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Abstract 

In this paper, the standard error of equating difference (SEED) is described in terms of 

originally proposed kernel equating functions (von Davier, Holland, & Thayer, 2004) and 

extended to incorporate traditional linear and equipercentile functions. These derivations expand 

on prior developments of SEEDs and standard errors of equating and provide additional insight 

about the relationships of kernel and traditional equating functions. Simulations are used to 

evaluate the SEEDs’ accuracies. 
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ii 

 

Acknowledgments 

The authors thank Alina von Davier for her initial ideas that inspired this project. The authors 

also thank Alina, Dan Eignor, and Frank Rijmen for helpful comments on an earlier version of 

this paper and Kim Fryer and Ruth Greenwood for their editorial work.  



 

iii 

 

Table of Contents 

Page 

Standard Errors of Equating Functions and of Equating Differences ............................................. 1 

Equating Functions, Derivatives, and Standard Errors of Equating Differences (SEEDs) ............ 4 

Implications of Equating Functions and Their Derivatives for Standard Errors of Equating 

Differences (SEEDs) ....................................................................................................................... 8 

SEEDs in a Real Data Example ...................................................................................................... 9 

Simulations for Evaluating Standard Errors of Equating Differences (SEEDs)........................... 10 

Discussion ..................................................................................................................................... 17 

References ..................................................................................................................................... 20 

 



 

iv 

 

 

List of Tables 

Page 

Table 1.    Derivatives of Kernel, Traditional Equipercentile, and Traditional Linear X-to-Y 

Equating Functions With Respect to X’s jth Score Probability ......................................5 

Table 2.    Derivatives of Kernel, Traditional Equipercentile, and Traditional Linear X-to-Y 

Equating Functions With Respect to Y’s kth Score Probability .....................................6 

Table 3.    Von Davier et al.’s (2004) Equivalent Groups Equating Data: Descriptive Statistics ...9 



 

v 

 

 
List of Figures 

Page 

Figure 1. Kernel equipercentile—kernel linear equated score differences and their  

± 2 SEEDs. ....................................................................................................................11 

Figure 2. Kernel equipercentile—traditional equipercentile equated score differences  

and their ± 2 SEEDs. .....................................................................................................11 

Figure 3. Traditional equipercentile—traditional linear equated score differences and  

their ± 2 SEEDs. ............................................................................................................11 

Figure 4. Means and standard deviations of kernel equipercentile—kernel linear equated  

score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data  

(Nx = Ny = 200). ............................................................................................................13 

Figure 5. Means and standard deviations of kernel equipercentile—kernel linear equated  

score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data  

(Nx = 1,453, Ny = 1,455). ..............................................................................................13 

Figure 6. Means and standard deviations of kernel equipercentile—kernel linear equated  

score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data  

(Nx = Ny = 10,000). .......................................................................................................14 

Figure 7. Means and standard deviations of kernel equipercentile—traditional equipercentile 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = Ny = 200). ............................................................................................................14 

Figure 8. Means and standard deviations of kernel equipercentile—traditional equipercentile 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = 1,453, Ny = 1,455). ..............................................................................................15 

Figure 9. Means and standard deviations of kernel equipercentile—traditional equipercentile 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = Ny = 10,000). .......................................................................................................15 

Figure 10. Means and standard deviations of traditional equipercentile—traditional linear 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = Ny = 200). ............................................................................................................16 



 

vi 

 

Figure 11. Means and standard deviations of traditional equipercentile—traditional linear 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = 1,453, Ny = 1,455). ..............................................................................................16 

Figure 12. Means and standard deviations of traditional equipercentile—traditional linear 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = Ny = 10,000). .......................................................................................................17 

 



 

vii 

 



 

1 

 

In equating research and practice, evaluations of equated score differences have informed 

the selection of linear and equipercentile equating functions, and nonequivalent groups with 

anchor test (NEAT) equating functions (Kolen & Brennan, 2004; Moses, Yang, & Wilson, 2007; 

von Davier, Holland, & Thayer, 2004; von Davier & Kong, 2005). Standard errors of equating 

functions (SEEs) are not immediately useful for evaluating equated score differences, but  recent 

developments have applied SEE estimation approaches to the estimation of standard errors of 

equating differences (i.e., SEEDs; von Davier et al., 2004; von Davier & Kong, 2005). SEEDs 

have been mainly described for evaluating kernel equating functions based on whether their 

differences exceed sampling variability.  

In this paper, the originally-proposed SEEDs for evaluating kernel equating functions 

(von Davier et al., 2004) are expanded so that the differences among kernel equating functions, 

traditional equipercentile equating functions, and traditional linear equating functions can be 

evaluated. The accuracies of the SEEDs are evaluated in simulations for six equated score 

difference situations. The final discussion addresses the use of the SEEDs in practice and the 

extensions that can be used to apply SEEDs to compare equating functions computed for the 

most frequently used equating designs. 

Standard Errors of Equating Functions and of Equating Differences 

The delta method (Kendall & Stuart, 1977) is often applied to estimate the variability of 

equating functions. Estimating the SEE of an X-to-Y equating function involves noting that this 

equating function is computed from a set of statistics, δ , with associated covariance matrix δΣ . 

Pre- and post-multiplying δΣ  by the partial derivatives of the equating function at score *jx  

produces an estimated variance of the equating function. Taking the square root produces an 

estimated SEE, 

* *
* *

( ) ( )
( ( )) ( ( )) .

t
y j y j

y j y j

e x e x
SE e x Var e x δδ δ

∂ ∂⎡ ⎤ ⎡ ⎤
= = Σ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

 (1) 

Traditional linear and equipercentile equating functions have been expressed and 

computed from different terms making up δ . In particular, the traditional X-to-Y linear equating 

function is computed from X and Y’s means ( μ ) and standard deviations (σ ), 
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( )* *( ) .Y
y j Y j X

X

e x xσμ μ
σ

= + −  (2) 

SEEs of (2) have been derived using (1) with tests’ means and variances comprising δ  (Braun & 

Holland, 1982; Hanson, Zeng, & Kolen, 1993; Kolen, 1985; Zeng, 1991; Zeng & Cope, 1995).  

The basis of the traditional X-to-Y equipercentile equating function is tests’ percentile 

ranks (Kolen & Brennan, 2004), 

1/2
1/2 ,

1/2 1/2
j* u-1-1

y j* j* u
u u-1

F(x ) - G(y + )
e (x )= G (F(x ))= y - +

G(y + )- G(y + )
 (3) 

where j*F(x )  denotes j*x ’s percentile rank defined as  

1

1

0                                           if 1/ 2

          ( ( 1/ 2))      if 1/ 2 1/ 2 for  = 1, ...

          1                                            

j* j* 1

j

i j* j j j j* j
i

F(x ) = x x

r x x r x x x j J
−

=

≤ −

= + − − − ≤ ≤ +

=

∑
if 1/ 2,j* Jx x≥ +

 (4) 

jr  is the probability at score jx , and u-1y  is the largest Y score where 1/2u-1y + ’s percentile rank, 

1/2u-1G(y + ) , is smaller than j*F(x ) . SEEs of (3) have been derived using (1) with the F()  and 

G()’s comprising δ  (Jarjoura & Kolen, 1985; Liou & Cheng, 1995; Liou, Cheng, & Johnson, 

1997; Lord, 1982). SEEDs for evaluating their equated score differences with respect to 

sampling variability have been unavailable due to the use of sets of statistics (δ ) that do not 

easily relate to each other.  

Kernel equating (Holland, King, & Thayer, 1989; von Davier et al, 2004) was developed 

in ways that allow linear and equipercentile equating functions to be computed from the same set 

of statistics (δ ), the J- and K-column vectors of test X and Y ’s score probabilities, r  and s ,  

( )-1
y j* hY hX j*e (x )= G F (x ; );r s

. (5) 

The hXF ()  in (5) denotes kernel smoothed cumulative densities,  
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* (1 )
( ),j X j X X

hX j* j
j X X

x a x a
F (x ; )= r

a h
μ− − −

Φ∑r  (6) 

where Φ  is the cumulative density of a standard normal distribution and 
2

2 2
X

X
X X

a
h

σ
σ

=
+

. hYG ()  

is computed in a similar manner. Kernel linear and kernel equipercentile equating functions can 

be computed using (5) with small and large values for Xh  and Yh . When kernel linear equating 

functions and kernel equipercentile equating functions are computed using (5), the equated 

score differences can be differentiated with respect to the same δ , 1 * 2 *( ) ( )y j y je x e x
δ δ

∂ ∂⎡ ⎤
−⎢ ⎥∂ ∂⎣ ⎦

and 

SEEDs can be computed as a direct extension of (1), 

1 * 2 *

1 * 2 * 1 * 2 *

1 * 1 * 2 * 2 * 1 * 2 *

( ( ) ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2

y j y j

t
y j y j y j y j

t t t
y j y j y j y j y j y j

SEED e x e x

e x e x e x e x

e x e x e x e x e x e x

δ

δ δ δ

δ δ δ δ

δ δ δ δ δ δ

−

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
= − Σ −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= Σ + Σ − Σ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 * 2 * 1 * 2 *( ( )) ( ( )) 2 ( ( ), ( ))y j y j y j y jVar e x Var e x Covar e x e x= + −
 (7) 

The results of (7) can be used to estimate SEEDs for the differences among traditional 

linear, traditional equipercentile, kernel linear, and kernel equipercentile functions, because all of 

these equating functions can be computed based on forming δ  from X and Y’s score 

probabilities. Traditional equipercentile equating function can be computed directly from X and 

Y’s score probabilities (Moses & Holland, 2006; Wang, 2006), rather than the percentile ranks 

suggested in (3). Unlike prior works (Braun & Holland, 1982; Hanson et al., 1993; Kolen, 1985; 

Zeng, 1991; Zeng & Cope, 1995), traditional linear equating functions can also be computed 

from X and Y ’s score probabilities. The derivatives of the kernel, traditional equipercentile, and 

traditional linear equating functions with respect to the jth and kth values of X and Y’s score 
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probability vectors, r  and s  are given in Tables 1 and 2. Constructing (7)’s derivative vectors 

with respect to the J and K derivatives from Tables 1 and 2 results in SEEDs for the differences 

of kernel, traditional equipercentile, and traditional linear equating functions.  

Equating Functions, Derivatives, and Standard Errors of Equating Differences (SEEDs) 

The focus of this paper is six SEEDs that address comparisons among four equating 

functions (kernel linear, kernel equipercentile, traditional equipercentile, and traditional linear): 

• kernel linear vs. kernel equipercentile  

• kernel linear vs. traditional equipercentile  

• kernel linear vs. traditional linear  

• kernel equipercentile vs. traditional equipercentile  

• kernel equipercentile vs. traditional linear  

• traditional equipercentile vs. traditional linear 

In this section, Tables 1 and 2’s four equating functions’ derivatives are used to provide new 

understanding of the equating functions’ relationships and their SEEs. 

The role of δΣ  in equations (1) and (7) is important for understanding equating functions’ 

SEEs and SEEDs. Theδ ’s and δΣ ’s of interest are based on the probability vectors of the X and 

Y scores (r  and s ). Well-known results involving computations with δΣ  matrices based on 

probability vectors (Bishop, Fienberg, & Holland, 1975; Fienberg, 1979; Haberman, 1989), 

suggest that SEEs and SEEDs can be expressed in terms of the variances and covariances of the 

equating function derivative vectors, *( )
.y je x

δ
∂⎡ ⎤
⎢ ⎥∂⎣ ⎦

 

One SEED of interest  is for evaluating differences between traditional linear and kernel 

linear equating functions. Because kernel linear equating functions are asymptotically equivalent 

to traditional linear equating functions (von Davier et al., 2004), the differences between kernel 

linear and traditional linear equating functions are expected to approach zero, and the variability 

of these differences (i.e., the SEED) is also expected to approach zero.  
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Table 1 

Derivatives of Kernel, Traditional Equipercentile, and Traditional Linear X-to-Y Equating Functions With Respect to X’s jth 

Score Probability 

X-to-Y equating function, *( )y je x  Derivatives with respect to X’s jth score probability (j = 1 to J) 
Kernela 

*

*

( )1
( ( ) )

;
; ;

hX j

hY y j j

F x
G e x r

y

⎛ ⎞
⎜ ⎟ ∂
⎜ ⎟

∂ ∂⎜ ⎟
⎜ ⎟∂⎝ ⎠

s
r

r
 

 
Traditional equipercentile 1 (1)

us
⎛ ⎞
⎜ ⎟
⎝ ⎠

 when **  and 1/ 2 ( ) 1/ 2u y j uj j y e x y< − < < +  

*
1 ( ( 1/ 2))j j
u

x x
s

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
   when **  and 1/ 2 ( ) 1/ 2u y j uj j y e x y= − < < +  

1 (0)
us

⎛ ⎞
⎜ ⎟
⎝ ⎠

 when **  and 1/ 2 ( ) 1/ 2u y j uj j y e x y> − < < +  

 
Traditional linear ( ) ( )

2

*22
j xy

x j j
x x

x
x x

μσ
μ

σ σ

⎛ ⎞−⎜ ⎟− −
⎜ ⎟
⎝ ⎠

 

aThe kernel equating derivatives are described in more detail in von Davier et al. (2004). 
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Table 2 

Derivatives of Kernel, Traditional Equipercentile, and Traditional Linear X-to-Y Equating Functions With Respect to Y’s kth 

Score Probability 

X-to-Y equating function, *( )y je x  Derivatives with respect to Y’s kth score probability (k = 1 to K) 
Kernela 

*

*

( ( ) )1
( ( ) )

;
; ;

hY y j

hY y j k

G e x
G e x s

y

⎛ ⎞
⎜ ⎟ ∂−⎜ ⎟

∂ ∂⎜ ⎟
⎜ ⎟∂⎝ ⎠

s
sr

 

 
Traditional equipercentile 1 (1)

us
⎛ ⎞−
⎜ ⎟
⎝ ⎠

 when *and 1/ 2 ( ) 1/ 2u y j uk u y e x y< − < < +  

*
1 ( ( ) ( 1/ 2))y j k
u

e x y
s

⎛ ⎞− − −⎜ ⎟
⎝ ⎠

 when * and 1/ 2 ( ) 1/ 2u y j uk u y e x y= − < < +  

1 (0)
us

⎛ ⎞−
⎜ ⎟
⎝ ⎠

 when *and 1/ 2 ( ) 1/ 2u y j uk u y e x y> − < < +  

 
Traditional linear ( )2

*

2
k yj x

k
x y

yx
y

μμ
σ σ

−−⎛ ⎞
+ ⎜ ⎟
⎝ ⎠

 

aThe kernel equating derivatives are described in more detail in von Davier et al. (2004). 
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These expectations can be verified by studying the variances of the kernel linear and 

traditional linear equating functions’ derivatives (Tables 1 and 2). 

Using von Davier et al.’s (2004) asymptotic results  for kernel linear equating 

functions (p. 58), when Xh  and Yh  approach positive infinity, the derivative vector of the 

kernel linear equating function with respect to X’s probability jr  from Table 1 contains J 

elements, each of which approaches 

( ) ( )
* 2

*2
*

( )
,( ) ) 2( )

; ;

j X
Y

j XX Y
X j j

y j Y X X
k

k Y

x
x

x xe x
s

μ
σ μσ σ μμ σ σφ

σ

−⎛ ⎞
Φ ⎛ ⎞⎜ ⎟ −⎛ ⎞ ⎜ ⎟⎜ ⎟ + − −⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠
∑

sr
 

 (8) 

where the φ  and Φ  terms denote densities and cumulative densities from the standard 

normal distribution. Equation (8) is identical to Table 1’s derivative of the traditional linear 

equating  except for the first term that is constant for all J partial derivatives computed at *jx . 

As Xh  and Yh  approach positive infinity, the derivative of the kernel linear equating function 

with respect to Y’s probability ks  from Table 2 contains K elements, each of which 

approaches 

( ) ( )
*

2
*

*

( ) )
( )

.
( ) ) 2( )

.

; ;

; ;

y j Y
Y

j X k YY
k

y j Y X Y
k

k Y

e x
x y

ye x
s

μ
σ μ μσ

μ σ σφ
σ

−⎛ ⎞
− Φ⎜ ⎟ − −⎜ ⎟ + +−⎜ ⎟

⎜ ⎟
⎝ ⎠
∑

s

s

r

r
 

 (9) 

Equation (9) is identical to Table 2’s derivative of the traditional linear equating function 

except for the first term that is constant for all K partial derivatives at *( ) ); ;y je x sr .  

The derivatives of the traditional linear equating function (Tables 1 and 2) are equal to 

those of the kernel linear equating function (8 and 9) except for constants and their means. 

The kernel linear and traditional linear equating function derivatives’ variances are equal, and 
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the covariance of these equating function derivatives is equal to their variance(s). The SEE of 

a traditional linear equating function will be asymptotically equal to that of a kernel linear 

equating function because the SEE in (1) is a direct function of the variance or covariance of 

its derivatives (Bishop, et al., 1975; Fienberg, 1979; Haberman, 1989). When using the 

derivatives of the kernel linear and the traditional linear equating functions to calculate their 

SEED (7), the resulting SEED will approach zero because it is a function of the variances and 

covariance of the equating functions and equating functions’ derivatives. 

Kernel and traditional equipercentile equating functions are frequently noted to produce 

similar equating results and SEEs, with the traditional equipercentile function’s SEE being 

slightly larger (e.g., Moses & Holland, 2006). The SEEs and SEEDs for kernel and traditional 

equipercentile equating functions can be understood in terms of the variances of these 

functions’ derivative vectors. The traditional equipercentile function is computed from a limited 

number of the r and s  entries, (4), and the kernel equipercentile equating function is computed 

from all of the r and s  entries, (5) and (6). This results in derivative vectors for traditional 

equipercentile equating functions that often contain values as small as zero and as large as one 

(Tables 1 and 2) and derivative vectors for kernel equipercentile equating functions that often 

contain values greater than zero and less than one. The variance of the derivative vectors based 

on traditional equipercentile equating will usually be larger than the variance of the derivative 

vectors based on kernel equipercentile equating. Because the SEEs of the kernel and traditional 

equipercentile equating functions are direct functions of the variances and covariances of these 

equating functions’ derivatives (Bishop, et al., 1975; Fienberg, 1979; Haberman, 1989), the SEE 

of the kernel equating function will be smaller than the SEE of the traditional equipercentile 

function. The SEED for kernel and traditional equipercentile equating functions is usually 

greater than zero because the kernel equating derivatives have variances that differ from those 

of the traditional equipercentile derivatives. 

Implications of Equating Functions and Their Derivatives for Standard Errors of 

Equating Differences (SEEDs) 

The following implications for the six SEEDs of interest follow from the discussion of 

the previous section. Because the kernel linear and traditional linear equating functions and 

their SEEs are asymptotically equal, their SEEDs should approach zero. The SEED for 

evaluating kernel equipercentile versus kernel linear equating functions should be identical to 
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the SEED for evaluating kernel equipercentile versus traditional linear equating functions. 

The SEED for evaluating kernel equipercentile and traditional equipercentile equating 

functions will be small, but usually not zero. The SEED for evaluating traditional 

equipercentile versus kernel linear equating functions should be identical to the SEED for 

evaluating traditional equipercentile versus traditional linear equating functions. The SEEDs 

involving kernel equipercentile equating functions should be smaller than the SEEDs 

involving traditional equipercentile equating functions. These implications can be studied 

using a real data example and simulations.  

SEEDs in a Real Data Example 

The analyses of von Davier et al.’s (2004) are regenerated and expanded to assess the 

six SEEDs described in this paper. Two 20-item tests, X and Y, were administered to 

examinees from a common population. The characteristics of these data are summarized in 

Table 3, suggesting that test X is about 0.8 points harder than test Y. 

Table 3 

Von Davier et al.’s (2004) Equivalent Groups Equating Data: Descriptive Statistics 

 X Y 
N 1,453 1,455 
Mean 10.82 11.59 
Standard deviation 3.81 3.94 
Skew 0.0026 -0.0626 
Kurtosis 2.53 2.50 

Kernel equating was used to determine the most appropriate equating function for 

equating the X scores to the Y scale (von Davier et al., 2004). First the X and Y score 

distributions were presmoothed using loglinear models. Then linear and equipercentile kernel 

equating functions were estimated and the differences in the equated scores were computed. 

Finally, the SEED for the equating function differences was estimated as in (7) with a δΣ  

matrix based on the loglinear presmoothed r  and s  vectors and the derivatives of the kernel 

equating functions (Tables 1 and 2). Figure 1 plots this evaluation of the kernel functions’ 

equated score differences, showing  the differences between the kernel equipercentile and 

kernel linear functions across all X scores. When these differences exceed ± 2 SEEDs, they 

are considered statistically significant.  
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Broadening von Davier et al.’s (2004) analyses, (7) was used with Tables 1 and 2’s 

derivatives and von Davier et al.’s loglinear presmoothed δΣ  matrix to obtain equated score 

differences and SEEDs for traditional linear and traditional equipercentile equating functions. 

Figure 2 plots the equated score differences between the kernel equipercentile and traditional 

equipercentile functions and the ± 2 SEEDs. Figure 3 plots the equated score differences 

between traditional equipercentile and traditional linear functions and the ± 2 SEEDs. The 

other three equated score differences reflect the implications listed in the previous section, 

meaning that the differences and SEEDs between kernel linear and traditional linear equating 

functions differ from zero only beyond the ninth decimal place, the differences and SEEDs 

between kernel equipercentile and traditional linear equating functions are identical to Figure 

2’s differences and SEEDs, and the differences and SEEDs between traditional equipercentile 

and kernel linear equating functions are identical to Figure 3’s differences and SEEDs. The 

results of Figures 1 through 3 show that the differences between the kernel equipercentile and 

traditional equipercentile equating functions are within ± 2 SEEDs across all X scores (Figure 

2) and that the differences between the linear, traditional equipercentile, and kernel 

equipercentile equating functions are within ± 2 SEEDs for most X scores (Figures 1 and 3). 

Simulations for Evaluating Standard Errors of Equating Differences (SEEDs) 

To evaluate the accuracy of Figures 1 through 3’s SEEDs, simulations were conducted. 

Population distributions for X and Y were defined as von Davier et al.’s (2004) presmoothing 

models. Random samples of particular sizes were obtained from the population distributions: 

1,000 samples at the original sample sizes (NX = 1,453 and NY = 1,455), 1,000 obtained at 

smaller sample sizes (NX = NY = 200), and 1,000 obtained at much larger sizes (NX = NY = 

10,000). The four equating functions and six SEEDs were estimated in each sample. In order to 

evaluate the SEEDs of the kernel equipercentile and kernel linear functions (Figure 1), the means 

of 1,000 SEEDs (the solid lines) can be compared to the ± 2 standard deviations of the 1,000 

equated score differences (the dashed lines). 
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Figure 1. Kernel equipercentile—kernel linear equated score differences and their ± 2 

SEEDs. 
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Figure 2. Kernel equipercentile—traditional equipercentile equated score differences 

and their ± 2 SEEDs. 
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Figure 3. Traditional equipercentile—traditional linear equated score differences and 

their ± 2 SEEDs. 
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The SEEDs’ accuracies are summarized for sample sizes of NX = NY = 200 (Figure 4), of NX = 

1,453 and NY = 1,455 (Figure 5), and of NX = NY = 10,000 (Figure 6). The means of the equated 

score differences are also plotted. Figures 4 through 6 show that the ± 2 SEED lines are narrower 

and more accurate (i.e., closer to the ± 2 standard deviation lines) for large sample sizes than for 

smaller sample sizes. Several of the equated score differences would be considered statistically 

significant for sample sizes of 10,000 (Figure 6), and none would be significant for sample sizes 

of 200 (Figure 4). 

In order to evaluate the accuracy of the SEED of the kernel equipercentile and traditional 

equipercentile equating functions (Figure 2), the means of 1,000 ± 2 SEEDs (the solid lines) can 

be compared to the ± 2 standard deviations of the 1,000 equated score differences (the dashed 

lines). The SEEDs’ accuracies are shown for sample sizes of NX = NY = 200 (Figure 7), of NX = 

1,453 and NY = 1,455 (Figure 8), and of NX = NY = 10,000 (Figure 9). The means of the equated 

score differences are also displayed. The SEEDs for the differences between the kernel 

equipercentile and traditional equipercentile functions have quite small variability (i.e., narrow ± 

2 lines, Figures 7 through 9). The SEEDs are also fairly inaccurate estimates of the actual 

standard deviations, where at the lowest X scores, the SEEDs overestimate the actual standard 

deviations by a factor of about 3 for NX = NY = 200 sample sizes (Figure 7), and overestimate the 

actual standard deviations by a factor of about 2 for NX = 1,453 and NY = 1,455 sample sizes 

(Figure 8).  

In order to evaluate the accuracy of the SEED for estimating the variability of 

differences between the traditional equipercentile and traditional linear equating functions 

(Figure 3), the means of 1,000 ± 2 SEEDs (the solid lines) can be compared to the ± 2 

standard deviations of the 1,000 equated score differences (the dashed lines). The SEEDs’ 

accuracies are shown for sample sizes of NX = NY = 200 (Figure 10), of NX = 1,453 and NY = 

1,455 (Figure 11), and of NX = NY = 10,000 (Figure 12). The means of the equated score 

differences are also displayed. The results shown in Figures 10 through 12 look like those 

based on the kernel equated score differences (Figures 4 through 6), in that the ± 2 SEED lines 

have larger ranges and greater inaccuracy when based on sample sizes of 200 (Figures 4 and 

10) than when based on sample sizes of 10,000 (Figures 6 and 12). The differences between  
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Figure 4. Means and standard deviations of kernel equipercentile—kernel linear 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = Ny = 200). 
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Figure 5. Means and standard deviations of kernel equipercentile—kernel linear 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = 1,453, Ny = 1,455). 
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Figure 6. Means and standard deviations of kernel equipercentile—kernel linear 

equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y data 

(Nx = Ny = 10,000). 
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Figure 7. Means and standard deviations of kernel equipercentile—traditional 

equipercentile equated score differences and the mean ± 2 SEEDs for 1,000 samples of X 

and Y data (Nx = Ny = 200). 
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Figure 8. Means and standard deviations of kernel equipercentile—traditional 

equipercentile equated score differences and the mean ± 2 SEEDs for 1,000 samples of X 

and Y data (Nx = 1,453, Ny = 1,455). 
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Figure 9. Means and standard deviations of kernel equipercentile—traditional 

equipercentile equated score differences and the mean ± 2 SEEDs for 1,000 samples of X 

and Y data (Nx = Ny = 10,000). 
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Figure 10. Means and standard deviations of traditional equipercentile—traditional 

linear equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y 

data (Nx = Ny = 200). 

 

- 1

- 0 . 7 5

- 0 . 5

- 0 . 2 5

0

0 . 2 5

0 . 5

0 . 7 5

1

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

D
iff
er
en
ce
s

X

M e a n  D i f f e r e n c e s M e a n  + / - 2 S E E D s + / - 2 S t d D e v ( D i f fe r e n c e s )  
Figure 11. Means and standard deviations of traditional equipercentile—traditional 

linear equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y 

data (Nx = 1,453, Ny = 1,455). 
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Figure 12. Means and standard deviations of traditional equipercentile—traditional 

linear equated score differences and the mean ± 2 SEEDs for 1,000 samples of X and Y 

data (Nx = Ny = 10,000). 

the traditional equipercentile and traditional linear equating functions are statistically insignificant 

when based on sample sizes of 200, and several are significant for sample sizes of 10,000.  

Simulations were also used to assess the other SEEDs of interest, the results of which 

reflect previous discussions and the results shown in Figures 4 through 12. To be specific, the 

SEED evaluation results for the kernel equipercentile and traditional linear functions agreed 

with the SEED evaluation results for the kernel equipercentile and kernel linear functions 

(Figures 4 through 6). Similarly, the SEED evaluation results for the traditional equipercentile 

and kernel linear functions agreed with the SEED evaluation results for the traditional 

equipercentile and traditional linear equating functions (Figures 10 through 12). Lastly, the 

SEED evaluation results for the kernel linear and traditional linear functions differed from 

zero, but only beyond the ninth decimal place. 

Discussion 

In this paper, the SEEDs originally proposed for kernel equating functions (von Davier 

et al., 2004) were expanded into applications suitable for traditional linear and traditional 

equipercentile equating functions. The derivations provided in this paper for the traditional 

linear equating functions differ from those given in prior works on SEEs (Braun & Holland, 

1982; Hanson, Zeng, & Kolen, 1993; Kolen, 1985; Zeng, 1991; Zeng & Cope, 1995). In 



 

18 

addition to supporting SEEDs, these derivations provided new insights into the relationships 

between kernel and traditional equating functions. Specifically, the derivatives of kernel and 

traditional equating functions with respect to the same probability vectors can be directly 

related to the equating functions’ SEEs and SEEDs, through their variances and covariances. 

The relationships between variances of equating functions and variances and covariances of 

their derivatives provide explanations for the kernel equipercentile equating function’s smaller 

SEE relative to the traditional equipercentile equating function and for the asymptotically 

equivalent SEEs of the kernel linear and traditional linear equating functions. 

Real data and simulation results were used to assess the accuracies of the SEEDs. The 

simulation results confirmed this paper’s analytical suggestions of equating functions’ SEEDs 

and also supported previous research of SEEs by showing that the SEEDs based on traditional 

equipercentile equating functions are similar to, but slightly larger than, those based on kernel 

equipercentile equating functions (Liou, Cheng, & Johnson, 1997; Moses & Holland, 2006). 

Prior studies’ results about the effects of small sample sizes on SEEDs’ accuracy and size 

were also found in this study, as well as the tendency for SEEDs to be less accurate at the 

lowest and highest scores of X. In conclusion, the major results of this study show that SEEDs 

agree with prior SEE studies. 

One unanticipated result from the simulations was that the SEED for evaluating 

differences between kernel equipercentile and traditional equipercentile equating functions 

appeared to have accuracy problems. In sample sizes less than 10,000, the SEEDs 

overestimated the actual variability of the equated score differences. Follow-up analyses and 

evaluations of the results shown in Figures 4 through 6 and Figures 10 through 12 suggest that 

the source of the inaccuracy may be that the traditional equipercentile method is slightly less 

accurate than the kernel equipercentile method (Figures 10–12 vs. Figures 4–6). These slight 

accuracy differences are contributing to the inaccuracies of the SEED for evaluating 

differences between kernel equipercentile and traditional equipercentile equating functions. 

Extensions 

By using δΣ  matrices described in von Davier et al. (2004) with the derivatives 

described in Tables 1 and 2 of this paper, SEEDs can be computed to evaluate differences 

between equating functions for the single group, counterbalanced, and nonequivalent groups 
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with anchor test data collection designs. Extensions to other designs are expected to produce 

results that are conceptually similar to those reported in this study, particularly the result 

that SEEs of non–presmoothed equating functions can be computed from the variances of 

the equating function’s derivatives (e.g., Moses & Holland, 2006). Simulations that evaluate 

the accuracies of SEEDs for different equating designs across wide ranges of sample sizes 

and equating conditions would be useful.  



 

20 

References 

Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete multivariate analysis. 

Cambridge, MA: MIT Press. 

Braun, H. I., & Holland, P. W. (1982). Observed-score test equating: A mathematical analysis 

of some ETS equating procedures. In P. W. Holland & D. B. Rubin (Eds.), Test 

equating (pp. 9–49). New York, NY: Academic. 

Fienberg, S. E. (1979). The use of chi-squared statistics for categorical data problems. Journal 

of the Royal Statistical Society, B, 41, 54–64. 

Haberman, S. J. (1989). Concavity and estimation. The Annals of Statistics, 17, 1631–1661. 

Hanson, B. A., Zeng, L., & Kolen, M. J. (1993). Standard errors of Levine linear equating. 

Applied Psychological Measurement, 17, 225–237. 

Holland, P. W., & Thayer, D. T. (2000). Univariate and bivariate loglinear models for discrete 

test score distributions. Journal of Educational and Behavioral Statistics, 25, 133–183. 

Holland, P. W., King, B. F., & Thayer, D. T. (1989). The standard error of equating for the 

kernel method of equating score distributions (ETS Tech. Rep. No. 89-83). Princeton, 

NJ: ETS.  

Jarjoura, D., & Kolen, M. J. (1985). Standard errors of equipercentile equating for the 

common item nonequivalent populations design. Journal of Educational Statistics, 10, 

143–160. 

Kendall, M. G., & Stuart, A. (1977). The advanced theory of statistics (Vol. I; 4th ed.). New 

York, NY: Macmillan.  

Kolen, M. J. (1985). Standard errors of Tucker equating. Applied Psychological Measurement, 

9, 209–223. 

Kolen, M. J., & Brennan, R. J. (2004). Test equating, scaling and linking: Methods and 

practices. (2nd ed.). New York, NY: Springer-Verlag. 

Liou, M., & Cheng, P. E. (1995). Asymptotic standard error of equipercentile equating. 

Journal of Educational and Behavioral Statistics, 20, 259–286. 

Liou, M., Cheng, P. E., & Johnson, E. G. (1997). Standard errors of the kernel equating 

methods under the common-item design. Applied Psychological Measurement, 21, 

349–369. 



 

21 

Lord, F. M. (1982). The standard error of equipercentile equating. Journal of Educational 

Statistics, 7, 165–174. 

Moses, T., & Holland, P. (2006). Kernel equating without presmoothing. Paper presented at 

the American Educational Research Association, San Francisco, CA. 

Moses, T., Yang, W., & Wilson, C. (2007). Using kernel equating to check the statistical 

equivalence of nearly identical test editions. Journal of Educational Measurement, 44, 

157–178. 

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The kernel method of test 

equating. New York, NY: Springer-Verlag. 

von Davier, A. A., & Kong, N. (2005). A unified approach to linear equating for the 

nonequivalent groups design. Journal of Educational and Behavioral Statistics, 30, 

313–342. 

Wang, T. (2006). Standard errors of equating for equipercentile equating with log-linear 

presmoothing using the delta method (CASMA Research Report, No. 14). Iowa City, 

IA: Center for Advanced Studies in Measurement and Assessment. 

Zeng, L. (1991). Standard errors of linear equating for the single-group design (Research 

Rep. No. 91-4). Iowa City, IA: American College Testing. 

Zeng, L., & Cope, R. T. (1995). Standard error of linear equating for the counterbalanced 

design. Journal of Educational and Behavioral Statistics, 20, 337–348. 

 




