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Abstract

Nonparametric, or kernel, estimation of item response curve (IRC) is a concern theoretically

and operationally. Accuracy of this estimation, often used in item analysis in testing programs,

is biased when the observed scores are used as the regressor because the observed scores are

contaminated by measurement error. In this study, we investigate the deconvolution kernel

estimation of IRC, correcting for the measurement error in the regressor variable. Using item

response theory (IRT) simulated data and some real data, we compared the traditional kernel

estimation and the deconvolution estimation of IRC. Results show that in capturing important

features of the IRC, the traditional kernel estimation is comparable to the deconvolution kernel

estimation in item analysis.
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1 Overview

Nonparametric item response theory (NIRT) uses nonparametric regression techniques

extensively. (See Douglas & Cohen, 2001; Lee, 2007; Meijer, 2004; and Sijtsma, 1998.)

Characterized by a nonparametric function of the latent trait, NIRT differs from parametric

item response theory (IRT), which is used in Rasch and the two-parameter and three-parameter

logisitic (2PL and 3PL) models. Nonparametric estimation has been the focus of many studies

Ramsay (1991) and Wand and Jones (1995) described a nonparametric regression method

that can estimate item response curves (IRC). This method, based on kernel smoothing (e.g.,

Silverman, 1986), is implemented in TESTGRAF (Ramsay, 1998). Livingston and Dorans (2004)

discussed the use of Ramsay’s (1991) method to estimate the response curves for each answer

option for a multiple choice item. Nonparametric estimation is often used in classical test theory

(CTT), and recently Lee (2007) compared the kernel smoothing method and other regression

methods with monotonicity constraints to estimate item characteristic curves (ICC). We focus

only on the nonparametic kernel smoothing methods because the monotonicity constraint on the

ICC estimation will not help to identify problematic items. Well-written items should reveal

a monotonically increasing IRC for the key, as shown in the left panel of Figure 1. The right

panel of Figure 1 shows a decreasing IRC for the key, which indicates that the item may be

problematic. An increasing IRC for the top scores of the nonkey also indicates a problematic

item. Psychometricians, test developers, and clients find plots similar to those shown in Figure 1

helpful because they are easily interpreted. In the kernel smoothing method (Ramsay, 1998), the

response variable is the item score (0 or 1 for the dichotomous items) or the proportion of right

answers among examinees; the regressor (or independent variable) is the ability or the total true

score of the examinee. In practice, however, neither the ability nor the true score is available.

In plotting the IRC, the observed score or scaled score is used, especially for testing programs

that use observed scores. (See Figures 1 to 8 in Livingston & Dorans, 2004.) The accuracy of the

estimated IRC is a concern because the observed scores are contaminated by measurement error.

Nonparametric regression in the presence of measurement error has been studied intensively in

the area of statistics. Carroll, Maca, and Ruppert (1999) showed that the simple/nave/traditional

nonparametric regression estimate was inconsistent. Fan and Troung (1993) proposed a

deconvolution kernel regression method and, under difference measurement error distributions,

obtained asymptotic results. Delaigel, Fan, and Carroll (2009) extended the deconvolution method
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to local polynomial regression. These methods produce asymptotically unbiased estimators; the

trade-off is that the convergence rate is discouraging. Wand (1998), however, indicated in a

detailed analysis that the deconvolution method can perform well for lower levels of measurement

error in reasonable sample sizes. (See also Carroll, Ruppert, Stefanski, & Crainiceanu, 2006.)

With this information, it is important to examine if correction for measurement error leads

to improved nonparametric estimates of IRCs. Would nonparametric regression estimation of

IRC with correction for measurement error result in a significant improvement in identifying

problematic items? In this study, we discuss the kernel estimation method (Ramsay, 1991) and

then introduce the deconvolution estimation method (Fan & Troung, 1993) in section 2. Section

3 discusses applications of the deconvolution kernel regression method. Naive kernel regression

is one of the commonly used nonparametric methods in practice (Livingston & Dorans, 2004;

Ramsay, 1998), so we provide a comparison between the naive kernel regression and deconvolution

kernel regression of the IRC function by using simulated data and operational data. In section 4,

we discuss estimating the IRC function in practice. The distribution of measurement error in both

CTT and IRT models are addressed in the appendix.
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Figure 1. Small item response curves (IRCs) of two hypothetical items.

2 Nonparametric Regression With Measurement Error

Suppose (X1, Y1), · · · , (Xn, Yn) are independently and identically distributed (i.i.d.)

random samples from (X,Y ). We are interested in estimating the smooth regression curve

m(x) = E(Y |X = x). In the context of educational testing, Xi and Yi could denote, for examinee
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i, the true total score and item score, respectively. When X is observable, at each point x, the

(naive) kernel smoothing estimator (Ramsay, 1991; Wand & Jones, 1995) is the weighted average

of Yi:

m̂(x) =
n∑

i=1

K(
x−Xi

h
)Yi/

n∑
i=1

K(
x−Xi

h
), (1)

where K(·) is the kernel function, and h is the bandwidth.

However, sometimes X is not observable. Instead, (Z1, Y1), · · · , (Zn, Yn) are observed, where

Z = X + ϵ, ϵ is the measurement error and is independent of (X,Y ). For example, Zi could be the

observed total score instead of the true total score. The deconvolution method (Fan & Troung,

1993), that can be used to provide a statistically consistent estimator of m based on (Z, Y ), is

described next.

Notice that Z = X + ϵ, and X and ϵ are independent. Then the probability density function

fZ(·) of Z is a convolution of the two density functions fX(·) and fϵ(·). That is

fZ(z) =

∫
fX(z − x)fϵ(x)dx, i.e. fZ = fX ∗ fϵ.

Using the Fourier transformation property (e.g., Stein & Weiss, 1971), one has

FZ = FX + Fϵ,

where FX is the Fourier transformation of the density function of X. For example,

FX(t) =

∫
exp(−2πixt)fX(x)dx,

where i =
√
−1. Now the convolution problem is simplified as an addition problem. The density

function fX can thus be obtained by an inverse Fourier transform. This is the idea of the

deconvolution method. The deconvolution kernel estimator of m(·) is

m̂(x) =

n∑
i=1

K∗(
x−Xi

h
)Yi/

n∑
i=1

K∗(
x−Xi

h
), (2)

where

K∗(x) =
1

2π

∫
exp(−itx) ϕK(t)

ϕϵ(t/h)
dt (3)

and where ϕK is the Fourier transform of the kernel function K(·), and ϕϵ is the characteristic

function of ϵ:

ϕϵ(t) =

∫
exp(itx)fϵ(x)dx.
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Thus, the distribution fϵ(x) of the measurement error should be known in order to use the

deconvolution method. See the appendix for some results on distributions of measurement error.

The deconvolution estimation produces an asymptotically unbiased estimator, but the

convergence rate of the deconvolution estimator is slower than the naive kernel smoothing

estimator (Fan & Troung, 1993).

Fan and Troung (1993) showed that the deconvolution estimator is robust to different choices

of kernel functions. Among these kernels, one has the following simple form:

K∗(x) =
1√
2π

exp(−x
2

2
)
[
1− σ2ϵ

2h2
(x2 − 1)

]
,

which will be used in the IRC estimation later. This K∗ is different from a regular kernel K.

Figure 2 displays how different K∗ is from K for different standard errors of measurement (SEMs)

and bandwidths when K is a normal density ψ.

From Figure 2, we can observe that when the standard deviation of error σϵ (denoted as SEM

in the plots) is very small, K∗ and ψ are hardly distinguishable for a wide range of bandwidths h.

As σϵ increases, K
∗ deviates more from ψ. But h has the opposite effect on K∗; as h decreases,

K∗ deviates more from ψ.

3 Applications

3.1 Simulated Data

We use the 2PL IRT model to simulate data in order to have a true item characteristic

function (IRF) to compare with the nonparametric estimations of IRC. For a 2PL model, the IRF

for item j is given by (A6). Given a test form with (αj , βj), j = 1, · · · , J , the true score X given θ

is

X(θ) =
J∑

j=1

P (θ;α, β) =
J∑

j=1

eαjθ−βj

1 + eαjθ−βj
,

which is a monotonic function of θ. Thus there exists a one-to-one relationship between the true

score X(θ) and the ability parameter θ. The plot of P (θ; j) against X(θ) is our criterion in the

comparison of different ways of nonparametric IRC estimation of item j.

In the simulation, test lengths are 20, 40, and 80 for short, medium and long tests. Sample

sizes are 100, 500, 1,000, and 5,000 for small, medium, large, and very large samples The ability
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Figure 2. A comparison of the deconvolution kernel K∗(x) (solid line) and the normal

density ψ(x) (dashed line) for different bandwidth h and standard deviation σϵ of error.

In each plot, the x-axis indicates the independent variable x, and the y-axis indicates

the dependent variable K∗(x) or ψ(x). Notice that the y-axis scales are different in the

plots.
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follows a normal distribution N(0, 1); the item difficulty follows the same distribution as the

ability distribution; the item discrimination follows a normal distribution N(1, .25).

Calculation of m̂(x) requires specification of a bandwidth h. For the naive kernel smoothing,

a popular approach is to make an asymptotic expansion of MISE mean integrated squared error

(MISE)

MISE = E
( ∫

[m̂(x)−m(x)]2f(x)dx
)
,

where f(x) is the density function of X. The optimal bandwidth is the one that minimizes MISE

(Ruppert, Sheather, & Wand, 1995):

hMISE =
[ R(K)

µ2(K)2
∫
m(2)(x)2f(x)dx

]1/5
n−1/5, (4)

where R(K) =
∫
K2(x)dx, µ2(K) =

∫
x2K(x)dx, and m(2)(x) is the second derivative function

of m(x). Replacing the unknown integrals by estimators gives the plug-in bandwidth. In the

following estimation, the bandwidth for the naive kernel smoothing is hMISE. Notice that this

hMISE helps to produce a smooth regression curve.

Let the root sum squared error (RSE) of the nonparametric estimate of the IRC be

RSE =

√√√√ n∑
i=1

(m̂(xi)−m(xi))2,

where m̂(x) is the estimated function and m(x) is the true function. Since there is no available

optimal bandwidth formula for the deconvolution estimation, we experimented with different

bandwidths and found that the deconvolution estimation with a half of hMISE produces a IRC

with a minimum RSE or even smaller one. Therefore, in the following estimation, the bandwidth

for the deconvolution method is chosen to be hMISE/2.

Table 1 compares the RSE of the naive estimators (RSE.n) and RSE of the deconvolution

estimator (RSE.d) of IRC for one item under different sample sizes, test lengths, and ability

variance. Notice that the bandwidth is chosen as in (4), which minimizes the MISE for the naive

kernel estimation, not the deconvolution estimation. The RSE.d could have been slightly improved

had we adjusted the bandwidth for individual item. However, the improvement was found to be

negligible in our analysis.

Figures 3 to 5 compare the deconvolution estimator and the naive kernel estimator for

three simulated data sets. The measurement error is assumed to have normal distribution
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N(0, σϵ), where σϵ is estimated by SEM.th in (A7) in the appendix. It can be observed that

the deconvolution estimators and the naive estimators behave similarly with respect to the

criterion for all concerned test lengths, numbers of examinees, and standard deviations of ability

distributions. Figure 6 displays the IRC estimates with different ability standard deviations.

3.2 Real Data Examples

We now compare the two nonparametric IRC estimators using a data set from an operational

test. The test has 147 multiple-choice items. Its SEM of 6.9, which is calculated from (A2) in

the appendix, is used as σϵ in the calculation of the deconvolution estimator. Also, the error

is assumed to follow a normal distribution. Figure 7 displays the IRC plots of 12 items on the

test. For comparison, we also included Ramsay’s estimator (Ramsay, 1991) in the plots. All the

estimators of IRC capture the characteristics (shape, monotonicity, etc.) of the IRC in the same

way. Note that each panel in Figure 7 shows the nonparametric estimate corresponding to only the

key of multiple-choice items. It is possible to compare plots like those in Figure 1 by computing

the nonparametric estimates of the nonkey answer options using both the deconvolution and

Table 1

Comparison of RSE.n and RSE.d for One Item

σθ .1 1 5

J 20 40 80 20 40 80 20 40 80

n = 100 RSE.n 0.36 0.53 0.75 1.19 1.46 0.72 0.65 1.24 0.42

RSE.d 0.39 0.72 0.87 1.02 1.38 0.66 0.59 1.25 0.39

n = 500 RSE.n 0.54 0.40 0.27 0.43 1.60 1.06 1.38 1.38 0.77

RSE.d 0.79 0.38 1.31 0.47 1.42 1.01 1.23 1.27 0.81

n =1,000 RSE.n 0.39 0.53 0.91 1.50 1.35 1.28 1.16 0.49 0.92

RSE.d 0.30 1.20 1.80 0.91 1.05 1.11 1.75 1.07 0.88

n = 5,000 RSD.n 1.18 0.23 0.64 2.12 2.25 4.03 1.32 1.31 1.14

RSD.d 1.08 0.80 0.40 0.91 1.70 4.00 2.56 0.93 1.10

Note. RSE.d = root sum squared error (RSE) of the deconvolution estimator, RSE.n = RSE of

the naive estimators.
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Figure 3. Item response curve (IRC) plots of several items in a test of length 20 and

sample size 100. In each plot, the x-axis indicates the true score, and the y-axis is the

probability of answering the item right for a true score x.
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Figure 4. Item response curves (IRC) plots of several items in a test of length 40 and

a sample size of 500. In each plot, the x-axis indicates the true score, and the y-axis

is the probability of answering the item right for a true score of x.

9



20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

0 20 40 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True
Deconv
Naive

Figure 5. Item response curve (IRC) plots of several items in a test of length 80 and

a sample size of 1,000. In each plot, the x-axis indicates the true score, and the y-axis

is the probability of answering the item right for a true score of x.
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Figure 6. Item response curve (IRC) plots of several items in a test of length 80 and a

sample size of 1,000. In each plot, the x-axis indicates the true score, and the y-axis is

the probability of answering the item right for a true score of x. The ability standard

deviations varies among 0.1, 1, 3, and 5, as depicted at the bottom right corner of

each plot.
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Figure 7. Item response curve (IRC) estimations for some items in a real test. The

standard error of measurement for Ramsay’s estimator (SEM.r) = 6.9. In each plot,

the x-axis indicates the true score, and the y-axis is the probability of answering the

item right for a score of x.
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naive kernel estimation. Such comparisons (results not shown) also showed virtually no difference

between the two methods.

4 Discussion

We investigated the deconvolution method under a variety of conditions to correct the

influence of measurement error. The naive method and the deconvolution method produce similar

results in our study. The similarity may be attributed to the relatively small SEM (σϵ ≤ 10)

and the relatively large bandwidth (h > 3). In this case, the naive kernel function K(·) and the

modified kernel function K∗(·) in (3) are close, and thus the two methods yield similar estimations.

When a study’s main focus is to investigate an item’s IRC property (i.e., whether an item

possesses the property that the test takers’ chance of obtaining the right answer increases with his

or her ability), the naive kernel estimation is competitive compared to other statistical methods

with error correction. The deconvolution method provides an asymptotic unbiased estimation;

however, the difficulty lies in the unknown distributions of measurement error and unavailable

optimal bandwidth choices in practice.

Assuming that the variance of measurement error is a constant is another limitation of the

deconvolution method. The measurement error has a heterogenous distribution in many item

response IRT models. It is worth investigating whether significant improvement can be expected

by using regression models with correction of heterogenous measurement error.
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Appendix

Measurement Error

To apply the deconvolution method, one needs to know the distribution of the measurement

error. Here, we discuss asymptotic results of error distribution in both CTT and IRT models.

Measurement Error in Classical Test Theory (CTT)

Let n be the number of examinees, and J be the number of items on the test. In CTT, the

observed score Z and the true score X have the following relationship:

Z = X + ϵ

where ϵ is the measurement error independent of X.

Assumption 1. Z =
∑J

j=1 Zj , and X =
∑J

j=1Xj , where Zj and Xj are the item score and true

item score, respectively.

Assumption 2. Zj −Xj are independent of Zi −Xi for j ̸= i.

Notice that {Zj − Xj , j = 1, · · · , J} are bounded and independent random variables by

Assumptions 1 and 2. Then, by the Lindeberg-Feller theorem (Durrett, 1995), for J → ∞ (that

is, for a very long test),

Z −X

σϵ
=

∑J
j=1(Zj −Xj)

σϵ
=⇒ N(0, 1). (A1)

Assumptions 1 and 2 are reasonable conditions. Assumption 1 says that the test score is a sum of

item scores while Assumption 2 says that the measurement errors are independent of each other.

Since X is not observable, σϵ can not be calculated directly. However, the test reliability γ

can be estimated in many ways (Haertel, 2006), and then σϵ can be estimated as

σ̂ϵ = σZ
√

1− γ̂. (A2)

Measurement Error in Item Response Theory (IRT)

An important difference between CTT and IRT is the treatment of measurement error. CTT

assumes that the variance of error is the same for each examinee, but IRT allows it to vary. The

unidimensionality, local independence, and monotonic increment of the item response function

(IRF) are assumed here conventionally. The observed score Z and the true score X have the
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following relationship for given ability θ:

Z(θ) =

J∑
j=1

Zj(θ), X(θ) = E(Z(θ)) =

J∑
j=1

pj(θ),

where Zj(θ) is the dichotomous item score of the examinee on item j, E(·) is the expectation

operator, and pj(θ) is the probability of obtaining the right answer on item j for an examinee with

ability θ. Let G(θ) be the distribution function of θ with mean µθ and standard deviation σθ.

Denote the conditional measurement error variance given θ as

σ2ϵ (θ) = E[(Z −X)2|θ] = E[(Z − E(Z|θ)|θ]2 = Var(Z|θ)

and the unconditional variance of error can be expressed as (Kolen, Zeng, & Hanson, 1996)

σ2ϵ =

∫
θ
σ2(Z|θ)dG(θ) =

J∑
j=1

∫
θ
pj(θ)

(
1− pj(θ)

)
dG(θ). (A3)

For a long test with fixed item parameters, that is, when J → ∞, the standardized score

given θ is given by

ϵ(θ) :=
Z(θ)−X(θ)

σϵ(θ)
=

1

σϵ(θ)

J∑
j=1

(Zj(θ)− pj(θ)) =⇒ N(0, 1), (A4)

by the Lindeberg-Feller theorem again. Note that the variance of error is a function of θ, which

is different from (A1) in the CTT model. Also note that the right hand side of (A4) is a random

variable independent of θ.

Assumption 3. Suppose that

Var(σϵ(θ))

σ2ϵ
→ 0.

Then, under Assumption 3, (A4) can be rewritten as

Z(θ)−X(θ)

σϵ
=⇒ N(0, 1). (A5)

Assumption 3 requires that the ratio of variation of σ2ϵ (θ) is very small as the ability variable θ

varies. Under the CTT model, as σ2ϵ (θ) is a constant for all examinees, Var(σϵ(θ)) = 0; hence this

assumption is true. When the ability of the examinees is not too heterogeneous, that is, when

Var(σϵ(θ)) is very small compared to σ2ϵ , Assumption 3 is likely to be true too.
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Numerical Results

We use the 2PL IRT model to simulate data to investigate the error distributions and SEM.

The 2PL model assumes that

P (Zj = 1|θ) = eαjθ−βj

1 + eαjθ−βj
. (A6)

In the simulation, test lengths are 20, 40, and 80 for short, medium and long tests. Sample sizes

are 100, 500, 1,000, and 5,000 for small, medium, large, and very large samples. The distributions

of ability, β parameter, and α parameter follow N(0, σθ), N(0, σθ), and N(1, 0.25), respectively.

For 2PL IRT models, (A3) becomes

σ2ϵ =

J∑
j=1

∫
θ

eαjθ−βj

(1 + eαjθ−βj )2
ψ(θ)dθ, (A7)

where ψ(θ) is the normal density function.

Three SEMs are calculated for each simulated data set: SEM.th is from the theoretical

formula (A7) by using Gaussian quadrature approximation of integration; SEM.r is obtained

from (A2), where the reliability is estimated using the Cronbach’s alpha method (e.g.,

Haertel, 2006); and SEM.em is the empirical SEM using data and true scores, that is,

SEM.em =
∑n

i=1(Zi −Xi)
2/(n − 1), where Zi and Xi are the observed score and true score for

examinee i, and n is the number of examinees. The three SEMs are compared in Table A1. None

of the three SEMs are affected by the sample size, but all are affected by the test length and the

variability of the ability. As expected, as tests become longer, SEM increases; when the sample

ability is more heterogeneous, SEM is slightly smaller (because the test reliability is larger for a

more heterogeneous population). Overall, the SEMs are relatively comparable across the three

different methods of calculation.

The variance and mean square ratios of σϵ(θ), as in the Assumption 3, are displayed in Table

A2. The ratio is positively proportional to the size of ability variation. Verification of normality

of the error distribution is displayed in QQ plots in Figures A1 to A3. The points in the Q Q

plot are formed by pairs of estimated quantiles from the data (ϵi, · · · , ϵn) and estimated quantiles

from n observations of a normal distribution N(0, σϵ). Both axes are in units of their respective

data sets. If the two sets come from a population with the same distribution, the points should

fall approximately along a 45-degree reference line. From these QQ plots, we observe that the
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Table A1

Comparison of the Standard Error of Measurement (SEM) for Tests of

Length 20, 40, and 80

SEM.r SEM.th SEM.em

Test length n\ σθ .1 1 5 .1 1 5 .1 1 5

100 2.21 1.92 1.38 2.23 1.92 1.02 2.36 1.97 1.17

500 2.24 1.94 1.39 2.23 1.97 1.08 2.22 1.86 1.16

20 1,000 2.23 1.92 1.40 2.23 1.92 1.12 2.14 1.99 1.05

5,000 2.23 1.85 1.38 2.23 1.91 1.06 2.26 1.94 1.09

100 3.16 2.67 1.95 3.15 2.70 1.43 2.73 2.71 1.42

500 3.16 2.65 1.98 3.15 2.70 1.51 3.23 2.76 1.49

40 1,000 3.15 2.75 1.97 3.16 2.67 1.47 3.22 2.63 1.45

5,000 3.15 2.73 1.96 3.15 2.71 1.38 3.11 2.63 1.56

100 4.46 3.87 2.77 4.46 3.81 2.17 4.45 3.83 2.17

500 4.46 3.85 2.77 4.46 3.81 2.13 4.53 3.44 2.19

80 1,000 4.46 3.80 2.77 4.46 3.80 2.01 4.57 3.94 2.38

5,000 4.46 3.82 2.75 4.46 3.90 2.03 4.51 3.88 2.12

Note. SEM.em = empirical SEM; SEM.r = SEM obtained from (A2), where the reliability is

estimated using the Cronbach’s alpha method; SEM.th = SEM obtained from theoretical formula

(A7) by using Gaussian quadrature approximation of integration.
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empirical distribution of error does not deviate much from a normal distribution under a variety

of conditions when samples are relatively large (n ≥ 500).

Table A2

Ratio of Variance and Mean-Square for σϵ(θ)

J = 20 J = 40 J = 80

n\ σθ .1 1 5 .1 1 5 .1 1 5

100 .0023 .1380 .2701 .0023 .1034 .2384 .0028 .1642 .3560

500 .0026 .1692 .3958 .0026 .1237 .2522 .0024 .1163 .3202

1,000 .0026 .1913 .4312 .0027 .1531 .3144 .0025 .1235 .3318

5,000 .0026 .1226 .2620 .0024 .1348 .2388 .0024 .1184 .3195

Note. J = test length.

From IRT simulations, the measurement error can be approximated by a normal distribution

for a moderate long test (J ≥ 40) and a medium sized population (n ≥ 500). Even for shorter

tests with smaller sample sizes, the normal approximation is still acceptable sometimes. However,

whether real data have such a property is unknown since the true scores are unobservable.
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Figure A1. Error distribution comparison with a normal distribution for a test of

length 80. In each plot, si is the standard deviation of the ability, N is the sample size

in the simulation, and SEM.em is the empirical SEM.
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Figure A2. Error distribution comparison with a normal distribution for a test of

length 80. In each plot, si is the standard deviation of the ability, N is the sample size

in the simulation, and SEM.em is the empirical SEM.
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Figure A3. Error distribution comparison with a normal distribution for a test of

length 80. In each plot, si is the standard deviation of the ability, N is the sample size

in the simulation, and SEM.em is the empirical SEM.
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