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Abstract 

In equating research and practice, equating functions that are smooth are typically 

assumed to be more accurate than equating functions with irregularities. This assumption 

presumes that population test score distributions are relatively smooth. In this study, two 

examples were used to reconsider common beliefs about smoothing and equating. The 

first example involves a relatively smooth population test score distribution and the 

second example involves a population test score distribution with systematic 

irregularities. Various smoothing and equating methods (presmoothing, equipercentile, 

kernel, and postsmoothing) were compared across the two examples with respect to how 

well the test score distributions were reflected in the equating functions, the smoothness 

of the equating functions, and the standard errors of equating. The smoothing and 

equating methods performed more similarly in the first example than in the second 

example. The results of the second example illustrate that when dealing with 

systematically irregular test score distributions, smoothing and equating methods can be 

used in different ways to satisfy different equating criteria.  
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Equating methods that differ in how they reflect test data also differ in how they 

satisfy equating criteria about data-matching, smoothness, and the models assumed to 

underlie the test data. Linear equating methods are simple and parsimonious but they do 

not reflect test data as closely as equipercentile methods (Angoff, 1971; Livingston, 

2004). Equating methods satisfy criteria about observed score distributions and true score 

theories to different degrees (Tong & Kolen, 2005), such as in how they use anchor 

scores to address assumptions of test data that are missing by design (Sinharay & 

Holland, 2009). To some extent, picking an equating method requires a selection of 

equating criteria to be satisfied. 

The issue of equating criteria is important for evaluating the use of smoothing 

methods with equipercentile equating. Traditionally, smoothing methods have been 

studied for relatively smooth test score distributions where irregularities in the sample 

distributions are primarily caused by random variability (e.g., Hanson, Zeng, & Colton, 

1994; Livingston, 1992). Through making test score distributions and/or equating 

functions smoother, smoothing methods have been shown to enhance equating accuracy 

(i.e., reduce equating error by reducing standard errors and introducing negligible bias). 

More recently, smoothing techniques have been considered for test score distributions 

with systematic irregularities (Liu, Moses, & Low, 2009; Moses & Holland, 2007; Puhan, 

von Davier, & Gupta, 2008), applications that raise questions about whether criteria such 

as smoothness are consistent with accuracy. The purpose of this study is to reconsider 

smoothing and equating applications for both types of populations (i.e., smooth and 

systematically irregular test score distributions) with a focus on equating functions’ 

smoothness and other criteria. This study’s analyses prompt a reconsideration of prior 

descriptions of smoothing methods, types of test score distributions, and equating criteria.  

Smoothing Methods 

The smoothing methods used in equating are primarily distinguished by what aspects of 

the test data or equating functions they smooth. Methods that presmooth test score distributions 

prior to equipercentile equating include applications of loglinear models (Holland & Thayer, 

2000) and beta4 models (Lord, 1965). Kernel equating (von Davier, Holland, & Thayer, 2004) 

uses Gaussian kernel smoothing to continuize and smooth the cumulative distributions 

computed from presmoothed test score distributions. Postsmoothing methods such as cubic 
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splines can be applied to produce a smoothed equating function from a raw equipercentile 

function (Kolen & Brennan, 2004). Linear equating functions have also been described as 

strong smoothing methods (Yang, Dorans, & Tateneni, 2003, p. 65) that are based on the means 

and standard deviations of unsmoothed test score distributions. This study considers 

presmoothing, kernel, and postsmoothing methods. 

Types of Test Score Distributions 

Different types of test score distributions can be assumed to come from populations that 

are smooth or systematically irregular. Test score distributions from a test that is scored by 

summing examinees’ correct responses to each item are usually assumed to reflect relatively 

smooth populations, so that any irregularity in the sample data is attributed to sampling 

variability. Some types of test score distributions have irregularities that are systematic due to 

issues such as nonlinear scale transformations (Kolen & Brennan, 2004), formula scoring 

based on subtracting a portion of examinees’ total incorrect responses from their total correct 

responses (von Davier et al., 2004), and other scaling, weighting, rounding, and truncation 

practices. For these distributions, irregularities could be attributed to sampling variability, 

and/or to systematic structures that occur due to how the scores are produced.  

Equating Criteria 

Equipercentile equating and the use of smoothing in equating can be understood to 

reflect competing goals and criteria. An equipercentile equating function that maps the 

scores of test X to test Y’s scale is intended to produce an equated score distribution that 

matches Y’s distribution for some target group of test takers (Angoff, 1971; von Davier et 

al., 2004; Kolen & Brennan, 2004). To some extent, the application of smoothing 

undermines the distribution-matching goal of equipercentile equating, in that the smooth 

equating function can reflect smoothness criteria more directly than the matching of Y’s 

distribution. Nonetheless, the pursuit of smoothness in equating is typically associated 

with enhanced equating accuracy, as equating texts have suggested that irregularities in an 

equating function are indicative of “considerable error” (Kolen & Brennan, 2004, p. 67).  

The tradeoff of distribution-matching and smoothness for a given equating situation 

has a statistical analogue that pertains to the bias and variability of a sample equating 

function. The tradeoff of bias and variability in smoothing and equating applications 
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corresponds to choices in smoothing and equating to match more or less of Y’s distribution 

and to produce a sample equating function which is more or less biased and less or more 

variable (Holland, 2007; Kolen & Brennan, 2004). In simulation studies, the application of 

smoothing is typically shown to reduce total equating error, or the sum of equating function 

variability and squared bias (Hanson et al., 1994; Livingston, 1992). The implications of 

simulation research are that smoothing applications only minimally interfere with the 

distribution-matching goals of equipercentile equating, thereby reducing total equating error 

by reducing equating variability and introducing minimal equating bias.  

This Study 

This study reconsiders the notion that making equating functions smoother will 

also make them more accurate. Smoothing and equating methods such as presmoothing, 

equipercentile, kernel, and postsmoothing methods are applied in two equating examples, 

one involving a population test score distribution that is smooth and the other involving a 

population test score distribution with systematic irregularities. The methods’ equating 

functions are compared with respect to multiple criteria, including their degrees of 

smoothness, their distribution-matching success, and their standard errors. This study’s 

evaluations of multiple smoothing and equating methods for different types of test data 

and with respect to multiple equating criteria provide useful replications and extensions of 

prior studies’ results. 

This study’s first example involving a smooth population distribution is expected to 

produce results that are similar to those of prior smoothing and equating studies that have 

considered smooth population distributions and have suggested that different smoothing 

methods have similar accuracy benefits (Cui & Kolen, 2009; Hanson et al., 1994; 

Livingston, 1992). The prior studies’ results are also extended in two ways. First, kernel 

equating is included as one of the smoothing and equating methods being compared. 

Second, comparisons of the smoothing and equating methods with respect to their 

smoothness and distribution-matching properties are connected to comparisons of their 

accuracies (standard errors).  

This study’s second example involving a population distribution with systematic 

irregularities extends the results of other smoothing studies that have considered 

systematically irregular population distributions and the choices involved when using 
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different smoothing and equating methods (Liu et al., 2009; Moses & Holland, 2007; 

Puhan et al., 2008). Whereas prior studies have focused on different loglinear 

presmoothing models and the differences between traditional equipercentile and kernel 

equating results, this study expands the focus to include postsmoothing methods. In 

addition, the prior studies’ evaluative comparisons that have included distribution-

matching and smoothness comparisons (Liu et al., 2009), standard error comparisons 

(Moses & Holland, 2007), and direct comparisons of equating functions (Puhan et al., 

2008) are all considered in a single set of results.  

First Example: Equating With Smooth Test Data 

For the situation of equating test data assumed to come from smooth populations, 

the smoothing and equating methods of interest are applied to equate the two tests featured 

in von Davier et al.’s (2004) single group data. These two tests, X and Y, were 20-item 

rights-scored tests taken by one group of 1,453 examinees. 

 

 

Figure 1. Y distribution: First equating example.  

The descriptive characteristics of the data are summarized in Table 1. The unsmoothed 

frequency distribution of test Y is plotted in Figure 1, showing irregularities that von 

Davier et al. attribute to sampling instability that can be reduced using loglinear 

presmoothing (p. 119).  
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Table 1 

First Equating Example 

 X Y 
Observed score range 0-20 2-19 

Possible score range 0-20 0-20 

Mean 10.818 10.389 

SD 3.807 3.588 

Skew 0.003 -0.006 

Kurtosis -0.468 -0.516 

N 1,453 

XY Correlation 0.775 

Considered Smoothing and Equating Methods 

The following five equating methods are considered for equating the scores of test 

X to Y’s scale:  

Raw equipercentile. The traditional equipercentile equating method based on the 

unsmoothed X and Y distributions. 

Postsmoothed. The postsmoothed raw equipercentile equating function from 

applications of cubic splines. The cubic spline application is based on Kolen and 

Brennan’s (2004) recommendations1, where the smoothing parameter of 0.3 was selected 

because, when compared to results from other parameter values, 0.3 produced an equated 

score distribution with a mean, standard deviation, and skew which were closest to those 

of Y. 

Presmoothed equipercentile. The traditional equipercentile equating method 

based on X and Y distributions presmoothed with the loglinear model described in von 

Davier et al. (2004) that fits the mean, standard deviation and skewness of X and Y and the 

XY covariance. 

Presmoothed kernel. The kernel equating function based on X and Y data 

presmoothed with von Davier et al.’s loglinear model. The kernel continuization 

bandwidths that control how the continuization is implemented were those recommended 

by von Davier et al., with values of 0.61 and 0.66 for X and Y. 
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Linear. The linear equating based on the means and standard deviations of X and Y 

(Table 1). 

Comparing Equated Scores Produced by Different Methods 

One way to evaluate the smoothing and equating methods of interest is to directly 

compare their rounded scores. Table 2 shows that the equated and rounded scores based 

on all of the considered smoothing and equating methods are almost completely identical.  

Table 2 

First Equating Example: Rounded Equated Scores 

X 

X-to-Y, 
raw 

equipercentile 
X-to-Y, 

postsmoothed

X-to-Y, 
presmoothed 
equipercentile 

X-to-Y, 
presmoothed 

kernel 
X-to-Y, 
linear 

0 0 0 0 0 0 
1 0 1 1 1 1 
2 2 2 2 2 2 
3 3 3 3 3 3 
4 4 4 4 4 4 
5 5 5 5 5 5 
6 6 6 6 6 6 
7 7 7 7 7 7 
8 8 8 8 8 8 
9 9 9 9 9 9 
10 10 10 10 10 10 
11 11 11 11 11 11 
12 12 12 12 12 12 
13 12 12 12 12 12 
14 13 13 13 13 13 
15 14 14 14 14 14 
16 15 15 15 15 15 
17 16 16 16 16 16 
18 17 17 17 17 17 
19 18 18 18 18 18 
20 19 20 19 19 19 

One exception is the relatively low equated score based on the raw equipercentile method at 

the X score of 1. The other exception is the relatively high equated score based on the 

postsmoothing method at the X score of 20, a result of Kolen and Brennan’s (2004, p. 86-87) 

suggested linear function that binds the maximum X and Y scores at the ends of the score range 

where data are sparse.  
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More detailed comparisons of the smoothing and equating methods can be made 

using unrounded results. The differences of each smoothing and equating method’s 

unrounded equating results from those of the linear equating method are plotted for each X 

score (Figure 2). The differences in Figure 2 show that most methods are very similar for 

the middle score range of X (3–17), with the raw equipercentile method appearing more 

irregular than other methods. For the lowest X scores, the raw equipercentile results are 

lower than those of the linear and other methods’ results. For the highest X scores, the 

postsmoothed results are the highest and the linear results are the lowest.   

 

Figure 2. Equating function differences from the linear function. 

Distribution-Matching and Lack of Smoothness 

Table 3 summarizes the smoothing and equating methods in terms of how closely 

the equated score distributions match Y’s distribution (von Davier et al., 2004; Kolen & 

Brennan, 2004), and in terms of their (lack of) smoothness. The extent to which the 

methods produce equated score distributions with means, standard deviations, and skews 

that match those of Y are considered because most of the methods targeted these three 
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other methods. The linear and presmoothed kernel methods’ means and standard 

deviations deviate relatively little from the mean and standard deviation of Y, whereas the 

presmoothed kernel and presmoothed equipercentile methods’ skews deviate relatively 

little from the skew of Y. Table 3 reports methods’ lack of smoothness using Liu et al.’s 

(2009) measure to summarize the irregularities in each methods’ score-level equated 

scores (see the Appendix). Table 3’s lack of smoothness results show that the linear 

method produces the smoothest equated scores (i.e., has a lack of smoothness value of 

zero), the raw equipercentile method produces the least smooth equated scores (i.e., has 

the largest lack of smoothness value), and the presmoothed equipercentile and 

presmoothed kernel methods produce relatively smooth equated scores.  

Table 3 

First Equating Example: Equating Results on Matching Y’s Distribution and Lack of 

Smoothness 

 Deviation 
from Y’s 
meana 

Deviation 
from Y’s 

SDb 

Deviation 
from Y’s 

skewc 
Lack of 

smoothness 
X-to-Y, raw equipercentile -0.007 0.024 -0.026 0.089 
X-to-Y, postsmoothed 0.004 0.032 0.034 0.008 
X-to-Y, presmoothed 

equipercentile -0.004 -0.007 -0.004 0.003 
X-to-Y, presmoothed kernel -0.001 -0.004 -0.002 0.003 
X-to-Y, linear 0.000 0.000 0.008 0.000 
a The equated score mean minus Y’s actual mean. b The equated score standard deviation 
minus Y’s actual standard deviation. c The equated score skew minus Y’s actual skew 

Standard Errors 

The smoothing and equating methods can be compared with respect to their 

sampling variability. Because analytic standard error estimates are not available for the 

postsmoothed approach, all approaches’ standard errors were obtained using a parametric 

bootstrap simulation (Kolen & Brennan, 2004). von Davier et al.’s (2004) bivariate 

loglinear model of the X and Y test data was treated as a population distribution, 1,000 

samples of XY data with 1,453 observations were drawn from the population, the X-to-Y 

equating was computed using the five methods for all 1,000 samples, and the standard 

deviations of the 1,000 X-to-Y equated scores were computed at each X score. Figure 3 

plots the five methods’ standard deviations (i.e., standard errors), showing that for most X 
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scores the linear method produces the smallest standard errors, the raw equipercentile 

method produces the largest standard errors, and the postsmoothed, presmoothed 

equipercentile, and presmoothed kernel methods produce similar standard errors that are 

smaller than those of the raw equipercentile method but larger than those of the linear 

method.  

 

Figure 3. Equating function standard errors: First equating example. 

Summary of the Results of the First Equating Example 

To summarize the results of the first equating example, the greatest differences 

among methods were between the raw equipercentile method and the other methods. The 

raw equipercentile method was the least smooth function and was the least accurate in terms 

of approximating Y’s mean, standard deviation, and skew. The raw equipercentile method 

also had the largest standard errors. Relatively smaller differences were also observed 

among the other methods, in that the linear and presmoothed kernel methods were the best 

at approximating Y’s mean and standard deviation, whereas the presmoothed kernel and 

presmoothed equipercentile methods were the best at approximating Y’s skew.  
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Davier et al. (2004) data used in the first example. These transformations include a 

nonlinear arcsine transformation, rounding, and truncation of Y, transformations, which 

have been described and recommended in measurement texts (Kolen, 2006; Kolen & 

Brennan, 2004; Petersen, Kolen, & Hoover, 1989), and which have been considered by 

several testing programs in the process of revising their scales. The arcsine transformation 

is used to achieve a constant standard error of measurement across Y’s scale. The rounding 

is done to make reported Y scores appealing to test users. Truncation of the transformed 

Y’s largest scores is done to eliminate some of the gaps in the Y scale that would be 

difficult to interpret (Kolen & Brennan, p. 354), such as would be the case when the 

arcsine transformation results in increases of one score point in the untransformed Y that 

correspond to increases of more than one score point in the transformed Y scale. All of 

these modifications produce a transformed Y scale with integers between 30 and 55, with 

some scores being impossible to achieve due to the arcsine transformation. Several 

examinees achieved score 55. These data are described in Table 4. The transformed Y 

distribution is plotted in Figure 4 where the scores with probabilities of zero are 

impossible to obtain. 

Table 4 

Second Equating Example: Transformed Y Data 

 X Transformed Y 

Observed score range 0–20 37-55 

Possible score range 0–20 30, 35, 37, 39, 41, 43, 44, 46, 
47, 49, 50, 51, 53, 54, 55 

Mean 10.818 49.937 

SD 3.807 4.385 

Skew 0.003 -0.684 

Kurtosis -0.468 -0.280 

N 1,453 

XY correlation 0.748 
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Figure 4. Transformed Y Distribution: Second Equating Example. 

The equating situation of interest is one where the raw X scores are equated to the 

transformed Y’s scale. This situation corresponds to scenarios that arise in practice where 

the untransformed Y scores are either unavailable or cannot be directly used in an 
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when the X scores are equated to it. 

Considered Smoothing and Equating Methods 
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unsmoothed X and transformed Y data. 
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smoothing parameter values, 1 produced equated scores with a mean, standard 

deviation, and skew that were closest to those of Y. 

3. – 4.  Presmoothed equipercentile 1 & 2: The traditional equipercentile equating 

method was applied to the X and the transformed Y data that were presmoothed 

with two loglinear models. Both models fit the mean, standard deviation, and 

skewness of X and transformed Y as well as the XY covariance.  

 The first loglinear model used to produce the presmoothed 

equipercentile 1 results retained the systematic irregularities in the 

transformed Y, including the impossible Y scores shown in Table 5 and 

also the abnormally large frequency at the Y score of 55.  

 The second loglinear model used to produce the presmoothed 

equipercentile 2 results ignores (and smoothes) the transformed Y’s 

structural irregularities, treating all Y scores in the 30-55 score range as 

if they were possible, and ignoring the abnormally large frequency at 

the Y score of 55. 

5. - 6.  Presmoothed kernel 1 & 2: The kernel equating method was applied to the X 

and the transformed Y data presmoothed with first (presmoothed kernel 1) and 

second (presmoothed kernel 2) loglinear models used for the presmoothed 

equipercentile 1 and 2 methods. For both applications of kernel equating, the 

kernel bandwidth parameters were selected based on the recommendations of 

von Davier et al. (2004), to produce continuized X and Y distributions that 

matched the presmoothed and discrete X and Y distributions, but which limited 

the number of modes in these distributions. The kernel bandwidths for X and 

transformed Y were 0.61 and 1.35 for presmoothed kernel 1 and 0.61 and 0.44 

for presmoothed kernel 2. 

7. Linear: The linear equating based on the means and standard deviations of X 

and Y (Table 4). 
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Table 5 

Second Equating Example: Rounded Equated Scores 

X 
X-to-Y, raw 

equipercentile 
X-to-Y, 

postsmoothed 

X-to-Y, 
presmoothed 

equipercentile 1

X-to-Y, 
presmoothed 

equipercentile 2

X-to-Y, 
presmoothed 

kernel 1 

X-to-Y, 
presmoothed 

kernel 2 
X-to-Y, 
linear 

0 37 31* 35 36* 35 35 37 
1 37 34* 37 37 36* 37 39 
2 37 36* 37 38* 38* 38* 40* 
3 39 39 39 40* 39 40* 41 
4 41 41 41 41 41 41 42* 
5 43 43 43 42* 43 42* 43 
6 44 44 44 44 44 44 44 
7 46 45* 46 45* 45* 45* 46 
8 47 47 47 47 47 47 47 
9 49 48* 49 48* 48* 48* 48* 
10 50 50 50 50 50 50 49 
11 51 51 51 51 51 51 50 
12 53 52* 53 52* 52* 52* 51 
13 53 53 53 53 53 53 52* 
14 54 54 54 54 54 54 54 
15 55 55 55 55 55 55 55 
16 55 55 55 55 55 55 56* 
17 55 55 55 55 56* 55 57* 
18 55 55 55 55 56* 55 58* 
19 55 55 55 55 57* 56* 59* 
20 55 55 55 55 58* 56* 61* 

* Not a possible score on Form Y.  

Comparing Methods’ Equated Scores 

Table 5 shows the rounded equated scores for the seven considered smoothing and 

equating methods. Differences among the equating methods are more visible than 

equating results based on the untransformed Y (Table 2). Some of the most important 

differences are indicated by symbols (*), which denote rounded equated scores that are 

outside of the transformed Y’s set of possible scores. The postsmoothed method is 

somewhat similar to the raw equipercentile method upon which it is based, although 

impossible Y scores can be seen in its results. The two presmoothed kernel methods and 

the linear method extend beyond the maximum possible transformed Y score of 55. The 

presmoothed equipercentile 2 results based on the loglinear smoothing method that 

ignores the systematic irregularities in the transformed Y distribution produces equated 

scores that are outside of the possible range of Y scores.  
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More detailed comparisons of the smoothing and equating methods are made by 

plotting the differences between their unrounded results and the results of the unrounded 

linear method across X’s score range (Figure 5).  

The six nonlinear equating methods can all be observed to differ from the linear 

function across X’s score range, and they all have a similar shape. The raw equipercentile 

and presmoothed equipercentile 1 methods have somewhat abrupt fluctuations, 

particularly within the middle of X’s score range (scores 9 and 13). The presmoothed 

kernel 1 results appear to be slightly more linear than those of the other results, especially 

at the highest scores of X. Finally, the postsmoothed results are quite different from all the 

methods for the four lowest scores of X, results which are attributable to the use of a 

different linear function that maps the minimum X scores to the minimum transformed Y 

scores (Kolen & Brennan, 2004).  

 

Figure 5. Equating function differences from the linear function: Second equating 

example. 

Distribution-Matching and Lack of Smoothness 

Table 6 summarizes the seven smoothing and equating methods in terms of how 

well they match the transformed Y’s distribution and in terms of their lack of smoothness. 
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lack of smoothness values), and have a distribution with a mean, standard deviation, and 

skew that deviates from those of the transformed Y to a larger extent than other methods. 

Compared to the raw equipercentile results, the postsmoothed method produces smoother 

equated scores with a distribution that more closely matches the transformed Y’s mean and 

standard deviation and less closely matches the transformed Y’s skew. The presmoothed 

equipercentile 1 and 2 methods do well at matching the transformed Y’s skew, with the 

presmoothed equipercentile 1 method being less smooth and matching the transformed Y’s 

mean less closely than the presmoothed equipercentile 2 method. The presmoothed 

equipercentile 1 method is the least smooth of all the smoothing and equating methods 

shown in Table 6, a result which indicates that the preservation of the systematic 

irregularities in its presmoothing model has a particularly strong effect upon the equating 

function’s lack of smoothness.  

Table 6 

Second Equating Example: Equating Results on Matching the Transformed Y’s 

Distribution and Lack of Smoothness 

 Deviation 
from Y’s 

meana 

Deviation 
from Y’s 

SDb 

Deviation 
from Y’s 

skewc 
Lack of 

smoothness 
X-to-Y, raw equipercentile 0.090 -0.028 -0.030 0.345 

X-to-Y, postsmoothed 0.004 0.018 -0.122 0.061 

X-to-Y, presmoothed equipercentile1 0.087 -0.018 -0.017 0.381 

X-to-Y, presmoothed equipercentile2 0.007 -0.014 0.012 0.012 

X-to-Y, presmoothed kernel 1 -0.001 -0.004 0.111 0.010 

X-to-Y, presmoothed kernel 2 -0.004 -0.004 0.018 0.013 

X-to-Y, linear 0.000 0.000 0.686 0.000 

a The equated score mean minus Y’s actual mean. b The equated score standard deviation 
minus Y’s actual standard deviation. c The equated score skew minus Y’s actual skew.  

Finally, the linear, presmoothed kernel 1 and 2 methods produce equated scores that are 

relatively smooth (small lack of smoothness values), with distributions that closely match 

the transformed Y’s mean and standard deviation. 
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Standard Errors 

To evaluate the seven smoothing and equating methods’ sampling variability, their 

standard errors were computed using parametric bootstrap simulations (Kolen & Brennan, 

2004). For the simulations, the first loglinear presmoothing model that fit the means, 

standard deviations, skewness and covariance of X and Y as well as the impossible and 

popular scores of the transformed Y was used as a population distribution. From this 

population distribution, 1,000 samples of XY data with 1,453 observations were drawn, the X-

to-Y equating was computed using the seven methods for all 1,000 samples, and the standard 

deviations of the 1,000 X-to-Y equated scores were computed at each X score. Figure 6 plots 

the seven smoothing and equating methods’ standard deviations (i.e., standard errors). The 

raw equipercentile and presmoothed equipercentile 1 methods’ standard errors are often 

larger than those of the other methods, especially for the lowest X scores and for the X scores 

of 9 and 13.  

Figure 6. Equating function standard errors. Second equating example. 

Other smoothing and equating methods have standard errors that are smoother and 

smaller. The standard errors of the postsmoothed method appear to reflect the 

irregularities of the raw equipercentile method’s standard errors (X score of 13), but in a 

smoother way. Finally, the linear and presmoothed kernel 1 methods’ standard errors 

appear to be most similar for the highest scores of X. 
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Summary of the Results of the Second Equating Example 

The considered smoothing and equating methods differed in this second example 

where Y was transformed to introduce systematic irregularities. The smoothing and 

equating methods designed to reflect the systematic irregularities of the transformed Y 

(i.e., raw equipercentile, presmoothed equipercentile 1) produced equating results and 

standard errors that reflected the systematic irregularities of the transformed Y more 

closely than other methods. In contrast, the linear, presmoothed kernel 1 and 

postsmoothed methods introduced different forms of smoothness into the equating 

function, approximating the transformed Y’s mean and standard deviation relatively 

closely, approximating the transformed Y’s skew less closely, and producing some 

rounded equated scores outside of the possible range of the transformed Y’s scale. The 

presmoothed equipercentile 2 and presmoothed kernel 2 methods based on the smoother 

loglinear model produced relatively smooth equating functions that matched the 

transformed Y’s mean, standard deviation, and skew fairly closely, but reflected the 

systematic irregularities and score range of the transformed Y less closely. 

Discussion 

Equipercentile equating functions are commonly understood to be improved when 

smoothing methods are used to smooth out sampling irregularities. These beliefs about 

smoothness and equating functions correspond to beliefs about population test score 

distributions and equating functions, “…presumably, if very large sample sizes or the 

entire population were available, score distributions and equipercentile relationships 

would be reasonably smooth” (Kolen & Brennan, 2004, p. 67). The beliefs that smoothing 

is usually better than not smoothing have been supported by simulation studies that have 

considered population test score distributions that are smooth (Cui & Kolen, 2009; Hanson 

et al., 1994), even when the smooth populations are unrealistically obtained using overly 

simplistic scoring practices (Livingston, 1992, p. 3). The current study evaluated prior 

suggestions from a broader perspective by considering smoothing and equating methods 

for one example involving a relatively smooth population test score distribution and a 

second example involving a population test score distribution with systematic 

irregularities. Several smoothing and equating methods were evaluated with respect to 
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multiple equating criteria, including the extent to which the methods reflected the test 

data, their smoothness, and their variability. 

For the first example, the results were consistent with the overall findings of 

equating texts and simulation studies. Methods such as loglinear presmoothing, kernel 

equating, and cubic spline postsmoothing performed similarly in terms of producing 

smooth equating functions with distributions that closely matched Y’s distribution. In 

addition, the various smoothing and equating methods had smaller standard errors than 

those of raw equipercentile equating. In short, when test data can be assumed to come 

from relatively smooth populations, different smoothing methods can be assumed to make 

similar improvements to raw equipercentile equating results. 

This study’s second example involved an equating situation with a test score 

distribution with systematic irregularities, a situation where the implementation of the 

smoothing and equating methods was more complex and where criteria about distribution-

matching and smoothness were not consistent. The results differentiated the smoothing 

and equating methods, with some methods doing especially well at matching the mean and 

standard deviation of Y and at producing smooth equating functions with small and 

smooth standard errors (i.e., linear, postsmoothing and kernel methods), and other 

methods doing well at matching the systematic irregularities and the skew of Y (i.e., 

equipercentile methods). These results replicate prior studies (Liu et al., 2009) and expand 

them by considering several smoothing and equating methods. The implication of these 

results is that for systematically irregular test data, choices are required for satisfying 

criteria about data-matching and smoothness when implementing smoothing and equating 

methods.  

Choices for using smoothing and equating methods with systematically irregular 

test score distributions have only recently and partially been studied (Liu et al., 2009; 

Moses & Holland, 2007; Puhan et al., 2008). Other works have approached these issues in 

different ways, sometimes promoting postsmoothing with cubic splines to avoid the 

complexities of systematic irregularities (Kolen, 2007, p. 53) and other times 

recommending that systematic irregularities be fit and then smoothed out based on 

statistical criteria (von Davier et al., 2004, p. 64). Beyond statistical criteria, pragmatic 

concerns about the visibility and interpretation of equating results and the interaction of 
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equating results with scale score conversions also inform equating practice (Dorans, 

Moses, & Eignor, 2010). The use of smoothing and equating methods to address 

pragmatic concerns can mean that very smooth equating results may be preferred because 

these results produce the most interpretable reported scores and/or because they are more 

conservative ways of dealing with test data collected under less-than-perfect conditions. 

The current study addresses only a few aspects of the statistical and pragmatic concerns 

that inform equating practice, and uses only one set of test data. The findings for equating 

tests with systematic irregularities in their distributions expand the knowledge of 

smoothing and equating methods and encourage additional studies on more datasets to 

clarify the use of smoothing and equating methods in equating practice.
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Note 
1The cubic spline implementation is based on Kolen and Brennan’s (2004) 

recommendations. First cubic spline functions of the raw equipercentile X-to-Y and Y-

to-X equating functions were estimated as described in de Boor (2001) and Reinsch 

(1967). Then the X-to-Y and Y-to-X cubic spline functions were averaged to achieve 

symmetry. Linear functions were used to bind the minimum X and Y scores and the 

maximum X and Y scores for the lowest 5% and highest 95% of the data. The cubic 

spline smoothing parameter was selected from values ranging from 0.05 to 1, such 

that the mean, standard deviation, skew, etc. of the distribution of the cubic spline 

equated scores are close to those of Y.  



24 
 

Appendix 

A Measure of Smoothness for Equating Functions 

Liu et al. (2009) developed a quantifiable measure of the smoothness of an 

equating function from prior measures of the smoothness of cubic spline and kernel 

functions (von Davier et al., 2004; Reinsch, 1967; Zeng, 1995). The common theme in 

these smoothness measures is that a function’s smoothness (actually, its lack of 

smoothness) can be measured in terms of the sum of its squared second derivatives. In the 

context of equating functions, the lack of smoothness of an X-to-Y equating function, 

( )Ye x , would be measured by computing its squared second derivatives with respect to X 

and summing these across the X scores, 

2
( )

( )

 
   
 Y

x

e x
Smoothness

x
.    (A1) 

(A1) will be zero for linear equating functions, small for smooth equating 

functions, and relatively large for irregular equating functions. One problem of (A1) is 

that for equipercentile ( )Ye x  functions, the analytical second derivatives are zero for all X 

scores, making (A1) useless for evaluating these functions’ smoothness. To make (A1) 

practical for evaluating the smoothness of equipercentile equating functions, an idea from 

Whittaker (1923) is borrowed, where the first derivatives of ( )Ye x  with respect to X are 

obtained numerically rather than analytically as the differences in the ( )Ye x  scores at 

one-unit intervals near the X scores of interest,  

( ) ( 0.5) ( 0.5)

( ) ( 0.5) ( 0.5)

    
      

Y Y Ye x e x e x

x x x
.     (A2) 

The idea of using numerical rather than analytical derivatives in (A2) can also be 

used to obtain the second derivatives needed for (A1),  

( ) ( 0.5) ( 0.5)

( ) ( 0.5) ( 0.5)

( 1) ( ) ( ) ( 0.5)
             .

( 1) ( ) ( ) ( 0.5)

Y Y Y

Y Y Y Y

e x e x e x

x x x

e x e x e x e x

x x x x

    
 

    

      
          

   (A3) 

Applying (A3) as a measure of an equating function’s lack of smoothness to (A1), 
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2
( 1) ( ) ( ) ( 1)

( 1) ( ) ( ) ( 1)
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x x x x
.  (A4) 

To make (A4) practical for equipercentile functions, the score range at which 

equating functions and equating function differences needs to be restricted, as ( 1)Ye x  is 

undefined at the minimum x score and ( 1)Ye x   is undefined at the maximum x score. 

Therefore, the basic smoothness measure is calculated as, 

max

min

2
1

1

( 1) ( ) ( ) ( 1)
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 
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x x

e x e x e x e x
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x x x x
.  (A5) 

Finally, it is of interest to compare functions’ smoothness for different equating 

functions, such as a comparison of the smoothness of ( )Ye x  and ( )Xe y  when X and Y 

differ in their scales and their numbers of possible scores. Therefore, (A5) is standardized 

to account for ( )Ye x  reflecting Y’s variance, and for X reflecting X’s variance. In 

addition, (A5) is averaged over the number of scores used in the sum, 

max

min

2
12
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1max min
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
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(A6) is the smoothness measure that is reported throughout this study. 

 


