
Can Smoothing Help When 
Equating With Unrepresentative 
Small Samples?

Gautam Puhan

March 2011

Research Report 
ETS RR–11-09



March 2011 

Can Smoothing Help When Equating With Unrepresentative Small Samples? 

Gautam Puhan 

ETS, Princeton, New Jersey 

 



 

Technical Review Editor: Dan Eignor 

Technical Reviewers: Sooyeon Kim and Rick Morgan 

Copyright © 2011 by Educational Testing Service. All rights reserved. 

ETS, the ETS logo, and, LISTENING. LEARNING. LEADING., are 
registered trademarks of Educational Testing Service (ETS). PRAXIS 

is a trademark of ETS. 

SAT is a registered trademark of the College Board. 

As part of its nonprofit mission, ETS conducts and disseminates the results of research to advance 

quality and equity in education and assessment for the benefit of ETS’s constituents and the field. 

To obtain a PDF or a print copy of a report, please visit: 

http://www.ets.org/research/contact.html 



 

i 

Abstract 

The study evaluated the effectiveness of log-linear presmoothing (Holland & Thayer, 1987) on 

the accuracy of small sample chained equipercentile equatings under two conditions (i.e., using 

small samples that differed randomly in ability from the target population versus using small 

samples that were distinctly different from the target population). Results showed that equating 

with small samples (e.g., N < 50) using either raw or smoothed score distributions can result in a 

substantial amount of random equating error (although smoothing reduced random equating 

error). Even with samples sizes of 100, the random equating error was quite large (greater than 

the difference that matters or DTM) for almost all score points. Moreover, when the small 

samples were unrepresentative of the target population, which is quite likely for small samples, 

the amount of equating bias (in addition to random equating error) was considerably large for 

both the raw and smoothed equatings. It was concluded that although presmoothing helped 

reduce random equating error, it is unlikely to reduce equating bias caused by using an 

unrepresentative sample. Other alternatives to the small sample equating problem that focus 

more on improving data collection than on improving existing equating methods are discussed.  

Key words: log-linear presmoothing, test equating, small sample, random equating error, 

systematic equating error  
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Test equating involves two general sources of error (Kolen & Brennan, 2004). Systematic 

equating error (SEE) may result from factors such as using common items that do not 

adequately represent the total test in a nonequivalent anchor test (NEAT) design or using a 

sample that is clearly unrepresentative of the intended population to conduct the equating. 

Random equating error is present whenever a sample from a population of examinees is used to 

estimate the equating relationship. When the sample is large and representative of the population, 

then random equating error is small and the equating relationship is likely to be a close estimate 

of the equating relationship in the population. But when the sample is small and does not 

adequately represent the population, the equating can be inaccurate (Livingston, 1993). Testing 

programs frequently encounter small sample sizes and the number can often be as small as 20 or 

30 test takers. Consequently, sample size can pose a problem when a new test form is introduced 

and has to be equated to an old form already on scale.  

Several studies have examined the effect of small sample sizes on equating accuracy. For 

example, Kolen (1985) examined samples of 100 and 250 and found the standard error of 

equating to be sufficiently accurate with sample sizes of 250. Parshall, Du Bose Houghton, and 

Kromrey (1995) examined equatings based on 15, 20, 50, and 100 examinees and concluded that 

although equating bias was trivial even for samples as small as 15, random equating error 

substantially increased with smaller sample sizes. Skaggs (2005) evaluated equatings derived 

using sample sizes ranging from 15 to 200 in an equivalent groups design and concluded that for 

samples as small as 25, no equating was likely to be preferable, but for samples of 50 to 75, 

equating was preferable to no equating. In a recent study, Puhan, Moses, Grant, and McHale 

(2008) examined small sample linear equatings under the NEAT design. They found that for 

random equating error to be lower than the difference that matters or DTM (Dorans & 

Feigenbaum, 1994) criterion for scores within 1.5 standard deviations above or below the mean, 

at least 600 examinees for each of the new and old forms were needed.  

Other studies have focused on modifying existing equating method to improve their 

performance with small samples. For example, Kim, von Davier, and Haberman (2006) proposed 

the synthetic linking function for small samples, which is defined as a weighted average of an 

estimated equating function (based on a small sample), and the identity function or no equating. 

They found that for samples as small as 10 or 25, the synthetic function was preferable to either 

no equating or using just the equating based on the small sample. Livingston and Kim (2009) 
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proposed the circle arc equating method for equating with small samples. This method constrains 

the equating curve to pass through two specified end points and an empirically determined 

middle point. The upper end point of the curve is determined by the maximum possible score on 

the test. The lower end point is fixed at the chance score (e.g., for a test consisting of 100, 4-

choice multiple choice or MC items, the chance score is 25). The middle point is the equated 

mean score on the new form, which is determined by conducting a mean equating using the 

available small sample. These three points are used to determine a circle arc, which in turn, 

determines the equated scores on the new form. The authors found that the circle arc method 

outperformed other equating methods (e.g., Tucker, Levine, chained equipercentile, and chained 

linear) when the sample size was as small as 25 examinees.  

Smoothing the data before conducting the equating (presmoothing) or after the equating 

function has been derived (postsmoothing) has also been shown to reduce error in small sample 

equating. For example, Livingston (1993), working with samples of 25, 50, 100, and 200, found 

that presmoothing significantly reduced equating error, particularly for the smallest size samples. 

He noted that presmoothing improved equating accuracy about as much as doubling the sample 

size would have done. Similarly, Hanson, Zeng, and Colton (1994) compared linear and identity 

equating (no equating) with unsmoothed, presmoothed, and postsmoothed equipercentile 

equating for five ACT assessments and found that smoothing improved equipercentile equatings 

when there were small samples, although there was no clearly preferred smoothing method when 

considering the pre- or postsmoothed methods. In a recent study (although not conducted to 

evaluate smoothing in small sample contexts), Cui and Kolen (2009) found that smoothing 

improved the estimation of the equating relationship by reducing total error (i.e., equating error 

and bias).  

Although a proposed modification of an equating method may outperform existing 

equating methods when equating with small samples, it is possible that the proposed (modified) 

method produces equatings (in small sample situations) that are still not close enough to the true 

equating relationship. For example, consider a situation where the true equating relationship is 

known (i.e., an equating function derived using a very large data set). If we compare the small 

sample equating results based on an existing equating method (e.g., equating based on raw data 

or ER) versus a modified equating method (e.g., equating based on smoothed data or ES) and 

found that ES produced results closer to the true equating than ER, then ES would be considered 
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an improvement over ER. However, an important question is whether ES produced an equating 

that is close enough to the true equating to be considered appropriate for high stakes uses, such 

as admission or certification. Suppose, using the true equating function, a score of 80 on the new 

form converted to a score of 75 on the old form and using ER, the same score converted to 79.5 

and using ES, the same score converted to a score of 79. Although using ES may be preferred 

over ER since it produced results closer to the truth, some may argue that the results of ES are 

still quite far from the true equating function and therefore not appropriate for high stakes use.  

Purpose of the Study 

This study evaluated the effectiveness of log-linear presmoothing (Holland & Thayer, 

1987) on the accuracy of equatings with small sample sizes. Log-linear models provide useful 

smoothing techniques that allow the user to specify the number of moments of the observed 

distribution to be preserved in the smoothed distribution. This ensures that certain important 

properties of the observed data are retained in the smoothed data. If the observed sample is small, 

then the model may preserve only the mean and standard deviation of the observed distribution. 

If the observed sample is large, more moments such as the skewness and kurtosis of the observed 

distribution, can be preserved. Since the score distributions are smoothed before they are used for 

equating, the procedure is usually referred to as presmoothing.  

Although the small sample size issue has been examined previously (e.g., Hanson, Zeng, 

& Colton, 1994; Livingston, 1993), the current study is distinct from previous studies in at least 

one important way. While previous studies used small samples that differed only randomly in 

ability from the target population, the current study will, in addition to evaluating equatings 

using small samples that differed randomly in ability, also evaluate equatings using small 

samples that are distinctly different from the target population. Although smoothing may reduce 

random error (Kolen & Brennan, 2004) in equating, the effectiveness of smoothing in reducing 

equating bias that may result from using unrepresentative small samples has not been 

investigated previously and was therefore evaluated in this study.  

This added evaluation was motivated by advice from Holland, Dorans, and Petersen 

(2007), who stated that although smoothing may help in equating for moderate sample sizes, it 

may not be of much help for small samples, especially when it is unclear how well the small 

sample represents the intended population. Parshall et al. (1995) also pointed out that in actual 

testing programs the examinees taking a new test form may not represent a random sample but a 
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sample of convenience that may differ systematically from the population, and although the issue 

of sampling bias is not limited to small sample equatings, the statistical effects resulting from the 

use of a convenience sample are likely to be larger when the convenience sample is small.  

Method 

Data  

Approximately 20,000 examinee responses from an operational form of a test, referred to 

as Test X, were used in this study. Form X consisted of 120 multiple-choice (MC) items 

measuring basic skills in elementary education and covered four subcontent areas or subscores 

(i.e., reading, mathematics, social studies, and science). Each subcontent area contributed equally 

to the total test (i.e., 30 out of 120 items or 25% of the total test).  

The Approach 

A hypothetical testing situation was created, whereby the single Form X was divided into 

two pseudo forms (i.e., Forms X1 and X2) with 84 items in each form and with 48 items 

common to both forms (see Figure 1 for illustration). As seen in Figure 1, Form X (consisting of 

120 items) is divided into two alternate subforms, Forms X1 and X2, each consisting of 84 items. 

The shaded portion indicates the common section of 48 items between Forms X1 and X2. The 

items for Forms X1 and X2 were selected such that Forms X1 and X2 were also composed of the 

four content areas of reading, mathematics, social studies, and science, with each content area 

contributing to 25% of the total test. Throughout the study, Form X1 will be considered the new 

form and Form X2 will be considered the old form.  

Equating Criterion 

The hypothetical test design described above facilitated the computing of a criterion 

equating function. Since Forms X1 and X2 were created from one Form X (taken by 20,000 

examinees), it essentially means that all the examinees took Form X1 and also Form X2. 

Therefore, Form X1 can be equated directly with Form X2 using a single group (SG) equating 

design. By using the SG design with such a large data set, one can be fairly confident that the 

resulting conversion is a very good approximation of the equating in the population. Livingston 

(1993) first proposed this approach for deriving a criterion equating function for the total test and 

it has been used in other equating studies (e.g., Puhan et al., 2008). Although the actual overlap 
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between Forms X1 and X2 is 48 items, only 24 of these common items were used as common 

items to conduct the small sample equatings, in order to mimic actual testing situations.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Graph showing two alternate sub-forms (X1 and X2) created from one original 

Form X.  

The impact of presmoothing on equating was examined under two conditions, referred to 

as Conditions 1 and 2. Since the new and old forms were created from one form, 20,000 

examinee responses were available for the new form and 20,000 examinee responses were 

available for the old form. In Condition 1, the assignment of examinee responses were unaltered 

(i.e., the new and old forms, each comprised 20,000 examinee responses). In Condition 2, an 

attempt was made to assign examinee responses to the new form that were not representative of 

the target population (i.e., the total data of 20,000 examinees). Using ethnicity as a background 

variable, 2,400 examinee responses from a less able ethnic group were assigned to the new 

form.1 Similar to Condition 1, all 20,000 examinee responses were assigned to the old form. For 

testing programs dealing with small sample sizes, where the new form sample may be small and 

unrepresentative, it is often possible to accumulate data from different test administrations for the 

old form. Therefore it seemed reasonable to assign all 20,000 examinee responses to the old form 

in this condition. Although, for actual testing programs, it is unlikely that all examinees taking 

the new form belonged to one ethnic group, such an assignment of examinees was deliberately 

made in the current study to create a new form score distribution that was highly 

unrepresentative of the target population.  
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In both Conditions 1 and 2, small sample equatings were conducted with sample sizes of 

25, 50, 100, and 500 examinees. Although 500 examinees may not necessarily be considered a 

small sample, it was included based on the previous finding by Puhan et al. (2008), who found 

that for random equating error to be lower than the DTM (Dorans & Feigenbaum, 1994) criterion 

for most scores within 1.5 standard deviations above or below the mean, at least 500 examinees 

each for the new and old forms were needed. It was also included to replicate (if possible) the 

finding by Livingston (1993) that smoothing offers the maximum benefit (i.e., lower equating 

error) for small samples and that the benefits diminish as the sample gets larger.  

Evaluating the Effect of Presmoothing on Small Sample Equating 

After the two testing conditions and sample sizes were determined, the study was 

conducted as follows. Although the three steps described below are specific to Condition 1, the 

same procedure was followed for Condition 2. 

Step 1. To estimate the criterion equating function, Form X1 was equated to Form X2 

(i.e., direct equipercentile equating without presmoothing of the two forms) using the SG 

equating design with the total data (N = 20,000). The resulting equipercentile conversion was 

considered as the criterion to which the small sample equatings were compared.  

Step 2. For a particular condition (e.g., Condition 1 with sample sizes of 25), sample sizes 

of 25 examinee responses for the new and old forms each were drawn without replacement from 

the Form X1 and Form X2 data sets (i.e., N = 20,000 each for the new and old forms). Note that in 

Condition 2, the small samples for the new form were drawn from a specific subsample of 2,400 

examinee responses and the small samples for the old form were drawn from the 20,000 examinee 

responses. Then three equatings (equating using raw data or ER, equating using presmoothed data 

preserving 2 moments or ES2, and equating using presmoothed data preserving 3 moments or ES3) 

were conducted to equate Form X1 to Form X2, making use of 24 common items and chained 

equipercentile equating (see Kolen & Brennan, 2004 and Livingston, 2004 for details on this 

equating method). In the N = 500 sample size condition, more moments could be preserved when 

smoothing the raw data. Therefore, three equatings (i.e., ER, ES3, and equating using presmoothed 

data preserving 5 moments or ES5) were conducted for this sample size.  

Step 3. Step 2 was repeated 500 times and based on the repeated samples, the conditional 

standard error of equating (CSEE), weighted average of the CSEE (Avg SEE), conditional bias2 

(CBias), and weighted average bias (Bias) were computed. When computing the Avg SEE and 
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Bias, the CSEEs and CBias values were appropriately weighted using the raw proportion of 

examinees at each score point in the new form data. The root mean squared deviation (RMSD) 

was also calculated at the total test score level for evaluating the raw and smoothed small sample 

equatings. The RMSD is a useful statistic because it provides an estimate based on combining 

information from random and systematic error. Details on these statistical indexes are provided 

in Appendix B.  

Although the different equatings are compared relative to each other, the practical 

criterion of the DTM was also used to evaluate the different equatings based on the raw or 

smoothed score distributions. The DTM is a unit equal to one half of a reporting unit. Because 

the tests used in this study had scores that progressed in 1-point increments, the DTM was 

defined as 0.5. Using a DTM criterion seemed reasonable because if a difference existed between 

the variability and accuracy indexes from the raw and smoothed equatings but the actual values 

were smaller than the DTM, then the differences are probably ignorable, as they may not result 

in a practical difference in the examinees’ reported scores. On the contrary, if the differences 

between the variability and accuracy indexes from the raw and smoothed equatings were small 

but the actual values were substantially larger than the DTM, then the equatings based on either 

the raw or smoothed score distributions may be considered to be problematic.  

Results 

The summary statistics for Test X (New Form X1 and Old Form X2) are presented in 

Table 1. In Condition 1, the same group of 20,000 examinees took both Forms X1 and X2 and 

therefore their ability as indicated by the anchor score means is the same ( X = 14.995). 

However, the new form total score is higher than the old form total score, indicating that the new 

form is easier than the old form. As evident from the anchor score in Condition 2, the new form 

sample is much less able than the old form sample. As seen in Table 1, the anchor-to-total test 

correlations for the new and old forms were fairly high in both conditions (min = 0.818 and max 

= 0.878). As mentioned earlier, although 48 items were common between Forms X1 and X2, 24 

of those 48 common items were used as an anchor to conduct the equating to mimic realistic 

testing conditions where the anchor test length is usually about 20-25% of the total test length 

(see Kolen & Brennan, 2004, for detailed guidelines on anchor test length).  
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Table 1 

Summary Statistics for New Form (NF), Old Form (OF), and Anchor in the Full Sample  

N Condition 1 Condition 2 
20,000 20,000 2,400 20,000 

Score 
distributions 

(# of items) 

NF  

total 

(84) 

NF 
anchor 

(24) 

OF  

total 

(84) 

OF 
anchor 

(24) 

NF  

total 

(84) 

NF 
anchor 

(24) 

OF  

total 

(84) 

OF 
anchor 

(24) 

Mean 54.672 14.995 53.407 14.995 45.175 12.430 53.407 14.995 

SD 10.589 3.581 10.651 3.581 8.721 3.147 10.651 3.581 

Anchor/total 
correlation 

0.878 0.865 0.818 0.865 

 

The overall accuracy and variability of the equatings based on raw and smoothed score 

distributions and different sample sizes from Conditions 1 and 2 were estimated using the 

average SEE, bias, and RMSD indexes, which are presented in Tables 2 and 3, respectively. The 

conditional standard error of equatings or CSEEs and conditional bias or CBias estimates for the 

equatings based on raw and smoothed scores distributions from Conditions 1 and 2 are presented 

in Figures 2–5. The CBias associated with using the identity equating (i.e., no equating) function 

is also shown for both conditions.  

Results for Condition 1 

Average SEE, bias, and RMSD results. As seen in Table 2, in Condition 1 (i.e., where the 

small samples were randomly drawn from the target population of 20,000 test takers), the 

average SEE for the different equatings (i.e., ER, ES2, ES3, and ES5) are largest for the N = 25 

sample size condition and became progressively smaller as the sample size increased. Within 

each of the N = 25, 50, and 100 sample size conditions, the average SEE was largest for ER and 

smallest for ES2. For the N = 500 sample size condition, the average SEE was largest for ER and 

smallest for ES3. The same pattern was observed for RMSD. The bias values for ER in the N = 

25 sample size condition was somewhat large (0.97). This was larger than the bias values 

obtained for the raw and smoothed equatings from the remaining sample size conditions where 

the bias values were lower than the DTM of 0.5.  
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Table 2 

Average SEE, Bias, and RMSD for Condition 1 Equatings  

N 25 50 100 500 
Score 
distribution 

Raw ES2 ES3 Raw ES2 ES3 Raw ES2 ES3 Raw ES3 ES5 

Average 
SEE 

4.14 2.20 2.65 2.92 1.51 1.78 2.01 1.26 1.55 0.91 0.53 0.68 

Bias 
 

0.97 0.09 -0.03 0.38 -0.01 0.00 0.10 0.03 -0.06 -0.02 0.02 0.00 

RMSD 
 

4.66 2.21 2.67 2.94 1.54 1.81 2.03 1.29 1.58 0.96 0.61 0.74 

 

Conditional standard errors and bias. Although the average statistics described above 

provide a useful summary of random and systematic equating error, the CSEEs and conditional 

bias values are often considered more informative because they indicate the amount of variability 

and accuracy at each score point. Since CSEEs and CBias tend to be less stable at score points with 

less data, it was decided to focus on the score points between the 5th and 95th percentiles because 

most of the data was observed within this score range. For the new form data (N = 20,000), the 5th 

and 95th percentiles were score points 38 and 72 and the CSEEs and CBias values were evaluated 

for scores within this range. For Condition 1, this information is provided in Figures 2 and 3. In 

Figures 2 and 3 and the remaining figures (i.e., Figures 4, 5, and 6), raw indicates ER, smoothed 

(2) indicates ES2, smoothed (3) indicates ES3, smoothed (5) indicates ES5, and the straight dashed 

line indicates the DTM of 0.5. As seen in Figure 2, the CSEEs for N = 25 sample size condition are 

the largest and become smaller as sample size increases. (i.e., N = 50, 100, and 500, respectively). 

Within each sample size condition, the CSEEs for ER are the largest. For the N = 25, 50, and 100 

sample size conditions the CSEEs for ES2 are slightly smaller than those for ES3 and for the  

N = 500 sample size condition, the CSEEs for ES3 are slightly smaller than those for ES5 

(especially around the middle of the score distribution). Also, for the N = 500 sample size 

condition, the CSEEs for ER, ES3 and ES5 were more similar to each other than what was 

observed in the smaller sample size conditions. Since the purpose of smoothing is to estimate the 

score distribution that would occur in a much larger group of examinees, it is not surprising that as 

the sample size increased, the benefits of smoothing in terms of reducing random equating error 

diminished. As seen in Figure 3, the conditional bias values for ER, ES2, ES3 (for the N = 25, 50, 

and 100 sample size conditions) and ER, ES3 and ES5 (for the N = 500 sample size condition) are 

close to zero around the middle of the distribution. Since the small samples differed randomly in  



 

 

10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Conditional standard error of equating (CSEE) based on raw and smoothed score distributions (Condition 1). 
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Figure 3. Conditional bias (CBias) based on raw and smoothed score distributions (Condition 1).  
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ability from the target population and positive and negative bias values tend to cancel each other, 

such an outcome was not completely unexpected (see Parshall, Du Bose Houghton, & Kromrey, 

1995, who found similar CBias values in a small sample equating study where the small samples 

were random samples from the target population).  

Results for Condition 2 

Average SEE, bias, and RMSD results. As seen in Table 3, in Condition 2 (i.e., where the 

small samples were randomly drawn from the sub samples that were highly unrepresentative of 

the target population), the average SEE for the different equatings (i.e., ER, ES2, ES3, and ES5) 

are largest for the N = 25 sample size condition and became progressively smaller as the sample 

size increased. Within each of the N = 25, 50, and 100 sample size conditions, the average SEE 

was largest for ER and smallest for ES2. For the N = 500 sample size condition, the average SEE 

was largest for ER and smallest for ES3. The same pattern was observed for RMSD. Unlike 

Condition 1, where the bias values for most equatings was lower than the DTM of 0.5, in this 

condition, the bias values are much larger than the DTM. The bias values for ER, ES2, ES3, and 

ES5 for most sample sizes were about 2, indicating that if the sample used to conduct the 

equating is highly unrepresentative of the target population (which is quite likely in small sample 

size scenarios), there can be considerable amount of equating bias in addition to large standard 

error of equating. The bias value also indicates that if the sample used to conduct the equating is 

unrepresentative of the target population, then systematic bias will exist not only for the small 

sample sizes (e.g., N = 25) but also for the larger sample sizes (e.g., N = 500).  

Table 3 

Average SEE, Bias, and RMSD for Condition 2 Equatings  

N 25 50 100 500 
Score 
distribution 

Raw ES2 ES 3 Raw ES2 ES 3 Raw ES2 ES 3 Raw ES3 ES 5 

Average 
SEE 

4.57 2.40 3.05 3.29 1.71 2.07 2.26 1.16 1.46 1.01 0.61 0.77 

Bias 
 

3.21 1.93 2.02 2.46 1.99 1.90 2.20 2.04 1.98 1.92 1.98 1.95 

RMSD 
 

6.02 3.13 3.77 4.42 2.67 2.93 3.34 2.40 2.60 2.33 2.22 2.23 
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Conditional standard errors and bias. For Condition 2, the CSEEs and CBias values 

are provided in Figures 4 and 5. The 5th and 95th percentiles for the new form data (N = 2,400) 

were 33 and 62 and the CSEEs and CBias values were evaluated for scores within this range. As 

seen in Figure 4, the CSEEs in Condition 2 followed a similar pattern as was observed in 

Condition 1 (i.e., the CSEEs are largest for the N = 25 sample size and become smaller for the 

larger sample size conditions). Within each sample size condition, the CSEEs for ER are the 

largest. For the N = 25, 50, and 100 sample size conditions, the CSEEs for ES2 are slightly 

smaller than ES3 and for the N = 500 sample size condition, the CSEEs for ES3 are slightly 

smaller than ES5 (especially around the middle of the score distribution). Also for the N = 500 

sample size condition, the CSEEs for ER is closer to the CSEEs for ES3 and ES5. As seen in 

Figure 5, the conditional bias values for ER, ES2, ES3 (for the N = 25, 50, and 100 sample size 

conditions) and ER, ES3, and ES5 (for the N = 500 sample size condition) are quite large for 

most score points between 33 and 62. Since the small samples were drawn from a subsample that 

was highly unrepresentative of the target population, high CBias values were expected.  

Often in very small sample situations, testing programs choose not to equate on the basis 

of the very small sample. Instead, they report unequated scores by making a strong assumption 

that the old and new forms are the same in difficulty. After the new form has been administered 

several times and enough data is collected, equating is conducted using the accumulated sample 

and scores on the new form are then reported (without going back and rereporting) on the newly 

equated scale. The important question that arises in such situations is whether it is reasonable to 

assume that the new and old forms are the same in difficulty and therefore using the identity 

equating function (i.e., reporting unequated raw scores) for reporting scores on the new form. To 

answer this question for the test used in this study, the CBias values that would result by using 

the identity equating function was plotted alongside the CBias values from ER, ES2, and ES2 

from the N = 25 sample size condition. As seen in Figure 6, the CBias from using the identity 

equating function would be much smaller than the CBias from using an unrepresentative sample 

to conduct the equating, indicating that in this case, it may be better not to equate than to equate 

with a highly unrepresentative equating sample.  



 

 

14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Conditional standard error of equating (CSEE) based on raw and smoothed score distributions (Condition 2). 
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Figure 5. Conditional bias (CBias) based on raw and smoothed score distributions (Condition 2). 
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Additional Conditional Standard Errors of Equating (CSEE) and Conditional Bias (CBias) 

Results 

In Condition 2, the new form sample was selected to be highly unrepresentative of the 

target population. Some further analyses were conducted using new and old form samples that 

were still unrepresentative of the target population but maybe more similar to what is observed in 

actual testing conditions. The full data of 20,000 test takers were actually accumulated over four 

test administrations where the same form (i.e., Form X) was administered without any 

modification. Therefore, the mean score for each group of test takers was used to identify the 

most and least able groups from the four groups of test takers. Furthermore, using ethnicity as a 

background variable, some strong test takers were removed from the less able group and some 

weak test takers were removed from the more able group to further widen the ability gap 

between these two groups (standardized mean difference [SMD] between the two groups on the 

24 anchor items was 0.36). This seemed reasonable because new and old form samples in actual 

testing programs can sometimes differ by much as 0.3 SMD or higher. This is especially likely 

when a new state adopts an existing test title for licensure purposes and the new test-taking 

sample is very different in ability than the existing test-taking sample. The less able group (N = 

4,000) was assigned to the new form and the more able group (N = 6,000) was assigned to the 

old form. The resampling study was then conducted using the same steps that were followed for 

conditions 1 and 2. The CSEE and CBias values obtained from this condition for one sample size 

(i.e., N = 25) are provided in Figure 6. As seen in Figure 6, the CSEEs are still considerably large 

(greater than the DTM) around the middle of the score distribution. The CBias is also much 

larger than 0.5 for scores in the middle of the distribution. Although the CBias values are slightly 

smaller than what were observed in Condition 2, they are still quite large, indicating an 

inaccurate equating. As was observed in Condition 2, the CBias resulting from the use of the 

identity equating function is smaller than the CBias resulting from using the small sample to 

conduct the equating.  
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Figure 6. Conditional standard error of equating (CSEE) and conditional bias (CBias) 

based on raw and smoothed score distributions (additional analyses). 
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Discussion 

This study evaluated the effectiveness of log-linear presmoothing in improving the 

accuracy of equatings with small sample sizes. In Condition 1 the small samples were drawn 

randomly from the total available data (target population) and therefore only differed randomly 

in ability from the target population. In Condition 2 the small samples were drawn in a manner 

that caused them to differ systematically from the target population. According to Kim and 

Dorans (2008), the chances of obtaining a representative sample from the population is greatly 

diminished if only a small sample was available. Therefore, Condition 2 was included to evaluate 

the effectiveness of smoothing in reducing equating bias that may result from using 

unrepresentative small samples to equate.  

In Condition 1, the average and conditional random equating error values were largest in 

the smallest sample size condition (N = 25) and became progressively smaller with larger sample 

sizes. Within each sample size condition, the equatings based on the raw score distributions had 

the largest average and conditional random equating error and the equatings based on smoothed 

score distributions that preserved fewer moments tended to have less random equating error. 

Similar to earlier studies, the benefit of smoothing (in terms of reduced standard error of 

equating) was largest for the smaller samples as compared to the larger samples. The average 

bias and conditional bias values (in the middle of the score distribution) were smaller than the 

DTM for the raw and smoothed equatings for all sample sizes, except the raw equating in the  

N = 25 sample size condition where the bias was larger than the DTM.  

In Condition 2, the average and conditional random equating error were [in the smallest 

sample size condition (N = 25) and became progressively smaller with larger sample sizes. The 

equatings based on the raw score distributions had the largest average and conditional equating 

error and the equatings based on smoothed score distributions that preserved fewer moments 

tended to have less random equating error. However, unlike Condition 1 where the equating bias 

was quite small for most sample sizes, the equating bias in this condition was quite large. The 

overall bias was about 2 for most sample sizes for both the raw and smoothed equatings. The 

conditional bias was also quite large where most of the data was observed. In fact, the 

conditional bias resulting from using the identity equating (i.e., no equating) was smaller than the 

conditional bias resulting from equating with unrepresentative raw or smoothed small samples. 

Since all the samples (N = 25, 50, 100, and 500) in this condition were systematically different 
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from the target population, large average and conditional bias were observed for all sample size 

conditions. Additional analyses with unrepresentative samples also resulted in a considerable 

amount of equating bias. In this case also, the identity equating resulted in smaller CBias than 

equating with small unrepresentative raw or smoothed samples.  

Conclusion and Recommendation 

As evident from the results of this study, equating with very small samples irrespective of 

whether they are representative or unrepresentative of the target population can result in 

substantial amount of random equating error. Even with sample sizes of 100, the random 

equating error was quite large for the entire score region that was examined. This is in agreement 

with Kolen and Brennan (2004), which suggested that the use of the identity may be preferable 

to using an equating method, especially with sample sizes at or below 100 examinees per test 

form. Moreover, if the small sample used to conduct the equating is unrepresentative of the 

target population, which is more likely for small samples, it can result in substantial equating 

bias. Although smoothing may help in reducing random equating error, it is unlikely to reduce 

equating bias resulting from using unrepresentative samples and this, as Kim, von Davier, and 

Haberman (2006) pointed out, can counteract the gain due to reduction in the standard error of 

equating. If testing programs are already equating with small samples (based on raw data), then 

presmoothing the score distributions and using the smoothed distributions to conduct the 

equating may provide an improvement (especially in terms of reduced random error) over the 

current procedure. However, as evident from the results of this study, equating using small 

samples (based on smoothed data) can still produce a very inaccurate equating, which may not be 

adequate for high stake uses such as admission or certification. Therefore other approaches 

(examples are provided in a later section) to deal with the small sample equating problem are 

perhaps warranted.  

What then is the answer to the small sample equating problem? As reviewed earlier 

in the literature section, methodological approaches to deal with this problem exist in the 

equating literature. Some examples include (a) small sample equating with log-linear smoothing 

(Livingston,1993); (b) synthetic linking function (Kim, von Davier, & Haberman, 2006), which 

is a weighted average of an estimated equating function (based on a small sample) and the 

identity function or no equating; and (c) the circle arc method (Livingston & Kim, 2008), which 

constrains the equating curve to pass through two specified end points and an empirically 
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determined middle point. However, such approaches cannot be expected to produce accurate 

equating results if the data is unrepresentative of the target population (i.e., may result from 

sampling bias). Although log-linear presmoothing has been shown to improve equating in small 

samples, it is still a matter of debate if it produces accurate results in very small samples. 

According to Holland, Dorans, and Petersen (2006) and Petersen (2007), smoothing helps in 

equating for moderate sample sizes but may not be of much help for very small samples. This is 

especially true when it is unclear how representative the small sample is of the intended 

population. As evident, the results of this study (i.e., large equating bias in Condition 2) support 

this assumption. Similarly, if one were to use the synthetic linking function for the data used in 

Condition 2, then using the synthetic linking function (which is a weighted average of an 

estimated equating function based on a small sample and the identity function) may help reduce 

equating bias but the bias could still be quite large. The conditional bias in Condition 2 (see 

Figure 5) for the synthetic linking function will probably be somewhere between the conditional 

bias for the identity and the conditional bias for the small sample equating, which is still less than 

ideal. Finally, if the circle arc method was used to equate using the data from Condition 2, then it 

would also most likely produce inaccurate equating results. As seen in Livingston and Kim 

(2008, p. 12), the equating bias for small samples, especially in the middle of the score range, are 

quite similar for the circle arc methods and the chained equipercentile method with 

presmoothing. Therefore it is reasonable to expect that if the circle arc method was used in this 

study, it would have resulted in a similar amount of equating bias (i.e., large) as was observed for 

the chained equipercentile equatings using smoothed data in Condition 2. The above examples 

along with the results of this study suggest that methodological approaches to equating may not 

always lead to an accurate small sample equating, especially when the small sample is highly 

unrepresentative of the population.  

So how do we equate when the available sample is small and likely unrepresentative 

of the population? Since proper data collection is regarded as the most important aspect of any 

equating (Holland, Dorans, & Peterson, 2007), an equating design whereby data conducive to 

improved equatings can be collected may be the solution to the small sample equating problem. 

An example of such a design is the single group nearly equivalent test or SiGNET design (Grant, 

2006; Puhan et al., 2008). The basis of this design is that examinees take two largely overlapping 

test forms within a single administration. The scored items for the operational form are divided 
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into mini tests called testlets. An additional testlet is created but not scored for the first form. If 

the scored testlets are Testlets 1-6 and the unscored testlet is Testlet 7, then the first form is 

comprised of Testlets 1-6 and the second form is comprised of Testlets 2-7 and Testlets 2-6 are 

common to both test forms. They are given as a single administered form and when a sufficient 

number of examinees have taken the administered form for a SG equating, the second form 

(Testlets 2-7) is equated to the first form (Testlets 1-6) using SG equating. As evident, there are 

at least two merits of the SiGNET design over the nonequivalent anchor test or NEAT design. 

First, it facilitates the use of a SG equating design which has the least random equating error of 

all designs, and second, it allows for the accumulation of data to equate the second form with a 

larger sample, which is more likely to be representative of the target population. Since the 

examinees scores are based on only the first form (i.e., the operational form), the two forms can 

administered until sufficient data is collected to equate the second form. Some may argue that 

having a large overlap between the new and old forms and delivering the same form in repeated 

administrations to accumulate enough data for equating under the SiGNET design increases the 

risk of exposure. In reality, however, since this design is proposed for very small volume tests 

with test takers often testing in different parts the country, the risk of overexposure may be 

minimal as compared to high volume tests where even though new forms are introduced more 

frequently, there is still some overlap of items (i.e., anchor items) which are exposed to much 

larger testing groups. Furthermore, as Kim and Dorans (2008) point out, test security may be less 

of an issue when there is little financial incentive to steal tests that can be sold to only a few 

people.  

Another alternative may be to increase the number of common items in the new and old 

forms, which is similar to the SiGNET model. But unlike the SiGNET model where two forms 

are administered as a single form to allow for a SG equating design, this design still uses the 

regular NEAT model but uses a large number of common items which may help in reducing 

random equating error (see Puhan, 2010, which showed empirically that increasing the number 

of common items resulted in the lowering of random equating error).  

Other alternatives which are more policy rather than measurement driven may be useful 

when addressing the small sample equating problem. One such alternative (if contractual 

obligations and state laws permit) would be to administer the small sample tests in fewer testing 

administrations throughout the year, thereby increasing the sample size per administration, which 
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may help with the small sample equating problem. A second alternative may be to report 

unequated scores and then state that these scores cannot be compared across test forms. 

However, after the new form has been administered several times and enough data is collected, 

equating can be conducted using the accumulated (larger) sample and scores on the new form 

can then be reported on the newly equated scale. Such an approach, according to Kim and 

Dorans (2008), would protect testing organizations from issues due to the use of an unstable or 

inaccurate equating function resulting from using small sample sizes to conduct the equating. 

Limitations and Future Research 

In this study, it was not clearly defined how much small samples should differ from the 

target population for them to be considered unrepresentative. Future studies may use data from 

different testing programs to gain a more realistic understanding of how much do small samples 

actually differ from a larger target sample. For example, if a small sample testing program used 

the same test form during several test administrations (although this maybe undesirable due to 

risk of overexposure of the form) then the data across the different test administrations can be 

accumulated and considered as the larger target sample. Then, data from each administration can 

be compared to this target sample (e.g., comparing frequency distributions, means, etc) to 

determine how much they actually differ from the target sample. Based on such information, 

future studies can systematically vary the degree of unrepresentativeness of small samples from 

the target population and then evaluate its impact on equating. Small samples, especially for 

licensure tests, can fluctuate considerably when new user states adopt or existing user states stop 

using a test title for licensure purposes. Since such fluctuations can contribute to equating bias, 

future studies should also evaluate if small sample equatings are invariant to such changes in the 

test-taking sample.  
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Notes 
1Figure A1 in the appendix shows how much the subsample differed from the full data. As 

evident from the graph, although smoothing helped in removing some of the irregularities of 

the subsample, it still retained its basic shape. In other words, smoothing is unlikely to 

overcome the bias that may result from using an unrepresentative sample to conduct the 

equating.  

2 In this study (especially in Condition 2), systematic error in the equating may be observed 

because of using samples that are unrepresentative (i.e., sampling bias) of the target 

population to conduct the equating. Such systematic error may not fit the usual definition of 

equating bias which is considered as systematic error arising from factors such as using an 

inadequate equating method or using an anchor test that not represent the total test in content 

and difficulty, etc. However, for the sake of convenience, we refer to this inaccuracy as 

equating bias throughout the paper.  
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Appendix A 

Score Distribution of Full Sample 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Score distribution of full sample (smoothed) and subsample (raw and 

smoothed). 
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Appendix B 

Conditional Standard Errors of Equating 

The formula for CSEE is  

2
( )

1
( )

y ij
i

j y ij
i

e x
CSEE e x

I I

 
 = −  
 







, 

where I is the number of replications in the simulation (i = 1 to I, and I = 500) and ( )y ije x


 is the 

equated score at score = jx  estimated for replication = i. The formula for Avg SEE is  

Avg SEE =

2 j j
j

p CSEE
, 

where jp  is the raw proportion of examinees at each score point in the new form data. The 

formula for CBias is  

( )1
( ) ( )j y ij y j

i

CBias e x e x
I

= − 

, 

where I is the number of replications in the simulation (i = 1 to I, and I = 500), ( )y je x  is the 

criterion single group equated score at score = jx  and ( )y ije x


 is the equated score at score = jx  

estimated for replication = i. The formula for Bias is  

Bias = j j
j

p CBias , 

where jp  is the raw proportion of examinees at each score point in the new form data. The 

formula for RMSD is  

2 2= +RMSD AvgBias AvgSEE , 

where 2AvgBias is the sum of the squared conditional bias values weighted by the raw proportion 

of examinees at each score point in the new form data. The formula is 

2AvgBias = 2.j j
j

p CBias  




