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Abstract 

The purpose of this study was to consider the relationships of prediction, measurement, and 

scaling invariance when these invariances were simultaneously evaluated in psychometric test 

data. An approach was developed to evaluate prediction, measurement, and scaling invariance 

based on linear and nonlinear prediction, measurement, and scaling functions. The approach was 

used to evaluate the relationships among 12 pairs of tests in 6 datasets for gender invariance. The 

prediction, measurement, and scaling invariance results were found to be similar for most of the 

test relationships evaluated, in that all 3 invariances were more likely to be established for highly 

correlated tests than for less highly correlated tests. The invariance results appeared to be well 

summarized by intercept differences in the linear prediction, measurement, and scaling functions. 

The implications of the results were discussed with respect to the relationships among prediction, 

measurement, and scaling invariances described in prior theoretical and empirical research. 

Suggestions for extending theoretical and empirical invariance research were provided. 
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Evaluating Prediction, Measurement, and Scaling Invariance in Empirical Data 

A commonly considered question in testing is whether the relationship of a test to another 

test or to a latent variable is invariant across subpopulations. The prediction of examinees’ future 

performance on one test from their current scores on another test is useful when the predictions 

are invariant (Holland, 2007). Test scores can also be predicted from a latent variable, and the 

invariance of these predictions can be evaluated as questions about differential test functioning 

(Shealy & Stout, 1993). The psychometric quality of the conversion of a test’s scores to another 

test’s scale can be evaluated by determining if the test score conversion is invariant with respect 

to subpopulations (Dorans & Holland, 2000). These three examples feature different types of 

invariance (prediction, measurement, and scaling invariance), each of which is based on a 

specific relationship of a test to another test or to a latent variable (observed score regression, 

latent variable regression, and test score scaling). The purpose of this paper is to develop and 

demonstrate methods for simultaneously evaluating prediction, measurement, and scaling 

invariance for psychometric tests. The prediction, measurement, and scaling invariance of 

relationships among tests and external, nontest criteria are not considered in this paper. 

General Definitions of Invariance  

In this section the definitions proposed for prediction, measurement, and scaling 

invariance are reviewed (Dorans & Holland, 2000; Millsap, 1995; Millsap, 1997; Millsap & 

Everson, 1993). These definitions are described in terms of a relationship of tests X and Y in data 

from a total group of examinees and also in data from G subgroups. Operational versions of this 

section’s general definitions are developed in this study’s Method section and their use is 

demonstrated in empirical investigations of prediction, measurement, and scaling invariance. 

Prediction invariance indicates that the expected scores of Y given the observed X scores 

computed for subpopulation G = g are equal to those computed for the total group, 

( | , ) ( | ).E Y X G g E Y X   (1) 

Measurement invariance indicates that the expected scores of Y given latent variable T 

computed in subpopulation G = g are equal to those computed in the total group, 

( | , ) ( | ).E Y T G g E Y T   (2) 
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One distinction between Equations 1 and 2 is that because X is imperfectly reliable, 

expected Ys and invariance evaluations based on Equation 1 are often considered less accurate 

than those based on Equation 2, due to not completely accounting for the contributions of T to Y 

(Shealy & Stout, 1993). Prediction invariance (Equation 1) and measurement invariance 

(Equation 2) can also be distinguished in terms of what models are used to evaluate the 

relationship of Y to X or T. In prediction invariance, the prediction of Y from X is typically 

modeled with linear regression models (Linn & Werts, 1971; Millsap, 1997). To evaluate 

measurement invariance, researchers have sometimes evaluated Equation 2 using linear factor 

analysis models for conditional X and Y scores (Millsap, 1997) and at other times have focused 

on nonparametric comparisons of conditional Y scores (Borsboom, 2002; Millsap & Everson, 

1993). In addition to conditional expected Y scores, strict prediction and measurement invariance 

have requirements that the conditional variances of Y are equal across subgroups (Millsap, 1995), 

evaluations that are beyond the scope of many invariance investigations and are not addressed in 

this paper. 

The invariance of scaling functions that convert the scores of one test to the scale of 

another test (Kolen & Brennan, 2004) is of interest in psychometric testing contexts (Dorans & 

Holland, 2000). When the scores of X are expressed on Y’s scale using the subpopulation and 

total group data, scaling invariance can be expressed as 

( ) ( ).Yg Ys x s x  (3) 

In psychometric testing contexts, scaling functions are computed for a variety of test forms and 

applications, each of which is expected to meet the invariance requirement of Equation 3 to 

different degrees (Dorans, 2000). When X and Y are alternate test forms of one testing program 

that are built to the same specifications, subpopulation invariant X-to-Y scaling functions can 

help establish that equating has been accomplished, meaning that the scaled X and Y scores can 

be treated interchangeably. When X and Y are not built to the same specifications, the scaled X 

scores are usually not completely comparable with Y and subpopulation invariance is not as 

likely to hold. 
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Suggested Relationships Among the Invariances 

One issue of disagreement in invariance research is whether invariance results would be 

consistent if a test’s relationship to another test or latent variable were simultaneously evaluated 

for prediction, measurement, and scaling invariance. Some discussions have suggested that when 

one type of invariance is established, it implies that other types of invariance are also expected. 

As discussed in Millsap (1995) and Humphreys (1986), the view that prediction invariance is 

consistent with measurement invariance is widely held in the psychometric literature. 

Simulations have demonstrated that levels of prediction invariance are directly related to levels 

of measurement invariance (Hong & Roznowski, 2001). Beliefs that scaling invariance is 

consistent with other types of invariance have also been expressed, as some explanations of lack 

of scaling invariance pertain to measurement issues, such as test content, measurement, and 

construction (Dorans, 2004, p. 48; Kolen, 2004, p. 11–12), while other explanations of lack of 

scaling invariance pertain to subgroup differences in observed score predictions (Dorans, 2004, 

p. 63–64). 

Some work has suggested that the invariances, and in particular prediction and 

measurement invariance, are inconsistent. Subgroup differences in the intercepts of observed 

score regressions have been demonstrated in hypothetical situations where measurement 

invariance is assumed (Linn & Werts, 1971). The subgroup correlations that are one aspect of 

prediction invariance can be nearly identical for conditions where measurement invariance does 

not hold (Drasgow, 1982). Comparisons of measurement and prediction invariance have also 

been studied in terms of the slopes in regression and the pattern loadings in factor analysis 

models, with the invariances shown to be contradictory under all but the most extreme conditions 

(Millsap, 1995; Millsap, 1997). Although the work of Linn and Werts is hypothetical and the 

works of Drasgow and Millsap are theoretical, Millsap argued that his results are realistic and 

encouraged empirical investigations that evaluate and show the inconsistencies among prediction 

and measurement invariance.  

The disagreements about whether prediction, measurement, and scaling invariance are 

consistent or inconsistent suggest that empirical evaluations of the invariances may be useful. 

Empirical studies have the potential to inform suggestions that the invariances are consistent, 

suggestions which are primarily based on empirical studies that have focused on evaluating only 

one type of invariance and inferring the results of other invariances (Dorans, 2004; Humphreys, 
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1986; Kolen, 2004). Empirical studies also have the potential to clarify suggestions that 

prediction and measurement invariance are inconsistent, suggestions which are based on 

theoretical studies that have compared the invariances with respect to theoretical models rather 

than empirical data (Drasgow, 1982; Millsap, 1995; Millsap, 1997). This paper’s use of 

empirical studies to address whether prediction, measurement, and scaling invariance are 

consistent or inconsistent may be useful for both extending prior empirical studies and clarifying 

theoretical suggestions.  

This Study 

In this study an approach is developed that allows prediction, measurement, and scaling 

invariance to be simultaneously considered in psychometric test data. The approach builds on the 

general definitions in Equations 1–3 by utilizing linear and nonlinear prediction, measurement, 

and scaling functions that can be directly related to each other not only with respect to the 

correlations, slopes, and intercepts of linear functions that are the focus of theoretical invariance 

investigations (Drasgow, 1982; Linn & Werts, 1971; Millsap, 1995; Millsap, 1997; Vanderberg, 

2002), but also with respect to the expected and scaled Y scores directly described in the 

invariance definitions. The approach encourages expanded invariance investigations and 

provides opportunities to replicate and extend the results of prior empirical research, such as the 

prediction invariance studies of the slopes and intercepts of linear regression functions (Hunter, 

Schmidt, & Rauschenberger, 1984), and the scaling invariance studies comparing scaling 

invariance results using nonlinear and parallel linear scaling functions (Liu & Holland, 2008). In 

addition, the suggestions of theoretical research that the invariances ought to be inconsistent can 

be evaluated in empirical data, and without the usual approach of first making assumptions that 

measurement invariance is met and then evaluating prediction invariance (Holland & Hoskens, 

2003; Linn & Werts, 1971; Millsap, 1997). In this study’s empirical investigations, evidence that 

the three invariances are consistent would be obtained if the invariances all hold or are all 

violated. Evidence that the three invariances are inconsistent would be obtained if some of the 

invariances hold while others do not. 

Method 

In this section, operational definitions of prediction functions, measurement functions and 

scaling functions are developed that allow for invariance investigations that fit the data to varied 
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degrees, and that replicate and expand on prior invariance discussions. The operational 

prediction, measurement, and scaling functions and the associated invariances were applied in 

evaluations of prediction, measurement, and scaling invariance where two tests were involved (X 

and Y). The considered test relationships featured Xs and Ys that varied in their similarity (i.e., 

levels of scaling and prediction invariance have been noted to coincide with the tests’ degree of 

similarity, Dorans, 2004; Holland & Hoskens, 2003). All of the invariance investigations were 

with respect to gender subgroups, subgroups which are often of similar size and which are a 

typical source of lack of invariance (Kolen & Brennan, 2004). 

Operationalizations and Assessments of Prediction, Measurement, and Scaling Invariance 

Relatable nonlinear and linear X-to-Y functions are developed for the invariance 

evaluations. The nonlinear functions facilitate invariance evaluations that are exploratory, take 

place at each individual score of X, and make relatively few impositions made on the shape and 

form of the prediction, measurement and scaling functions. The linear functions facilitate simpler 

summaries of invariance, where levels of invariance can be directly related to overall 

characteristics of the X and Y data (e.g., means, standard deviations, correlations and X 

reliabilities).  

Nonlinear prediction, measurement, and scaling functions. To operationalize 

Equation 1, the prediction of Y from the observed X scores in subpopulation G = g can be 

obtained as the conditional mean of Y given X, 

| ,( | , ) .NL Y X gE Y X G g  
 (4) 

To operationalize Equation 2, the SIBTEST can be used for evaluating the invariance of 

true score predictions of expected Ys from latent variable T in gender G = g (Millsap & Everson, 

1993, pp. 324–325; Shealy & Stout, 1993, p. 169). With the SIBTEST, the conditional mean of Y 

is estimated as a regression on T, and T is estimated based on X. First, the g subgroups’ true 

scores are estimated as ( ) ( )g Xg Xg XgT X rel X    , where and Xgrel  denotes the alpha 

reliability of X in g1 (Kelley, 1923; Shealy & Stout, 1993, p. 191, equation A9). Then a 

prediction of gender G = g’s conditional mean of Y is made from '( ) ( )
( )

2
g gT X T X

T X


 , where 

the prediction equation is 
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| 1, | 1,
| ,( | , ) ( ) ( ) ,

( 1) ( 1)
Y X g Y X g

NL Y X g g
g g

E Y T G g T X T X
T X T X

 
   

           
 (5) 

(Shealy & Stout, 1993, p, 161, equation 23).  

To operationalize Equation 3, the equipercentile function can be used to scale X to Y in 

subpopulation G = g, 

1( ) ( ) ,Yg NL Yg gs X H F X      (6) 

where F and H are percentile rank functions of X and Y (Kolen & Brennan, 2004) in 

subpopulation g’s data. 

In this study’s demonstrations, the female–male differences of Equations 4, 5, and 6 at 

the individual scores of X are shown in figures (see Appendix). To aid in the interpretation of the 

plotted differences, bivariate loglinear models (Holland & Thayer, 2000) were fit to the data on 

X and Y for males and the data on X and Y for females prior to computing Equations 4–6 to 

produce female–male differences that would be smooth, representative of the observed data, and 

relatively free of sampling fluctuations. As an additional interpretive aid to the plotted 

differences, +/- 2 standard error bands were also plotted to show the statistical significance of the 

differences. The standard errors for the prediction and measurement differences had the form 

2 2[ ( | , )] [ ( | , )]E Y X G F E Y X G M     and the standard errors for the scaling differences 

had the form 2 2[ ( )] [ ( )]YF YMs X s X   (Dorans & Holland, 1993; Moses, 2008; Shealy & 

Stout, 1993). All standard errors reflected the loglinear models fit to the XY data (Holland & 

Thayer, 2000). 

Linear prediction, measurement, and scaling functions. Linear functions for the 

prediction, measurement, and scaling invariances were calculated as versions of Equations 4–6 

based on the overall features of the test data (means, standard deviations, correlations, and X 

reliabilities). For prediction invariance (Equation 1), the linear regression function predicting Y 

from X in gender G = g is 

 ,( | , ) ,Yg
L Yg XY g Xg

Xg

E Y X G g X


  


     (7) 
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where the  s denote means, the  s denote standard deviations and ,XY g  is the XY correlation 

in subpopulation g. The invariance evaluation of subpopulations’ linear prediction functions 

focused on subgroup differences of the prediction functions’ slopes, ,
Yg

XY g
Xg





, intercepts, 

,
Yg

Yg XY g Xg
Xg


  


 , and the predicted Ys (Equation 7) at the grand mean of X in the total (female 

+ male) data.  

For measurement invariance (Equation 2) the linear true score regression function 

predicting Y from T(X) in subpopulation G = g is  

 ( ) ,
( )

( | , ) ( ) ,Yg
L Yg T X Y g Xg

T X g

E Y T G g T X


  


     (8) 

where T(X) and Xgrel  are estimated as described under Equation 5, ( )T X g Xg Xgrel  , and 

,
( ) ,

XY g
T X Y g

Xgrel


   when X is external to Y. The use of the reliabilities rather than the root reliabilities in 

the expressions for ( )T X g  and ( ) ,T X Y g  is somewhat unfamiliar, but directly reflects the standard 

deviation of the ( )gT X s (i.e., since , ( )T X g Xg Xgrel  ). When X is 

internal to Y, the reliabilities and variances of Y’s separate subtests, X and Z, as in X + Z = Y, are used 

to estimate the correlation of Y and T(X) in a way that accounts for X being contained within Y, 

2 2 2

( ) , 2
Xg Xg Yg Yg Zg Zg

T X Y g
Xg Xg Yg

rel rel rel

rel

  


 
 

  (Haberman, 2008). The invariance evaluation of 

subpopulations’ linear measurement functions focused on subgroup differences of the measurement 

functions’ slopes with respect to X (not ( )T X ), '
( ) ,

( )

( )

2
Yg Xg Xg

T X Y g
T X g

rel rel



 

 
 

, intercepts, 

' '
( ) ,

( )

(1 ) (1 )

2
Yg Xg Xg Xg Xg

Yg T X Y g Xg
T X g

rel rel  
  


   

  
 

, and the predicted Ys (Equation 8) at the 

grand mean of X in the total (female + male) data. 

( ) ( )g Xg Xg XgT X rel X   
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For scaling invariance (Equation 3), the linear scaling of X to Y in subpopulation G = g is 

 ( ) .Yg
Yg L Yg Xg

Xg

s X X


 


    (9) 

The invariance evaluation of subpopulations’ linear scaling functions focused on subgroup 

differences of the scaling functions’ slopes, Yg

Xg




, intercepts, Yg
Yg Xg

Xg


 


 , and the scaled Ys 

(Equation 9) at the grand mean of X in the total (female + male) data.  

The invariance evaluations based on the linear prediction, measurement, and scaling 

functions focused more on direct comparisons of the invariance results than the evaluations of 

the nonlinear functions. One difficulty in directly comparing the invariance results based on 

linear functions is that prediction, measurement, and scaling functions produce Y values on 

different scales so that the magnitudes of prediction, measurement, and scaling invariances 

reflect the functions’ respective scales in addition to levels of invariance. To facilitate the direct 

comparison of prediction, measurement, and scaling invariance results, the differences in the 

slopes, intercepts, and estimated Y scores based on Equations 7–9 were all expressed as 

percentages of functions’ estimated scales. The differences in slopes, intercepts, and estimated Y 

scores involving scaling functions (Equation 9) are divided by Y’s standard deviation in the 

combined male and female data. The differences involving prediction and measurement 

functions are divided by the estimated Y’s standard deviation in the combined male and female 

data ( Y XY   for prediction functions like Equation 7 and ( )Y T X Y   for measurement functions 

like Equation 8). 

Data and Test Relationships 

Six datasets from two large-volume testing programs were obtained for this study’s 

analyses. Twelve relationships among the datasets’ tests were evaluated for gender invariance. The 

datasets’ tests were chosen such that they measured a range of constructs, some which are 

quantitative and others which are verbal. The overall characteristics of the six datasets and 12 test 

relationships are summarized in Tables 1 and 2.  
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Table 1 

Descriptive Characteristics of the Six Datasets and XY Test Relationships Where X is Internal to (and Highly Correlated With) Y 

XY relationship 

Ns 
X means  

(SD) 
Y means  

(SD) XY correlations X reliabilities 

Female Male Female Male Female Male Female Male Female Male 

Critical reading: Anchor to total test 
(X: 32 MC Items; Y: X + 35 MC Items)

109,250 87,701 12.95 
(7.12) 

 

13.49 
(7.30) 

30.78 
(14.47)

31.31 
(14.90)

0.95 0.96 0.84 0.85 

English language: MC to composite 
(X: 55 MC Items; Y: X + 3 CR Items) 

187,742 112,045 29.30 
(11.92)

 

29.97 
(12.20) 

77.22 
(23.93)

77.87 
(25.14)

0.92 0.91 0.90 0.90 

History: MC to composite 
(X: 78 MC Items; Y: X + 3 CR Items) 

90,789 75,983 33.70 
(16.05)

 

38.11 
(15.48) 

69.97 
(29.35)

78.86 
(28.69)

0.96 0.95 0.92 0.92 

Math: Anchor to total test 
(X: 24 MC Items; Y: X + 30 MC Items)

109,250 87,701 12.43 
(5.50) 

 

14.19 
(5.49) 

26.59 
(11.96)

30.40 
(12.29)

0.95 0.95 0.83 0.84 

Science: MC to composite 
(X: 70 MC Items; Y: X + 7 CR Items) 

19,362 36,161 18.99 
(13.33)

 

25.36 
(14.47) 

54.16 
(33.99)

66.88 
(36.51)

0.96 0.96 0.90 0.91 

Writing: Anchor to total test 
(X: 26 MC Items; Y: X + 23 MC Items)

109,250 87,701 12.71 
(6.07) 

12.14 
(6.04) 

 

24.96 
(10.13)

23.79 
(10.14)

0.96 0.95 0.81 0.80 

Note. MC = multiple choice; CR = constructed response.
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Table 2 

Descriptive Characteristics of the Six Datasets and XY Test Relationships Where X Is External to (and Less Correlated With) Y 

XY relationship 

Ns 
X means 

(SD) 
Y means 

(SD) XY correlations X reliabilities 

Female Male Female Male Female Male Female Male Female Male 

English language: MC to CR 
(X: 55 MC items; Y: 3 CR items) 

187,742 112,045 29.30 
(11.92) 

 

29.97 
(12.20) 

41.56 
(11.84) 

41.38 
(12.92) 

0.63 0.62 0.90 0.90 

History: MC to CR 
(X: 78 MC items; Y: 3 CR items) 

90,789 75,983 33.70 
(16.05) 

 

38.11 
(15.48) 

31.36 
(12.95) 

33.16 
(13.16) 

0.74 0.70 0.92 0.92 

Math to critical reading  
(X: 24 MC items; Y: 67 MC items) 

109,250 87,701 12.43 
(5.50) 

 

14.19 
(5.49) 

30.78 
(14.47) 

31.31 
(14.90) 

0.69 0.68 0.83 0.84 

Math to writing 
(X: 24 MC items; Y: 49 MC items) 

109,250 87,701 12.43 
(5.50) 

 

14.19 
(5.49) 

24.96 
(10.13) 

23.79 
(10.14) 

0.70 0.69 0.83 0.84 

Science: MC to CR 
(X: 70 MC items; Y: 7 CR items) 

19,362 36,161 18.99 
(13.33) 

 

25.36 
(14.47) 

29.95 
(18.15) 

34.50 
(19.34) 

0.86 0.85 0.90 0.91 

Writing to critical reading 
(X: 26 MC items; Y: 67 MC items) 

109,250 87,701 12.71 
(6.07) 

12.14 
(6.04) 

30.78 
(14.47) 

31.31 
(14.90) 

0.80 0.79 0.81 0.80 

Note. MC = multiple choice; CR = constructed response. 
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For six of the considered relationships the Xs are internal and highly correlated with the 

Ys (Table 1). The scores in some of the datasets were on critical reading, math, and writing tests 

where X was an anchor test composed of a small number of Y’s multiple-choice items and 

designed to be a miniature version of Y. The scores in other datasets were on English language, 

history and science tests where X was a multiple-choice subtest contained within Y, and Y was a 

composite test composed of X and another subtest of constructed response items. The operational 

testing programs that collected Table 1’s data develop X-to-Y conversions in order to link Y to 

other tests and scales that are directly connected through the Xs. Assumptions of prediction, 

measurement and scaling invariance are commonly invoked to produce these conversions. For 

XY relationships where X is internal to Y, the XY correlations tend to be high (Table 1).  

Six additional relationships were studied where the Xs are external and less correlated 

with the Ys (Table 2). These XY relationships feature the same Xs as the first six relationships 

(Table 1), but different Ys. One use of X-to-Y relationships where the Xs are external and less 

correlated with the Ys is an equating situation where an originally-intended internal anchor (X) is 

replaced with a different external anchor that is less representative of the test being equated (Y), 

but may be of higher psychometric quality (i.e., X-to-Y relationships of the math or writing 

anchor to the critical reading test, or the math anchor to the writing test, Table 2). 

Another use of X-to-Y relationships where the Xs are external to the Ys is the linking of a 

multiple-choice (MC) subtest to a constructed response (CR) subtest (i.e., X-to-Y relationships of 

the multiple-choice-to-constructed response subtests for the English language, history, and 

science datasets). These six additional XY relationships differ from the previously described 

relationships where the Xs were internal to the Ys, in that X and Y are built to different 

specifications and measure different constructs. As a consequence, the six relationships where 

the Xs are external to the Ys featured relatively low correlations (Table 2 vs. Table 1). 

Results 

Relationships Where X is Internal to (and Highly Correlated With) Y 

Evaluations of prediction, measurement, and scaling invariance for XY relationships 

where X is internal and highly correlated with Y are presented in difference plots in Figures 1–6 

(Figures 1–12 appear in the Appendix). These figures show that the female–male differences 

between the nonlinear prediction, measurement, and scaling functions have similar shapes. 
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Almost all of the differences are positive, indicating that the expected or scaled Y scores for 

females are greater than those for males. Whether or not the differences in Figures 1–6 are 

statistically significant (i.e., beyond the +/- 2 SE bands from zero) is relatively consistent for the 

three forms of invariance. Many of the difference series in Figures 1–6 appear to be nearly linear 

and constant in the middle of score ranges of the Xs, suggesting that for the middle scores of the 

Xs, the invariance results will be adequately summarized by the differences in the intercepts of 

linear functions.  

The female–male differences in the slopes, intercepts, and predicted and scaled Ys 

based on linear prediction, measurement, and scaling functions are shown in Table 3. To 

facilitate comparisons of the invariance results, Table 3’s differences are expressed as 

percentages of the predicted or scaled Y scores. These differences are useful for clarifying 

and summarizing the nonlinear differences in Figures 1–6, showing that for most of the six 

relationships, the magnitudes of prediction, measurement, and scaling invariance are similar 

and that the extent of invariance is mostly in intercept differences rather than slope 

differences. For four of the six relationships, the prediction, measurement, and scaling 

invariance results agree in terms of being statistically significant. Two exceptions are the XY 

relationships based on the math test, where the prediction invariance results are not 

statistically significant but the measurement and scaling invariance results are, and the 

writing test, where the prediction and scaling invariance results are statistically significant 

but the measurement invariance result is not.  

Relationships Where X is External to (and Less Correlated With) Y 

The female–male differences among the nonlinear prediction, measurement, and 

scaling functions for X relationships where X was external and less correlated with Y are 

plotted in Figures 7–12. Like Figures 1–6, Figures 7–12 show that the three invariances are 

fairly consistent. For the middle scores of X, almost all of the difference series appear to be 

nearly constant (with the exception of English language), and mostly linear (with the 

exception of the writing-to-critical reading relationship). The writing-to-critical reading 

relationship is somewhat different from the other 11 relationships in that the female–male 

differences are negative, reflecting a unique performance pattern where females did better 

than males on the writing anchor but worse than males on the critical reading test (Table 2). 
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Table 3 

Female–Male Differences in the Intercepts, Slopes and Estimated Y Values at the Grand Mean of X (Expressed as % of Scale) for 

the XY Test Relationships Where X Is Internal to (and Highly Correlated With) Y 

 
Differences in intercepts 

(female–male) 
Differences in slopes 

(female–male) 

Differences in estimates of Y at  
the grand mean of X 

(female–male) 

 Prediction Measurement Scaling Prediction Measurement Scaling Prediction Measurement Scaling 

Critical 
reading 
 

5.2% 4.3% 4.7% -0.1% 0.1% -0.1% 5.1%* 4.4%* 4.6%* 

English 
language 
 

6.9% 6.8% 9.2% -0.1% -0.1% -0.2% 6.7%* 6.7%* 9.0%* 

History  
 

3.7% 10.9% 7.3% 0.0% -0.1% -0.1% 3.7%* 10.8%* 7.2%* 

Math 
 

6.3% 12.1% 7.8% -0.5% -0.3% -0.5% 5.7%* 11.8%* 7.2%* 

Science 
 

6.2% 17.8% 7.8% 0.1% 0.2% 0.1% 6.3%* 17.9%* 7.9%* 

Writing 
 

3.3% 1.9% 2.9% -0.1% -0.2% -0.1% 3.2%* 1.7%* 2.8%* 

* Significant differences were shown in Figures 1–6 at the grand mean of X.
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Table 4 

Female–Male Differences in the Intercepts, Slopes and Estimated Y Values at the Grand Mean of X (expressed as % of scale) for 

the XY Test Relationships Where X is External to (and Less Correlated With) Y 

 
Differences in intercepts 

(female–male) 
Differences in slopes 

(female–male) 

Differences in estimates of y at  
the grand mean of x 

(female–male) 
 

Prediction Measurement Scaling Prediction Measurement Scaling Prediction Measurement Scaling 

English 
language 

20.8% 17.8% 22.9% -0.4% -0.3% -0.5% 19.1% 16.7% 21.6% 

History 9.1% 15.0% 26.1% 0.0% -0.1% -0.3% 9.0%* 14.8%* 25.2%* 

Math-to-
critical 
reading 

31.3% 33.2% 36.3% -0.3% 0.1% -0.6% 30.9%* 33.3%* 35.8%* 

Math-to-
writing 

46.7% 44.9% 44.3% 0.2% 0.7% -0.1% 47.2%* 46.0%* 44.2%* 

Science 13.1% 16.3% 18.3% 0.2% 0.4% 0.1% 13.3%* 16.7%* 18.5%* 

Writing-to-
critical 
reading 

-7.9% -6.9% -6.3% -0.5% -0.7% -0.5% -8.4%* -7.5%* -6.7%* 

* Significant differences were shown in Figures 7–12 at the grand mean of X. 
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The female–male differences in the linear prediction, measurement, and scaling 

functions’ intercepts, slopes, and expected or scaled Ys for X relationships where X was 

external and less correlated with Y are summarized in Table 4. Like Table 3, Table 4’s 

differences are expressed as percentages of the predicted or scaled Y’s scale. Across the six 

XY relationships, the invariance results are consistent in terms of whether they are 

statistically significant. Like Table 3, Table 4 shows that the expected or scaled Y differences 

are mostly due to intercept differences rather than slope differences and are of similar 

magnitudes for each of the invariances. The magnitudes of Table 4’s differences are larger 

than those of Table 3’s differences. 

Discussion 

In the study of prediction, measurement, and scaling invariance, different answers have 

been given for how well the results of evaluating one type of invariance represent the results 

obtained from evaluating other types of invariance. Empirical studies tend to focus on evaluating 

one type of invariance and then infer what their results suggest about other types of invariance 

(Dorans, 2004; Humphreys, 1986; Hunter et al., 1984; Kolen, 2004). Theoretical investigations 

have directly compared different types of invariance using theoretical assumptions that are not 

likely encountered in empirical contexts, such as perfectly-met measurement invariance, XY 

correlations of 1, and subpopulations with identical distributions on X (von Davier, Holland & 

Thayer, 2003; Holland & Hoskens, 2003; Linn & Werts, 1971; Millsap, 1997). The empirical 

invariance evaluations developed and demonstrated in this study provide ways to address 

questions about how consistent prediction, measurement, and scaling invariance are when 

simultaneously evaluated in psychometric data. 

The overall results of this study’s demonstrations replicate and extend the results of prior 

empirical studies by finding that 

 invariance in X-to-Y prediction, measurement and scaling functions is more likely to 

be achieved when X is highly correlated to Y (Dorans, 2000), 

 prediction, measurement, and scaling invariance results are often consistent (Dorans, 

2004; Humphreys, 1986; Kolen, 2004), 

 the major source of prediction, scaling, and measurement invariance results tends to 

be in the differences of subpopulation functions’ intercepts rather than in functions’ 
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slope or in nonlinear functions (Houston & Novick, 1987; Humphreys, 1986; Hunter, 

et al., 1984; Liu & Holland, 2008; Rotundo & Sackett, 1999; Rushton & Jensen, 

2005; Sackett, Schmitt, Ellingson, & Kablin, 2001; Schmidt & Hunter, 1981). 

This study’s overall results exhibit a high degree of generalizability with the major results 

of prior empirical studies. The generalizability of this study’s results with prior empirical studies 

is useful for explaining the limited generalizability of theoretical studies, in that theoretical 

invariance studies’ suggestions that prediction and measurement invariance are likely to be 

inconsistent are based on theoretical assumptions rather than empirical data, and have focused 

more on subpopulations’ slope and correlation differences than on subpopulations’ predicted Y 

and intercept differences (Drasgow, 1981; Millsap, 1995; Millsap, 1997).  

This study suggests ways to increase the generalizability of theoretical invariance studies 

to empirical situations. Theoretical comparisons of prediction and measurement invariance have 

suggested that  perfect regression slope invariance and factorial invariance occur only when the 

X and Y standard deviations are equal or when the ratios of common factor and unique variances 

are invariant (Millsap, 1998). This study’s consideration of scaling invariance with prediction 

and measurement invariance evaluations provided a way to determine the extent to which 

prediction, measurement, and scaling slope invariance could be attributed to differences in 

subpopulations’ ratios of Y and X standard deviations (Equations 7–9). This study’s empirical 

results suggested that although it may not be likely for subpopulations’ X standard deviations to 

be identical and their Y standard deviations to be identical, these standard deviations were not so 

different as to cause large differences in the scaling functions’ slopes (i.e., standard deviation 

ratios, Equation 9). Because correlations and reliabilities tended to be even more similar than the 

standard deviation ratios (Tables 1 and 2), the slopes of the prediction and measurement 

functions would also not differ much (Tables 3 and 4). This study’s empirical results are a 

reminder that with relatively small differences in subpopulations’ slopes, the question of 

invariance is primarily an issue of subpopulation intercept differences, meaning that 

subpopulations’ mean differences on Y do not line up with subpopulations’ mean differences on 

X. Intercepts and mean differences are not extensively considered in theoretical studies, though 

they have been mentioned in hypothetical discussions (Linn & Werts, 1971) and can be 

evaluated with respect to models that assume perfect measurement invariance (Millsap, 1998). 

The results of this and previous empirical studies suggest that theoretical discussions would be 
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more generalizable to empirical situations if theoretical discussions focused on differences 

among subpopulation means and intercepts. 

The current study’s developed approach should be useful for encouraging other empirical 

investigations of prediction, scaling, and measurement invariance. Alterations of this study’s 

significance tests and comparisons of predicted Ys and scaled Ys can be useful for informing 

questions of special interest to practice. The comparison of predicted Y scores across 

subpopulations is an important practical evaluation of measurement invariance that has eluded 

other measurement invariance analysis approaches (Millsap & Meredith, 2007). This study’s 

direct evaluations of predicted and scaled Y score differences support interpretations of results 

not only with respect to statistical significance but also with respect to practically significant 

differences (i.e., differences that are large enough to affect reported scores, or Differences That 

Matter, Dorans & Feigenbaum, 1994). Finally, the current study considered the invariances with 

respect to both nonlinear and linear prediction, measurement, and scaling functions.  

In additional studies, a more deliberate choice among linear and nonlinear functions 

might be of interest and statistical significance tests might inform this interest. For example, 

significance tests of the linearity of prediction functions are possible (Pedhazur, 1997). Because 

of the nature of this study’s measurement functions where there is a one-to-one correspondence 

of observed and expected true scores, significance tests of prediction function linearity also apply 

to measurement functions. Other tests of the linearity of scaling functions are also available (von 

Davier, Holland, & Thayer, 2004). An important strength of the invariance evaluations 

developed in this study is that the evaluations are amendable to each of these interests (i.e., 

determining the practical significance of differences in Ys, and determining the statistical 

significance among linear and nonlinear functions). 

This study’s results are especially relevant for test equating, where the intention is to link 

Y to the scale of another test, where Y and the other test are administered to nonequivalent 

groups, and where X is administered to both groups and used to identify and statistically account 

for group differences. Different methods have been developed for this context, and these 

methods are often distinguished by how the statistical adjustment of the Y scores accounts for 

groups’ differences observed in X. Some methods use a discounted portion of the group 

differences based on the strength of the Y|X regressions (Tucker and frequency estimation), 

others expand the observed group differences as a function of X’s reliabilities (Levine), and 
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others directly use the observed group differences in X (chained; Kolen & Brennan, 2004; 

Livingston, 2004). The differences among these equating methods can be particularly large in 

situations where group differences on X are large (e.g., the science test in this study where X was 

internal to Y and the standardized differences on X was 0.46, Tables 1-2). Practitioners often 

consider the chained and Levine methods to be more appropriate than Tucker and frequency 

estimation methods for addressing large group differences on X (Kolen & Brennan, 2004, pp. 

128–129; Livingston, 2004, p. 58). This belief reflects an assumption that large observed group 

differences on X such as those of the science test are accurate and do not indicate violations of 

the invariance assumptions of the chained (scaling invariance) and Levine (measurement 

invariance) equating methods.  

The current study shows that for the science test all three invariances were violated, but 

that the violations of prediction and scaling invariance were similar and lower than the violation 

of measurement invariance (Table 3). The science test’s relatively high lack of measurement 

invariance occurs even after the groups are matched on T(X) (Figure 5, noting that there is a one-

to-one correspondence between X and T(X)), ruling out the possibility that apparent lack of 

invariance of functions’ intercepts is due to group differences on T(X) rather than actual 

measurement invariance (Millsap, 1998). One implication for the science test is that equating 

methods based on measurement invariance assumptions (Levine methods) may actually be less 

appropriate than other equating methods based on assumptions of scaling invariance (chained) or 

prediction invariance (Tucker and frequency estimation). Another implication builds on the 

notion that “if populations are too dissimilar, any equating is suspect” (Kolen & Brennan, 2004, 

p. 129) by suggesting that if populations are too dissimilar, any invariance assumption may be 

suspect. 

  



 

19 
 

References 

Borsboom, D. (2002). Different kinds of DIF: A distinction between absolute and relative forms 

of measurement invariance and bias. Applied Psychological Measurement, 26(4), 433–

450. 

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2003). Population invariance and chain 

versus post-stratification methods for equating and test linking. In N. Dorans (Ed.), 

Population invariance of score linking: Theory and applications to Advanced Placement 

Program® Examinations (ETS Research Rep. No. RR-03-27, pp. 19–36). Princeton, NJ: 

ETS.  

von Davier, A. A., Holland, P. W., & Thayer, D. T. (2004). The kernel method of test equating. 

New York, NY: Springer-Verlag. 

Dorans, N. J. (2000). Distinctions among classes of linkages. College Board Research Report 

(No. 11). New York, NY: The College Board. 

Dorans, N. J. (2004). Using subpopulation invariance to assess test score equity. Journal of 

Educational Measurement, 41(1), 43–68. 

Dorans, N. J., & Feigenbaum, M. D. (1994). Equating issues engendered by changes to the SAT®  

and PSAT/NMSQT®. In I. M. Lawrence, N. J. Dorans, M. D. Feigenbaum, M. Feryok, A. 

P. Schmitt, & N. K. Wright (Eds.), Technical issues related to the introduction of the new 

SAT and PSAT/NMSQT (ETS Research Rep. No. RM-94-10). Princeton, NJ: ETS. 

Dorans, N. J., & Holland, P. W. (2000). Population invariance and the equatability of tests: Basic 

theory and the linear case. Journal of Educational Measurement, 37(4), 281–306. 

Drasgow, F. (1982). Biased test items and differential validity. Psychological Bulletin, 92(2), 

526–531. 

Haberman, S. J. (2008). When can subscores have value? Journal of Educational and Behavioral 

Statistics, 33(2), 204–229. 

Holland, P.W. (2007). A framework and history for score linking. In N.J. Dorans, M. Pommerich 

& P.W. Holland (Eds.), Linking and aligning scores and scales (pp. 5–30). New York, 

NY: Springer. 

Holland, P. W., & Hoskens, M. (2003). Classical test theory as a first-order item response theory: 

Application to true-score prediction from a possibly nonparallel test. Psychometrika, 68, 

123–149. 



 

20 
 

Holland, P. W., & Thayer, D. T. (2000). Univariate and bivariate loglinear models for discrete 

test score distributions. Journal of Educational and Behavioral Statistics, 25, 133–183.  

Hong, S., & Roznowski, M. (2001). An investigation of the influence of internal test bias on 

regression slope. Applied Measurement in Education, 14, 351–368.  

Houston, W. M., & Novick, M R. (1987). Race-based differential prediction in Air Force 

technical training programs. Journal of Educational Measurement, 24, 309–320. 

Humphreys, L. G. (1986). An analysis and evaluation of test and item bias in the prediction 

context. Psychological Bulletin, 71, 327–333. 

Hunter, J. E., Schmidt, F. L., & Rauschenberger, J. (1984). Methodological, statistical, and 

ethical issues in the study of bias in psychological tests. In C. R. Reynolds & R. T. Brown 

(Eds.), Perspectives on bias in mental testing (pp. 41–99). New York, NY: Plenum Press. 

Kelley, T. L. (1923). Statistical methods. New York, NY: Macmillan. 

Kolen, M. J. (2004). Population invariance in equating and linking: Concept and history. Journal 

of Educational Measurement, 41(1), 3–14. 

Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking, Second Edition. New 

York, NY: Springer. 

Linn, R. L., & Werts, C. E. (1971). Considerations for studies of test bias. Journal of 

Educational Measurement, 8, 1–4. 

Liu, M., & Holland, P. W. (2008). Exploring population sensitivity of linking functions across 

three Law School Admission Test administrations. Applied Psychological Measurement, 

32(1), 27–44. 

Livingston, S. A. (2004). Equating test scores (without IRT). Princeton, NJ: ETS. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, MA: 

Addison-Wesley. 

Millsap, R. E. (1995). Measurement invariance, predictive invariance, and the duality paradox. 

Multivariate Behavioral Research, 30(4), 577–605. 

Millsap, R. E. (1997). Invariance in measurement and prediction: Their relationship in the single-

factor case. Psychological Methods, 2(3), 248–260. 

Millsap, R. E. (1998). Group differences in regression intercepts: Implications for factorial 

invariance. Multivariate Behavioral Research, 33(3), 403–424. 



 

21 
 

Millsap, R. E., & Everson, H. T. (1993). Methodology review: Statistical approaches for 

assessing measurement bias. Applied Psychological Measurement, 17(4), 297–334. 

Millsap, R. E., & Meredith, W. (2007). Factorial invariance: Historical perspectives and new 

problems. In R. Cudeck & R. C. MacCallum (Eds.), Factor analysis at 100: Historical 

developments and future directions (pp. 131–152). Hillsdale, NJ: Lawrence Erlbaum. 

Moses, T. (2008). Using the kernel method of test equating for estimating the standard errors of 

population invariance measures. Journal of Educational and Behavioral Statistics, 33(2), 

137–157. 

Pedhazur, E. J. (1997). Multiple regression in behavior research. Fort Worth, TX: Harcourt 

College. 

Rotundo, M., & Sackett, P. R. (1999). Effect of rater race on conclusions regarding differential 

prediction in cognitive ability tests. Journal of Applied Psychology, 84, 815–822. 

Rushton, J. P., & Jensen, A. R. (2005). Thirty years of research on race differences in cognitive 

ability. Psychology, Public Policy, and Law, 11, 235–294. 

Sackett, P. R., Schmitt, N., Ellingson, J. E., & Kablin, M. B. (2001). High-stakes testing in 

employment, credentialing, and higher education: Prospects in a post-affirmative-action 

world. American Psychologist, 56, 302–318. 

Schmidt, F. L., & Hunter, J. E. (1981). Employment testing: Old theories and new research 

findings. American Psychologist, 36, 1128–1137. 

Shealy, R., & Stout, W. F. (1993). A model-based standardization approach that separates true 

bias/DIF from group ability differences and detects test bias/DTT as well as item 

bias/DIF. Psychometrika, 58, 159–194. 

Vanderberg, R. J. (2002). Toward a further understanding of and improvement of measurement 

invariance methods and procedures. Organizational Research Methods, 5(2), 139–158. 

Wainer, H., Vevea, J. L., Camacho, F., Reeve, B. B., III, Rosa, K., Nelson, L., Swygert, K., & 

Thissen, D., (2001). Augmented scores-“borrowing strength” to compute scores based on 

small numbers of items. In D. Thissen & H. Wainer (Eds.), Test scoring, (pp. 343–387). 

Mahwah, NJ: Erlbaum. 

  



 

22 
 

Note 

1The use of estimated true scores in Equation 5 ( ( )gT X  and ( )T X ) has prompted concerns from 

reviewers. One reviewer worried that because true scores are unknowable and require 

estimation, measurement invariance can never actually be evaluated in practice. In fact, 

empirical evaluations of all three of the invariances require the use of estimated and 

unknowable quantities (Equations 4–9). A focus of the reviewer’s concern seemed to be about 

the estimation of subpopulation-dependent true scores because not only are the 

subpopulation’s true scores unknown but there are as many true scores as there are 

subpopulations. A response to the issue of subpopulation-dependent true score estimation is to 

note demonstrations which show that a subpopulation’s true score mean can be more 

accurately estimated when group membership is incorporated into true score estimation 

(Holland & Hoskens, 2003). A response to concerns about multiple subpopulations and true 

score estimates is that just as different true score estimates are quite appropriately obtained for 

different subpopulations (Lord & Novick, 1968, p. 153), different prediction, measurement, 

and scaling invariance results can be obtained when different subpopulations are considered. 

Discussions with this reviewer eventually revealed that his focus was on the problematic use 

of demographic information to score a test (Holland & Hoskens, 2003; Wainer, Vevea, 

Camacho, Reeve, Rosa, & Nelson, 2001). Test scoring issues are tangential to the focus of the 

current paper (empirical invariance evaluations).  

Another reviewer worried that Equation 2 amounted to a nonlinear relationship of the 

expected Y with true scores, that averaging the subpopulations’ true scores was ad hoc, and 

that idealized conditions of perfect reliability and identical subpopulation means would result 

in perfect measurement invariance. In response to these issues, linear analogues to Equation 5 

are considered (Equation 8), and score-level analyses partly address the averaging of 

subpopulations’ true scores because measurement invariance can be directly evaluated for a 

wide range of true score values. Finally, for idealized conditions where perfect reliability 

and/or identical subpopulation means are obtained, the subpopulations’ true scores are equal 

and the results of evaluating the test relationship for measurement invariance are equivalent to 

the results from evaluating that test relationship for prediction invariance (i.e., Equation 5 will 

equal Equation 4 and not necessarily establish perfect measurement invariance).  
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As pointed out by a third reviewer, an alternative to using estimated true scores as 

Equation 5’s conditioning variable would be to use estimated abilities such as the estimated 

thetas from fitting IRT models to X’s items. The use of IRT models involves additional 

complexities that make the connects between prediction, measurement and scaling functions 

less direct, though IRT discussions due provide some justification for Equation 5’s use of 

estimated true scores of X (Holland & Hoskens, 2003). Holland and Hoskens’ IRT 

discussions assumed perfect measurement invariance and their simulated and empirical 

demonstrations focus on Rasch models where X’s and Y’s total scores are sufficient statistics 

for the corresponding IRT thetas. The connections between IRT thetas and the three 

invariances are less clear for conditions where measurement invariance is evaluated rather 

than assumed and where the relationship between X’s total score and theta are less direct. 
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Figure 1. Score-level assessment of prediction, measurement and scaling invariance for 

critical reading, where X is internal to (and highly correlated with) Y.   
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Figure 2. Score-level assessment of prediction, measurement and scaling invariance for 

English language, where X is internal to (and highly correlated with) Y. 
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Figure 3. Score-level assessment of prediction, measurement and scaling invariance for 

history, where X is internal to (and highly correlated with) Y. 
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Figure 4. Score-level assessment of prediction, measurement and scaling invariance for 

math, where X is internal to (and highly correlated with) Y. 
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Figure 5. Score-level assessment of prediction, measurement and scaling invariance for 

science, where X is internal to (and highly correlated with) Y. 
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Figure 6. Score-level assessment of prediction, measurement and scaling invariance for 

writing, where X is internal to (and highly correlated with) Y.  
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Figure 7. Score-level assessment of prediction, measurement and scaling invariance for 

English language, where X is external to (and less correlated with) Y.  
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Figure 8. Score-level assessment of prediction, measurement and scaling invariance for 

history, where X is external to (and less correlated with) Y. 
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Figure 9. Score-level assessment of prediction, measurement and scaling invariance for 

math to critical reading, where X is external to (and less correlated with) Y. 
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Figure 10. Score-level assessment of prediction, measurement and scaling invariance for 

math to writing, where X is external to (and less correlated with) Y.  
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Figure 11. Score-level assessment of prediction, measurement and scaling invariance for 

science, where X is external to (and less correlated with) Y. 
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Figure 12. Score-level assessment of prediction, measurement and scaling invariance for 

writing to critical reading, where X is external to (and less correlated with) Y. 
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