
Abstract

Artificial Neural Network (ANN) and Support Vector Machine 
(SVM) approaches have been on the cutting edge of science 
and technology for pattern recognition and data classification. 
In the ANN model, classification accuracy can be achieved by 
using the feed-forward of inputs, back-propagation of errors, and 
the adjustment of connection weights. In conjunction with the 
computational shortcut of kernel functions, the SVM classifier 
maps input data from the input space into the high-dimensional 
feature space, and seeks an optimal hyperplane to separate data 
from different classes. Both ANN and SVM machine learning 
algorithms can be used to establish nonlinear relationships 
between variables and rank the importance of variables, 
thereby, contributing to the effectiveness of medical curriculum 
assessment. The purpose of this investigation is to shed light on 
how to construct the most suitable ANN and SVM curriculum 
assessment models based on student perceptions. These are 
then compared with logistic regression. Participants were 216 
graduating medical students, representing a 90% response rate, 
each of whom took part in a survey in years 2006, 2007, or 2008. 
The outcome variable of interest was student satisfaction or 
dissatisfaction with the overall basic science curriculum. Twelve 
independent variables included student agreement that the 
basic science curriculum is responsive to student feedback, 
open to innovation, well-coordinated, and integrated to 
prepare future physicians for complex clinical problem-solving. 
Important variables found in the ANN and SVM models were 
highly significant for curriculum assessment and development. 
These results were consistent with the logistic regression model.  
Moreover, the classification accuracy of the ANN and SVM were 
compared to the logistic regression model based on criteria of 
sensitivity, specificity, combined accuracy, and the F-measure. It 
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is evident that the resulting models of the ANN and 
SVM have demonstrated the model applicability, 
validity, and accuracy for curriculum assessment. 
Therefore, the researcher recommends ANN and 
SVM modeling approaches be applied to curriculum 
assessment in institutions of higher education.

Introduction
Curriculum assessment is a process of collecting, 

analyzing, and utilizing data from various sources 
to improve student learning and development 
(Wolf, Hill, & Evers, 2006). This assessment provides 
a strong rationale for securing curriculum change 
and helps administrators and faculty make effective 
decisions about program content (Epstein, 2007). 
A reasonable and workable curriculum assessment 
model should be able to help medical students 
identify and respond to their own learning 
needs, and improve their overall satisfaction. An 
additional purpose for curriculum assessment is to 
demonstrate accountability reporting to meet the 
accreditation mandates.

U.S. medical schools and accrediting agencies 
have made efforts to provide reliable and valid 
assessments of student competence since the 
1990s (Epstein & Hundert, 2002; Leung, 2002). 
These assessments include, but are not limited to, 
written examinations, multiple-choice questions, 
and standardized patients, which directly measure 
student performances and provide direction for 
future learning. The written examinations are in the 
open-ended format, encompassing rich descriptions 
of the clinical context related to clinical practice 
(Schuwirth, Verheggen, van der Vleuten, Boshuizen, 
& Dinant, 2001). Multiple-choice questions are 
commonly used for assessment in multidiscipline 
areas that can be analyzed quantitatively 
(Schuwirth, van der Vleuten, & Donkers, 1996). 
Lastly, standardized patients are faculty and staff 
evaluators who are trained to portray patients 
during an interview and physical examination with 
medical students and are incorporated into the 
objective structured clinical examinations (OSCEs; 
Hodges & McIlroy, 2003). The OSCEs have been part 
of the assessment process for clinical performance 
in medical schools in the last decade.

All methods of curriculum assessment have 
strengths and limitations. The use of different 
assessment methods can overcome many 
limitations of an individual assessment (Epstein, 
2007). The questionnaire surveys can serve as an 
assessment tool to gather information on student 
satisfaction with program issues and perceptions 
for curriculum quality, and continuous program 
improvement. Students need to be active partners 
in curriculum assessment. The wide variety of 
information that can be collected is part of the 
appeal of student surveys (Palomba & Banta, 1999).  
Student surveys help achieve many elements of 
educational practice, and they help create high 
expectation for students and create opportunities 
for active learning. In addition to using multiple 
methods of assessment, researchers in medical 
education should be mindful of the impact of 
assessment on students. 

To fulfill its mission in providing excellent health 
science education for its students, Meharry Medical 
College has implemented a policy of curriculum 
assessment. This policy is an integral part of the 
process to monitor and improve the curriculum and 
quality of instruction (Meharry Medical College, 
2004). The basic science curriculum assessment 
began when an organ system structure made up of 
11 major systems (e.g., muscular, nervous, digestion) 
was developed from a traditional discipline-based 
curriculum in 2004. The student evaluations 
of the medical curriculum consider clarity and 
accomplishment of objectives, organization of 
the course content, relevance of examination to 
course content, and contribution of the curriculum 
to student professional development. Student 
perceptions of the overall strengths and weaknesses 
of the medical curriculum as well as suggestions for 
improvements were solicited.

Medicine is a discipline that brings basic 
scientific knowledge full circle from basic science 
course teaching and learning through applied 
clinical practice. To succeed in medical school, it 
is important for medical students to understand 
different facets of human disease processes such 
as treatment, drug indications and side effects, as 
well as effects on other organ systems, etiology of 
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disease, and prevention. Medical school curriculum 
must be well-coordinated and integrated to prepare 
future physicians for clinical problem-solving that 
requires the coordination and integration of basic 
scientific knowledge. Before medical students 
are even allowed to experience and excel in the 
clinical side of medicine, they must first succeed in 
the two didactic years that focus on longitudinal 
courses, attempting to integrate learning about 
specific organ systems and diseases (e.g., Infection, 
Immunity, Inflammation) which has replaced 
traditional courses (e.g., Anatomy, Physiology, 
Pathology). Thus, it is crucial for basic science 
curriculum to offer adequate scientific knowledge 
throughout the didactic years with students being 
assessed both by internal discipline examinations 
and also external standardized tests such as 
National Board of Medical Examiner (NBME), subject 
board (comprehensive exam), and the U.S. Medical 
Licensing Examination (USMLE) Step 1.

Strong basic science knowledge is tested 
repeatedly throughout the medical school 
curriculum with the NBME subject board 
examinations and the USMLE scores, which uses 
basic science knowledge to assess students’ 
understanding of medical concepts that are heavily 
weighted to determine students’ clerkship and 
residency placement. Test scores on the NBME 
subject boards and the USMLE scores are used to 
assess students’ capacity to explore some of the 
most complex and competitive medical specialties. 
Meharry has chosen to make subject board 
examinations mandatory for all medical students in 
order to better prepare them for the USMLE Step 1. 
Passing each class is contingent upon passing the 
corresponding NBME subject board examination.  
Therefore, it is vital for courses in the basic science 
disciplines to sufficiently prepare students for the 
subject board examinations.

Meharry’s new curriculum and curriculum 
assessment policy provide the empirical precedent 
for the present investigation. This study sought 
to examine the functional relationship between 
the overall student satisfaction of a basic science 
curriculum and the following variables: basic 
science curriculum being well-coordinated and 

integrated; offering student adequate scientific 
knowledge; and preparing students well for the 
subject board examinations.  Artificial Neural 
Network (ANN) and Support Vector Machine (SVM) 
models were used to assess the satisfaction of 
the students with the medical school curriculum 
for the College based on graduating student 
questionnaires. ANN and SVM models are machine 
learning algorithms, which can play a crucial role 
in handling multidimensional data for curriculum 
assessment. In constructing ANN and SVM models, 
the following question should be raised: “How 
well does a model demonstrate applicability and 
validity?” Part of this answer was addressed by 
using logistic regression analysis, a generalized 
linear modeling approach, as a benchmarking 
model. It is the intent of this paper to provide a 
conceptual framework and practical application of 
ANN and SVM methods for curriculum assessment, 
a summary of the assessment results, and a brief 
discussion of the strengths and limitations of the 
methodologies.

Usefulness of the ANN and SVM Models
ANN is becoming more popular in scientific 

research for pattern recognition and data 
classification. This network has been used in 
many different fields such as business, economics, 
computer sciences, engineering, and medicine 
(Bernhard, 2001; Chen & Shih, 2006; Dawson & Wilby, 
1998; Reich, Gomez, & Dawidowski, 1999; Ronco, 
1999; Sargent, 2001; Sordo, 2002). It is an information 
processing paradigm inspired by the function of 
the human brain (Freeman & Skapura, 1991; Hinton, 
1992; Zutada, 1992). The network consists of many 
processing units (neurons or nodes) that are linked 
together and embedded in the input, hidden, and 
output layers. These links multiply the neurons of the 
input and hidden layers by an individual weighting 
factor, which is a value analogous to the connection 
strength at a synapse (Dreiseitl & Ohno-Machado, 
2002; Freeman & Skapura, 1991). The synaptic 
process of the ANN stores the knowledge needed to 
solve specific problems.

The state-of-the-art SVM classifier was originally 
introduced by Vapnik (1995) and was promoted 
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in text categorization and image classification 
(Cristianini & Shawe-Taylor, 2000; Joachims, 1998). 
It is a machine learning method operated on the 
principle of structural risk minimization that is 
designed to minimize true risk of misclassifying 
examples during the model training (Vapnik, 
1995). True risk is a function of the empirical risk 
(average error committed by training function on 
testing data) and the complexity of the training 
function (Takeuchi & Collier, 2005). SVM has been 
successfully implemented for data classification in 
many fields such as finance, biology, engineering, 
and health sciences (Burges, 1998; Cao & Tay, 
2001; Hua & Sun, 2001; Luo, Wu, Guo, & Ye, 2008; 
Schoelkopf, Burges, & Smola, 1999; Shin, Lee, 
& Kim, 2005; Zeng, Xu, Gu, Liu, & Xu, 2008). The 
SVM classifier has its advantage in the practical 
application for small samples and generalization 
because of structural risk minimization (Vapnik, 
1999; Wan & Campbell, 2008; Zeng, et al., 2008). It 
can be used to perform data separation effectively 
by finding the optimal separating plane so as to 
maximize the margin, a distance between the 
hyperplane and the nearest data points (support 
vector; Cristianini & Shawe-Taylor, 2000; Min & Lee, 
2005; Mitia & Hayastu, 2006). In addition, the SVM 
can be applied to the classification of multiple 
categories as multinomial logistic regression 
analysis and the prediction of continuous outcome 
variables as multiple linear regression analysis 
(Cristianini & Shawe-Taylor, 2000). 

Fundamentally, the ANN and SVM models are 
adaptive learning algorithms used to establish 
nonlinear relationships among inputs (attributes) 
and outputs (targets; Cortes & Vapnik, 1995; Fausett, 
1994; Haykin, 1999). The inputs contain data points 
corresponding to the values of independent 
variables, whereas the outputs represent categorical 
data corresponding to each class of dependent 
variables. Activation functions are readily available 
to describe the relationship between neurons of 
individual and successive layers for the ANN models, 
while kernel functions in the SVM models give 
the weights of the nearby data points in making 
an estimate and calculate the inner product to 
increase high dimension for easy separation of 

different classes. Activation and kernel functions 
are mathematical algorithms that allow models 
to be properly transformed to establish nonlinear 
relationships among variables. The network 
topology and learning algorithm of the ANN and 
SVM models are adapted and changed, which 
are geared towards problem-solving (Abraham & 
Nath, 2001). Meanwhile, the important inputs in 
relation to outputs can be identified, ranked, and 
interpreted without the requirement of statistical 
assumptions such as normality and independence. 
Both ANN and SVM models perform cross-validation 
to obtain a more reliable estimate of model error 
to achieve a greater accuracy of data classification. 
The ANN model can be developed from the training 
dataset including 70% of the data examples and 
evaluated by the test data including the remaining 
30% of the dataset (SPSS, Inc., 2008). In the SVM 
model, the training examples are first partitioned 
into several subsets of equal size called folds. One 
fold is then tested using the remaining folds of the 
model being trained (Cortes & Vapnik, 1995).

Primarily in education, the ANN model has 
been adopted to accurately predict student success 
in the Master of Business Administration (MBA) 
program. It was used to classify student applicants 
into successful and marginal student pools based 
on undergraduate grade-point average (GPA), 
Graduate Management Admission Test (GMAT) 
scores, undergraduate major, and other relevant 
information (Naik & Rogothaman, 2004). The ANN 
model correctly classified 93% of the successful 
students and 81% of the marginal students, with 
an overall classification accuracy of 89%. This 
study result demonstrated that the ANN model 
performed as well as previous statistical models 
used. In another study, the ANN and discriminant 
function models were used to classify student 
applicants into one of the five categories, ranging 
from “FLOP (class five)” to “TOP (class one)” of 
technical colleges in northern India (Puri & Kohli, 
2007). The ANN model was shown to excel over 
the discriminant analysis in modeling the complex 
interaction variables. A neural network model also 
performed as well as a linear regression model in 
predicting the rank order of residency applicants in 
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an emergency medical program based on medical 
school grades, autobiography, interviews, letters of 
recommendation, and National Board scores (Pilon 
& Tandberg, 1997).

The SVM model also has been useful in 
education. For instance, it was implemented to 
predict if a student candidate would be admitted 
to the School of Physical Education when the 
physical ability test score was collected beforehand 
(Acikkar & Akay, 2009). The classification accuracy 
of 97% and 91% in 2006 and 2007, respectively, 
demonstrated that the SVM classifier was a 
promising tool for applicant screening. In addition, 
the SVM model could classify data in order to 
predict students’ performance as well as compare 
the prediction with the students’ midterm 
examination grades (Huang, Chu, & Guan, 2007). 
By training one particular domain and leading to 
a better model performance, the SVM’s feature 
selection procedure has enhanced the results of a 
study in a simplified manner and outperformed the 
Lexile method in dealing with reading assessments 
for disabled children (Wu, Huang, & Meng, 2008). 

With the exception of student application areas 
however, ANN and SVM have not been popular in 
education. However, they are promising research 
tools by virtue of their ability to address the possibly 
nonadditive and nonlinear issue of curriculum 
assessment. The ANN and SVM models are powerful 
for the problem characterized by nonlinearity, high 
dimension, and capability of learning. In particular, 
SVM is known for its application of problem-solving 
by small sample and capability of generalization 
(Haykin, 1999; Sunn, 1998). Both modeling 
approaches were used in this study to investigate 
their possible unique contribution to college 
curriculum assessment. 

Overview of the ANN Model  
ANN techniques include, but are not limited to, 

Radial basis function network and Feed-forward 
neural network. The Radial basis function network 
technique uses radial basis functions as activation 
functions for interpolation in multidimensional 
space. These functions are built into a distance 
criterion with respect to a center.  The Feed-forward 

neural network is the first and simplest type of 
artificial neural network formulated. In this network, 
the information flows in only one forward direction 
from the input layer neurons, through the hidden 
layer neurons, and to the output layer neurons. 
There are no cycles or loops in the network. In 
Multilayer Perceptron (MLP), the generalized feed-
forward network is modified to use two or more 
layers with nonlinear activation functions; it is more 
powerful than the previously described method 
in that it can distinguish data that are not linearly 
separable. The ANN model used in this study is MLP 
with a back-propagation algorithm generated by 
the Statistical Package for Social Sciences (SPSS).

MLP consists of processing units and connection 
weights that are embedded in input, hidden, and 
output layers (Freeman & Skapura, 1991; SPSS, Inc., 
2008). The input layer does not perform processing, 
but simply feeds data into the network. Actual 
processing of information in the ANN occurs in 
the neurons of the hidden and output layers. This 
process is accomplished with activation functions 
that describe nonlinear relationships between 
input layer neurons and hidden layer neurons, 
and nonlinear relationship between hidden layer 
neurons and output layer neurons. On one hand, 
the activation functions, such as hyperbolic tangent 
and sigmoid, are mathematically differentiable 
as a part of the model architecture in the input 
and hidden layers. On the other hand, the same 
activation functions plus softmax and identity, 
which are also mathematically differentiable, may 
be chosen in the hidden and output layers to ensure 
easy training.  

In the MLP model, data in the input layer are 
processed through successive neurons in a forward 
direction on a layer-by-layer basis during the feed-
forward stage as shown in Figure 1. First, the MLP 
converts inputs (Xs) into the outputs (Os), based on 
the transformation function; Ok = f[∑Wkj, f(∑WjiXi)], 
where i, j, and k index the ith input , jth hidden, and 
kth output neurons; Wji denotes a set of connection 
weights between input and hidden layers; and 
Wkj denotes a different set of connection weights 
between hidden and output layers (Freeman & 
Skapura, 1991; SPSS, Inc., 2008). Specifically, the 
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input layer distributes all input data, or information, 
in the system to the hidden layer. The neurons 
in the hidden layer summarize the input data, or 
information, based on the predefined weights. 
Data or information in the input and hidden layers 
are processed by the activation functions and 
the neurons convert the result as mathematical 
expressions of all inputs to the output layer.

The back-propagation method is the 
sophisticated training technique used to minimize 
the difference between the predicted and the 
observed outputs by reversely adjusting the 
connection weights of Wji and Wkj, where Wji is 
from the output layer neurons to the hidden layer 
neurons, and Wkj is from the hidden layer neurons 
to the input layer neurons in an iterative process 
(Freeman & Skapura, 1991; SPSS, Inc., 2008). A MLP 
is trained using examples and the performance of 
a gained model, which is tested and validated with 
independent examples. In addition to the activation 
functions and connection weights, the bias is one of 
three basic components that train data examples in 
which a numerical value of one is associated with its 
weights.

The activation functions are readily available for 
the implementation in the ANN: These functions 
include 
1.   hyperbolic tangent, f(net) = [exp(net) - exp(-net)] 

/ [exp(net) + exp(-net)]; 
2.  sigmoid (or binary logit), f(net) = 1/(1 + exp(-net)); 

and 
3.  softmax (or multinomial logit), f(net) = exp(net)/

[∑exp(net)]; and (4) identity, f(net) = net, where 
exp is the base of the natural logarithm which 
equals to 2.718, net = ∑WjiXi for the connection 
between input and hidden layers, and net = ∑Wkj 
for the connection between hidden and output 
layers (Freeman & Skapura, 1991; SPSS, Inc., 
2008). The activation functions have a unique 
property of being mathematically differentiable 
forms that can be easily expressed in terms 
of successive layers. This property allows the 
back-propagation method to obtain a better 
approximation of connection weights for the 
model architecture. 
In constructing the ANN model, 70% of the 

examples is generally used as a training set while 
the remaining 30% is used for testing. The purpose 
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Figure 1.  Simplified topology of the ANN with single hidden layer.
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of this training is to yield the minimum error (i.e., 
maximum accuracy) between computed outputs 
and actual outputs through the weight adjustment 
on each connection of neurons.  Classification 
accuracy is derived for both training and testing 
datasets, respectively. Specifically, the ANN is 
designed to test the accuracy performance (i.e., 
predicting the outputs correctly for the given inputs 
that are originally used to train the network), and it 
is also designed to test generalization performance 
(i.e., predicting the outputs correctly for the given 
inputs that are not in the training set).

Hence, the ANN is suitable for establishing a 
nonlinear relationship between multidimensional 
variables without any underlying logic or reasoning. 
It is a data-driven or curve-fitting modeling process 
rather than a model-driven or statistical one. 
Therefore, the design of the ANN architecture is a 
trial-and-error process to find the optimal model 
with a single hidden layer considered to meet the 
simplicity criterion or parsimony principle.

Overview of the SVM Classifier
SVM has been suggested in the field of Machine 

Learning as a promising technique that allows 
researchers to construct a nonlinear classifier as the 
solution to a quadratic problem to yield a minimum 
of error function. It seeks an optimal hyperplane to 
separate data from different categories through the 
computational shortcut of kernel functions (Cortes 
& Vapnik, 1995; Cristianini & Shawe-Taylor, 2000). 
The basic role of the kernel function is to calculate 
inner product values through a transformation in 
high-dimensional feature space, and ultimately 
maximize the margin of separation to yield high 
accuracy of data separation. Justified by Cover’s 
theorem, any dataset can be separable if the data 
dimension grows (Cover, 1965). The SVM module 
in the Decision Tree Regression (DTREG) software 
package (Sherrod, 2007) was used to construct the 
SVM models.  

All four kernel functions are involved in the 
model construction: linear, radial basis function 
(RBF), polynomial, and sigmoid. Each SVM analysis 
is equipped with only one kernel function to fit a 
hyperplane between different classes of examples. 

The kernels are mathematically defined as: 
1.   Linear kernel, k(u, v) = u’v; 
2.   RBF kernel,  k(u, v) = exp(-γ |u – v|2); 
3.   Sigmoid kernel, k(u, v) = tanh (γ u’v + constant); 

and 
4.   Polynomial kernel,  k(u, v) = (γ u’v + constant)d, 

where u and v are input vectors: exp is the base 
of the natural logarithm, and d represents the 
number of degrees in polynomial kernel (Cortes 
& Vapnik, 1995; Rüping, 2000; Sherrod, 2007). 
In order to yield the best performance model, 

the SVM model adopts the iterative process of 
grid-search (searches values of each parameter 
across the specified search range) and pattern 
search (searches the center and makes trial steps 
in each direction for each parameter) to find the 
optimal value of parameters (Sherrod, 2007). All 
pairs of optimal parameters such as kernel function 
weight (gamma “γ”) and the cost of error (“C’) in 
the system are being tried, and the best pair is 
generated (Boser, Guyon, & Vapnik, 1992; Cortes & 
Vapnik, 1995).  The SVM also implements m-fold 
cross-verification to obtain the reliable estimation 
of model error, where for each of m experiments, 
the system uses m-1 folds for training and the 
remaining one for testing. In the validation process, 
the average of model errors for distinct categories 
is calculated to evaluate the model accuracy. The 
advantage of m-fold cross-verification is that all 
examples in the dataset are eventually used for 
both training and testing to avoid sampling bias 
problems. Researchers who are interested in the 
mathematical theory of SVM are encouraged to 
read the brief introduction of the SVM classifier 
in Appendix I of this paper and the textbook 
(Cristianini & Shawe-Taylor, 2000).

Overview of the Logistic Regression Model
Logistic regression analysis has been widely 

used to fit an S-shaped curve into a binary outcome 
with data points of one and zero (success or failure). 
It allows researchers to interpret the effects of the 
explanatory variables on the occurrence of binary 
outcome. The maximum likelihood estimation 
technique is used to estimate the regression 
coefficients. This technique maximizes the 
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probability of getting the observed data given the 
fitted regression coefficients (Hosemer & Lemeshow, 
1989).

The logistic regression model is primarily written 
as Y = P(X) + E, where Y is the binary outcome—
success coded as 1 or failure coded as 0 (Hosemer & 
Lemeshow, 1989). The probability P(X) of obtaining 
the binary outcome is considered to be the 
estimated value given the explanatory variables 
(X) are known observations. The error term (E), 
also called the residual, represents the difference 
between the actual binary outcome (Y) and the 
estimated probability P(X). The model is commonly 
written as P(X) = eZ/(1+eZ), where Z stands for a 
linear combination of ßo + ß1X1 + ß2X2 +...+ ßpXp 
(Hosemer & Lemeshow, 1989). The “e” term in the 
equation is the base of the natural logarithm, which 
is approximately 2.718. The regression coefficients 
(ß) are unknown parameters to be estimated. 
Moreover, the model assumes that residuals have a 
mean of zero and a constant variance of P(X)[1-P(X)], 
which are statistically independent of one another.

Study Method 
The basic sciences curriculum at Meharry 

Medical College transitioned from a traditional 
discipline-based structure to organ systems in 
2004. The theme of curriculum change includes a 
replacement of discipline-based instruction with 
coursework anchored in content integrated across 
disciplines. Embedded within the curriculum 
structure is a series of the NBME subject boards, 
which require medical students to solve scientific 
and clinical problems. Although student 
performance on the NBME subject boards measures 
the learning taken place specific to their respective 
course and clinical clerkship, the test scores reflect 
educational development resulting from the overall 
medical school experience.

In order to determine how to best identify 
student learning needs and to evaluate curriculum 
change and program content in medical school, 
the ANN and SVM models were used for the data 
analysis. Researchers can better understand  
the ANN and SVM architecture by examining 

fundamental steps for the model construction as 
shown schematically in Figure 2.

Step 1 involved a research dataset consisting of 
one dependent variable and multiple independent 
variables collected from annual graduating student 
surveys as part of an ongoing assessment process. 
The questionnaire items measure important 
components of the basic science curriculum, 
which have been judged as “essential” by the Vice 
President for Academic Affairs, the Dean of the 
School of Medicine, and other medical education 
specialists. Therefore, the survey instrument itself 
has content validity.

In Step 2, the underlying models were 
developed by the choice of activation functions for 
the ANN and the selection of kernel functions for 
the SVM. It was difficult to know in advance which 
activation or kernel function would be the most 
suitable. Thus, the only strategy was a trial-and-
error process by applying all activation and kernel 
functions for the ANN and SVM, respectively. The 
ANN network architecture consisted of eight models 
from two activation functions between input and 
hidden layers (hyperbolic tangent and sigmoid) 
and four activation functions between hidden and 
output layers (identity, softmax, hyperbolic tangent, 
and sigmoid). Further doubling and adopting of the 
number of the eight models resulted in 16 by using 
the two optimization algorithms (scaled conjugate 
and gradient descent). For the SVM classifier, there 
were four kernel functions readily available for 
model construction: linear, RBF, polynomial, and 
sigmoid.

In Steps 3 and 4, all possible ANN and SVM 
candidate models were trained and tested to 
achieve minimal classification error by means 
of adjusting connection weight and performing 
cross-validation. In the ANN modeling approach, 
the dataset was partitioned into two subsets for 
training and testing with approximately 70% of the 
data points randomly selected as the training set to 
estimate parameters. These parameters were then 
used to calculate the fitted probability of event 
occurrence for each observation in the training 
set. Moreover, the gained model with the same 
parameters was applied to the remaining 30% of 
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data points (test set). For the SVM classifier, a 10-
fold cross-validation was implemented to minimize 
the bias generated by random sampling of the 
training and testing datasets. The input dataset was 
divided into 10 mutually exclusive subsets, where 
nine subsets were available for training and one 
subset was used for testing purpose. The process 
was repeated 10 times to ensure that the model 
was tested in each subset The average results from 
10 repeated processes were used to represent the 
classification results for training and test examples. 
In addition, the model performance was gradually 
improved by generating and selecting the best 
parameters using the grid search process.

In Step 5, the results of the ANN and SVM 
models were evaluated and compared with the 
logistic regression model to see if they were suitable 
in the application of curriculum assessment. As 
described earlier, for the purpose of comparison, 
all independent variables were standardized in the 
ANN model. Moreover, the “Enter” procedure for 
logistic regression in SPSS was adopted to force 
all independent variables into its equation in one 
step. The benchmark comparison was carried out 
by comparing the normalized importance, rank 
order of independent variables, and classification 
accuracy on the ANN and SVM to those of the 
logistic regression.

In Step 5, four most commonly used criteria 
were implemented to measure and compare the 
classification accuracy: sensitivity, specificity, 
combined accuracy, and the F-measure (Lewis 
& Gale, 1994). A 2 x 2 table (confusion matrix) 
containing classification results was shown in the 
printouts of the ANN and logistic regression models 
generated from the SPSS and the printout of the 
SVM classifier from the DTREG software. The first 
two cells (upper left cell and lower right cell) denote 
the correctly classified numbers of individuals. 
Specifically, the upper left cell denotes the number 
of individuals classified as false who were actually 
false (true negative or TN), and the lower right cell 
denotes the number of individuals classified as true 
who were actually true (true positive or TP). The 
other two cells (upper right cell and lower left cell) 
denote the numbers of individuals misclassified. The 

upper right cell denotes the number of individuals 
classified as true who were actually false (false 
positive or FP), and the lower left cell denotes the 
number of individuals classified as false who were 
actually true (false negative or FN).

When the confusion matrix with the 
classification results was constructed, the four 
criteria were easily calculated as: Sensitivity or Recall 
= TP/(TP + FN); Specificity or Fall-out = TN/(TN + FP); 
Combined Accuracy = (TP + TN) /(TP + FP + TN + 
FN);  Precision or Positive Predictive Value = TP/(TP 
+ FP); and F-measure = [2 x (Sensitivity x Precision)] 
/ [Sensitivity + Precision] (Lewis & Gale, 1994). 
Sensitivity is defined as a measure of the ability of 
the model to detect those individuals indicating 
satisfaction with the basic science curriculum. 
Specificity is a measure of the ability of the model 
to specify dissatisfaction with the basic science 
curriculum. The combined accuracy is defined as the 
measure of the ability of the model to accurately 
classify the satisfaction and dissatisfaction with 
basic science curriculum overall. To cover sensitivity 
and precision, the F-measure was used, which is 
the weighted harmonic mean of sensitivity and 
precision. Additional Decision Theory along with its 
Bayesian statistics can be used to help researchers 
make judgments about classification accuracy, 
especially an appropriate cutoff point that needs 
to be found for a continuous outcome measure 
(Sawyer, 1996).

In Step 6, the principle of parsimony (e.g., 
simplicity) is addressed. When fewer independent 
variables are sufficient to account for the dependent 
variable, the researcher does not need to include 
unnecessary independent variables in the models. 
To maintain model simplicity, variables with zero 
value of normalized importance can be manually 
eliminated. In Step 7, the top important variables 
and related rank orders of variables for the ANN 
and SVM models were generated to facilitate 
variable explanation. The normalized importance 
was calculated by dividing the value of the highest 
relative importance into the value of the other 
relative importance. The normalized importance 
provides a hierarchal viewpoint of the ranking of 
the explanatory variables. However, it does not 
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show the direction of relationship between the 
individual explanatory variable and the outcome 
variable. It is important to compute correlation 
coefficients as shown in Table 1.

In Table 1, it is also crucial to assess the model 
collinearity for the logistic regression model since 
the problem of collinearity may lead to inaccurate 
results of logit as well as odds ratio. The collinearity 
exists if one explanatory variable is a function of 
other explanatory variables. In this study, there 
was no evidence of model collinearity because 
the tolerances were large (a range of 0.37 to 0.66), 
where TOLi = 1 – Ri

2, and Ri is a multiple correlation 
coefficient between one explanatory variable (Xi) 
and the other explanatory variables (Xs) in the 
equation (Menard, 1995; Norusis, 1985). For the 
logistic regression model, residuals are assumed 
to have a mean of zero and a variance of P(X) [1-
P(X)]. Researchers must check for violation of the 
assumption by plotting the histogram and scatter 
diagram for residuals. The model assumption is 
satisfied if the histogram of the residuals is normally 
distributed with a mean of zero, and the residuals 
on the scatter diagram appear to be parallel with 
the X-axis (i.e., the indication of a constant variance). 
Unlike the logistic regression model, researchers 
do not need to check the violation of statistical 
assumptions for ANN and SVM models since they 
are mathematical models rather than statistical 
models.

Empirical Results  
A total of 240 questionnaires were issued to 

students graduating in the years of 2006, 2007, and 
2008 with a total of 213 returned questionnaires, 
yielding a 89% response rate (213/240). The ANN 
and SVM models were constructed on a total of 213 
respondents.

According to descriptive statistics calculated 
from this study and The Report of Meharry Medical 
College Student Evaluation of Medical Curriculum 
(Fort, 2004), medical students agreed that they 
were satisfied with the quality of their basic science 
curriculum overall. Medical students agreed that 
their curriculum was well-organized and congruent 
with the College’s mission. They also agreed 
that the curriculum offerings were integrated 
across disciplines and emphasized application of 
principles and concepts to problem-solving. In 
addition, medical students found that basic science 

Figure 2.  Flowchart for ANN and SVM model 
construction.
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+ Dependent variable was coded as 0 for “strongly disagree or disagree” and 1 for “agree or strongly agree.”
++ All independent variables used a 5-point Likert scale: 0 for “not applicable,” 1 for “strongly disagree,” 2 for 
“disagree,” 3 for “agree,” and 4 for “strongly agree.” 
* p < 0.05
** p < 0.01

Table 1
Study Variables, Related Correlation Coefficients, and Tolerances

Variable
Name

O1_OVER

V1_FEED

V2_INNOV

V3_COORD

V4_MISSI

V5_SMALL

V6_PATIE

V7_SCIEN

V8_RESEA

V9_ORGAN

V10_SUBJ

V11_MENT

V12_TIME

Dependent (Output or Target) Variable+

Agreement states that “overall, I am satisfied with the basic 
science curriculum.”

Independent (Input or Attribute) Variables++

Agreement states that “basic science curriculum remains 
responsive to student feedback.”

Agreement states that “basic science curriculum is open to 
innovation.”

Agreement states that “basic science curriculum is well-
coordinated and integrated.”

Agreement states that “delivery of the basic science curriculum 
is coherent and compatible with the College’s mission.”

Agreement states that “basic science curriculum promotes 
small-group (8–12 students) teaching.”

Agreement states that “basic science curriculum increases the 
use of standardized patients.”

Agreement states that “basic science curriculum offers me 
adequate scientific knowledge.”

Agreement states that “basic science curriculum provides me 
with opportunities to conduct my own research projects.”

Agreement states that “courses in the basic science discipline 
are well organized.”

Agreement states that “courses in the basic science discipline 
prepared me well for the Subject Board Examination.”

Agreement states that “I have adequate opportunity to be 
mentored or advised by a faculty member.”

Agreement states that “I receive timely feedback on my 
academic performance.”

Correlation
Coefficient

N/A

0.42**

0.37**

0.50**

0.42**

0.15*

0.23**

0.45**

0.25**

0.54**

0.60**

0.21**

0.32**

Tolerance

N/A

0.37

0.46

0.44

0.40

0.49

0.53

0.52

0.66

0.39

0.51

0.64

0.63
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curriculum remained responsive to their feedback; 
most felt there were opportunities to develop a 
mentor relationship with faculty members.
 As displayed in Table 2, all independent 
variables were entered into the three models, A, 
B, and C as the full variable models. Normalized 
importance along with rank orders gave an 
indication of their important contribution to 
the dependent variable. The consistent results 
were clearly shown across all three models. The 
four variables showing the largest influence 
on student satisfaction with the basic science 
curriculum were V10_SUBJ, V3_COORD, V7_SCIEN, 

and V1_FEED with lower ranks of (1, 1), (2, 3), (3, 
2), and (4, 7), respectively. Also, three variables 
(V10_SUBJ, V3_COORD, and V7_SCIEN) significantly 
contributed to the outcome variable in the logistic 
regression model (p < 0.05). Hence, these three 
variables should be considered as a high priority 
related to student satisfaction with the basic 
science curriculum: (a) courses in the basic science 
discipline prepare students well for the Subject 
Board Examination; (b) the basic science curriculum 
is well-coordinated and integrated; and (c) the 
basic science curriculum offers students adequate 
scientific knowledge.

Table 2
Variables in the Equations for the Full Variable Models

+ Top four important variables that contribute to the outcome variable in ANN and SVM full variable models
* Significant variables with p < 0.05 using the Wald test in the logistic regression model
a Polynomial kernel function with a degree of 3; C = 0.1; Gamma = 0.009; and constant term = 0.599
b The model fitting statistics for the logistic regression model are: (1) Nagelkerke R-squared value of 0.76; and 
(2) model chi-square of 123.53 with df of 12 and p < 0.001.  

V1_FEED+  0.307 4  0.046 7  0.763 0.282

V2_INNOV  0.156 6   close to 0 8  -0.131 0.840

V3_COORD+  0.759 2   0.143 3  2.580  0.002*

V4_MISSI  0.093 11  0.048   5 -0.901 0.259

V5_SMALL  0.119 8   close to 0 8 -0.383 0.584

V6_PATIE  0.115 9   0.095  4 0.670 0.272

V7_SCIEN+  0.581 3   0.238  2 2.308 0.026*

V8_RESEA  0.085 12   close to 0  8 -0.426 0.429

V9_ORGAN  0.248 5   close to 0  8 0.943 0.191

V10_SUBJ+  1.000 1  1.000   1 3.428 0.000*

V11_MENT  0.115 10  close to 0  8 -0.031 0.960

V12_TIME  0.122 7   0.047 6  0.509 0.427

Variable in
Equation

Model A
ANN Model:

Sigmoid/Sigmoid
(Scaled Conjugate)

Model B
SVM Model:
Polynomial a

Model C
Logistic Regression

Model:
Enter Procedure b

Normalized
Importance
(Coefficient)

Rank
Order

Rank
Order

Normalized
Importance
(Coefficient)

Regression
Coefficient

P value

Page 12 IR Applications, Number 29, Curriculum Assessment Using Artificial Neural Network 



Partitioning data into training and testing 
subsets is an important process of evaluating 
classification accuracy for machine learning models, 
ANN and SVM. The classification accuracy of logistic 
regression, ANN, and SVM models can also be 
assessed by using the entire dataset without folds 
or holdout. In Table 3, the classification accuracy of 
the full variable Model A–ANN is based on the result 
from training and testing subsets along with the 
prediction from an entire dataset.  The classification 
accuracy for the full variable Model B–SVM is also 
based on training, testing (i.e., validation set or the 
average of model errors from the cross-verification), 
and the prediction from an entire dataset. Validation 
in the SVM model is used to evaluate the model 
accuracy to achieve the learning of the network, 
where the model does not need to be tuned. The 
classification accuracy of the full variable Model C–
Logistic Regression is derived from the prediction 

result of logistic regression without partitioning 
data into training and testing sets.

For the logistic regression model, if the 
probability of a student obtaining the overall 
satisfaction of the basic science curriculum is 
greater than or equal to a cut-off point (defaulted 
value of one half ), that student is placed into 
the predicted satisfaction group. However, if the 
probability of a student obtaining the overall 
satisfaction of the basic science curriculum is less 
than one half, then that student is categorized into 
the predicted dissatisfaction group (SPSS, Inc, 2008). 
Therefore, by comparing the predictive results and 
actual observations, the researcher was able to 
calculate the prediction accuracy for the satisfaction 
and dissatisfaction groups, as well as for the 
combined satisfaction and dissatisfaction group.

As shown in Table 3, the combined accuracy, 
sensitivity, and F-measure remained high 

Table 3
Classification Accuracy of the Full Variable Models

* Scoring option was executed for ANN and SVM models using the complete dataset without folds or holdout. 
For logistic regression model, the complete dataset was used for testing while no data were used for training.

Criteria for Accuracy

Combined Accuracy
    {Predicting Entire Set}*
    [Training Subset]
    (Testing Subset)

Sensitivity  
    {Predicting Entire Set}*
    [Training Subset]
    (Testing Subset)

Specificity
    {Predicting Entire Set}*
    [Training Subset]
    (Testing Subset)

F-measure
    {Predicting Entire Set}*
    [Training Subset]
 (Testing Subset)

Model A
ANN Model:

Sigmoid/Sigmoid
(Scaled Conjugate)

{89%}
[97%]
(92%)

{93%} 
[99%]
(94%)

{74%}
[88%]
(85%)

{0.93)
[0.98]
(0.95)

Model B
SVM Model:
Polynomial

{91%}
[90%]
(89%)

{94%}
[93%]
(94%)

{75%}
[75%]
(71%)

{0.94}
[0.93]
(0.93)

Model C
Logistic Regression

Model:
Enter Procedure

{91%}

{96%}

{74%}

{0.95}
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(approximately above 90%) across all these 
models in training and testing subsets as well as 
the prediction from an entire dataset. However, 
the specificity was not as high (ranged from 71% 
to 88%) as other measures. The Model C–Logistic 
Regression and Model B–SVM slightly outperformed 
the Model A–ANN in all four criteria of classification 
accuracy for the entire dataset. However, the Model 
A–ANN performed more accurately than the Model 
B–SVM in all four criteria of classification accuracy in 
training and testing subsets, respectively.

Making use of fewer variables tended to adhere 
to simplicity or the principle of parsimony. Five 
variables (V2_INNOV, V5_SMALL, V8_RESEA, V9_
ORGAN, and V11_MENT) in Table 2 with normalized 
importance closer to zero were excluded from the 
model reconstruction.  In other words, only seven 
variables entered the equations as the reduced 
variable models in Table 4. It is interesting to note 
that the following top important variables in the 

reduced variable models, D, E, and F in Table 4 were 
consistent with those in the full variable models: 
V10_SUBJ, V3_COORD, V1_FEED, and V7_SCIEN 
with lower ranks of (1, 1), (3, 2), (2, 3), and (4, 4), 
respectively.

As expected, three variables (V10_SUBJ, V3_
COORD, and V7_SCIEN) significantly contributed 
to the outcome variable in the logistic regression 
model (p < 0.05). Therefore, the following variables 
were the most important in contributing to student 
satisfaction with the basic science curriculum: (a) 
courses in the basic science discipline prepare 
students well for the Subject Board Examination; 
(b) the basic science curriculum is well-coordinated 
and integrated; and (c) the basic science curriculum 
offers students adequate scientific knowledge. It 
is worth noting that the model structure between 
the full variable models and the reduced variable 
models is consistent.

V1_FEED+  0.715 2 0.207 3 0.527 0.307

V3_COORD+  0.444 3  0.276 2 1.773 0.002*

V4_MISSI  0.124 6 0.103   5 -0.333 0.569

V6_PATIE  0.078 7 close to 0   6   0.451 0.273

V7_SCIEN+  0.311 4  0.138  4 1.989 0.011* 

V10_SUBJ+  1.000 1  1.000   1 2.464 0.000* 

V12_TIME  0.210 5 close to 0   6  0.564 0.235

Variables in 
Equation 

Model D 
ANN Model:

Sigmoid/Sigmoid 
(Scaled Conjugate)

Model E
SVM Model:
Polynomial a

Model F
Logistic Regression

Model:
Enter Procedure b

Normalized
Importance
(Coefficient)

Rank
Order

Rank
Order

Normalized
Importance
(Coefficient)

Regression
Coefficient

P value

+ Top four important variables that contribute to the outcome variable in ANN and SVM reduced variable 
models

* Significant variables with p < 0.05 using the Wald test in the logistic regression model
a Polynomial kernel function with a degree of 3; C = 0.430; Gamma = 0.027; and coefficient = 0.599
b The model fitting statistics for the logistic regression model are: (1) Nagelkerke R-squared value of 0.69; and 
(2) model chi-square of 115.66 with df of 7 and p < 0.001.

Table 4
Variables in the Equations for the Reduced Variable Models
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As exhibited in Table 5, all classification accuracy 
remained relatively high and stable across the 
board in training, testing, and entire sets with 
the exception of specificity. The reduced variable 
models of ANN and logistic regression became 
more accurate compared to the reduced variable 
SVM model in the criteria of combined accuracy 
and sensitivity.  The Model D–ANN performed 
more accurately than the Model E–SVM in all 
four criteria of classification accuracy in training, 
testing, and entire sets, respectively. However, the 
specificity of the reduced variable ANN and SVM 
models outperformed the reduced variable model 
in logistic regression. It is interesting to note that 
the specificity of the logistic regression model 
(69%) in the prediction of an entire dataset lagged 
behind the ANN model (80%) and SVM model 

(75%), especially when it decreased 5% for logistic 
regression from 74% in the full variable model to 
69% in the reduced variable model. For testing and 
entire sets, the accuracy of ANN in the criteria of 
combined accuracy and sensitivity for the reduced 
variable models slightly increased as compared 
to those of the full variable models in Table 3.  On 
the other hand, for the training and testing sets, 
the accuracy of SVM in the criteria of combined 
accuracy and sensitivity for the reduced variable 
models slightly decreased as compared to those of 
the full variable models.

Conclusion, Implication, and Alternative
The ANN and SVM models have received much 

attention recently in the field of Machine Learning, 
proving that they have significantly contributed 

Table 5
Classification Accuracy of the Reduced Variable Models

* Scoring option was executed for ANN and SVM models using the complete dataset without folds or holdout. 
For the logistic regression model, the complete dataset was used for testing while no data were used for 
training.

Criteria for Accuracy

Combined Accuracy
    {Predicting Entire Set}*
    [Training Subset]
    (Testing Subset)

Sensitivity  
    {Predicting Entire Set}*
    [Training Subset]
    (Testing Subset)

Specificity
    {Predicting Entire Set}*
    [Training Subset]
    (Testing Subset)

F-measure
    {Predicting Entire Set}*
    [Training Subset]
 (Testing Subset)

Model D
ANN Model:

Sigmoid/Sigmoid
(Scaled Conjugate)

{94%}
[94%]
(93%)

{97%}
[98%]
(96%)

{80%}
[79%]
(83%)

{0.96}
[0.96]
(0.96)

Model E
SVM Model:
Polynomial

{88%}
[92%]
(90%)

{90%}
[96%]
(95%)

{75%}
[75%]
(71%)

{0.92}
[0.95]
(0.94)

Model F 
Logistic Regression 

Model:
  Enter Procedure

{91%}

{97%}

{69%}

{0.94}
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to pattern recognition and data classification. By 
constructing reasonable and workable ANN and 
SVM models, this study has accomplished its goal 
of assessing the medical school curriculum. It is 
important to assess student satisfaction with the 
medical curriculum in the areas of program content, 
delivery format, and method. The study results 
showed that top important variables identified by 
the ANN and SVM models were comparable to those 
of the logistic regression model. The consistency in 
the results may demonstrate the model reliability, 
meaning that graduating student questionnaires 
are reliable in measuring the average of minimal 
error. Student satisfaction with the basic science 
curriculum was attributed to the medical curriculum 
itself preparing students well for the Subject 
Board Examination, being well-coordinated and 
integrated, and offering students adequate scientific 
knowledge. By locating the most important variables 
that contribute to student satisfaction regarding the 
basic science curriculum overall, faculty and college 
administrators can make better decisions to facilitate 
student learning and development.

Findings mentioned above are of great 
significance for the assessment of the medical 
school curriculum and are congruent with research 
literature. First, the basic science discipline 
preparing students well for the Subject Board 
Examination ranked number one. This is essentially 
tied to the overall satisfaction of the medical 
curriculum. The Subject Board Examinations require 
students to apply what they have learned in the 
basic science courses to clinical knowledge, which 
ultimately leads to the completion of the first two 
years of medical school training (Holtman, Swanson, 
Ripley, & Case, 2001). Secondly, the coordination 
of teaching and learning within a basic science 
curriculum is an essential step for promoting 
student growth and success. The extent to which 
a program can integrate concepts of the basic and 
clinical sciences ensures students’ achievement on 
the USMLE Step 1 and future clinical practice. The 
USMLE is a single pathway for primary licensure for 
medical graduates who seek clinical training and 
licensure in the United States (Anderson, 2009). 
Lastly, adequate scientific knowledge gained within 

the basic science curriculum is a foundation for 
problem-solving skills used in medical diagnosis 
and treatment. This foundation is an important 
part of a medical education program assessment 
developed by the Accreditation Council of Graduate 
Medical Education (Epstein, 2007).

The logistic regression model is the most 
commonly used approach because of its ease of 
construction and data interpretation. However, it is 
a generalized linear model that is less adept than 
the ANN and SVM models in solving nonlinear and 
multidimensional problems. In logistic regression, 
there is only one sigmoid function to link input 
variables with the output variable while the ANN 
model may use different sigmoid functions between 
the input layer to hidden layer and the hidden 
layer to output layer in addition to other functions 
such as hyperbolic and polynomial functions; 
the SVM model may fit sigmoid function into the 
data, which adopts the kernel function to reduce 
the computational complexity. It is important to 
note that logistic regression can only deal with 
binary and dichotomy outcome while ANN and 
SVM models can lead to multiclass problem (e.g., 
multinomial logistic) and linear regression where 
the outcome variable is continuous (Cristianini & 
Shawe-Taylor, 2000; Sherrod, 2007).

Both ANN and SVM models are promising for 
numerous reasons. First, working ANN and SVM 
models can be developed by newcomers within 
a relatively short time frame, conditional on the 
availability of an appropriate dataset and neural 
network software. Secondly, knowledge is gained 
through learning and testing, which make them 
suitable in establishing valid relationships between 
variables.  Thirdly, the ANN model has greater 
classification accuracy compared to other models, 
which is congruent to the literature reviews that the 
ANN model generally produces superior prediction 
results. The classification accuracy from the SVM 
model remained relatively constant in both full 
and reduced variable models, indicating that this 
approach is minimally affected by the number of 
variables and is the most stable of the three models 
compared. Fourthly, the SVM has a promising 
property, that is, the generalization capability 
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depends on the implementation of m-fold cross-
validation. Fifthly, ANN and SVM have the capability 
of ranking the important variables based on the 
value of normalized importance while the logistic 
regression model generally does not offer any 
standardized regression coefficients for comparison 
purposes. Finally, the ANN and SVM models do not 
require the verification of any statistical assumptions 
such as normality and independence of residuals, as 
in the case of the logistic regression model.

The logistic regression model may have a 
tendency to over-fit the data, meaning that when 
an individual model has too many parameters, 
it may lead to a false classification performance. 
The potential problem of over-fitting needs to be 
carefully examined given that the logistic regression 
model performs more accurately than the ANN 
and SVM classifier in the full variable models. 
However, the specificity of the logistic regression 
model greatly decreases in the reduced variable 
model with fewer parameters compared to the full 
variable model. However, lack of the availability 
of a structured methodology for constructing the 
ANN and SVM models presents greater challenges. 
Moreover, the number of hidden layers along with 
the number of neurons and training tolerance 
needs to be determined by a trial-and-error process 
in the ANN model. Given that the ANN and SVM 
models are nonlinear functions, it is difficult to 
spell out the algebraic relationship between input 
(attribute) and output (target) variables. This 
lack of explanation for the magnitude effect of 
independent variables is one of the most criticized 
points in the ANN and SVM models. Furthermore, 
there is no variable selection algorithm for ANN 
and SVM to select a subset of significant variables 
that adheres to the principle of parsimony, which 
states that the less complicated model is given 
preference. However, researchers may sequentially 
remove the variables with normalized importance 
being less than 0.05 or 0.10, which is quite similar 
to the variable removal criterion for the backward 
elimination procedure in logistic and linear 
regression models. Removing variables from the 
model equation may affect classification accuracy; 
therefore, caution must be taken.

 In constructing the ANN and SVM models, it 
is a good practice to use other approaches such 
as the logistic regression model as an additional 
tool for cross-validation to ensure model validity. 
The trade-off between the explanatory capability 
and the principle of parsimony in a model has to 
be considered, where explanatory capability is 
associated with the broad applicability in explaining 
phenomena, and parsimony usually assures the 
simplicity of the model. However, there is no 
universal approach for selecting one model over 
the other. For model construction, each one must 
be evaluated on a case-by-case basis. Furthermore, 
all ANN, SVM, and logistic regression models are 
shown to complement each other. For example, 
the major differences among all models are 
apparent. The ANN or SVM modeling approaches 
are data-driven for function approximation, and 
the logistic regression analysis is considered as 
model-driven for variable explanation. The ANN and 
SVM modeling approaches ascertain a nonlinear 
relationship based on the historical data for training 
rather than large samples for statistical inferences, 
which are used in the logistic regression model.

 The ANN and SVM models need to be 
reconstructed for upcoming years when more 
questionnaire data are available to demonstrate 
their predictive validity. The promise of greater 
classification accuracy for the ANN and SVM 
models may be further confirmed on practical 
grounds by establishing the models with 
some holdout samples. Also, the curriculum 
assessment should be a continuing process 
that is performed regularly to ensure that the 
program content and delivery mechanism keep 
up with the current development of medical 
education. Future study and other alternatives 
for model development and model validity lie in 
the comparison of the ANN and SVM models with 
another nonlinear modeling approaches such 
as the Gene Expression Programming (GEP). GEP 
is a sophisticated evolutionary algorithm used 
to select and reproduce the candidate solutions 
from a population of computer programs or 
problem solutions based on fitness (Ferreira, 
2006). GEP is able to help researchers save time 
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and resources if curriculum assessment can take 
advantage of a powerful modeling tool tailored 
to curriculum change in an easy manner. It can 
effortlessly generate the most suitable model 
for high accuracy, variable explanation, and 
powerful generalization by means of the software 
package called GeneXproTools (Gepsoft, Ltd., 
2009). By incorporating the best features of the 
GEP technique, both ANN and SVM can advance 
future development of an optimum curriculum 
assessment model.

Editor’s Note:

When IR Applications was initiated several 
years ago, it was established to provide several 
opportunities. Primarily, it provided an opportunity 
to share some of the more specialized, focused 
techniques and methodologies that show value for 
the tasks that some institutional researchers have. 
This also gives our more technical colleagues the 
opportunity to share in a professional journal, and 
it gives the rest of us an opportunity to be aware of 
what is frequently rather technical and cutting-edge 
methodology. In addition, IR Applications often 
include a basic strategy or methodology that can 
be generalized to many of the other challenges we 
face, often helping identify issues and opportunities 
with our traditional tools and techniques. This issue 
of IR Applications is an excellent example of both of 
those purposes.

First, the technical issue. Chen demonstrates 
the use of data mining on the analysis of a student 
survey about satisfaction with the curricula. As 
he points out, the view of the student is a lens we 
value as we look at alternative ways to assess our 
instruction. The two methods of data mining are 
among the more sophisticated methods of data 
analysis. As a result, he needs a way to explain the 
results in a way that can be shared with institutional 
decision-makers and professional colleagues. He 
does this by demonstrating a variety of aspects 
of his methodology. One aspect is the seven-step 
methodology and the ranking of the importance of 
the independent measures. He does this with tables 
showing the rank order of the variables. Another 

display of results is the inclusion of hits in Table 3 
and Table 5. What other ways to show results might 
be useful? Would it help to use the means of the 
scores of those in the two different categories of the 
dependent variable?   Would Box and Whiskers for 
the independent variables on the two categories of 
the independent variable help? The answer to these 
and other alternatives would seem to vary based on 
the preferences at different institutions.

There are at least three aspects that can 
generalize to our other methodologies. First, in 
showing the three results for the data mining: 
training, testing, and predicting,  we are reminded 
of the value of cross-validation and the issue of 
shrunken multiple correlations. The question here 
is, Do you compare the Logistical Regression with 
the training results or the testing results or with the 
entire sample? Is it taking advantage of sampling 
errors as do the training samples or is it the 
application of a model as in the other two cases? 
Should we develop a strategy for “training” and 
“testing” our logistical regression?

Second, it is also particularly valuable to note 
his use of multiple criteria of Sensitivity, Specificity, 
Combined Accuracy, Precision, and the F-Value 
in describing a two-by-two table of false-true vs. 
positive-negative. This extends the traditional 
single value of hits-misses and raises the ability to 
focus on the relative cost-value of different types of 
misclassifications. 

Third, in terms of program assessment, this 
article helps us  think through several conceptual 
issues. Chen is doing his program assessment on 
the group who went through the new curriculum. 
How might he compare the perceptions of this 
group with those who went through the previous 
curriculum? Obviously, he cannot turn back the 
hands of time. Could he do an alumni survey of 
those who went through the program before it was 
changed and compare results with those from the 
new curricula 3–5 five years out? What information 
might be valuable in comparing responses of those 
who went through the different curriculum? 

As with all good research, we have had some 
questions answered and, perhaps even more 
importantly, we have had more questions raised. 
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Given a training dataset represented by {Xi,Yi}, 
i=1, 2, …, N, an input vector X is a group of attributes 
of sample; and a dichotomous output vector Y is a 
class of sample either +1 (Class I) or -1 (Class II). The 
data pattern is linearly separable if an orthogonal 
w vector and a scalar b (bias or constant) can be 
estimated so that both equations (2) and (3) are 
satisfied. T represents the transpose of the vector 
w which is another vector wT, where the rows of as 
the columns of wT and the columns of w as the rows 
of wT.  A mapping function φ(.) is a set of nonlinear 
functions, which maps input vector X into a high-
dimensional feature space φ(X) = {φ(X1), φ(X2), ..., 
φ(Xn)} such that the essential information in the 
original attribute is still being conveyed (Cristianini & 
Shawe-Taylor, 2000; Wu et al., 2008).

(1) f(x) = wTφ(x) + b  

(2) wTφ(x) + b ≥ +1  if yi = +l

(3) wTφ(x) + b ≤ -1  if yi = -1,

Both equations (2) and (3) are combined into the 
equation (4)

(4)      yi f(x) = yi [wTφ(x) + b] ≥1

The inequality of the equation (4) can be used 
to construct a hyperplane, wTφ(x) + b = 0, which 
separates the data points so that all the points within 
the same class lie on the same side of the hyperplane. 
The margin of separation in the Euclidean distance 
is 2/ΣWi

2 between the two dotted lines in Figure 3. 
Finding the optimal separating plane is equivalent to 
maximizing the separating margin or minimizing ½ 
(ΣWi

2) under the constraint of the equation (4). After 
training process the SVM can be used to classify 
unknown examples (Xs) by the discriminating 
function (Cristianini & Shawe-Taylor, 2000; Wu et al., 
2008) as the equation (5).

(5)       f(x) = sign (wTφ(x) + b)

Appendix I: SVM Classifier

In practice, no hyperplane exists to separate 
all data points perfectly. Hence, the concept of 
margin maximization is still applicable to select a 
hyperplane that best separates as much of the data 
points as possible. In other words, this concept can 
be extended to the case when data patterns are not 
linearly separable, that is. when the equation (4) 
has no solution. A slack variable, ζi (error), is used 
to relax the constraints to allow for the minimal 
misclassification error such that (4) can be written as 
the equation (6):

(6)      yi[wTφ(x) + b] -1+ ζi > 0,    i = 1, 2, …, N

The mathematical theory of SVM can be used to 
solve the following optimization problem in order to 
find the optimal separating plane or to minimize the 
following loss function (Cristianini & Shawe-Taylor, 
2000; Vapnik, 1995) as the equation (7):
                                                           N

(7)       Minimize    L(w, b, ζ) = ½ wTw + CΣζi

                                                         i=1
subject to

 yi(wTφ(x) + b > 1 - ζi  and ζi > 0

Hyperplane

Margin

Margin

Support Vector

Support Vector

Margin of Separation 2/ΣWi
2 

wTφ(x)+b=0  

wTφ(x)+b=-1  

wTφ(x)+b=1  

Figure 3. Optimal separating plane of SVM in feature 
space.
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The first part of the equation (7) minimizes ½ 
(ΣWi

2) or maximizes the margin of separation 2/
ΣWi

2 for the dataset in the feature space while the 
second part minimizes the misclassification error 
CΣζi. The positive value C (cost of error), determined 
by the grid search during the training stage, is an 
upper-limit on the Lagrangian optimization variable 
ai. This optimization variable is used to determine 
the trade-off between margin maximization and 
tolerance of training error (Cristianini & Shawe-
Taylor, 2000; Joachims, 1998). Hence, this problem 
can be transformed into the equivalent Lagrange 
dual problem (Cristianini & Shawe-Taylor, 2000; 
Schoelkopf & Smola, 2002; Vapnik, 1995), which is 
also a quadratic optimization problem written as:

          N             N
(8) Maximize   Q(a) = Σ ai – ½ Σ ai aj yiyj  k(xi, xj)

i=1         i,j=1
subject to 

N                                              
Σ aiyi =0  and  0 ≤ ai ≤ C,  i=1,…,N                     
i=1

The ultimate goal of SVM is to choose one particular 
set of parameters that map inputs onto the expected 
outputs close to the observed outputs. The kernel 
function k(u, v) = k(xi, xj) = φ(Xi)Tφ(Xj) performs 
nonlinear mapping into the feature space, which is 
the value being equivalent to the inner product of 
two vectors xi and xj based on the Mercer Theorem 
(Cristianini & Shawe-Taylor, 2000; Vapnik, 1995).  By 
choosing the positive a* Lagrange multiplier from 
0 < a* < C and performing calculation, the decision 
function given by the equation (5) has the explicit 
form as the equation (9) which can be derived from 
the equation (8) (Schoelkopf & Smola, 2002; Zeng, et 
al., 2008).

                                         N
(9)          f(u, v) = sign [Σ aiyi k(u, v)+ b],

                                        i=1
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