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Abstract 

Many standardized educational tests include groups of items based on a common stimulus, 

known as testlets.  Standard unidimensional item response theory (IRT) models are commonly 

used to model examinees’ responses to testlet items. However, it is known that local dependence 

among testlet items can lead to biased item parameter estimates when using standard IRT 

models, and to overestimated reliability. In this study, a general polytomous testlet model was 

proposed to account for local dependence in testlet-based tests that contain both dichotomously 

and polytomously scored items.  The proposed model and a standard IRT model were fit to 

simulated data and several real data sets from the reading sections of a large-scale English-

language test, and model fit was evaluated.  Item parameters and test information obtained from 

the two models were compared to check the impact of local item dependence. In addition, a 

multidimensional IRT model with simple structure was also fit to the real data sets. Results based 

on both simulated and real data suggested that local dependence had a small impact on item 

parameter estimates and a relatively larger impact on test information and reliability. It was also 

found that the multidimensional IRT model with simple structure fit the real data sets better than 

the general polytomous testlet model and the standard IRT model did.   

Key words: item response theory, local dependence, polytomously scored items, reliability
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Standardized educational tests often include groups of items based on a common 

stimulus, known as testlets. When standard item response theory (IRT) models (such as the 

unidimensional two- or three-parameter models) are used to model examinees’ responses to 

testlet items, one issue that is likely to arise is the violation of the local independence 

assumption of the IRT models. Local independence means that once the abilities influencing 

item performance are taken into account, examinees’ responses to different items are 

statistically independent. When local independence does not hold, item responses are said to be 

locally dependent. For example, if one item contains relevant information for answering another 

item when several items refer to a common stimulus, as in the case of a testlet, local 

independence is violated. Previous studies have reported that applying a standard IRT model to 

testlet items while ignoring such local dependence could lead to biased item parameter 

estimates (Wainer & Wang, 2000) and to overestimated reliability (Sireci, Thissen, & Wainer, 

1991). One approach to addressing this issue is to add a random effect parameter (also called a 

testlet factor) to standard IRT models so that local dependence among testlet items is taken into 

account (e.g., Bradlow, Wainer & Wang, 1999; Wainer, Bradlow, & Du, 2000; Wang, Bradlow, 

& Wainer, 2002). However, one limitation of the Bradlow et al. model is that it applies a 

common item discrimination parameter to both the general ability and testlet factors. Li, Bolt, 

and Fu (2006) investigated several alternative ways of accounting for local dependence in 

testlet-based tests and found that a general testlet model in which separate discrimination 

parameters were applied to the general ability and to the testlet factors provided a better fit to 

testlet data. The general testlet model is essentially the same as the bifactor model by Gibbons 

and Hedeker (1992). This model not only takes into account local dependence within the testlets 

but also provides more information about how items within a testlet are influenced by the testlet 

factor. Thus it appears to be a promising model for accounting for local dependence and for 

studying testlet effects.  

The general testlet model considered in Li et al. (2006) only applies to dichotomously 

scored testlet items. However, many testlet-based tests contain both dichotomous and 

polytomous items. Therefore, it is necessary to extend the model to accommodate a mixed 

format test that contains a mixture of dichotomous and polytomous items. In this study, we 

examined the application of a general polytomous testlet model to the reading sections of a large-

scale English language assessment in which items are typically presented in sets that are 
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associated with common stimuli (e.g., reading passages) and some of the items are polytomously 

scored (e.g., 0, 1, 2). It is important to evaluate whether local item dependence is present in such 

tests and whether it has any impact on various statistical results. Specifically, the general 

polytomous testlet model and a standard IRT model were fit to the data, and the model fit was 

evaluated. Item parameter estimates and test information obtained from the two models were 

compared to determine if any differences existed that would indicate possible impact due to local 

dependence within the testlets. 

The General Polytomous Testlet Model 

A general two-parameter normal ogive testlet model has been shown to be the best 

model for testlet-based tests among several alternative testlet models (Li et al., 2006). This 

model is formulated as 

1 2 ( )( 1) ( ),ij i j i i d i jP y a t a          (1) 

where ( 1)ijP y  is the probability that examinee j  answers item i  correctly;   denotes the 

cumulative distribution function (CDF) of a standard normal distribution; j  is the ability of 

examinee j ; ( )d i j  represents a secondary dimension associated with testlet d  (containing item 

i ) for examinee j ; it  is a threshold parameter related to the difficulty of the item; and 1ia  and 

2ia  indicate the discriminating power of an item with respect to   and d , respectively. The 

mean and variance of the distributions for both j and ( )d i j  are fixed to (0,1)N  for 

identification purposes, and j and ( )d i j  are assumed uncorrelated.  

This model was extended to accommodate polytomous items, since many testlet-based 

tests contain both dichotomous and polytomous items. A generalized partial credit model 

(GPCM; Muraki, 1992) was utilized here. The extended testlet model can be expressed as 

 
 

0 1 2 ( )

0 0 1 2 ( )

exp
,

expi

k
v i j iv i d i j

ijk m c
c v i j iv i d i j

a t a
P

a t a

 

 


 

    
     

   (2) 

where ijkP is the probability of scoring in category k  of  the 1im   score categories of item i by 

examinee j, ivt is the difficulty parameter for score category v  of item i , and j  , ( )d i j , 1ia , and 

2ia  have the same interpretations as those in Equation 1. For notational convenience, 
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 0
0 1 2 ( ) 0v i j iv i d i ja t a     . Again, the mean and variance of the distributions for both j and 

( )d i j  are fixed to (0,1)N  for identification purposes, and j and ( )d i j  are assumed to be 

uncorrelated.  

The general polytomous testlet model was estimated using the SAS NLMIXED 

procedure (SAS Institute, 1999). The SAS NLMIXED procedure can be used to fit nonlinear 

mixed models, that is, models in which both fixed and random effects are permitted to have a 

nonlinear relationship to the response variable. Recent studies have shown that many common 

IRT models can be calibrated using the new NLMIXED procedure (e. g., De Boeck & Wilson, 

2004; Rijmen, Tuerlinckx, De Boeck, & Kuppens, 2003; Sheu, Chen, Su, & Wang, 2005).  The 

PROC NLMIXED fits nonlinear mixed models by maximizing an approximation to the 

likelihood integrated over the random effects (marginal maximum likelihood estimation). Two 

principal approximations to the integral are adaptive Gaussian quadrature and a first-order 

Taylor series approximation. A number of alternative optimization techniques are available to 

carry out the maximization; the default is a dual quasi-Newton algorithm. The Gauss-Hermite 

quadrature and dual quasi-Newton algorithm were used in this study. One attractive feature of 

the NLMIXED procedure is the easy implementation of a variety of models. However, for 

models with several random effects, the computational time is rather long. Appendix A gives a 

sample SAS code for fitting the general polytomous testlet model and the 2PL/GPCM. 

Simulation Study 

A simulation study was conducted to evaluate the parameter recovery of the general 

polytomous testlet model and a standard generalized partial credit model estimated using the 

NLMIXED procedure. The simulated test structure mimicked that of the real English language 

test analyzed in this study. Specifically, each simulated test contained 3 passages, with 14 items 

per passage. The last item in each passage was polytomously scored (0, 1, 2), while the 

remaining items were dichotomously scored (0, 1).  Data were generated according to the 

general polytomous testlet model. Two levels of testlet effect (as measured by the item 

discrimination parameters with respect to the testlet factor) were studied: small and larger. The 

values in the simulation mimicked the testlet effect typically found in real data sets (e.g., Li et 

al., 2006; Wang et al, 2002). In the small testlet effect condition (Condition 1), the 1ia values 

were generated from a lognormal distribution such that the mean and standard deviation of 1ia  
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were 0.9 and 0.3, respectively, and the 2ia values were generated from a lognormal distribution 

such that the mean and standard deviation of 2ia were 0.4 and 0.2, respectively.  In the larger 

testlet effect condition (Condition 2), 1ia values were generated from the same distribution as in 

Condition 1, while 2ia values were generated from a lognormal distribution such that the mean 

and standard deviation of 2ia  were 0.8 and 0.2, respectively. For both conditions, the remaining 

parameters were generated as follows: ~ (0,1)ivt N , ~ (0,1)j N , and ~ (0,1)dj N . For each data 

set, 2000 examinees’ item responses to the test were simulated. Ten data sets were simulated 

under each condition, resulting in a total of 20 simulated data sets.  

 The general polytomous testlet model was then fit to each data set. In addition, a 2PL 

and GPCM combination (2PL/GPCM) was fit to the data so that the differences between model 

parameters obtained from the true and alternative models can also be studied. In this study, we 

chose the 2PL model instead of the 3PL model for the dichotomous items based on previous 

research on model fit and computation issues related to the c parameters in the 3PL model. It is 

known that the pseudo-guessing parameters, c, in the 3PL model may not be well estimated 

because of a lack of information at the low end of the ability scale (Lord, 1980). The poorly 

estimated c parameters may further affect the estimation of other item parameters and of ability 

parameter (Baker, 1987; Swaminathan & Gifford, 1985). The studies of model fit also indicate 

that the 3PL model does not necessarily provide a better fit than the 2PL model. For example, 

Yen (1981) found that the 2PL model fit simulated data as well as the 3PL model when the true 

model was the 3PL. Haberman (2006) derived a score test to check if the 3PL is better than the 

2PL and examined data from a teacher certification test. His results suggested that the gain in 

data description from use of a 3PL rather than a 2PL was small and the routine use of the 3PL 

model may not be warranted given the computational difficulty associated with the c parameter. 

Therefore, in this study, we used the 2PL model for the dichotomous items. 

After fitting the models to the simulated data, the correlations and root mean squared 

differences (RMSD) between the true parameters and estimated parameters were evaluated.   

Because the true parameters j  and dj of the general polytomous testlet model were simulated 

from a (0,1)N  standard normal distribution, and during the estimation process, j  and dj were 

also fixed to the (0,1)N  distribution for identification purpose, the estimated parameters and 
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true parameters are on the same scale. When estimating the 2PL/GPCM, j  was also 

constrained to have a (0,1)N  distribution so that the estimated parameters and true parameters 

are on the same scale. Similarly, for the real data analyzed in this study (described in the next 

section), the same (0,1)N constraint was imposed for j  and dj (general polytomous testlet 

model) and for j (2PL/GPCM) for all calibration runs. Thus, the parameter estimates from 

different calibration runs are on the same scale.  

Results of Simulation Study 

Item Parameter Recovery 

Tables 1 and 2 display the correlations and RMSDs between the true and estimated item 

parameters from the general polytomous testlet model and the 2PL/GPCM. It appears that the 

item discrimination parameters 1ia  and item difficulty parameters it  were well estimated when 

fitting the general polytomous testlet model to the data. For the polytomous items, because there 

were only three of them and each of the polytomous items were scored 0, 1, and 2, the 

correlations and RMSDs for item category parameter ivd  (the ivt  may be decomposed 

as
iv i iv

t t d  ) were not separately calculated. Instead, the parameters  it  for these items were 

included in the correlation and RMSD calculations for each data set. The average correlation 

across the two conditions for the discrimination parameters, 1ia  and 2ia , and item difficulty 

parameters it  were 0.9680, 0.8608, and 0.9982, respectively. The average RMSD values across 

the two conditions were reasonably low: 0.0671 for the difficulty parameters, 0.1165 for the 1ia  

parameters, and 0.1148 for the 2ia  parameters. These correlations and RMSD values appeared 

to be acceptable compared to those reported in the literature. Similar results were obtained 

under Conditions 1 and 2 for the 1ia  and it  parameters. However, Condition 2 (large testlet 

effect) produced more accurate estimates for the 2ia  parameters (higher correlations and lower 

RMSDs) than Condition 1.  

When the 2PL/GPCM was fit to the simulated data (local dependence was ignored), under 

Condition 1, the correlations and RMSD results for the 1ia and it  parameters were similar to or better 

than those obtained when fitting the general polytomous testlet model. Under condition 2 (larger 
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testlet effect), although similar results were obtained for the slope parameters, the RMSDs for the 

difficulty parameters were higher than those produced by the general polytomous testlet model. 

Table 1 

Correlation Between True Item Parameters and Estimated Parameters from the General 

Polytomous Testlet Model and the 2PL/GPCM 

 
Condition Data set 

General testlet model 2PL/GPCM 

1ia  2ia  it  1ia  it  

Small testlet 
effect 

Data 1 0.9837 0.8412 0.9980 0.9818 0.9977 

Data 2 0.9802 0.8423 0.9978 0.9796 0.9970 

Data 3 0.9586 0.8612 0.9984 0.9516 0.9978 

Data 4 0.9692 0.8274 0.9993 0.9686 0.9990 

Data 5 0.9499 0.7143 0.9989 0.9496 0.9990 

Data 6 0.9499 0.8400 0.9985 0.9365 0.9974 

Data 7 0.9736 0.8183 0.9982 0.9766 0.9982 

Data 8 0.9793 0.9204 0.9983 0.9784 0.9980 

Data 9 0.9704 0.6815 0.9966 0.9763 0.9964 

Data 10 0.9587 0.8184 0.9983 0.9594 0.9982 

Mean 0.9674 0.8165 0.9982 0.9658 0.9979 

Larger testlet 
effect 

Data 1 0.9753 0.8718 0.9979 0.9656 0.9980 

Data 2 0.9550 0.8927 0.9967 0.9489 0.9973 

Data 3 0.9835 0.9243 0.9985 0.9730 0.9973 

Data 4 0.9797 0.9421 0.9979 0.9780 0.9974 

Data 5 0.9813 0.9368 0.9983 0.9586 0.9977 

Data 6 0.9684 0.9023 0.9978 0.9568 0.9967 

Data 7 0.9777 0.8925 0.9989 0.9764 0.9980 

Data 8 0.9450 0.9036 0.9984 0.9489 0.9967 

Data 9 0.9538 0.8712 0.9985 0.9586 0.9982 

Data 10 0.9666 0.9133 0.9981 0.9496 0.9982 

Mean 0.9686 0.9051 0.9981 0.9614 0.9976 

All 
Overall 
mean 

0.9680 0.8608 0.9982 0.9636 0.9977 
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Table 2 

RMSD Between True Item Parameters and Estimated Parameters from the  

General Polytomous Testlet Model and the 2PL/GPCM 

Condition Data set 

General testlet model 2PL/GPCM 

1ia  2ia  it  1ia  it  

Small testlet 
effect 

Data 1 0.1430 0.1339 0.0554 0.0690 0.0568 

Data 2 0.1306 0.1482 0.0709 0.0684 0.0914 

Data 3 0.0878 0.1110 0.0635 0.0782 0.0813 

Data 4 0.1296 0.1215 0.0440 0.0682 0.0668 

Data 5 0.1436 0.1554 0.0631 0.0722 0.0653 

Data 6 0.1350 0.1448 0.0638 0.0852 0.0873 

Data 7 0.1419 0.1288 0.0710 0.0780 0.0679 

Data 8 0.1073 0.1287 0.0818 0.0692 0.0671 

Data 9 0.1240 0.1724 0.0741 0.0787 0.0661 

Data 10 0.1260 0.1287 0.0596 0.0658 0.0582 

Mean 0.1269 0.1373 0.0647 0.0733 0.0708 

Larger testlet 
effect  

Data 1 0.1232 0.0971 0.0525 0.1070 0.1018 

Data 2 0.0857 0.0913 0.0705 0.0949 0.0928 

Data 3 0.1207 0.0892 0.0672 0.1063 0.1307 

Data 4 0.0936 0.0876 0.0788 0.1021 0.0864 

Data 5 0.0731 0.0786 0.0653 0.1137 0.1042 

Data 6 0.1101 0.1089 0.0632 0.0983 0.1227 

Data 7 0.1467 0.0908 0.0680 0.1079 0.1456 

Data 8 0.1027 0.1012 0.0692 0.1025 0.1087 

Data 9 0.1173 0.0920 0.0819 0.0921 0.1216 

Data 10 0.0876 0.0865 0.0781 0.1103 0.1029 

Mean 0.1061 0.0923 0.0695 0.1035 0.1117 

All 
Overall 
mean 

0.1165 0.1148 0.0671 0.0884 0.0913 

After computing the mean differences between the true and estimated item parameters, 

a slight underestimation was found for the 1ia parameters when the general polytomous testlet 

model was fit. The average mean difference across the 20 data sets was -0.10.  
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Model Fit 

The likelihood ratio test, Akaike’s information criterion (AIC; Akaike, 1974) and Bayesian 

information criterion (BIC; Schwarz, 1978) were calculated to compare the fit of the two models. As 

expected, for all simulated data sets, both the likelihood ratio test and AIC gave consistent results (not 

shown in this paper) indicating that the general polytomous testlet model fit better than the 

2PL/GPCM. This is because the data were generated using the general polytomous testlet model. For 7 

of the 20 data sets, BIC preferred the 2PL/GPCM. This is probably because BIC gives a higher penalty 

if the number of parameters is large and thus tends to choose models with fewer parameters than the 

AIC (Lin and Dayton, 1997). These results suggested that the AIC and likelihood ratio test would be 

more effective than the BIC in identifying the true model for these data. 

Test Information 

Previous studies (e. g., Wang et al., 2002) suggested that the presence of testlet effects  

could affect test information. Test information provides crucial information about the precision 

of examinee ability estimation at different trait levels. For polytomously scored item response 

models, the item information function proposed by Samejima (1974) is  

 22

1

( ) ( ) ( ),
im

i i c i ic

c

I a T T P  


                                                                                 (3) 

 where
1

( ) ( )
im

i c ic

c

T T P 


  , and cT  is a scoring function for item score 

category 1, 2,3, , jc m  .   

The test information is simply the sum of item information across all items on the test. 

Using Equation 3, we can draw test information curves estimated from both the general 

polytomous testlet model and the 2PL/GPCM for each data set. The test information was 

computed for 100 equally spaced points of   between -4 and 4. For these data, the scoring 

function cT takes on values of 0, 1, and 2. To calculate the test information curve based on 

general polytomous testlet model, the item parameters estimated from the simulated data were 

used to calculate the probability ( )icP  and the test information. 
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Figure 1. Test information for simulated data sets 1–10 under Condition 1
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Figure 2 . Test information for simulated data sets 1–10 under Condition 2
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At each   point, 1000 d  were drawn from a standard normal distribution.  The test 

information plotted is the average information over d s. These test information curves are shown in 

Figures 1 and 2. Under both Condition 1 and Condition 2, compared to the test information derived 

from general polytomous testlet model in which the local dependence among testlet items is taken into 

account, the test information estimated from the 2PL/GPCM was higher at the middle range of ability 

levels and lower at extreme ability levels. The overestimation of test information was larger under the 

larger testlet effect condition (Condition 2). 

Table 3 

Comparison Between Passage-based Reliability and Item-based Reliability for the Simulated Data 

Condition Data set 
Item-based 
reliability 

Passage-based 
reliability  

Proportion 
of decrease 

Small testlet effect 

Data 1 0.8692 0.8206 5.6% 

Data 2 0.8713 0.8156 6.4% 

Data 3 0.8411 0.7830 6.9% 

Data 4 0.8559 0.7933 7.3% 

Data 5 0.8616 0.8204 4.8% 

Data 6 0.8554 0.8008 6.4% 

Data 7 0.8506 0.7956 6.5% 

Data 8 0.8649 0.8085 6.5% 

Data 9 0.8623 0.7989 7.4% 

Data 10 0.8676 0.8201 5.5% 

Mean 0.8600 0.8057 6.3% 

Larger testlet effect 

Data 1 0.8789 0.6916 21.3% 

Data 2 0.8670 0.7003 19.2% 

Data 3 0.8638 0.7094 17.9% 

Data 4 0.8810 0.7179 18.5% 

Data 5 0.8780 0.6973 20.6% 

Data 6 0.8884 0.7219 18.7% 

Data 7 0.8697 0.7096 18.4% 
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Condition Data set 
Item-based 
reliability 

Passage-based 
reliability  

Proportion 
of decrease 

Larger testlet 
effect (continued) 

Data 8 0.8715 0.7114 18.4% 

Data 9 0.8834 0.7331 17.0% 

Data 10 0.8641 0.6758 21.8% 

Mean 0.8746 0.7069 19.2% 

All Overall mean 0.8673 0.7563 12.7% 

We also computed the passage-based Cronbach’s alpha for each of the simulated data sets, 

that is, summing the scored responses across items within a testlet and then using the testlet score in 

calculating Cronbach’s alpha in order to eliminate the effect of local item dependence within a testlet 

(Sireci et al., 1991; Wainer & Thissen, 1996). The passage-based as well as item-based reliability 

estimates are provided in Table 3. Under the small testlet effect condition, the proportion of decrease 

in reliability estimates by computing the passage-based alpha ranged from 4.8% to 7.4%. Large 

decreases in reliability estimates were observed for Condition 2, and the proportion of decrease 

ranged from 17.0% to 21.8%. These results are consistent with what we found in the test information 

analyses, suggesting that the reliability was overestimated when local dependence was present. 

Application to a Large-scale English Language Test 

Data 

The real data for this study came from the reading sections of six operational test forms of a 

large-scale English language test administered between 2006 and 2007. The focus of this part of the 

study was on the application of the proposed model to operational data sets. For each of the six 

forms, a random sample of 2,000 examinees was selected. Each of the six reading tests contained 3 

passages, with 13–14 items per passage. The last item in each passage was polytomously scored (0, 

1, 2, 3), while the remaining items were dichotomously scored (0, 1). 

The general polytomous testlet model was first fit to each of the six reading data sets. Next, a 

standard 2PL/GPCM model was fit, i.e., local dependence was not taken into account. The 

likelihood ratio test, AIC and BIC were calculated to compare the two models and determine which 

model provided a better fit to the data. In addition, item discrimination and item difficulty parameter 

estimates obtained from the two models were compared to see if any differences existed. 
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Correlations and RMSDs between the two sets of parameter estimates were also computed. Finally, 

test information curves based on the two models were plotted and compared.  

Results  

Model Fit 

Table 4 shows the results of the likelihood ratio test, the AIC and BIC indices for the six 

real data sets. These data sets will be referred to as Data A, Data B, …, Data F, and their associated 

tests will be referred to as Test A, Test B, …, Test F. For Data A and F, the likelihood ratio test, 

AIC, and BIC all suggested that the general polytomous testlet model did not fit better than the 

simple 2PL/GPCM. For the remaining four datasets: Data B, Data C, Data D, and Data E, the 

2G was significant across all four data sets. The AIC suggested that general polytomous testlet 

model fit data sets C and D slightly better than the 2PL/GPCM, but the simpler 2PL/GPCM model 

fit data sets B and E better than the general polytomous testlet model. The BIC preferred simpler 

model over the complex model for all the six data sets. 

Table 4 

Goodness-of-fit of the General Polytomous Testlet Model versus the 2PL (GPCM) 

Data Model -2logL 2
G  df AIC BIC 

Data A 

Testlet model 96002 

36 41 

96256 96967 

GPCM 96038 96210 96692 

Data B 

Testlet model 99575 

72* 42 

99833 100556 

GPCM 99647 99821 100309 

Data C 

Testlet model 99434 

97* 42 

99692 100415 

GPCM 99531 99705 100192 

Data D 

Testlet model 93036 

86* 42 

93294 94016 

GPCM 93122 93296 93783 

Data E 

Testlet model 99784 

69* 42 

100042 100764 

GPCM 99853 100027 100514 

Data F 

Testlet model 88135 

49 42 

88393 89115 

GPCM 88184 88358 88845 

* .05p   
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To check which items were affected by the secondary dimensions (local dependence), we 

examined the estimated 2ia  parameters. As an example, Table 5 provides estimated item 

discrimination parameters and their standard errors for one data set. Several items had large 2ia  

parameters; for example, item 12 in passage 1 (0.89), items 22 and 24 in passage 2 (0.88, 1.00), 

and item 40 in passage 3 (1.19). Apparently, these items were affected by the secondary 

dimensions introduced by the testlets. Overall, it appeared that the general polytomous testlet 

model did not describe these data much better than the 2PL/GPCM. As will be described shortly, a 

simpler IRT model was also fit to these data to check possible presence of testlet effect. 

Table 5 

Estimated Item Discrimination Parameters for Data C 

Passage Item 1ˆia  SE 2ˆia  SE 

1 

1 0.85 0.06 0.15 0.09 

2 1.18 0.07 0.00 -  

3 0.73 0.06 0.42 0.10 

4 0.39 0.05 0.08 0.09 

5 0.90 0.07 0.12 0.11 

6 1.60 0.12 0.76 0.15 

7 1.04 0.09 0.70 0.13 

8 0.90 0.06 0.04 0.10 

9 0.66 0.06 0.59 0.11 

10 1.16 0.08 0.39 0.12 

11 0.83 0.06 0.31 0.10 

12 0.86 0.07 0.89 0.14 

13 0.68 0.05 0.46 0.10 

14 0.73 0.05 0.59 0.09 

Table continues
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Passage Item 1ˆia  SE 2ˆia  SE 

2 

15 0.46 0.05 0.07 0.09 

16 0.88 0.06 0.52 0.11 

17 0.63 0.05 0.36 0.10 

18 0.91 0.06 0.50 0.11 

19 0.95 0.07 0.46 0.11 

20 0.87 0.06 0.61 0.11 

21 1.13 0.07 0.58 0.11 

22 1.74 0.13 0.88 0.16 

23 0.72 0.06 0.52 0.11 

24 2.22 0.22 1.00 0.21 

25 1.01 0.07 0.75 0.12 

26 0.78 0.06 0.44 0.11 

27 0.67 0.05 0.12 0.10 

28 1.06 0.06 0.32 0.08 

3 

29 0.60 0.05 0.00 -  

30 1.11 0.08 0.22 0.09 

31 1.21 0.08 0.22 0.09 

32 0.99 0.07 0.10 0.09 

33 1.25 0.08 0.34 0.09 

34 0.45 0.06 0.08 0.10 

35 1.04 0.08 0.49 0.10 

36 1.04 0.07 0.39 0.09 

37 1.11 0.08 0.71 0.11 

38 1.00 0.06 0.59 0.09 

39 0.92 0.06 0.45 0.09 

40 1.09 0.08 1.19 0.15 

41 1.17 0.07 0.75 0.11 

42 0.77 0.05 0.77 0.10 
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Item Parameter Estimates  

The correlations and RMSDs between the estimated item parameters from the general 

polytomous testlet model and the 2PL/GPCM for the real data sets are shown in Tables 6 and 7. 

As can be seen, the item discrimination parameter (with respect to  ) and difficulty parameters 

estimated from the two models were highly correlated, with an average correlation of 0.9893 for 

the discrimination parameters and an average correlation of 0.9978 for the difficulty parameters. 

Overall, the RMSDs between the item parameters estimated from the two models were small. 

The mean differences between the two sets of item parameters were also calculated to see if one 

model produced higher or lower parameters than the other model. While the mean differences for 

the difficulty parameters were very small, slightly higher item discrimination parameters were 

found for the 2PL/GPCM.  For these data sets, the item parameter estimates appeared to be little 

affected by using the 2PL/GPCM model that ignored local item dependence. 

Table 6 

Correlation Between Estimated Item Parameters from the General Polytomous Testlet Model and 

the 2PL/GPCM for the Real Data Sets 

Data Slope (a) Difficulty(t) 

Data A 0.9877 0.9987 

Data B 0.9871 0.9970 

Data C 0.9958 0.9993 

Data D 0.9929 0.9976 

Data E 0.9897 0.9987 

Data F 0.9823 0.9954 

Mean 0.9893 0.9978 

Test Information 

The test information curves for the real data sets are shown in Figure 3. For all six data sets, 

higher test information at middle range of ability levels were found using the 2PL/GPCM, in which 

local dependence was ignored. Table 8 shows the passage-based as well as item-based reliability 

estimates for real data sets. The proportion of decrease in reliability estimates by computing the 

passage-based alpha ranged from 2.3% to 4.9%, suggesting that the reliability was overestimated 

for these data if local dependence is ignored. These results are consistent with what we found in the 
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test information analyses. For Data A and Data F, contrary to the results based on the likelihood 

ratio test, AIC, and BIC, the reliability results showed that there were testlet effects in these data. 

This inconsistency is mainly due to the fact that the general polytomous testlet model is a more 

complex model, with many parameters to be estimated. The model fit results suggest that the 

improvement in model fit is not worth the cost of estimating the additional parameters, but it does 

not necessarily mean the absence of testlet effects in these data. In the next section, we examine the 

fit of a multidimensional IRT model with simple structure to these data.  

Table 7 

RMSD and Mean Difference Between Estimated Item Parameters from the General Polytomous 

Testlet Model and the 2PL/GPCM for the Real Data Sets 

Data 

Slope (a) Difficulty (t) 

RMSD 
Mean 

difference RMSD 
Mean 

difference 

Data A 0.1140 -0.0866 0.0713 0.0485 

Data B 0.1416 -0.1287 0.0936 0.0640 

Data C 0.1339 -0.1210 0.1132 0.1070 

Data D 0.1357 -0.1210 0.0748 -0.0278 

Data E 0.1291 -0.1150 0.0705 0.0544 

Data F 0.1965 -0.1658 0.1171 0.0204 

Mean 0.1418 -0.1230 0.0901 0.0444 

Table 8 

Comparison Between Passage-based Reliability and Item-based Reliability for the Real Data Sets 

Data set 
Item-based 
reliability 

Passage-based 
reliability 

Proportion of 
decrease 

Data A 0.8599 0.8179 4.9% 

Data B 0.8733 0.8415 3.6% 

Data C 0.8877 0.8605 3.1% 

Data D 0.8827 0.8624 2.3% 

Data E 0.8716 0.8476 2.8% 

Data F 0.8786 0.8451 3.8% 
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Figure 3. Test information for the reading section of Tests A–F 
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A Multidimensional IRT Model with Simple Structure 

Although the general polytomous testlet model accounts for local dependence among 

testlet items, it has many parameters to be estimated. For example, the English language test used 

in this study had 3 sets (reading passages) and each set contained 13-14 items, and thus the 

number of parameters to be estimated for each test was 127-129. For some data sets, the fit of 

general polytomous testlet model may not be good due to its complexity. The following is a 

simpler multidimensional IRT model with simple structure (MIRT-SS), meaning that each item 

has only one non-zero loading on the latent traits: 

 
 

0 ( )

0 0 ( )

exp
,

expi

k
v i d i j iv

ijk m c
c v i d i j iv

a t
P

a t






 

   
    

                                                                        (4) 

where ijkP  is the probability of scoring in category k  of  the 1im   score categories of item i ; 

( )d i j  is the only latent trait related to item i  and follows a multivariate standard normal 

distribution with a correlation matrix Σ , that is, ( ) ~ ( , );d i j N 0 Σ  ivt  and  ia  have the same 

interpretations as those in Equation 2; and   0
0 ( ) 0v i d i j iva t   . 

This model assumes that there is one latent trait for each testlet (a total of 3 latent traits 

for these data), and the latent traits are correlated. As can be seen in Equation 4, the number of 

parameters in this model is significantly reduced when compared to the general polytomous 

testlet model. If a testlet effect is present, it is expected that the multidimensional IRT model 

with simple structure (MIRT-SS) would fit better than the 2PL/GPCM, as it takes into account 

the multidimensionality introduced by the testlets.  Compared with the general polytomous 

testlet model, the MIRT-SS model has far fewer item parameters, and it captures the testlet effect 

through a separate ability dimension for each testlet, while the ability dimensions are allowed to 

be correlated. The MIRT-SS model was estimated using the SAS NLMIXED procedure. 

Appendix A gives a sample SAS code for fitting this model. 

The MIRT-SS model was fit to each of the six reading data sets. The estimated latent 

traits were highly correlated, ranging from 0.87 to 0.93. The likelihood ratio test, AIC and BIC 

were calculated to evaluate the fit of the models. Table 9 gives the results of the likelihood ratio 

test for comparing the MIRT-SS model with the 2PL/GPCM. For all six datasets, G2 was 

significant, indicating that the MIRT-SS fit the data better than the 2PL/GPCM model.  
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Table 10 shows the AIC and BIC indices for the three models: 2PL/GPCM, the general 

polytomous testlet model, and the MIRT-SS model. For comparison purposes, the AIC and BIC 

for the general polytomous testlet model shown in Table 4 were repeated in Table 10. As can be 

seen, both AIC and BIC indicated that the MIRT-SS model fit the data better than the 

2PL/GPCM and the general testlet model for all data sets except Data D, for which the fit of the 

three models was similar. These results suggested the presence of local dependence in these data 

sets. Note that the comparison of the fit between the MIRT-SS model and the 2PL/GPCM  

suggested that for Data A and F, testlet effects were present, which was consistent with the 

previous reliability analysis results. 

Table 9 

Likelihood Ratio Test for Comparing the MIRT-SS Model with the 2PL (GPCM) Model 

Data Model -2logL 2G  df 

Data A 
MIRT-SS 95930 108* 

3 
GPCM 96038 

Data B 
MIRT-SS 99569 78* 

3 
GPCM 99647 

Data C 
MIRT-SS 99423   108* 

3 
GPCM 99531 

Data D 
MIRT-SS 93110  12* 

3 
GPCM 93122 

Data E 
MIRT-SS 99813 40* 

3 
GPCM 99853 

Data F 
MIRT-SS 88140 44* 

3 
GPCM 88184 

* .05p   
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Table 10 

AIC and BIC Indices for the MIRT-SS Model, the Testlet Model, and the 2PL/GPCM Model 

Data Model AIC BIC 

Data A 

MIRT-SS 96108   96607   

Testlet model 96256 96967 

GPCM 96210 96692 

Data B 

MIRT-SS 99749 100253   

Testlet model 99833 100556 

GPCM 99821 100309 

Data C 

MIRT-SS 99603   100107   

Testlet model 99692 100415 

GPCM 99705 100192 

Data D 

MIRT-SS 93290 93794 

Testlet model 93294 94016 

GPCM 93296 93783 

Data E 

MIRT-SS 99993 100497 

Testlet model 100042 100764 

GPCM 100027 100514 

Data F 

MIRT-SS 88320 88824 

Testlet model 88393 89115 

GPCM 88358 88845 
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Discussion 

In this study, the application of a general polytomous testlet model to a large-scale English 

language assessment was investigated. The general polytomous testlet model can be applied to tests 

composed of both dichotomous and polytomous testlet items. The model extends a previous bifactor 

analysis approach to polytomous testlet items by using a generalized partial credit model. This 

model not only takes into account local dependence within the testlets but also provides more 

information about how items within a testlet are influenced by the testlet factor. However, one 

drawback of this model is that more item parameters need to be estimated, and thus the fit of the 

model may not be good. A simpler multidimensional IRT model with simple structure was also 

applied to the real data in this study, and the results suggested a better fit than that of the general 

polytomous testlet model. 

The analyses of the six real data sets indicated the presence of local dependence in these data, 

which seemed to have a small impact on item parameter estimates and a relatively larger impact on 

test information and reliability estimates. In these analyses, we applied the likelihood ratio test, AIC 

and BIC to compare the fit of three alternative models to these data. Other fit statistics may also be 

useful in investigating the local item dependence present in these data. For example, Orlando and 

Thissen’s (2000) 
1

Q and 2G  tests can be extended to evaluate item fit under the current model. 

Analyses of item pair odds ratios as well as residuals would also be helpful in determining model-

data fit. These additional approaches should be considered in future studies. A simulation study was 

conducted to evaluate the parameter recovery of the general polytomous testlet model. The results 

suggested that the recovery of the true item parameters was good, as indicated by the high 

correlations and low RMSDs between the true parameters and estimated parameters. The impact of 

local dependence on item parameter estimation was also investigated by fitting a 2PL/GPCM to the 

data. It appeared that under the small testlet effect condition (Condition 1) the estimated item 

parameters were accurate. However, if a larger testlet effect was present (Condition 2), the RMSD 

between the true and estimated item parameters became larger. This study also demonstrated the 

flexibility of SAS NLMIXED in fitting IRT models. Although the model was easily implemented 

using the NLMIXED procedure, the computational time was quite long (about 20–35 hours), which 

limits its use in extensive data analyses. Thus, alternative software for implementing this model 

needs to be explored in the future. Given that it is time-consuming to fit the general polytomous 

testlet model, some relatively simple methods to detect local dependence and measure the magnitude 
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of the testlet effect may be used before applying the model. For example, for dichotomous items, the 

usual Q3 (Yen, 1984) statistic can be used to assess local dependence. Alternatively, one can 

compare item-based reliability estimate with testlet-based reliability estimate (Sireci et al., 1991; 

Wainer & Thissen, 1996), which was used in this study. This method can be applied to both 

dichotomous and polytomous items. 

Finally, more studies on the general polytomous testlet model are needed. In this study we 

analyzed the reading sections of six operational large scale language tests. It would be interesting to 

examine the impact of local dependence on the pretest (equating) items, because the quality of item 

parameter estimates plays an important role in IRT based equating. In addition, the utility of the 

proposed model can be studied using data from other testing programs that also contain testlet items. 
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Appendix  

An Example of SAS Code Used for Estimating the General Polytomous Testlet Model, the 

2PL/GPCM Model, and the Multidimensional IRT Model with Simple Structure 

*Fit the general polytomous testlet model to the data using NLMIXED; 
title 'The General Polytomous Testlet Model'; 
proc nlmixed data=DataB_sample_t method=gauss noad technique=quanew qpoints=4; 
bounds a1_1-a1_42 >0, a2_1-a2_42 >0; 
parms a1_1-a1_42=1 a2_1-a2_42=0.5 b1-b42=0 d14_1=0 d28_1=0 d42_1=0; 
beta = b1 *i1 + 
b2 *i2 + 
b3 *i3 + 
b4 *i4 + 
b5 *i5 + 
b6 *i6 + 
b7 *i7 + 
b8 *i8 + 
b9 *i9 + 
b10 *i10 + 
b11 *i11 + 
b12 *i12 + 
b13 *i13 + 
b14 *i14 + 
b15 *i15 + 
b16 *i16 + 
b17 *i17 + 
b18 *i18 + 
b19 *i19 + 
b20 *i20 + 
b21 *i21 + 
b22 *i22 + 
b23 *i23 + 
b24 *i24 + 
b25 *i25 + 
b26 *i26 + 
b27 *i27 + 
b28 *i28 + 
b29 *i29 + 
b30 *i30 + 
b31 *i31 + 
b32 *i32 + 
b33 *i33 + 
b34 *i34 + 
b35 *i35 + 
b36 *i36 + 
b37 *i37 + 
b38 *i38 + 
b39 *i39 + 
b40 *i40 + 
b41 *i41    + 
b42 *i42 
; 
slope1= 
a1_1 *i1 + 
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a1_2 *i2 + 
a1_3 *i3 + 
a1_4 *i4 + 
a1_5 *i5 + 
a1_6 *i6 + 
a1_7 *i7 + 
a1_8 *i8 + 
a1_9 *i9 + 
a1_10 *i10 + 
a1_11 *i11 + 
a1_12 *i12 + 
a1_13 *i13 + 
a1_14 *i14 + 
a1_15 *i15 + 
a1_16 *i16 + 
a1_17 *i17 + 
a1_18 *i18 + 
a1_19 *i19 + 
a1_20 *i20 + 
a1_21 *i21 + 
a1_22 *i22 + 
a1_23 *i23 + 
a1_24 *i24 + 
a1_25 *i25 + 
a1_26 *i26 + 
a1_27 *i27 + 
a1_28 *i28 + 
a1_29 *i29 + 
a1_30 *i30 + 
a1_31 *i31 + 
a1_32 *i32 + 
a1_33 *i33 + 
a1_34 *i34 + 
a1_35 *i35 + 
a1_36 *i36 + 
a1_37 *i37 + 
a1_38 *i38 + 
a1_39 *i39 + 
a1_40 *i40 + 
a1_41 *i41   + 
a1_42 *i42 
;  
 
slope2=  
a2_1 *i1 + 
a2_2 *i2 + 
a2_3 *i3 + 
a2_4 *i4 + 
a2_5 *i5 + 
a2_6 *i6 + 
a2_7 *i7 + 
a2_8 *i8 + 
a2_9 *i9 + 
a2_10 *i10 + 
a2_11 *i11 + 
a2_12 *i12 + 
a2_13 *i13 + 



28 

a2_14 *i14 + 
a2_15 *i15 + 
a2_16 *i16 + 
a2_17 *i17 + 
a2_18 *i18 + 
a2_19 *i19 + 
a2_20 *i20 + 
a2_21 *i21 + 
a2_22 *i22 + 
a2_23 *i23 + 
a2_24 *i24 + 
a2_25 *i25 + 
a2_26 *i26 + 
a2_27 *i27 + 
a2_28 *i28 + 
a2_29 *i29 + 
a2_30 *i30 + 
a2_31 *i31 + 
a2_32 *i32 + 
a2_33 *i33 + 
a2_34 *i34 + 
a2_35 *i35 + 
a2_36 *i36 + 
a2_37 *i37 + 
a2_38 *i38 + 
a2_39 *i39 + 
a2_40 *i40 + 
a2_41 *i41    + 
a2_42 *i42 
;  
d1= d14_1*i14 + d28_1*i28 + d42_1*i42; 
eta1= (slope1*theta - beta + 
slope2*gamma1*p1+slope2*gamma2*p2+slope2*gamma3*p3)*(i1 + 
i2 + 
i3 + 
i4 + 
i5 + 
i6 + 
i7 + 
i8 + 
i9 + 
i10 + 
i11 + 
i12 + 
i13 + 
i15 + 
i16 + 
i17 + 
i18 + 
i19 + 
i20 + 
i21 + 
i22 + 
i23 + 
i24 + 
i25 + 
i26 + 
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i27 + 
i29 + 
i30 + 
i31 + 
i32 + 
i33 + 
i34 + 
i35 + 
i36 + 
i37 + 
i38 + 
i39 + 
i40 + 
i41) 
+(slope1*theta - beta-d1 + 
slope2*gamma1*p1+slope2*gamma2*p2+slope2*gamma3*p3)*(i14+  
i28+i42); 
num1 = exp(eta1); 
num2 = exp(2*eta1+2*d1)*(i14+i28+i42); 
denom=1+num1+num2; 
if (score1=0) then prob=1/denom; 
else if (score1=1) then prob=num1/denom; 
else if (score1=2) then prob=num2/denom; 
if(prob>1E-8) then ll=log(prob); 
else ll=-1E100; 
model score1 ~ general(ll); 
random theta gamma1 gamma2 gamma3 ~ Normal ([0,0,0,0],[1,0,1,0,0,1,0,0,0,1])  
subject= person; 
ods output ParameterEstimates=DataB_itempar_m1; 
run;  
 
 
 
*Fit the 2PL (or GPCM) model to the same data using NLMIXED; 
 
title 'The 2PL(GPCM) Model'; 
proc nlmixed data=DataB_sample_t method=gauss noad technique=quanew qpoints=20; 
bounds a1_1-a1_42 >0; 
parms a1_1-a1_42=1 b1-b42=0 d14_1=0 d28_1=0 d42_1=0; 
beta = b1 *i1 + 
b2 *i2 + 
b3 *i3 + 
b4 *i4 + 
b5 *i5 + 
b6 *i6 + 
b7 *i7 + 
b8 *i8 + 
b9 *i9 + 
b10 *i10 + 
b11 *i11 + 
b12 *i12 + 
b13 *i13 + 
b14 *i14 + 
b15 *i15 + 
b16 *i16 + 
b17 *i17 + 
b18 *i18 + 
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b19 *i19 + 
b20 *i20 + 
b21 *i21 + 
b22 *i22 + 
b23 *i23 + 
b24 *i24 + 
b25 *i25 + 
b26 *i26 + 
b27 *i27 + 
b28 *i28 + 
b29 *i29 + 
b30 *i30 + 
b31 *i31 + 
b32 *i32 + 
b33 *i33 + 
b34 *i34 + 
b35 *i35 + 
b36 *i36 + 
b37 *i37 + 
b38 *i38 + 
b39 *i39 + 
b40 *i40 + 
b41 *i41    + 
b42 *i42; 
slope1= 
a1_1 *i1 + 
a1_2 *i2 + 
a1_3 *i3 + 
a1_4 *i4 + 
a1_5 *i5 + 
a1_6 *i6 + 
a1_7 *i7 + 
a1_8 *i8 + 
a1_9 *i9 + 
a1_10 *i10 + 
a1_11 *i11 + 
a1_12 *i12 + 
a1_13 *i13 + 
a1_14 *i14 + 
a1_15 *i15 + 
a1_16 *i16 + 
a1_17 *i17 + 
a1_18 *i18 + 
a1_19 *i19 + 
a1_20 *i20 + 
a1_21 *i21 + 
a1_22 *i22 + 
a1_23 *i23 + 
a1_24 *i24 + 
a1_25 *i25 + 
a1_26 *i26 + 
a1_27 *i27 + 
a1_28 *i28 + 
a1_29 *i29 + 
a1_30 *i30 + 
a1_31 *i31 + 
a1_32 *i32 + 
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a1_33 *i33 + 
a1_34 *i34 + 
a1_35 *i35 + 
a1_36 *i36 + 
a1_37 *i37 + 
a1_38 *i38 + 
a1_39 *i39 + 
a1_40 *i40 + 
a1_41 *i41  + 
a1_42 *i42; 
 
  
d1= d14_1*i14 + d28_1*i28 + d42_1*i42; 
 
eta1= (slope1*theta - beta )*(i1 + 
i2 + 
i3 + 
i4 + 
i5 + 
i6 + 
i7 + 
i8 + 
i9 + 
i10 + 
i11 + 
i12 + 
i13 + 
i15 + 
i16 + 
i17 + 
i18 + 
i19 + 
i20 + 
i21 + 
i22 + 
i23 + 
i24 + 
i25 + 
i26 + 
i27 + 
i29 + 
i30 + 
i31 + 
i32 + 
i33 + 
i34 + 
i35 + 
i36 + 
i37 + 
i38 + 
i39 + 
i40 + 
i41 
) 
+(slope1*theta - beta-d1)*(i14+  
i28+i42); 
num1 = exp(eta1); 
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num2 = exp(2*eta1+2*d1)*(i14+i28+i42); 
denom=1+num1+num2; 
if (score1=0) then prob=1/denom; 
else if (score1=1) then prob=num1/denom; 
else if (score1=2) then prob=num2/denom; 
if(prob>1E-8) then ll=log(prob); 
else ll=-1E100; 
model score1 ~ general(ll); 
random theta ~ Normal (0,1)  
subject= person; 
ods output ParameterEstimates=DataB_itempar_m2; 
run;  
 

 
*Fit the Multidimensional IRT model with simple structure to the same data using 
NLMIXED; 
 
proc nlmixed data= DataB_sample_t method=gauss noad technique=quanew qpoints=7; 
bounds a1_1-a1_42 >0; 
parms a1_1-a1_42=1 b1-b42=0 d14_1=0 d28_1=0 d42_1=0 cov_12=0.5 cov_13=0.5 
cov_23=0.5; 
beta = b1 *i1 + 
b2 *i2 + 
b3 *i3 + 
b4 *i4 + 
b5 *i5 + 
b6 *i6 + 
b7 *i7 + 
b8 *i8 + 
b9 *i9 + 
b10 *i10 + 
b11 *i11 + 
b12 *i12 + 
b13 *i13 + 
b14 *i14 + 
b15 *i15 + 
b16 *i16 + 
b17 *i17 + 
b18 *i18 + 
b19 *i19 + 
b20 *i20 + 
b21 *i21 + 
b22 *i22 + 
b23 *i23 + 
b24 *i24 + 
b25 *i25 + 
b26 *i26 + 
b27 *i27 + 
b28 *i28 + 
b29 *i29 + 
b30 *i30 + 
b31 *i31 + 
b32 *i32 + 
b33 *i33 + 
b34 *i34 + 
b35 *i35 + 
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b36 *i36 + 
b37 *i37 + 
b38 *i38 + 
b39 *i39 + 
b40 *i40 + 
b41 *i41    + 
b42 *i42 
; 
slope1= 
a1_1 *i1 + 
a1_2 *i2 + 
a1_3 *i3 + 
a1_4 *i4 + 
a1_5 *i5 + 
a1_6 *i6 + 
a1_7 *i7 + 
a1_8 *i8 + 
a1_9 *i9 + 
a1_10 *i10 + 
a1_11 *i11 + 
a1_12 *i12 + 
a1_13 *i13 + 
a1_14 *i14 + 
a1_15 *i15 + 
a1_16 *i16 + 
a1_17 *i17 + 
a1_18 *i18 + 
a1_19 *i19 + 
a1_20 *i20 + 
a1_21 *i21 + 
a1_22 *i22 + 
a1_23 *i23 + 
a1_24 *i24 + 
a1_25 *i25 + 
a1_26 *i26 + 
a1_27 *i27 + 
a1_28 *i28 + 
a1_29 *i29 + 
a1_30 *i30 + 
a1_31 *i31 + 
a1_32 *i32 + 
a1_33 *i33 + 
a1_34 *i34 + 
a1_35 *i35 + 
a1_36 *i36 + 
a1_37 *i37 + 
a1_38 *i38 + 
a1_39 *i39 + 
a1_40 *i40 + 
a1_41 *i41   + 
a1_42 *i42 
;  
 
  
d1= d14_1*i14 + d28_1*i28 + d42_1*i42; 
eta1= (slope1*theta1*p1 + slope1*theta2*p2 + slope1*theta3*p3- beta)*(i1 + 
i2 + 
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i3 + 
i4 + 
i5 + 
i6 + 
i7 + 
i8 + 
i9 + 
i10 + 
i11 + 
i12 + 
i13 + 
i15 + 
i16 + 
i17 + 
i18 + 
i19 + 
i20 + 
i21 + 
i22 + 
i23 + 
i24 + 
i25 + 
i26 + 
i27 + 
i29 + 
i30 + 
i31 + 
i32 + 
i33 + 
i34 + 
i35 + 
i36 + 
i37 + 
i38 + 
i39 + 
i40 + 
i41) 
+(slope1*theta1*p1+slope1*theta2*p2+slope1*theta3*P3 - beta-d1)*(i14+  
i28+i42); 
num1 = exp(eta1); 
num2 = exp(2*eta1+2*d1)*(i14+i28+i42); 
denom=1+num1+num2; 
if (score1=0) then prob=1/denom; 
else if (score1=1) then prob=num1/denom; 
else if (score1=2) then prob=num2/denom; 
if(prob>1E-8) then ll=log(prob); 
else ll=-1E100; 
model score1 ~ general(ll); 
random theta1 theta2 theta3 ~ Normal ([0,0,0],[1,Cov_12,1,Cov_13,Cov_23, 1])  
subject= person; 
 
ods output ParameterEstimates= DataB_itempar_m3; 
run;  


