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Abstract

Sampling errors limit the accuracy with which forms can be linked. Limitations on accuracy are

especially important in testing programs in which a very large number of forms are employed.

Standard inequalities in mathematical statistics may be used to establish lower bounds on the

achievable inking accuracy. To illustrate results, a variety of equating problems are considered.

Key words: Fisher information, randomized blocks, mean equating, linear equating, two-way

layout
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In practice, the accuracy of equating or linking is limited because estimates used in the process

are based on samples. Limitations on accuracy are encountered even under ideal conditions.

These limitations can be computed by use of classical statistical inequalities. Bounds on accuracy

involve the number of examinees involved in the equating process and the number of forms that

must be linked. The limits also involve what assumptions are made concerning forms which

contain common items. In typical cases, the most important issue in practice is that the number

of examinees available per unit time is affected to only a very limited extent by an increase in the

number of forms used within that time interval. Thus more administrations typically leads to

fewer examinees per administration. If security considerations limit the number of administrations

in which a form can be used, then it necessarily follows that more administrations per unit time

results in more forms per unit time, and information concerning each form is based on fewer

examinees. Two problems arise simultaneously. Because information concerning a form involves

fewer examinees, estimates of form characteristics related to the difficulty of the form become less

accurate. In addition, equating and linking involve comparison of different forms. As the number

of forms becomes increasingly large due to security constraints, comparisons between different

forms must in some cases become increasingly indirect. Two forms to be compared will not have

been used together and will share no common items. Even more indirection is involved. Consider

the following hypothetical case. A form used on September 1, 2009, may share common items

with a form used on January 8, 2009, and with a form used on October 22, 2008. A form used

on September 8, 2009, may share common items with a form used on February 22, 2009, and

with a form used on July 21, 2008. Thus the September 1, 2009 form can only be linked to the

September 8, 2009 form through whatever links are available for the forms used on July 21, 2008,

October 22, 2008, January 8, 2009, and February 22, 2009. It may well be the case that none of

these forms share any common items, so that further steps are needed to provide linkage. These

many steps required to link the two forms used one week apart result in increased equating error

due to sampling effects.

In practice, as suggested by some of the results in this report, the standard error associated

with equating typically will increase at least in proportion to the square root of the number of

forms used in the time interval. When restrictions are placed on the number of times a form

can be used, the standard error associated with equating typically will increase in proportion to

the number of forms used in the time interval. This point is illustrated for mean equating in
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Section 1.2. Thus a testing program with quite satisfactory equating accuracy with six forms per

year may have quite unsatisfactory equating accuracy with 60 forms per year.

To illustrate the issues involved, it is helpful to look at some simple examples of equating

procedures. In Section 1, some cases of mean equating are explored. In Section 3, linear equating

is explored. In this section, application of results of linear equating are also discussed in terms

of implications for equating by item response theory. Section 4 considers some consequences

of the analysis in this report. A basic knowledge of equating methods is assumed (Kolen &

Brennan, 2004; von Davier, Holland, & Thayer, 2004); however, most of the analysis relies on

basic statistical theory. The examples are deliberately chosen to be relatively simple, so that the

basic issues can be discussed.

1 Mean Equating

Mean equating is a very simple equating procedure in which a constant is added to the raw

score to adjust for differences in form difficulty. The approach is most appropriate for observed

scores that are normally distributed and have the same variance; however, it can be used more

generally. For an initial example, consider the following equating sequence in which randomly

equivalent groups of examinees are employed at each administration to link test forms. This

example involves a case in which two test forms are used at each administration and a given test

form is never used for more than two administrations. Let T ≥ 2 administrations be considered

for N examinees. For example, one might have 24 administrations over a period of two years, with

one administration per month, and there might be 240,000 examinees over the two-year period.

For simplicity, let M = N/(2T ) be an integer. In Administration t, 1 ≤ t ≤ T , let N/T examinees

be assigned at random to two groups of M examinees. Thus in the hypothetical example, 5,000

examinees are in each of the two randomly equivalent groups at each administration. A total of

U = T + 1 distinct forms numbered from 1 to U are used for the T administrations. Thus in the

hypothetical example, U = 25 forms need to be linked. At Administration t, the first randomly

equivalent group of examinees, Group 1, receives Form t, and the other group of examinees,

Group 2, receives Form t+ 1. In this design, Form t and Form t+ 1 can be directly compared, for

they are used on equivalent groups of examinees.

With some assumptions, it is possible to compare Forms t and u, 1 ≤ t < u ≤ T , even

when they are never employed in the same administration. To do so, let the observed score of
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Examinee i, 1 ≤ i ≤ M , in Group k at Administration t be Xikt. Note that it is assumed for

simplicity that no examinee receives more than one form at an administration and no examinee

appears in more than one administration. Thus Examinee i of Group k in Administration t has no

relationship to Examinee j of Group m at Administration u unless t = u, k = m, and i = j. Let

the observed score Xikt have mean µkt and variance σ2. Thus the mean of the score Xikt depends

on the Group k of the examinee and the Administration t; however, the variance of the score

is independent of both group and administration. This assumption, which simplifies analysis,

is appropriate for mean equating. Consistent with the assumption that examinees for different

groups and administrations are distinct individuals, assume that the Xikt are all independently

distributed. To simplify discussion of the impact of equating error, assume that the reliability

of each form is the same for each administration. Thus the reliability of Form t or t + 1 at

Administration t is ρ2, where 0 < ρ2 < 1. In mean equating, dt = µ1t − µ2t provides a measure

of the difficulty of Form t + 1 relative to Form t. This measure is based on the distributions of

raw scores at Administration t for Groups 1 and 2. The fundamental assumption to make for

comparisons of forms not used in the same administration is that the difference in difficulty of two

forms would be the same were the forms used for other administrations. Thus one may let D1 = 0

and Du+1 = Du +du for u ≥ 1. Then Du is a measure of the relative difficulty of Form u compared

to Form 1. If Form 1 is the base form used in equating or linking, then a raw score of x on Form u

would be converted to an equated raw score of x+Du on Form 1 if Du were known. This result

can be obtained in stages. A score of x on Form 2 is converted to a score of x+D2 = x+ d1 on

Form 1. Note that d1 is greater than 0 if the mean score on Form 2 at Administration 1 is lower

relative to the mean score on Form 1 at Administration 1 (Form 2 is more difficult than Form 1

at Administration 1). A score of x on Form 3 is converted to a score of x + d2 on Form 2 based

on comparison of Form 2 and Form 3 at Administration 2. In turn, the score of x on Form 3 is

converted to a score of x+ d2 + d1 = x+D3 on Form 1. In this manner, a score of x on Form u

is eventually converted to a score of x+Du on Form 1. In the hypothetical example, in the first

year, the score x from Form 3, which was used in Group 2 of the February administration in

the first year, is thus converted to a score x +D3 on Form 1, which was used in Group 1 of the

January administration in the first year of testing. This conversion is also obtained with a series

of equipercentile equatings if the Xikt are all normally distributed, the distributions are known,

and chained equating is used.
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In practice, the means required for the conversion of scores are not known and must be

estimated. For each Group k from each Administration t, the mean µkt of the scores Xikt for

Group k and Administration t can be estimated by the sample mean

X̄kt = M−1
M∑
i=1

Xikt.

Thus the difference dt, t ≥ 1, in the difficulty of Forms t + 1 and t is estimated, based on

Administration t, to be the difference

d̂t = X̄1t − X̄2t

between the sample means for Group 1, which received Form t, and Group 2, which received

Form t + 1. The estimate d̂t is unbiased, so that the expectation of d̂t is dt, and the variance of

d̂t = 2σ2/M . In turn, the conversion size Du for conversion from Form u to Form 1 is estimated

for u > 1 by

D̂u =
u−1∑
t=1

d̂t.

The estimate D̂u is unbiased, so it has expectation Du, and the variance of D̂u is

(u − 1)[2σ2/M ] = 4(u − 1)Tσ2/N . The standard error of D̂u is then 2[(u − 1)T/N ]1/2σ.

For comparison, the variance of measurement of the score Xikt of Examinee i in Group k of

Administration t is σ2(1− ρ2), so that the ratio of the variance of equating error to the variance

of measurement is

Gu = 4(u− 1)T/[N(1− ρ2)]

in the case of Form u. This ratio increases as the form count u and number of forms U = T + 1

increase, as the reliability ρ2 increases, and as the total sample size N decreases. The highest

ratio is found for the last form used, for here u = U = T + 1. In the hypothetical example of

24 administrations over two years for 240,000 examinees, suppose that σ = 10 and ρ2 = 0.9. In

this case, the variance of measurement is 10, and the estimate D̂u has variance (u− 1)/25. This

variance is only 0.04 for u = 2, and G1 = 0.004 is a rather small ratio of variance of equating

compared to variance of measurement. Nonetheless, for u = U = 25, the variance of D̂U of 0.96 is

not negligible, and GU = 0.096 is large enough that equating error has some effect on the effective

reliability of the test. Note that this example involves a substantial number of examinees for a

testing program and a number of administrations over two years that is not exceptional.
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Some further examples may help provide some perspective. If the total number of examinees

is N = 200, 000, the common reliability coefficient is ρ2 = 0.9, a total of T = 10 administrations

are used, and equating error is considered for the last form, so that u = U = 11, then GU = 0.02

is relatively small, so that equating error is relatively small compared to measurement error for a

form. This example applies to a testing program with many examinees and a moderate number of

administrations.

If the number of examinees is reduced to N = 2, 000 but the reliability ρ2 remains 0.9, the

total number T of administrations remains 10, and the form considered remains Form U , then

GU = 2 is very large. If the standard deviation of the scores Xikt is σ = 10, then the variance of

measurement of 10 is half the variance 20 of equating. This example applies to a rather small

testing program with very small administration sizes of 200 examinees.

If N = 200, 000 receive the test at some time, the reliability coefficient is still ρ2 = 0.9, the

form number is U = 51, and the number of administrations is T = 50, then the ratio GU = 0.10 is

not negligible. The variance of equating error is a tenth of the variance of measurement. Here the

number of examinees is fairly large, but the number of administrations is also large.

Assessment of the impact of equating error depends on whether the examinee is regarded as

taking a random examination or not. For an examinee who uses Form u at Administration u, the

effective variance of measurement is σ2(1 +Gu), the sum of the variance of measurement and the

variance of equating. A slight change in the formula occurs for Form u + 1 and Administration

u because the examinee is part of the data used for estimation of D̂u+1. The effective variance

of measurement is then σ2(1 −M−1 + Gu+1). If the examinee is regarded as taking a fixed

examination, then the equating error D̂u −Du has approximate probability 0.05 of benefitting or

harming the examinee by more than 1.96σ[(1 − ρ2)Gu]1/2. This probability is exact if all score

distributions are normal. This criteria is somewhat stricter. Relative to the standard error of

measurement σ(1− ρ2)1/2, one has

1.96σ[(1− ρ2)Gu]1/2/[σ(1− ρ2)1/2] = 1.96G1/2
u .

Consider the previous examples. In the example with 240,000 examinees, 24 administrations,

a standard deviation of scores of σ = 10, and a reliability coefficient of 0.9, by the last form used

(U = 25), the effective variance of measurement, 10.96, is appreciably greater than the actual

variance of measurement of 10. By the perspective of a fixed administration, the probability is
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0.05 that the equating error is at least 1.88 and the standard error of measurement is 101/2 = 3.16.

By this criterion, there is a substantial possibility of a substantial impact of equating error on the

reported score.

In the case of N = 200, 000 examinees, a reliability coefficient of ρ2 = 0.9, a standard

deviation σ = 10 of scores, Form U = 11, and Administration T = 10, the effective variance of

measurement of 10.2 is not much more than the variance of measurement of 10. On the other

hand, the probability is 0.05 that the equating error changes the score reported by at least

1.96G1/2
U = 0.28, an amount not negligible relative to a standard deviation of measurement of 3.16.

In the case of a small number N = 2, 000 of examinees, a reliability coefficient ρ2 = 0.9, a

standard deviation of scores of σ = 10, Form U = 11, and Administration T = 10, the effective

variance of measurement of 30.0 is very large relative to the variance of measurement of 10, and

the probability is 0.05 that equating error changes the reported score by at least 1.96G1/2
U = 2.77,

a very large change relative to 3.16, the standard error of measurement.

For an example with many examinees and many administrations, let N = 200, 000 be the

number of examinees, let ρ2 = 0.9 be the reliability coefficient, let the form number be U = 51,

and let the administration number be T = 50. In this case, the effective variance of measurement

is 11.0 is substantially greater than the variance of measurement of 10, and the probability is 0.05

that the equating error changes a score by at least 1.96G1/2
u = 0.62, a fairly large value relative to

the standard error of measurement of 3.16.

These computations illustrate a basic issue in terms of assessment design. As long as the

total number of examinees under study does not vary, increasing the number of administrations

dramatically increases the variability of results. The average variance of equating over all

administrations is

(2T )−1
T∑

t=1

[4tTσ2/N + 4(t− 1)Tσ2/N ] = 2T 2σ2/N.

For a fixed total number N of examinees, doubling the number of administrations quadruples

the average variance of equating and doubles the root mean squared equating error for the N

examinees.

1.1 Many Parallel Forms at Each Administration

Modification of the method of data collection yields substantially different results. Suppose

that the same U ≥ 2 forms are used at each administration from 1 to T , and let the total number
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of examinees N be a multiple of TU . At Administration t, let examinees be divided randomly

into K = U groups of equal size, and let each form be given to the M = N/(TU) examinees in

Group u. Let the score of examinee i, 1 ≤ i ≤M , from Group u at Administration t be Xiut. As

in Section 1, let Xiut have mean µut and variance σ2. Assume that the Xiut are all independently

distributed, and assume that the reliability of Form u at Administration t is ρ2, where 0 < ρ2 < 1.

Assume that µut satisfies an additive model µut = µ1t − Du. In this case, Du measures the

difficulty of Form u relative to Form 1. The assumption is made that the relative difficulty of

Form u compared to Form 1 is the same for all administrations. If Form 1 is the base form, then

a score x on Form u 6= 1 is equated to a score x+Du on Form 1, provided that Du is known.

In practice, the relative form difficulty Du of Form u must be estimated for u > 1. For efficient

estimation, let equating at Administration t be based on all data available from Administration t

and from any prior administrations. Note that this procedure, although statistically appropriate,

does lead to a situation in which two examinees with identical raw scores can have different

reported scores if they take the same form at different administrations. For each Administration h,

1 ≤ h ≤ t, the form difficulty Du has an unbiased estimate X̄1h − X̄uh, where the sample mean

X̄uh = M−1
M∑
i=1

Xiuh

estimates the population mean µuh for any Form u and Administration h. The estimates

X̄1h − X̄uh, 1 ≤ h ≤ t, are independent and have common variance variance 2σ2/M . Thus the

estimate of Du at Administration t is obtained by averaging the estimates of form difficulty from

the first t administrations. The resulting estimate is

D̂u·t = −t−1
t∑

h=1

(X̄uh − X̄1h).

This estimate is unbiased, so that the expectation of D̂u·t is Du, and the variance of D̂u·t is

2σ2/(tM) = 2TUσ2/(tN). For comparison, the variance of measurement of Xkt is σ2(1− ρ2), so

that the ratio of the equating error to the variance of measurement is

Gu·t = 2TU/[tN(1− ρ2)]

for each Form u. This ratio decreases as the Administration t increases and as the total sample

size N increases, but the ratio increases as the number T of administrations, the number U of

forms, and the reliability increase. The ratio Gu·T = 2U/[N(1− ρ2)].
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For comparison with the equating design presented at the start of Section 1, consider an

example with N = 200, 000 examinees, a reliability coefficient ρ2 = 0.9, U = 10 forms, T = 10

administrations, and Administration t = 10. Then, for each Form u > 1, Gu·T = 0.001 is quite

small. Note how much smaller Gu·T is than the value GU = 0.02 in Section 1 achieved for

Form U = 11 for N = 200, 000 examinees and T = 10 administrations. Even for the much less

favorable case of the initial administration, Gu·1 is 0.01 for each Form u > 1. Thus the use of

many parallel forms permits much more accurate estimation of the conversion constants Du than

was the case in the design in Section 1. Nonetheless, much smaller sample sizes are much less

satisfactory. Consider the case of N = 2, 000 examinees. Let the reliability coefficient remain

ρ2 = 0.9, let the number T of administrations and the number U of forms both remain 10. In this

case, only 20 examinees in an administration receive the same form. Not surprisingly, Gu·1 is 1, so

that the variance of the equating conversion is as large as the variance of measurement. By the

last administration, Gu·T is 0.1, a figure which is not negligible but obviously much better than for

the first administration. For a case with many administrations but a moderate number of forms,

consider N = 200, 000 examinees, a reliability coefficient ρ2 = 0.9, T = 50 administrations, and

U = 10 forms. By the final administration, Gu·T = 0.001 is the same as in the previous example

with 200,000 examinees. On the other hand, the situation for the initial administration is rather

less satisfactory, for Gu·1 is then 0.05. Thus the variance of the examinee’s reported score due to

equating is 0.05 times as great as the variance of measurement.

In practice, despite the favorable results, the design with many parallel forms used in

each administration can be difficult to apply, both due to limitations in the ability of testing

programs to administer a large number of forms in the same administration and due to security

considerations. Even if a very large number of forms can be regarded as only a limited security

risk due to the difficulty of determining in advance the answers for the very large number of items

in all the forms, there remains the problem of starting out. For initial administrations, equating

accuracy can be quite limited. Some delay in initial reporting until more administrations are

completed can alleviate the problem, but pressure to report scores promptly may render this

design impractical. As a consequence, it is appropriate to consider other alternatives.
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1.2 Design Limits

Somewhat more complex equating designs based on randomly equivalent groups may be

developed. These designs do not result in improvements in results when the design in Section 1.1

can actually be used, but the designs can be employed to indicate inherent limitations in equating

accuracy once security considerations and reporting deadlines restrict form reuse and restrict the

ability to delay reporting until data are available from more administrations. The fundamental

issue is that under a restriction that no form can appear in more than a specified number of

administrations, as the same number of examinees is divided into more administrations, the

average equating error, as measured in mean squared error, across administrations becomes

proportional to at least the square of the number of administrations. In terms of root mean

squared error, this measure of accuracy is at least proportional to the number of administrations,

so that multiplying the number of administrations by 10 decreases accuracy by the criterion of

root mean squared error by a factor of 10.

To discuss equating designs for randomly equivalent groups, the following design is introduced

to generalize the equating designs of Sections 1 and 1.1. Consider T ≥ 2 administrations, N

examinees, and U ≥ 2 forms. At each Administration t, there are K ≥ 2 equivalent groups

k, 1 ≤ k ≤ K, of M = N/(KT ) ≥ 1 examinees, and Group k is administered Form ukt. For

simplicity, assume that u11 = 1, so that Form 1, the base form, is administered in Administration 1

to the M examinees in Group 1. Note the implicit assumption that N is an integer multiple of

KT . It is still assumed that the raw score Xikt of Examinee i from Group k at Administration t

is a random variable with mean µkt and variance σ2 > 0, and it is assumed that the reliability

coefficient is ρ2 for each combination of form and administration. The examinee scores Xikt are

still assumed to be mutually independent. The assumption on the mean µkt of the scores for

Group k of Administration t is that µkt is additive in administration and form, so that

µkt = αt −Dukt

for some real number constants αt, 1 ≤ t ≤ T , and some real constants Du, 1 ≤ u ≤ U . To identify

parameters, it is assumed that D1 = 0, so that α11 is the expectation of the score of examinees at

Administration 1 who receive the base form, Form 1.

This additive model is consistent with additive models previous employed in Section 1 and 1.1.

In Section 1, the number of groups in an administration is K = 2, the number of administrations
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is T , and the number of forms is U = T + 1. At Administration t, 1 ≤ t ≤ T ,the administered

forms are u1t = t and u2t = t + 1. The parameter difference du = Du+1 −Du = µuu − µ(u+1)u

for Form u, 1 ≤ u ≤ T , so that D1 is 0 and Du+1 = Du + du for 1 ≤ u ≤ T . It follows that

αt = µtt +Dt for 1 ≤ t ≤ T .

In Section 1.1, K = U groups are used in each administration, and ukt = k for 1 ≤ k ≤ U

and 1 ≤ t ≤ T , so that Group u, 1 ≤ u ≤ U , is administered Form u at Administration t. Here

Du = µ1t − µut for each Form u and Administration t, and αt = µ1t for 1 ≤ t ≤ T is the score

mean for the examinees in Group 1 who received the base form, Form 1, at Administration t.

In general, the basic feature of the additive model is that the difference

µkt − µk′t = Duk′t −Dukt

in means is a function of the Forms ukt and uk′t administered at Administration t to Groups k

and k′. The difference has no further dependence upon the Administration t. The difference

βt = αt − α1 provides a measure of the relative proficiency of examinees at Administration t

compared to examinees at Administration 1. This proficiency difference is assumed independent

of the Form u. The parameter Du provides a measure of the difficulty of Form u relative to the

difficulty of Form 1. This parameter is assumed not to depend on the administration.

As in sections 1 and 1.1, if the parameter Du is known for Form u > 1, then a score x on

Form u is converted to a score x+Du on Form 1. To estimate the parameters Du for u > 1, least

squares may be applied to obtain least-squares estimate D̂u of Du for 1 < u ≤ U . The constraint

is imposed that D̂1 = D1 = 0. Given the estimate D̂u for a Form u > 1, a raw score of x on

Form u can be equated to a raw score of x + D̂u on Form u. Computation of the least-squares

estimates of the Du is a familiar task from the study of two-way analysis of variance with unequal

numbers of observations in cells (Scheffé, 1959, p. 114), although conditions are required to ensure

that all the parameters Du, 2 ≤ u ≤ U , are estimable.

To obtain least-squares estimates, a three-dimensional array mktu, 1 ≤ k ≤ K, 1 ≤ u ≤ U ,

1 ≤ t ≤ T , is used to specify the relationship between groups, administrations, and forms. For

1 ≤ k ≤ K, 1 ≤ t ≤ T , and 1 ≤ u ≤ U , let mktu be 1 if ukt = u, and let mktu be 0 otherwise. For

example, in Section 1, m1tt = m2t(t+1) = 0 for 1 ≤ t ≤ T and mktu = 0 if u is not t + k − 1. In

Section 1.1, mktk = 1 for 1 ≤ k ≤ K and 1 ≤ t ≤ T and mktu = 0 if k 6= u.

A number of restraints on the mktu necessarily exist. Only one form is administered at each
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administration to each group. Thus for each Administration t and Group k,

K∑
k=1

mktu = 1.

The number of Groups k receiving Form u at Administration t is

m+tu =
K∑

k=1

mktu.

In Sections 1 and 1.1, this number is 0 or 1, but equating designs may be considered in which

m+tu can exceed 1. For Administration t, the number of groups is K, so that the sum

U∑
u=1

m+tu = K. (1)

The sum

m++u =
T∑

t=1

m+tu

is the total number of groups that receive Form u in some administration. Because KT groups

are present in the T administrations, the summation

U∑
u=1

m++u = KT. (2)

To develop least-squares equations requires consideration of instances in which two forms

appear in the same administration. Let

quu′ = K−1
T∑

t=1

m+tum+tu′

for 1 ≤ u ≤ U and 1 ≤ u′ ≤ U . Note that m+tum+tu′ is the number of pairs (k, k′) of groups,

1 ≤ k ≤ K and 1 ≤ k′ ≤ K, such that, at Administration t, Group k receives Form u and Group k′

receives Form u′. Use of (1) shows that

m++u =
U∑

u′=1

quu′ . (3)

For Group k, 1 ≤ k ≤ K, in Administration t, 1 ≤ t ≤ T , let X̄kt be the average of the examinee

scores Xikt for 1 ≤ i ≤ M . For Administration t, let X̄+t be the sum of the averages X̄kt for

1 ≤ k ≤ K. For Form u, 1 ≤ u ≤ U , let X̄u be the sum of X̄kt for Administrations t and
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Groups k such that Group k receives Form u (ukt = u). The estimates D̂u, 1 ≤ u ≤ U , satisfy the

simultaneous equations

m++uD̂u −
U∑

u′=1

quu′D̂u′ = −X̄u +K−1
T∑

t=1

m+tuX̄+t (4)

for 1 ≤ u ≤ U , and D̂1 = 0. The D̂u, 1 ≤ u ≤ U , have uniquely defined estimates if the m+tu,

1 ≤ t ≤ T , 1 ≤ u ≤ U , satisfy the inseparability conditions (Goodman, 1968) that each Form u is

used at least once in some Group k and Administration t (m++u > 0 for 1 ≤ u ≤ U) and no way

exists to divide the U form numbers from 1 to U into two nonempty disjoint subsets A and B such

that quu′ = 0 if u is in A and u′ is in B. It will be assumed that the inseparability assumption

holds.

To examine the inseparability issue, first consider the equating design in Section 1. In this

example, m++u is 2 for 1 < u < U and m++u = 1 for u equal 1 or U . Forms u and u′ can only

appear in the same administration if |u−u′| ≤ 1. It follows that quu′ = 0 if |u−u′| > 1, quu′ = 1/2

if |u− u′| = 1, quu = 1 if 1 < u < U , and q11 = qUU = 1/2. Let t and t′ be administration numbers

for 1 ≤ t ≤ T and 1 ≤ t′ ≤ T , and let u and u′ be form numbers for 1 ≤ u ≤U and 1 ≤ u′ ≤ U . If

A and B are disjoint nonempty subsets of the integers from 1 to U and if each integer from 1 to U

is in either A or B, then some u and u′ must exist such that u is in A, u′ is in B, and |u− u′| = 1.

In such a case, quu′ > 0. It follows that the inseparability assumption holds.

In Section 1, results are even simpler. Here m++u = T > 0 for each Form u and

quu′ = T/U > 0 for any Forms u and u′. Because quu′ is always positive, the inseparability

condition holds.

To study equating accuracy, variances of the estimates D̂u are needed for Forms u > 1. For

this purpose, the complete covariance matrix of the D̂u, 1 ≤ u ≤ U , is determined. This covariance

matrix is determined in stages. To begin, consider the U by U symmetric matrix C with the

element in row u and column u′, 1 ≤ u ≤ U , 1 ≤ u′ ≤ U , equal to

Cuu′ = m++uδuu′ − quu′ +
(K − 1)T
U(U − 1)

,

where the Kronecker function δuu′ is 1 if u = u′ and 0 otherwise. Observe that (3) implies that

U∑
u′=1

(m++uδuu′ − quu′) = 0

for 1 ≤ u ≤ U . The inseparability condition implies that C is positive-definite and invertible.
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By standard linear algebra, the matrix C has a decomposition into eigenvalues and

eigenvectors such that

Cuu′ =
U∑

v=1

λvwuvwu′v,

where, for 1 ≤ v ≤ U , the eigenvalue λv > 0, and the eigenvector wv with elements wuv,

1 ≤ u ≤ U , satisfies the orthogonality conditions

U∑
u=1

wuvwuv′ =

 1, v = v′,

0, v 6= v′,

for 1 ≤ v′ ≤ v. For v = 1, λ1 = (K − 1)T/(U − 1), and wu1 = 1/U1/2. Standard linear algebra

also implies that the inverse C−1 of C then has row u and column u′ equal to

Cuu′
=

U∑
v=1

λ−1
v wuvwu′v.

To obtain the covariance matrix of the estimated conversion adjustments D̂u, 1 ≤ u ≤ U , the

differences

D̃u = D̂u − U−1
U∑

u′=1

D̂u′

between the estimate D̂u and the average U−1
∑U

u′=1 D̂u′ are considered for 1 ≤ u ≤ U . Obviously,

D̃u estimates Du − U−1
∑Y

u=1Du′ . By the basic theory of estimable functions (Rao, 1973, pp.

224–226), (σ2/M)Cuu′
is the covariance of the estimates D̃u and D̃u′ . Because D̂u = D̃u − D̃1, it

follows that the variance of D̂u is

σ2(D̂u) =
σ2

M
(Cuu − 2Cu1 + C11) =

σ2

M

U∑
v=2

λ−1
v (wuv − w1v)2.

Obviously, σ2(D̂1) = 0. More generally, the variance of D̂u − D̂u′ , u 6= u′, is

σ2(D̂u − D̂u′) =
σ2

M
(Cuu − 2Cuu′

+ Cu′u′
) =

σ2

M

U∑
v=2

λ−1
v (wuv − wu′v)2. (5)

The average variance of σ2(D̂u − D̂u′) is

σ̄2 =
2σ2

M(U − 1)

U∑
v=2

λ−1
v . (6)
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This result is based on a classical relationship between mean squared differences and sample

variances. For real numbers xu, 1 ≤ u ≤ U ,

[U(U − 1)]−2
U∑

u=1

U∑
u′=1

(xu − xu′)2 = 2(U − 1)−1

 U∑
u=1

x2
u − U−1

(
U∑

u=1

xu

)2
 . (7)

For v > 1,
∑U

u=1wuv = 0 and
∑U

u=1w
2
uv = 1. Thus (5) and (7) imply (6).

A lower bound for σ̄2 is easily constructed by use of a classical inequality for the harmonic

and arithmetic means (Hardy, Littlewood, & Pòlya, 1952, pp. 26–27). For any real numbers xv,

2 ≤ v ≤ U , their harmonic mean (
(U − 1)−1

U∑
v=2

x−1
v

)−1

is never greater than their corresponding arithmetic mean

(U − 1)−1
U∑

v=2

xv,

with equality if, and only if, the xv are all equal. Because the trace
∑U

u=1Cuu of C is the sum of

its eigenvalues (Halmos, 1958, p. 105),

U∑
v=1

λv = U(K − 1)T/(U − 1).

Because λ1 = (K − 1)T/(U − 1), it follows that

U∑
v=2

λv = (K − 1)T,

so that

σ̄2 ≥ 2Kσ2(U − 1)
N(K − 1)

,

with equality if, and only if, λv is constant for v > 1. The condition that λv is constant for v > 1

holds if, and only if, λv = (K − 1)T/(U − 1) for 1 ≤ v ≤ U and C = [(K − 1)T/(U − 1)]I, where I

is the U by U identity matrix. When the lower bound on σ̄2 is achieved,

σ2(D̂u − D̂u′) = σ̄2

for Forms u and u′ 6= u.

Observe that, given a fixed number N of examinees, a fixed score variance σ2, and a fixed

number K of forms per administration, the lower bound on σ̄2 is proportional to U − 1, the
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number of forms minus 1. The square root of σ̄2, a measure of root mean squared error, is then

proportional to (U − 1)1/2. This result does imply that more forms inevitably results in less

accuracy, but the rate of increase does not directly involve the number of administrations. The

key issue is that no constraint has been introduced on form reuse.

The lower bound on σ̄2 is achievable. It applies under the conditions of section 1.1, for

m++u = T and quu′ = T/K for Forms u and u′, where u and u′ are positive integers no greater

than U = K. Thus C = T I, and

σ̄2 = 2σ2U/N.

The lower bound on σ̄2 is also achieved for the balanced incomplete block case with m++u = KT/U ,

quu = T/U , and quu′ = (K − 1)T/[U(U − 1)] for u 6= u′ (Cochran & Cox, 1957, ch. 11). In this

case,

σ̄2 =
2Kσ2(U − 1)
N(K − 1)

.

Unfortunately, the practical constraints on the equating design of section 1.1 normally also

apply to balanced incomplete blocks. In an equating design with balanced incomplete blocks,

it is necessary that KT/U and (K − 1)KT/[U(U − 1)] must both be integers. For a number

T of administrations sufficiently large, this condition cannot hold if the security constraint is

imposed that, for some integer Q ≥ 2, the total number m++u of times Form u is used in some

group for some administration satisfies the constraint m++u ≤ Q for 1 ≤ u ≤ U . Thus KT/U

cannot exceed Q and U must be at least KT/Q. Thus the lower bound on σ̄2 is then at least

2K(KT −Q)σ2/[Q(K − 1)N ], so that more administrations T leads to a higher average variance

σ̄2.

Lower bounds can also be considered for variances of linear contrasts of the estimated

adjustments D̂u for Forms u from 1 to U . These bounds can provide insight into commonly

observed increases in variances of the D̂u as the form number u increases. Let b be the

U -dimensional vector with elements bu, 1 ≤ u ≤ u, where the sum of the bu is 0. Consider the

variance of the estimate

ĝ =
U∑

u=1

buD̂u =
U∑

u=1

buD̃u

of

g =
U∑

u=1

buDu.
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Let

x′y =
U∑

u=1

xuyu

for any U -dimensional vector x with elements xu for 1 ≤ u ≤ U and any U -dimensional vector y

with elements yu, 1 ≤ u ≤ U . Then

y′C−1yx′Cx ≥ (x′y)2

(Rao, 1973, p. 54), with equality if

y = cCx (8)

for some real c. Note that (8) implies that

y′C−1y = c2x′Cx = cy′x.

The case of x = y = b shows that

σ2(g) ≥ σ2(b′b)2

Mb′Cb
,

where

b′Cb =
U∑

u=1

m++ub
2
u −

U∑
u=1

U∑
u′=1

bubu′quu′ .

By (3), it follows that

b′Cb = 2−1
U∑

u=1

U∑
u′=1

(bu − bu′)2quu′ .

Equality holds if, and only if, for some real c,

bu = c
U∑

u′=1

quu′(bu − bu′)

for 1 ≤ u ≤ U , so that

σ2(g) = σ2cb′b/M.

For example, if v and v′ are distinct positive integers no greater than U , bv = 1, bv′ = −1, and

bu = 0 for u neither equal to v nor v′, then

σ2(D̂v − D̂v′) ≥ 4Kσ2

M [(K − 1)(m++v +m++v′) + 2Kqvv′ ]
.

Equality holds only if quv = quv′ for u neither v nor v′ and m++v = m++v′ . For example,

in section 1.1, U = K and quu′ = T/U for Forms u and u′. Thus C is (T/U)I, and
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σ2(D̂v− D̂v′) = 2σ2U/N . In general, if no form can be used more than Q times, so that m++u ≤ Q

for 1 ≤ u ≤ U , then σ2(D̂v − D̂v′) is at least 2KTσ2/(NQ).

For a more complex example often relevant to equating situations in which very old forms are

not directly compared with new forms, consider the case of y = b for bv = 1, bv′ = −1, and bu = 0

for u neither v nor v′. For simplicity, let v′ < v. Let x be defined so that xu = u− (v + v′)/2 for

1 ≤ u ≤ U . Then

σ2(D̂v − D̂v′) ≥ (v − v′)2σ2

Mx′Cx
,

where

x′Cx =
U∑

u=1

[u− (U + 1)/2]2m++u −
U∑

u=1

U∑
u′=1

[u− (U + 1)/2][u′ − (U + 1)/2]quu′

= 2−1
U∑

u=1

U∑
u′=1

(u− u′)2quu′ .

Equality holds only if, for some real c,

1 = c
U∑

u′=1

(v − u′)qvu′ ,

0 = c
U∑

u′=1

(u− u′)quu′

for u neither v nor v′, and

−1 = c
U∑

u′=1

(v′ − u′)qv′u′ .

When equality holds, σ2(D̂v − D̂v′) = c(v − v′)σ2/M . In section 1, K = 2, m++1 = m++U = 1,

m++u = 2 for 1 < u < U , T = U − 1, quu′ = 1/2 for |u− u′| = 1 and quu′ = 0 for |u− u′| > 1. If

v = U and v′ = 1, then equality holds with c = 2, so that

σ2(D̂U ) = σ2(D̂U − D̂1) = 2(U − 1)σ2/M = 4T 2σ2/N,

as expected from section 1 if one recalls that M = N/(2T ) in this case.

One may interpret x′Cx for xu = u − (U + 1)/2 in terms of a variance. Consider random

variables Z1 and Z2 with integer values from 1 to U . Let

W = KT −
U∑

u=1

quu.
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Let Z1 never equal Z2, and let the joint probability that Z1 = u and Z2 = u′ be quu′/W for u 6= u′.

Then

x′Cx = Wσ2(Z1 − Z2)/2,

so that

σ2(D̂v − D̂v′) ≥ 2(v − v′)2σ2

WMσ2(Z1 − Z2)
. (9)

If the restriction is imposed that, for some positive integer r, Forms u and u′ never appear in the

same administration if |u− u′| > r, then |Z1 − Z2| ≤ r with probability 1, so that

σ2(Z1 − Z2) ≤ r2,

with equality if, and only if, r = 1 (Haberman, 1996, p. 272), so that

σ2(D̂v − D̂v′) ≥ 2(v − v′)2σ2

WMr2
. (10)

In particular,

σ2(D̂U ) ≥ 2(U − 1)2σ2

WMr2
, (11)

In (11), equality holds for r = 1 under the conditions in section 1. In addition, (7) and the

standard formula

U−1
U∑

u=1

[u− (U + 1)/2]2 = (U + 1)(U − 1)/12

(Stuart, 1950) leads to the inequality

σ̄2 ≥ (U + 1)Uσ2

3WMr2
. (12)

Observe that W ≤ KT , so that WM is no greater than N . If no form is used with more than a

single group in an administration, then WM = (K − 1)N/K. The practical implication of (10),

(11), and (12) is that, for fixed sample size N , forms K per administration, and positive integer r,

the variance of equating adjustments increases very rapidly when the number of forms is large.

To illustrate results, consider a case with 11 administrations and four forms per

administration. Consider a total N of 110,00 examinees, and let the standard deviation σ be 100.

At Administration t, let Forms t to t + 3 be used. The standard deviations of the D̂u are then

summarized in Table 1. For comparison, results are supplied for the approach of section 1 with

the same number of examinees and the same number of administrations. The only case in which a

form has a lower standard error of equating for two rather than four forms per administration is
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Table 1
Standard Error of Equating Adjustment for Mean Equating

Form Standard error
number 2 forms 4 forms

2 2.00 2.57
3 2.83 2.51
4 3.46 2.50
5 4.00 2.72
6 4.47 2.85
7 4.90 2.99
8 5.29 3.12
9 5.66 3.25
10 6.00 3.37
11 6.32 3.49
12 6.63 3.62
13 3.80
14 4.18

for Form 2, and Form 2 is used by 10,000 examinees if there are two forms per administration and

by 5,000 examinees if there are four forms per administration. The gains are particularly dramatic

in the case of four forms per administration for higher form numbers. Nonetheless, it should be

emphasized that the standard errors of the D̂u still increase as the form number u increases. In

the case of four forms, the lower bound for σ(D̂U ) from (11) is 2.13, a figure considerably lower

than the actual value. The lower bound on σ(D̂U ) based on (9) is 3.51. In the case of two forms

per administration, the lower bound on σ(D̂U ) based on (11) is equal to the observed value.

Several caveats are needed concerning results in this section. In practice, due to the need to

report test scores in a timely manner, scores Du typically must be estimated at Administration t

by use of the means X̄kt′ for Group k used in Administration t′ for t′ ≤ t. Bounds here permit use

of all means X̄kt for Group k in an Administration t, t ≤ T .

Results apply most effectively in an ideal situation in which the score distribution for the

Xkt is normal with mean µkt and variance σ2 common to all forms and administrations. This

assumption obviously does not apply exactly in commonly used educational tests.

Interactions between group and administration can greatly increase variability. Consider the

following model change. For Group k at Administration t, let ekt be a random variable with

mean 0 and variance σ2
e that represents a random interaction of group and administration. In
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many typical cases, each group receives a different form, and ekt is really an interaction of form

and administration. Let the ekt be independent, and let the Xikt − ekt be independent random

variables with mean µkt = αt −Dukt
and variance σ2. Then variances of the D̂u and D̂u − D̂u′ ,

u 6= u′, are multiplied by 1 + Mσ2
e/σ

2. The practical effect of interaction is very large, for it

becomes an increasingly large fraction of the variability in D̂u as the sample size M for a form

used at an administration becomes increasingly large.

Rather remarkably, the analysis for mean equating for a series of administrations with

equivalent groups provides a general basis for discussion of equating errors. The following sections

consider some of the many applications to other equating designs and other equating methods.

2 Multiple Tests per Examinee

In many equating designs, operational tests at different administrations are compared through

internal or external anchor tests. Such equating designs can be described in terms of examinees

who receive multiple tests. As in Section 1.2, consider a case with T ≥ 1 administrations, K groups

per administration, N examinees, and M = N/(KT ) examinees per group and administration.

Let each examinee receive H ≥ 1 different tests h, 1 ≤ h ≤ H. For example, one might have H = 2

and have Test 1 be an operational test and Test 2 be an external anchor test. Other alternatives

are possible. Test 2 might be an internal anchor test rather than an external anchor test. One

might also have an operational test with H sections, with a score provided for each section.

Whatever the interpretation of the tests, different forms are associated with different tests.

For this purpose, test forms will be described by pairs of integers. Thus Test h can use Form (u, h)

for 1 ≤ u ≤ Uh, where Uh is a positive integer. At Administration t, for Test h, Group k receives

Form (ukth, h), 1 ≤ ukth ≤ Uh. For simplicity, let u11h = 1 for 1 ≤ h ≤ H. The base form for

Test h will be Form (1, h).

For a relatively simple example, consider a testing program in which Test 1 is an operational

test and Test 2 is an external anchor test. Let all examinees at Administration t receive the same

operational Form (t, 1), so that U1 = T . On the other hand, as in Section 1, let examinees in

Administration t be divided randomly into K = 2 groups of equal size M = N/(2T ). Let Group k,

1 ≤ k ≤ 2, receive Form (t+ k − 1, 2). In this case, ukt1 = t and ukt2 = t+ k − 1.

Let Examinee i, 1 ≤ i ≤M , in Group k of Administration t have score Xitkh on Form (ukth, h).

Let the score vectors Xikt with elements Xikth, 1 ≤ h ≤ H, be independent. Let Xikt have mean
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µkt with elements µkth, 1 ≤ h ≤ H, and positive-definite covariance matrix Γ with elements γhh′ ,

1 ≤ h ≤ H, 1 ≤ h ≤ H. For simplicity, let the covariance matrix Γ be known. As in Section 1.2,

an additive model for the means µkth is employed. For each Test h, for some form parameters

Duh, 1 ≤ u ≤ Uh and administration parameters αth, 1 ≤ t ≤ T , it is assumed that

µkth = αth −Dukthh (13)

for 1 ≤ k ≤ K and 1 ≤ t ≤ T . To identify parameters, it is assumed that D1h = 0 for 1 ≤ h ≤ H,

so that the adminstration parameter for Administration 1 and Test h is α1h = µ11h. The difference

βth = αth − α1h provides a measure of the proficiency on Test h of examinees at Administration t

relative to examinees at Administration 1, while Duh measures the difficulty of Form (u, h) relative

to Form (1, h). If the Duh are known, then conversions are easily accomplished. A score x on

Test h on Form (u, h) is converted to a score x+Duh on Form (1, h). The simplifying assumption

is made that the differences βth are proportional in the sense that

βth = νhβ1h, (14)

where the νh are known constants and ν1 = 1. The vector ν has elements νh for 1 ≤ h ≤ H. It is

often the case that νh = (γhh/γ11)1/2, so that the differences βth are proportional to the standard

deviations of the Xikth.

Estimation of parameters is typically somewhat more complex than in Section 1.2, although

many equating designs lead to simplified computations. Under the assumption that the covariance

matrix Γ is known, all remaining model parameters can be estimated by weighted least squares,

but analysis is a bit more complicated in general than in Section 1.2. Linkage involves both forms

administered to the same examinee and forms administered to different examinees in the same or

different administrations. For example, in the example with an operational test and an external

anchor in which the operational test is different for each administration, the operational tests are

linked only through the external anchors.

To describe the general use of weighted least squares, for Group k, Test h, Form (u, h), and

Administration t, let mktuh be 1 if ukth = u and 0 otherwise, and let mktuh be the vector with

elements mktuh′δhh′ for 1 ≤ h′ ≤ H. Let m+tuh =
∑K

k=1mktuh, let ψ = ν ′Γ−1ν, and let

Buhu′h′ = m′
ktuhΓ

−1mktu′h′ − ψ−1(m′
ktuhΓ

−1ν)(m′
ktu′h′Γ−1ν)
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and

Cuhu′h′ = Buhu′h′ +
(K − 1)T
Uh(Uh − 1)

δhh′ .

Assume that the identifiability condition holds that

H∑
h′=1

Uh′∑
u′=1

Cuhu′h′xu′h′ = 0

for 1 ≤ u ≤ Uh and 1 ≤ h ≤ H only if xuh = 0 for 1 ≤ u ≤ Uh and 1 ≤ h ≤ H. Let X̄kt be the

average of the score vectors Xikt for 1 ≤ i ≤M . and let X̄+t be the sum of the X̄kt for 1 ≤ k ≤ K.

One then minimizes the weighted sum of squares

T∑
t=1

K∑
k=1

(X̄kt − µkt)
′Γ−1(X̄kt − µkt)

under the constraint that (13) and (14) hold and D1h = 0 for 1 ≤ h ≤ H. A similar argument

to that in Section 1.2 shows that the weighted least squares estimates D̂uh of Duh satisfy the

equations

H∑
h′=1

Uh′∑
u′=1

Buhu′h′D̂u′h′ = −
T∑

t=1

K∑
k=1

mktuhΓ−1[X̄+kt − ψ−1(X̄′
+ktΓ

−1ν)ν]

for 1 ≤ u ≤ Uh and 1 ≤ h ≤ H, where D̂1h = 0 for 1 ≤ h ≤ H. A score x on Form (u, h) is

then converted to score x+ D̂uh on Form (1, h). Variances can be computed as in weighted linear

regression.

A covariance matrix for the D̂uh may be computed as in section 1.2, although results are

a bit more complex. To facilitate use of matrices, consider the index variables π(u, 1) = u for

1 ≤ u ≤ U1 and π(u, h) = π(Uh, h− 1) + u for 1 ≤ u ≤ Uh and 1 < h ≤ H. Let U = π(UH ,H) be

the sum of the Uh for 1 ≤ j ≤ H. If

D̃uh = D̂uh − U−1
h

Uh∑
u′=1

D̂u′h,

then the covariance Cuhu′h′
of D̃uh and D̃u′h′ , 1 ≤ u ≤ Uh, 1 ≤ h ≤ H, 1 ≤ u′ ≤ Uh′ , 1 ≤ h′ ≤ H,

is row π(u, h) and column π(u′, h′) of the inverse of the U by U matrix C with row π(u, h) and

column π(u′, h′) equal to Cuhu′h′ .

In typical applications which involve anchor tests, actual computations are much simpler

than for the general case. Consider the following situation. There are two tests per examinee, so
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that H = 2. Test 1 is an operational test and Test 2 is an anchor test. The m+tu2, 1 ≤ t ≤ T ,

1 ≤ u ≤ U2, for Test 2 satisfy the inseparability requirement for a single test. In the case of

Test 1, only one form is used in an administration, and all examinees for the examination use

that form. Thus mktt1 = 1 for 1 ≤ k ≤ K, 1 ≤ t ≤ T , U1 = T , and mktu1 = 0 if 1 ≤ k ≤ K,

1 ≤ t ≤ T , 1 ≤ u ≤ U , and t 6= u. Thus the mktu1 do not satisfy the inseparability conditions.

Nonetheless, for each Group k and Administration t, X̄kt1 and X̄kt2 have correlation γ12/(γ11γ22),

so that estimation of Du2 for 1 ≤ u ≤ U2 is affected to some extent by the operational test

results X̄kt1. The estimates D̂u2 may be obtained as in section 1.2 from the observed differences

Xikt2 − (γ12/γ11)Xikt1, 1 ≤ i ≤ M , 1 ≤ k ≤ K, 1 ≤ t ≤ T . In the computations leading to (4),

U is replaced by U2, mktu is replaced by mktu2, D̂u is replaced by D̂u2, and X̄kt is replaced by

X̄kt2− (γ12/γ11)X̄kt1. After some algebraic manipulation, one finds that the estimate D̂t1 of Dt1 is

D̂t1 = K−1

[
ν−1
2 (X̄+t2 − X̄+12)− (X̄+t1 − X̄+112) +

U2∑
u=1

(m+tu2 −m+1u2)D̂u2

]
.

The expectation of the equating adjustment D̂t1 for Test 1 at Administration t (Form (t, 1)) is

Dt1. To find the variance of D̂t1, let C2 be the U2 by U2 matrix with row u and column u′ equal to

Cuu′2 = m++u2δuu′ − quu′2 +
(K − 1)T
U2(U2 − 1)

,

where m++u2 is the sum of the m+th2 for 1 ≤ t ≤ T and quu′2 = K−1
∑T

t=1m+tu2m+tu′2. Let the

inverse C−1
2 of C2 have row u and column u′ equal to Cuu′

2 . Then

σ2(D̂t1) =
2Tγ11(ν2 − γ12/γ11)2

Nν2
2

+
T (γ22 − γ2

12/γ11)
Nν2

2

[
2 +K−1

U2∑
u=1

U2∑
u′=1

(m+tu2 −m+1u2)(m+tu′2 −m+1u′2)Cuu′
2

]
.

For comparison of Administrations t and t′, t 6= t′, note that D̂t1 − D̂t′1 has mean Dt1 −Dt′1 and

variance

σ2(D̂t1 − D̂t′1) =
2Tγ11(ν2 − γ12/γ11)2

Nν2
2

+
T (γ22 − γ2

12/γ11)
Nν2

2

[
2 +K−1

U2∑
u=1

U2∑
u′=1

(m+tu2 −m+t′u2)(m+tu′2 −m+t′u′2)Cuu′
2

]
.

For fixed sample size N , an increase in the number T of administrations obviously leads to

increased variance; however, in typical situations with a large number U2 of anchor forms, the most
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serious problem involves the contribution to variance due to the large number of anchor forms

rather than the large number of administrations. For example, as in Table 1, consider T = 11

administrations and U2 = 12 anchor forms, where K = 2, N = 110, 000, and Form (t, 1) and

Form (t + 1, 1) are used in Administration t. Observe that M = 5, 000. Let γ11 = γ22 = 10, 000,

let γ12 = 7, 500, and let ν2 = 1. In this example,

D̂u2 =
u−1∑
t=1

[(X̄1t2 − X̄2t2)− 0.75(X̄1t1 − X̄2t1)]

if 2 ≤ u ≤ T + 1 and

D̂t1 = 2−1[X̄+t2 − X̄+12 − X̄+t1 + X̄+12 + (D̂t2 + D̂(t+1)2 − D̂22)].

It follows after some calculation that

σ2(D̂t1) = 1 + 7[1 + 4(t− 2)]/32.

For example, σ(D̂T1) = 3.02 is much larger than σ(D̂21) = 1.10.

3 Linear Equating

In linear equating, both means and standard deviations are employed. Linear equating is

most appropriate for observed scores with normal distributions. Consider the following variation

on the model in Section 1.2. At each Administration t, 1 ≤ t ≤ T , examinees are divided into

K ≥ 2 groups of M examinees, so that there are a total of N = KTM examinees in the T

administrations. Forms 1 to U are to be linked, where U ≥ 2, and Group k receives Form ukt

at Administration t. There are K ≥ 2 distinct forms used. The raw score Xikt of Examinee i

from Group k at Administration t is a random variable with mean µkt and variance σ2
kt, and the

reliability coefficient is ρ2 for Form ukt and Administration t. The Xikt are assumed to be mutually

independent. If ukt = u, 1 ≤ u ≤ U , then mktu = 1. Otherwise, mktu = 0. The definitions of the

sums m+kt and m++u are then as in Section 1.2. For some real αt, 1 ≤ t ≤ T , Du, 1 ≤ u ≤ U ,

τt > 0, 1 ≤ t ≤ T , and ζu > 0, 1 ≤ u ≤ U , it is assumed that

µkt = (αt −Dukt
)/ζukt

and

σkt = τt/ζukt
.
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To identify parameters, it is assumed that ζ1 = 1 and D1 = 0. For convenience, it is assumed

that u11 = 1, so that α1 is the mean score at Administration 1 on Form 1 and σ11 = τ1 is the

corresponding standard deviation. Observe that for Forms u and u′, in any Administration t such

that, for Groups k and k′, ukt = u and uk′t = u′, then

σkt/σk′t = ζ ′u/ζu (15)

and

ζuµkt +Du = ζu′µk′t +Du′ . (16)

In linear equating, a score of x on Form u is converted to a score of eu(x) = ζux +Du on

Form 1. Thus linear equating reduces to mean equating if all ζu are equal to 1. More generally, this

conversion rule implies that a score of x on Form u corresponds to a score of ζ−1
u′ (ζux+Du −Du′)

on Form u′. This conversion is consistent with (15) and (16). These equation correspond with

customary requirements for chained equating.

If the Xikt are normally distributed and if the inseparability requirement of Section 1.2 is

satisfied, then the αt, ζu, Du, and τt may be estimated by use of maximum likelihood. Let hats

be used to denote maximum-likelihood estimates, so that α̂t is the maximum-likelihood estimate

of αt, ζ̂u is the maximum-likelihood estimate of ζu, D̂u is the maximum-likelihood estimate of

Du, τ̂t is the maximum-likelihood estimate of τt, and êu(x) is the maximum-likelihood estimate of

eu(x). Standard large-sample approximations for maximum-likelihood estimates can be applied

with little complication to provide normal approximations for all maximum-likelihood estimates of

interest under the condition that M becomes large. Although results simplify somewhat because

Xikt − µikt is uncorrelated with (Xikt − µikt)2 under the normality assumption, the asymptotic

variances and covariances of parameter estimates are somewhat more complex than in mean

equating except in special cases. Normal approximations can be expressed in terms of a regression

model. Let χt = log τt, χ̂t = log τ̂t, ωu = log ζu, and ω̂u = log ζ̂u. Let ψkt = (αt −Dukt
)/τt for

1 ≤ k ≤ K and 1 ≤ t ≤ T . Consider a hypothetical linear regression model in which

Ykt − 2−1/2(χt − ωukt
)

and

Zkt − τ−1
t (αt −Dukt

)− ψktωukt
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are independent normal random variables with common mean 0 and variance M−1 for 1 ≤ k ≤ K

and 1 ≤ t ≤ T . In this model, χt, ωu, αt, and Du are treated as unknown parameters to be

estimated, while τt and ψkt are treated as known. (The relationship of τt to χt and the relationship

of ψkt to χt, αt, and Dukt
is ignored.) The restrictions are imposed that D1 = ω1 = 0. Under

the inseparability assumption, the least-squares estimates χ∗
t of χt, ω∗

u of ωu, α∗
t of αt, and D∗

u of

Du are uniquely defined, unbiased, and normal distributed with variances and covariances readily

found as in standard regression analysis. The joint distribution of the estimates α̂t, 1 ≤ t ≤ t, D̂u,

1 ≤ u ≤ U , χ̂t, 1 ≤ t ≤ T , and ω̂u, 1 ≤ u ≤ U , is approximately the same as the joint distribution

of the hypothetical estimates α∗
t , 1 ≤ t ≤ t, D∗

u, 1 ≤ u ≤ U , χ∗
t , 1 ≤ t ≤ T , and ω∗

u, 1 ≤ u ≤ U .

For fixed number K of groups per administration and fixed number T of administrations, the

approximation is increasingly accurate as the sample size M per group within administration

becomes increasingly large. The estimate ζ̂u is approximately distributed as ζu(1 + ω∗
u), so that

êu(x) is approximately distributed as ζu(1 + ω∗
u) +D∗

u.

If the model for mean equating holds, then τt = τ1, χt = log τ1, ωu = 0, ψkt = (αt −Dukt
)/τ1,

and ζu = 1, so that eu(x) = x+Du. In this case, linear equating leads to less satisfactory results

than does mean equating. The basic argument involves a general observation concerning regression

analysis. Consider a linear regression model of the form Y = Xβ + e, where Y is a random vector

with n elements, X is a fixed n by p matrix of rank p for some positive integer p, β is an unknown

fixed vector with p elements, and e is a random vector with n independent elements, each of which

has mean 0 and variance σ2 > 0. As is well known, β has least-squares estimate b = (X′X)−1X′Y

with mean β and covariance matrix σ2(X′X)−1. On the other hand, if for some positive integer

q < p, βj = 0 for q < j ≤ p, then one can consider the use of least squares subject to the restriction

that βj = 0 for q < j ≤ p. In this case, a new least-squares estimate b∗ is obtained. The elements

b∗j = 0 of b are 0 for q < j ≤ p. If Z is the n by q matrix formed from the first q columns of X,

and if b− is the q-dimensional vector with elements b∗j for 1 ≤ j ≤ q, then b− = (Z′Z)−1Z′Y. If x

is a p-dimensional vector with elements xj for 1 ≤ j ≤ p, some xj is not 0, and z is a q-dimensional

vector with elements xj for 1 ≤ j ≤ q, then x′b has variance σ2x′(X′X)−1x, while x′b∗ = z′b−

has variance σ2z′(Z′Z)−1z. By the Gauss-Markov theorem (Rao, 1973, ch. 4),

x′(X′X)−1x > z′(Z′Z)−1z.

Both x′b and x′b∗ have mean x′β. These results apply to linear equating by consideration of
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the case in which ωu is assumed 0 and χt is assumed constant. It follows that the approximate

variance σ2(êu(x)) exceeds the variance of D̂u from linear equating for each Form u > 1. A

practical implication of the result is that cautions concerning equating of many forms that were

developed under mean equating must also apply in the case of linear equating.

An added and more general lower bound for variances for normal approximations associated

with linear equating can be obtained by consideration of the case of ωu known. In this case,

similar arguments to those for ωu equal 0 show that variances are very similar to those associated

with mean equating. The normal approximation for êu(x) has a variance at least as large as the

variance obtained for D̂u in section 1.2 for σ2 equal to the smallest value of τ2
t , 1 ≤ t ≤ T .

The linear equating arguments used here have a simple application to item response

theory. Suppose that the Xikt in the model for linear equating are latent variables with normal

distributions, so that they correspond to conventional θ-parameters. Let each Form u have r

dichotomous items, and let the observed response on Item j for Examinee i from Group k at

Administration t be Yjikt equal to 0 or 1. Let the Yjikt, 1 ≤ j ≤ r, r ≥ 3, be conditionally

independent given the Xikt. Let the conditional probability that Yjikt = 1 given Xikt = x be

exp(γjktx− βjkt)
1 + exp(γjktx− βjkt)

for some unknown constants γjkt > 0 and βjkt. If the added restriction is imposed that τ1 = 1 and

α1 = 0, then all γjkt and βjkt can be estimated by marginal maximum likelihood, together with

αt, Du, τt, and ζu. Normal approximations for maximum-likelihood estimates are readily derived,

but results are relatively complicated. Nonetheless, a rather trivial lower bound can be obtained

for the variances of normal approximations for the maximum-likelihood estimate êu(x) of eu(x).

The variance of the normal approximation for êu(x) for the item response model is at least as

great as the variance of the normal approximation for êu(x) which is obtained under the ordinary

case of linear equating in which the Xikt are directly observed (Sundberg, 1974).

The arguments just used also apply if each Group k at Administration t has a distinct form

but nonempty subsets Vkt of the integers 1 to r exist for each Group k and Administration t such

that, if ukt = uk′t′ , then Vkt = Vk′t′ and, for j in Vkt, γjkt = γjk′t′ and γjkt = γjk′t′ . Assume

that Xikt has mean αt − Dukt
and standard deviation τt/ζukt

, and retain the assumption that

τ1 = 1 and α1 = 0. Then a value x for Xikt for Group k and Administration t is adjusted to

eu(x) = ζux + Du for Group 1 at Administration 1 if ukt = u. Lower bounds of variances for
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normal approximations for maximum-likelihood estimate of eu(x) are found for the case of linear

equating in which the Xikt are known.

4 Conclusion

The analysis provided has some strong implications in practice. Accuracy of equating

methods is limited by sample size. For a given total sample N distributed over T administrations,

limits on accuracy involve the number U of distinct forms employed. As the number U increases,

the accuracy of equating results decreases. The decrease is especially severe if limits are placed on

how long an older form can remain in use. The implications are important for programs in which

a very large number of forms is used due to a very high frequency of administration and due to

security concerns that limit reuse of forms. Under the assumption that the number of examinees

per year is not materially affected by the frequency of administration, it is reasonable to expect

that accuracy of equating will be much lower than in programs with comparable yearly volume

in which few test forms are administered in a given year. As a consequence, the comparability of

scores on different examinations may be compromised. Such an outcome can arise even if equating

procedures perform perfectly and the only complication is sampling error. In the real world, in

which equating procedures are not perfect, results can be substantially less satisfactory.

Mitigation of the problems of equating error involves careful data collection; however, even

the most careful data collection will have limitations if form reuse is severely restricted and the

number of forms is very large. It is important to consider the number of forms which is sufficient

so that inappropriate study of past forms has no realistic possibility of affecting an examinee

score due to the limitations of human memory and due to the labor involved in such study. If the

number of forms produced is sufficiently limited, then so is the problem of equating error.

If reuse is not an option, then it may be necessary periodically to restart equating procedures

with newer base forms. Such a procedure may be tolerable in cases in which test results can only

be used for a limited period, say two years.

Because of computer-based testing, the problem of frequent administration is likely to be a

continuing issue. It is certainly advisable that new testing programs consider the implication of

linking large numbers of forms prior to their first administration rather than afterwards.
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