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Continuity of functions appears throughout the grades in South African high school (FET (further education and 

training)) topics as prescribed by the final draft of the Curriculum and Assessment Policy Statement. This article 

reports on the use of a combined framework of APOS (action-process-object-schema) and DCT (dual coding 

theories) to analyze data captured in a study which investigated second-year teacher trainees’ understanding of the 

concept of continuity. The study is qualitative in that it reports on these teacher trainees’ mental constructions of the 

concept of continuity of single-valued functions, obtained from analysis of their responses to structured activity 

sheets. The 12 students in this study specialize in the teaching of mathematics for the FET high school curriculum 

at a South African education faculty. A two-tiered concurrent approach was attempted, one through 

student-collaborations and the other through an instructional design worksheet, to develop mathematical 

understandings of the concept of continuity.  

Keywords: APOS (action-process-object-schema) theory, three worlds of mathematics, DCT (dual coding theories), 

single-valued function, continuity 

Introduction 
Previous studies, for example (Dubinsky, Weller, McDonald, & Brown, 2005) analyzed students’ 

mathematical learning on an individual basis. This study however analyzed teacher trainees’ understanding, 
after they carried out investigations first individually and then in a collaborative manner. This is to address the 
learner-centered approach which underpins Curriculum 2005 (DoE (Department of Education), 2003). We 
report on an investigation based on the use of activity sheets and group-work to construct the concept of 
continuity. To collaborate is to work with another or others. In practice, collaborative learning has come to 
mean students working in pairs or small groups to achieve shared learning goals (Barkley, Cross, & Major, 
2005). 

A new trend (at least in the European mathematics education community) is using several theories and 
approaches in a meaningful way (Radford, 2008). In coordinating theories, elements from the different theories 
are chosen and integrated to investigate a certain research problem. Tall (2004) presented a framework for 
mathematical thinking based on three worlds of mathematics: (1) the embodied; (2) the symbolic; and (3) 
formal. It is thought that as new conceptions are compressed into more thinkable concepts, individuals develop 
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through these worlds hierarchically (Tall & Ramos, 2006). The embodied world containing embodied objects 
(Gray & Tall, 2001) is where we think about the things around us in the physical world, and it includes not only 
our mental perceptions of the real world objects, but also our internal conceptions that involve visual-spatial 
imagery (Tall, 2004, p. 30). In order for us to understand this “world of continuous function”, we employed the 
DCT (dual coding theories) (Paivio, 1986). For the symbolic and formal “worlds of continuity”, we made use 
of APOS (action-process-object-schema) (Dubinsky & McDonald, 2001). We found it useful to blend the 
frameworks used by Stewart and Thomas (2009) and Brijlall and Maharaj (2009) to facilitate our analysis in 
this paper. This led us to the framework given in Figure 1.  
 

 
Figure 1. A modified framework for reflective abstraction. 

 

Maharajh, Brijlall, and Govender (2008) investigated the concept image and the concept definition (Tall & 
Vinner, 1981) with regard to a deeper understanding of continuity in differential calculus within a Vygotskian 
paradigm. Vidakovic (1996; 1997) used APOS theory in the context of collaborative learning. Those 
investigations focused on the differences between group and individual mental constructions of the inverse 
function concept. Vidakovic (1997) described the construction processes for developing schema (genetic 
decomposition) of the inverse function. In particular, genetic decompositions which predict the mental 
constructions are a part of every good APOS based study. 

Bezuidenhout (2001) pointed out that misconceptions relating to students’ understandings of the concepts 
of limit and continuity are impediments to the development of deeper understandings in differential calculus. It 
seems that many students perform poorly in mathematics because they: (1) are unable to adequately handle 
information given in symbolic form which represent objects (abstract entities), for example, mathematical 
expressions, equations and functions; and (2) lack adequate schema or frameworks which help to organize and 
link different objects (Maharaj, 2005). 

Background 
Relevance of Study to South African Educators  

Following the work by Shulman (1986; 1987) to make academics rethink what was necessary for effective 
classroom practice, Ball, Thames, and Phelps (2008) made it relevant to content knowledge for mathematics 
teaching and learning. They have introduced four sub-domains of content knowledge. This paper illustrates 
each of these sub-domains by features which appear in the questionnaire we employed in the data capture. The 
four sub-domains of pedagogical knowledge are: (1) CKK (common content knowledge); (2) SCK (specialized 
content knowledge); (3) KCS (knowledge of content and student); and (4) KCT (knowledge of content and 
teaching). The knowledge of continuity we found overlaps with the sub-domains (1) and (2). Most functions to 
be taught in the high, as guided by the NCS (National Curriculum Statement) (DoE, 2003) are continuous. 

Mathematical thinking
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These functions include { }cbxxayyx ++= 2/);( , { }cxmyyx +=/);( , { }dcxxbxayx +++ 23/);( , 

{ }xyyx sin/);( = , etc.. However, the educators are also faced with the teaching of discontinuous functions like 

{ }0,/);( ≠= x
x
kyyx , { }xyyx tan/);( = , { }xyyx 2/);( =  and { }xyyx log/);( = . One of the expectations of the 

Norms and Standards for Educators (DoE, 1999) is that the educator should be well grounded in the knowledge 
relevant to the occupational practice. She/he has to have a well-developed understanding of the knowledge 
appropriate to the specialism. Many mathematics educators find themselves in a position requiring them to 
implement the syllabus, which includes certain topics they are unfamiliar with. According to Adler (2002), 
educators with a very limited knowledge of mathematics need to develop a base of mathematical knowledge. 
They need to relearn mathematics so as to develop conceptual understanding. Taking this into account, we 
attempted to make certain that trainees’ teachers leave with a base of knowledge relevant to their occupational 
needs. Mwakapenda (2004) concurred, when stating that a significant concern in school mathematics is 
learning with understanding of mathematical concepts. 

The NCS emphasizes a learner-centered, outcomes-based approach to the teaching of mathematics to 
achieve the critical and developmental outcomes (DoE, 2003). The following question guided our inquiry into 
teacher trainees’ understandings in their constructions of the concept of continuity. 

How does the graphical representation learning approach facilitate students’ learning process with regard 
to the construction of the concept of continuity of single-valued functions in differential calculus? 

The main intention of the study was to observe how learning of mathematics content, whether effective or 
not, took place under these circumstances. In order to answer the above research questions, an APOS analysis 
of the data was conducted. 

Theoretical Framework 

This study was carried out in accordance with a specific framework for research and curriculum 
development in undergraduate mathematics education advocated by Asiala, Brown, DeVries, Dubinsky, 
Mathews, and Thomas (1996) which guided our systematic enquiry of how students acquire mathematical 
knowledge and what instructional interventions contributed to student learning. The framework consists of the 
following three components: instructional treatment, theoretical analysis and observations and assessment of 
student learning. 

According to Asiala et al. (1996), the functions of APOS theory according to the paradigm illustrated in 
Figure 2.  
 

 
Figure 2. Paradigm: General research programme. 
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In this paradigm, theoretical analysis occurs relative to the researchers’ knowledge of the concept in 
question and knowledge of the APOS theory. Our study followed the steps of this paradigm. The theoretical 
analysis served to propose mental constructions (the genetic decomposition) that are most likely responsible for 
the learning of the continuity concept by the student teachers. The instructional treatment included a 
collaborative worksheet design and was intended to get the student teachers to make the proposed mental 
constructions. They were then expected to use the mental constructions to construct an understanding of 
continuity and hence apply the concept to other situations. Pedagogical strategies that were used including 
small group-work to complete mathematical tasks, making conjectures using the model proposed by Cangelosi 
(1996), and a de-emphasis of lecturing in favor of cooperative learning. According to Figure 2, the analysis of 
data relates to the theoretical analysis in two directions as seen by the double sided arrow. The theoretical 
analysis provides the questions to be asked of the data which in turn, gives an indication about the effectiveness 
of the theoretical analysis in terms of mental constructions as well as the mathematics that each student teacher 
may have learned in the investigation. 

Instructional Treatment 
Visualization plays an important role in learning (Vygotsky, 1978) and in particular, the learning of 

mathematics. This idea is espoused in the old adage, “a picture is worth a thousand words”. The role of graphs 
in the teaching of mathematics is complex and has multi-fold dimensions (Brijlall, 1997). In this regard, we 
adopted the DCT as discussed by Paivio (1986) to motivate our design of the structured worksheet. DCT, a 
theory of cognition, postulates that visual and verbal information are processed differently and along distinct 
channels with the human mind creating separate representations for information processed in each channel. 
Both visual and verbal codes for representing information are used to organize incoming information into 
knowledge that can be acted upon, stored and retrieved for subsequent use. We designed the worksheet to 
create graphical representations of continuous and non-continuous functions as visual information. Then both 
students (apprentices) and tutor (the experienced teacher) engaged collaboratively (Vygotsky, 1978) to provide 
verbal information, allowing mathematical connections for a deeper conception of continuity to emerge. 

According to Paivio (1986), mental images are analogue codes, while the verbal representations are 
symbolic codes. Analogue codes represent the physical stimuli we observe in our environment and in this study 
viewed as graphical representations of continuous and non-continuous mathematical functions. These codes are 
a form of knowledge representation that retains the main perceptual features of what is being observed. 
Symbolic codes, on the other hand, are a form of knowledge representation chosen to represent something 
arbitrarily as in the concept definition of continuity in calculus (Tall & Vinner, 1981). Continuity has a 
pre-formal visual meaning in that it has elements of dynamic movement, being all in one piece, not changing 
suddenly (either in direction or in formula) and having no holes (Tall & Vinner, 1981; Tall & Bakar, 1992). 
Supporting evidence comes from research (Vygotsky, 1978) that showed that memory for some verbal 
information is enhanced if a relevant visual is also presented or if the student can imagine a visual image to go 
with the verbal information. Verbal information can often be enhanced when paired with a visual image, real or 
imagined (Anderson, 2005; Anderson & Bower, 1973). This paper also uses collaborative learning from 
Vygotsky’s theory as a framework for classroom interactions to occur fruitfully (Vygotsky, 1978). Unlike 
traditional teaching approaches, collaborative learning rewards all individual students participating in the group 
by explicitly ensuring that all have achieved the intended lesson outcomes (Barkley et al., 2005).  
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Theoretical Analysis 
Piaget, as cited in Brijlall and Maharaj (2009; 2011), expanded and deliberated on the notion of reflective 

abstraction which refers to the construction of logic-mathematical structures by a learner during the process of 
cognitive development (Dubinsky, 1991a). Two features of this concept are: (1) It has no absolute beginning 
but appears at the very earliest ages in the coordination of sensori-motor structures; and (2) It continues on up 
through higher mathematics to the extent that the entire history of the development of mathematics from 
antiquity to the present day may be considered as an example of the process of reflective abstraction (Dubinsky, 
1991b). 

We define the following four concepts that are used in APOS theory of conceptual understanding (Brijlall 
& Maharaj, 2009; 2011): 

(1) Action: An action is a repeatable physical or mental manipulation that transforms objects; 
(2) Process: A process is an action that could take place entirely in the mind; 
(3) Object: The distinction between a process and an object is drawn by stating that a process becomes an 

object when it is perceived as an entity upon which actions and processes can be made, and such actions are 
made in the mind of the learner; 

(4) Schema: A schema is a more or less coherent collection of cognitive objects and internal processes for 
manipulating these objects. A schema could aid students to “... understand, deal with, organise, or make sense 
out of a perceived problem situation” (Dubinsky, 1991a, p. 102). 

Observations and Assessment of Student Learning 
This followed the instructional treatment and allowed us to gather and analyze data. The data was used in 

two ways. Firstly, the results of the data analysis were used to test our initial genetic decomposition. Secondly, 
the data gathered was used to report on the performance of students on mathematical tasks related to the 
concept of continuity. 

Methodology 
The structured design of worksheet used an example and non-example approach. In particular, we focused 

on sorting, reflecting and explaining, generalizing, verifying and refining. The methodology adopted five stages: 
(1) design of worksheet; (2) facilitation of group-work; (3) capture of written responses; (4) interviews; and (5) 
analysis and findings. The data collection relied to a large extent on what students could say or write about their 
learning experiences. The worksheet task was completed over two double periods, each of one and a half hour 
duration. This included the individual work by students, the discussions in the groups, the group class 
presentations and the final discussion involving the tutor. The interviews were done with individuals a week 
later during the free periods involving both the student and tutor. All the interviews were video recorded.  

Design of Worksheet 
A worksheet was designed in accordance with ideas postulated by a guided problem-solving model 

suggested by the work of Cangelosi (1996). This work modeled how meaningful mathematics teaching could 
be planned with the aim of simultaneously addressing the cognitive and affective domains when students solve 
problems. An interpretation and modification of the guided problem-solving model (Maharaj, 2007) illustrated 
in Figure 3 has the following three interlinking levels or phases: (1) inductive reasoning: conceptual level 
processing occurs; (2) inductive and deductive reasoning: Where simple knowledge and knowledge of a 
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process level occurs; and (3) deductive reasoning: occurring at an application level. This model has also been 
used in studies involving the learning of concepts in sequences by pre-service students at a South African 
education faculty by Brijlall and Maharaj (2011) and Maharajh et al. (2008). 

In our case, to provide a structured approach in an inductive manner, we implemented the graphical 
representations as tools to guide the discussion in arriving at the concept definition of continuity. However, we 
noted that there is always interplay between inductive and deductive reasoning for the different levels. They are 
continuously present and constantly following each other in mathematical thinking. For example, in an 
inductive process, very often a preliminary generalising step is reached; the finalisation of an inductive part is 
the beginning of the deductive part (Maharaj, 2007). Therefore, generalising at each of the different levels 
implies that the deductive mode of reasoning comes into play.  
 

 
Figure 3. A guided problem-solving teaching model. 

 

In creating constraints for the examples and non-examples in the guided worksheets, we implemented the 
concept of boundaries (Mason & Watson, 2004) that include the characteristics of the existence of function 
values and limits (see Figures 5 and 6 which show extracts from the worksheet handed to students). For the 
design of the worksheet, inductive learning activities were used to construct the concept of continuity of 
functions. This design promoted visualisation and verbalisation. These activities had the following stages 
within the inductive level: (1) comparison with examples and non-examples and categorising; (2) reflecting and 
explaining the rationale for categorising; (3) generalising by describing the concept in terms of attributes, that is, 
what sets examples of the concept apart from non-examples; and (4) verifying and refining the description and 
definition by testing and refining it. Those stages were chosen since they could be exploited to facilitate the 
combined framework and contribute to conceptual understanding: action, process, object and schema. 

Group-Work Facilitation 
Twelve second year teacher trainees engaged with the activities individually for approximately 15 to 20 

minutes. This was to allow students to make contributions when working in a group setting. The groups were 
formed by the lecturer using the marks attained in a mathematics education module from the previous semester 
(Mathematics for Educators 210). The purpose was to ensure that the groups had members with different ability 
levels, mixed race, mixed gender and different home language. Preston and Robert (2003) noted in this regard 
that the teacher should carefully group students that can potentially develop in collaboration with more capable 
persons. When constructing the concept of continuity, they worked in four groups, comprising of three 
members each. Each group, after discussing and reaching a collective decision, presented their mathematical 
ideas to the class. The student facilitators reported on the collective ideas or thoughts of their groups. The 
students were given time limits set by the facilitator to encourage them to focus on the task on hand. The 
groups were similar in that they had members with a spread of ability levels. At the end of the group 

Inductive reasoning phase 
e.g., constructing a concept 

Inductive and deductive reasoning phase 
e.g., simple knowledge, knowledge of a process 
(algorithms) 

Deductive reasoning phase 
e.g., application, solving problems  
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presentations, an intensive classroom discussion including responses from the lecturer led students establish the 
concept definition of continuity. 

Written Responses 
A guided activity sheet was given to each teacher trainee. When they were in groups, they were required to 

present the collective group response to the activities. The following five instructions appeared on the 
worksheets: (1) complete each worksheet on an individual basis; (2) now form groups of three; (3) discuss your 
findings within the group to reach consensus; (4) write down a collective response and elect a leader to discuss 
with class; and (5) finally conclude findings as a class with lecturers. This involved the tutor, who is a Ph.D. 
student and a mathematics lecturer, who clarified, using the worksheets, the mathematically acceptable 
definition of continuity. The group response worksheets were then collected by the lecturer for analysis of 
teacher trainees’ constructions of the continuity concept, within a group context. 

Interviews 
The interviews took place after the written responses were analyzed. After categorizing them in Tables 1 

and 2, it was then that we employed verification interviews.  

Genetic Decomposition 
Most of the second teacher trainees already had adequate knowledge of existence of limits at this stage in 

the course. This was verified orally by the lecturer. They also sketched graphs of piecewise functions 
comprising of linear, quadratic, hyperbolic, semi-circular and absolute-valued functions. This involved an 
inter-play between graphical illustrations and algebraic notations. The graphical approach provided a visual 
representation of the algebraic expression of the function. As an example when finding )(lim

2
xf

x→  

where 22)( xxf = , the students normally proceed using a substitution algorithm without a possible graphical 
representation of the function. In this regard, when algebraic notations of functions were alone presented, the 
two-sided approach in the limit concept was not immediately perceived. The students had no formal prior 
knowledge of the concept of continuity. During the guided problem-solving activity, students were expected to 
develop the following definition in full sentences, for example, “There is a y-value for ax = ”, and in notation 
form as follows: A real single-valued function is continuous at ax =  if: (1) )(af  exists; (2)

 
)(lim xf

ax→  
 

exists; and (3) )(af  = )(lim xf
ax→

. So, a function f is continuous if it is continuous at every point in its domain. 

The thorny question of whether a function can be considered discontinuous outside its domain arises. Yes as a 
global gestalt because there is a hole, but none from the formal definition of a continuous function since 
continuity only refers to points in the domain. 

Based on the above, the following genetic decomposition of the concept of continuity was used to guide 
our instructional treatment.  

As a part of his/her functional schema, the student: (1) has developed a process or object conception of a 
function; and (2) has developed at least an action conception of graphs of piece-wise functions. As a part of 
his/her limit schema, the student: (1) has developed a process conception of the limit of a function; (2) has 
developed at least an action conception of the existence of a limit of function; and (3) recognizes and uses 
suitable notation and their respective applications to specific situations, and then coordinates previously 
constructed schemas of a function, limits of functions and appropriate notation to define continuity of a 
function (see Figure 4). 



A FRAMEWORK FOR THE DEVELOPMENT OF MATHEMATICAL THINKING 

 

661

Analysis and Findings of Results 
The following is an extract from the students’ worksheet, labeled Stages A to D. In particular, the 

mathematical stages are sorting, reflecting and explaining, generalizing, verifying and refining. In Stage A (see 
Figures 5 and 6), the researcher demarcated the examples and non-examples and the students then compared 
these distinguishing features, namely, the existence of a function value, the existence of a limit and the equality 
of the function value with its limit that characterize continuous functions from non-continuous ones. 

Extracts Taken From Students’ Worksheet Covering the Four Stages  
Stage A: Sorting 
The following are examples of graphs of continuous functions. 

 

 
Figure 5. Examples of continuous functions. 

The following are examples of graphs of functions, which are not continuous. 
 

 
Figure 6. Examples of non-continuous functions. 

 

Stage B: Reflecting and explaining 
After interrogating the above examples and non-examples of graphs of continuous functions, explain why 

one would categorize them as such; 
Stage C: Generalizing the description of continuous functions 
Now provide mathematical conditions which a function need satisfy in order for it to be called continuous 

at ax = ; 
Stage D: Verifying and refining 
Check whether the following functions are continuous or not by using the conditions you have derived in 

the generalization above: 

Example 9 
⎩
⎨
⎧

<+
≥+

=
2,4
2,1

)(
xifx
xifx

xf  

Example 10 
⎩
⎨
⎧

=
≠

=
2,1
2,

)(
2

xif
xifx

xf  

Example 11 
⎩
⎨
⎧

<+
≥+

=
2,52

2,1
)(

3

xifx
xifx

xf
 

 



A FRAMEWORK FOR THE DEVELOPMENT OF MATHEMATICAL THINKING 

 

662 

The summary of responses covering the above stages appears in Tables 1 and 2. Table 1 summarizes the 
four group responses, with the data captured from the video as well as from the group activity sheet. The 
reflecting and explaining stage and generalizing the concept continuity of functions are tabulated. 
Characterization of coded categories is as follows: (1) none was used for no response; (2) inadequate codes 
implied an incorrect or unclear response with features which are not in accordance with our genetic 
decomposition; (3) partial codes indicated gaps in description where responses had features that resembled our 
genetic decomposition; and (4) complete codes implied a mathematically correct response in accordance with 
the concept of continuity. 
 

Table 1 
Results on Group Constructions for Continuity of Functions (n = 4) 
Stages None Inadequate Partial Complete 
Reflecting and explaining 0 2 (groups A and B) 2 (groups C and D) 0 
Generalizing 0 1 (group A) 2 (groups B and D) 1 (group C) 
 

As seen in Table 1, two groups provided inadequate explanations of continuity after they studied the 
examples and non-examples provided in the guided worksheet. Group B did not consider limits or function 
values when reflecting and explaining the rationale for categorizing. Their responses given were: 

The first four graphs are continuous where the x and y intercepts are included and the graph passes completely 
through the x and y intercepts. The next four graphs are not since some parts of the graphs are excluded and included. In 
some cases, there is more than one sketched graph on the same set of axes, indicating that the graph is not continuous. 

This has three separate sentences. The first says that the first four graphs are continuous (with some extra 
observations about intercepts) but does not say the reason why they are continuous. The second sentence, which 
seems separate from the first, says that the next four are not continuous since some parts are excluded. In other 
words, there are gaps in the graph contrary to the pre-conception of continuous operations going on smoothly 
without gaps (Tall & Vinner, 1981). The third sentence says that there is more than one sketched graph in each 
picture where a picture has a single set of axes. This relates to both the idea of a graph that continues and the 
long experience that the student will have had of a function given by the same formula that continues through 
its domain. It is a consequence of how the students have been previously taught functions as being given by a 
single formula. Thus, all the comments of group B relate to preconceptions of functions as a formula, drawn 
smoothly and having no gaps. In Dubinsky’s work, a formula is only an action, so the above response from 
Group B is not even at the process level, since the students possibly think that there are two functions because 
each piece is defined by a different rule, which suggests an action level response in APOS. 

Group B used symbolic language to generalize the definition of continuous functions as confirmed below: 
Straight line graph cmxy += ; parabola cbxax ++2  

)()( afxf =  

)(lim)(lim xfxf
axax −+ →→

= , if the limit always exists: 

)()(lim afxf
ax

=
→  

Point “a” on a domain of )(xf , existaf =)(  

Firstly, this group’s references to the existence of limits occur from their existing schema. It suggests that 
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these students had an object conception of the existence of a limit of function. They correctly chose suitable 

notation to illustrate their conception of continuity as an object, since they wrote )()(lim afxf
ax

=
→ . However, 

two instances of misuse are evident in the second and last lines of their responses. The last line implies that 
they meant )(af  exists, so this line should replace the second line. Secondly, there is a clear difference 
between the group’s concept image in the reflecting and explaining activity with that portrayed during 
generalizing the definition. In the former activity, the group responses indicate that emphasis was placed on a 
visual analysis rather than on the algebraic meaning, as it was the case during generalizing. This would imply 
that at this point the group used only one representation. Thus, the students’ conception of continuity is limited, 
as it does not include a number of different representations. They did not integrate the symbols that are 
associated with an algebraic representation of continuity. However, they later resorted to graphical 
representations as evidenced in the first two functions in Table 2 when provided with examples of piecewise 
functions in the verifying stage. They provided correct responses and applied sketches of graphs. We suggest 
that the algebraic statements made in their arguments were not clear in their mental constructions, but when 
using graphs they had a better sense of what they were arguing. This seems to justify the need for visual 
representations when trying to understand and make sense of the concept of continuity. 

From Table 1, we observe that two out of four groups when reflecting and explaining constructed partial 
understandings of the concept of continuity. These were: 

Group C: The continuous functions have no disturbance and their limits exist at all points. Not continuous functions 
have disturbance (hole) on the graph or either whose limits do not exist at certain points or f(x) does not exist at some 
points. There are points which are not on the domain of the function. 

Group D: One can recognize the first four graphs as continuous only because at point of, for example, ax → , we 
have the fixed y-value which means that at every point of x, there is also a fixed y-value. For the last four graphs, one can 
say that they are discontinuous because at some of the y-values, x does not exist. This means that at the point of x, there is 
no unique y-value. 

Group C related continuity to no disturbance, at the same time referring to the existence of limits and 
points not in the domain, which could relate to an intuitive notion of limit as given in the course earlier. Group 
D used the intuitive language of limits but asserted that for the last four graphs, for some y-values, there are no 
x values (x does not exist) again referring to difficulties relating to what they may perceive as holes in the graph. 
We note that the response of Group C was incomplete, since this group seems to assume that the existence of 

)(lim xf
ax→

 is a sufficient condition for continuity of the function f at ax = . It is likely that this option arose 

from previously learnt concepts that they intended to link now. On the other hand, this misconception could be 
sourced by an understanding that if cxf

ax
=

→
)(lim , then, caf =)(  so f  is then continuous at ax = . It seems 

that this group did adequately reflect on example 7 in Figure 6. As a result, they were unable to satisfy part 6 of 
our genetic decomposition for continuity, namely then coordinate previously constructed schemas of a function, 
limits of functions and appropriate notation to define continuity of a function. They were unsuccessful in 
linking the function schema with the limit schema as illustrated in Figure 4. With reference to the DCT, note 
that this group could represent visual information by verbal codes since they described points of discontinuity 
as disturbance. 

The response given by Group D may translate to a view that at ax = , caf =)(  so the limit exists there 
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because it has a value. This means that Group D incorrectly linked )(af or the y-value at ax =  with the 

)(lim xf
ax→

. They did not consider the behavior of a function about points, but they only focused on the value of 

the function at ax = . This might also explain other shortcomings we come across when teaching calculus. An 
example of this is that when dealing with procedures, like using substitution to find limits algebraically, 
students seem to believe that the value of the function at a point (in this case ax = ) is of greater importance, 
rather than how function values behave around the point. Students in this group were unable to proceed beyond 
the function schema in our genetic decomposition, as illustrated in Figure 4. They did not realize that the 
existence of the limit of a function )( xf  as ax → , does not depend on whether )(af  is defined. The 
response clearly shows that Group D employed a correspondence between an interval about an x-value and an 
interval about a y-value. However, they did not use the independent and dependent variables satisfactorily and 
conclude that )(lim xf

ax→
 and )(af  must be equal. It is important to help the student(s) move on from 

colloquial to mathematical insight in a meaningful way as argued by Tall (2003). 
Group A’s response when explaining and reflecting was as follows: A continuous function is a function 

without a break in co-ordinates or a function that goes on without end to either -∞ or +∞. 
The response above seems to be derived from the colloquial use of the word “continuous” in phrases like 

“goes on” (meaning that there were no stops). It is observed that Group A viewed the visual representation of a 
continuous function as a graph in one piece, with domain set of real numbers. This contradicts examples 1, 2 
and 4 in Figure 5. With reference to part 5 of our genetic decomposition, this group’s use of symbols was 
limited to expressing the domain of the function in example 3 of Figure 5. This led to their inadequate 
generalizations. 
 

Table 2 
Results on Verifying and Refining the Concept Continuity of Single-Valued Functions 
Function No group response Incorrect group response Correct group response 

1.
⎩
⎨
⎧

<+
≥+

=
2,4
2,1

)(
xifx
xifx

xf  0 0 4 

2.
⎩
⎨
⎧

=
≠

=
2,1
2,

)(
2

xif
xifx

xf  0 1 (group A) 3 (groups B, C and D) 

3.
⎩
⎨
⎧

<+
≥+

=
2,52

2,1
)(

3

xifx
xifx

xf  0 2 (groups A and D) 2 (groups B and C) 

 

Even though the other three groups offered inadequate or partial explanations when responding to the 
reflecting and explaining processes in the construction of the concept of continuity, their generalizations 
displayed evidence of features included in our genetic decomposition of continuity. Group C, in particular, 
generalized the description of continuity concisely and in accordance with our genetic decomposition. These 
findings display an interplay existing between graphical and symbolic representations. This was assisted by the 
guided design using inductive reasoning within the framework of the guided problem-solving teaching model 
(see Figure 3) and the collaborative learning approach to facilitate the development of the concept of 
continuity. 

In the verifying and refining aspect, three functions were defined in questions 1, 2 and 3 (see Table 2). The 
majority of students identified the first two functions correctly while the third function was identified correctly 
by half of the groups. What was pedagogically interesting was that groups A and D could get the first one 
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correct but not the third. This might be a sign that the students confuse continuity (connectedness of the graph) 
with differentiability (smoothness of graph). Example 1 has an obvious jump in the middle so it is 
discontinuous (in a visually coded sense not necessarily symbolically coded). Example 3 is problematic 
because there is no jump in value, but it has what may be conceived as a discontinuity in the change in the 
formula. Thus the distinction between examples 1 and 3 is self-evident. The first is clearly discontinuous for 
any reason one cares to name (visual or formal), the second is mathematically continuous but may “feel” 
discontinuous visually and dynamically. 

Group A tried to reason graphically or geometrically for the first two functions. However, this group of 
teacher trainees portrayed an inadequate conception of piecewise functions as they considered the second 
function to be two separate graphs due to the definition provided. Group D supported this notion when their 
response was “ )2(f does not exist from the second graph in question one”. These groups did not comply with 
part 2 of our genetic decomposition of continuity. Group D used visual-pictorial processing to check whether 
functions 1 and 2 were continuous. Group B considered limit existing to be an adequate condition for continuity 
without investigating whether )( xf  exists or whether it was defined at 2=x . Therefore, with regard to 
Figure 4, it seems that this group was unable to link their function schema and limit schema to verify the 
continuity of the function. 

Group A further displayed their inadequate conception of piecewise functions when looking at the second 
function, by stating that “ )( xf  is two graphs”. Their answers were that the one definition of the graph is 
continuous while the second definition is not continuous. In a separate interview, the representative for group A 
said “we did not know what to do with 2=x ”. This implies that the students either did not know how to 
read/represent the point (1; 2) or that that part of the function was not considered vital in deciding on the 
continuity of the function. They saw what they believed to be two graphs (actually two formulae), one is 2x  
for 2≠x . This clearly “continues” in the sense that it continues off to infinity in both directions. The other is 

1)( =xf  (for 2≠x ) which is a single point and so stays in place and does not continue at all. The reason for 
the distinction in terms of global visual coding is self-evident, and does not involve the mathematical definition 
of continuity but the colloquial preconception of discontinuity. Group B used both symbolic or numeric and 
geometric reasoning to give a concise answer to the second function under verifying and refining. Group C 
used numerical reasoning to arrive at the same concise answer for function 2. Group D, on the other hand, 
considered the fact that )2(f  did not exist on their graphical representation of function 2 (i.e., open dot on 
graph), to be a sufficient condition for it not being continuous. 

Groups B and C did not use visual or pictorial modeling to answer the third question, but the algebraic 
manipulations done to find limits and function values were correct. Using this they correctly concluded that the 
function was continuous. This implies that their schema for continuity satisfies the illustration in Figure 4. 
Groups A and D, on the other hand, did not use the generalizations they made about continuity earlier to 
determine whether the third function was continuous or not. Both of these groups reflect on the inequalities in 
the definition of )( xf  as shown below: 

Group D: The use of inequality disturbs movement of our graphs to infinity, therefore, the graphs do not flow (move) 
freely. There are restrictions; therefore, the function is not continuous. There is an open gap (dot) in the second function in 
exercise 3. 

Group A: not continuous because and≥ < means open dot on the graph.  
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A beautiful expression of dynamic movement is suggested by the response of Group D. The use of 
inequality disturbs movement, suggesting the changing of the formula disturbs dynamic continuity. The 
graphs do not flow, so the function is not continuous according to their own personal concept definition. 
Notice that there are separate statements here. The first two sentences refer generally to disturbing changes 
of formula. The last sentence refers to the open gap in the third function and also the dot which gives a 
discontinuity.  

Conclusions 
The findings of this study showed that some students demonstrated the ability to make use of symbols, 

verbal and written language, visual models and mental images to construct internal processes as a way of 
making sense of the concept of continuity of single-valued functions. We also found that our modified 
theoretical framework was an effective one for this qualitative study and can be considered for future work. 

On perceiving functions as mathematical entities, teacher trainees could manipulate these entities, which 
were understood as a system of operations. The study provided some valuable insights into the mental 
constructions of teacher trainees with regard to limit of a function and continuity at a point in calculus. These 
insights should be analyzed and understood keeping in mind the specific methodology that was used. The 
verifying and refining stages in the construction of the continuity concept required a conceptualization of the 
concept of continuity as a meaningful mathematical entity. This conceptualization enabled the formulation of a 
new mathematical idea that can be applied to a wider range of contexts. The responses received in the four 
stages A to D of the worksheet indicate that most of the teacher trainees were able to construct the concept of 
continuity and hence were in fact capable of definition-making with some degree of success. This was evident 
by the overlap in ideas arising from the mental constructions formulated and those that are encapsulated in the 
definition. The worksheet possibly nurtured their creativity by encouraging and providing opportunities for 
them to value, share and discuss the new concept freely without fear of being judged or embarrassed by anyone. 
They were able to assist each other in addressing the common misconceptions at certain stages of the worksheet. 
This approach offered opportunities for them to collectively recognize previous knowledge, as well as engage 
in alternative conceptions with group members.  

It should be noted that despite accepting that the initial learning of continuity involved the three worlds of 
mathematical thinking, students at university education faculty are required to be taken to higher levels of 
learning. We realized that this lesson involved the continuity of a single-valued function at an interior point in 
the domain of the function and the domain in the case of this worksheet involved the set of real numbers. In 
follow-up lessons we provided other experiences on continuity to students. We highlight two examples that 
were discussed in the follow-up tasks. 

Investigation of the continuity of the functions is given below: 
In example 1, we require students to arrive at an understanding of continuity at end points. They need then 

to rework condition two of the formal definition arrived at in the worksheet of this study. In example 2, we 
allow the teacher trainees to experience functions with more than one point of discontinuity.  
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