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Abstract 

As is the case for any statistical model, a multidimensional latent growth model comes with 

certain requirements with respect to the data collection design. In order to measure growth, 

repeated measurements of the same set of individuals are required. Furthermore, the data 

collection design should be specified such that no individual is given the same item twice, while 

at the same time allowing for common items over time so that different measurement occasions 

can be linked. An example of such a data collection design is presented. 

A computational challenge arises due to the high dimensional nature of a 

multidimensional latent growth model. Not only are there multiple dimensions within each 

measurement occasion, but insofar not all individuals change at the same rate for a given 

construct, that construct will also give rise to multiple dimensions over time. Fortunately, the 

computational burden can be overcome insofar as one is willing to incorporate assumptions on 

the latent structure, such as a bifactor or higher order structure within measurement occasions, 

and the assumption that the construct at a particular time point is independent of the construct at 

all previous time points given the construct at the immediately preceding time point (first order 

Markov assumption). 

Key words: item response theory, growth, longitudinal data, data collection designs, graphical 

models, bifactor model 
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The last two decades have witnessed a spurt in the development and application of 

statistical models for repeated measurement data (or more in general longitudinal data) 

throughout various scientific fields including biostatistics (e.g., Verbeke & Molenberghs, 2000), 

quantitative social and behavioral sciences (e.g., Skrondal & Rabe-Hesketh, 2004), and 

educational measurement (e.g., Braun & Wainer, 2007). In a repeated measurement data 

collection design, the same dependent variable and a collection of background variables are 

recorded for a sample of cases at several occasions. For example, height may be measured for a 

sample of kids on a yearly basis, together with a set of covariates such as gender, diet, age, 

physical activity level, and so on. Then, height and its evolution over time (i.e., growth) can be 

modeled as a function of age and the other covariates. A natural framework for this modeling 

effort is the linear mixed model (Verbeke & Molenberghs, 2000), or the closely related 

multilevel (Goldstein, 1995) and hierarchical linear model frameworks (Raudenbush & Bryk, 

2002). 

In an educational context, the dependent variables are typically measures of achievement. 

Two important differences between measures of achievement and measures of physical attributes 

such as height bear consequences for both the data collection design and the statistical 

framework.  

First, opposed to measuring height, it is not straightforward to ensure one is using the 

same measure over measurement occasions. Whereas in measuring height one can simply use the 

same measuring rule over and over, the repeated use of the same test materials in an achievement 

test may lead to a change in measurement characteristics of the test due to item exposure effects. 

On the other hand, using a different collection of test materials for each occasion makes it 

challenging to express the different measurements in time on the same scale. 

In the next section, a data collection design is presented that prevents the same test 

material from being presented to the same persons twice, while maintaining common items over 

test occasions. Such a design may lend itself to link the measures stemming from different 

measurement occasions. 

Second, whereas height is a unidimensional construct, achievement measures may be 

multidimensional. By implication, growth or in general, change over time, may operate on a 

multidimensional construct rather than on a unidimensional measure. This change in turn may 

result in a complex dependence structure for the joint collection of measures across all 
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measurement occasions. Item response theory (IRT) models that accommodate 

multidimensionality both within and across measurement occasions are not too difficult to 

specify. However, parameter estimation for high dimensional models may become 

computationally intractable. Generally speaking, the computational complexity of a 

multidimensional model is inversely related to the number of conditional independence relations 

one is willing to assume. Graphical model theory turns out to be extremely useful in this regard, 

as it provides algorithms to determine the computational complexity involved in estimating the 

parameters of a given model.  

In the third section of this paper, the underlying principles are explained and illustrated 

with a relatively simple model for repeated measurements. In the fourth section, several 

multidimensional model structures are presented, and their computational complexity with 

respect to parameter estimation is derived. 

A Repeated Measurement Linking Design 

In this section, a data collection design is presented that lends itself to establishing a link 

between the measurement occasions of a repeated measurement design.  

Insofar the measurements at different occasions are targeted at different achievement 

levels, one can think of linking those measures as vertical linking, although vertical scales have 

typically been established on the basis of a cross-sectional data collection design, in which a 

different group of persons is sampled for each achievement level so that each person is measured 

only once. Readers should keep in mind that vertically linked measures are not needed for many 

purposes and that all procedures for vertical linking rely on a strong set of assumptions that may 

or may not be met in a particular situation. Good overviews of methodological pitfalls and 

caveats involving vertical linking procedures can be found in Braun and Wainer (2007) and 

Kolen and Brennan (2004). In this paper, it is assumed that the conditions under which vertical 

linking procedures are meaningful are met. Only assumptions that pertain to the use of a repeated 

measurement data collection design are mentioned. 

Common linking procedures incorporate a common item, a single group, or an equivalent 

groups design (Kolen & Brennan, 2004). In the common item design, a common scale is 

established through the inclusion of common item blocks between test forms. In the two other 

designs, a common population can be assumed, either because the persons are common (single 
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group) or because students are randomly assigned to one of several test forms (equivalent groups 

design). Then, differences in performance can be attributed to differences in item characteristics. 

None of these designs is applicable to a longitudinal data collection context without 

modifications. Presenting the same item twice may distort the linking due to memory effects. 

Specifically, an item is likely to become easier if it has been presented before to the same group 

of students. In other words, one cannot assume that common items are common in a statistical 

sense. On the other hand, a person may change (mature, learn) between measurement occasions, 

so that one cannot assume that the person stays the same, ruling out the single group design. 

Because people may change, one cannot assume that the population at one measurement 

occasion is equivalent to the population at another measurement occasion, ruling out the 

equivalent groups design.  

However, repeated measurement linking designs can be constructed by combining the 

equivalent groups and the common item design. Rijmen (2009c) presented two such designs. The 

second one is more suited to the context of IRT modeling. Because IRT models for longitudinal 

data are discussed in the second part of this paper, it is presented in the following. Table 1 

presents the design in its basic form. 

Table 1 

Repeated Measurement Linking Design: Equivalent Groups With Common Items Over Time 

Measurement 
occasion 

Equivalent group 
G1 G2  

T1 A1B1 A2B2 
T2 B2C1 B1C2 
T3 C2D1 C1D2 
T4 D2E1 D1E2 

Note. The letters A through E indicate increasing levels of difficulty. 

Without loss of generality, let us assume there are four measurement occasions. Also, let 

letters A through E indicate increasing levels of difficulty. At the first measurement occasion, 

two randomly equivalent groups are formed. Each group is presented with one of two forms that 

are constructed to be parallel. Each form consists of two parts: one part that is unique to the first 

measurement occasion and one part that will be used in the subsequent measurement occasion as 

well. The two parts of the first form are denoted by A1 and B1, and the two parts of the second 
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form by A2 and B2. B1 and B2 are not allowed to have items in common, but A1 and A2 may 

have some or all items in common. 

Both forms of the first measurement occasion can be linked horizontally through the 

equivalent group design. If A1 and A2 have sufficient items in common, they can also be linked 

through a common item design. 

At the second measurement occasion, the test consists again of items pertaining to two 

different levels: B and C. Each group receives the B items that were not administered to that 

group at the previous measurement occasion.  

Again, both forms at the second measurement occasion can be linked horizontally 

through an equivalent groups design. The scale at Measurement Occasion T2 can be aligned 

vertically with the scale at Measurement Occasion T1 through the common items B1 and B2.  

The same two assumptions are made as in the previous design: Groups stay equivalent 

over time, and common items are truly common. 

In order to mitigate the risk that groups become increasingly less equivalent over time, 

new random groups can be formed at each measurement occasion for the administration of the 

new level. For example, at Measurement Occasion T2, groups can be redefined with respect to 

the administration of C1 and C2. Then, there are four rather than two parallel forms at the second 

test occasion: B1C1, B1C2, B2C1, and B2C2. This procedure can be repeated at all subsequent 

test occasions. 

Under this design, a common scale is established through several links. Each 

measurement occasion has two sets of items in common with both the previous and the next 

occasion. In addition, at all but the first measurement occasion, the two parallel forms can be 

linked through both an equivalent groups design or through linking both forms back to the scale 

of the previous measurement occasion using the set of common items. This property of the data 

collection design allows for some of the linking assumptions to be tested. For example, if there 

are indications that some or all of the items of B1 show item drift, one can refrain from using B1 

as a set of items that is common between the first two measurement occasions and rely solely on 

B2 for linking the first two measurement occasions and on the equivalent group design for 

linking the two forms at Test Occasion T2.  

It would be worthwhile to investigate to which degree these links can be put to work in 

concert and how this finding relaxes the requirements for each of these links. For example, it 
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may be that a robust linking can be obtained with only a few common items between successive 

test occasions, as long as the total number of common items is sufficiently large.  

In principle, both designs could function under a classical test theory framework as well 

as an IRT framework. However, when forming new randomized groups at each measurement 

occasion to mitigate the risk of groups becoming less equivalent over time, and when putting all 

links to work in concert as discussed in the previous, a classical test theory framework may be 

less suited. Both situations can be handled in a relatively straightforward way within an IRT 

framework because it easily allows for incomplete designs and for equality constraints between 

item parameters. 

Graphical Models for Investigating the Computational Complexity of Multidimensional 

Item Response Theory (IRT) Models: Principles and Leading Example 

Statement of the Problem 

At the end of the previous section, it was argued that IRT is the statistical modeling 

framework of choice when implementing a repeated measurement linking design. A repeated 

measurement IRT model should in principle be equipped to accommodate two sources of 

individual differences. First, insofar not all individuals change at the same rate for a given 

construct, that construct will give rise to multiple dimensions over time. Second, unlike physical 

measures such as height, achievement measures may constitute different sources of individual 

differences and hence give rise to multiple dimensions within a given measurement occasion. 

Individuals may change at a different rate on each of these dimensions over time, giving rise to a 

high dimensional space for the joint collection of measures across all measurement occasions.  

Several further complications that are not discussed in this paper may arise. An item may 

be an indicator of multiple constructs, as opposed to the simple structure assumed in this paper in 

which every item is an indicator of a single dimension. Furthermore, the number of dimensions 

and the degree to which they are represented in a given assessment may change over time (i.e., 

construct shift; Martineau, 2006).  

For now, let’s keep to the assumptions of simple structure and the lack of construct shift. 

Even in this simplified situation, technical challenges arise for high dimensional IRT models. In 

a nutshell, because item responses are discrete variables, one cannot rely on linear (mixed) 
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models as a statistical framework. Instead, IRT can be modeled as generalized and nonlinear 

mixed models (Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003).  

Maximum likelihood estimation of model parameters in nonlinear mixed models involves 

numerical integration over the space of all random effects, for which no closed form solution is 

available (Tuerlinckx, Rijmen, Verbeke, & De Boeck, 2006). Brute force numerical integration 

over the joint space of all latent variables becomes computationally very demanding as the 

number of dimensions grows exponentially with measurement occasions. The exponential 

increase in dimensionality also quickly becomes prohibitive for the naïve application of Monte 

Carlo integration techniques, and for Markov chain Monte Carlo techniques in a Bayesian 

framework.  

As an alternative, so-called limited information techniques can be used to estimate the 

parameters of multidimensional latent variable models for categorical data (Jöreskog, 1994; 

Muthén, 1984). Limited information techniques have been developed in the field of structural 

equation modeling. Unlike maximum likelihood estimation methods, the limited information 

techniques do not take into account the complete joint contingency table of all categorical 

manifest variables, but only marginal tables up to the fourth order (Mislevy, 1985).  

Notwithstanding the widespread use of limited information techniques and ongoing 

efforts for further improvements in these methods, one can safely assume that many researchers 

would prefer or at least consider full information maximum likelihood estimation methods if 

they were to converge to a solution in reasonable time. 

Often, the researcher will have a set of assumptions about the underlying structure of the 

multidimensional latent space. That is, rather than assuming that everything is related to 

everything in a completely unconstrained way, the correlational structure between dimensions 

may be assumed to stem from an underlying set of basic relations. For example, it is often 

reasonable to assume that the association between two different ability dimensions at two 

different measurement occasions (e.g., geometry at Measurement Occasion 1 and algebra at 

Measurement Occasion 2) can be accounted for by the associations between those dimensions 

within a given measurement occasion (geometry at Measurement Occasion 1 and algebra at 

Measurement Occasion 1, geometry at Measurement Occasion 2 and algebra at Measurement 

Occasion 2) on the one hand, and the association between different measurements of the same 

ability over time (geometry at Measurement Occasion 1 and geometry at Measurement Occasion 
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2, algebra at Measurement Occasion 1 and algebra at Measurement Occasion 2). Obviously, 

incorporating such a set of conditional independence assumptions, if corroborated by the data, is 

preferable in that it provides a more parsimonious and hence more easily interpreted statistical 

model. 

The crucial tenet of this paper is to show how incorporating conditional independence 

assumptions not only results in a more parsimonious statistical model, but can also be exploited 

for the purpose of parameter estimation. In particular, the set of conditional independence 

relations implied by a model can often be used to partition the joint space of all latent variables 

into smaller subsets that are conditionally independent. As a consequence, brute force numerical 

integration over the joint latent space can be replaced by a sequence of integrations over smaller 

subsets of latent variables. In the context of Monte Carlo techniques, sampling schemes can be 

constructed in an analogous way, which will be more efficient than their naïve counterparts 

(Chib, 1996; Scott, 2002). The gain in efficiency may be dramatic in some cases.  

In the following sections, it will be explained how graphical models can be used to obtain 

a general procedure for partitioning the joint space of all latent variables into smaller subsets that 

are conditionally independent. A thorough account of the general procedure involves a 

substantial amount of graph theory and is outside the scope of this paper. The main results will 

be stated without proof. Instead, a more intuitively based account is presented. The interested 

reader is referred to Cowell, Dawid, Lauritzen, and Spiegelhalter (1999) for a more in-depth 

account of graphical models. (For the use of graphical models in the context of latent variable 

models, see Rijmen, Vansteelandt, & De Boeck, 2008; Rijmen, Ip, Rapp, & Shaw, 2008; Rijmen, 

2009a, 2009b, 2010; and Jeon & Rijmen, 2010.)  

Representing the Model by a Directed Acyclic Graph 

A first step is to represent the statistical model in a directed acyclic graph in which the 

nodes correspond to random variables and the directed edges represent conditional dependence 

relations. Directed acyclic graphs have been used extensively in the literature to visualize 

statistical models. They offer a convenient way of representing and communicating the structure 

of a statistical model.  

Let’s illustrate the use of directed acyclic graphs with an overly simplistic model for 

repeated measurements of achievement. In this, we assume a unidimensional IRT model for each 

measurement occasion. For the current purpose, there is no need to choose a specific IRT model. 
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It simply specifies a conditional probability distribution ( )Pr it it it itZ z= =Y y  at each 

measurement occasion, where ( )1, , , ,it it itj itJy y y ′=y … … denotes the response vector of person i (i 

= 1,…, n) at occasion t (t = 1,…, T), zit denotes the position of person i on the latent variable for 

Measurement Occasion t, and capitals denote the corresponding random variables.  

Furthermore, it is assumed that the latent variable at Measurement Occasion t depends on 

the past through the latent variable at Measurement Occasion t-1 only, 

( ) ( )1 1 1 1 1 1Pr , , Prit i t i i i t i t it it i t i tZ z Z z Z z Z z Z z− − − −= = = = = =… . 

This is the so-called (first-order) Markov assumption.  

A graphical representation of the model is given in Figure 1 for T = 3. In the graph, the 

conditional dependence of Yit on Zit is represented by the edges from Zit to Yit for t = 1, …, 3. It 

is said that Zit is a (the) parent of Yit . Analogously, the edges from Zi t-1 to Zit for t = 2, 3 

represent the conditional dependence of Zit on Zi t-1. A directed graph represents certain 

conditional independence relations as well. For example, the first-order Markov assumption is 

implied by the directed acyclic graph in Figure 1 by the fact that it shows a directed edge from 

Zi1 to Zi2, and a directed edge from Zi2 to Zi3, but no directed edge from Zi1 to Zi3 (and no other 

paths from Zi1 to Zi3).  

Zi1

Yi1 Yi2 Yi3

Zi2 Zi3

 

Figure 1. Directed acyclic graph representing a model with one latent variable at each of 

three measurement occasions and incorporating a first-order Markov assumption across 

measurement occasions. 



9 

The reason that directed acyclic graphs from a convenient way of representing a 

statistical model is that the joint probability function of all (latent and observed) variables always 

can be factorized into a set of conditional probability functions according to the directed acyclic 

graph. Formally, for a set of random variables X1, …, Xm, …, XM, 

( ) ( )( )
1

Pr Pr
M

m m
m

x pa x
=

= ∏x , (1) 

where pa(xm) denotes the realization set of variables that are parents of Xm in the directed acyclic 

graph. For our leading example, factorizing the joint probability ( )Pr ,i iy z  according to the 

graph results in 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1
2

Pr , Pr Pr Pr Pr
T

i i i i i i it i t i t it it it
t

z Z z z Z z Z z− −
=

= = = =∏y z y y  (2)  

where ( )1, , , ,i i it iT
′′ ′ ′=y y y y… …  and ( )1, , , ,i i it iTz z z ′=z … … . 

Note that the results presented further on require the latent variables to be discrete. 

However, the latent variables in most IRT models are continuous variables. Therefore, each Zit is 

to be considered as a discrete approximation of a continuous latent variable itθ . This is not a 

strong limitation of the approach. As a matter of fact, replacing the vector of continuous latent 

variables ( )1,...,i i iTθ θ ′=θ  with a vector of discrete latent variables ( )1,...,i i iTZ Z ′=Z  is 

tantamount to what is done when evaluating the integral over iθ  using numerical integration. 

That is, from a computational viewpoint, there is no difference at all between having iθ  in the 

model formulation and approximating the integrals over iθ  through numerical integration over a 

discrete grid Zi on the one hand, and approximating the model through the estimation of its 

discrete counterpart incorporating Zi on the other hand. 

Maximum likelihood estimation involves the computation of the marginal probabilities of 

the response vectors: 

( ) ( ) ( )
1

Pr Pr Pr ,
i

T

i i it it it
t

Z z
=

= =∑ ∏
z

y z y
 

(3) 
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where the summation is over all possible trajectories iz  in the latent space. Clearly, calculating 

the marginal probabilities through a direct application of Equation 3 becomes computationally 

intractable for large T, as the number of possible trajectories is exponential in the number of 

measurement occasions.  

Luckily, exploiting the first-order Markov assumption, the marginal probabilities can be 

calculated far more efficiently by partitioning the joint latent space Zi into subsets that are 

conditionally independent of each other and carrying out a sequence of computations on those 

subsets. Here, graphical model theory shows its true benefits. 

Transforming the Directed Acyclic Graph  

The core of the construction of efficient computational schemes relies on the 

transformation of a directed acyclic graph into a triangulated graph and the subsequent 

construction of a junction tree.  

A first step is transforming the directed acyclic graph into an undirected graph. The 

undirected graph is called the moral graph. It is obtained by adding an undirected edge between 

all nodes with a common child that are not yet joined and dropping directions from all edges. 

Figure 2 displays the moral graph of the directed acyclic graph of Figure 1. 

Yi1 Yi2 Yi3

Zi1 Zi2 Zi3

 

Figure 2. Moral graph for a model with one latent variable at each of three measurement 

occasions and incorporating a first-order Markov assumption across measurement 

occasions. 

The moralization step ensures that a probabilistic model that satisfies the conditional 

independence relations implied by a directed acyclic graph also satisfies the conditional 

independence relations implied by the undirected moral graph of the directed acyclic graph. In 
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the process of moralization, conditional independence relations that were implied by the directed 

acyclic graph might lose their representation in the moral graph by the process of adding edges. 

Second, the moral graph is triangulated by adding edges so that chordless cycles contain 

no more than three nodes. A chordless cycle is a cycle in which there are only edges between 

consecutive nodes. In general, a triangulated graph can be obtained in many different ways, but 

one tries to add as few edges as possible to retain the graphical representation of the conditional 

independence relations that were implied by the directed acyclic graph. Finding an optimal 

triangulation is nondeterministic polynomial-time (NP) hard (Yannakakis, 1981; for the reader 

not familiar with computational complexity theory, NP-hard is very hard), but well performing 

heuristic algorithms are available (Kjærulff, 1992). The moral graph in Figure 2 contains only 

cycles with two nodes and thus is already triangulated. 

A graph being triangulated is a necessary and sufficient condition for the existence of an 

associated junction tree. A tree is a graph whose undirected version (obtained by dropping all the 

directions from the edges) has a path between all pairs of nodes and has no cycles. In a junction 

tree, the nodes correspond to cliques. Cliques are complete subsets of nodes. A set of nodes is 

complete if there is an edge between every pair of nodes. The intersection between two 

neighboring cliques Ck and Cl is called a separator, Skl = k lC C∩ .  

A junction tree possesses the running intersection property: The intersection k lC C∩  of a 

pair Ck, Cl of cliques is contained in every node on the unique path in the junction tree between 

Ck and Cl. Figure 3 shows a junction tree of cliques obtained from the triangulated moral graph 

of Figure 2. Again, more than one junction tree can be constructed in general.  

Factorizing the Joint Probability Function According to the Junction Tree 

A crucial result is that a junction tree offers an alternative factorization of the joint 

probability function. In particular, the joint probability can be factorized as the product of all 

marginal clique probabilities over the product of all marginal separator probabilities: 

( ) ( )
( )

Pr
Pr ,

Pr
CC

SS

= ∏
∏

x
x

x
 (4) 
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where xc and xs denote realizations of the random variables that constitute clique c and separator 

s, respectively. Applying this result to our leading example, the probability of the complete data 

vector ( )Pr ,i iy z  can be written as 

( )
( ) ( )

( ) ( )

( ) ( ) ( )

1
1 2

1

1 2

1 1
1 2

Pr , Pr ,
Pr ,

Pr Pr

Pr Pr Pr

T T

it it i t it
t t

i i T T

it it
t t

T T

it it i it i t
t t

z z z

z z

z z z z

−
= =

−

= =

−
= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏ ∏

∏ ∏

∏ ∏

y
y z

y

 (5) 

The last line shows that Equation 5 is equivalent to Equation 2 indeed. 

 Zi1 Zi2  Zi2 Zi3

 Zi1 Yi1  Zi2 Yi2

 Zi3 Yi3

 

Figure 3. Junction tree obtained from the triangulated graph in Figure 2.  

The factorization of Equation 5 serves as the basis for a computational scheme using 

local computations that are carried out on the cliques and separators of the junction tree in a 

sequential way. This scheme can be incorporated within an EM-algorithm, resulting in an 

efficient EM-algorithm. The algorithm is efficient in the sense that it circumvents the brute force 

integration over the joint space of all latent variables that is carried out in the E-step of a 

traditional EM-algorithm. The complexity of the efficient EM-algorithm scales with the number 

of latent variables (and the number of categories for each latent variable) within the cliques, as 

opposed as with the total number of latent variables. For our leading example, the number of 
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computations is of order 2 × T × S2 (with S the number of categories for each latent variable Zit) 

for the E-step of the efficient EM-algorithm, as opposed to ST for the E-step of a traditional EM-

algorithm. So, a complexity that is exponential in the number of measurement occasions is 

reduced to a complexity that is linear in the number of measurement occasions. 

To conclude, the dimensionality of the latent space over which has to be integrated in 

maximum likelihood estimation is not determined by the number of latent variables per se, but 

by the dimensionality of the latent spaces of the subsets of variables that are conditionally 

independent. These subsets are a function of the conditional independence assumptions the 

researcher is willing to make. Because one can rely on algorithms defined on a graphical 

representation of the statistical model, the sets of conditionally independent variables can be 

obtained in an automatic way and for a whole family of statistical models. 

Instead of using maximum likelihood estimation methods with numerical integration 

techniques, one may opt for Monte Carlo integration techniques or even for Markov chain Monte 

Carlo techniques in a fully Bayesian framework.  The factorization of the joint probability 

function according to the cliques in the junction tree may still be worthwhile in constructing the 

sampling scheme. A Gibbs sampler based on the junction tree has been proposed by Chib (1996) 

for the hidden Markov model, and Scott (2002) presented empirical and mathematical results 

showing that such a Gibbs sampler mixes more rapidly than a traditional Gibbs sampler.  

In the next section, the approach is used to determine the complexity for several other 

multidimensional IRT models for repeated measurements. The models are less restrictive than 

the model that was used throughout this section as a leading example, in which 

unidimensionality was assumed within each measurement occasion. 

Graphical Models for Investigating the Computational Complexity of Multidimensional 

Item Response Theory (IRT) Models: Applications 

Unidimensional Model Within Measurement Occasions—Bifactor Model With a Markov 

Structure Model Across Occasions 

The model that was used throughout the previous section as a leading example 

incorporated a unidimensional IRT model within each measurement occasion. The associations 

between the latent variables across measurement occasions were taken into account by a first-

order Markov structure. Under a first-order Markov structure, the association between 
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measurement occasions diminishes the further the measurement occasions are apart. However, it 

may well be the case that abilities are more stable over time than can be accounted for by the 

Markov process alone. This possibility can be taken into account by incorporating for all 

measurement occasions a general latent variable igZ that is independent of all occasion-specific 

dimensions. The directed acyclic graph for such a model is presented in Figure 4. This model is a 

generalization of the bifactor model. igZ is the general dimension, and the dimensions pertaining 

to each measurement occasion are the specific dimensions. The corresponding moral graph is 

presented in Figure 5. Since no cycles have more than three nodes, the graph is already 

triangulated.  

Zi1

Yi1 Yi2

Zig

Zi2
Zi3

Yi3

 

Figure 4. Directed acyclic graph for a bifactor model with a first-order Markov structure 

between the specific dimensions. 

Yi1 Yi2 Yi3

Zig

Zi1 Zi2
Zi3

 

Figure 5. Moral graph for a bifactor model with a first-order Markov structure between 

the specific dimensions.  
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The maximal subsets of nodes that are all interconnected (the cliques) can be read directly from the 

triangulated graph in Figure 5. They are the sets { }1, ,ig it i tZ Z Z −  for t = 2, …, T, and{ }, ,ig it i tZ Z Y  

for t =2, …, T. Hence, maximum likelihood estimation involves a sequence of integrations 

(summations) over three-dimensional latent spaces, which is computationally still feasible. 

Instead of a bifactor structure, one could also specify a second-order model. In this 

model, the general dimension accounts for the additional associations between the occasion 

specific dimensions. The directed acyclic and moral (triangulated) graphs for such a model are 

presented in Figures 6 and 7. It is easily verified that the computational complexity of the 

second-order structure is of the same order as the computational complexity of the bifactor 

structure (i.e., requires a summation over three-dimensional latent spaces). 

Zi1

Yi1 Yi2

Zi2
Zi3

Yi3

Zig
 

Figure 6. Directed acyclic graph for a second-order model with a first-order Markov 

structure between the specific dimensions. 

Yi1 Yi2 Yi3

Zig

Zi1 Zi2
Zi3

 

Figure 7. Moral graph for a second-order model with a first-order Markov structure 

between the specific dimensions.  
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Bifactor Model Within Measurement Occasions—Markov Structure Model Across 

Occasions 

Let’s now turn to the situation where a multidimensional test structure exists within each 

measurement occasion.  

First consider the situation where no prior dimensional structure is assumed for the items 

within each measurement occasion. In that case, each item depends conditionally on a vector of 

latent variables ( )′= itDitditit ZZZ ,...,,...,1Z , where D is the number of dimensions for the IRT 

model within a measurement occasion. In a way completely analogous to the case of 

unidimensional within-occasion models, a first-order Markov structure can be added for each 

dimension to account for additional dependencies across measurement occasions between items 

measuring the same dimension. This may be a viable approach when only a couple dimensions D 

are involved at each measurement occasion, but obviously it does not scale up well with 

increasing within-measurement occasion multidimensionality. 

Therefore, consider the case where one can make simplifying assumptions about the 

within-occasion dimensional structure. In particular, the case in which a bifactor or second-order 

structure can be assumed within each measurement occasion is focused upon. Figure 8 displays 

the directed acyclic graph for a multidimensional model with a bifactor structure within each 

measurement occasion and a first-order Markov structure defined on the general factor. The 

figure shows three measurement occasions (T = 3) and three specific dimensions within each 

measurement occasion (and hence D = 3 + 1 = 4). Indices refer respectively to person, 

measurement occasion, and dimension. Figure 9 shows the directed acyclic graph for a model 

with a second-order structure within each measurement occasion. The corresponding moral 

graphs are shown in Figures 10 and 11. Again, the graphs are already triangulated. For both 

models, no clique contains more than two latent variables, and hence both models are 

computationally tractable. 

Bifactor Model Within Measurement Occasions—Bifactor Model With a Markov 

Structure Across Occasions 

For the models discussed in the previous section, the first-order Markov structure for the 

general dimensions is assumed to account for all dependencies over time. Similar to the model 

presented in the section on unidimensional within-measurement occasion models, this structure 
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can be complemented with a factor that is common to all measurement occasions. The result is a 

tri-factor model: D specific dimensions within each measurement occasion, T general dimensions 

across measurement occasions, and one overarching dimension ZiG common to all items within 

and across measurement occasions.  

 

Zi11 Zi32

Zi1g
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Yi33Yi32Yi31

Zi33Zi31

 

Figure 8. Directed acyclic graph for a within-occasion bifactor model (D = 3 + 1) and a 

first-order Markov structure for the general dimension over time (T = 3). Indices refer 

respectively to person, measurement occasion, and dimension. 
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Figure 9. Directed acyclic graph for a within-occasion second-order model (D = 3 + 1) and a 

first-order Markov structure for the general dimension over time (T = 3). Indices refer 

respectively to person, measurement occasion, and dimension. 
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Figure 10. Moral graph for a within-occasion bifactor model (D = 3 + 1) and a first-order 

Markov structure for the general dimension over time (T = 3). Indices refer respectively to 

person, measurement occasion, and dimension. 
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Figure 11. Moral graph for a second-order model (D = 3 + 1) and a first-order Markov 

structure for the general dimension over time (T = 3). Indices refer respectively to person, 

measurement occasion, and dimension. 

Figures 12 and 13 represent the directed acyclic and moral (triangulated) graphs. It is 

remarkable that the computational complexity of this model is of the same order as the 

computational complexity of the unidimensional within-measurement occasion model with a 

combined bifactor and first-order Markov structure across measurement occasions. For both 

models, at most three latent variables appear in the same clique. 

Again, a similar model could be specified with a higher-order rather than a bifactor 

structure. Such a model would be of the same computational complexity in that at most three 

latent variables appear in the same clique. 
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Figure 12. Directed acyclic graph for a within-occasion bifactor model (D = 3 + 1), a first-

order Markov structure for the general dimension over time (T = 3), and an overarching 

general dimension. Indices refer respectively to person, measurement occasion, and 

dimension. 
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Figure 13. Moral graph for a within-occasion bifactor model (D = 3 + 1), a first-order 

Markov structure for the general dimension over time (T = 3), and an overarching general 

dimension. Indices refer respectively to person, measurement occasion, and dimension. 
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Bifactor Model Within Measurement Occasions—Markov Structure Model Across 

Occasions for Both General and Specific Dimensions 

All models discussed up to now did not require the addition of edges to triangulate the 

moral graph. Therefore, let’s specify a model that does require additional edges during 

triangulation to illustrate the concept. For this, consider the bifactor within-measurement 

occasion model with a Markov structure over time for the general dimension. Now, additional 

first-order Markov structures are assumed for each of the specific dimensions over time. Figure 

14 presents the directed acyclic graph, and Figure 15, the moral graph. The moral graph contains 

cycles consisting of four nodes that are chordless, for example the cycle 

giiigigi ZZZZZ 1112121 −−−−  . The subgraph formed by these four nodes and their edges can be 

triangulated in two ways: adding an edge between Zi1g and Zi21, or adding an edge between Zi2g 

and Zi11 . As mentioned before, a graph can often be triangulated in a variety of ways. For the 

current example, a heuristic triangulation algorithm that minimizes the total number of latent 

variables within a clique (Murphy, 2001) was used. This way, the computational complexity for 

an EM-algorithm carrying out local computations on the latent clique variables is kept at a 

minimum. The resulting triangulated graph is presented in Figure 16. Edges that were added 

during triangulation are displayed with dotted lines. It can be seen that an edge was added 

between Zi1g and Zi21 to break the chordless cycle giiigigi ZZZZZ 1112121 −−−−  . The maximal 

number of latent variables in a clique is four when both D = 3 and T = 3. However, unlike all 

models discussed previously, this number increases with T. For T = 6, the largest number of 

latent variables in a clique was six using the same heuristic triangulation algorithm.  

In contrast to all previously presented models, the model with a bifactor within-

measurement occasion structure and a first-order Markov structure over time for all dimensions 

does not scale well with the number of measurement occasions.  

The latest example also illustrates how it becomes increasingly complex to transform the 

directed acyclic graph into a triangulated moral graph by hand. Fortunately, these 

transformations can be carried out in an algorithmic way and hence carried out by a computer. 

All graph transformations in this paper were carried out using the Bayes Net Toolbox for Matlab 

(Murphy, 2001, 2007). In the toolbox, directed acyclic graphs are represented in a matrix, whose 

(i, j)th element equals 1 if there is an edge from node i to node j in the directed acyclic graph, and 

0 otherwise. Upon specifying the directed acyclic graph in matrix form, one can readily obtain 
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the moral graph, a triangulated graph, its cliques, and the corresponding junction tree using the 

Bayes net toolbox. 
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Figure 14. Directed acyclic graph for a within-occasion bifactor model (D = 3 + 1), and first-

order Markov structures for both the general and specific dimensions over time (T = 3). 
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Figure 15. Moral graph for a within-occasion bifactor model (D = 3 + 1) and first-order 

Markov structures for both the general and specific dimensions over time (T = 3). 

Concluding Remarks 

In the first part of this paper, a data collection design was presented that was custom-

tailored to the context of repeated measurements. The design was a combination of an equivalent 

groups design and a common-item design. Within each measurement occasion, items could be 

linked through the use of randomly equivalent groups. Different measurement occasions were 



22 

linked through the use of common items. The common items were common across measurement 

occasions but never presented to the same individual twice. This presentation was possible 

because the design is incomplete at each measurement occasion.  
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Figure 16. Triangulated graph for a within-occasion bifactor model (D = 3 + 1) and first-

order Markov structures for both the general and specific dimensions over time (T = 3). 

Dotted lines represent edges added during triangulation.  

This final section of the paper may be the appropriate place to reiterate that linking 

procedures all rely on a set of strong assumptions that may or may not be met in particular 

situations. A crucial assumption in the current context is that the construct one is measuring does 

not change across measurement occasions. The further apart these measurement occasions are, 

the less likely the assumption is realistic. Also, this assumption is less likely to be met for some 

constructs than for others. When these assumptions are not met, a meaningful scale cannot be 

constructed, no matter how carefully the data collection design is crafted. 

The second and more elaborate part of the paper presented an introduction to the use of 

graphical models in statistical modeling. Graphs have been used for decades to visualize and 

communicate statistical models. However, the true value of graphical models relies on the fact 

that the graph representing a statistical model can be transformed in such a way that conditional 

independence relations implied by the statistical model are rendered explicit. The 

transformations on the graph are carried out in a completely algorithmic way. Hence, conditional 
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independence relations can be obtained entirely automatically. No tedious algebraic 

manipulations of the probability function of a statistical model are involved. 

Several multidimensional model structures were presented. Using the graphical model 

framework, it was shown that a high dimensional latent space does not necessarily imply that 

maximum likelihood (or Bayesian, for that matter) estimation procedures become 

computationally infeasible. Indeed, if one is willing to make certain conditional independence 

assumptions during model specification, these assumptions can be exploited to partition the high 

dimensional latent space into subspaces of lower dimensionality. Full-information maximum 

likelihood estimates can then be obtained by carrying out computations locally on these subsets.  

The focus of this paper was primarily on deriving the sets of conditionally independent 

(latent) variables for various model structures using graphical models. In addition, through the 

use of junction trees, graphical model theory can also be used to construct an efficient EM-

algorithm for a particular statistical model at hand. The algorithm is efficient in that posterior 

probabilities are computed in the E-step of the algorithm in a way that maximally exploits the 

conditional independence relations between them. Such an algorithm is presented by Rijmen, 

Vansteelandt, et al. (2008) and Rijmen (2009a).  
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