes, the new
information is elaborated and integrated into an existing schema within an individual. Other
times, the existing schema is adapted to fit the new information. Learning, therefore, involves
processes of individual knowledge construction.

The major weakness in the individualist position is the less emphasis placed on how
the context of the past and immediate social and cultural experiences and the role this context
plays in the construction of mathematical knowledge. The socio-cultural perspective picks
up this weakness and situates mathematics learning in a social and cultural context. The
theoretical position of this perspective is motivated largely through the work of Vygotsky
(Nunes, 1992), who argues that, in general, learning occurs when an individual internalizes
a social experience through interacting with a peer or adult (Vygotsky, 1988). The process of
learning occurs through cognitive processes that originate and form through social
interaction. Vygotsky (1978) stresses the importance of social interaction with more
experienced others through the concept of the “zone of proximal development” (ZPD) and
the role of culturally developed instruments as psychological tools for thinking. The ZPD is
defined as the distance between a child’s independent problem-solving ability and his or
her potential for success through collaboration with others. Leot’ev (1981) supports
Vygotsky’s view but stresses the importance of engagement in activity. He maintains that
learning occurs through interaction and participation in activity. Other researchers emphasize
the importance of locating learning in the co-participation in cultural practices (Lave &
Wenger, 1991; Rogoff, 1990). In this model, the students’ social engagements through
interaction with more experienced others, and through participation in cultural activities
are the driving forces for learning. From this perspective, the variation in the processes that
allow students to interact with peers and teachers and fully participate in mathematics
communal practices is the source of the variation in students’ mathematics learning. In this
sense, the learning environments are more important than an individual’s cognitive processes.

A number of mathematics educators now consider individuals’ cognitive process and
their learning environments as equally important for understanding students’ mathematics
learning (see NCTM, 2000). The belief is that the two perspectives are reflexively related
such that one does not exist without the other (Cobb, 1998). That is, cognitive processes
within individuals and the context of students’ active participation in classroom mathematical
practices are both important for understanding students’ success in mathematics learning.
This is consistent with a view of a mathematics classroom as a community with norms and
practices, and also, as “a collection of individuals who mutually adapt to each other” (Cobb,
1998, p. 1-44). This view suggests that the norms and practices of a mathematics classroom
as well as the characteristics of individuals within the classroom are equally important in
determining how students come to understand mathematics. Put in other words, individuals
as well as classrooms are important unit of analysis in research that seeks to understand the
processes for a successful mathematics education for all. Multiple unit of analysis, however,
requires complex research techniques. The research technique employed in this dissertation
involved complex statistical procedures for multilevel models.

Multilevel Models

Multilevel procedures allow researchers to estimate models with nested data sets so that
multiple units of analysis are possible. The data set for this study involve students nested
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within classrooms in Canada. The multilevel statistical procedures for this study entail
regression analyses within classrooms with estimates of intercepts and regression coefficients
(gradients), and the variation of these estimates within and among classrooms. The analyses
also employ multivariate, multilevel statistical procedures so that a multilevel analysis of
the six domains of mathematics are carried out simultaneously. (These procedures are
discussed in Chapter 3 of the dissertation). The analysis entailed: 1) tracing the sources of
variation in students’ mathematics achievement levels; 2) identifying classroom and school
factors associated with this variation; and 3) describing the sources of differences among six
Canadian provinces in their mathematics achievement levels.

The application of multilevel models in research is becoming increasingly popular,
especially in medicine, economics, and education (Goldstein, 1995, 1997). Multilevel statistical
models, and the research and practical issues they address, are highly relevant in many
areas of mathematics education (see Frempong & Willms, 2002; Willms & Jacobson, 1990).
Such an important and emerging research tool has yet to make its debut in the mainstream
of mathematics education research. The application of this important statistical tool is
significant in this dissertation as it attempts to demonstrate the usefulness of this tool in a
research that extends our understanding the processes that provide opportunities for all
students to successfully learn mathematics.

TIMSS

The Third International Mathematics and Science Study (TIMSS) provided data source for
my analysis. TIMSS is a study of classrooms across Canada and around the world involving
about 41 countries, which makes it the largest and most comprehensive comparative project
to assess students’ school outcomes in mathematics. The International Association for the
Evaluation of Educational Achievement (IEA) coordinated TIMSS from Canada and the
United States.

The main objective of TIMSS was to provide data on the teaching and learning of
mathematics and science in elementary, lower and upper secondary schools around the
world with the hope that analyses of these data would inform teachers, educators, and
policy makers about the classroom processes associated with students’ mathematics and
science outcomes. The framework of the study presumes that certain processes linked to
curriculum and instruction have a direct relationship with the students’ achievement and
their attitude toward these subjects.

TIMSS targeted three populations: population 1—students in adjacent grades contain-
ing a majority of 9-year-olds (Grades 3 and 4 in most countries); population 2—students in
adjacent grades containing a majority of 13-year-olds (Grades 7 and 8 in most countries);
population 3—students in their final year of secondary schooling (Grade 12 in most coun-
tries). This research study utilized the Canadian population 2 data describing the math-
ematics achievement levels of 13-year-old students in Canada. In Canada, these students
are in Grades 7 and 8 (Secondaire I and II in Quebec). Both grades are part of the secondary
school system in all provinces except British Columbia, where Grade 7 is part of the elemen-
tary program (Taylor, 1997).

The TIMSS Canada population 2 data were collected from a random sample of Cana-
dian schools and classrooms. The random sampling and selection were carried out by Sta-
tistics Canada and data were collected in the spring of 1995. Over 16 000 students and their
teachers and principals participated in the population 2 component of the study in Canada.
Students wrote achievement tests that included both multiple-choice and constructed-re-
sponse items which covered a broad range of concepts in mathematics. The students also
responded to questionnaires about their backgrounds, their attitudes towards mathemat-
ics, and instructional practices within their classrooms. Principals completed a school ques-
tionnaire describing school inputs and processes, and teachers responded to questionnaires
about classroom processes and curriculum coverage.

An important feature of TIMSS Canada is that five provinces—British Columbia (BC),
Alberta (AB), Ontario (ON), New Brunswick (NB), and Newfoundland (NF) over-sampled
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their population such that sample sizes are sufficiently large to allow for inter-provincial
comparisons. A sixth “province”—a collective group representing “Other French”—was
created by isolating the students who wrote the TIMSS test in French. One will expect the
majority of students in the “Other French” to come from Quebec, because there are com-
paratively few Francophone students who wrote the TIMSS tests in French from provinces
such as Saskatchewan, Manitoba, and Nova Scotia whose students’ population is comprised
of Anglophones and Francophones.

Major Findings

Seven major findings emerged from the analysis:

1. Students within mathematics classrooms vary in their achievement levels according to
their gender and family backgrounds. The achievement levels of females and low SES
students are particularly lower in Proportionality, Measurement, and Fractions than other
domains of mathematics.

2. Socioeconomic gradients vary significantly among classrooms, and there is some evidence
that gradients decrease with increasing classroom mathematics achievement levels.

3. A more equitable distribution of achievement within mathematics classrooms was re-
lated to teachers avoiding practices which involve small grouping, where mathematics
teachers are specialized, and in schools where pupil-teacher ratio is low.

4. Excellence in mathematics is possible in classrooms where a teacher’s instructional
practice is less traditional, where calculators are used regularly but computers are not
used, where teachers regularly assign homework, where there are fewer disciplinary
problems, where teachers specialize in mathematics instruction, where pupil-teacher
ration is low, and where remedial students are not removed from regular mathematics
classrooms.

5. The average socioeconomic status of a classroom has an effect on student achievement
over and above the effects associated with a child’s own family background.

6. There are large and statistically significant differences among the Canadian provinces,
both in their levels of academic achievement in mathematics and in their SES gradients.

7. Some of the differences among the six provinces in their levels of academic achievement
in mathematics are attributable to provincial differences in schooling processes.

Discussion of Findings

The relatively low achievement of females and low SES students in Proportionality, Mea-
surement, and Fractions than other domains of mathematics could be attributed to a num-
ber of factors, including the possibility that teachers present concepts in these domains in
ways that do not allow these students to utilize their knowledge from one domain to under-
stand another. Further analyses revealed that, in general, within a mathematics classroom,
students’ achievement levels were not stable across the six domains of mathematics; that is,
students with high scores in one domain did not necessarily have high scores in other do-
mains. These findings indicated that a student’s success or failure in mathematics learning
is domain-specific and is also related to the backgrounds of students. More research is needed
to determine whether the inconsistency in students’ achievement across domains of math-
ematics is related to instructional practices. The process of learning mathematics involves
building on prior knowledge and experiences so that one expects teachers to present math-
ematical concepts in ways that allow their students to connect ideas in mathematics.

As discussed earlier, socioeconomic gradient provides a measure of how well a class-
room has achieved an equitable distribution of mathematics achievement along socioeco-
nomic lines. Steep gradients indicate large disparities between advantaged and disadvan-
taged students within a classroom, whereas shallow gradients indicate a more equitable
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distribution of mathematics achievement. Excellence in mathematics achievement for all
requires that one think about both equity and excellence together; that is, gradients need to
be considered alongside levels of achievement. From this view, one would expect any school-
ing system, including those in Canada, to strive to achieve equity through educational policy
and reform initiatives that are likely to bolster the achievement levels of less advantaged
students up to those of advantaged students. School policies and practices that achieve
equity but result in lower achievement levels for certain groups are undesirable. Also unde-
sirable are schooling practices that result in disadvantaged students being disadvantaged
in schools and classrooms. There are examples of schools that are successful in achieving
both excellence and equity (e.g., see Lee & Bryk, 1989). The findings in this study indicate
that gradients do vary significantly among classrooms, and that there is a modest negative
relationship between excellence and equity; that is, mathematics achievement is equitably
distributed in classrooms with high achievement levels. Thus, there are successful class-
rooms in Canada, but the most successful classrooms tend to be those where students from
disadvantaged socioeconomic backgrounds excel in mathematics.

The finding pertaining to small grouping is not consistent with the expected theory at
least with respect to the notion that such a practice would provide weak students lacking
certain mathematics skills with the opportunity to learn them from their more advanced
peers. The theory holds that interaction among students within small groups through dis-
cussion, debating, and expressing ideas creates the opportunity for multiple acceptable so-
lutions to mathematics problems. The belief is that, through these interactions, students
would experience cognitive conflicts, evaluate their reasoning, and enrich their understand-
ing about mathematical concepts. However, as Springer, Stanne, and Donovan (1999) have
noted, without the appropriate structures to make each member of a small group account-
able for learning, the expected benefits of small groupings may not be realized, since the
interaction would be in most instances merely sharing answers instead of ideas. A number
of studies indicate that effective interactions characterized by high-level deliberations about
issues that enhance conceptual understanding occur when teachers clearly define issues,
give specific guidelines, and define roles for members in a group (see Johnson & Johnson,
1994). TIMSS data did not include variables describing structure and dynamics within the
small groups and, therefore, the motivation of low SES students to interact with other stu-
dents in their small grouping could not be evaluated. Further detailed study on the effect of
small groupings on students’ mathematics learning is needed.

The association of low pupil-teacher ratio and teacher specialization with equitable
distribution of mathematics achievement makes sense as one would expect knowledgeable
mathematics teachers to be deeply committed to the teaching of mathematics and could
more easily keep up to date with latest curriculum developments and innovations in math-
ematics teaching. And in schools with low pupil-teacher ratio, one would expect small class
sizes that will allow these teachers to utilize all resources and strategies at their disposal to
ensure that all students excel in learning mathematics.

The finding regarding traditional instructional practice was expected as it is consistent
with the contemporary views of mathematics educators that such an instructional practice
makes students less active in classroom mathematics learning. The recommended instruc-
tional practice is students’ active interactions and participation in mathematics, and prob-
lem-solving involving real-life experiences.

The relatively high achievement levels of classrooms in schools where remedial stu-
dents are not removed from regular classrooms is also important. In a large number of
schools within the provinces weak students are offered remedial classes. In some of these
schools, however, students in remedial classes are removed from the regular classes. This is
a form of tracking. The major motivation for this type of grouping in Canadian Grade 7 and
Grade 8 classrooms is not known. In the United States, however, research indicates that this
form of tracking is designed to ensure homogeneity of students in terms of their academic
ability (see Mevarech & Kramarski, 1997). The belief is that teachers would be more efficient
in teaching students with similar ability levels and, consequently, produce high achieve-
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ment levels. This study contradicts this belief. The study indicated that it is possible to
achieve excellence in mathematics even with weak students in regular mathematics class-
rooms. Removing the academically weak students from regular classrooms is inconsistent
with socio-cultural learning theory as the practice denies these students the opportunity to
learn from their more able counterparts.

The finding that students, irrespective of their SES backgrounds, are likely to score
higher in mathematics if they are in classrooms with high mean SES is consistent with the
findings of a number of studies pertaining to contextual effects associated with one’s peer
group, and it demonstrates the importance of peer interaction of talented and motivated
students in classroom mathematics learning. The finding also calls for caution in the way
students are distributed in schools as this could severely hamper the successful mathemat-
ics learning of students from disadvantaged home backgrounds. The term “double jeop-
ardy” is used in this study to indicate that a child from a family with poor socioeconomic
status has an even worse chance of success in a school where the majority of students are
also from families with low socioeconomic status. A number of researchers have noted that
when students are segregated through residential segregation, private schooling, or choice
arrangements within the public sector, advantaged students benefit slightly, but disadvan-
taged students do considerably worse. And if the desire of a schooling system is to ensure
quality mathematics outcomes for all students, then policies that tend to segregate students
according to ability or socioeconomic status should be viewed with caution.

The analyses revealed that the six provinces can be clustered into three groups: New-
foundland, New Brunswick, and Ontario, with achievement levels which were below the
national average; Alberta, and B.C., with achievement levels above the national average;
and Quebec, with achievement levels well above the national average. The provinces also
varied in their SES gradients. The SES gradients were relatively shallow in Quebec but steep
in Newfoundland and New Brunswick. The SES gradients for Ontario, Alberta, and B.C.
were close to the national average. The findings indicated that the provinces of Quebec,
Alberta, and B.C. with high mathematics achievement levels tended to have shallow gradi-
ents, whereas the other provinces, Newfoundland and New Brunswick, with lower math-
ematics achievement levels tended to have steep gradients. This finding indicates that math-
ematics achievement is equitably distributed in provinces with high achievement levels. In
other words, some provinces excel in mathematics, but the most successful provinces are
those where disadvantaged students from low SES backgrounds excel in mathematics. This
is quite evident in the way provincial achievement levels are distributed along socioeco-
nomic lines. The variation is wider at the lower SES levels than at the higher SES levels
suggesting that provinces with high average mathematics achievement levels tend to do so
by raising the achievement levels of their low SES students. The distribution also indicated
that students from low SES families are likely to have high achievement levels if they at-
tended schools in Quebec and low achievement levels if they attended schools in New-
foundland, New Brunswick, or Ontario. For students from high SES families, attending a
school in Quebec may give them a slight advantage but would not matter in any of the other
five provinces. The study also provided evidence that classroom mathematics achievement
differences and gradients are linked to differences in the provinces, indicating that a stu-
dent in a classroom might successfully learn mathematics, while another student of similar
family background may not be as successful, simply because of the province in which the
student received mathematics instruction. Quebec, Alberta, and B.C. have relatively high
proportions of their classrooms that are successful in achieving excellence and equity. The
provincial achievement levels and their SES gradients were stable across the six domains of
mathematics. This means that a province with a high achievement level and shallow SES
gradients in one domain also tends to have high achievement levels and shallow gradients
in the other domains of mathematics.

The analyses demonstrated that students’ background characteristics could not ac-
count for all the differences among the six provinces in their achievement levels. However,
the inclusion of variables describing mathematics instructional practices and other school
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processes explained some of the differences in achievement levels between Quebec and the
other provinces, and all the variation in achievement levels among the other five provinces.
There are no major differences between Quebec and the other provinces in their classroom
instructional practices. Quebec differs from the other provinces in its low pupil-teacher ra-
tio, its specialized mathematics teachers, and in the small proportion of schools where stu-
dents are removed from regular mathematics classrooms. Incidentally, these variables are
also associated with excellence and equity within mathematics classrooms so that one can
be confident in attributing some of the differences between Quebec and the other provinces
to differences in these school processes.
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Light and Shadows (in)
Knowing Mathematics and Science

Kathleen Nolan
University of Regina

“I’m flustered!” she exclaimed as she reluctantly handed in her test on mathematical
functions. “Yes,” I said reassuring myself, “a test is certainly not the time you want to be
encountering a problem-type for the first time. My tests are designed to see what you
have been doing all along and whether you have practiced enough.” Disgruntled, the
student left the classroom to commiserate with her classmates just outside the door,
presumably measuring their heart rates before sprinting off to their next exercise in
futility.

For the first time I can remember, doubts began to creep into my mathematical
mind (and heart) as I gathered the tests together and left the classroom. Normally, at
about this time, I like to pat myself on the back for a test well made—a test that reflects
the undeniable challenging nature of mathematics; a test that separates the ‘haves’ from
the ‘have-nots’, if you know what I mean. I am being facetious of course, since I do not
even know what that means, except for believing that it symbolizes unmistakable math-
ematical arrogance. Just because I survived my school days on the privileged side of
this binary opposition, does not mean it is the only way to ‘know’ math. I started won-
dering how I could continue to comfortably contradict myself, as I preached math for all
and practiced math for the few. (Nolan, 2001, p. 26)

The above passage is one of several author reflections in my recent doctoral dissertation
entitled Shadowed by light, knowing by heart: Preservice teachers’ images of knowing (in) math and
science. Best described as a feminist critical narrative, this dissertation explores women
preservice teachers’ experiences of learning math and science. From a personal perspective,
the study emerged out of my own experiences of learning math and science, and from com-
mon encounters with expressions of the shadows in what it means to know. In other words,
my research really began as an exploration into why so many people think of (and describe
themselves as being) “good at” or “not good at” math and science. If I have learned any-
thing during my research over the past few years, it is that everyone has a story (or two)
about their school math and science experiences. When asked what my research is about, I
usually fumble my way through various descriptors—math, science, knowing, experiences,
gender, answers, ‘good at’, etc., etc. Once I have put together a coherent sentence from within
my state of research immersion, I always eagerly anticipate the person’s response. And
there is always a response. The following story relates one such unexpected daily expres-
sion of what it means to know (in) math.
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Bakery Math

My request to mix cookies, obtaining equal numbers of each kind,
was fairly straightforward, especially with the combination of 5 kinds

and 40 cookies in total.

The task of calculating the cost was not as enthusiastically embraced,
however. The dozen and half-dozen quoted prices lent themselves more

readily to customers abiding by multiples of 6.

It is never my intention to draw attention to a person’s mathematical
(dis)interests. When I volunteered a method for figuring out the cost, I felt

the need to pardon my interference. “Don’t mind me,
I am a math teacher, and I’m always problem solving.”

The cashier looked surprised. “A math teacher?” Before I could nod and
shrug my shoulders in casual agreement, she added,

“I’ve never been very good at math.”

“To this day”, she reminisced, “I can still remember sitting at the kitchen
table, doing one math problem after another.

I guess that’s the only way to learn it—
to do them over and over again.

But I was never very good at it.”

(Nolan, 2001, p. 24)

Stories like this made me ponder the spaces between the dichotomies of “good at it” and “not
good at it”; between knowing/NOT knowing, light/dark, presence/absence. Western soci-
ety uses dichotomies frequently to describe (defend? protect?) our knowledge. Exploring the
presence/absence dichotomy as related to what it means to know became critical to me. I
realized the importance of exploring how preservice teachers’ images of knowing highlight
many such presences and absences, clearly portraying reasons for such dichotomous think-
ing. For instance, preservice teachers expressed a real and present pressure to be “all know-
ing” in mathematics and science or to fake it. My participants frequently informed me that
they felt pressure form students, parents, and administrators to know all the answers. They
expressed considerable fear and anxiety about not having answers for anyone and everyone
about anything and everything. Also, my conversations with the preservice teachers drew
attention to the fact that there is inadequate space between the dichotomies of knowing and
not knowing for a partial, situated knowing. With/in an educational system that describes
knowing in terms of grades, these preservice teachers judged their knowledge according to
the marks they received. A high mark meant they knew the subject and were good at it; a low
mark (as they often received in math and science) told them exactly the opposite.

Things started to make sense for me (and, at the same time, become less sensible) as I
blended these ideas with the light/dark dichotomy. In my dissertation, I use the metaphor
of light to explore the to-and-fro movement between light and dark in the form of shadows.
In this paper, I present a few such shadows as shaped by the voices of my participants.

Shadowed by Discourses of Ignorance

Michael (1996) states that “… ignorance cannot be treated as simple deficit; it entails active
construction” (p. 111). In describing three different discourses of ignorance, Michael draws
attention to the fact that we actively formulate a relationship with/to science. In my re-
search, this relationship was frequently characterized by Michael’s discourse of ignorance
related to mental constitution. My participants often found themselves stating up front, in
any conversation about science and math, that they were unsure and that they were just not
scientifically or mathematically minded.

Right away, when that Tangram was in front of me, I said to somebody ‘I can’t do these’. I
didn’t know that yet! I just say it because it’s easier … you have a safety net. Then every-
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body knows you can’t do it. And if you’re the only one at the table who can’t do it then it
doesn’t matter, you know? (Ursula, in Nolan, 2001, p. 156)

My participants often expressed a relation of dependence on those who know math and
science and they were quick to evaluate their own knowledge (in its partial and often infor-
mal form) as being of little value. This is one critical shadow of exploration between light
and dark, between knowing and not knowing.

Shadowed by Gendered Ideology

There were many articulated and unarticulated classroom messages that my research par-
ticipants referred to in our conversations, directing one’s attention to shadows created by a
form of gendered ideology at work to exclude.

I don’t know if this has anything to do with your research but I loved our female math
teacher … but I always felt like she was teaching to the male students in the class. Her
favourites were always the males. And a lot of other people noticed that too. It was mostly
with help—if something wasn’t explained as well as it could be, she would offer them
more help than she’d offer me. That was basically the big thing that I noticed. (Elsie, in
Nolan, 2001, p. 129)

With math and science … I feel like it’s partially to do with being a girl. If you’re a girl and
you say ‘oh, I can’t do this’—if all the girls say ‘oh, I can’t do this’— it’s like ‘ok, well, you
don’t really need it anyway’. But if a guy were to say it, [the teacher would say] ‘well, try
harder, work it out, come over and I’ll help you’. With a girl it’s ‘oh well, you did your best,
you just can’t do it’. They never said it directly, but if the girls said they didn’t understand,
the teachers would say ‘oh well’. But with the guys, they’d spend a lot more time helping
them to get it. (Helen, in Nolan, 2001, p. 128)

Such classroom articulations (and unarticulations), as vividly remembered by my partici-
pants, feed into the hegemony of who is supposed to succeed at math and science and,
alternatively, whose mathematics and science success surprises us as educators. As Lewis
(1993) states, “…discourse is an action taken upon the world. These actions may be transfor-
mative or they may be tenaciously preservative of the status quo; whatever the case, dis-
course is socially negotiated through power” (p. 114). I believe that gendered messages like
those of Elsie and Helen, still perpetuated in many math and science classrooms, are preser-
vative of status quo in their creation of unexplored shadows between who is supposed to
know and not know.

Shadowed by Answers

For my research participants, ambiguity in/and mathematics represented the unimagin-
able. Their experiences of learning mathematics taught them that mathematics is very close-
ended and answers (always present) are simply either right or wrong. In addition, since
there was no ambiguity as to right and wrong, they also perceived no ambiguity then as to
who can and cannot do mathematics. According to their experiences, without answers in
mathematics, there was no knowledge to speak of.

That’s what all those tests were—‘you know what I want you to know, or you don’t’. And
it was an ‘x’ or a check mark. There was no discussion. It was just a right or wrong thing.
(Ursula, in Nolan, 2001, p.51)

It’s an uncomfortable feeling if there isn’t an answer or you don’t know it or you can’t find
it. That concept of ‘if you don’t have an answer then you don’t have knowledge’. Yeah, they
go hand-in-hand. (Maude, in Nolan, 2001, p. 119)

Shadowed by Questions

My participants often spoke of a desire to know and understand why in their experiences of
learning math and science. Instead of being deconstructed, such questions were often met
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by manifestations of power in the classroom. A teacher’s response of ‘you just do; don’t ask
why’ was frequently misinterpreted by my participants as a weakness in their own knowl-
edge and in their abilities to learn mathematics and science.

We were having a discussion and many of us were saying that we did not like math class in
high school because we would always want to know why the teachers were doing some-
thing, and they would just say ‘that’s just the way it is.’ We discussed how frustrating this
was, and still is. I have always had this problem, in every single math class I have ever taken.
(Helen, in Nolan, 2001, p. 122)

Do shadow spaces exist between questions and answers? There is a sense of power associated
with being the one who has the answers. Unfortunately, this often means there is a sense of
powerlessness associated with not having answers. A view of the teacher as being all-knowl-
edgeable leaves no room for realistic levels of ambiguity and uncertainty. This was never
more clearly demonstrated than in a recent teaching experience of mine. I recently accepted a
position as instructor for a class of students enrolled in general equivalency courses in high
school mathematics and science. My role was to assist students as they worked in their text-
books on their respective subjects. As I sat at the teacher’s desk, reflecting on my own research
and the spaces between knowing/not knowing, presence/absence, and light/dark, I was con-
stantly reminded of how people really do not want to reside in the in-between ambiguous
spaces between questions and answers.

The students.
Nine in number.

One graphs systems of equations on a graphics calculator and wonders why he wasted all
that time and graph paper in school.

Another ponders why (-6)2 is not 12.

A man draws a blank as he flips through the pages of the biology chapter, seeking the
 right words to place in the questions’ blank spaces.

Hands on chin, she says it’s been almost a year since she’s done this math, but it’ll come.

From under the baseball cap, his head never leaves kinematics and I wonder why he has
 no questions for me.

The other kinematics student needs to know if she’s supposed to just READ about ticker
 tapes, since she certainly can’t be expected to DO the experiment, right here, right now.

The man with the cap and plaid shirt, breathing heavily as he returns from writing a math
test, is clinging to a possible 50 as he says ‘some of the stuff … just gone.’

The most advanced student has circular function angst over the inverse of inverse sine
functions, as if he’ll ever use them.

And the man at the back table calls me over every so often to interpret what they (the
 nebulous textbook) want for an answer, as his just aren’t matching those in the back.

And it’s a room full of answer-want
it boosts my self-confidence to give them what they want

it pumps me up to be able to take away some of their frustration
And then I return to the pages of my own research

where I am trying to understand
why answers are important

and what it all means
to have knowledge

why it matters
if I’m tested

on what
I know

(not)

(Nolan, 2001, p. 17)
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This paper has briefly outlined a few of the questions that I grappled with in my dis-
sertation. The format of my dissertation reflects the multi-layered nature of such questions,
especially in connecting what it means to know in math and science to what it means to
know in educational research. The research text is presented through a kaleidoscopic writ-
ing format, highlighting, and acknowledging how thinking and learning are not linear pro-
cesses. It is my belief that the integrity of a critical research project, seeking to illuminate
shadows and ambiguities in knowing, would be entirely compromised through a tradi-
tional linear dissertation text. Instead, the text embodies to-and-fro movement between theory
and practice, between author and participant experience, between knowing and not know-
ing. There is no final dissertation chapter outlining future directions, results, conclusions, or
answers for this research project. Instead, spaces are created for pondering critical questions
in education without presuming that, at the end of two hundred pages, answers will be
provided. After all is said and done, however, the question remains: do we still have knowl-
edge if we don’t have answers?
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Supporting Student Efforts to Learn with Understanding:
An Investigation of the Use of JavaSketchpad Sketches

in the Secondary Geometry Classroom

Margaret P. Sinclair
York University

The choice of this topic for my doctoral study stemmed from my ongoing interest in using
computers to display mathematical ideas. From the start I was captivated by the dynamic
computer images produced by Cabri Géomètre (Baulac, Bellemain, & Laborde, 1992), and The
Geometer’s Sketchpad (Jackiw, 1991). Later, after experimenting with JavaSketchpad (Jackiw,
1998) I began to study the use of pre-constructed dynamic sketches. I considered that they
could have some potential advantages since: they can be accessed from school or home;
they can be used by those who do not know software construction techniques; they elimi-
nate the need to spend class time on constructing; and they provide an opportunity for
students to manipulate representations of objects, and to thereby develop “the ability to
take apart in the mind, [and] see the individual elements” (Goldenberg, Cuoco, & Mark,
1998)

Since there had been no systematic analysis of how students use web-based dynamic
sketches, I decided to investigate the benefits and limitations of using such sketches in the
secondary program.

JavaSketchpad

JavaSketchpad converts sketches constructed with The Geometer’s Sketchpad to HTML format.
The resulting images can be viewed and manipulated through any Java-compatible web
browser.

Like sketches pre-constructed with Sketchpad or Cabri, JavaSketches can be dragged to
enable reasoning about invariant properties and to provide evidence about the validity of
conjectures. Pre-set relationships, such as measurements and ratios, change to match the
change that has occurred as a consequence of dragging. JavaSketchpad supports action but-
tons to hide or show additional details, to move points, and to animate objects; however,
elements cannot be deleted and items cannot be constructed.

Background

Those who have examined the dynamic geometry environment have found evidence that
the act of constructing contributes to the growth of mathematical understanding. Hoyles
and Noss (1994) report that when an improperly constructed figure falls apart under drag-
ging, the student is forced to notice relationships among the geometric objects. Hadas and
Hershkowitz (1999) point out that the experience of not being able to construct an object
that seems intuitively possible to make, is a powerful incentive for students to investigate
geometric ideas.

While not minimizing the importance of constructions, some researchers believe that
pre-constructed sketches can also play an important role in the development of mathemati-
cal understanding. Whiteley (1999; personal communication, 2000) contends that pre-con-
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structed dynamic geometry diagrams are valuable as learning tools because they provide
the opportunity for students to examine the connections between geometric objects—a nec-
essary stage before students can effectively carry out many constructions.

However, pre-constructed sketches are visual, dynamic objects and research shows
that visual reasoning presents challenges. Eisenberg and Dreyfus (1991) report that visual
thinking requires more cognitive effort. Mathematical pictures and diagrams, in particular,
are difficult to interpret because they contain a great deal of information, represented in a
concise but “nonsequential” format (Goldenberg, Cuoco, & Mark, 1998). Interpreting a dy-
namic diagram is even more complex. In a recent study of change blindness, Rensink (2000)
found that we are only able to grab four to six visual objects at once and that focused atten-
tion is needed to notice change when objects are moving.

Extensive studies of Cabri, The Geometer’s Sketchpad, and Geometry Inventor (Logal, 1994)
have led to an understanding of how students use dynamic geometry software. For example,
we know that a geometry problem cannot be solved simply by perceiving the images on a
Cabri screen, even if these are animated. The student must bring some explicit mathematical
knowledge to the process (Arzarello, Micheletti, Olivero, Robutti, Paola, & Gallino, 1998).
The present study concerns dynamic geometry, but focuses specifically on how students
reason with pre-constructed, web-based sketches.

The Study

I chose a case study approach for the research and used multiple sources of information—
observation field notes, videotaping/audiotaping of selected student pairs, a student
questionnaire, and interviews with the teachers. I analysed the raw data by coding,
developing categories, describing relationships, and applying simple statistical tests where
appropriate.

The Participants

Three mathematics classes from two different secondary schools participated in this study.
The 69 students were enrolled in the Ontario Grade 12 advanced mathematics program
(replaced in 2002), which covered topics in algebra, geometry, analytic geometry, and
trigonometry (Curriculum guideline, 1985). The study focused on congruence and
parallelism, the first section in the geometry unit. Although the students had done
introductory work on deductive geometry related to congruence and parallelism in Grade
10 and on similarity in Grade 11, none had worked with dynamic geometry software.

Students worked in pairs and in each class, several pairs were studied in more depth
by audiotaping or videotaping their activities.

The Sketches and Labsheets

Using JavaSketchpad, I prepared four web-based dynamic sketches for students to explore,
and one sketch for a group discussion. Labsheets that accompanied the sketches provided
directions, questions and space for work.

Problems chosen as the basis for the web-based sketches were similar in difficulty to
those in the student text, Mathematics: Principles and Process, Book 2 (Ebos, Tuck, & Schofield,
1986) and related to triangles and quadrilaterals.

Each sketch was created to address particular student difficulties in deductive geometry.
The study teachers reported that students often have trouble selecting information from a
given diagram—specifically: a) noticing relevant details, b) focusing on the whole shape, c)
picking out smaller triangles within a larger diagram, d) mentally separating overlapping
shapes, and e) understanding that rotated or reflected copies of a shape are congruent to the
original.

Each of the sketches supported the possibility of arriving at a solution from a
transformation perspective as well as from a straightforward application of congruency
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theorems. The intention was to allow students to use symmetry considerations, a) to visually
confirm or negate conjectures, and b) to develop a new perspective on geometric relationships.

Example

Day 1, task 2 (see Figure 1) was designed to address student difficulties with overlapping
triangles and selection of triangles. This task also aimed to create uncertainty, by including
pairs of triangles that could not be proven congruent with the given information. This is not
usually done in textbook problems.

To help students notice details:

· the four pairs of congruent triangles were shaded in four different colours;
· given equal angles were shaded red;
· information could be toggled off and on to allow details to stand out;
· triangle pairs could be separated;
· measurements for the given angles and lengths were displayed;
· measurements updated as the sketch was dragged.

To help students pick out a shape within the larger diagram:

· overlapping figures could be separated;
· colour was added to emphasise the shapes;
· colour was used to overlay angles and sides within the shape.

Labsheet questions were designed to focus students on exploring, noticing, interpreting,
deducing, and extending, as shown in Table 1.

In this task students were asked to prove that BA = BC. To do this, students needed to
deduce at least one piece of information from the given information before proceeding to
use ASA (angle, side, angle) or other congruency theorem, (i.e., all options involved at least
two steps). All chosen pairs of triangles were reflections, and congruency could also be
established or not established by considering what would happen if one member of the pair
was reflected.

FIGURE 1. Day 1, task 2 – Javasketch 3 – View on selecting: “Show Given Information,” “Show
Copy,” and “Show Pair #1”.
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Findings

Two major and distinct themes emerged from the research data: how the students used the
sketches, and how students interacted with elements of the learning environment.

Use of Sketches

In examining the raw data I focused on how students used colour, motion, and action but-
tons, and analysed their actions and comments with respect to the levels of geometric think-
ing in the van Hiele model (van Hiele, 1986). Hoffer (1981) defines these levels as: 1) recog-
nition, 2) analysis, 3) ordering, 4) deduction, and 5) rigor. I expected the study students to be
at level 4; however, many students seemed to be working at a level 2, still unsure of basic
terminology, and properties of triangles and quadrilaterals.

Although students initially dragged points, most used the sketches in static form. This
practice indicated that students were not able to examine relationships between different
instances of a figure, characteristic of level 3. In some cases, avoiding dragging led to
erroneous deductions because a sketch had been dragged to show a special case.

The observation that many students appeared to be working at a low level might be
explained by de Villiers’ contention that students from a higher geometric thinking level
often work in “lower” levels (de Villiers, personal correspondence, 2001). Another possibility
is that the dynamic environment has its own set of levels that students pass through in
developing geometric thinking skills. The use of dragging to examine relationships between
instances of a figure could be associated with an as yet unidentified level.

Several examples in the study showed that the use of the software helped some students
move to a higher level of geometric thinking. In an early task Tara and Mary worked at
listing details or “trolling for triangles” (Whiteley, personal correspondence, 2000):

Tara: So in this case do we have side, angle, side? Cause they share the same side, right?
Mary: Yeah. So can you say side, angle, side?
Tara: Yeah. ... Put triangle BD ... is that BDF?
Mary: Yeah.
Tara: Yeah, triangle BDF  ... no ... what about ... all it does is side, side, where’s the angle? We don’t

know an angle for sure.
...

Tara: Well this one you can figure out.
Mary: I know ... but how? Just put ... isn’t it side, angle, side? ... Yeah, just put side, angle, side.

Later, they were able to consider motion as a method of exploration even though the sketch
was not sufficiently flexible.

Tara: Cause that means that’s the uh—the median? The centre point I mean.
Mary: Yeah.
Tara: I dunno, is it? Can you turn it around? Probably not. You can’t turn it around.

Focus Question or Direction

Explore Drag each red point.

Notice Observe the measurements.

Interpret Write two additional facts that you know and explain why they are true.

Deduce If you proved the pair congruent, how would this help you prove BA=
BC?

Extend What is an alternative explanation for the congruency of triangle ABC
and triangle FCB?

TABLE 1. Purpose of labsheet questions, Day 1, task 2.
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In another example, Doug and Sal made a conclusion based on how a figure “looks”, a
characteristic of level 1 geometric thinking.

Doug: Angle E is 90 degrees. Well, I’m thinking this is—because it looks like it, right?

Later, they were focused on justifying their reasoning:

Doug: But that’s an angle within the triangle. We want the whole triangle. What does that little
angle prove? It just proves that on the little triangle they’re equal but we want the big tri-
angle. You get what I mean?

Results showed that pre-constructed sketches share important characteristics with math-
ematical illustrations or pictures. They present information all at once, in non-sequential for-
mat, to a user who does not have the constructor’s knowledge of the relationships between
and among objects. But since they are also dynamic they require students to draw informa-
tion from a changing model. In order to interpret the information in the sketch students must
be able to notice detail, see and use change, and apply (mathematical) knowledge.

Colour, markings, measurements, and built-in motions helped study students to no-
tice details. However, only a few students were able to use change to explore. Paul and Sue
were two students who made a conjecture and discovered their error by dragging the sketch.

Sue: Ok, if DB right bisects AC then the parallelogram will become a square.
Paul: Two diagonals bisect each other at right angles then the parallelogram becomes a square.

[After dragging the sketch they were rather surprised.]
Sue: Obviously it’s not a square now ... it’s a parallelogram.
Paul: Still a parallelogram—so we were wrong.
Sue: So we have to erase all of it.
Paul: Let’s take a look if the sides are all equal.

The need for students to bring mathematical knowledge to the exploration of a dy-
namic geometry sketch, documented by Cabri researchers such as Laborde (1998), was very
apparent in the study. In this example, Pat and Dave’s lack of precision in geometric lan-
guage hampered their progress:

Dave: G is the midpoint.
Pat: No H is the midpoint. G is the line in the middle.
Dave: I’m going to write, ‘H is the line that crosses the midpoint’.
Pat: Is H the line or the point?
Dave: H is the line that crosses the midpoint.
Pat: H is a point, not a line.

This pair’s poor grasp of geometric concepts meant that they progressed very slowly through
the task questions. Nevertheless, the pre-constructed sketches did help them correct mis-
conceptions as shown in the following exchange:

Pat: No, it says rotate. ….
Dave: How do you rotate it? You can’t unless it’s round. You can only rotate it. ...
Pat: Oh, it rotates on one point. …
Dave: Yeah so—so it stays in one point.
Pat: It goes in a circle. It goes around the midpoint.

Throughout, the onscreen image was a central feature of the learning situations. Each
sketch acted as a shared space for partners to explore and communicate. Students pointed
to the sketches, traced onscreen figures, encouraged one another to drag or click, and gazed
intently at the images as if trying to soak up the details.

Interactions in the Learning Environment

During the tasks the students interacted with their teacher, their peers, and the task materials.
Data suggested that many of the interactions that led to profitable discussions were initiated
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by questions and peer responses that paralleled the interventions of a good teacher identified
by Towers (1999).

In her study, Towers researched intervention styles and strategies that teachers use
and identified those that support the growth of mathematical understanding.  Towers found
that the most effective interventions were the shepherding style in which the teacher uses
“subtle nudging, coaxing, and prompting”, the inviting strategy, in which the teacher suggests
a “new and potentially fruitful avenue of exploration”, and the rug-pulling strategy in which
the teacher deliberately introduces an idea that “confuses and forces the student to reassess
what he or she is doing” (Towers, 1999, pp. 201–202).  The importance of rug-pulling is also
supported by dynamic geometry research. Hadas, Hershkowitz, and Schwarz (2000) found
that uncertainty spurs student need to explain “why” something is true.

In some of the peer interventions during the study we can see evidence of shepherding.
For example, here Paul tries to help Sue focus on the whole:

Sue: Okay go ahead, separate them. Oh, it’s different. Okay, we know that… Okay just a minute.
If these two angles ...

Paul: You’re working inside the thing again. Just look at ... see the red part? Stare at the red parts.
Blur out the black parts. No looking at the black parts ... look at the triangle.

Questions that encouraged the most significant discussions and actions during the
study were those that used the inviting or rug-pulling format. For example, in response to:
“How can the information provided by these images be used to explain why DABC is
congruent to DFCB?” Pat and Dave had the following conversation.

Pat: It breaks it apart so it’s easy to picture it.
Dave: They match. It matched it with the other one.
Pat: It shows us that they’re congruent. …
Dave: The mirror effect shows that ABC’s just like FCB.

This question, more open ended than the typical “prove that triangle ABC is congruent to
triangle DEF”, drew many students into animated discussions.

There were also several examples of “rug-pulling” questions. In Day 1, task 2, pairs of
triangles were included that did not have three pieces of information available to prove
them congruent. This confused students because their experience of geometry problems
was limited to situations that could be solved. Students reacted to this surprising situation
in several ways. Some spent a great deal of time—certain that they must be missing
something. Others made up information. After I led one pair through an organized checklist,
they realized they did not have enough information, but they were not confident enough to
abandon the search until I arrived. This episode demonstrates the importance of teachers
circulating throughout sessions and also of gathering students together to discuss ideas and
conclusions.

The evidence that questions and directions “intervened” in the learning environment
in such a significant way led me to examine their effect more closely. I categorized the
intervention interplay between the labsheet questions and the JavaSketches as shown in Table
2. This table indicates the deep connection between questions/prompts and sketch
affordances. For example, if a question invites exploration, the sketch must provide alternate

Labsheet JavaSketch

Focuses attention Draws attention

Prompts action Provides affordances (i.e., tools with which to act)

Invites exploration Provides alternate paths

Introduces uncertainty Supports experimentation

Checks understanding Provides a shared image

TABLE 2. Intervention Interplay
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paths for students to investigate. Otherwise, the act of exploring is trivialised. And when
rug-pulling is used, pre-constructed sketches must include appropriate experimental tools
to help students overcome confusion.

Conclusion

The results of the study indicated that tasks centred on pre-constructed web-based sketches
provide effective interaction opportunities for student pairs, and intervene in the learning
situation in ways that parallel those of a good teacher. To support student efforts sketch and
labsheet must complement one another in the roles of focusing attention—drawing attention,
prompting action—providing affordances, inviting exploration—providing alternate paths,
introducing uncertainty—supporting experimentation, checking for understanding—
providing a shared image. When materials are developed with attention to these parameters,
such tasks can provide valuable opportunities for student learning.

Several directions for future research are suggested by the study results. In particular,
study students were not automatically able to make use of motion in explorations of dynamic
diagrams. This behaviour suggests two questions for future investigation. First: Is the van
Hiele model (or any other traditional model) appropriate for describing the development of
geometric thinking skills when motion is involved? Second: How can we teach students to
explore dynamic diagrams?

The study also showed that the interplay between what we ask and what tools we
provide must be considered when designing mathematical tasks that include pre-constructed
sketches. More work is needed to determine how to develop this interplay.
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Conceptualizing Limit in Calculus (Why is it still a problem?)

Allan Brown
University of Calgary

This ad hoc session was a discussion of students’ conceptions of limits related to the focus of
my research. The intention was to invite feedback from attendees based on their experience.

The two foundational notions for calculus are function and limit. The idea of function
preceded the arrival of the calculus (although in a more restricted form than is used today).
However, it was not until 200 years later that mathematicians agreed on a definition of the
limit, which might suggest that this is not a readily intuitive idea. Based on my own teach-
ing experience and the research literature, both notions are perennially problematic for learn-
ers. Research studies repeatedly find that learners have incomplete or inaccurate
conceptualizations of the limit at least during learning, and likely even ongoing (Ferrini-
Mundy & Graham, 1991; Sierpinska, 1994; Szydlik, 2000; Tall, 1991; Williams, 2001), and a
whole calculus reform movement has emerged. So why is the limit concept still a problem?

Cartwright (1970) reports on the variety of ways mathematicians and engineers con-
ceptualize problems: “pure” mathematicians who think in applications; “applied” math-
ematicians who think in mathematical abstractions; engineers who think in terms of the
problem at hand. She also says that it is not clear how these conceptualizations arise, nor
whether there is any relation between them. If professionals display such conceptual diver-
sity, it is possible that individually and collectively learners also have diverse
conceptualizations, and perhaps more tenuous as well, suggesting that there might be value
in probing learners’ conceptualizations from different points of view.

My goal is to pursue this and investigate conceptualizations across contexts, such as
geometric, graphical, analytical, and others, and also across approaches, such as respond-
ing to situations, discovery exercises, constructions and counterexamples to force focusing
on properties and definitions, and to look for themes and patterns. The discussion and feed-
back did provide suggestions for further ways to probe students’ conceptualizations, as
well as contacts for communication as the research proceeds.
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Amplifying Mathematical Intelligence
Using Web-Based Interactive Activities?1

George Gadanidis
University of Western Ontario

When I was going to university I took a year off and worked with my uncle as a carpenter.
One morning I arrived at his house and he was under the hood of his station wagon pound-
ing on the engine with his hammer. ‘What’s the matter ’, I asked. ‘The car won’t start again’,
he said. ‘So’, I asked, ‘what exactly is the connection between the car not starting and you
pounding it with a hammer?’ He gave it one last bang and slammed the hood down. ‘I have
no idea’, he said, ‘but I hope it hurt!’ We both started laughing.

As more and more of us are connected to the internet, web-based activities have the
potential of changing how and what mathematics is learned. But like my uncle’s hammer,
web-based activities can sometimes help kids understand by exploring math relationships
and making new connections, they can sometimes make no difference by providing only en-
tertainment, and they can sometimes hurt by reinforcing misconceptions or wasting valu-
able learning time.

In the early 1990s I had the opportunity to observe, over long periods of time, Grade
10 students working with Geometer’s Sketchpad. More recently, I have been part of a team
designing and delivering inservice on IBM’s Teaching and Learning with Computers Soft-
ware, for all grade 1-4 teachers in an Ontario school district. I have also had the opportunity
to observe teachers using the IBM software with their students.

It seems to me that computer-based resources have a lot of potential in affecting how
and what is learned in math classrooms. At the same time, my experience cautions me that
computer technology is a tool whose effect is greatly determined by the users (and here I
have both teachers and students in mind).

The question that I am now considering is this: To what extent can web-based activi-
ties act as intelligence amplifiers, enabling students to think at higher mathematical levels?

Discussed below is the potential of two web-based math activities on the topic of area
and perimeter. Both activities are freely available to teachers and students at
www.ExploreMath.com.

Maximizing Area

Suppose you have 20 meters of fencing
for making a rectangular dog pen. What
dimensions would you make the pen so
that its area is as large as possible?

You can explore this problem us-
ing the activity on the right.

· Set the perimeter, or P, slider to 20.

· Move the base, or b, slider. Notice how
the diagram of the rectangle changes.

· Also, notice how the value of the area is
changing, and how the point represent-



CMESG/GCEDM Proceedings 2002 • Ad Hoc Session

136

ing the area is moving on the graph. What dimensions result in the largest area?

· Explore this problem for different perimeters. Make a conjecture about the general solution to the
fencing problem.

Minimizing Perimeter

Suppose you need to make a rectangu-
lar dog pen with an area of 24 square
meters. What dimensions would you
make the pen so that its perimeter (or
fence) is as small as possible?

You can explore this problem us-
ing the activity on the right.

· Set the area, or A, slider to 24.

· Move the base, or b, slider. Notice how
the diagram of the rectangle changes.

· Also, notice how the value of the perim-
eter changes, and how the point represent-
ing the perimeter moves on the graph.

· What dimensions result in the smallest perimeter?

· Explore this problem for different areas. Make a conjecture about the general solution to the
fencing problem.

At their most elementary level, these explorations help students understand the relation-
ship between area and perimeter. Students can also explore the functions that generate the
area and perimeter graphs and discover that the former is a parabola and the latter is a
hyperbola. What a great way to see conic sections in action.

Conclusion

It is not uncommon to see area and perimeter taught as separate topics that are ‘mastered’ in
isolation from one another. The web-based area and perimeter activities described above have
the potential of increasing the mathematical focus on the relationships between area and pe-
rimeter. They also are tools for students to think with when exploring such relationships.

Two questions worth researching with respect to the area and perimeter activities are:

· How will teachers use them in their teaching?

· How will students use them to think mathematically?

Note

1. This report was inadvertently omitted from the Proceedings of the 2000 CMESG/GCEDM An-
nual Meeting.
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Grades 5-6 Teachers’ Algebra Teaching Beliefs and Practices1

George Gadanidis
University of Western Ontario

Algebra is a language for representing and exploring mathematical relationships. Current
curricular views of algebra emphasize multiple representations of relationships between
quantities and a focus of student attention on the mathematical analysis of change in these
relationships (NCTM, 2000, p. 37; Ontario Ministry of Education, 1997, p. 52). The relation-
ships component of such a definition of algebra is what gives purpose and meaning to the
language aspect of algebra. Without a focus on relationships, the language of algebra loses
its richness and withers to a set of grammatical rules and structures.

The teachers in the study suggested that there is not a lot of algebra in Grades 5-6.
They talked about patterning, looking at a set of numbers and seeing “how you go from one
number to the other”. They also discussed solving simple equations through trial and error.
One of the Grade 6 teachers shared an experience of trying to teach students how to solve
simple equations more formally: “I was teaching Grade 6, a sharp bunch. There was hardly
anything in the textbook on algebra. … So I went from a math book I had from Grade 7 and
8 and I took the simplest pages … a – 7 = 10 and I tried to teach them a – 7 + 7 = 10 + 7 and
what you do to one side you do to the other side, the way I was taught algebra”.

It is interesting that the word ‘modeling’, or other phrases with similar meanings found
in the Ontario curriculum descriptions of algebra (Ontario Ministry of Education, 1997),
were not used by the teachers when discussing their conceptions of algebra. And there was
not a sense that the teachers viewed the exploration of mathematical relationships and the
analysis of change as integral components of algebra, as is the case in the Ontario curricu-
lum document. What is also interesting is that the teachers’ focus on the formal solution of
equations is not part of the Ontario curriculum in Grades 5-6, nor is it an explicit expecta-
tion in the Grades 7-8 curriculum (Ontario Ministry of Education, 1997, p. 60). The teachers’
view of algebra matches the typical view of algebra that emerges from research, where the
teaching of algebra is instrumental rather than relational, with a dominance of symbolic
algebra over other representations (Borba & Confrey, 1996; Kieran, 1992; Kieran & Sfard,
1999).

In the study, teachers used the web-based Maximize Area activity, shown in Figure 1,
whose focus is on algebraic relationships in the context of area and perimeter. When using
the Maximize Area activity in their teaching of mathematics, teachers tended to place a
greater focus on algebraic relationships. The activity may have acted as a pedagogical model
for teachers’ classroom practice, shifting the teaching focus from the learning of isolated
area and perimeter concepts to algebraic relationships among these concepts.

When asked if there was algebra in the student activities relating to the Maximize
Area activity, the teachers talked about the area equation, and the substitution of values in
the equation. “A mystery, an unknown, that’s what I see. That’s algebra, right?” Another
teacher described algebra as “numbers and unknown letters, solving by doing the same to
both sides”. When asked if the relationships between area and perimeter that were explored
in the Maximize Area activity were part of algebra, teachers said they didn’t think so. One
teacher said that some algebra was involved in creating a table of values, as substitution in
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an equation was used to find values. The teachers recognized the increased focus on rela-
tionships in the Maximize Area activity, compared to their regular teaching. However, they
did not associate these relationships with algebra, even though that connection is in the
Ontario mathematics curriculum document. They saw the relationships simply as area and
perimeter relationships.

One may wonder whether this makes a difference in teaching mathematics—that is, as
long as teachers focus on algebraic relationships when they teach about area and perimeter,
does it matter that they do not see it as algebra? This diminished view of algebra makes a
difference for at least two reasons. First, algebra is typically a strand of mathematics in
curriculum documents. The focus on relationships integrates and relates the mathematics
strands that students study. Isolating algebra to a symbolic and manipulative category re-
duces its richness as a topic of study. Second, many teachers view area and perimeter as an
elementary school topic of study and algebra as a secondary school topic of study. As el-
ementary teachers naturally try to prepare their students for success in secondary school
mathematics, the richness of their view of algebra will likely make a difference in what
algebra they teach and how they teach it.

FIGURE 1. Maximize Area activity showing area diagram and graph.

Note

1. This report was inadvertently omitted from the Proceedings of the 2001 CMESG/GCEDM An-
nual Meeting.
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Researching the Effect of Interactive Applets in Mathematics Teaching

George Gadanidis
University of Western Ontario

In my recent research of teachers’ use of interactive applets in their teaching there was some
evidence that certain applets may play the role of pedagogical models (Gadanidis 2001). In
2002–2003, I am conducting two follow-up studies to investigate the effect of the availabil-
ity of interactive applets on (a) the lesson planning of pre-service mathematics teachers and
(b) the mathematical thinking of students. Both studies will use structured, task-based in-
terviews (Goldin 2000) where participants will be presented with two tasks, one of which
will have an interactive applet available. For example, consider the probability applet shown
on the below (MathAdventures.com 2002).

In the case of pre-service mathematics teachers planning a lesson on probability at the Grades
7-8 level, the following research questions will be considered:

· Are there differences between teachers planning such a lesson with and without the inter-
active applet available?

· More specifically, does the availability of an interactive applets that may be used to ex-
plore mathematical relationships affect the potential student mathematical thinking and
performance that is facilitated in the lessons designed by teachers?

In the case of mathematics students performing a probability investigation, the following
research questions will be considered:

· Are there differences between students performing the task with and without the interac-
tive applet available?

· More specifically, does the availability of interactive applet affect student mathematical
performance?
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Levels of student performance will be analyzed based on the four-level scheme described
below.

Level Emphasis

   1 Recalling mathematical facts and simple skills.

   2 Applying mathematical procedures to solve routine problems.

   3 Understanding and explaining mathematical relationships.

   4 Extending understanding to new contexts or more general cases.
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Creativity and the Psychology of Mathematical Invention

Peter Liljedahl
Simon Fraser University

The genesis of mathematical creation is a problem which should intensely interest the psy-
chologist. It is the activity in which the human mind seems to take least from the outside
world, in which it acts or seems to act only of itself and on itself, so that in studying the
procedure of geometric thought we may hope to reach what is most essential in man’s mind.

– Henri Poincaré (1908/1956, p. 2041)

In the beginning of the last century an inquiry into the working methods of mathematicians
was published in the journal L’Enseignement Mathématique. The inquiry, created by psycholo-
gists Claparede and Flournoy, appeared in two parts—1902 volume IV and 1904 volume
VI—and was made up of 30 questions probing the creative process of mathematicians. In
1908 there was a lecture delivered by Henri Poincaré to the Psychological Society in Paris
entitled Mathematical Creation. Although Poincaré was aware of the aforementioned ques-
tionnaire the publication of the results came after he had already laid the groundwork for
his presentation. Poincaré’s lecture and subsequent essay contains within it autobiographi-
cal fragments that tell an insightful story of moments of illumination.

These two events conspired to create perhaps the most famous of treatments on the sub-
ject of mathematical invention. Jaques Hadamard was simultaneously inspired by Poincaré’s
lecture and annoyed by Claparede and Flournoy’s inquiry. Although he saw great potential in
the published survey, Hadamard saw some shortcomings in it. According to Hadamard the
survey failed in that there was a lack of prominence on the part of the respondents.

“Who can be considered a mathematician, especially a mathematician whose creative
processes are worthy of interest?” Hadamard made note of the fact that, of all the respon-
dents to the questionnaire, not one was noteworthy. So, he chose to revisit the survey in his
own way. He reformulated the questionnaire devised by Claparede and Flournoy, made
additions, and used it to survey personal friends—mathematicians whose prominence was
beyond reproach. In 1943 he gave a series of lectures on mathematical invention at the Ecole
Libre des Hautes Etudes in New York City. These talks were subsequently published as The
Psychology of Mathematical Invention in the Mathematical Field (Princeton University Press).

Intrigued and inspired by Hadamard’s work I sought to recreate a portion of his sur-
vey and solicit responses from more contemporary but equally prominent mathematicians—
Field’s medal winners, members of prestigious academies, and so on. Results from this
study were presented in the form of a series of mathematicians’ quotes.
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Logical Reasoning and Mathematical Games

Ralph Mason, University of Manitoba
Janelle McFeetors, University of Manitoba

This presentation outlined the results of a teaching experiment in the Logical Reasoning
unit of grade 11 academic mathematics. The students explored the structure of mathemati-
cal games. They formed, tested, and communicated conditional statements about effective
strategies to create an experience base with logical reasoning.

Mathematical games invite logical reasoning, because analysis of patterns in the play
can determine who wins. Eight games were chosen, each with a limited number of moves to
be considered, but still requiring some sophistication in analysis to yield an overall strategy.
One game was used by the class as a whole, to establish the expectations for the inquiry to
come. Then pairs of students each pioneered a mathematical game, searching for winning
strategies.

As an example, consider the game One or Two, played with ten markers in a row (see
picture below). Two players in alternating turns take either one marker or two adjacent
markers. Whoever gets the last marker wins. However, at the beginning of the game, the
first player is restricted to taking only one marker. The explorers tried to find, state, and
justify winning moves (and make sense of the restriction on the first move). Here are two
very different statements of strategy from two pioneers of One or Two.

Just remember that a combination of isolated pieces and adjacent groups of 2 pieces are very
powerful.

The second player should keep the board symmetrical. However, if the first player ruins the
symmetry by moving two adjacent pieces in the middle, then there is no advantage to hav-
ing the second move.

The structure of the classroom project provided students with differentiated and au-
thentic audiences for statements of logical reasoning. Although all members of the class
could appreciate general statements of strategy about a particular game, students who had
pioneered the same game demanded more precise justifications of specific strategies. After
noticing which aspects of their game would yield analyses that led to winning strategies, all
students succeeded in formulating, testing, and amending logical claims. All students suc-
ceeded in expressing conjectures and conclusions, using if-then logical statements to de-
scribe their game-playing strategies. A significant feature of their mathematical communi-
cation was the naming of game properties and key situations.
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One limitation of the use of mathematical games for mathematical reasoning emerged
in the project. Rather than leading students to construct complete conditional chains of logic,
the games context provided a strong temptation to justify the value of a strategy empirically
by just playing the game again. Although a mathematically rigorous justification of a strat-
egy would deal with every possible option of play, in the games context even a critical
student audience tended only to demand that the strategically reasonable options of play be
addressed.

Overall, the project has reinforced its central principle for effectively engaging stu-
dents in logical reasoning. Students need to experience a full sequence of exploration and
analysis in a bounded context before learning to make and defend formal and absolute
statements.
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Collective Mathematical Thinking

Immaculate Namukasa
University of Alberta

Social and cultural accounts of learning raise awareness towards how socio-cultural aspects
constrain learning. In addition recent studies on cognition draw from socio-psychology,
anthropology, and ecology to construe learning as not strictly individual-based. System theo-
rists observe that human social systems as well as animal communities demonstrate “cogni-
tive” behavior (Davis & Sumara, 2000). What possibilities are created for learning when the
classroom is construed as a complex body capable of cognition?

From complexity theory the classroom may be viewed as a network of individual stu-
dents acting and interacting to produce emergent behavior that lie on the scale above the indi-
vidual students (Waldrop, 1992). This complexity perspective seems to offer ways of explain-
ing classroom collective behavior, which Simmt and I observed in a yearlong junior high class-
room research. The metaphor of classroom-as-organism helped us to understand many learn-
ing events that occurred in the classroom as adaptative behavior of the collective structure. We
observed the social organizational level not only for interactive behavior (such as classroom
practice and norms) but also for structural behavior of the social body as a learning structure.

For instance, in a lesson on transformational geometry the question about objects with
the most lines of symmetry, to use Rotman’s (1993, p. 39) phrase, “intrusively pushed itself to
the forefront” of the classroom consciousness. The teacher had not, at least not in detail, an-
ticipated the mathematical inquiry that arose. She had prepared her introductory lesson to
explore objects with 1 up to 4 symmetry lines. But after she together with the students ex-
plored the square as an object with 4 lines of symmetry some students, spontaneously, sought
to find objects with 8, 16, many, lots, and then infinite lines of symmetry. In the discussion that
arose, both in the whole classroom and in small groups, students made conjectures about: (a)
the circle as an object with the most lines of symmetry; (b) the relation between lines in a circle
and planes of symmetry in a sphere; (c) what it empirically meant for a circle to have infinitely
many lines of symmetry. The joint project evidenced in this lesson appeared to have enabled
majority students to energetically engage in genuine inquiry about reflectional symmetry.

Collective learning characterizes many classrooms especially those in potentially rich
learning settings. By focusing on the structural behavior of the classroom as a social system
we might be able to observe behavior that at most times goes undistinguished when we
solely focus on individual students as the only acting and interacting bodies in the class-
room. Moreover it appears that what unfolds in the collective—rather than what happens
in the individuals’ heads—might be what a teacher can appropriately influence. Complex-
ity theory’s approach to social behavior as behavior above the level of individuals, yet co-
arising with individual behavior might offer insight for teaching.
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Proofs and Refutations on the Web:
Mathematics Environments for Grades 7 & 8

Geoffrey Roulet
Queen’s University

In Proofs and Refutations, Imre Lakatos (1976) presents a story of mathematical knowledge
growth that is dramatically different from the picture painted by the formalism found in
mathematics texts and research journals. In place of an assumptions-proof-conclusions
straight line path, Lakatos presents a much less organized process involving cycles of: con-
jecture, attempts at proof, production of counterexamples, and conjecture refinement. This
image suggests that mathematical invention is a struggle for all, and that full participation
in the subject is not reserved for brilliant minds that somehow just see the problem solu-
tions. Lakatos’ story can provide students with both an invitation to and a general heuristic
for mathematical exploration.

Lakatos’ work is not appropriate reading for students below the senior secondary school
years, but it is still possible to present his message to younger pupils. Students can experi-
ence the Proofs and Refutations process when working in a mathematical environment; an
amalgam of a potentially stimulating problem, tools to support exploration, and social and
physical structures that encourage collaboration. A mathematical environment begins with
a context from which questions naturally arise. The problem itself and the materials and
tools available to the class are designed to suggest potentially valuable methods for explo-
ration. Students in small groups and seated in arrangements that encourage conversation,
test out tentative ideas and construct arguments in a collaborative setting before presenting
their conjectures to the whole class. Class activity moves back and forth between small
group exploration and whole class reporting and consolidation. Such environments have
been developed and tested by myself and others at a variety of grade levels and experience
has shown that students’ work does follow a pattern similar to that described by Lakatos,
except that student groups often do not feel a pressing need to develop “proofs” that go
beyond simple arguments based upon multiple examples.

With support from the Imperial Oil Charitable Foundation at Queen’s University MSTE
Group project has constructed a website that will provide mathematical environments on a
wider geographically distributed level. In math-towers.ca we have developed a structure,
the tower, that will support visiting pupils’ collaborative exploration of multi-layered prob-
lems. On the ground flour of a tower, visiting groups are presented with a problem context
and an initial question to explore. Each group is assigned a laboratory room where they find
Java applet tools to support exploration and areas for recording their emerging ideas. Once
a group feels that they have something to say about the question, they may publish their
results on a scroll nailed to their laboratory door. They are now permitted to wander the
tower’s halls, reading and commenting upon the published work of other groups. After a
period of laboratory work and sharing with others, a group may visit the “Trial Chamber”
where they can try out their understanding. Here, using their conjectures, the pupils make
predictions concerning a sequence of situations. If the match is good a door opens and the
group is invited to climb the stairs and work on the next level of the problem. Eventually
the students emerge onto the tower’s ramparts to be greeted by a congratulatory banner.
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We have programmed our site so that we can use the tower structure to support a
variety of explorations by inserting appropriate problem descriptions, laboratory tools, and
trial chamber tasks. There is also a research support facility that captures all student work
and allows researcher paced playback.

Math-towers.ca should be ready for its first student visitors in January 2003.

Reference

Lakatos, I. (1976). Proofs and refutations: the logic of mathematical discovery. Cambridge, UK:
CambridgeUniversity Press.
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Being in a Mathematical Place: Immersion in Mathematical Investigation

David Wagner
University of Alberta

Two grade 10 classes were immersed in mathematical investigation projects for the first
time. I used selections of their written work and transcripted dialogue to explore their expe-
rience.1 The investigation projects were modelled after the more formalized investigations
that have been common in the United Kingdom.

I think of a mathematical experience as a multidimensional place encompassing the
geographical place as well as three other elements for which we use metaphors of place—the
topic of discourse, the place in time and relational positioning. My observation of the grade
10 students and teachers immersed in a mathematical place new to them was reminiscent of
my experiences of immersion in a culture new to me. Thus, my interpretation of their expe-
riences tended toward comparison between immersions in these two kinds of places.

In describing ways of being in a mathematical place, I distinguish between immersion
and tourism, and between different roles filled by guides. A mathematical tourist avoids
emotional involvement in problems and is uninterested in the complexity of the landscape.
By contrast, signs of mathematical immersion include captivation, creativity and the uncov-
ering of interconnectedness.

First, I consider an example of captivation. In one set of classroom transcripts, a nor-
mally lazy student is so engaged in his investigation that he vehemently resists his peers’
efforts to stop. In a subsequent interview, he called his investigation “a break” from the
tedium of usual mathematics classes, though he admitted that he normally did as little
work as possible in most classes. We might say “he had a problem”, but it is more descrip-
tive to say “the problem had him”. He was captivated by the problems in the mathematical
landscape and he could not leave. I still wonder what made the problem real for him. He
thought it was the deceptive simplicity of its posing.

A second example demonstrates how creativity is dependent on the absence of an
available solution. In this second set of classroom transcripts, ownership of a problem shifts
according to established relations of authority. A student is distracted from her unique, vi-
able approach to the investigation by her teacher’s voice of authority. With this shift, her
pronouns shift from “I” to “we” and finally to “you” when her mathematics is taken away
by her teacher’s presupposition that there would be one right way to approach this prob-
lem—his way. Her creative idea was lost in this episode.

The third example points to the need for teachers to direct students’ attention to the
interconnectedness of their mathematical explorations. One student group’s written work
displayed two good approaches to the same problem—one verbal (with no diagrams) and
one diagrammatic (with virtually no verbal clues). There was no explicit connection made
between the different approaches. If the teacher were to have been attentive to the
interconnectedness of these two approaches to the same problem, he could have directed
his students to become more aware of the interconnectedness that they uncovered.
_____________________
1 For a more in-depth interpretation of this research see Wagner, David (2002), Being in a Math-
ematical Place: Brief Immersions in Pure Mathematics Investigation, unpublished masters thesis,
University of Alberta.
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Reflections on 25 years with CMESG

Eric Muller
Brock University

Abstract

Not all reflections are real. Frédéric Gourdeau and I will try to make ours as true to our dual reality
allows: the reality of a mathematician, and the reality of a teacher. As mathematicians we travel
regions of mathematics taking photographs of interesting events, unforgettable characters, exotic
birds, beautiful flowers, striking monuments, unusual landscapes. ... For the photo album, we select
some of these photographs, throwing away those that are technically imperfect or those that do not
capture the moment we remember. As mathematics teachers we open up this album and attempt to
recreate the moment that made that picture so memorable. We can hear the sigh—oh no, not another
family photograph! CMESG, through its members and its meetings, has and continues to have an
important influence in the development of our understanding of the nature of mathematics and of its
teaching and learning at the post secondary level.

This is an unusual paper. One is rarely invited to reminisce in public and in print about
influences of decisions and direction taken in one’s professional life. CMESG is clearly a
very different Group and this is not an ordinary meeting, it is its 25th anniversary. This paper
demonstrates one of the many non-conventional approaches taken by CMESG. In these
writings you will find reflections on a personal journey, a journey that was not part of my
planning as a mathematician in a university setting. It started with an invitation to attend a
meeting of a group of individuals who were exploring ways to bring Canadian mathemat-
ics educators together. This group grew into the now well-established CMESG, a Group
that was to substantially influence my teaching and my views on the learning of mathemat-
ics at the post secondary level. Some 25 years ago, as a research mathematician I was im-
mersed in the subject as I always have been. At that time in preparation for a course, I took
snapshots of many different mathematical objects often repeating the activity on the same
object but focusing on different aspects. With my professional eyes I would select the best
snapshots for my class, and using a particular theme I then placed these in a sequence for
my presentation. Like most mathematicians the sequence was logically organized starting
with definition or theorem, followed by explanations, implications, abstractions, and rounded
off with well-chosen examples.

It was my interactions with CMESG members and my participation in the Group’s
annual conferences that I began to question the information provider model, the only model
I had experienced in my university education. For this presentation I will highlight a few of
the many undergraduate mathematics education issues that I have explored—they are not
raised in any particular order. For long standing CMESG members these are not new issues,
I have the excuse that I can bring them up again as this session is focused on reflections of
the impact of 25 years of CMESG on a mathematician.
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Individual mathematical concept development—the teaching sequence vs. the
learning sequence

The teaching sequence used by many mathematicians is not the sequence that we most
commonly use for learning about the world around us. The natural learning sequence starts
with an encounter with a new object or action. As active learners, we then look for other
examples of this object or action, and within these examples, search for common properties.
Other objects or actions arise and we decide whether they belong to the set under consider-
ation. It is only after extensive experience, that we develop our definition. In most cases
mathematicians also see the definition or theorem as a culminating activity; the definition is
the activity that determines boundaries for the object or action. Our definition is a function
of our state of knowledge. It is alive; we can amend it as our knowledge grows and as we
come across new experiences that challenge where we have placed the boundaries. I leave
with you two questions. When are students mature enough to reverse the more natural
sequence of learning? And, as mathematicians, do we provide for this change in approach?

When I show a mathematical object, one of my snapshots, it seems natural to assume
that my students and I are seeing the same thing. Although the two-dimensional photo-
graph is the same, my experience of this object is very different. For me it is a completely
unsatisfactory two-dimensional projection of an n-dimensional dynamic world of space,
time, emotion, sound, heat, wind, etc., etc. What an incredibly difficult task I face as a teacher
to reconstruct the n-dimensional environment from its two dimensional representation. This
can be especially challenging if I have discarded other snapshots of the same situation taken
from different vantage points.

As teachers we have the possibility of introducing environments in which the stu-
dents take their own snapshots. Examples of these are the Lénárt Sphere1 or the computer
environment “Journey through Calculus” developed by one of my colleagues Bill Ralph.2

When all my students and I have worked through an activity in one of these environments
we have a very real common experience. Everyone is present when the snapshot is taken!
Building on this common experience we are able to look for explanations, implications,
generalizations, abstractions that lead to the formulation of a definition. From a
mathematician’s point of view, these environments do bring in new challenges and con-
cerns. The most important one for me is the need to assess whether the learner has made the
transition from the environment to the mathematics. Learners may function very well within
a given environment but what mathematics are they learning? To explore this further John
Mason and I led a Working Group at the 2001 CMESG meeting. It had the title “Where is the
Mathematics”,3 and had for initial goal to address the questions “How does mathematics
emerge from playing games, from using structural apparatus and from mathematical in-
struments? How can this be planned for, enhanced, and exploited?”. Whether these envi-
ronments provide more than a common experience is still to be explored, whether they
engage more undergraduate students into mathematics (not only into the activity) than the
students who would have been engaged anyway by a more traditional teaching approach
still needs to be documented.

Course and program development—the sequencing theme

For a presentation, many different themes can be used to sequence the snapshots. Some
themes are easier for the audience to follow than others. For example a sequence on flowers
is more easily discernible than a time sequence. In most situations the time sequence is only
evident to the presenter who actually lived through the experiences in that particular time
order. Thus a sequence that may be eminently logical to the presenter, may appear quite
haphazard to the audience. Most mathematical themes are only evident to the mathemati-
cian who has an overview of the subject. It is no wonder that for many people mathematics
is a game of the mathematical gods, only they are privy to how the presentation fits together
and where it is all leading to. Most mathematicians provide the destination by first provid-
ing the definition or theorem and then developing its content. Unfortunately, as was dis-



Eric Muller • Reflections on 25 years with CMESG

155

cussed in the previous section, and for many learners the definition or theorem is not com-
prehensible and is not seen as a destination.

When sequencing mathematical topics in courses and in programs, mathematicians
build mainly on a technical hierarchy of mathematics. In this technical hierarchy it is, for
example, necessary to understand the structure of a function before applying the rules of
differentiation. Mathematics also possesses a conceptual hierarchy. This hierarchy is less
well understood and therefore plays a less important role in the sequencing of topics in
courses and programs. In the conceptual hierarchy it is, for example, possible to develop an
understanding of slope without understanding the structure of functions. How are these
two hierarchies related in the development of our understanding of mathematics and its
applications? This question may not have been very important fifty years ago, however, I
believe that it is now central to undergraduate mathematics education, because learners
have access to computer technology that possesses all the technical capabilities required of
the first two years of university mathematics. In their exploration of the implications of of
Symbolic Mathematical Systems in Mathematics Education, Hodgson and Muller4 provide
the analogy of the development in transportation. Each of the bicycle, car and airplane pro-
vide different opportunities. Insisting that one has to go from Toronto to San Antonio by
bicycle will enthuse a rather small audience! The question that needs to be addressed in
mathematics education, and more specifically at the undergraduate level is, what would
sequencing within mathematics courses and within mathematics programs look like if it
was based on a conceptual hierarchy, and the requirements of the technical hierarchy were
left to technology? In other words, is it possible for learners to access mathematical concepts
which are higher on the conceptual hierarchy scale if they can by-pass some of the technical
hierarchy now readily available in computer software? Resolving this question has impor-
tant implications on the flexibility of learner access to mathematics. I explored this in a
presentation to the Third Southern Hemisphere Conference on Undergraduate Mathemat-
ics Teaching in South Africa.5 University departments of mathematics have made some
progress in providing more flexibility of learner access in their service courses. However
little has been done for mathematics majors. Even less attention has been paid to students
planning to become mathematics teachers; future elementary mathematics teachers are not
even on the radar screen of many university mathematics departments. Why is it that spe-
cial mathematics courses are introduced for engineers, computer scientists, and others, while
the group most able to ensure the future well being of mathematics education, is seen as
having no specialized needs or is disregarded completely if the focus is mathematics educa-
tion at the elementary level? University mathematics departments need to reflect on the
role that technology can play in facilitating student action in mathematics and on the way it
can provide flexibility of student access to mathematics.

Awareness of the teaching environment, student expectations, assessment, etc.

Although I am not spending anytime discussing these issues I still see them as very impor-
tant issues that mathematics departments need to address. Without CMESG, I would not
have spent the time and effort to reflect on many issues which impact the teaching and
learning of mathematics but which have little to do with the subject itself. I find it interest-
ing that those students, who provide additional information in course evaluations, write
mainly about issues that pertain to their expectations, their experience of the teaching and
learning environment and their evaluation of the assessment process. All these situations
are very closely tied to things that the department can affect, namely, mathematics program
of study, use of technology, resources, faculty attitudes, etc. There are many others over
which the department has no control. Departments and the universities should not under-
estimate the tremendous amount of energy and goodwill that is required to make sustain-
able changes in teaching environments, program reviews, etc. It is crucial for mathematics
departments to provide more than lip service to faculty who spend more than the minimum
time and effort to such mathematics education activities.
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Making long lasting changes in mathematics education at the university level

Making mathematics education changes in departments of mathematics is a real challenge.
Mathematicians have graduated through a system that prizes individualism and special-
ization, usually in a narrow field of mathematics. Discussion, let alone collaboration, in
areas of teaching and learning mathematics are rather rare. The consequence is that many
learner centred developments in a course or program are lost when a faculty moves to an-
other course or another set of responsibilities. I truly believe that significant program changes
will only be sustained if there is a group of faculty ‘champions’ to support the change. One
needs to realize that there is very little mathematics education memory in Departments of
Mathematics and that in general program reviews are curriculum based with little time and
effort devoted to issues of pedagogy and cognition.

In my many years at Brock University I have paid special attention to developing a
mathematics education memory, I have focused my efforts on changes that would impact
more than my individual classroom. Such lasting changes take a lot of effort, consume much
time, and require the goodwill of many colleagues. Looking back over my publications I
note that one of the first papers6 that explored an aspect of mathematics education was co-
authored by five members of our Department. In retrospect this was our first effort at using
technology in service courses. It has taken twenty years for the Department to respond in a
universal and significant way to technology. The change was in line with what John Conway7

wrote in 1997: “We have to embrace technology, I don’t mean just tolerate it; embrace it and cel-
ebrate it.... The professional mathematics community must adapt and learn how to best incorporate
technology into instruction. With the existence of powerful, inexpensive computers, I see mathemat-
ics departments rethinking their entire curriculum.... Otherwise we are out of business”. The sig-
nificant response occurred in 1999 when our Department of Mathematics completely re-
viewed its programs, basically starting from scratch and paying attention to many of the
issues I have raised today. What was significant about this review was that issues of peda-
gogy and learning environments were raised and discussed for every course and for every
program. We are much further ahead than many mathematics departments but we still
have a long way to go! Those of you who are interested in what mathematics first year
students are able to do when they are let loose with powerful mathematics technology can
look at the site which is under development

http://www.brocku.ca/mathematics/mica02/

The first year MICA course8 used Java in 2002 and is moving to VisualBasic.net in 2003.
In closing this brief reflection on CMESG’s impact on my university teaching career I

wish to touch on the future of this Group.

Looking at the future for CMESG

In my presentation I spent some time exploring the future of CMESG. Let me point to a few
items which are, in my view, very important priorities. At the top of the list I place the
CMESG meetings and their proceedings, and I follow this with the arms length support of
the journal for the learning of mathematics9 started by David Wheeler and now edited by David
Pimm. The meetings provide a friendly environment where mathematics educators, from
across Canada, are able to meet and discuss issues and research in mathematics education.
The journal provides international visibility for the Group. I believe that CMESG would
benefit from an increased membership of mathematicians from Faculties of Mathematics
and Sciences. Generating additional members from this group should improve with time as
these Faculties provide more emphasis and support for those who are interested in address-
ing issues of teaching and learning.

My final comments concern ICMI and the question, should there be a Canadian ICMI
sub-commission?  If the answer is yes, then what role could CMESG play in it? It is clear to
me that such a sub-commission should not duplicate what is already being done. What
would be of benefit to mathematics education in Canada? Neither the Canadian Mathematical
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Society nor CMESG have been successful at bridging the gap between mathematicians in
universities (in Mathematics Departments and in Faculties of Education) and mathemati-
cians in schools and other post secondary institutions. Could a Canadian ICMI sub-com-
mission engender better collaboration across institutions and levels?

There is no better way for me to end these reflections than with a question. CMESG is
built on trust and collaboration where questions are the norm and where answers are seen
as stepping stones to new questions.
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Réflexions d’un mathématicien sur le GCEDM

Frédéric Gourdeau
Université Laval

En premier lieu, je tiens à remercier les organisateurs de m’avoir demandé de contribuer à
la rencontre anniversaire avec mon collègue Eric Muller. Je suis honoré que l’on m’ait
demandé de partager la tribune avec Eric Muller et c’est avec grand plaisir que j’ai accepté
cette invitation.

As you can immediately notice, this paper will hop from French to English, from En-
glish to French. This is a true reflection of my presentation at Kingston. Pourquoi avoir
choisi de faire une présentation en utilisant deux langues ? En partie parce que je ne connais
pas de solution parfaite au dilemme que pose la nature bilingue de notre groupe, mais
surtout parce que le respect que je ressens lorsque je suis aux rencontres du GCEDM me
permet de faire un tel choix. I hope that those of you who read mainly English will have a
chance to practice their reading skills in French. Les francophones auront au moins une
partie du texte dans leur langue.

Bien que je ne sois pas un membre du groupe depuis aussi longtemps qu’Eric, j’ai déjà
dans mon album de famille du GCEDM plusieurs photographies que j’aimerais vous
présenter. Puisque ma présentation se veut avant tout un témoignage personnel, il importe
sans doute de préciser que je suis revenu aux mathématiques après un passage de quelques
années en coopération internationale, années pendant lesquelles j’ai appris énormément
des gens que j’ai côtoyés. Je retrouve au sein du GCEDM une passion et un engagement
humain qui me rappellent ceux que je retrouvais alors dans mon travail. Loin d’être
anecdotique, cet aspect du groupe me paraît fondamental et il en sera donc largement ques-
tion dans la suite du texte.

Getting to know CMESG/GCEDM

My first photograph features an important member of this group who played a key role in
my development as a mathematics educator: Bernard Hodgson.

Bernard est à l’origine de ma participation au GCEDM tout comme il est à l’origine de
ma présence actuelle en mathématiques. Alors que je n’apprêtais à être engagé par
l’Université Laval, Bernard m’entretenait déjà des différentes organisations nationales et
internationales oeuvrant en enseignement des mathématiques. Que de sigles à connaître :
GDM, AMQ, GRMS, SMC, NCTM, ICMI, … Je me souviens qu’un groupe se dégageait du
tableau qu’il brossait pour moi : un groupe qui avait été plus important que les autres dans
son cheminement en enseignement des mathématiques.

Ce groupe, évidemment, est le Groupe canadien d’études en didactique des
mathématiques. Les rencontres annuelles du groupe étaient, selon Bernard, des moments à
ne pas manquer. De ses propos se dégageait une photographie complexe.

Here I must briefly interrupt my discussion and point out the mathematically rich
concept that underlies it. My first photograph about this group, call it A, contains one man,
Bernard Hodgson, who is a member of the group. In this photograph, this man is talking
about another photograph of the group, call it B: thus B is a part of A. Now Bernard is
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himself part of that second photograph. Thus, it can be argued that A is a part of B, which is
a part of A, which is a part of … and it goes on. Thus I claim that there is something fractal
about this discussion, through self-similarity. (Fans of Harry Potter may also note that the
man is talking in the photograph.) Moral: perhaps this talk doesn’t have depth, but it is
more than one-dimensional.

Let me now continue on the main theme. The portrait of CMESG that Bernard was
describing to me was that of the group that had the most influence on him with regards to
his views and understanding of mathematical education. This was largely due to the informal
atmosphere in which the group operated, only contrasted by the commitment that its
members had to mathematical education. He was convinced that I would like the group
and mentioned the names of many people, important members of the group, like Sandy
Dawson, Claude Gaulin, Bill Higginson, Carolyn Kieran, Tom Kieren, Eric Muller, David
Wheeler, and others. But who were they?

Halifax, 1996, et l’importance des groupes de travail

Cela m’amène à ma seconde photographie, prise à Halifax en 1996. Je me rends à ma première
rencontre annuelle du groupe, ne sachant trop ce que ce groupe mythique me réserve. Quels
gourous m’y attendent ? Seront-ils vêtus de longues toges blanches ? Comble de malheur,
Bernard Hodgson ne peut m’y accompagner. Y aurait-il un piège ? Heureusement, l’accueil
chaleureux de Mary Crowley et Yvonne Pothier me permet de me détendre un peu.

Le premier groupe de travail auquel je prends part est dirigé (est-ce le bon mot ?) par
Bill Byers et Harvey Gerber et porte sur les preuves en enseignement des mathématiques.
L’éclair frappe le (pas très) jeune et (pas tout à fait) innocent mathématicien que je suis : Je
me souviens de questions percutantes (pour moi) posées par Joel Hillel, notamment, mais
aussi par d’autres.

We wonder if the teaching of proof was not largely a ritual. Are most students simply
going through what the teacher, as a student, has gone through, even if in fact the vast
majority of students don’t get the point of some/most proofs in some courses (like first year
calculus)? I have to confess that questions like this one asked by someone else would prob-
ably not have mattered as much to me. But it mattered to me enormously when Joel asked
some of these questions because of how he was talking about it and who he was: he had
been giving courses similar to those I had as a student, and similar to some that I had started
giving as a lecturer. I had not given a lot of thought to the reasons why we taught a course in
a specific way, with detailed proofs or not, as it may be. My focus had been to understand
the mathematics and the proofs as a student, and to try to help students understand them as
a lecturer.

This, for me, is an example of one of the greatest features of CMESG: the group brings
together mathematicians who are serious about mathematical education and provides a
context in which discussion will occur. There may well be other groups that do this, but
CMESG does it extremely well.

Par la suite, le groupe de travail est divisé, ce qui permet aux membres davantage
intéressés par la formation des enseignants de se réunir. Je suis alors avec Nadine Bednarz,
Sophie René de Cotret et Linda Gattuso notamment, et j’écoute, j’apprends. Nous discutons
de la base des arguments invoqués lors de preuves, de l’axiomatique. Que peut-on prendre
pour acquis pour donner une preuve, quels sont les axiomes de base ? Ces questions
m’apparaissent alors fondamentales.

Ce genre de questions ainsi que les différents angles que l’on peut prendre pour aborder
une question dans le cadre d’un groupe de travail illustrent bien l’importance d’avoir du
temps. Du temps pour explorer plusieurs aspects d’une problématique, mais aussi du temps
pour écouter et réfléchir. De plus, la composition du groupe de travail telle que je l’ai vécue
à Halifax permet aussi au mathématicien (masculin, dans ce cas) d’apprendre au contact
des didacticiennes (dans ce cas, le féminin est de rigueur), de s’enrichir de perspectives et



Frédéric Gourdeau • Réflexions d’un mathématicien sur le GCEDM

161

d’analyses différentes. Il s’agit là encore de traits particuliers du GCEDM qui, s’ils ne lui
sont pas uniques, en sont cependant des caractéristiques essentielles.

Conférence plénière

La rencontre de Halifax compte aussi une conférence plénière de David Henderson. David
brosse un tableau de l’enseignement qu’il a reçu et de l’importance accordée au formalisme
dans sa formation. Cette importance, il la questionne de manière fort bien appuyée. Il nous
parle de son cheminement personnel et mathématique. Il nous entretient de la géométrie
sphérique, absente de sa formation comme étudiant. Cette absence, il l’attribue en partie au
fait que la géométrie sphérique ne soit pas axiomatisée alors que les mathématiques modernes
et le formalisme sont la norme.

Parmi les idées les plus importantes émises par David Henderson, je citerai la suivante
(parue aussi dans les actes de cette rencontre) :

Alive mathematical reasoning includes living proofs,
that is, convincing communications that answers—Why?

On ne parle ici ni d’enlever les preuves, ni de les conserver comme rite de passage.
As an example of this definition of proof, David contrasted the classical proof using double

induction that multiplication is commutative (for natural numbers) with the following:
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Comme autre exemple, David présente le cas d’une étudiante qui, dans l’un de ses
cours, insistait qu’elle avait une preuve de l’égalité des angles opposés par le sommet à
l’aide de deux rotations de 180 degrés. David relate que cela lui a pris beaucoup de temps
pour finalement accepter qu’effectivement, il s’agit bien d’une preuve.

Ici, axiomatique et formalisme ne sont pas les critères de validité d’une preuve.
La conférence plénière de David Henderson est remarquable, mais elle n’est pas unique.

Plusieurs présentations faites au GCEDM m’ont permis de mieux articuler ma vision des
mathématiques et de leur enseignement.

These types of presentations, and the possibility to discuss them with others, allow
me, as a mathematician, to think about mathematics in a way that I can not usually do. It
permits me to redefine what I mean by mathematics, to acquire a broader and fuller under-
standing of the essence of mathematics.

Being part of a community: my first pizza run

Sur cette photographie, il n’y a que des gens. David Wheeler, Sandy Dawson, Bill Higginson,
Tom Kieren et Marty Hoffman notamment, avec lesquels je fais ma première pizza run, à
Halifax. Ils discutent des débuts du groupe, des rencontres passées. Je me sens privilégié.
J’apprends les motivations de ces gens qui ont mis le groupe sur pied, qui en sont des
membres fidèles. Je vois et je sens la passion qui les anime. Je commence à faire partie du
groupe.

De retour en classe

Je quitte ma première rencontre annuelle avec questions et remises en question. Que garder
du  formalisme ? La nature des mathématiques et le besoin d’une axiomatique sont remis en
cause. Qu’est-ce qui peut être considéré comme étant une preuve exactement ? Que faire
comme enseignant ? Quelles sont les bases communes entre moi et mes étudiants, entre ces
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étudiants et leurs élèves ? Que peut-on prendre pour acquis dans un cours, dans le
développement d’un thème ?

De retour en classe, je cherche à développer des activités qui permettent aux futurs
enseignants au secondaire d’acquérir une vision plus riche des mathématiques. Il y aura
des lectures de textes, la rédaction d’un essai, ainsi que davantage d’activités exploratoires,
de simulations. Cet enseignement se situe dans le cadre d’un cours pour les futurs enseignants
conçu par Bernard Hodgson et Charles Cassidy et qui porte déjà en lui ces questions. Le
cycle commence pour moi, comme il a commencé pour eux avec le GCEDM.

La toile mathématique s’enrichit

Les rencontres qui suivent sont pour moi l’occasion de poursuivre les réflexions amorcées
et d’en entamer de nouvelles. Ainsi je commence à mieux mesurer l’immensité de mon
ignorance face à l’histoire et à l’algèbre grâce à ma participation au groupe de travail de
John Mason et Louis Charbonneau à Lakehead, au groupe thématique de Israel Kleiner la
même année (Abstract algebra: a problem-centred and historically focused approach) et au
groupe de travail de Louis Charbonneau et Luiz Radford lors de la rencontre de Montréal
(Histoire et enseignement des mathématiques).

And what can be said about mathematics and society? As a person, I have always
needed to reconcile mathematics with the world we live in. CMESG provides me with op-
portunities, once again. I can hear conferences from, and speak with, people like Ubiratan
D’Ambrosio, Jill Adler, Ole Skovsmose or Sandy Dawson. It is wonderful for a mathemati-
cian, like me, to be able to reflect about different aspects of the relationship between math-
ematics and society, and opportunities to do so are not often seen in mathematics research
conferences. These encounters provide me with other ways to see the role of mathematics in
the community, for instance by linking it with democracy, culture, or development (a loaded
word which I deliberately choose to use).

This multitude of possibilities enables me to constantly reshape my vision of
mathematics and to come in contact with different and challenging new perspectives and
with new areas of investigation as a mathematical educator.

The darker side: mathematics education and jargon

Not everything is easy for a mathematician at CMESG, and I must mention one sore point:
it is sometimes difficult for the mathematician to feel part of the conversation. The first time
it happened to me, everyone was talking about some turtle named “logo” which had (or
was it that it could have, or should have) revolutionized the teaching of mathematics. I later
realized my ignorance about logo also had a lot to do with my age. But it certainly was not
the last time I was to feel out of place.

I later heard of embodiment, which even comes in threes, and of enactivism, which
still eludes me. And here I cannot blame language and pretend that it is simply because I am
not a native English speaker. It is the same in French!

Je me rappelle mon embarras lorsque l’une des chercheures émérites du groupe me
parlait de problèmes de nature épistémologique. J’éprouve d’ailleurs toujours un certain
malaise à utiliser ce mot, tout comme je ne peux parler de la théorie didactique des situa-
tions de manière naturelle.

However, we mathematicians can learn! There are other terms which I can now use as
if they were natural to me. For instance, I used only to do maths but now I can sometimes
say that I mathematize! I can even describe a problem as a rich learning situation without
blinking. To sum it up, CMESG educates the mathematician: we learn lots of new words,
and, sometimes, their meaning too.

The lighter side: fun maths
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Ici, des pizzas et des bouts de papier, des jeux et des questions. Étonnamment peut-être,
mon travail de mathématicien me donne rarement l’occasion de faire des maths amusantes
et légères, de me poser des questions gratuites, de m’amuser mathématiquement. Encore
une fois, c’est sans doute davantage le climat qui règne lors des rencontres du groupe qui
permet de poser de jolis problèmes et de s’embarquer dans des aventures mathématiques
pour le plaisir.

Le plaisir que j’éprouve à m’engager dans des activités mathématiques avec d’autres
me fait découvrir de nouvelles manières de faire des mathématiques et me donne des idées
pour mon enseignement. Je découvre ou redécouvre la beauté de certaines idées
mathématiques, inconnues de moi ou oubliées depuis longtemps.

Conclusion

Les rencontres que j’ai eues l’occasion de faire grâce au GCEDM, qu’elles soient intellectuelles
ou personnelles, continuent de nourrir mon enseignement et mes réflexions. En cela, elles
influencent la formation de centaines de futurs enseignants de mathématiques au secondaire.
Je crois que cette influence est extrêmement positive.

Lors de la rencontre de Kingston, je n’avais pas à tirer davantage de conclusions puisque
Eric Muller le faisait pour moi, puisant dans son expérience et ses réflexions basées sur 25
années avec le groupe. Je suis confiant que la version écrite de sa contribution jouera ce rôle
à nouveau.
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A Historical Perspective on
Mathematics Education Research in Canada:

The Emergence of a Community1

Carolyn Kieran
Université du Québec à Montréal

This paper describes the Canadian mathematics education research community—from its
preemergence in the early 1920s up until 1995. Because data collection ended in 1995, the
more recent scholars of the community are not included in this story. A future update will
hopefully rectify this situation. In preparing the chapter on which this paper is based, I first
asked myself, “What defines a research community? What are its characteristics? How does
a research community develop? Are there events one can point to that could be said to have
contributed to its emergence?” I finally decided to use Etienne Wenger’s (1998) concept of
communities of practice as a unifying thread to describe those happenings that I felt were
pertinent to the formation of the Canadian community of mathematics education research-
ers. In my analysis of the events that fostered the emergence of our community, I weave
together the concurrent growth of research communities both abroad and within the prov-
inces and the roles that these played. The milestones I present are intended to illustrate the
spirit of its overall evolution. In taking a particular focus, I have regrettably missed certain
individuals or events that merit inclusion; for this, I offer my sincerest apologies.

1. What is a Community of Practice?

According to Wenger:

We all belong to communities of practice. At home, at work, at school, in our hobbies—we
belong to several communities of practice at any given time. And the communities of prac-
tice to which we belong change over the course of our lives. In fact, communities of practice
are everywhere. ... In laboratories, scientists correspond with colleagues, near and far, in
order to advance their inquiries. Across a worldwide web of computers, people congregate
in virtual spaces and develop shared ways of pursuing their common interests. ... We can
all construct a fairly good picture of the communities of practice we belong to now, those
we belonged to in the past, and those we would like to belong to in the future. We also have
a fairly good idea of who belongs to our communities of practice and why, even though
membership is rarely made explicit on a roster or a checklist of qualifying criteria. Further-
more, we can probably distinguish a few communities of practice in which we are core
members from a larger number of communities in which we have a more peripheral kind
of membership. (pp. 6–7)

However, not all groupings and associations are communities of practice. The focus is on
practice. For example, the neighborhood in which one lives may be called a community, but
it is not a community of practice. More precisely, according to Wenger, communities of prac-
tice have the following three dimensions that associate practice and community, all of which
are required for communities of practice: mutual engagement, joint enterprise, and shared
repertoire.
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Mutual Engagement

Mutual engagement involves, according to Wenger, “taking part in meaningful activities
and interactions, in the production of sharable artifacts, in community-building conversa-
tions, and in the negotiation of new situations” (p. 184). He adds:

[communities of practice] come together, they develop, they evolve, they disperse. ... Thus,
unlike more formal types of organizational structures, it is not so clear where they begin
and end. They do not have launching and dismissal dates. In this sense, a community of
practice is a different kind of entity than, say, a task force or a team. ... A community of
practice takes a while to come into being. (p. 96)

Joint Enterprise

Joint enterprise concerns the way in which members do what they do. Wenger emphasized
that “because members produce a practice to deal with what they understand to be their
enterprise, their practice as it unfolds belongs to their community in a fundamental sense”
(p. 80). Practice is, in fact, shaped by the community’s way of responding to conditions,
resources, and demands.

Shared Repertoire

Wenger described the shared repertoire of a community of practice as follows:

The repertoire of a community of practice includes routines, words, tools, ... concepts that
the community has produced or adopted in the course of its existence, and which have
become part of its practice. The repertoire combines both reificative and participative as-
pects [reificative: documents, instruments, forms, etc.; participative: acting, interacting, mu-
tuality, etc.]. It includes the discourse by which members create meaningful statements
about the world, as well as the styles by which they express their forms of membership and
their identities as members. (p. 83)

The above description would appear to focus more on the repertoire of an existing commu-
nity. But, as Wenger pointed out: “A community of practice need not be reified as such to be
a community: it enters into the experience of participants through their very engagement”
(p. 84). Indeed, the reificative aspects of a community are of two types. There are those that
are the products of the enterprise, such as—for a community of researchers—research re-
ports, publications, and so on. There are also those that are more related to the processes
engaged in by the community. The latter might include the taking on of a more formal,
organizational structure, but this is not essential for a community to exist. In either case, as
Wenger emphasized: “Reification is not a mere articulation of something that already ex-
ists. ... [It involves] not merely giving expression to existing meanings, but in fact creating
the conditions for new meanings” (p. 68).

As reificative aspects can yield evidence related to a community’s coming together,
emerging, and developing, I first present two rather broad examples of reificative aspects of
the shared repertoire: doctoral dissertation production and government-funded research
(note that master’s theses would have been included as an example in this category, were it
not for the challenge of obtaining reliable information regarding their production across the
country over the past century). The overview that is presented in the following section not
only signals the growth that occurred during approximately three-quarters of a century but
also helps situate the later discussion of the communities of practice that emerged at both
the local and national levels and the interactions between them.

2.  An Overview of the Growth of a Community

When Jeremy Kilpatrick (1992) wrote a history of research in mathematics education in the
1992 Handbook of Research on Mathematics Teaching and Learning, he argued that disciplined
inquiry into the teaching and learning of mathematics in the United States and elsewhere in
the world had its beginnings in the universities. Therefore, signs of the beginnings of a Cana-
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dian community of mathematics education researchers were sought in the universities.

The Early Canadian Research Related to Mathematics Education

The first doctorate from a Canadian university for research that was related to school math-
ematics was awarded in 1924, a Doctor of Pedagogy from the University of Toronto (U of T)
(Dissertation Abstracts 1861–1996). The dissertation had the title Practice in Arithmetic or the
Arithmetic Scale for Ontario Public Schools. It was followed by three more in 1929, 1943, and
1945 at the same university. These first dissertations centered on surveys of the teaching of
arithmetic, the development of arithmetic evaluation instruments, and the diagnosis and
remediation of arithmetic learning problems. The subject matter of these dissertations sug-
gests that, as early as 1920 at U of T, there were individuals, perhaps even a group, whose
main research interest was mathematics education.

In fact, there was very definitely an interest in school arithmetic at U of T, and this
preoccupation preceded by several years the 1924 dissertation just mentioned. It seems that
in the late 1880s John Dewey had been contacted by James McLellan, who was Director of
Normal Schools for Ontario and a professor of pedagogy at U of T (see Dykhuizen 1973, p.
60), to write a psychological introduction to a book that McLellan was authoring on educa-
tional theory and practice. The outcome of that collaborative effort was published in 1889
(McLellan 1889), but more interestingly it led to a second book on the study and teaching of
arithmetic, The Psychology of Number and its Applications to Methods of Teaching Arithmetic by
McLellan and Dewey in 1895. However, McLellan passed away in 1907, at the age of 75, and
thus had no direct role in the supervision of the first dissertations.

The doctoral research related to school mathematics that was carried out at U of T
from the 1920s to the 1940s was succeeded by similar work in the late 1940s and early 1950s
at Université de Montréal (one dissertation in 1947) and Université Laval (one dissertation
in 1951). In 1948, U of T added another to its set of dissertations related to school mathemat-
ics. Thus, the total number of dissertations completed at Canadian universities on research
related to the mathematics curriculum or the teaching and learning of school mathematics
during the 1924–1951 period was seven. Even though a national community of practice was
still far from being a reality, it was clear that small groups had begun to be involved in
mathematics education research in Ontario and Québec by the middle of the twentieth cen-
tury. But progress during these years was very slow. According to the U.S. scholar Ellen
Lagemann (1997), mathematics education as a research discipline in its own right did not
exist in many countries prior to the late 1950s and early 1960s, at which time educational
research began to be more discipline-based (see Kilpatrick 1992 for an extensive discussion
of this process both in the United States and abroad). Nevertheless, the topics of interest in
these early Canadian dissertations related to mathematics education reflected themes that
were equally of interest south of the border.

It took the post-World War II population boom to provide a jump-start to the math-
ematics education research enterprise in Canada. The population, which in the 1920s stood
at 9 million, rose to 14 million in 1950 and then 18 million in 1960, registering in that latter
decade the highest percent of increase since the years 1900–1910. To accommodate the grow-
ing numbers of students in the 1960s, the already existing universities had to expand, and
new ones were created. The number of graduate programs increased, too, which meant that
more research would now be done than ever before.

A Period of Growth for the Universities

Of the several universities created in Canada in the post-World War II years, the two that
were formed in Montréal—Concordia University in 1964, and Université du Québec à
Montréal (UQAM) in 1969—made an innovative decision regarding the intersection of
mathematics and education. Scholars who were interested in the teaching and learning of
school mathematics were affiliated with mathematics departments rather than education
departments. This was a period of intense educational reform in the province of Québec.
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The traditional eight-year classical colleges of the French-language educational system of
the province were disbanded in the 1960s and replaced by high schools, CEGEPs (from
Collèges d’enseignement général et professionnel [in English, Colleges of General and Pro-
fessional Training]; i.e., colleges that dispensed both preuniversity and technical or voca-
tional courses), and universities. Those who had taught at the upper levels in these classical
colleges were integrated into the new CEGEPs and universities of the province. The same
reform that closed the classical colleges also brought an end to the French- and English-
language normal schools and transferred instructors and students alike to both the new and
existing universities. Similar events with respect to the transfer of normal school teachers to
the universities occurred in other provinces as well, but at different times; for example, in
Alberta, this changeover took place in 1945.

It might have been expected that once the teacher-training faculty had been incorpo-
rated into universities across the nation, they would soon enough get involved in research.
But it took time because many of the freshly appointed education professors had to work at
obtaining doctoral degrees themselves and learning about the research process. At some
universities across the nation, a tension arose between the role of teacher trainer and that of
researcher, and was not resolved for several decades in many education faculties. As of the
early 1990s, there continued to be faculties of education in several universities where the
emphasis was clearly on teacher training. Research was simply not part of the culture of
these faculties of education, as was indicated by the lack of graduate programs with a re-
search component. At such universities, students might have been able to obtain a master ’s
degree, but had to go elsewhere if they wished to continue on to the doctoral level in educa-
tion. In 1990, there were merely seventeen Canadian universities where it was possible to
obtain a doctoral degree involving research related to mathematics education (see Kieran
and Dawson 1992).

Growth in Dissertation Research Related to Mathematics Education

The years from 1955 to about 1969 were years of continuing gradual growth in Canada for
dissertation-based research related to school mathematics. During this period of popula-
tion increase, of reform in the educational systems of various provinces, and of the begin-
nings of mathematics education as an identifiable field of research study in many countries
of the world, the number of school-mathematics-related dissertations in Canadian universi-
ties showed a modest increase. As well, the production moved beyond the universities of
Ontario and Québec. The Universities of Alberta and British Columbia had also begun to
develop research groups interested in school mathematics.

But the period of most intense growth in dissertation research related to mathematics
education in Canadian universities occurred from the late 1960s onward. See table 1 for the
number of dissertations related to school mathematics for which doctoral degrees were
awarded in Canadian universities from 1924 up to 1995. The data from table 1 are re-pre-
sented in graphical form in figure 1 so as to see at a glance the periods that were peaks with
respect to Canadian math education dissertation production. Note the rise in the mid- to
late 1970s (of the 43 doctorates awarded during the years 1974–1979 for research related to
mathematics education, 17 were from the U of A and the remainder from six other universi-
ties across the country). This rise during the 1970s was followed by a period of slower growth,
until the 1990s when the sharpest increase took place—resulting in the highest peak in 1994
with twenty-one dissertations.

Over the 72-year period from 1924 through 1995, the lone entrant of the early years—
U of T—was joined during the latter part of this period by several other universities. Nev-
ertheless, the majority of the 80 doctorates (63 of them, or 79 percent) for research related to
mathematics education that were awarded from 1990 to 1995 came from 6 universities (U of
T, including OISE; U of A; Université Laval; Université de Montréal; UQAM; and UBC). The
remaining 17 doctorates awarded during this period were from 11 other universities across
the country. By the end of the 1990s, there had been a 60 percent increase in the number of
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universities offering doctoral programs in education over that of 1990. It had become pos-
sible to earn a doctorate for research in mathematics education in all provinces of the coun-
try except for New Brunswick, Prince Edward Island, and Newfoundland (see table 2 for
province-by-province totals of dissertations produced during the 1990–1995 period for re-
search related to mathematics education; data reflect the recency of the doctoral programs
in Saskatchewan, Manitoba, and Nova Scotia). The increase in mathematics education dis-
sertation production over the 72-year period suggested the presence of communities of
mathematics education researchers at certain universities and, along with other events to be
discussed, reflected as well the growth in the Canadian mathematics education research
community at large.

TABLE 1. The yearly number of Canadian-university doctoral dissertations related to mathemat-
ics education for which a degree was awarded during the period 1924–1995 (A skipped year
indicates that no dissertations were produced.)

1924 1 1951 1 1964 1 1971 5 1977 4 1983 1 1989  8

1929 1 1955 3 1966 1 1972 3 1978 6 1984 4 1990 10

1943 1 1956 1 1967 3 1973 4 1979 9 1985 5 1991  7

1945 1 1957 1 1968 1 1974 8 1980 6 1986 4 1992 18

1947 1 1959 3 1969 3 1975 8 1981 6 1987 8 1993 13

1948 1 1962 1 1970 3 1976 8 1982 4 1988 3 1994 21

1995 11

         Total:  212

Note: This compilation is extracted from the following data bases: Bibliothèque Nationale du Canada
1947–1981; Bibliothèque Nationale du Canada 1981–1984; Canadian Education Index 1976–1996; Dis-
sertation Abstracts 1861–1996; and specialized university listings such as that of Université du Québec
à Montréal 1996–1997. For work carried out during the early part of the period and for which the
data bases provided no descriptors or abstracts, only the title of the dissertation could be used for
deciding whether the content was related to school mathematics.

FIGURE 1. A graphical representation of the growth in the number of doctoral dissertations re-
lated to mathematics education that were produced in Canada between 1924 and 1995
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TABLE 2. Province-by-province distribution (in a west-to-east order) of mathematics-education-
related dissertations for which a doctorate was awarded during the 1990–1995 period in Canada

Province Number of dissertations

British Columbia (BC) 10

Alberta (AB) 13

Saskatchewan (SK)  2

Manitoba (MB)  1

Ontario (ON) 23

Québec (QC) 30

New Brunswick (NB)  0

Nova Scotia (NS)  1

Prince Edward Island (PE)  0

Newfoundland (NF)  0

Federal Government Funding of Mathematics Education Research

The continued increase in doctoral dissertation research in mathematics education was but
one of the global indicators of the growth of the Canadian community. Another indicator,
one that is also linked with reificative aspects of the shared repertoire, was government-
funded research. Nearly 50 years elapsed between the production of the first dissertation
related to school mathematics in Canada and the initial awarding of federal funds in 1970
for mathematics education research carried out by university faculty (or independent scholars
associated with a university). However, as table 3 illustrates, the 1970s were not especially
productive for federally funded research in mathematics education. It was not until 1983
that such projects became more significant in number. (Note that federal funding for math-
ematics education research was under the control of the Canada Council, which was set up
in 1957, and then under the Social Sciences and Humanities Research Council which re-
placed it in 1978.)

The low figures in table 3 for certain provinces reflect the fact that universities in some
of those provinces had not, as of 1990, developed doctoral programs where one could ob-
tain a degree for research related to mathematics education. Thus, academics in those uni-
versities had not, in general, applied for federal research funds. In contrast, the high figures
for the province of Québec reflect the emergence of communities of researchers in the 1970s
and 1980s who were strongly encouraged and supported at both the university and provin-
cial government levels (I will say more about this in a later section when I treat the commu-
nities of practice in various provinces).

By graphically overlaying the data on doctoral dissertation production with those on
federally-funded research projects (see figure 2), one obtains an overview that suggests three
phases of growth over the years 1924–1995. The years up to approximately 1967 can be
considered the years of preemergence of the community—the number of doctoral disserta-
tions had not increased dramatically and no research projects related to mathematics edu-
cation had yet been funded. The years from 1967 to approximately 1983 can be considered
the years of emergence—there was significant growth with respect to doctoral dissertation
production and mathematics education research by university faculty had begun to be
funded, even if somewhat sporadically. The years from 1983 onward can be considered the
years of continued development that followed the middle phase of emergence—doctoral dis-
sertation production had gone on to reach new highs, after a brief slowdown period, and
federally funded research had come into its own. In fact, during the third phase, both dis-
sertation production and federally funded research greatly increased together—a sign that
the community had already emerged.



Carolyn Kieran • A Historical Perspective on Mathematics Education Research in Canada

171

              Province (arranged in a west to east order)
 Year BC AB SK MN ON QC NB NS PE NF

Up to 1970 ... ... ... ... ... ... ... ... ... ... 0

1970 ... ... ... ... ... 1 ... ... ... ... 1

1971 ... ... ... ... ... 1 ... ... ... ... 1

1972 ... ... ... ... ... ... ... ... ... ... 0

1973 ... 1 .... ... ... 1 ... ... ... ... 2

1974 ... ... ... ... ... 1 ... ... ... ... 1

1975 ... ... ... ... ... ... ... ... ... ... 0

1976 ... ... ... ... ... ... ... ... ... ... 0

1977 ... ... ... ... ... ... ... ... ... ... 0

1978 ... 1 ... ... ... ... ... ... ... ... 1

1979 ... ... ... ... ... ... ... ... ... ... 0

1980 ... ... ... ... ... ... ... ... ... ... 0

1981 ... ... ... ... ... ... ... ... ... ... 0

1982 ... ... ... ... ... ... ... ... ... ... 0

1983 1 ... ... ... 1 2 ... ... ... ... 4

1984 ... ... ... ... ... 1 ... 1 ... ... 2

1985 ... 1 ... ... 1 2 ... ... ... ... 4

1986 1 ... ... ... ... 3 ... ... ... ... 4

1987 ... ... ... ... 2 5 ... ... ... ... 7

1988 1 1 ... ... 2 2 ... ... ... ... 6

1989 ... ... 1 ... ... 6 ... ... ... ... 7

1990 1 1 ... ... ... 4 ... ... ... ... 6

1991 1 1 ... ... ... 1 ... ... ... ... 3

1992 ... ... ... ... 1 2 ... ... ... ... 3

1993 1 1 ... ... 1 4 ... ... ... ... 7

1994 ... 1 ... ... ... 5 ... ... ... ... 6

1995 ... ... ... ... 3 3 ... ... ... ... 6

Totals/
province

6 8 1 0 11 44 0 1 0 0 71

Note: The first year in which a given project was funded is the year used, as is the province of the
principal investigator. Sources: Annual Reports of Canada Council (1958–1978) and Annual Re-
ports of Social Sciences and Humanities Research Council of Canada (1978–1996).

TABLE 3. Number of new research projects in mathematics education in Canada funded by the
Canada Council (1957–1977) and the Social Sciences and Humanities Research Council (1978–1995)

Total #
projects
funded
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FIGURE 2. The number of doctoral dissertations related to mathematics education during the pe-
riod 1924–1995 compared with the number of federally funded research projects related to math-
ematics education (Note that the federal funding agency was not established until 1957.)

3. International Influences and Interactions Related to the Emerging Canadian
Community of Mathematics Education Researchers

Few countries develop their research communities in isolation. The influences of, and inter-
actions with, mathematics education researchers in other countries, along with research-
related events that took place outside Canada, all served to shape the Canadian community.
In this part of the paper, the focus switches to the activities of individual Canadians and the
roles they played both at home and abroad, particularly during the 1960s and 1970s—ac-
tivities that had an effect on the evolution of the Canadian community of mathematics edu-
cation researchers. As will be seen, the impact of several of these individuals was felt in both
the local and the national communities of practice that they worked to develop.

Early Interactions with the United States Mathematics Education Research Community

The United States was a source of influential ideas with respect to the growth of research in
mathematics education in Canada not only during the initial three decades of the 1924–1995
period, when the first doctoral dissertations were produced at U of T, but also in the decades
that followed, especially from the mid-1950s through the 1960s. Douglas Crawford in the
1970 History of Mathematics Education in the United States and Canada has described some of the
interactions that occurred between Canadians and Americans during the 1950s and early 1960s.
But the most obvious source of influence of the U.S. mathematics education research scene on
the developing Canadian community during these years was its journals. The U.S. research
journals played an important dual role, especially in the late 1960s and 1970s, in that they not
only enabled the growing number of Canadian mathematics education researchers to read
about the kinds of research that were being conducted in the United States but also published
the work of members of the newly emerging Canadian research community. These journals
thus provide a window on the research activities of many Canadians during that period.

For example, in 1969, the Review of Educational Research (RER) published a special issue
on mathematics education research. In that special issue was a paper by Tom Kieren on
“Activity Learning,” which contained several references to the mathematics education re-
search activities being engaged in by fellow Canadians. The Journal for Research in Mathemat-
ics Education (JRME), which published its first issue in January 1970, also featured the work
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of Canadian researchers during its early years, for example, Tom Kieren, Daiyo Sawada,
Walter Szetela, W. George Cathcart, David Robitaille, Frank Riggs, Doyal Nelson, Lars
Jansson, Jim Sherrill, and D. Kaufmann. Equally important to note is that these early con-
tributors to RER and JRME were primarily from Canada’s western provinces—in particu-
lar, from U of A and UBC—reflecting the ties that had developed between the English-
speaking mathematics educators of western Canada and their National Council of Teachers
of Mathematics (NCTM) counterparts in the United States. This western Canada-United
States connection parallels the pull felt by many of the French-speaking researchers of the
country, along with some of their anglophone colleagues, toward Europe (e.g., to the Inter-
national Commission on Mathematical Instruction and its quadrennial International Con-
gresses on Mathematical Education, the soon-to-be-formed International Group for the Psy-
chology of Mathematics Education, and the Commission Internationale pour l’Étude et
l’Amélioration de l’Enseignement des Mathématiques).

International Interactions

Developments in mathematics education research at an international level in the late 1960s
and 1970s attracted the attention of Canadian researchers. Canadians played a role in the
growth of international associations of researchers, while at the same time coming into con-
tact with fellow researchers from other parts of Canada and thereby forging the relation-
ships needed for a Canadian community of practice.

The early International Congresses on Mathematical Education in the 1960s and 1970s

The first International Congress on Mathematical Education (ICME), which was held in
Lyon, France, in August 1969, drew twenty-three Canadians—sixteen from Québec, six from
Ontario, and one from Manitoba. It exposed them to the work and ideas of several invited
speakers, including the research-related plenary presentations of Ed Begle from the United
States, Efraim Fischbein from Israel, and Zoltan Dienes from Canada (see ICME-1 1969).
Dienes was a researcher, born in Hungary, who had spent several years in Sherbrooke,
Québec, directing the research center he founded there in the 1960s.

The next ICME, held three years later in Exeter, England, attracted even more Canadi-
ans than the previous one had; this time, fifty-two Canadians attended—twenty-three from
Ontario, fourteen from Québec, seven from British Columbia, three from Nova Scotia, three
from Alberta, one from New Brunswick, and one from Manitoba. The program allotted
more time to research than ICME-1 had, with two of the thirty-nine working groups tar-
geted explicitly towards discussion of research on learning and teaching (ICME-2 1972),
one chaired by Efraim Fischbein on the psychology of learning mathematics and another
chaired by Bent Christiansen on research in the teaching of mathematics. At this ICME,
among the Canadians attending were Marshall Bye, Douglas Crawford, Claude Gaulin, Bill
Higginson, Claude Janvier, Raynald Lacasse, and Richard Pallascio.

The increasing worldwide interest in mathematics education, and in mathematics edu-
cation research in particular, was reflected in Canadian participation at the third ICME in
Karlsruhe, Germany, in 1976. Fifty-one Canadians attended: twenty-nine from Québec, thir-
teen from Ontario, five from Alberta, one from Manitoba, one from British Columbia, one
from Saskatchewan, and one from Prince Edward Island. Participants had the opportunity
to congregate with, and talk to, many active mathematics education researchers from around
the world, and to hear about current international research activities, such as those reported
by Heinrich Bauersfeld and by Jeremy Kilpatrick. But, by far, the most important research-
related event that occurred at ICME-3 was the formation of the International Group for the
Psychology of Mathematics Education (originally IGPME, then changed to PME), a group
that was to become the largest association of mathematics education researchers in the world.
Not only did Canadians play an important role in the genesis of this international group, but
their participation in its creation served also to increase the interest in the research enterprise
at home and to contribute a particular identity to the emerging Canadian community.
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The formation of the International Group for the Psychology of Mathematics Education

At the founding meeting of PME in Karlsruhe, 100 or so persons were present, including six
Canadians: Claude Dubé, Nicolas Herscovics, Joel Hillel, Claude Janvier, Dieter Lunkenbein,
and David Wheeler—all of whom were from Québec. The Canadians provided a consider-
able amount of leadership and support in the setting up of PME. The contributions of Nicolas
Herscovics to the founding of PME were remembered by Efraim Fischbein at the opening
session of a much later PME conference, in 1995, when he delivered a eulogy in memory of
Herscovics, who had passed away the previous year:

Nicolas was instrumental in setting up a Committee, in suggesting the election of a presi-
dent and in contributing to the project of organizing, as quickly as possible, the first inter-
national conference of the organization. The activity of Nicolas was a decisive factor in the
creation of the new body. Nicolas understood from the beginning that one had to create an
organizational body which would facilitate interaction in that area [the psychology of math-
ematics education], would promote common research efforts, would contribute to new
ideas, new research methods, and would confer on mathematics education, a theoretical
and investigative dimension which it was lacking before. (Fischbein 1995, p. 1)

Canadians continued to play a major role in PME and remained active through the late
1990s. They assisted in the direction of PME in the following capacities: Eight served on the
international committee (Jacques Bergeron, Claude Gaulin, Gila Hanna, Nicolas Herscovics,
Claude Janvier, Carolyn Kieran, Gerald Noelting, and Vicki Zack); one was elected to the
presidency for a three-year term from 1992 to 1995 (Carolyn Kieran); and three Montréalers
(Jacques Bergeron, Nicolas Herscovics, and Carolyn Kieran), supported by many others from
the Québec community of mathematics education researchers, hosted the eleventh annual
PME conference in 1987. By the end of 1995, PME had 684 members, of whom 26 were Cana-
dian—from British Columbia on the west coast to Newfoundland on the east coast.

Since PME’s beginnings, Canadians have both drawn on the research that was pre-
sented by international colleagues at the annual conferences and also contributed their own
work. One example that suggests how the research of Canadians may have been an influ-
ence on the larger PME community is reflected in the book published by PME in 1992,
Mathematics and Cognition (Nesher and Kilpatrick 1992). The major authors in that book
were all either Canadian, French, or Israeli, with the Canadian chapters focusing especially
on the learning of early arithmetic and algebra. Additionally, Canadians served as contrib-
uting authors to the chapters on the epistemology and psychology of mathematics educa-
tion, language and mathematics, and advanced mathematical thinking.

The role of the Commission Internationale pour l’Étude et l’Amélioration de
l’Enseignement des Mathématiques in the development of French-speaking Cana-
dian mathematics education researchers

An important international association involving French-speaking Canadians during the
early years of their developing practice as mathematics education researchers was the Com-
mission Internationale pour l’Étude et l’Amélioration de l’Enseignement des Mathématiques
(CIEAEM), which had been set up in 1950. According to Claude Janvier (personal commu-
nication, September 1997), “Québecers were not researchers in the late 1960s and early 1970s;
they were university teachers looking for the best curricula and the best approaches for
teaching that curricula.” Janvier emphasized that those were the years when the “new math”
movement was being experienced. Teachers had to be retrained. In their search for answers
to questions regarding new approaches to teaching mathematics, Québec mathematics edu-
cators came across examples of European research. So they decided to attend CIEAEM con-
ferences where much of this research was being generated and discussed. The style of re-
search appealed to Québec participants: critical questioning of what was being promoted in
many countries under the name of new math. According to Janvier, the Québecers were
also attracted to the voice being given in CIEAEM conference discussions to teachers and
their experience.
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4.  Local Communities of Practice

The images presented thus far suggest that communities of mathematics education research-
ers had been established here and there throughout the country. Indeed, local communities
of mathematics education researchers had either emerged or were in the process of emerg-
ing during the 1960s and 1970s in several provinces. Not all of these communities were at
the same point of development at the same time. Nor were they all of the same size or
strength. But there was no question as to their existence. Space constraints do not allow me
to cover all of the provinces, such as for example, Manitoba and the work of Lars Jansson, or
Nova Scotia where Yvonne Pothier and Mary Crowley were instrumental in developing a
local community of practice, or the efforts of Lionel Pereira-Mendoza in Newfoundland, or
the more recent work of Vi Maeers in Saskatchewan.

As will be seen, the local communities were the roots of the national community, a
community whose period of emergence included a reificative act of a more formal nature in
1978. However, these communities were more than roots. They continued to develop, in
interaction with the national community, during the 1980s through the 1990s. As will be
seen from the examples of local communities of practice to be presented, it was not always
the case that communities of a provincial nature emerged. In some provinces, structures—
either of a formal or informal nature—had simply not been put into place that would en-
courage the development of a single provincial community. In contrast, in other provinces,
the local communities of practice had become quite interconnected.

The Communities of Practice in Alberta

From about 1965, the University of Alberta (U of A) was an active center of mathematics
education research, with the work of Doyal Nelson and Sol Sigurdson. Tom Kieren’s arrival
at U of A in 1967 signaled a bustling period devoted to theorizing in this local community of
mathematics education research. In the 1970s, the research by Kieren, his colleagues, and
their many graduate students focused on such themes as models of the use of concrete
materials, rational number construct theory, rational number mechanisms, and neo-
Piagetianism. The group’s strong interest during the 1970s in constructivism developed
further when, in the 1980s, Maturana and Varela’s theories were brought into play.

Another local community of mathematics education researchers in the province of
Alberta was situated at the University of Calgary where Bruce Harrison became a faculty
member after being the first graduate of the new mathematics education doctoral program
at U of A in 1968. One of Sigurdson’s students, Harrison had focused his doctoral research
on elaborating and testing the work of Richard Skemp on reflective thinking. This commu-
nity continued its evolution throughout the decades that followed, a period that included
the arrival of Olive Chapman during the 1990s. In another area of Alberta, at the University
of Lethbridge, the mathematics education group benefited from interactions during the 1970s
with Sigurdson from U of A on “direct meaning” teaching and curriculum.

The Alberta community of mathematics education researchers, from its early days in
the 1960s and 1970s up to the late 1990s, was characterized by a strong theoretical leaning
toward a nonrepresentationist, constructivist, enactivist perspective. It could be said that
theory building was a main feature of their joint enterprise. And this interest was reflected
in the dissertation topics of several of the mathematics education doctoral students trained
in Alberta, including the early graduates such as Bruce Harrison, Sandy Dawson, and Bill
Higginson. Tom Kieren advised many of the U of A students—in fact, he guided to comple-
tion more mathematics education Ph.D. students than any other Canadian academic during
the last three decades of the twentieth century. As the Ph.D. graduates from U of A took up
posts at other Canadian universities, characteristics of that community of practice took root
at these other sites. And because many of these researchers continued to interact with fel-
low Canadians in the development of a joint enterprise, the Canadian community of math-
ematics education researchers reflected some of the features of the extended Alberta com-
munity.
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The Communities of Practice in British Columbia

In the 1960s, concomitant with the arrival of the new math era, the mathematics education
department of the University of British Columbia (UBC) mushroomed to become what was
then the largest in Canada. As the new math period drew to a close, David Robitaille as-
sumed the headship of the department, and he and Jim Sherrill in particular redirected the
department to contemporary concerns.

Shortly after his arrival, David Robitaille was asked to take over the clinic for school
children having trouble with mathematics, a project with which the department had been
involved for some time. The diagnostic research focus gradually evolved during the late
1970s and 1980s into more qualitative work on children’s misconceptions and on
constructivist approaches to learning. Examples include studies on problem solving and
metacognition (e.g., the work of Walter Szetela, Jim Sherrill, and Tom Schroeder), and deci-
mal-fraction learning within a Piagetian perspective (the research of Doug Owens). As well,
there was a growing interest in large-scale evaluation. This interest was exemplified in the
role that UBC mathematics education researchers played in both the second and third inter-
national mathematics studies, in particular, as the international coordinating center (directed
by David Robitaille) for the entire TIMSS study from its outset and until the end of 1993.

The story of the development of the UBC community of mathematics education re-
searchers illustrates the multifaceted nature of the joint enterprise of that community, which
had produced a shared repertoire covering many different themes of research, from diagnos-
tic work to problem solving to large-scale evaluation. This diversification continued through
the 1990s when new faculty were hired: Susan Pirie, with her interest in models of students’
understanding; Ann Anderson, who focused on mathematics learning in young children;
and Cynthia Nicol, whose research centered on the education of mathematics teachers.

During these same years, another local community of mathematics education research-
ers developed in British Columbia—at Simon Fraser University (SFU). The SFU community
was characterized by a consistent theme that ran through its approach to mathematics edu-
cation research over the years—that of studying the implementation of innovative teaching
practices that arose from an investigation of the nature of mathematics. That theme was
originated by John Trivett, who joined the SFU faculty of education in 1967; was strength-
ened in the early 1970s when Sandy Dawson was hired; and became fully developed with
the addition of Tom O’Shea in the early 1980s. The theme arose out of, and was based on, a
close collaboration between the mathematics department at SFU (Len Berggren, Harvey
Gerber, and others) and the above mathematics educators of the faculty of education.

The same theme that characterized the mathematics education research at SFU from
the 1960s through the 1980s was reinforced and elaborated when Rina Zazkis joined the
faculty in the early 1990s. When Rina arrived, not only did she work closely with members
of the mathematics department, continuing the tradition established by her colleagues, but
she also taught courses in that department, in particular the mathematics-for-teachers course
that the mathematics department had offered for a number of years. Rina also used this
opportunity to begin an investigation of the understandings that preservice teachers have
of number theoretic concepts. The close connection between mathematicians and math-
ematics educators, that was one of the distinguishing features of the local community of
mathematics education researchers at SFU, will be seen to be a characteristic as well of the
national community of mathematics education researchers from the late 1970s onward.

The Communities of Practice in Ontario

In 1965, U of T’s departments of Graduate Studies and Research were transferred to the
newly created Ontario Institute for Studies in Education (OISE), an autonomous institution
with an affiliation agreement with U of T. Despite OISE’s newly acquired prominence on
the graduate education scene of Ontario in the 1960s and the past history of U of T in doc-
toral research related to mathematics education prior to the 1960s, events in the 1960s and
1970s seemed to work against the growth of a unified community of mathematics education
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researchers centered at OISE. The new math movement brought several actors onto the
Ontario mathematics education stage, but they belonged to different communities, each
with its own forms of engagement, enterprise, and shared repertoire. In fact, these commu-
nities held quite opposite views of what was important in mathematics education and of
what it might mean to do research in mathematics education.

In 1985, Gila Hanna joined the OISE faculty, after having been a research associate
there since 1978. Her main research interests focused on gender studies and the role of proof
in mathematics. She also advised most of the doctoral candidates in mathematics education
in Ontario from 1985 through the late 1990s. These years, which were important ones in the
growth of the mathematics education research community at OISE, signaled a period of
intense activity that was due in no small measure to her leadership. In 1999, just a year
before her retirement from OISE-U of T, Gila established a new bilingual Canadian journal,
which she would coedit with two colleagues. These years also witnessed important work
being carried out by the educational psychologists at OISE, for example, Robbie Case’s re-
search on rational number and Rina Cohen’s on the learning of mathematics in Logo envi-
ronments.

While a local community of practice in Ontario was developing at OISE in the late
1980s, other communities of mathematics education researchers that were emerging in
Ontario included one at the University of Western Ontario, where Doug Edge, Eric Wood,
Barry Onslow, and Allan Pitman were active, and another at the University of Windsor,
which centered on the work of Erika Kuendiger and her colleagues and students.

The last local community of practice in Ontario to be discussed, but by no means the
smallest or the most recent, is the community of mathematics education researchers that
emerged at Queen’s University in Kingston during the 1970s. A faculty of education had
been established there in the late 1960s, during the period when teachers colleges and nor-
mal schools in Ontario had begun to be affiliated with the universities. The corps of active
researchers in mathematics education at Queen’s included Hugh Allen, Douglas Crawford,
and Bill Higginson. Under Bill’s leadership, the group established Queen’s as an important
center of mathematics education and mathematics education research, in particular in the
area of technology applied to the teaching and learning of school mathematics.

A significant feature of this local community of mathematics education researchers was
the involvement of some of the faculty from the mathematics department. Working relation-
ships were developed between the mathematics educators and mathematicians such as John
Coleman. Peter Taylor was another Queen’s mathematician who actively collaborated with
the mathematics educators. Taylor, known for his research on the teaching of calculus, was
honored in the 1990s for his contributions to mathematics education by a 3M Teaching Fel-
lowship awarded by the Society for Teaching and Learning in Higher Education.

Other Ontario mathematicians who conducted research in mathematics education in-
cluded Pat Rogers, then of York University, whose research focused on increasing the par-
ticipation of women in university mathematics courses, research for which she, too, was
awarded a 3M Fellowship in the 1990s. Similarly, Eric Muller from Brock University and Ed
Barbeau from U of T (as well as Bernard Hodgson from Québec) were recipients of the
Adrien Pouliot award for sustained contributions to mathematics education in Canada, an
award given each year since 1995 by the Canadian Mathematical Society. Other awardees
included the group from the University of Waterloo for their work on Canadian mathemat-
ics competitions at the secondary school level.

The productive interactions between mathematicians and mathematics educators that
had been fostered at Queen’s from the late 1970s through the 1990s were reflected in other
such collaborative work occurring in the province. For example, in the 1990s, Eric Muller
and Ed Barbeau, along with Gila Hanna and Bill Higginson, served on the Forum of the
Fields Institute that played a major role in the revision of the Ontario secondary school
mathematics courses. Interactions such as these between mathematics educators and math-
ematicians set in place the mechanisms for the creation of a center for mathematics educa-
tion at the Fields Institute.
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The Communities of Practice in Québec

The 1960s were exciting years in Québec. Zoltan Dienes, a recent arrival to Canada, had just
set up his research institute, Centre de Recherche en Psycho-Mathématiques, at Université
de Sherbrooke. His research center attracted visitors from all around the world, thereby
exposing Québecers to international mathematics education research. Other signs of re-
search activity in Québec in the 1960s and 1970s included the research centers such as Institut
National de la Recherche Scientifique. However, an event that was among the most signifi-
cant with respect to the emergence of a community of mathematics education researchers in
Quebec was the creation of a government funding agency that paralleled the federal SSHRC.
In 1970, the Programme de Formation des Chercheurs et d’Actions Concertées (FCAC) was
set up by the newly formed ministry of education of Québec. One of the key elements of
FCAC funding, as well as that of the Fonds pour la Formation de Chercheurs et l’Aide à la
Recherche (FCAR) that replaced it in 1984, was the encouragement of teams of researchers,
including teams drawn from various universities. Table 4 gives the number of FCAC/FCAR-
funded projects in mathematics education research between 1972 and 1995.

In comparison with the data presented earlier in table 3, which showed that math-
ematics education research was hardly present on the federal funding scene prior to 1983,
the data of table 4 reveal that mathematics education research was in fact being funded in
Québec during the years 1972–1983 and that 1981 was an especially productive year for the
emerging community. Thus, as of 1970, Québec researchers had access to two governmental
funding agencies in contrast with researchers from the rest of the country who could only
submit research proposals to the federal funding agency SSHRC.

The first recipient of an FCAC grant for mathematics education research, in 1972, was
Claude Gaulin (with Hector Gravel as co-investigator). Gaulin was one of Québec’s pio-
neers in mathematics education research, having carried out studies on the teaching of frac-
tions from 1966 to 1971 with colleagues from Collège Ste-Marie, a college that was incorpo-
rated into Université du Québec à Montréal (UQAM) in 1969. Another pioneer from the
1970s was Dieter Lunkenbein from Université de Sherbrooke, who conducted research on
the teaching of geometry in the early grades. And at Université Laval was a mathematician
named Fernand Lemay, whose theoretical reflections were a great influence on the concep-
tual and epistemological thinking of some of the Québec mathematics education research-
ers of that time.

An additional development of significance for the growing Quebec community of math-
ematics education researchers during these years was related to a series of retraining courses
for mathematics teachers provided by the ministry of education from 1965 to 1970. These
courses evolved into the highly successful in-service distance education program for the

TABLE 4. Number of new research projects in mathematics education in Québec funded by
FCAC (1970–84) and FCAR (1984–95)

1972 1 1976 2 1980 0 1984 3 1988 5 1992 1

1973 0 1977 1 1981 9 1985 4 1989 2 1993 1

1974 0 1978 2 1982 3 1986 1 1990 1 1994 2

1975 0 1979 4 1983 4 1987 2 1991 2 1995 2

Note: The first year in which a given project was awarded is the year used. Sources: Subventions
accordées of FCAC (1971–73), Crédits alloués of FCAC (1973–77), Répertoire des subventions allouées
of FCAC (1977–79), Crédits alloués: équipes et séminaires of FCAC (1979–84), Rapports annuels of
FCAR (1984–91), and Répertoire des subventions octroyées: soutien aux équipes de recherche of FCAR
(1990–96).
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retraining of mathematics teachers throughout the province (known as the PERMAMA pro-
gram), a program that not only involved many of the province’s mathematics educators but
also served as a basis for elaborating some of their research orientations. Another important
event of the 1970s was the formation of the Groupe des Didacticiens en Mathématiques
(GDM), an association of Québec mathematics educators interested in research.

During the late 1970s, as well, FCAC became more structured and began to give both
more and larger grants. The excitement that had been generated with the creation of the
international PME group at Karlsruhe in 1976 led to the formation of new teams of funded
researchers in Québec, for example, the group of Joel Hillel and David Wheeler, followed by
the collaboration of David Wheeler and Lesley Lee, at Concordia University, and the team
situated at U de M of Nicolas Herscovics from Concordia University and Jacques Bergeron
from U de M. The latter researchers’ work on the learning and teaching of early number in
the late 1970s and 1980s attracted several doctoral students to the team (e.g., Jean Dionne,
Nicole Nantais, Bernard Héraud), who in turn became advisors to later graduate students
of mathematics education at other universities in Québec. The work of Roberta Mura at
Université Laval in the 1980s on women in mathematics brought certain socio-cultural is-
sues to the fore in Québec mathematics education research. And Anna Sierpinska’s arrival
at Concordia in 1990 from her native Poland injected new dimensions into the research
being carried out on understanding and epistemological obstacles.

Another event that aided the growth of the Québec mathematics education research
community was the creation of CIRADE in 1980, a center whose initial roots were located in
the Centre de Recherche en Didactique that was set up when UQAM was established in
1969. Mathematics education research flourished there during the 1980s and 1990s. Several
international seminars and colloquia were held; these involved not only the members of
CIRADE and their international visitors but also many other mathematics education re-
searchers of Québec. Such colloquia focused, for example, on representation and the teach-
ing and learning of mathematics organized by Claude Janvier, on epistemological obstacles
and sociocognitive conflict, and on approaches to algebra—perspectives for research and
teaching, organized by Nadine Bednarz, Carolyn Kieran, and Lesley Lee.

The 1980s were also the years in Québec when the potential of the computer program-
ming language, Logo, as a mathematical exploration tool, sparked the interest of many re-
searchers. Just about all Québec universities and colleges had their Logo groups of math-
ematics education researchers in the 1980s, such as the UQAM collaboration of Benoît Côté,
Hélène Kayler, and Tamara Lemerise, as well as the inter-university team of Joel Hillel,
Stanley Erlwanger, and Carolyn Kieran. During that same decade, the 17 full-time faculty
members of the mathematics education section of the UQAM Mathematics Department
made that group the largest ever contingent of mathematics education researchers across
the country.

5. A Major Reificative Event for the Canadian Community of Practice: The Forma-
tion of the Canadian Mathematics Education Study Group / Groupe Canadien
d’Étude en Didactique des Mathématiques

Let us return for a moment to the late 1960s and early 1970s. Local communities of practice
had been evolving in various provinces since then. Members from some of these communi-
ties had come together at the early ICMEs, where connections among them had been formed.
Then, in 1976, the third ICME had led to the establishment of the international PME group
of researchers. The momentum created by these events beyond Canada’s borders sparked
not only an increased interest in mathematics education research at home but also a need
for a structure that would permit members of the various local communities of Canada to
get together. An occasion would soon present itself, even if it was planned with a somewhat
different purpose in mind.

In 1977, John Coleman, Bill Higginson, and David Wheeler invited thirty mathemati-
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cians and mathematics educators from across Canada to join them at a mathematics educa-
tion conference at Queen’s University, Kingston, Ontario (sponsored by the Science Council
of Canada) to discuss the general theme “Educating Teachers of Mathematics: The Univer-
sities’ Responsibility.” The conference had been convened primarily as part of the follow-
up to the Science Council’s Background Study No. 37 (Beltzner, Coleman, and Edwards
1976) to consider the place and responsibility of Canadian universities in the education of
teachers of mathematics. Wheeler (1992) wrote that “one purpose of the conference was
served by the mere fact of bringing participants together and the consequent pooling of
ideas and information by those who have overlapping interests but seldom meet” (p. 2).
Despite the intended “teacher education” agenda of the meeting, Coleman wrote in a letter
accompanying the proceedings of the 1977 conference, “The meeting was noteworthy for
the fact that, as far as we were aware, there had never been a comparable gathering of
[Canadian] university staff whose prime concern was research in mathematics education”
(Coleman, Higginson, and Wheeler 1978, p. 1 of accompanying letter, emphasis added).
Wheeler (1992) pointed out that “the encounter generated a demand from many of the par-
ticipants for further opportunities to meet and talk” (p. 1). The Science Council supported a
second invitational meeting in June 1978 at which the decision was taken to establish a
continuing group to be called the Canadian Mathematics Education Study Group (CMESG)/
Groupe Canadien d’Étude en Didactique des Mathématiques (GCEDM). This reificative act
was a very important one for the emerging Canadian community of mathematics education
researchers. The formation of this group would further enable the connectedness that had
already been developing among individual researchers across the country, as well as extend
the joint enterprise over a broader base. At the close of the 1978 meeting, the participants
voted for an acting executive committee; a formal constitution was approved at the 1979
meeting; and the first elections under the terms of the constitution took place in 1980.

Tom Kieren, in his plenary address at the 1977 meeting entitled “Mathematics Educa-
tion Research in Canada: A Prospective View,” emphasized the “need for much more interre-
lated mathematics education research to tackle the problems [of mathematics education]”
and suggested that “perhaps our small numbers in Canada and our personal interrelation-
ships will allow us to engage in such interrelated research” (Kieren 1978, p. 19). He then
offered a few recommendations to effect the cooperation needed in Canadian mathematics
education research, among which was the regular meeting of groups of researchers and
teachers to discuss problems of mathematics education in Canada.

CMESG/GCEDM tried to find some balance between focusing on teacher training
and on research. Wheeler (1992), in a historical retrospective of CMESG/GCEDM written in
1992, described the concerns of CMESG/GCEDM as follows: “The two main interests of
CMESG/GCEDM have been teacher education and mathematics education research, with
subsidiary interests in the teaching of mathematics at the undergraduate level and in what
might be called the psycho-philosophical facets of mathematics education (mathematiza-
tion, imagery, the connection between mathematics and language, for instance)” (p. 5). How-
ever, because many Canadian mathematics education researchers were also responsible for
the training of mathematics teachers and did in fact focus their research on teacher training,
the two main spheres of interest were intertwined.

CMESG/GCEDM has attempted to provide a forum where research could be dis-
cussed—and even where new research partnerships could be formed—as well as set up an
encouraging atmosphere where novice researchers could find out how to begin. For indi-
viduals coming from universities or provinces where no local community of mathematics
education research practice had yet emerged, this latter provision was extremely important.
Through its activities, CMESG/GCEDM gave some mathematics educators a taste for re-
search. Wheeler (1992) wrote that CMESG/GCEDM “has shown them that their puzzle-
ment about some aspects of mathematics is shared by many mathematicians; and it has
shown some mathematicians that learning can be studied and that teaching might be made
into something more than flying by the seat of the pants” (p. 8). The fact that the study
group included among its active members both mathematicians and mathematics educa-
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tors gave a particular flavor to the nature of the research enterprise as engaged in by its
participants. One of the aspects of this particularity was a fairly wide vision of what it means
to do research in mathematics education, as suggested by the following: “The Study Group
takes as its essential position that the teaching of mathematics and all the human activities
that are connected to it can, and should, be studied, whether the study has the form of an
individual’s reflections, the reasoned argument of professional colleagues, or the more for-
mal questioning of empirical or scholarly research” (Wheeler 1992, p. 8).

From the beginning, the format of the four-day CMESG/GCEDM meetings fostered a
unique form of mutual engagement of its participants. Three half-days were spent within
one of the working groups. Designed to be the core activity of the meetings, these working
groups were based on themes related to research, teacher development, and mathematical
topics. During the 1990s, a novel feature was added to the annual meeting programs: the
reporting by new mathematics education doctoral graduates of their dissertation research.
This feature became a standard component of the program and had the effect of encourag-
ing younger mathematics education scholars to join the community. But it succeeded in
doing more than that. It made provision for the community of practice that came together at
CMESG/GCEDM meetings to be a community of learners in which new practices and new
identities were formed for both the existing members and the new members. Wenger (1998)
argued that “engagement is not just a matter of activity, but of community building and ...
emergent knowledgeability” (p. 237) and that “practice must be understood as a learning
process, ... learning by which newcomers can join the community and thus further its prac-
tice” (p. 49); “from this perspective, communities of practice can be thought of as shared
histories of learning” (p. 86). From its beginnings in 1978, CMESG/GCEDM succeeded in
creating both the accumulation of a history of shared experiences and the development of
interpersonal relationships—processes that, according to Wenger, are characteristically en-
tailed in the work of engagement of a community.

In describing the dimension of a community of practice that is the shared repertoire,
Wenger emphasized the ways of doing and talking about things, as well as the reified writ-
ten forms of its work. CMESG/GCEDM remained rather steady in size—about sixty people
attending the annual meetings, with a core of regulars present every year—so the participa-
tive aspects of the community stayed quite constant over time. The only written trace of the
annual meetings is the proceedings, but these do not always manage to convey the spirit of
the annual get-togethers. One has to look further to obtain a sense of the reified repertoire of
this national community, for example, to the publications of its members or to the journal
For the Learning of Mathematics (FLM). This journal, which was established by David Wheeler
in 1980, often published the texts of various contributions made at the annual CMESG/
GCEDM meetings. When David retired in the mid-1990s, the administration of the journal
was handed over to CMESG/GCEDM. David (1997) emphasized, however, that the journal
would not become the source of “Canadian news and views,” but would continue to retain
its international character. Nevertheless, the “Canadianness” of the journal was articulated
by Bill Higginson in a special 1997 “retirement of the founding editor” issue of FLM:

Let me point to two other aspects of FLM that have loomed large for this reader. The first is
the extent to which it has been for me a quintessentially Canadian publication in the best
possible sense of that term. Partly that has been because of geography. The journal was
born in the bilingual richness of Montréal (subliminally, I suspect that the real meaning of
FLM is Front for the Liberation of Mathematics) and then, like many other institutions and
individuals, succumbed to the siren call of mellower British Columbia. More importantly,
however, are its close links with one of David Wheeler’s other legacies, the Canadian Math-
ematics Education Study Group (Groupe Canadien d’Étude en Didactique des
Mathématiques) the small but vital organization which he was instrumental in creating in
the late 1970s. ... The other unique feature of FLM for me has been the extent to which it
exemplifies what I would like mathematics education to be. I have always found the inside
front cover proclamation of the journal’s aims (“... to stimulate reflection on and study of
...”) to be a succinct and graceful statement. (Higginson 1997, p. 18)
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Because of David Wheeler’s influence on the Canadian community of mathematics educa-
tion researchers from the 1970s to his passing in 2000, the above remarks of Higginson can
be said to be related not merely to FLM; they relate as well to the spirit and to the “ways of
doing and talking about things” of a national community whose emergence and develop-
ment were stimulated by the founding of CMESG/GCEDM.

The national community of mathematics education researchers and CMESG/GCEDM
were not one and the same, even if it was difficult at times to disentangle them. But CMESG/
GCEDM encouraged community building and it was this community building that was so
vital to the growth of a national community of mathematics education researchers. This is
not to say that, when CMESG/GCEDM meetings were over, members did not return to
their local communities and work at the continued development of these communities. But
they also participated in a national community by, for example, collaborating in joint re-
search teams with other Canadians, consulting on their research projects, coadvising doc-
toral students from other universities across the country, and organizing research colloquia
and conferences with fellow Canadian researchers.

The annual meetings of CMESG/GCEDM continued to contribute to the emergence
and later development of the national community of practice; however, there were addi-
tional events that played a role as well. One of these was the formation of the North Ameri-
can chapter of the International Group for the Psychology of Mathematics Education (PME-
NA), in which Canadians participated both as founders and regular contributing members.
Another was the preparation for and participation in ICME-7, held in Québec City in 1992,
an event that entailed the involvement in one form or another of all Canadian mathematics
education researchers.

6. The Canadian Mathematics Education Research Community at the End of the
Twentieth Century

The main focus of this paper has been a description of the events related to the emergence of
the Canadian community of mathematics education researchers, an emergence which could
be said to have occurred in the block of years from the mid-1960s to the mid-1980s. The
discussion of those events also touched upon the period of preemergence prior to the mid-
1960s, as well as the years of continued development from the mid-1980s onward. What
remains is to take a final look at the community in the 1990s.

In 1993, Roberta Mura of Université Laval conducted a survey of all mathematics edu-
cators who were faculty members of Canadian universities in order to learn more about the
community that they constituted. Mura (1998) stated that “since the vast majority of univer-
sities do not have mathematics education departments, ‘mathematics educator’ is a label
that individual members of various departments may or may not choose to apply to them-
selves” (p. 106). She therefore sent questionnaires to all those whose names appeared in the
CMESG/GCEDM mailing list or in the CMESG/GCEDM research monograph produced
by Kieran and Dawson in 1992, as well as to any other university-based Canadian math-
ematics educators known to these recipients. Of the 158 questionnaires sent out, 106 were
returned; of these, 63 were retained as they were considered to belong to the target popula-
tion. To be retained, one had to have answered positively to both of the following questions:
(a) Do you hold a tenured or tenure-track position at a Canadian university? and (b) Is
mathematics education your primary field of research and teaching? (Mura estimated that
the total number of Canadians satisfying these two conditions was about 100, coming from
approximately twenty-eight universities across the country.)

Mura reported that 44 of the 63 were men (70 percent). The mean age of the 63 respon-
dents was fifty years, with a range from thirty to sixty-four. Forty-one of the respondents
(65 percent) spoke English at work and 22 (35 percent), French. Of the 63 who did acknowl-
edge mathematics education as their primary field, 47 (75 percent) worked in education
departments, 13 (21 percent) in mathematics departments, and three had joint appointments.
Eleven of the 13 employed in mathematics departments worked at two Québec universities,
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Concordia University and Université du Québec à Montréal, where mathematics education
was a section of the mathematics departments. Concerning their education, 56 of the 63
respondents (89 percent) held doctoral degrees—46 in education, eight in mathematics, and
two in psychology. For 57 percent of the survey participants, their highest degree was from
a Canadian university, while for 33 percent it was from a U.S. university (the remaining 10
percent were from various other countries). Regarding the supervision of doctoral students,
29 percent had directed the research of at least one doctoral student.

Mura asked, “How do you define mathematics education?” In responding to this open-
ended question, many referred to the goals of their field—some in theoretical terms, others
in practical terms. Twenty-two respondents identified the aim of mathematics education in
a way classified as “analyzing, understanding and explaining the phenomena of the teach-
ing and learning of mathematics” (Mura 1998, p. 110). Twenty-one respondents assigned to
mathematics education the goal of improving the teaching of mathematics and the facilita-
tion of its learning. But Mura pointed out that these two identified goals are not mutually
exclusive:

In fact, four respondents integrated elements of both tendencies in their definitions of math-
ematics education. Contrary to what one might expect, even withdrawing these four indi-
viduals, the group who expressed a theoretical orientation and the group who expressed a
practical orientation do not differ substantially from each other in their involvement in
research as measured by the number of publications and communications, the number of
theses supervised and manuscripts reviewed, membership in editorial boards, participa-
tion in joint research projects, co-authored publications and exchange of information with
colleagues in Canada and abroad. (p. 110)

Despite some intersection of goals, the main characteristic of the community as un-
covered by Mura was its diversity: “Le portrait dessiné par les résultats de l’enquête est celui
d’une communauté professionnelle diversifiée” [“The portrait drawn by the survey’s results is
that of a diversified professional community”] (Mura 1994, p. 112). This diversity was based
partially on the fact that the Canadian community consisted of both anglophones and
francophones, each group having a different history that was clearly related to the school
systems in which many of them taught before becoming university academics. But diver-
sity also existed within the strictly anglophone communities of practice where various per-
spectives on what was important in mathematics education existed. Another facet of the
community’s heterogeneity was related to the fact that it included persons who were trained
as mathematicians but who considered mathematics education to be their primary field of
research and teaching. Many of these individuals tended to focus their research on the learn-
ing of mathematics by undergraduate students (e.g., Muller 1991; Taylor 1985). Consequently,
they often reported their research at meetings of mathematicians, such as the Canadian
Mathematical Society or the Mathematical Association of America. These researchers also
published their work more often in the journals and monographs of those mathematical
societies than in the usual mathematics education research periodicals. Wenger (1998) ar-
gued that it is the community that creates its own practice. In this regard, the community of
mathematics education researchers that was created in Canada was one whose practice was
markedly characterized by diversity.

However, the multifaceted nature of the Canadian community was not attributable
solely to linguistic factors or to the discipline of initial training. There were also differences
among Canadian mathematics education researchers that were related to the theoretical
tools they used for framing research questions and for analyzing data. Some of these differ-
ences were evident from the 1980s in, for example, the theoretical perspectives held by U of
A researchers. But, the variety of theoretical perspectives increased even more across the
Canadian mathematics education landscape during the 1990s when a widespread shift to-
ward theorizing occurred. One of the indicators of this shift was the mix of espoused theo-
retical positions that were discussed within the 1994 CMESG/GCEDM working group on
“Theories and Theorizing in Mathematics Education” (led by Tom Kieren and Olive
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Chapman). Much of the previous research of the Canadian community had tended by and
large to be Piagetian in spirit, often focusing on constructivism, cognitive conflict, and epis-
temological obstacles, and usually paying less attention to the role of cultural and social
factors. But in the 1990s, theoretical frameworks broadened considerably to include, for
example, Vygotsky’s socio-cultural psychology, Brousseau’s theory of didactical situations,
and the interactionist perspective of Bauersfeld—a shift that could also been seen on the
international scene.

As the 1990s ended, there could not be said to be one perspective that characterized
the Canadian community of mathematics education researchers. Even though it was pos-
sible to speak in the 1990s of a French or Italian or German school of thought in mathemat-
ics education research, there was no such single view in the Canadian community. The Ca-
nadian community of mathematics education researchers was basically quite eclectic with
respect to theories and theorizing. However, theoretical sameness, even though it may exist
in a community of research practice, is not required, for, as Wenger (1998) argued, “If what
makes a community of practice is mutual engagement, then it is a kind of community that
does not entail homogeneity; indeed, what makes engagement in practice possible and pro-
ductive is as much a matter of diversity as it is a matter of homogeneity.”

Note

1. This paper is an abridged version of a chapter, “The Twentieth-Century Emergence of the
Canadian Mathematics Education Research Community”, to appear in A History of School Math-
ematics, edited by George Stanic and Jeremy Kilpatrick, which will be published by the Na-
tional Council of Teachers of Mathematics in 2003.
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Lessons from the Past, Questions for the Future

Brent Davis
University of Alberta

I graduated from the Grande Prairie Composite High School in 1977, twenty-five years ago.
In fact, the Class of ’77 held its 25th anniversary reunion the very same weekend as this 25th

anniversary meeting.
When I decided to skip that event and to attend this one, I found myself feeling both a

little guilty and a little, well, ‘Who cares?’ Being the self-analytic sort, I wondered about
those conflicting emotions. As near as I can tell, the tension seems to be rooted in mathemat-
ics—or, at least, in numbers.

Twenty-five. That’s obviously important. But why? It seems to be because most of us
have 10 digits on our upper limbs … and when you collect together as many people as you
have fingers, altogether you have 100 digits … and when you let the earth revolve around
the sun as many times as 10 people have digits on their upper limbs, you have a century …
which is a foundational notion in our construals of history, but an experientially inacces-
sible stretch of time, unless you invoke the cultural habit of dividing in half and then divid-
ing in half again to arrive at the magic that is a comprehensible quarter century.

So, what we have here in the need to celebrate 25th anniversaries is a collision of bio-
logical, mechanical, and cultural phenomena, all pressed through the ringer of ‘number’ to
generate something that is simultaneously arbitrary and significant.

It strikes me that one of the really important transitions in mathematics education
research over the most recent passage of that arbitrary and significant span of time has been
the emergent realization that matters of mathematics and mathematics learning arise in the
collisions of the mechanical, the biological, and the cultural. This is no small change. As I
aim to develop, mathematics education has tended to rely too exclusively on mathematics—
or, perhaps more appropriately, on prevailing beliefs about the nature of mathematics—to
orient and inform its activities.

Of course, in broader academic terms, that insight isn’t really so recent. Almost exactly
a century ago, such matters were taken up by researchers and theorists who helped to trig-
ger a new transdisciplinarity in academia. Among the emergent discourses of the time were
three that I’m going to draw on today: pragmatism, phenomenology, and psychoanalysis.
(In other words, I’ve decided to speak to the last century, not just to the last 25 years, and I
look across all academic domains, not just mathematics education.)

I frame my references to these fields with a bit of unpopular wisdom:

Arguments against new ideas generally pass through three distinct stages, from ‘It’s not
true’, to ‘Well, it may be true, but it’s not important’, to ‘It’s true and it’s important, but it’s
not new—we knew it all along’. (Barrow, 1995, p. 1)

When Dewey, Husserl, and Freud, along with their colleagues, were working out the details of
pragmatist, phenomenological, and psychoanalytic theories a century ago, it is certainly the
case that most around them regarded their insights as falling into the ‘It’s not true’ category.

That changed through the 20th century, as many their ideas gained a gradual acceptance,
inside and outside of academia. That is, some core insights of pragmatism, phenomenology,
and psychoanalysis slipped from ‘It’s not true’ into ‘Well, it may be true, but it’s not important’.
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This was particularly the case over the last 25 years in mathematics education research—
as pragmatist insights were imported in crates labeled “constructivism”, phenomenologi-
cal insights were squeezed in the door labeled “critical theory”, and psychoanalytic insights
came to be represented, somewhat appropriately, in the commonsense and largely uncon-
scious discourses of teachers and researchers.

I’m going to try to connect insights from these fields to developments in mathematics
education research over the past quarter-century, hoping to foreground some important
lessons and some pressing questions. In the process, I also want to point to what I worry
might be a slippage of insights from the category of ‘Well, it may be true, but it’s not important’
into the category of ‘It’s true and it’s important, but it’s not new—we knew it all along’. I think
that we need to work very hard to maintain sharp edges on these ideas so that we can do as
much innovative work as possible before they’re dulled and included among the blunt in-
struments wielded to maintain an existing order.

Anyway, back to the fact that I’m missing the 25th anniversary reunion of the Class of
’77 of the Grande Prairie Composite High School, you will note that I have chosen a G-word
(for Grande) and a P-word (for Prairie) in each of my four subtitles.

1. Lessons and Questions from Geography and Pragmatism

The first broad set of issues that I want to address is the geography of mathematics educa-
tion research—its borders, topography, climate, and so on.

Before getting too mired in these notions of geography and borders, I should mention
that I don’t intend them literally. These strike me as ideas that reflect the very tendency that
they name: the human habits of imposing boundaries and exaggerating edges, even when
no edges exist. Two quick exercises in perception can help to demonstrate this point.

Consider these images (adapted from Hoffman, 1998). First:

Most people see a completed circle here. Usually, not only does the observer project a circle,
but one that is brighter than (and perhaps even floating above) the background.

Second:
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Where these gray blocks meet one another, it appears that they lighten up slightly. In fact, in
terms of ink density, each box is uniformly shaded. What’s more is that the difference in
tone between adjacent blocks is not actually as great as it might appear. If you lay a pencil
across one of the borders, you’ll see the adjacent blocks are almost the same shade.

The point? Our perceptual systems impose borders that aren’t there and amplify edges
that are—which, as has been explained to me, makes perfect sense. Boundaries are the most
useful information in the environment, so one might expect vision to be oriented to fishing
out such details and exaggerating them.

We humans extend these tendencies from the realm of the perceptual into the realm of
the conceptual. Humans are forever imagining and exaggerating differences. It’s fundamen-
tal to our self-definition, to our collective identifications, to our having a world.

These proclivities are certainly represented in the manner in which the territory of
mathematics education is defined. At the moment, for instance, its terrain is criss-crossed
by borders that are used to distinguish between

· back-to-basics & problem-solving/posing;
· fragmentation/reduction & holism;
· procedural understanding & conceptual understanding;
· mental discipline & physical experience;
· teacher-centeredness & learner-centeredness;
· individual interests & societal interests;
· empowerment & subjugation;
· nature & nurture;
· theory & practice.

It would be easy to stretch out this list. But I’ll stop here, and invoke the help of John Dewey
who wrote in 1910:

intellectual progress usually occurs through sheer abandonment of questions together with
both of the alternatives they assume—an abandonment that results from their decreasing
vitality and a change of urgent interest. We do not solve them, we get over them. (p. 19)

In terms of the internal geography of mathematics education, one of the strong lessons of the
past 25 years is that the map suggested by these dyads is a poor one, and that we have a
whole host of imagined borders and exaggerated edges that we need to get over.

I should mention, by the way, that my point is not that we shouldn’t be drawing bor-
ders. On the contrary, we have to, in terms of both physiological tendency and interpretive
necessity. The point is that we should be careful about how we draw them, always willing
to erase them and draw new ones.

Perhaps the most important influence in prompting the recent move to this more mind-
ful attitude was pragmatism, a North American philosophical movement that is most often
identified with John Dewey.

Pragmatism can’t be readily summarized. But some of its key insights can be suc-
cinctly represented:

· contingency and adequacy of truth: Pragmatically speaking, truth is what works—what is
adequate to the situation. Truth is not about a perfect correspondence with an existing
reality, but about a good-enough system of interpretation to maintain one’s viability.

This point should call to mind radical and social constructivist sensibilities—and
quite appropriately so. There is abundant evidence that both Piaget and Vygotsky
were strongly influenced by pragmatist philosophy.

· evolutionary unfolding of knowledge: Dewey made this point rather strongly a century
ago. The idea is that many dynamic forms acquire their ‘shapes’ by continuously adapt-
ing themselves to immediate circumstances. By 1900, Darwinian processes had already
been applied to such phenomena as personal understanding, collective knowledge,
culture, and social institutions—in addition to biological species.
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· co-emergent characters of agent and setting: Of course, when one part of a system changes,
it often triggers changes in other parts of the system. Darwin suspected as much, and
the idea of co-emergence was further developed by the pragmatists as a core principle
in the emergence of understanding, knowledge, culture, and so on.

An important lesson of pragmatism, incorporated into the field of mathematics education
over the past 25 years, is that the geography of the field is entirely problematic—both inter-
nally (in terms of the issues that tend to predominate) and externally (in terms of the man-
ner in which the field is rendered distinct from other domains).

If I were to attempt to sum up these issues into lessons from the past and questions for
the future, I would suggest something along the lines of:

A Geographical and Pragmatist Lesson:

(To borrow from Gregory Bateson, who borrowed from Alfred Korzybski:) The map is not the
territory … but once the territory is mapped, it changes things.

Geographical and Pragmatist Questions:

1) Which of the current tensions are worth worrying about, and which do we need to get
over?

2) How do we fit the largely accidental characters of mathematical knowing and math-
ematics knowledge into the deliberate structures of school mathematics?

2. Lessons and Questions from Geology and Phenomenology

When studying “earth science” in Grade 8, I was shaken by the realization that the solid
ground beneath us is, in fact, not at all solid.

I had a good science teacher that year in Mr. Lakusta. It was a time of tremendous oil
exploration in the area of northern Alberta that I lived, and Mr. Lakusta was in the habit of
collecting samples of rock strata cut out by oil drills. He used them to illustrate that the
ground we walked on was not bedrock, as I had surmised from my daily watching of the
Flintstones, but many, many layers of sediment in varying states of metamorphosis.

This lesson in geology is an image that might be used to describe the work of phenom-
enology—which asks questions about what’s buried beneath the literalized, common sense
conceptions of events and experience. It answers questions about the nature of knowledge
in terms of layer upon sedimented layer of literalized metaphor, as opposed to the common
assumption of a bedrock of logic.

It’s very difficult to understand what phenomenology is all about in this era of empiri-
cism and rationalism. Both empiricism and rationalism are rooted in a faith in formal logic.
Although they’re often discussed as opposites, they share the same core belief that, in order to
understand a phenomenon, you have to be able to break it down into its fundamental pieces.

Phenomenology doesn’t deny that this reductionist attitude is a powerful one, espe-
cially when applied to mechanical events. However, phenomenology suggests that the ra-
tionalist-empiricist attitude tends to embody at least one fundamental oversimplification: It
usually ignores the role of language.

Much of our collective knowledge is woven into and through our habits of speech,
deposited there by humans thousands of years ago and thousands of kilometers away. Be-
cause of the temporal, physical, and cultural distances, we tend to lose track of what our
ancestors were pointing to when a new term was invented or a different metaphor was used.

We are born into a languaged world. Our predecessors did most of the hard concep-
tual work of dividing and interpreting the world for us, and part of the generous inherit-
ance they left us was the fact that we get a great deal of information and insight for free, just
by learning to speak. However, we usually use language as though it were a transparent
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medium, as though words corresponded with objects and events in the world—as though
language attached us to the bedrock of reality.

Language doesn’t do that. Language consists of sedimented layers of metaphors, analo-
gies, and other figurative forms. Phenomenology has been instrumental in triggering an
explosion of research into this matter over the past 25 years. There’s too much to mention,
but one notable effort was recently published by George Lakoff and Rafael Núñez (2001)
under the very confident title, Where mathematics comes from.

Lakoff and Núñez work from the premise the there are two main categories of knowl-
edge: the primitive knowing that arises from the fact that we have bodies that move through
the world, and the associative elaborations by which that primitive knowledge is refined
and knitted into more sophisticated understandings.

Their departure from the last few centuries of philosophy is around the assertion that
we humans are not all that logical, we’re mainly analogical. Now, that idea has been pretty
much embraced by cognitive science. But use of the idea has tended to be restricted to dis-
cussions of language development. In particular, it hasn’t much been taken up in discus-
sions of mathematical understanding—in large part because it has been assumed that math-
ematical understanding is a matter of logical thought, not analogical thought.

Lakoff and Núñez attempt something remarkable. They begin by tracing metaphors
that underpin counting and adding—things like “adding as collecting sets of objects to-
gether” and “counting as walking forward or climbing upward”—and then they move
through layers and layers and layers metaphors in an attempt to demonstrate a figurative—
not logical—grounding of Euler’s equation, eπi + 1 = 0.

I’m not sure they succeed in that goal. Recently published reviews of the book from
prominent mathematicians seem to suggest that they’ve fallen short. However, they do
manage to demonstrate the significance of metaphor in both the cultural development of
mathematics and in the emergence of personal understanding. On the latter, there is a com-
pelling argument to be made that, like language, mathematics is NOT constructed on the
solid bedrock of logic. It is mired in layers and layers of literalized metaphor (Rorty, 1989),
which in turn rest on such rudimentary bodily experiences and reaching, walking, and stick-
ing things in our mouths.

Lest you think these claims are off the wall, I would urge you to undertake an exercise
in geology some time. Make a list of mathematical terms—basic ones—and then go to an
etymological dictionary to dig into their pasts. Here are a few examples out of geometry:

Notion Root Original Meaning

Angle Latin, angulus ankle

Basic Greek, bainein step

Line Latin, linum linen thread

Normal Latin, norma carpenter’s square

Parallel Greek, parallelos alongside (one
another)

Plane Latin, planum roam about

Point Latin, pungere fist

Rule Latin, regula wooden ruler

Standard Latin, stare stand, upright

Straight German, streccan stretch

These are all body parts, bodily activities, or physical artifacts. The abstract concepts repre-
sented in the left hand column, that is, are metaphoric elaborations of embodied knowledge.
Some very formal, crisp ideas derive from some very informal, fuzzy bodily experiences.
This appears to be true on the levels of both personal knowing and collective knowledge.
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Now, it you buy all that, there are huge implications for the teaching of mathematics—
and especially in the early years of schooling when the first layers of interpretation are
established. In particular, it would suggest that we should be spending a lot more time on
educating people’s intuitions than on insisting on demonstrations of formal knowledge.

A caveat of this point is that our language and our mathematics are not benign or
inert. They are technologies that we use to manipulate the world. This is one of the pro-
found realizations of phenomenology. Knowledge systems are technologies, wielded to trans-
form the world. This realization also has important implications for discussions of math-
ematics learning. Arguments on the role of more recent electronic technologies have taken
up a lot of air time recently, and those arguments have tended to be framed by troublesome
assumptions about the natures of both technology and human thought. We would do well
to recall around such matters that Plato, more than 2000 years ago, lamented the advent of
writing. He was worried that reliance on the technology of the written word would dull
memory. And, in fact, it has been demonstrated to do just that. What Plato couldn’t know
was the tremendous informational advantage that writing gives us by allowing us to offload
so many details, freeing up consciousness for other worries.

One of the points that contemporary debates over the use of technology tend to ignore
is the manner in which available technologies transform intellectual possibilities. Calcula-
tors and computers are seen as things imposed on a divinely wrought curriculum, and that
tendency has left us with some laughably outdated curriculum topics and teaching meth-
ods. Given that leaders in electronic technologies are confidently predicting direct inter-
faces between the brain and the internet in the not-too-distant future, I would dare to sug-
gest that a rethinking of our curricula is on the verge of becoming critical. Technologies
aren’t add-ons. They affect the geological substrate of our activity.

A Geological and Phenomenological Lesson:

We’re not logical creatures in the main. We are principally analogical, and our percep-
tions-and-conceptions are framed by sedimented layers of interpretive habit.

Geological and Phenomenological Questions:

1) How are bodily experience, language, and mathematics entwined?

2) Can we conceive of a mathematics pedagogy that is mindful of its past and respon-
sive to its present, rather than being obsessed by an imagined future?

3. Lessons and Questions from Geometry and Psychoanalysis

Another 19th century thinker who has had a profound influence on how we think about
matters of thought and learning is Sigmund Freud, through his psychoanalytic theory—in
particular, his development of ‘the unconscious’ as the unseen part of the iceberg of per-
sonal knowing. Freud argued the case that most of what we know, we don’t know that we
know. We just know it. Or, more precisely, we just do it.

Unfortunately, Freud coupled the unconscious to the assumption that humans are
naturally aggressive, greedy, selfish, duplicitous, sex-crazed, and cruel, with only a veneer
of social responsibility. The past century of research into “human nature” has revealed that
Freud was quite right about the influence of nonconscious awareness. It has also demon-
strated that he was quite incorrect in his belief that we are essentially evil creatures. Human
nature, it seems, is as plastic and as situationally specific as most things human.

On the matter of the nonconscious, research into perception has revealed that while
our bodies are fitted with something in the order of 10 million sensory receptors (when you
add together light sensitive cells in the retina, tastebuds on the tongue, nerve endings in the
skin, and so on), the consciousness of a typical human can accommodate in the order of 10
discernments each second. We are immersed in a sea of sensorial possibility, but are capable
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of being consciously aware of only the tiniest droplet at any given moment. (See
Norretranders, 1998, for an elaborated discussion of the research and its implications.)

But the fact that we’re not consciously aware of the sea does not mean that it doesn’t
profoundly influence what we do. On the contrary, we are constitutionally coupled to the
worlds around us—shaped by and shaping, dancing with, conversing with—in the most
elegant of ways … ways to which we are almost always totally oblivious. But, in terms of
consciousness, we tend to operate only in the veneer of worldly events.

Let me develop an example of that veneer: the contribution of mathematical knowl-
edge to the shape of contemporary teaching. The point that I aim to develop here is that
explicit beliefs about the teaching of mathematics have tended to be framed by formal mathematical
notions that have been incorporated into implicit beliefs about what thought is and how learning
happens.

Mathematics teaching, that is, has been mathematized. So has, for that matter, just
about every aspect of our modern world. And Western culture has been very selective in its
choice of mathematical truths to embody in its mathematics teaching. They’re drawn mainly
from Euclidean geometry.

Let’s look at the word line and some of its Euclidean relatives.

Modern term Derivation Some current usages and associated terms

right > Latin rectus, right angle, righteous, right handed, right of
straight way, right/wrong, human rights

rect- > Latin rectus, rectangle, correct, direct, rectify, rector,
straight erect

regular > Latin regula, regulation, regulate, irregular
wooden straightedge

rule > Latin regula, ruler, rule of law, rule out, rule of thumb,
wooden straightedge broken rule

line > Latin linum, linear, time line, line of text, line of argu-
flax thread ment, linear relation, sight line, linear

causality, toe the line

ortho- > Greek, orthos, orthodox/unorthodox, orthodontics,
straight orthogonal, orthopedic

straight > German streccan, straight up, go straight, straight answer,
stretch straight talk, straight and narrow, straight-

laced

This table is hardly exhaustive. I strictly limited myself in this project to words that are explic-
itly aligned with prominent Euclidean notions. In truth, I could easily justify an extended list
that includes many, many other ordinary terms whose ancient roots and contemporary asso-
ciations have to do with lines and linearities—including each of the words italicized in this
paragraph.

My point here is not that the emergence of this particular web of associations repre-
sents some sort of error or conspiracy. It is, rather, that these terms are pervasive. They are
present in English-speakers’ communications and infuse habits of interpretation—and, in
the process, they do a particular sort of work. They help to project and maintain a ‘right’
and ‘correct’ sense of how things are. For instance, as I hope is evident in the third column
of the table, beneath the literal surface of these terms is a mesh of rightness and wrongness,
or correctness and falsehood, of straightness and queerness. In English, straight lines are
knitted into how we think about good and evil, truth and deception, morality and deviance.
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If you think I’m exaggerating, then consider the connotations of words that mean,
literally, not straight: twisted, bent, kinky, crooked, warped, deviant, and the like.

Straight-ness or right-ness is not just a pervasive part of the collective conceptual world,
it is built into our physical worlds. Just look around. Or think about the rectangular time-
table pasted on the corner of the rectangular tabletop in the rectangular classroom at the
end of the rectangular hallway in the rectangular school on the rectangular block in the
rectangular city that you might locate on a map by using a rectangular grid that looks a lot
like the rectangular timetable pasted on the corner of the rectangular tabletop. Whereas you
would be hard-pressed to find many reasonably close approximations of rectangles in what
tends to be called the natural world, the modern Western world is utterly rectangulated—
conceptually and physically.

This matter comes into even more dramatic relief through a similar analysis of origins,
meanings, and current associations of terms linked to another key Euclidean form: the 90˚,
or right angle.

Modern term Derivation Some current usages and associated terms

Standard > Latin stare, stand standardized tests, standard form, raising
(i.e., make a right angle standards, standard time, standard units,
to a planar surface) standard deviation, standard of living

Normal > Latin norma, normal curve, normalize, normative,
carpenter’s square normalize, normalcy, normal fork, normal

child

Perpendicular > Latin pendere, dependence, expense, independent,
to hang pendulum, suspend, suspence

I won’t drag you through a history of the emergence of modern conceptions of normality
(but will suggest the histories provided in Davis, Sumara, & Luce-Kapler, 2000 and Fou-
cault, 1990). I will however flag the fact that, via probability and statistics, mathematics and
mathematized sensibilities have played a central role in the invention and imposition of the
normal child, standardized curriculum, age appropriatism and the like.

The point here is that, by simple virtue of the fact that I’m a citizen of a mathematized
society, I can’t help but be sucked into linearized and normalized patterns of association.
And it can demand a great deal of effort to get out of the ruts carved by a common knowl-
edge.

A Geometric and Psychoanalytic Lesson:

We aren’t very aware of what we do. Beneath the veneer of straightforwardness and
normality, things are actually quite twisted and very knotty.

Geometric and Psychoanalytic Questions:

1) What sorts of no-longer-conscious mathematized assumptions are used to give shape
to whatever it is we’re doing when we claim to be teaching mathematics?

2) Where might we look for and how might we incorporate a more appropriate set of
forms and images into our thinking about mathematics, learning, and teaching?

4. Lessons and Questions from Gaia and Plectere

It would be quite wrong of me to end on that note, especially because mathematicians have
done a wonderful job of developing alternative geometries that present us different lenses
on the world. In these few closing comments, I want to shift away from lessons learned and
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questions to ask, to remark on where I think we might look for insight in response to some
pressing issues.

There’s too much to say in this regard, but I would point to a favorite set of images out
fractal geometry—which might be characterized as a mathematics of twistedness and
knottyness.

Some have gone so far as to dub fractal geometry “the mathematics of nature” or “the
geometry of the surprise”—and for good reason. Both the recursive generation of fractal
forms and their consequent qualities of scale independence and occasional self-similarity
do prompt attentions to a great many natural processes and natural forms.

In response to the realization of an over-Euclideanized school mathematics, I believe
that fractal geometry offers us a much better (but by no means ideal) means to image or
map. One might, for example, draw an analogy between the nested, emergent qualities of a
fern frond and the nested, emergent qualities or aspects of human activity and the domains
that have been devoted to study of those aspects.

(Images are from Davis et al., 2000, pp. 72–73.) One might also highlight the different im-
ages for movement, away from a straight line into a predictable future, and toward a spray
of emergent possibility, an ever-expanding realm of the possible.

It’s interesting to note that this geometry has arisen in a historical moment of increased
interest in co-implication, dynamic evolution, complex emergence, and the like. For me,
this is more than coincidence. I think it flags the profound manner in which our mathemati-
cal insights are entwined with our cultural sensibilities—and, with that flag, the tremen-
dous moral and ethical implications of mathematics research and mathematics teaching.
These activities don’t occur in vacuums. They are neither inert nor benign.
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One of the major triggers of this sort of ‘systems thinking’ was James Lovelock’s Gaia
Hypothesis—the idea that the biosphere might be understood through the metaphor of an
organism rather than the pervasive metaphor of a machine.
These sorts of sensibilities have coalesced into a couple academic discourses—namely ecol-
ogy and complexity science. These fields are interested in complex co-emergences. What’s
more is that they’re begun to be interested in precisely the same thing as formal education:
the pragmatics of complex transformation. A few ecologically minded educational research-
ers—although not so many in mathematics education—have developed the idea that we
might reframe our efforts in terms of complex participation at various levels of physical,
biological, and cultural organization.

The term complexity derives from the Latin plectere, to braid—as echoed in modern
terms implicate, explicate, complicate, implicit, explicit, complicit, perplex, duplicity, and
plexus. Complexity science seems to have come of age in recent years, as it’s shifted from an
emphasis on description of such complex phenomena as heart function, the self-organiza-
tion of neurons in the embryo’s brain, social structures, cultural evolution, and so on, to-
ward deliberate efforts to affect such structures. Complexivists, for example, have done
some important work in identifying conditions that are necessary for complex emergence—
conditions that, I might note, are met in this sort of meeting, but that are usually absent in
mathematics classrooms.

A Gaian and Plecterean Lesson:

Complexity and complicity arise in nested layers of co-implication.

With this lesson in mind, I would like to close by (re)citing Carolyn Kieran’s 2002 (re)citation
of Tom Kieren’s 1977 plenary address, in which she/he/they remarked on the

need for much more interrelated mathematics education research to tackle the problems [of
mathematics education] … perhaps our small numbers in Canada and our personal inter-
relationships will allow us to engage in such interrelated research. (Kieran, p. 180)
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Lessons from the past, questions for the future:
méditation sur thème imposé

Roberta Mura
Université Laval

Introduction

Perchè — quando si è sbagliato — si dice « un’altra volta saprò come fare »,
quando si dovrebbe dire: « un’altra volta so già come farò? »

– Cesare Pavese, Il mestiere di vivere1

Ma première réaction au titre proposé a été : « Lessons from the past? We don’t learn any! »
Nous n’apprenons rien de nos expériences passées, encore moins de celles des autres, nous
répétons toujours les mêmes erreurs. (Je ne suis pas d’un naturel optimiste, Pavese ne l’était
pas non plus.)

Après réflexion, pourtant, j’ai dû admettre que cette conclusion ne pouvait être tout à
fait acceptable, puisqu’elle était elle-même le fruit d’expériences passées et constituait donc
bel et bien une leçon du passé, fût-elle la seule!

« Apprendre une leçon » peut signifier simplement « savoir que les choses sont ainsi »
et pas nécessairement « modifier son comportement ». Il fallait distinguer les deux sens de
cette expression.

L’échec de ma première leçon m’en suggérait immédiatement une seconde — c’est-à-
dire une première, puisque la précédente n’en était plus une : méfions-nous des déclarations
trop catégoriques! Ce n’est pas une leçon spécialement agréable; il est bien moins fatigant
de penser et de s’exprimer sans nuances. Les démagogues le savent bien : la nuance confond
le public et entrave l’action. Toutefois, justement, nous avons affaire à l’éducation et non à la
démagogie. Si ma leçon permet de distinguer les deux, c’est bon signe.

J’ai bien senti le danger que cette nouvelle leçon ne se retourne contre elle-même, comme
la première : n’était-elle pas justement une déclaration un peu trop nette? Sans doute que si,
mais j’ai voulu résister à la tentation de m’enliser dans ce terrain.

On ne peut donc pas nier l’existence de leçons du passé. Reprenons alors avec plus de
calme et un brin d’optimisme.

Introduction, prise deux

If I have seen farther than others, it is because
I have stood on the shoulders of giants.

– Isaac Newton

Que nous enseigne le passé? D’abord, qu’il est passé. Nous pouvons le regretter ou nous en
réjouir, c’est selon. Toutefois, dans bien des cas, avec le passage du temps, nos jugements
sur les événements et sur les courants de pensée se modifient, des certitudes se lézardent et
s’effritent, des théories sur l’éducation sont supplantées par d’autres, parfois davantage à
cause d’un changement de valeurs que de nouvelles découvertes. Il est prudent alors de ne
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pas trop s’attacher aux idées du présent, de s’abstenir d’opinions trop tranchées et de
croyances trop fermes, de ne pas se lier, corps, cœur et âme, à une conception particulière de
l’enseignement des mathématiques.

La vision cumulative de la science évoquée par la citation de Newton n’est pas au
goût du jour. On a critiqué la vision absolutiste des mathématiques; la même critique doit
s’adresser à une vision absolutiste de la philosophie et de la didactique des mathématiques.
Si les mathématiques ne peuvent livrer la vérité et ne peuvent aspirer à la permanence, la
philosophie et la didactique des mathématiques le peuvent encore moins (y compris
lorsqu’elles rejettent une vision absolutiste..., mais résistons à la tentation de nous enliser!).
Ce qui, aujourd’hui, nous apparaît comme la vérité et le bon sens en matière d’enseignement
pourra fort bien être perçu comme erroné et ridicule dans quelques années. Je vous propose
une expérience : songez aux théories passées de mode (positivisme, modernisme,
behaviorisme, structuralisme, etc.) et au jugement que vous portez sur elles. Essayez ensuite
de vous placer d’un point de vue futur et de regarder de ce point de vue les théories en
vogue actuellement, essayez d’imaginer ce que l’on en dira dans 10 ans, dans 30 ans ou dans
un siècle... Toutes les générations ont cru être sur la bonne piste et ont estimé que leurs
prédécesseurs s’étaient fourvoyés. Pouvons-nous penser sérieusement que nous sommes
l’exception, que nous ne faisons pas fausse route, que notre piste est réellement la bonne? La
contemplation du sort des théories passées nous incite à la prudence, à l’humilité et au non-
attachement (avec modération!). Voilà donc ma leçon du passé : il nous faut regarder nos
croyances avec du recul et éviter de les prendre trop au sérieux, de nous prendre trop au
sérieux.

D’une part, donc, il semble difficile, en didactique, de se tenir « debout sur les épaules
de géants » et d’imaginer les générations futures debout sur les nôtres. D’autre part, com-
ment y renoncer? Quelle serait la valeur d’une discipline où nous rejetterions
systématiquement la vision de nos prédécesseurs pour voir ensuite la nôtre mise de coté à
son tour par nos successeurs? Ne finirions-nous pas par tourner en rond? N’est-ce pas, du
moins un peu, ce que nous faisons? Peut-être, en didactique — et plus généralement en
éducation — avons-nous un peu trop soif de changement et souvent tendance à procéder
par réaction, à nous définir par opposition à une théorie précédente, ou concurrente, que
nous érigeons en rivale et que nous « démonisons » pour nous justifier de la condamner en
bloc. Cette attitude est au cœur du drame cyclique de la réforme des programmes, dont le
scénario pourrait se résumer comme suit :

1. On juge la situation catastrophique : on prétend qu’au sortir de l’école les élèves ne savent
pas grand-chose et comprennent encore moins, que leurs connaissances sont désuètes,
inutiles et inapplicables, que l’école ne fournit de préparation convenable ni à la vie ni
aux études supérieures. On crie au scandale. Il est toujours possible de dresser un constat
d’échec, peu importe la situation : tout est dans la façon de s’y prendre pour observer et
mesurer le phénomène;

2. On cherche un coupable. On impute le désastre au curriculum (on pourrait aussi mettre
en cause la compétence du personnel enseignant, ce qui renverrait aux faiblesses des
programmes de formation des maîtres);

3. On produit un nouveau curriculum en réaction au précédent : on le définit par contraste,
on raisonne par dichotomies et on propose des ruptures radicales. On fait table rase. On
risque alors de donner aux nouvelles idées, bonnes en soi, une application d’une étendue
exagérée, qui les pervertit et les voue à l’échec à leur tour. Comme on dirait en didactique,
on les pousse au-delà de leur « domaine de validité »;

4. On implante le nouveau curriculum, souvent rapidement, et on l’évalue, fréquemment
de façon prématurée, sans tenir compte du temps nécessaire à un changement en
profondeur. (La patience est une autre leçon qu’il nous faudrait apprendre du passé.) Il
s’en suit un nouveau constat d’échec et une reprise du cycle2.

Peut-être qu’une certaine humilité et un peu de détachement à l’égard de nos propres
idées nous prédisposeraient à percevoir dans les théories concurrentes autre chose que des
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défauts et à profiter de tout élément utile qu’elles pourraient contenir; cela nous aiderait
également à ne pas vouloir pousser nos idées au-delà de leurs limites et à prévenir ainsi de
nouveaux dégâts ou, du moins, à les circonscrire.

L’enseignement, nous disait David Wheeler il y a quatre ans, est une sorte de bricolage,
ce n’est pas une science, car cela suppose un consensus sur des théories de base qui est loin
d’être atteint, si jamais il devait l’être3. J’avais lu une mise en garde similaire dans un petit
livre que m’avait offert Fernand Lemay, un de mes collègues qui se sont chargés de ma
formation en didactique. Dans cet ouvrage4, Krishnamurti soutenait qu’aucune méthode ni
système ne peut fournir la bonne sorte d’éducation (p. 23). Il recommandait de ne pas penser
selon des principes et de ne pas suivre de méthode, car, selon lui, cela conduit à accorder
plus d’importance à la méthode qu’à la réalité des élèves (p. 25).

Dans ce qui suit, je développerai cette méditation sur les vicissitudes de l’enseignement
des mathématiques à la lumière de la leçon que j’ai dégagée du passé, en prenant comme
point de départ mon histoire personnelle.

L’enseignement des mathématiques�: les maths modernes, la réforme des
programmes et la tradition

Le traité prend les mathématiques à leur début, et donne des démonstrations
complètes. Sa lecture ne suppose donc, en principe, aucune connaissance

mathématique particulière, mais seulement une certaine habitude du
raisonnement mathématique et un certain pouvoir d’abstraction.

– N. Bourbaki, Éléments de mathématique, Mode d’emploi de ce traité

Mon tout premier contact avec la didactique des mathématiques, à part mes expériences
comme élève, a eu lieu dans le contexte de la réforme des maths modernes, vers la fin des
années 60. J’étudiais les mathématiques à l’université, en Italie, et l’on m’avait invitée à
donner quelques heures de cours dans le contexte d’une activité de perfectionnement
d’enseignantes et d’enseignants. Je devais leur parler d’ensembles, de relations d’équivalence
et d’autres notions de ce genre.

J’étais pleine d’enthousiasme pour ces idées que je venais de découvrir, j’étais heureuse
de les partager, et le projet de les introduire à l’école me paraissait bon, car il me semblait
répondre à un besoin réel. Je me souvenais, par exemple, d’avoir été frustrée, au secondaire,
par l’absence d’une définition du mot « fonction ». Il y avait les polynômes, les fonctions
trigonométriques, les logarithmes et les exponentielles. En existait-il d’autres? On me disait
que oui. Cependant, qu’est-ce que c’était une fonction au juste? Mystère! C’est seulement à
l’université que l’on m’avait enfin révélé qu’une fonction était une correspondance univoque
entre deux ensembles. (À l’apogée des maths modernes, on envisagera d’enseigner cela au
préscolaire!) Cette définition m’avait libérée d’un long malaise. Un peu plus tard j’ai pris
connaissance d’une variante de cette définition, à savoir qu’une fonction est un sous-ensemble
du produit de deux ensembles respectant certaines conditions, et cette autre formulation
m’avait plu également, non seulement parce qu’elle faisait ressortir le lien avec l’idée familière
de graphique, mais aussi parce qu’elle livrait d’emblée la fonction tout entière et qu’elle ne
contenait aucune suggestion de mouvement (comme ce va-et-vient entre les deux ensembles
suggéré par le mot « correspondance » dans la première formulation). Je trouvais cela
satisfaisant et apaisant.

En fait, la teneur en maths modernes de mon éducation a été très faible : nulle à l’école,
relativement modeste à l’université. Si j’en ai appris un peu plus, c’est en raison de mon
initiative personnelle de tenter de lire, je dis bien « tenter », ce fameux traité qui ne supposait,
en principe, aucune connaissance mathématique particulière. Cela a été frustrant, bien sûr,
mais je n’ai pas été rebutée par la chose comme d’autres qui en ont été gavés en bas âge. Au
contraire, je me souviens de moments de réel plaisir, comme lorsque j’ai lu qu’un couple
(a,b) pouvait se définir comme l’ensemble {a,{a,b}}. Jusque-là, la notion de couple m’avait
agacée, puisque je ne voyais pas comment distinguer (a,b) de (b,a) sans importer en
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mathématique des notions physiques telles que « droite » et « gauche » ou « avant » et
« après » (j’ai toujours aimé mes mathématiques très pures)5.

Aujourd’hui, il est rare que l’on ne qualifie pas de « faillite » le mouvement des maths
modernes et le discours structuraliste qui le sous-tendait. Les exposés systématiques, genre
« axiomes, définitions, théorèmes, démonstrations », qu’il s’agisse des Éléments d’Euclide
ou de ceux de Bourbaki, sont donnés comme exemple d’une mauvaise approche didactique.
Pourtant, la motivation, du moins la motivation initiale, derrière ces traités était d’ordre
didactique6. Leur but était de présenter les concepts et les résultats de base d’une discipline,
de façon cohérente, claire et ordonnée, avec un degré optimal (pas nécessairement maximal)
de généralité.

N’est-ce pas là des intentions louables? Où est l’erreur? Je ne m’y attarderai pas
longtemps, car les critiques sont bien connues : les maths modernes ont donné lieu à de
nombreux excès et dérives, mais, même sans cela, cette approche, qui aspirait pourtant à
introduire à l’école des « vraies » mathématiques, des mathématiques alignées sur celles
qui se pratiquaient à l’université, avait le défaut d’offrir aux élèves un savoir achevé, sans
leur montrer par quels chemins on en arrivait à s’intéresser à telle question, à la circonscrire
au moyen de tels concepts, définis de telle manière. Elle occultait les raisons du choix des
définitions et des axiomes, qui pouvaient paraître alors purement gratuits. Les problèmes
auxquels répondaient les théorèmes, les cas particuliers à partir desquels on avait bâti
abstractions et généralisations, les stratégies qui avaient permis d’obtenir les résultats, bref
tout le processus de création, demeuraient cachés.

Il fallait donc (re)donner aux élèves la chance de se familiariser avec ce processus, de
faire appel à leur intuition, d’élaborer les concepts de façon graduelle et de tenter de résoudre
des problèmes. Il fallait leur permettre de passer par toutes les étapes qu’une présentation
axiomatique les forçait à sauter. Cependant, cet excellent programme risque lui aussi de
provoquer des effets pervers, notamment en conduisant à dévaloriser, voire éliminer, l’étape
finale de systématisation et d’organisation du savoir.

L’indignation contre l’erreur des maths modernes et l’engouement pour la résolution
de problèmes ont entraîné une certaine indifférence, presque de la méfiance, à l’égard de
tout ce qui est abstraction, théorie mathématique, système ordonné de résultats. Si avant on
négligeait l’activité mathématique, le processus, maintenant on risque d’en oublier le produit.
Voilà donc ma première question pour l’avenir : comment trouver et maintenir un juste
équilibre entre les deux7? Dans la conjoncture actuelle, le défi me semble être d’éviter que
les concepts demeurent au stade d’intuitions, emprisonnés dans des représentations qui ne
devaient jouer qu’un rôle d’échafaudage8, et d’éviter que les résultats (les solutions des
problèmes) s’accumulent sans que l’on se soucie de les organiser en structures.

« Le mode d’exposition suivi est axiomatique et abstrait; il procède le plus souvent du
général au particulier. »9 Aujourd’hui, cette façon de procéder et l’idée même d’« exposition »
sont frappées d’anathème. L’orientation actuelle en didactique veut que l’on procède du
particulier au général. Cela paraît avalisé autant par le bon sens que par la recherche. J’ai
tout de même à ce sujet des préoccupations de deux ordres : 1) que la nouvelle façon de
procéder soit appliquée correctement, que l’on prenne réellement le temps, que l’on fasse
vraiment l’effort, de se rendre au « général », que l’on ne se perde pas dans la multitude des
« particuliers »; 2) que l’on n’érige pas en dogme une façon unique de procéder. Même si
pour l’instant elle semble être la meilleure, elle ne l’est sans doute pas pour tout le monde et
en toute occasion.

L’histoire devrait nous inciter à faire preuve de retenue. Nous reconnaissons aisément
l’intérêt d’un principe de précaution en repensant à l’aventure des maths modernes et en
nous disant : « Ils auraient dû... », mais le même principe vaut tout autant pour les tendances
dominantes actuelles! Il est facile, maintenant, d’exhiber des horreurs tirées des manuels
scolaires d’époques révolues10, mais mettons-nous à la place de nos collègues du futur et
essayons de regarder le matériel didactique contemporain à travers leurs yeux. Peut-être
pourrons-nous déjà entrevoir ce qui leur paraîtra risible. (Je pense, par exemple, à certaines
« situations-problèmes significatives »...) Si nous avons de la difficulté à apprendre des leçons
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du passé, peut-être que voyager mentalement dans l’avenir pour regarder en arrière vers le
présent pourra nous aider, pour ainsi dire, à apprendre des leçons du futur!

•  •  •

J’ai contrasté l’esprit des nouveaux programmes et celui des maths modernes, alors qu’il est
plus courant de l’opposer à celui de l’enseignement dit « traditionnel ». Les maths modernes
sont un épisode bien délimité dans l’histoire de la didactique, un adversaire déjà vaincu.
L’ennemi par rapport auquel se définissent les nouvelles orientations est l’enseignement
« traditionnel ». On le dépeint comme la transmission de faits et de techniques au niveau
intellectuel le plus bas qui soit. Sans doute cela a-t-il existé, et malheureusement cela existe-
t-il encore, mais supposer une uniformité dans la tradition plurimillénaire de l’enseignement
des mathématiques est une simplification inacceptable. En fait, cette tradition contient déjà
les principales idées qui animent la réforme actuelle.

Il y a un siècle, par exemple, Mary Boole, épouse de George Boole, prônait et pratiquait
déjà une approche par découverte11 :

For mathematical purposes, all influence from without, which induces the pupils to admit
a principle as valid before his own unbiased reason recognises its truth, come under the
same condemnation (p. 9).

Qualities of a teacher [...] Great reserve on the part of the teacher in even stating to pupils
the special conclusions to which he has been led, lest he should arrest the normal exercise
of their investigating faculties (p. 11).

[The teacher’s] object should be to efface himself, his books, and his systems; to draw aside
a curtain from between the child and the process of discovery, and to leave the young soul
alone with pure Truth (p. 14).

L’auteure de ces propos n’était pas une visionnaire isolée. Au contraire, Boole fait
allusion à des théories éducatives de son époque plus radicales que les siennes, condamnant
tout apprentissage mécanique, théories dont elle se démarque en adoptant une position
plus modérée, en reconnaissant, à côté de moments privilégiés d’apprentissage pleinement
conscient, l’utilité de périodes d’entraînement (p. 15).

Le caractère récurrent des préoccupations à propos de l’enseignement des
mathématiques ressort bien d’un autre passage du même texte. Boole y rapporte l’indignation
d’un professeur devant l’incapacité des étudiants à se servir de leurs connaissances
mathématiques dans leurs études de génie ou de physique. Cela, poursuit-elle, a rallumé
l’intérêt pour une question qui avait été négligée pendant une ou deux générations, mais
qui avait retenu l’attention de savants 60 ans plus tôt, à savoir (p. 20) : « What are the conditions
which favour a vital knowledge of mathematics? ». L’idée de connaissances vivantes me
semble très proche du discours contemporain sur la compétence à se servir des
mathématiques dans des contextes variés.

Un autre aspect des nouveaux programmes que l’on peut retracer dans la tradition
concerne justement l’accent mis sur l’utilité des mathématiques. La part importante du
« temps d’antenne » réservé aux mathématiques à l’école se justifie par le fait qu’elles « sont
partout » et qu’elles sont devenues indispensables à la vie en société. Axer l’enseignement
des mathématiques sur leur utilité n’était certainement pas le souci des promoteurs des
maths modernes, mais ce n’est pas non plus une idée nouvelle. À ce propos, la tradition
oscille entre deux pôles. D’une part, l’étude des mathématiques est conçue comme une
poursuite intellectuelle gratuite, « pour l’honneur de l’esprit humain », comme l’écrivait
Jacobi et le répétait Dieudonné12. Une anecdote célèbre illustre bien cette vision. On raconte
qu’un élève, après avoir appris un théorème, a demandé à Euclide à quoi cela lui servirait.
Euclide aurait ordonné alors à son esclave de donner une pièce de monnaie au garçon,
puisque ce dernier avait besoin de tirer un avantage de ce qu’il apprenait13. L’objet de l’histoire
est de promouvoir une attitude désintéressée et idéaliste envers le savoir. On peut y voir
aussi, et dénoncer, une attitude arrogante et élitiste d’hommes privilégiés14, mais il reste que
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tout le monde est en droit d’aspirer à une part de loisir à consacrer, éventuellement, à la
spéculation gratuite.

D’autre part, la tradition comprend aussi, et depuis longtemps, une vision plus utilitaire
des mathématiques. Sans parler des mathématiques babyloniennes qui s’exprimaient
essentiellement par des problèmes de nature économique, même dans la Grèce classique, il
semble que l’éducation mathématique des jeunes, jusqu’à 14 ans, avait une orientation surtout
pratique15. Par la suite, pour les élèves de 14 à 18 ans, l’inclusion dans le curriculum de
matières plus abstraites, comme l’astronomie et la géométrie, et les dangers d’en pousser
l’étude trop loin faisaient l’objet de discussions. Platon, qui souhaitait enrichir le contenu
mathématique des programmes d’études, citait la meilleure éducation des enfants égyptiens,
ce qui n’est pas sans rappeler le rôle des comparaisons internationales dans les débats
contemporains...

Qu’est-ce donc que la tradition? Un héritage culturel précieux à chérir ou une tyrannie
étouffante contre laquelle on doit se révolter si l’on veut progresser?

Pour améliorer quoi que ce soit, nos conditions de vie ou l’enseignement des
mathématiques, il faut innover (l’inverse n’est pas vrai), et pour innover, il faut s’écarter de
la tradition, c’est évident. D’où la connotation négative du terme « traditionnel16 ». Cependant,
une tradition aussi ancienne, riche et variée que celle de l’enseignement des mathématiques,
une tradition qui contient tout et son contraire, n’est sans doute pas à mettre au rancart en
bloc! Et, ne l’oublions pas, même ce qui nous semble dépassé pourra être revalorisé plus
tard. Pensons au domaine artistique, où les styles sont constamment réévalués.

Il en va ainsi, en éducation, des valeurs et des méthodes d’enseignement. Il ne faudrait
alors peut-être pas oublier entièrement certaines valeurs démodées, telles la clarté et la vérité.
La clarté était jadis parmi les qualités considérées comme les plus désirables pour
l’enseignement. Quant à la vérité, elle a été, traditionnellement, la qualité idéale de la
connaissance attendue par les élèves et dispensée par les maîtres. C’était ce que j’attendais
et recherchais quand j’étais élève. Cela n’exclut pas l’esprit critique; au contraire, celui-ci
doit être bien éveillé pour tester la vérité des connaissances proposées. Si l’école renonce à
dispenser la vérité, elle laissera un vide, un désir insatisfait qu’il faudra combler par d’autres
moyens. D’ailleurs, que cherchons-nous lorsque nous faisons de la recherche, si ce ne sont
des connaissances vraies? Bien sûr, dans le domaine intellectuel, la vérité n’est pas absolue,
elle varie selon les points de vue, mais cette affirmation aussi est une vérité. L’existence de
plusieurs niveaux de vérité et son caractère relatif n’impliquent pas que ce concept soit
dépourvu d’intérêt.

Il ne faudrait pas écarter non plus la possibilité de façons d’apprendre autres que celles
qui tiennent actuellement la vedette, soit la résolution de problèmes, la recherche personnelle
ou collective, l’exploration, la découverte et la discussion. Il n’est pas impossible d’apprendre
aussi par l’écoute, l’observation, l’imitation, la lecture, l’entraînement, la pratique, voire la
mémorisation17. N’avons-nous pas appris nous-mêmes par un mélange de ces approches?
Pourquoi rejeter ce qui a fonctionné pour nous? Personnellement, je crois que j’ai beaucoup
appris des livres. À l’occasion, même de livres qui se situaient au-delà de ma « zone de
développement proximale ». Je ne comprenais pas, mais je voulais comprendre, je me disais
qu’un jour je comprendrais. Ces livres constituaient pour moi un but, un horizon vers lequel
marcher.

En somme, pour ce qui est de la tradition, il me semble qu’un regard sur l’histoire,
même un regard sur quelques fragments seulement, nous incite à faire preuve de prudence,
d’une part, afin de ne pas créer une image stéréotypée de ce qu’est la tradition de
l’enseignement des mathématiques et, d’autre part, afin de ne pas rejeter entièrement et
définitivement des éléments de cette tradition qui pourraient s’avérer encore profitables.

•  •  •

Revenons maintenant à la réforme actuelle des programmes. J’ai parlé de l’importance de
rechercher un équilibre entre processus et produit, entre créativité et systématisation du
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savoir. Une autre problématique où prudence et modération me semblent nécessaires
concerne l’utilisation des mathématiques. La question que je voudrais poser à l’avenir à ce
sujet est la suivante : comment éviter l’abus des mathématiques, la mathématisation à
outrance, à tort et à travers? Y a-t-il moyen de contrer cette tendance par l’éducation? La
nouvelle insistance sur les situations-problèmes favorisera-t-elle une attitude critique à ce
propos ou, au contraire, contribuera-t-elle à empirer la situation?

Je ne veux pas parler ici de la fabrication d’armes, du clonage de monstres ou de la
survente de billets d’avion. Une éducation critique peut sensibiliser au rôle des
mathématiques dans tout cela, mais je doute que la didactique offre des moyens d’endiguer
le mal. Le problème que je veux soulever est moins grave, mais quand même irritant et
davantage de notre ressort. Il s’agit de l’emploi de formules, d’images ou de termes
mathématiques à mauvais escient, là où ils n’apportent rien à la compréhension d’une
situation et deviennent même une source de confusion. Cette pratique revient, encore une
fois, à pousser trop loin une bonne idée et nuit au projet de montrer aux élèves l’utilité des
mathématiques et de leur apprendre à s’en servir.

La prolifération de schémas inspirés des maths modernes en constitue un exemple
anodin, mais typique. Désormais, il ne reste plus rien, à l’école primaire (et bien peu au
secondaire), de ces notions de théorie des ensembles qui ont été la marque de commerce des
maths modernes et la cible des railleries de leurs détracteurs18. Entre-temps, par contre,
certains éléments du langage graphique qui les accompagnait, comme les diagrammes de
Venn, sont passés, dénués de leur sens, dans l’usage courant. Ironiquement, on en trouve de
nombreux exemples parmi les illustrations du nouveau programme pour le préscolaire et le
primaire au Québec19, programme qui, justement, a évacué du contenu d’étude les dernières
traces de ce langage! Loin d’éclairer quoi que ce soit, la plupart de ces ovales et de ces
flèches jouent, au mieux, un rôle purement décoratif. Souvent ils trahissent et encouragent
un flou intellectuel qui se traduit par des schémas dans lesquels des flèches colorées
remplacent des connexions logiques que l’on aurait du mal à expliciter.

Pourquoi s’inquiéter de ces pratiques maintenant, à l’heure de l’implantation d’un
curriculum qui met l’accent justement sur l’utilisation des mathématiques? Celui-ci ne
devrait-il pas éduquer à en faire un usage judicieux? En principe, oui. Cependant, les
contextes qui se prêtent à des activités adaptées aux élèves et dans lesquels les mathématiques
jouent un rôle véritablement significatif ne sont pas si faciles à trouver. Je crains — à tort, je
l’espère — que devant cette pénurie on ne se rabatte sur des situations artificielles où l’on
plaque des éléments mathématiques sans trop se soucier de la pertinence de l’opération,
comme l’on met des schémas inspirés des diagrammes de Venn en guise d’illustration d’un
texte.

Ne nous faisons pas d’illusions, l’introduction à l’école des mathématiques appliquées,
pour ne parler que de cet aspect de la réforme actuelle, demande au personnel enseignant
un effort majeur de perfectionnement, un effort comparable à celui qui a été exigé à l’époque
par les maths modernes. Je me souviens encore très bien du sentiment d’incompétence que
j’ai éprouvé au début de ma carrière lorsque j’enseignais la géométrie projective et que des
étudiants d’architecture m’ont posé une question pratique, portant sur la couverture d’un
toit. J’ai oublié la question, mais je me rappelle que je me suis sentie paralysée, entièrement
dépourvue de moyens pour aborder une question de ce genre. Je crois que beaucoup
d’enseignants et d’enseignantes n’ont pas plus de préparation à cet égard, aujourd’hui, que
je n’en avais alors, après quatre ans de spécialisation en mathématiques, ou que leurs
collègues d’antan n’en avaient sur la théorie des ensembles, l’algèbre linéaire et l’algèbre
abstraite.

C’est le moment de tirer profit des leçons de l’histoire. Le perfectionnement est
indispensable, mais il n’est pas suffisant pour le déploiement optimal d’un curriculum
radicalement nouveau. S’il est vrai, comme l’a rappelé Vicki Zack dans un commentaire
écrit remis à la fin de la séance, que l’on peut apprendre, changer et se développer tout au
long de sa vie, je pense que ce ne seront pas tous les enseignants et les enseignantes qui le
feront, et qu’il est parfois difficile de se débarrasser d’habitudes acquises dans sa jeunesse.
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Ce n’est que lorsqu’une génération entière d’enseignantes et d’enseignants aura reçu une
formation initiale en accord avec le nouveau curriculum que celui-ci pourra donner sa pleine
mesure. D’ici là, il faudra traverser quelques décennies de transition pendant lesquelles la
plupart des maîtres n’en sauront pas beaucoup plus que ce qui se trouve dans les manuels
de leurs élèves et garderont une vision des mathématiques et de leur enseignement plus ou
moins décalée par rapport aux nouvelles orientations. Dans le passé, nous n’avons pas eu la
patience d’attendre une si longue période. L’aurons-nous cette fois-ci? Choisirons-nous
d’endurer les ratés inévitables et de les corriger graduellement ou en ferons-nous un argument
pour condamner la réforme et changer de cap une fois de plus?

Conclusion

A popular misconception is that we can’t change the past—
everyone is constantly changing their own past, recalling it,

revising it. What really happened? A meaningless question. But
one I keep trying to answer, knowing there is no answer.

– Margaret Laurence, The Diviners20

Tirer des leçons de l’histoire est une démarche éminemment subjective, qui consiste à
interpréter des souvenirs. Encore faut-il que ces derniers soient disponibles.
Malheureusement, la mémoire humaine est tout sauf fiable et les documents se révèlent
souvent ambigus ou incomplets, certains ayant été perdus ou détruits, d’autres étant devenus
indéchiffrables, sans compter toutes les pensées et tous les événements qui n’ont pas été
enregistrés et dont la mémoire ne s’est pas transmise. Nous ne saurons jamais ce qui s’est
passé dans toutes les classes de mathématiques et quels en ont été les effets. Les souvenirs
que nous interprétons posent eux-mêmes problème. L’incertitude n’est pas l’apanage de
l’avenir.

La prudence est donc souhaitable, aussi, lorsque nous reconstruisons le passé. Difficile
de savoir ce qui est arrivé « en réalité », si tant est que la question ait un sens. Nous suivons
notre tendance à créer des récits cohérents, et cela nous permet d’y lire des leçons. Je vous
en ai proposé une, à vous maintenant de fouiller dans vos souvenirs pour en trouver d’autres.
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5. Voilà une autre leçon du passé, du moins de mon passé : l’apprentissage qui fait le plus plaisir
est habituellement celui qui résout un malaise préexistant, ou satisfait une curiosité
préexistante.

6. Frédéric Patras, La pensée mathématique contemporaine, Paris, Presses universitaires de France,
2001, p. 116; Maurice Mashaal, « Bourbaki. Une société secrète de mathématiciens. Un groupe
se forme », Pour la science, fév.-mai 2000, p. 6–9; Le matin des mathématiciens, entretiens sur l’histoire
des mathématiques présentés par Émile Noël, Paris, Éditions Belin-Radio France, 1985, p. 43.

7. D’après Frederick Leung, une plus grande attention accordée au produit, plutôt qu’au
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processus, est une des caractéristiques qui distinguent l’enseignement des mathématiques en
Asie de l’Est (les pays de culture confucianiste) de celui qui se pratique en Occident (les pays
anglo-saxons). Cette plus grande attention au produit, ainsi que tous les autres traits qui,
selon Leung, définissent l’identité asiatique dans l’enseignement des mathématiques, me
semble pourtant se retrouver aussi, avec autant de relief, dans la tradition « occidentale » :
Frederick K.S. Leung, « In search of an East Asian identity in mathematics education »,
Educational Studies in Mathematics, vol. 47, no 1, 2001, p. 35–51. Par ailleurs, j’ai appris de mon
collègue Christian Laville que, dans l’enseignement de l’histoire, il existe une tension similaire
entre curriculums modernes centrés sur la pensée historique (le processus) et curriculums
anciens centrés sur le récit historique (le produit).

8. Roberta Mura, « L’épaisseur d’un décimètre carré », La Revue canadienne de l’enseignement des
sciences, des mathématiques et des technologies, vol. 1, no 3, 2001, p. 291–303.

9. N. Bourbaki, Éléments de mathématique, Mode d’emploi de ce traité.
10. Voir, par exemple, Maurice Mashaal, « Bourbaki. Une société secrète de mathématiciens. Les

« maths modernes » à l’école », Pour la science, fév.-mai 2000, p. 83.
11. D.G. Tahta, A Boolean Anthology. Selected Writings of Mary Boole on Mathematical Education,

Derby, U.K., The Association of Teachers of Mathematics, 1972. Merci à David Pimm d’avoir
cité ce texte dans un de ses articles et de m’avoir ainsi permis de le découvrir.

12. C.G.J. Jacobi, Gesammelte Werke, vol. 1, Berlin, 1881, cité par Frédéric Patras, op. cit., p. 4, note
4. Dieudonné a intitulé un de ses ouvrages Pour l’honneur de l’esprit humain : Jean Alexandre
Dieudonné, Pour l’honneur de l’esprit humain : les mathématiques aujourd’hui, Paris, Hachette,
1987.

13. Thomas L. Heath, Greek Mathematics, New York, Dover Publications, 1963, p. 10.
14. On répète souvent et avec un peu trop de désinvolture que, si les mathématiques telles que

nous les connaissons ont été façonnées dans la Grèce classique, c’est parce que les penseurs
grecs étaient « des hommes libres » : Denis Guedj, Le théorème du perroquet, Paris, Éditions du
Seuil, 1998, p. 179, cité par Bernard Hodgson, « Pourquoi enseigner les mathématiques à
tous ? », dans Elaine Simmt, Brent Davis et John Grant McLoughlin (dir.), Proceedings of the
Annual Meeting of the Canadian Mathematics Education Study Group, Université du Québec à
Montréal, May 26–30, 2000, p. 164. Lorsqu’on tient des propos de ce genre, il faudrait prendre
soin de ne pas contribuer à perpétuer une image idéalisée de cette société antique et rappeler
que ces « hommes libres » devaient leur liberté non pas à une supposée démocratie, mais au
travail des femmes et des esclaves.

15. Thomas L. Heath, op. cit., p. 7–10.
16. Dans d’autres contextes, pourtant — dans l’artisanat par exemple —, ce terme n’a pas la même

connotation.
17. Selon Leung (voir la note 7), le rôle accordé à la mémorisation, même avant qu’une pleine

compréhension soit atteinte, est le deuxième aspect qui caractérise l’enseignement des
mathématiques en Asie de l’Est par rapport à ce qui se fait en Occident. Le troisième élément
est la vision de l’étude comme un travail sérieux, difficile et pénible. Leung contraste cela et la
recherche, en Occident, d’une manière d’apprendre qui soit agréable, voire amusante. Encore
une fois, je noterais que les caractéristiques que Leung attribue à la vision occidentale de
l’enseignement des mathématiques n’en résument pas toute la tradition, celle-ci comprenant
également des courants qui accordent autant d’importance aux aspects que cet auteur considère
comme typiques de l’approche asiatique. Il suffit de penser, par exemple, à la célèbre réponse
de Ménechme à Alexandre (ou d’Euclide à Ptolomée) à savoir qu’il n’existe pas de chemin
royal en géométrie : Thomas L. Heath, op. cit., p. 158.

18. Voir par exemple la caricature intitulée « Intersection d’un bébé et d’une pomme de terre »,
dans Didier Nordon, Les mathématiques pures n’existent pas!, Paris, Actes Sud, 1981, p. 6.

19. Ministère de l’Éducation du Québec, Programme de formation de l’école québécoise. Éducation
préscolaire. Enseignement primaire, 2001. Voir tous les schémas, notamment ceux des pages 8,
43, 99, 125, 197, 253 et 257.

20. Margaret Laurence, The Diviners, Toronto, McClelland & Stewart, 1988/1974, p. 70.
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APPENDIX A

Working Groups at Each Annual Meeting

1977 Queen’s University, Kingston, Ontario
• Teacher education programmes
• Undergraduate mathematics programmes and prospective teachers
• Research and mathematics education
• Learning and teaching mathematics

1978 Queen’s University, Kingston, Ontario
• Mathematics courses for prospective elementary teachers
• Mathematization
• Research in mathematics education

1979 Queen’s University, Kingston, Ontario
• Ratio and proportion: a study of a mathematical concept
• Minicalculators in the mathematics classroom
• Is there a mathematical method?
• Topics suitable for mathematics courses for elementary teachers

1980 Université Laval, Québec, Québec
• The teaching of calculus and analysis
• Applications of mathematics for high school students
• Geometry in the elementary and junior high school curriculum
• The diagnosis and remediation of common mathematical errors

1981 University of Alberta, Edmonton, Alberta
• Research and the classroom
• Computer education for teachers
• Issues in the teaching of calculus
• Revitalising mathematics in teacher education courses

1982 Queen’s University, Kingston, Ontario
• The influence of computer science on undergraduate mathematics education
• Applications of research in mathematics education to teacher training programmes
• Problem solving in the curriculum

1983 University of British Columbia, Vancouver, British Columbia
• Developing statistical thinking
• Training in diagnosis and remediation of teachers
• Mathematics and language
• The influence of computer science on the mathematics curriculum
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1984 University of Waterloo, Waterloo, Ontario
• Logo and the mathematics curriculum
• The impact of research and technology on school algebra
• Epistemology and mathematics
• Visual thinking in mathematics

1985 Université Laval, Québec, Québec
• Lessons from research about students’ errors
• Logo activities for the high school
• Impact of symbolic manipulation software on the teaching of calculus

1986 Memorial University of Newfoundland, St. John’s, Newfoundland
• The role of feelings in mathematics
• The problem of rigour in mathematics teaching
• Microcomputers in teacher education
• The role of microcomputers in developing statistical thinking

1987 Queen’s University, Kingston, Ontario
• Methods courses for secondary teacher education
• The problem of formal reasoning in undergraduate programmes
• Small group work in the mathematics classroom

1988 University of Manitoba, Winnipeg, Manitoba
• Teacher education: what could it be?
• Natural learning and mathematics
• Using software for geometrical investigations
• A study of the remedial teaching of mathematics

1989 Brock University, St. Catharines, Ontario
• Using computers to investigate work with teachers
• Computers in the undergraduate mathematics curriculum
• Natural language and mathematical language
• Research strategies for pupils’ conceptions in mathematics

1990 Simon Fraser University, Vancouver, British Columbia
• Reading and writing in the mathematics classroom
• The NCTM “Standards” and Canadian reality
• Explanatory models of children’s mathematics
• Chaos and fractal geometry for high school students

1991 University of New Brunswick, Fredericton, New Brunswick
• Fractal geometry in the curriculum
• Socio-cultural aspects of mathematics
• Technology and understanding mathematics
• Constructivism: implications for teacher education in mathematics

1992 ICME–7, Université Laval, Québec, Québec

1993 York University, Toronto, Ontario
• Research in undergraduate teaching and learning of mathematics
• New ideas in assessment
• Computers in the classroom: mathematical and social implications
• Gender and mathematics
• Training pre-service teachers for creating mathematical communities in the

classroom
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1994 University of Regina, Regina, Saskatchewan
• Theories of mathematics education
• Pre-service mathematics teachers as purposeful learners: issues of enculturation
• Popularizing mathematics

1995 University of Western Ontario, London, Ontario
• Autonomy and authority in the design and conduct of learning activity
• Expanding the conversation: trying to talk about what our theories don’t talk about
• Factors affecting the transition from high school to university mathematics
• Geometric proofs and knowledge without axioms

1996 Mount Saint Vincent University, Halifax, Nova Scotia
• Teacher education: challenges, opportunities and innovations
• Formation à l’enseignement des mathématiques au secondaire: nouvelles

perspectives et défis
• What is dynamic algebra?
• The role of proof in post-secondary education

1997 Lakehead University, Thunder Bay, Ontario
• Awareness and expression of generality in teaching mathematics
• Communicating mathematics
• The crisis in school mathematics content

1998 University of British Columbia, Vancouver, British Columbia
• Assessing mathematical thinking
• From theory to observational data (and back again)
• Bringing Ethnomathematics into the classroom in a meaningful way
• Mathematical software for the undergraduate curriculum

1999 Brock University, St. Catharines, Ontario
• Information technology and mathematics education: What’s out there and how can

we use it?
• Applied mathematics in the secondary school curriculum
• Elementary mathematics
• Teaching practices and teacher education

2000 Université du Québec à Montréal, Montréal, Québec
• Des cours de mathématiques pour les futurs enseignants et enseignantes du

primaire/Mathematics courses for prospective elementary teachers
• Crafting an algebraic mind: Intersections from history and the contemporary math-

ematics classroom
• Mathematics education et didactique des mathématiques : y a-t-il une raison pour

vivre des vies séparées?/Mathematics education et didactique des mathématiques:
Is there a reason for living separate lives?

• Teachers, technologies, and productive pedagogy

2001 University of Alberta, Edmonton, Alberta
• Considering how linear algebra is taught and learned
• Children’s proving
• Inservice mathematics teacher education
• Where is the mathematics?
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APPENDIX B

Plenary Lectures at Each Annual Meeting

1977 A.J. COLEMAN The objectives of mathematics education
C. GAULIN Innovations in teacher education programmes
T.E. KIEREN The state of research in mathematics education

1978 G.R. RISING The mathematician’s contribution to curriculum development
A.I. WEINZWEIG The mathematician’s contribution to pedagogy

1979 J. AGASSI The Lakatosian revolution*
J.A. EASLEY Formal and informal research methods and the cultural status of

school mathematics*

1980 C. GATTEGNO Reflections on forty years of thinking about the teaching of mathe-
matics

D. HAWKINS Understanding understanding mathematics

1981 K. IVERSON Mathematics and computers
J. KILPATRICK The reasonable effectiveness of research in mathematics education*

1982 P.J. DAVIS Towards a philosophy of computation*
G. VERGNAUD Cognitive and developmental psychology and research in mathe-

matics education*

1983 S.I. BROWN The nature of problem generation and the mathematics curriculum
P.J. HILTON The nature of mathematics today and implications for mathematics

teaching*

1984 A.J. BISHOP The social construction of meaning: A significant development for
mathematics education?*

L. HENKIN Linguistic aspects of mathematics and mathematics instruction

1985 H. BAUERSFELD Contributions to a fundamental theory of mathematics learning and
teaching

H.O. POLLAK On the relation between the applications of mathematics and the
teaching of mathematics

1986 R. FINNEY Professional applications of undergraduate mathematics
A.H. SCHOENFELD Confessions of an accidental theorist*

1987 P. NESHER Formulating instructional theory: the role of students’ misconceptions*
H.S. WILF The calculator with a college education

1988 C. KEITEL Mathematics education and technology*
L.A. STEEN All one system
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1989 N. BALACHEFF Teaching mathematical proof: The relevance and complexity of a
social approach

D. SCHATTSNEIDER Geometry is alive and well

1990 U. D’AMBROSIO Values in mathematics education*
A. SIERPINSKA On understanding mathematics

1991 J .J. KAPUT Mathematics and technology: Multiple visions of multiple futures
C. LABORDE Approches théoriques et méthodologiques des recherches françaises

en didactique des mathématiques

1992 ICME-7

1993 G.G. JOSEPH What is a square root? A study of geometrical representation in
different mathematical traditions

J  CONFREY Forging a revised theory of intellectual development: Piaget,
Vygotsky and beyond*

1994 A. SFARD Understanding = Doing + Seeing ?
K. DEVLIN Mathematics for the twenty-first century

1995 M. ARTIGUE The role of epistemological analysis in a didactic approach to the
phenomenon of mathematics learning and teaching

K. MILLETT Teaching and making certain it counts

1996 C. HOYLES Beyond the classroom: The curriculum as a key factor in students’
approaches to proof*

D. HENDERSON Alive mathematical reasoning

1997 R. BORASSI What does it really mean to teach mathematics through inquiry?
P. TAYLOR The high school math curriculum
T. KIEREN Triple embodiment: Studies of mathematical understanding-in-

inter-action in my work and in the work of CMESG/GCEDM

1998 J. MASON Structure of attention in teaching mathematics
K. HEINRICH Communicating mathematics or mathematics storytelling

1999 J. BORWEIN The impact of technology on the doing of mathematics
W. WHITELEY The decline and rise of geometry in 20th century North America
W. LANGFORD Industrial mathematics for the 21st century
J. ADLER Learning to understand mathematics teacher development and

change: Researching resource availability and use in the context of
formalised INSET in South Africa

B. BARTON An archaeology of mathematical concepts: Sifting languages for
mathematical meanings

2000 G. LABELLE Manipulating combinatorial structures
M. BARTOLINI BUSSI The theoretical dimension of mathematics: A challenge for

didacticians

2001 O. SKOVSMOSE Mathematics in action: A challenge for social theorising
C. ROUSSEAU Mathematics, a living discipline within science and technology

NOTE

*These lectures, some in a revised form, were subsequently published in the journal For the Learning
of Mathematics.
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APPENDIX C

Proceedings of Annual Meetings

Past proceedings of CMESG/GCEDM annual meetings have been deposited in the ERIC
documentation system with call numbers as follows:

Proceedings of the 1980 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 204120

Proceedings of the 1981 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234988

Proceedings of the 1982 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 234989

Proceedings of the 1983 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 243653

Proceedings of the 1984 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 257640

Proceedings of the 1985 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 277573

Proceedings of the 1986 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 297966

Proceedings of the 1987 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 295842

Proceedings of the 1988 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 306259

Proceedings of the 1989 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 319606

Proceedings of the 1990 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 344746

Proceedings of the 1991 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 350161

Proceedings of the 1993 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407243

Proceedings of the 1994 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407242

Proceedings of the 1995 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 407241

Proceedings of the 1996 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 425054

Proceedings of the 1997 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 423116

Proceedings of the 1998 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 431624

Proceedings of the 1999 Annual Meeting . . . . . . . . . . . . . . . . . . . ED 445894

Proceedings of the 2000 Annual Meeting . . . . . . . . . . . . . . . . . .  not available

Proceedings of the 2001 Annual Meeting . . . . . . . . . . . . . . . . . .  not available

NOTES

1. There was no Annual Meeting in 1992 because Canada hosted the Seventh International
Conference on Mathematical Education that year.

2. Proceedings of the 2002 Annual Meeting have been submitted to ERIC.




