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 The present paper introduces and evaluates a readability measurement method designed for learners of EFL 

(English as a foreign language). The proposed readability measurement method (a regression model) estimates the 

text readability based on linguistic features, such as lexical, syntactic and discourse features. Text readability refers 

to the comprehension rate of a text (0.0-1.0). The experimental results showed that the proposed readability 

measurement method yielded higher accuracy than a baseline method, which provides the mode value of the 

distribution of the comprehension rate data as the estimated value for any input. 
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Introduction 
Automatic measurement of readability has been an important issue in the area of language learning. 

Classical research used statistical analyses to develop readability formulae, such as Flesch Reading Ease 
(Flesch, 1948) and Flesch-Kincaid Grade Level (Kincaid, Fishburne, Rogers, & Chissom, 1975), whereas more 
recent researches have employed machine learning algorithms to develop readability measurement methods 
(Nagata, Masui, Kawai, & Siino, 2004; Schwarm & Ostendorf, 2005; Heilman, Collins-Thompson, Callan, & 
Eskenazi, 2007). 

The recently proposed readability measurement methods can be classified into three types. The first type is 
designed to indicate readability for native speakers. Schwarm and Ostendorf (2005) developed a readability 
measurement method for English texts using Support Vector Machines (Vapnik, 1998) to combine features of 
traditional readability indices, statistical language models and other language features. The second type of 
readability measurement method has been designed for second/foreign language learners (Nagata et al., 2004). 
The third type can measure readability for both native speakers and second language learners (Heilman et al., 
2007). 

Because the previously proposed methods compute the readability score by mainly examining how many 
specific grammatical constructions, such as relative clauses and participle constructions appear in a text, they 
are faced with the problem of technological errors made by natural language processing tools in identifying 
specific grammatical constructions. This problem has been noted and resolved by Kotani, Yoshimi, and Isahara 
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(2010), who constructed a reading proficiency prediction model for learners of EFL (English as a foreign 
language), not a readability measurement method. They proposed to construct a reading proficiency prediction 
model with linguistic features, such as the number of branching nodes in a syntactic tree, because these 
linguistic features are supposed to be less likely to introduce technological errors. In an evaluation experiment, 
the proposed reading proficiency prediction model was compared with a model constructed with linguistic 
features of specific grammatical constructions. The experimental results showed that the linguistic features 
proposed by Kotani et al. (2010) were adequate for constructing a reading proficiency prediction model for 
EFL learners. However, it has not been clarified whether the linguistic features are also adequate for 
constructing a readability measurement method for EFL learners. 

In the present paper, we introduce a readability measurement method for EFL learners based on the same 
linguistic features proposed by Kotani et al. (2010), and conduct an evaluation experiment to clarify the 
effectiveness of the readability measurement method. The proposed readability measurement method is 
constructed using regression. The independent variables of this regression are various linguistic (lexical, 
syntactic and discourse) features, and the dependent variable is the readability score for EFL learners. Here, the 
readability score of a text refers to the comprehension rate of a text, which is computed by dividing the number 
of correct answers by the number of comprehension questions in a text (range from 0.0 to 1.0). The proposed 
readability measurement method takes a text as input, extracts various linguistic features of the text and 
estimates readability scores based on the extracted linguistic features.  

Related Studies 
Recent research on second/foreign language learning has elicited reading models for second/foreign 

language learners (Nagata et al., 2004; Kotani et al., 2010; Heilman et al., 2007). We briefly review these 
studies below. 

Nagata et al. (2004) proposed a readability measurement method using a neural network learning 
algorithm. This method examines the number of specific grammatical constructions, such as post-nominal 
modifiers (e.g., relative clauses and participle constructions), appearing in a text. In this method, the readability 
score is weighted for these constructions, because, according to Nagata et al. (2004), it is difficult for Japanese 
EFL learners to comprehend these constructions. 

Heilman et al. (2007) developed a readability measurement method for both native speakers and second 
language learners and compared the vocabulary-based and the grammar-based readability measurement 
methods. While the vocabulary-based method outperformed the grammar-based method, syntactic features 
were found to play an important role in second language readability in the grammar-based method. 

The vocabulary-based readability measurement method is based on a unigram language model. Although 
Heilman et al. (2007) considered the unigram language model to be a weak model, it could be more effectively 
trained than more complex bi- or tri- gram models. 

The grammar-based readability measurement method uses grammatical constructions, such as passive 
voice, past participles and relative clauses. These grammatical constructions were extracted from grammar 
textbooks for EFL learners and were implemented as syntactic patterns for a parsing tool. 

Kotani et al. (2010) proposed a reading proficiency prediction model, not a readability measurement 
method. However, they did not use the number of specific grammatical constructions as syntactic features. 
According to Kotani et al. (2010), although the number of specific grammatical constructions undeniably 
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affects reading proficiency, a reading model using these features is also affected by technological errors made 
by natural language processing tools used for extracting linguistic features. When using a syntactic parser, we 
must consider the presence of technological errors, such as the incorrect labeling of syntactic nodes. For 
instance, a non-relative clause might be incorrectly labeled as a relative clause. Given this possibility, it is 
crucial to minimize the effects of such errors as much as possible. Kotani et al. (2010) solved this problem by 
using syntactic features that are available without labeling—specifically, the size of a sentence in terms of the 
number of syntactic branching nodes, which is believed to affect the reading proficiency from a 
psycholinguistic perspective, such as through the garden-path effect (Frazier & Rayner, 1982). In addition to 
syntactic features, Kotani et al.’s (2010) reading proficiency prediction model used lexical and discourse 
features and their reading model showed an 8.0% lower prediction error than a conventional model. 

Linguistic Features of the Proposed Readability Measurement Method 
Following the previous model (Kotani et al., 2010), we developed a readability measurement method that 

estimates readability scores for texts intended for EFL learners by examining the various linguistic features of 
the texts. 

In the present paper, “linguistic features” refers to lexical, syntactic and discourse features. Of these, we 
selected those features that can be automatically derived with state-of-the-art natural language processing tools, 
as the goal of this study is to implement a readability measurement method into a computer-assisted language 
learning system. In the rest of this section, we review the features used to develop the proposed readability 
measurement method. 

Lexical Features 
Lexical features represent the vocabulary-related difficulties faced by EFL learners. As noted by Sano and 

Ino (2000), reading comprehension can be difficult for EFL learners even when only short words are used. 
Consequently, Kotani et al. (2010) assigned vocabulary difficulty scores based on heuristically determined 
vocabulary difficulty, which is summarized in the JACET (The Japan Association of College English Teachers) 
4,000 Basic Words list (JACET, 1983). Vocabulary difficulty was determined by teachers of English working 
with Japanese EFL learners. The JACET list provides difficulty scores for 11 levels (Someya, 2000). The 
vocabulary difficulty of a given text is determined by summing the difficulty scores of all the words in the text. 

The vocabulary difficulty list contains more than 35,000 words. However, authentic texts may contain 
words that are not registered in this list. Therefore, the reading model of Kotani et al. (2010) takes into account 
the fact that the model cannot estimate the difficulty of words that are not registered in the list. 

Since the vocabulary difficulty list is compiled mainly for EFL learners, it is intended to cover words that 
EFL learners should study. As a result, the vocabulary difficulty of unregistered words is assumed to be higher 
than that of registered words. Following this assumption, the problem of unregistered words can be solved by 
either regarding unregistered words as more difficult than registered words or considering the number of 
unregistered words in a text to be a lexical feature. The former solution is hardly feasible, as it is difficult to 
precisely determine the vocabulary difficulty of unregistered words. Thus, following Kotani et al. (2010), we 
employed the latter strategy in this paper. 

Although the vocabulary difficulty list covers basic vocabulary for EFL learners, some basic words might 
be more difficult than expected. For instance, words classed among the least difficult in the list, such as “get” 
and “make”, may have various and complex usages and the difficulty of these words may depend on the 
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context in which they appear. Kotani et al. (2010) attempted to solve this problem by including the number of 
word meanings as another lexical feature. The number of word meanings was measured using Word Net 2.0 
(Fellbaum, 1998), a large lexical database of the English language. The number of word meanings in a text was 
determined by summing the word meanings of each word in the text. 

Syntactic Features 
Syntactic features comprise two types, following Kotani et al. (2010): One is the number of all the 

branching nodes constituting a syntactic tree; and the other is the number of branching nodes stored in 
short-term memory under human language processing. 

Since the number of syntactic nodes explains the size of a syntactic tree, we decided to use this 
quantificational information of syntactic nodes as a syntactic feature, following Kotani et al. (2010). In addition, 
Kotani et al. (2010) have suggested that the number of branching nodes is highly correlated with readability for 
EFL learners. The garden-path effect is a similar branching node effect (Frazier & Rayner, 1982). Syntactic 
parsing was performed using the Apple Pie Parser (Sekine & Grishman, 1995). Kotani et al. (2010) considered 
that the number of syntactic nodes could take into account the presence or absence of specific grammatical 
constructions that affected the reading comprehension of EFL learners. The number of syntactic nodes in a text 
is determined by summing all of the syntactic nodes in each sentence in the text. 

Since a syntactic tree represents a result of syntactic parsing, it does not explain memory load during 
psychological syntactic parsing. Thus, following Kotani et al. (2010), we used the number of syntactic nodes 
stored in short-term memory as a syntactic feature representing short-term memory load. Syntactic nodes stored 
in short-term memory refer to those stored in a stack when analyzing a sentence in a top-down fashion using a 
push-down automaton. The number of nodes stored in a stack when parsing a text is determined by summing 
the numbers of nodes stored when parsing all the sentences in a text. 

 
Figure 1. Number of nodes stored in short-term memory. 

 

Figure 1 shows how the number of non-terminal symbols stored in a stack is determined for the sentence 
“The man saw the boy” in a push-down automaton (Yngve, 1960). When the first word “the” is inserted, 
theterminal symbol “S” (sentence) is transformed into (NP (noun phrase); VP (verb phrase)) and “VP” is 
memorized, that is, the symbol “VP” is stored in a stack. Next, the terminal symbol “NP” is transformed into 
(DT (determiner); N (noun)) and “N” is stored in a stack. Then, “DT” is rewritten as “the”. Therefore, the two 
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non-terminal symbols “N” and “VP” are stored in a stack, while “the” is processed. 
The number of nodes stored in a stack is measured as follows (Yngve, 1960). As shown in Figure 1, 

beginning from zero, a number is assigned to each branch from right to left. The sum of the numbers in the path 
from “S” to a word indicates the number of symbols stored in a stack for that word. The following numbers are 
assigned to each word as the number of nodes stored in a stack for the sentence “The man saw the boy”: 2, 1, 1, 
1 and 0. 

Murata et al. (2001) modified this number assignment procedure in certain aspects; for instance, NP that 
has no postmodifier will not be transformed. Thus, as NPs in the sentence “The man saw the boy” have no 
postmodifier, the numbers of nodes in a stack is 1, 1 and 0. Murata et al. (2001) determined the number of 
nodes in a stack following this revised procedure. The number of nodes stored in a stack in a text is determined 
by summing all of the numbers of nodes in a stack in each sentence. 

Discourse Features 
The discourse feature of the proposed readability measurement method is the number of pronouns, 

following Kotani et al. (2010). While reading a text, referents of pronouns must be identified and this requires 
comprehension of the discourse structure. Thus, the number of pronouns can be used as an indicator of the 
complexity of the discourse structure of a text. 

Although a text may include other anaphoric expressions, such as definite expressions, these are not 
included as a discourse feature due to the technological error effect. Kotani et al. (2010) considered that the 
detection of pronouns involves fewer technical problems. 

Comprehension Rate Data Collection 
In the proposed readability measurement method, readability scores are assessed based on comprehension 

rate. In the present study, comprehension rate was defined as the correct answer rate for comprehension 
questions about the texts (range from 0.0 to 1.0). In addition to the linguistic features reviewed in above, 
comprehension rate data were used as training data in order to develop the proposed method. 

Comprehension rate data were collected as follows. Participants were recruited from a job information 
Website and were chosen on the basis of the following criteria: Those who had taken the TOEIC (Test of 
English for International Communication) (Website, http://www.ets.org/toeic, a test of English language skills 
used in the workplace), those who could submit a TOEIC score sheet, and those who lived near the data 
collection site. Among the respondents, 64 took part in the data collection process. All the participants had 
taken the TOEIC within the previous one-year period and their native language was Japanese. 

We prepared test sets based on 84 texts extracted from TOEIC preparation textbooks (Arbogast et al., 
2001; Lougheed, 2003). Each test set consisted of seven texts and every test set contained different texts. Each 
text was accompanied by two to five multiple-choice comprehension questions. We randomly provided 
participants with one or two test sets. Thirty-one participants took one test set and 33 participants took two test 
sets. 

Comprehension rate data were collected using a reading process recording tool (Yoshimi, Kotani, Kutsumi, 
Sata, & Isahara, 2005). This tool displays one sentence at a time (see Figure 2). A sentence appears on the 
computer screen when the cursor is positioned over a reading icon and it disappears when the cursor is moved 
away from the icon. 

Participants used this tool while reading the text and answering the comprehension questions. When the 
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cursor was positioned over a question icon, a comprehension question appeared. Participants answered the 
question by clicking on one of the answer icons. 
 

 
Figure 2. Screenshot of the reading process recording tool. 

 

After receiving instructions about the tool, participants practiced by reading several texts and answering 
comprehension questions. The participants were instructed first to read the text and then answer the 
comprehension questions. We also directed participants to attempt to understand the text well enough to 
correctly answer the comprehension questions. Since we did not impose time constraints, the participants could 
take as much time as they needed. In order to reduce the pressure on the participants, we did not inform them 
that the tool would be measuring their reading times. 

We excluded comprehension rate data of four participants whose reading speed (WPM (words per 
minute)) was extremely fast or slow (> 200 WPM or < 70 WPM), as slow reading speed might have been the 
result of unnecessarily careful reading and excessively fast reading speed could indicate that participants did 
not properly read the materials (average reading speed of native English speakers is reported to be in the range 
of 200 to 300 WPM (Carver, 1982)). The comprehension rate data we obtained consisted of 451 instances. An 
instance consists of the linguistic features of a text and the comprehension rate when an EFL learner reads the 
text. The mean age of the participants whose comprehension rate data were included in analysis was 29.8 years 
(SD (standard deviation) = 9.5). Nine participants were males and 51 were females. 

The distribution of the comprehension rate data is shown in Figure 3. The comprehension rate data 
comprises ten values from 0.0 to 1.0, and each value refers to the comprehension rate calculated by dividing the 
number of correct answers (one to five) by the number of comprehension questions (two to five). The 
comprehension rate data showed a skewed distribution plotted with a dotted line, because the comprehension 
rate was 1.0 in 59.6% of the instances (269 out of 451). The reason why so many instances of comprehension 
rate 1.0 were observed could be due to the fact that, as there was no time restriction in this experiment, the 
participants could spend as much time as they wanted to complete each question. 
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Figure 6 shows that the proposed readability measurement method resulted in larger error than the baseline 
method when the normalized absolute differences fell between 0.4 and 1.0 (six instances). However, the 
proposed method resulted in smaller error in most cases, as most plots of the proposed method appear above 
those of the baseline method. In addition, as the distribution for the proposed method is longer than that of the 
baseline method, there were more instances in which the proposed method resulted in smaller errors (109 
instances, 54%). 

Conclusions 
We proposed a readability measurement method for EFL learners based on various linguistic features that 

consist of lexical, syntactic and discourse features. The median absolute error of the proposed method was 
relatively low at 0.13 (range from 0.00 to 0.60), and this was lower than the absolute error of the baseline 
method (0.17 (range from 0.00 to 0.50)). Also, the proposed method had a higher cumulative relative frequency 
of error below 0.4 than the baseline method. Finally, the distribution of the absolute error of the proposed 
method was significantly different from that of the baseline method (p < 0.05). From these experimental results, 
we concluded that the proposed method can effectively assess the readability of texts intended for EFL learners. 

The present paper leaves several problems unresolved. First, we must improve the accuracy of the 
proposed method. Second, we should examine the other possible independent variables. By using learner 
features, such as reading time, we may be able to develop a more effective readability measurement method on 
a learner-by-learner basis. Finally, we must examine other possible dependent variables, and we may use 
reading time data and a complex measure of comprehension and reading time (known as effective reading 
speed (Jackson & McClelland, 1979)). 
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