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Abstract

Recently, there has been an increasing level of interest in using subscores for their potential

diagnostic value. Haberman (2008) suggested a method based on classical test theory to determine

whether subscores have added value over total scores. This paper provides a literature review

and reports when subscores were found to have added value for several operational data sets.

Then this paper provides results from a detailed simulation study that examines what properties

subscores should possess in order to have added value. The results indicate that subscores

have to satisfy strict standards of reliability and correlation to have added value. Augmented

subscores (Haberman, 2008; Wainer et al., 2001) were found to have added value more often.
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There is an increasing interest in subscores because of their potential diagnostic value. Failing

candidates want to know their strengths and weaknesses in different content areas to plan for

future remedial work. States and academic institutions such as colleges and universities often

want a profile of performance for their graduates to better evaluate their training and focus on

areas that need instructional improvement (Haladyna & Kramer, 2004).

Despite this apparent usefulness of subscores, certain important factors must be considered

before making a decision whether to report subscores at either the individual or institutional level.

Standard 5.12 of the Standards for Educational and Psychological Testing (American Educational

Research Association, American Psychological Association, & National Council on Measurement

in Education, 1999) states, “Scores should not be reported for individuals unless the validity,

comparability, and reliability of such scores have been established,” and the standard applies to

subscores as well. Further, Standard 1.12 of the Standards for Educational and Psychological

Testing (American Educational Research Association et al., 1999) demands that if a test provides

more than one score, the distinctiveness of the separate scores should be demonstrated. Several

researchers, such as Wainer et al. (2001) and Tate (2004) also emphasized the importance of

ensuring reasonable subscore performance.

Inspired by the above need to assess the quality of subscores, Haberman (2008) and

Haberman, Sinharay, and Puhan (2009) recently suggested statistical methods based on classical

test theory (CTT) to examine whether subscores have added value (the next section describes

when a subscore is defined to have added value) over total scores. These papers, as well as papers

by Puhan, Sinharay, Haberman, and Larkin (2008) and Sinharay and Haberman (2008), analyzed

data sets from a variety of testing programs. They found that there are only a handful of tests for

which subscores have added value.

A question that testing programs often face, especially while designing new tests that intend

to report subscores, is “What properties should the subscores possess in order to have added

value?” In particular, the testing programs would like to know more about how many items

should comprise their subscores and how distinct their subscores should be in order to have added

value. These questions became even more pertinent after the research work of Haberman (2008) as

previously there was no obvious method to determine whether a subscore has added value. Only

partial answers to the above mentioned question are provided by Haberman (2008), and Sinharay,

Haberman, and Puhan (2007), who explained that a subscore is more likely to have added value
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when (a) it has high reliability, (b) the total score has low reliability, and (c) it is distinct from

the other subscores.

This paper first provides a literature review and summarized results that are relevant to

the above mentioned question and were obtained from the analysis of operational data. Then,

this paper provided results from a detailed simulation study that was designed to obtain more

information on when subscores can be expected to have added value. Data are simulated from a

multivariate item response theory (MIRT) model (which is a natural choice when subscores are

under consideration). The simulation study uses estimated item parameters from operational

tests as the generating item parameters in the MIRT model. This makes the simulation study

somewhat realistic. Several factors that are likely to affect whether subscores have added value

are manipulated in the simulation study.

Section 1 provides a brief overview of the CTT-based methods of Haberman (2008). Section 2

provides a literature review—it discusses the results from several operational data sets regarding

the question of when subscores can be expected to have added value. Section 3 describes the

simulation study. Section 4 provides conclusions based on the results from the operational and

simulated data sets.

1 Methods From Classical Test Theory

This section describes the approach of Haberman (2008) to determine whether and how to

report subscores. Let us denote the subscore and the total score of an examinee as s and x,

respectively. Haberman (2008) and Sinharay et al. (2007), taking a CTT viewpoint, assumed

that a reported subscore is intended to be an estimate of the true subscore st and considered the

following estimates of the true subscore:

• An estimate ss = s̄+α(s− s̄) based on the observed subscore, where s̄ is the average subscore

for the sample of examinees and α is the reliability of the subscore.

• An estimate sx = s̄ + c(x − x̄) based on the observed total score, where x̄ is the average

total score and c is a constant that depends on the reliabilities and standard deviations of

the subscore and the total score and the correlations between the subscores.

• An estimate ssx = s̄+ a(s− s̄) + b(x− x̄) that is a weighted average of the observed subscore

and the observed total score, where a and b are constants that depend on the reliabilities
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and standard deviations of the subscore and the total score and the correlations between the

subscores.

It is also possible to consider an augmented subscore saug that is an appropriately weighted

average of all the subscores of an examinee (Wainer et al., 2001) as an estimate of the true

subscore. However, for simulated and operational data, saug yielded results that are very similar

to those for ssx. Hence this paper does not provide any results for saug. Note that the estimate ssx

is a special case of the augmented subscore saug; ssx places the same weight on all the subscores

other than the one of interest instead of weighing them differently. Unless otherwise stated, ssx

will be referred to as the augmented subscore in the rest of the paper.

To compare the performances of ss, sx, and ssx as estimates of st, Haberman (2008) suggested

the use of the proportional reduction in mean squared error (PRMSE). The larger the PRMSE,

the more accurate is the estimate.1 This paper will denote the PRMSE for ss, sx, and ssx as

PRMSEs, PRMSEx, and PRMSEsx respectively. The quantity PRMSEs can be shown to be

exactly equal to the reliability of the subscore. Haberman (2008) recommended the following

strategy to decide whether a subscore or an augmented subscore has added value:

• If PRMSEs is less than PRMSEx, declare that the subscore “does not provide added value

over the total score,” because the observed total score will provide more accurate diagnostic

information (in the form of a lower mean squared error in estimating the true subscore) than

the observed subscore in that case. Sinharay et al. (2007) discussed why this strategy is

reasonable and how this ensures that a subscore satisfies professional standards.

• The quantity PRMSEsx will always be at least as large as PRMSEs and PRMSEx. How-

ever, ssx requires a bit more computation than either ss or sx. Hence, declare that an

augmented subscore has added value only if PRMSEsx is substantially larger compared to

both PRMSEs and PRMSEx.

If neither the subscore nor the augmented subscore has added value, diagnostic information

should not be reported for the test, and alternatives such as scale anchoring (Beaton & Allen,

1992) should be considered. The computations for application of the method of Haberman (2008)

are simple and involve only the sample variances, correlations, and reliabilities of the total score

and the subscores. Haberman (2008) and Sinharay et al. (2007) explained that a subscore is more

3



likely to have added value when (a) it has high reliability, (b) the total score has low reliability,

and (c) it is distinct from other subscores. The appendix provides more details about the method

of Haberman (2008).

2 Review of Results From Operational Data Analysis

Table 2 summarizes the findings from Haberman (2008), Harris and Hanson (1991), Puhan et

al. (2008), and Sinharay and Haberman (2008) from operational data sets.

Each row in the table shows, for a test, the number of subscores, average number of items

in the subscores, average reliability of the subscores, average correlation among the subscores,

average disattenuated correlation,2,3 the number of subscores that have added value, and the

number of augmented subscores that have added value (where the assumption was made that an

augmented subscore has added value if the corresponding PRMSEsx is larger than the maximum

of PRMSEs and PRMSEx by 0.01 or larger4).

For SATR⃝ Verbal (the first row of numbers in Table 2), the subscores refer to the critical

reading, analogies, and sentence completion scores, percentile scores for which used to be reported

to the examinees. For SAT Math, the subscores refer to the scores on four-choice multiple choice

questions, five-choice multiple choice questions, and student-produced responses—these were not

operationally reported. For SAT (the third row of numbers in Table 2), the subscores actually refer

to the SAT Verbal and SAT Math scores. For test TA, the seven subscores, each corresponding

to a skill area the test is supposed to measure, were originally intended to be reported, but

actually are not reported now. For all the other tests considered in Table 2, the subscores refer to

operationally reported subscores.

For the P-ACT+ English and Mathematics tests, the numbers shown in Table 2 are from

Harris and Hanson (1991), who used three forms each of these tests. The subscore reliabilities

were not provided in Harris and Hanson (1991). However, for each form, the correlation and

disattenuated correlation between the subscores were provided—these were used to compute

the product of the reliabilities of the two subscores, and then the Spearman-Brown prophecy

formula was used to estimate the reliabilities (as the number of items comprising the subscores is

known). For these data, the methods of Haberman (2008) were not applied because of the lack

of information. However, Harris and Hanson (1991) concluded that the P-ACT+ subscores do

not provide information distinct from the total scores, using an approach that involves fitting of
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Table 1
Results From Analysis of Operational Data Sets

Name/nature of No. Av. Av. Av. Average How many How many
the test of length α corr. corr. subscores aug. subs

sub- (disatt.) have have
scores added value? added value?

SAT Verbal 3 26 0.79 0.74 0.95 None One
SAT Math 3 20 0.78 0.75 0.97 None None
SAT 2 69 0.92 0.70 0.76 Both Two
Praxis 4 25 0.72 0.56 0.78 Two Four
P-ACT+ English 2 25 0.80 0.76 0.96 None NA
P-ACT+ Mathematics 2 20 0.80 0.71 0.95 None NA
DSTP Math (8th grade) 4 19 0.77 0.77 1.00 None None
CA (for teachers in 4 30 0.74 0.59 0.79 One Four
elementary schools)
CB (for teachers of 3 19 0.46 0.42 0.96 None None
special ed. programs)
CC (for beginning 4 19 0.38 0.44 1.00 None None
teachers)
CD (for teachers of 6 22 0.63 0.54 0.87 None Six
social studies)
CE (for teachers of 4 29 0.80 0.65 0.80 One Two
Spanish)
CF (for principals and 4 25 0.48 0.41 0.85 None Four
school leaders)
CG (for teachers of 3 16 0.62 0.59 0.95 None None
mathematics)
CH (for paraprofessionals) 3 24 0.85 0.76 0.89 None Three
TA (measures cognitive and 7 11 0.42 0.51 1.00 None None
technical skills)
TB1 (tests mastery of a 2 44 0.85 0.77 0.90 One Two
language)
TB2 (tests mastery of a 2 43 0.90 0.68 0.75 Two Two
language)
TC1 (measures achievement 3 68 0.85 0.76 0.90 One Three
in a discipline)
TC2 (measures achievement 3 67 0.87 0.72 0.82 Two Three
in a discipline)
TD1 (measures school and 4 15 0.70 0.73 0.98 None No
individual student progress)
TD2 (measures school and 6 13 0.70 0.75 1.00 None No
individual student progress)

Note. The reliability is denoted as α. Augmented subscores are denoted as aug. subs. The first four tests
were discussed by Haberman (2008). The next two tests were discussed in Harris and Hanson (1991). The
next, DSTP Math, is discussed in Stone, Ye, Zhu, and Lane (2009). The next eight, denoted CA-CH,
are certification tests discussed in Puhan et al. (2008). The next seven, denoted TA, TB1, . . . TD2, were
discussed in Sinharay and Haberman (2008).
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beta-binomial models to the observed subscore distributions. Hence, it was assumed that none of

the P-ACT+ subscores have added value for any of these forms.

The seventh row of Table 2 shows the results for the Spring 2006 assessment of the Delaware

Student Testing Program (DSTP) 8th grade mathematics assessment. The data from the test

were analyzed in Stone et al. (2009), who reported, using the exploratory factor analysis method,

the presence of only one factor in the data set. The four subscores, which were proposed but

are not reported, correspond to four content domains: numeric reasoning, algebraic reasoning,

geometric reasoning, and quantitative reasoning. The summary statistics reported in Stone et al.

(2009) were used to compute the PRMSEs required in the method of Haberman (2008).5

For some tests such as CC, average disattenuated correlation was larger than 1—they were set

to 1.00. Most of the tests had only multiple choice items. Some tests such as CF had constructed

response (CR) items. For a subscore with CR items, the length refers to the total number of score

categories minus the number of items (for example, for a subscore with 4 items, each with score

categories 0, 1, and 2, the length is 4 ×3 – 4 = 8).

Figures 1 to 3 show, for the operational data sets, the percentage of subscores (Figures 1 and

2) or augmented subscores (Figure 3) that had added value. In each of these figures, the Y-axis

corresponds to the average disattenuated correlation among the subscores. In Figure 1, the X-axis

denotes the average length of the subscores, while, in Figures 2 and 3, the X-axis denotes average

subscore reliability. The three figures plot, for each row listed in Table 2, a number that is

the same as the percentage of subscores (or augmented subscores) that have added value at the

point (x, y), where x is the corresponding average subscore reliability multiplied by 100 (or length

in Figure 1) and y is 100 times the average disattenuated correlation. For example, in Table 2,

the third row shows that the SAT had average length 69, average disattenuated correlation 0.76,

and two subscores (that is 100% of all subscores) that had added value. Hence Figure 1 has the

number 100 plotted at the point (69,76) at the bottom right corner.

Table 2 and Figures 1 to 3 show that there are few subscores that have added value. It is also

worth noting that the disattenuated correlation is 0.95 or larger for many of the tests. In general,

subscores with a large number of items (which have high reliability) tend to have added value.

For example, for the test TC2, subscores consisting of about 67 items had added value. However,

not all subscores with a large number of items have added value. For example, for the test TC1,

which has an average subscore length of 68, only one of three subscores has added value. Tests
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Figure 1. The percentage of subscores that had added value for different average

subscore number of items and average disattenuated correlation for the operational

data.

with low average disattenuated correlation tended to have subscores with added value. However,

for the test CF, the average disattenuated correlation is 0.85, and none of the subscores have

added value, while, for the test TB1, the average disattenuated correlation is 0.90, but one of the

two subscores has added value.

Often, the percentage of subscores with a specific average length (or average reliability) that

have added value depends on the average disattenuated correlations.6 Hence, each of the figures

shows a bold dotted line roughly dividing the plot into two regions in which the percentage is

low (zero) and high (positive). Note that this line is arbitrary and was drawn after a visual
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Figure 2. The percentage of subscores that had added value for different average

subscore reliability and average disattenuated correlation for the operational data.

examination of the points in the plot and not created using any mathematical formula. In each

of these figures, as one goes from the top left corner to the bottom right corner (that is, as the

average length/reliability increases and the average disattenuated correlation decreases), the

subscores show more tendency to have added value. Figure 3 shows that the augmented subscores

have added value for many of the operational data sets and that augmented subscores are much

more likely to have added value compared to the subscores themselves.

However, Table 2 and the Figures 1 to 3 were based on only a few data sets, so that they are

not expected to be very stable (for example, if one obtains another collection of data sets, a figure

like Figure 1 for those data sets may look substantially different). In addition, few of these tests
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Figure 3. The percentage of augmented subscores that had added value for different

average subscore reliability and average disattenuated correlation for the operational

data.

had subscores that have added value (for example, there are only three points in Figure 1 with the

percentage of subscores that have added value larger than 50). Besides, there are other extraneous

factors, such as the nature of the test that affect the results, and it is difficult to remove their

effects from these results. Finally, there are some gaps in Figures 1 to 3. For example, there are

only two points with average length around 50, with none of them having average disattenuated

correlation between 0.75 and 0.90. A decision based on Figures 1 to 3 for a data set whose

correponding point falls in one of these gaps will require extrapolation and may not be correct.

Hence, the results from Table 2 can provide some guidance to testing programs, but cannot be
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used to give precise advise as to how long or how distinct their subscores have to be in order to

have added value.

Hence there was the need to perform a simulation study, where it is easier to control different

factors and study the effect of the factors of interest. The simulation study is discussed in the

next section.

3 Simulation Study

The MIRT Model

This section discusses results for data simulated from the 2-parameter logistic MIRT model

(Reckase, 2007; Haberman, von Davier, & Lee, 2008) for which the item response function for

item i is given by

(1 + e−(a1iθ1+a2iθ2+···+aKiθK−bi))−1,θ = (θ1, θ2, . . . , θK)′ ∼ NK

(
(0, 0, . . . , 0)′,Σ

)
, (1)

where θ = (θ1, θ2, . . . , θK) is the K-dimensional ability parameter for an examinee, bi is the

difficulty parameter for item i, a1i, a2i, . . . aKi are the K slope parameters for item i (aki

denotes the loading of item i on the k-th dimension), and NK denotes the density of the normal

distribution with K dimensions. Each component of θ corresponds to a subscore. The diagonals

of Σ are set to 1 to ensure identifiability of the model parameters. For any item i, only one among

the slope parameters a1i, a2i, . . . , aKi is assumed to be non-zero, depending on the subscore

the item contributes to (e.g., for an item belonging to the first subscore, a1i is nonzero, while

a2i = a3i = · · · = aKi = 0), so that the simulations are performed from a simple-structure MIRT

model (that is equivalent to assuming that the subscores do not share common items).

Simulation Design

Generating item parameters. One data set was obtained from each of three tests that

operationally report subscores or section scores. The first test, which is a test in English, reports

two section scores, each of which is based on 100 multiple choice items. The second test, which

is the test TC2 in Table 2, reports three subscores, which consist of 66-67 multiple choice items

(Sinharay & Haberman, 2008). The third test, which is the test CA in Table 2, reports four

subscores—language arts/reading, mathematics, social studies, and science—each based on 30

items (Puhan et al., 2008).
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The model given by Equation 1 was fitted using the stabilized Newton-Raphson

algorithm (Haberman et al., 2008) for each of the three data sets to obtain estimated item

parameters. For each data set, each operationally reported subscore or section score is considered

to measure a skill area and is assumed to contribute to one dimension of θ. The estimated item

parameter values were later used as generating item parameters in the simulation study. For

each test, a bivariate normal distribution Bk was fitted to the log-slope and difficulty parameter

estimates of the items belonging to k-th subscore, k = 1, 2, . . .K. The generating item parameters

for the k-th subscore in the test were randomly drawn from Bk.

Factors controlled in the simulation study. The following factors were controlled in the

simulation studies:

• “Number of subscores.” For each of the three above mentioned tests (which have two, three,

and four subscores, respectively), the estimated item parameters were used to simulate data

for which the number of subscores (or the dimension of θ) is the same as that reported for

the test. For example, the estimated item parameters from the data set from the test TC2

(that reports 3 subscores) was used to simulate data that have 3 subscores. Hence, in the

simulations, the “number of subscores” can take one of three values: 2, 3, and 4. However,

the “number of subscores” refers to more than simply the number of subscores. Each level of

this factor also has its own set of item parameters obtained from an operational test data set

as described above. For this reason, quotes are put around “number of subscores.”

• Length of the subscores. This paper used four values for the length—10, 20, 30, and 50. Note

that the reliability of a test increases as the test length increases. For simplicity, this paper

assumed that the different subscores for a given test have the same length.

• Level of correlation (ρ) among the components of θ. This paper used six levels: 0.70, 0.75,

0.80, 0.85, 0.90, and 0.95. If the correlation level for a simulation case is ρ, it was assumed, to

simulate the data sets, that all the off-diagonal elements of Σ (which denote the correlations

between the components of θ) in Equation 1 are equal to ρ. Note that the correlations among

the components of θ are similar to the disattenuated correlations between the subscores.

Hence, from Table 2, the choice of these levels of this correlation (especially, the lowest of

them) is reasonable.
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• Sample size N. This paper used three levels of the sample size: 100, 1,000, and 4,000.

Steps in the Simulation Study

For each simulation condition (determined by a value of each of the “number of subscores,”

length of the subscores, level of correlation, and sample size), the generating item parameters were

drawn once as described above (from the distributions Bks), and then R = 100 replications7 were

performed. Each replication involved the following steps:

1. Generate the ability parameter θ for each of the N examinees from the multivariate normal

distribution NK ((0, 0, . . . , 0)′,Σ), where the diagonals of Σ are 1 and the off-diagonals are

the same as the correlation level for the simulation case.

2. Simulate a data set, that is, simulate scores on each item of the test for each examinee, using

Equation 1, the draws of θ in the above step, and the above mentioned generating item

parameters for the test.

3. Calculate, for the simulated data set, several quantities, such as correlations among the

subscores and the PRMSEs.

Simulation Results

Table 3 shows results for sample size of 1,000. The table shows results for four (out of six)

values of the level of correlation. The results were very similar for other sample sizes and hence

are not shown.

Each of the 18 cells (where a cell corresponds to a simulation case) of the table shows the

following eight quantities:

1. 100 × the average reliability of the total score (denoted as αtot in the table), where the average

is taken over the R replications.

2. 100 × the average reliability (remember that reliability = PRMSEs) of the subscores (de-

noted as PRs), where the average is taken over the appropriate number of subscores (for

example, two subscores when the “number of subscores” = 2) in each replication and then

over the R replications.
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Table 2
Summary of the Simulated Data for Sample Size 1,000

No. Length of the subscores
of 10 20 30 50

sub- Correlation Correlation Correlation Correlation
scores 70 80 90 95 70 80 90 95 70 80 90 95 70 80 90 95

2
αtot 73 75 76 77 85 86 86 87 89 90 90 91 93 94 94 94
PRs 62 62 63 63 77 77 77 77 83 83 83 83 89 89 89 89
r 44 51 58 61 54 62 69 74 57 66 75 79 62 71 80 85
rd 71 82 92 97 70 80 90 96 69 79 90 95 69 79 90 95

PRx 63 68 73 76 72 77 82 85 75 80 86 88 79 84 89 92
PRsx 68 70 74 76 80 81 84 85 85 86 87 89 90 91 92 93
% sub 36 00 00 00 100 46 00 00 100 100 01 00 100 100 57 00
% aug 100 94 08 01 100 100 65 01 100 100 98 03 05 96 100 16

3
αtot 75 77 78 79 86 87 88 88 90 91 92 92 94 94 95 95
PRs 56 56 56 56 72 72 72 72 80 80 80 80 87 87 87 87
r 39 45 51 54 50 58 65 69 56 64 72 76 61 69 78 82
rd 70 80 91 96 70 80 90 95 70 80 90 95 70 80 90 95

PRx 61 67 74 77 69 75 82 85 72 79 86 89 75 82 88 92
PRsx 66 70 74 77 78 80 84 86 83 85 87 90 89 89 91 93
% sub 19 00 00 00 85 19 00 00 100 66 00 00 100 100 20 00
% aug 100 92 38 10 100 100 74 13 100 100 91 16 97 100 100 39

4
αtot 80 82 83 84 89 90 91 91 92 93 94 94 95 96 96 96
PRs 57 57 57 57 72 72 72 72 80 80 80 80 87 86 87 87
r 40 46 52 55 50 58 65 69 55 63 72 76 60 69 78 82
rd 70 81 91 96 69 80 90 95 69 80 90 95 69 79 90 95

PRx 62 70 78 82 69 76 84 88 72 79 87 90 73 81 89 93
PRsx 69 73 79 82 79 81 85 88 83 85 89 91 89 90 92 94
% sub 22 01 00 00 81 23 00 00 99 67 01 00 100 100 26 00
% aug 100 92 41 08 100 100 74 13 100 100 91 24 83 100 100 58

3. 100 × the average correlation between the subscores (denoted as r), where the average is

taken over the appropriate number of correlations (for example, six correlations when the

“number of subscores” = 4) in each replication and then over the R replications.

4. 100 × the average disattenuated correlation between the subscores. This is denoted as rd in

the tables.

5. 100 × average PRMSEx (denoted PRx), where the average is taken over the appropriate
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number of subscores in each replication and then over the R replications.

6. 100 × average PRMSEsx (denoted as PRsx).

7. Overall percentage of subscores that have added value (denoted as % sub). This is the overall

percentage of cases (out of a total of R × K, where K is the number of subscores) when

PRMSEs is larger than PRMSEx.

8. Overall percentage of augmented subscores that have added value (denoted as % aug). This

is the overall percentage of cases (out of a total of R × K) when PRMSEsx is larger than

the maximum of PRMSEs and PRMSEx by 0.01 or more.

Figures 4 to 8 show, for simulated data with sample size of 1,000, the overall percentage of

subscores or augmented subscores that have added value. These plots (unlike Table 3) show results

for all the six levels of correlation from 0.70 to 0.95. Figures 4 and 7 are three-dimensional

scatterplots showing the overall percentage of subscores (Figure 4) or augmented subscores

(Figure 7) that have added value (shown along the Z-axis using a vertical line) versus subscore

length and level of correlation. Figures 5, 6, and 8 are like Figure 1 and show, for each

combination of subscore length (or average reliability) and level of correlation, a number showing

the percentage. Figures 5, 6, and 8 show dashed lines roughly dividing the plot into two regions

in which the percentage is low (less than 10%, roughly) and high (more than 10%). These

three figures also reproduce the corresponding bold dotted lines from Figures 1 to 3 to assist a

comparison of results from the operational and simulated data.

In Figures 4 to 8, there are up to three points (corresponding to the three values of “number

of subscores”) for each (x, y) coordinate. To avoid overlapping points in the figures, one of the

three points was moved slightly up and another slightly down.

Examination of Table 3 and Figures 4 to 8 leads to the following conclusions:

• Overall, the percentage of times when the subscores have added value increases with an

increase in their lengths (or reliability) and with a decrease in the correlations among them

(that is, as they become more distinct). This is expected from the discussions in Haberman

(2008).

• If the average length of the subscores is 10, subscores are rarely of added value. Of 16 such

cases in Table 3, the percentage of times when the subscores have added value is less than 1
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Figure 4. A three-dimensional scatterplot showing the overall percentage of subscores

that had added value for sample size 1,000.

in nine cases and has a significant non-zero value only when the level of correlation is only

0.70, which, according to Table 2, is rare in practice. This conclusion supports the findings of

Table 2 in which none of the subscores with few items had any added value, but is stronger

because the tests considered in Table 2 had very few subscores with length 10 or less. If the
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Figure 5. The overall percentage of subscores that had added value for sample size

1,000 versus subscore length and level of correlation.

length of the subscores is 10, the augmented subscores have added value

– always for level of correlation 0.7,

– often for level of correlation between 0.75 and 0.85,

– sometimes for level of correlation 0.9, and
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Figure 6. The overall percentage of subscores that had added value for sample size

1,000 versus average subscore reliability and level of correlation.

– rarely for level of correlation 0.95.

• If the level of correlation is 0.9 or higher, subscores rarely have added value. Augmented

subscores often have added value if the level of correlation is 0.9, but even they do not

have any added value if the level is 0.95. This finding mostly agrees with the findings from
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Figure 7. A three-dimensional scatterplot showing the overall percentage of aug-

mented subscores that had added value for sample size 1,000 versus subscore length

and level of correlation.

Table 2, but seems to be more general (for example, because of a gap at the top right corner

of Figure 1).

• If the average length of the subscores is 20 or larger, whether subscores have added value
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Figure 8. The overall percentage of augmented subscores that had added value for

sample size 1,000 versus average subscore reliability and level of correlation.

depends on the level of correlation. For example, for length 20, subscores have added value

more than 50% of the time if the level of correlation is less than or equal to 0.75, while, for

length 50, they have added value more than 50% of the time if the level of correlation is less

than or equal to 0.85. Thus, there is an interaction between the length of the subscores and
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the level of correlation.

• The dotted and dashed lines in Figures 5, 6, and 8 agree quite closely, which indicates that

the conclusions are roughly similar from operational data and simulated data regarding when

a subscore has added value. While the results from operational data have the advantage that

they correspond to real data, the results from the simulated data have the advantage that

they are based on several data sets and are more stable than those for the real data.

• The table and the figures show that it is not straightforward to have subscores that have

added value. The subscores have to be long (consisting of at least 20 items) and sufficiently

distinct from each other (with disattenuated correlations less than 0.85) to have any hope of

having added value. On the other hand, it is much easier to have augmented subscores that

have added value. In Figure 8, most of the percentages are higher than 50.

• The average disattenuated correlation (rd in Table 3) among the subscores is always very

close to the level of correlation (among the components of θ) for any simulation case.

• The “number of subscores” does not affect the percentage of cases when the subscores have

added value, but the values of reliability etc. in Table 3 often change as this number changes.

• The PRMSE of the augmented subscores suggested by Wainer et al. (2001) is almost always

very close to those suggested by Haberman (2008). The difference between them was almost

always less than 0.01. Hence the results for the augmentation of Wainer et al. (2001) are not

shown.

• As the level of correlation increases, PRMSEsx becomes closer to the total test reliability

(because the augmented score becomes closer to the total test score).

4 Conclusions

Testing programs interested in reporting subscores often would like to know the properties

their subscores should possess in order for them to have added value. In particular, they would

like to know more about how long and how distinct the subscores should be in order for them to

have added value. This paper is an attempt to provide guidance to these testing programs.

This paper first summarizes relevant findings from analyses of operational data sets using

a table and easily understandable graphical plots. These findings provide some guidance about
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when subscores can be expected to have added value, but were not conclusive because of too

many confounding factors and the small number of data sets analyzed. Hence, to obtain more

information on the research problem, this paper performed a detailed and realistic simulation

study to examine when subscores can be expected to have added value.

There were several interesting findings from the combination of results from the operational

and simulated data that promise to be useful to testing programs interested in reporting subscores.

The most important finding is that it is not easy to have subscores that have added value. Based

on our results, the subscores have to consist of at least 20 items and have to be sufficiently distinct

from each other to have any hope of having added value. Several practitioners believe that short

subscores may have added value if they are sufficiently distinct from each other. However, the

results in this study provide evidence that are contrary to that belief. Subscores composed of 10

items8 were not of any added value even for a realistically extreme (low) disattenuated correlation

of 0.7. The practical implication of this finding is that the test developers have to work hard (to

make the subscores long and/or distinct) if they want subscores that have added value.

Augmented subscores, on the other hand, were found to have added value more often. They

mostly had added value as long as the disattenuated correlation between the subscores is less than

0.95. Even for a test length of 10, the augmented subscores were found to have added value when

the disattenuated correlation was 0.85 or less. This finding should come as a good news to testing

companies. Augmented subscores may be difficult to explain to the general public, who may not

like the idea that, for example, a reported reading subscore is based not only on the observed

reading subscore, but also on the observed writing subscores. However, this difficulty is more than

compensated by the higher PRMSE (that is, greater precision) of the augmented subscore. Note

that if a test has only a few short subscores, an augmented subscore may have added value, but

should not be reported because its PRMSE, although substantially larger than PRMSEs and

PRMSEx, will still not be adequately high.

The several figures in this paper summarize the results in an easily understandable manner

and may be used to provide guidance to testing companies. For example, if a testing program

willing to report subscores can only afford to have 20-item subscore, Figures 1 and 5 suggest that

it has to make sure that the average disattenuated correlations between the subscores is less than

0.80 (approximately) to achieve the goal. The figures should be used with caution, however. It is

possible to find a unique test for which these figures do not provide accurate guidance. It will be
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a wise strategy to compute PRMSE’s for each test data set before reporting subscores (even after

the use of the above mentioned figures to construct the test).

The usual limitations of simulation studies apply to the results reported in Table 3 and

Figures 4 to 8. However, the results of the simulation study mostly agree with those in Table 2

that is based on analysis of operational data—which makes the results of the simulation study

trustworthy. In addition, the simulations used item parameters estimated from operational data to

generate the simulated data sets to make them more realistic. Haberman et al. (2008) found that

MIRT models fit operational data better than a univariate IRT model and provide a reasonably

good fit to operational data sets—so the data simulated from a MIRT model in this simulation

study can be expected to retain the important features of the operational data reasonably well. In

reality, model misfit often occurs. In addition to the simulations reported in this paper, limited

simulations were performed under different conditions of model misfit. For example, some data

sets were simulated under the assumption that some items do not follow the form given by

Equation 1, but instead have item response functions given by the so-called bad items described in

Sinharay (2006).9 The results for such data did not differ much from those reported in Table 3.

There are several related issues that can be examined in further research. For example, the

simulation study considered only dichotomous items—it is possible to perform further simulations

based on polytomous models.10 It may be worthwhile to simulate data that mimic those from

testing programs other than the three considered in this paper. This paper considers subscores

that do not share common items (that is the most common phenomenon in practice; all of the

tests shown in Table 2 deal with such subscores)—it is possible to analyze data from tests with

subscores that share common items and perform simulations to emulate data from such tests. One

could consider subscores of unequal length and unequal pairwise correlation in a future simulation

study; however, there will likely be too many cases to consider in such a study and summarizing

the results will be a challenge. It is possible to consider other methods for determining when a

subscore has added value. Such methods include the method of fitting beta-binomial models to

the observed subscore distributions (Harris & Hanson, 1991) and factor analysis. However, the

method of Harris and Hanson (1991) involves significance testing with a χ2 statistic whose null

distribution is not well-established (p. 5), and the factor analysis approach involves many issues

such as the choice of items versus item parcels, the choice of exploratory versus confirmatory

factor analysis, and the choice of proper test statistics which complicate the process of determining
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whether a subscore has added value. The method to determine if subscores based on MIRT

models have added value (Haberman & Sinharay, 2009) could be another possible candidate, but

Haberman and Sinharay (2009) found the method to provide results similar to the CTT-based

method (Haberman, 2008); hence the MIRT-based method was not considered here. This paper

chose the CTT-based method suggested by Haberman (2008), because the method is conceptually

and computationally simple, provides a simple and unambiguous rule as to when a subscore has

added value, and has a strong theoretical basis.
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Notes

1A larger PRMSE is equivalent to a smaller mean-squared error in estimating the true subscore

and hence is desirable.

2where the disattenuated correlation between two subscores is equal to the simple correlations

between them divided by the square root of the product of the reliabilities of the two subscores.

3Note that although the table reports the averages to summarize a lot of information in a

compendious manner, for some of these tests, the lengths, reliabilities, and correlations of the

subscores are substantially unequal.

4Changing 0.01 to other small values such as 0.02 or 0.03 did not affect our conclusions much.

5The fact that summary statistics published in another paper can be used to perform all the

required calculations proves the simplicity of the method of Haberman (2008).

6In other words, there is an interaction between the two factors average length (or average

reliability) and average disattenuated correlation.

7The standard error of relevant quantities were examined to make sure that the choice of R = 100

produced results that were sufficiently precise.

8In practice, it is not difficult to find reported subscores based on 10 or fewer items.

9One of these bad items has an item response function that is a mixture of two logistic functions,

and another bad item has an item response function that does not go to 1 as θ goes to ∞.

10Figures 6 and 8, that show reliability, instead of length, along the X-axis, will be comparable to

similar plots made from polytomous item response data.
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Appendix

Here we describe the methodology of Haberman (2008) and Haberman et al. (2009) that was

used in this paper to determine whether and how to report examinee level subscores. The analysis

involves the observed subscore s, the true subscore st, the observed total score x, and the true

total score xt. It is assumed that st, xt, s− st, and x− xt all have positive variances. As usual in

classical test theory, s and st have common mean E(s), x and xt have common mean E(x), and

the true scores st and xt are uncorrelated with the errors s − st and x − xt. Let ρ(a, b) denote

the correlation between a and b. It is assumed that the true subscore st and true total score xt

are not collinear, so that |ρ(st, xt)| is less than 1. This assumption also implies that |ρ(s, x)| < 1.

Haberman (2008) considered several approaches for estimation of the true score st.

In the first approach, st is estimated by the constant E(s), so that the corresponding mean

squared error in estimation is E[st − E(s)]2 = σ2(st).

In the second, the linear regression

ss = E(s) + ρ2(st, s)[s− E(s)]

of st on the observed subscore s estimates st, and the corresponding mean squared error is

E(st − ss)
2 = σ2(st)[1− ρ2(st, s)], where ρ2(st, s) is the reliability of the subscore.

In the third approach, the linear regression

sx = E(s) + ρ(st, x)[σ(st)/σ(x)][x− E(x)]

of st on the observed total score x estimates st, and the corresponding mean squared error is

E(st − sx)
2 = σ2(st)[1− ρ2(st, x)].

Haberman (2008) compared the last two approaches with respect to their PRMSE. Relative

to using E(s), the PRMSE corresponding to the use of ss as the estimate of st is

σ2(st)− σ2(st)[1− ρ2(st, s)]

σ2(st)
= ρ2(st, s),

which is the reliability of the subscore. Relative to using E(s), the PRMSE corresponding to the

use of sx as the estimate of st is ρ
2(st, x), which can be shown to satisfy the relation (Haberman,

2008)

ρ2(st, x) = ρ2(st, xt)ρ
2(xt, x), (A1)
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where ρ2(xt, x) is the total score reliability. We describe the computation of ρ2(st, xt) shortly.

Haberman (2008) argued on the basis of these results that the true subscore is better

approximated by sx (which is an estimate based on the total score) than by ss (which is an

estimate based on the subscore) if ρ2(st, s) is smaller than ρ2(st, x), and hence subscores should

not be reported in that case.

The fourth approach consists of reporting an estimate of the true subscore st based on the

linear regression ssx of st on both the observed subscore s and the observed total score x. The

regression is given by

ssx = E(s) + β[s− E(s)] + γ[x− E(x)], where

γ =
σ(s)

σ(x)
ρ(st, s)τ, τ =

ρ(xt, x)ρ(st, xt)− ρ(s, x)ρ(st, s)

1− ρ2(s, x)
, and β = ρ(st, s)[ρ(st, s)− ρ(s, x)τ ].

The mean squared error is then E(st − ssx)
2 = σ2(st){1− ρ2(st, s)− τ2[1− ρ2(s, x)]}, so that the

PRMSE relative to E(s) is

ρ2(st, ssx) = ρ2(st, s) + τ2[1− ρ2(s, x)].

Computation of ρ2(st, xt)

The quantity ρ2(st, xt) can be expressed as

ρ2(st, xt) =
[Cov(st, xt)]

2

V (st)V (xt)
.

The variances are computed by multiplying the observed variance by the reliabilities; for example,

V (st) = ρ2(st, s)×Observed variance of s.

The covariance Cov(st, xt) can be expressed, where skt denotes the true k-th subscore, as

Cov(st, xt) = Cov(st,
∑
k

skt) =
∑
k

Cov(st, skt).

The right-hand side of the equation is the sum of the t-th row of CT , the covariance matrix

between the true subscores. The off-diagonal elements of CT are the same as those of the

covariance matrix between the observed subscores; the k-th diagonal element of CT is obtained as

variance of the k-th observed subscore× reliability of the k-th subscore·

28




