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Abstract 

This paper introduces latent growth modeling (LGM) as a statistical method for analyzing 

change over time in latent, or unobserved, variables, with particular emphasis of the application of 

this method in higher education research. While increasingly popular in other areas of education 

research and despite a wealth of publicly-available datasets relevant to postsecondary education 

research, LGM has not been utilized widely by higher education researchers. This paper begins by 

introducing LGM as a desirable mechanism for analyzing variability in individual growth 

trajectories over time and then presents an illustration of its application. An example of the 

application of LGM to data obtained from the Integrated Postsecondary Educational Data System 

(IPEDS) is presented to introduce specific components of LGM, including model specification and 

goodness-of-fit indices, and to demonstrate the research potential for higher education researchers. 

Finally, additional datasets offering longitudinal analysis potential for higher education researchers 

are presented to facilitate research. 
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Background 

Latent growth modeling (LGM) has grown in popularity among educational researchers 

over the past decade (Marsh & Hau, 2007).  LGM relies on a structural equation framework to 

estimate the growth trajectory for an entire group and the variation within that group, as well as the 

effectiveness of covariates or predictors to sufficiently explain variation in individual growth 

trajectories.  Due to its flexibility for being applied in various situations and to answer a variety of 

questions, the methodology has been incorporated into many contexts, including policy analysis 

(Heck & Takahashi, 2006) and student achievement and development (Konold & Pianta, 2007).  

However, despite the methodological benefits afforded by LGM, it remains under-utilized in 

postsecondary education research.  The primary goals of this paper are to 1) introduce LGM as a 

tool for investigating longitudinal data, 2) lead researchers through the analysis and interpretation 

of a substantive example, and 3) introduce readers to several existing national longitudinal data 

sets.  This paper should be a guide for analyzing data with LGM to address many issues in 

postsecondary education research. 

Illustrative Example 

To demonstrate the application of LGM, this paper conducts an illustrative longitudinal 

investigation of degree rates at a set of colleges and universities using data from the Integrated 

Postsecondary Education Data System (IPEDS).  This illustrative model is aimed at capturing the 

undergraduate degrees produced in the social sciences and understanding the influence of faculty 

and student resources on that degree production between 1997 and 20071

1) To what extent have social science degrees per FTE grown between 1997 and 2007?  

.  The research questions 

for this example are: 

2) To what extent do institutions vary in that growth?  

                                                   
1 This substantive context is for instructive purposes and should not be extrapolated as empirical 
argument.   
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3) To what extent does an institution’s instruction expenditures and yield rate influence its 

change in degree rates over the time period?  

The sample in this study includes all public and private bachelor’s degree-granting 

institutions classified as doctoral universities, master’s colleges or universities, or baccalaureate 

(arts & sciences) colleges by the Carnegie Classification system2.  Data collected on these N=1,145 

institutions include yield rate, faculty salaries, and awarded degrees (see Table 1).  Where 

appropriate, variables are normalized for inclusion in the model by the full time equivalent 

enrollment (FTE) calculation, widely used by IPEDS3

 

.   

 

 

 

 

 

 

 

 

 

 

 

 

                                                   
2 The 2005 Carnegie Classification system is used, consistent with the classification system available in 
IPEDS.   
3 FTE - Total full time equivalent enrollment is equal to the sum of both undergraduate and graduate (if 
applicable) FTE.  FTE is calculated as the total number of instructional credit hours divided by the average 
annual credits per degree-seeking student, as defined by IPEDS.  For institutions with a semester, trimester, 
continuous enrollment, or 4-1-4 plan, the undergraduate denominator is 30 and the graduate denominator is 
24.  For institutions with a quarter plan, the undergraduate denominator is 45 and the graduate denominator is 
36.  
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Table 1. Variables included in the model 

Variable 
(Year) Definition Mean 

Std. 
Deviation 

Faculty 
Salaries per 
FTE  
(1997) 

Sum of institution’s salaries and wages paid to employees – faculty, staff, 
part time, full time, regular employees, and student employees – that 
conduct instruction. Amount is for the academic year 1997-1998, divided 
by the full-time equivalent enrollment at the institution 

2,483.30 1,915.97 

Faculty 
Salaries per 
FTE  
(2002) 

Sum of institution’s salaries and wages paid to employees – faculty, staff, 
part time, full time, regular employees, and student employees – that 
conduct instruction. Amount is for the academic year 2002-2003, divided 
by the full-time equivalent enrollment at the institution 

3,122.18 4,224.65 

Faculty 
Salaries per 
FTE  
(2007) 

Sum of institution’s salaries and wages paid to employees – faculty, staff, 
part time, full time, regular employees, and student employees – that 
conduct instruction. Amount is for the academic year 2007-2008, divided 
by the full-time equivalent enrollment at the institution 

3,513.14 3,046.04 

Yield Rate 
(2003) 

Ratio of enrolled students to students accepted into the institution during 
the academic year 2003-2004.  Students included in this yield rate entered 
the institution in fall 2004.   

0.4266 0.1635 

Degrees per 
FTE  
(1997) 

Number of baccalaureate degrees awarded in the social sciences during the 
academic year 1997-1998, divided by the full-time equivalent enrollment at 
the institution. 

.1605 .0628 

Degrees per 
FTE  
(2002) 

Number of baccalaureate degrees awarded in the social sciences during the 
academic year 2002-2003, divided by the full-time equivalent enrollment at 
the institution. 

.1865 .1047 

Degrees per 
FTE  
(2007) 

Number of baccalaureate degrees awarded in the social sciences during the 
academic year 2007-2008, divided by the full-time equivalent enrollment at 
the institution. 

.1745 .0745 

NOTE: Variables and definitions obtained from IPEDS 
 
 

Model Specification 
 

Analysis of the illustrative example was carried through two stages; 1) an unconditional 

model estimating the change in the outcome variable from 1997-2007, and 2) a conditional model 

estimating the influence of two covariates on the outcome variable.  Analysis is conducted with 

AMOS4.  Full information maximum likelihood (FIML) estimation is used to obtain parameter 

estimates and accommodate missing data5

                                                   
4 AMOS is an acronym for Analysis of Moment Structures 

.  In addition, fit of the illustrative models in this paper 

are evaluated through commonly accepted fit indices provided by major structural equation 

software packages (Duncan, Duncan, & Strycker, 2006).  These include; chi-square, the Tucker-

5 FIML defines the population parameters in the model such that they reflect as accurately as possible the 
mean and covariance matrix of the sample of institutions (Bollen & Curran, 2006). 
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Intercept Slope 
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Lewis Index (TLI), the comparative fit index (CFI), the root mean square error of approximation 

(RMSEA), and Akaike’s (1974) information criterion (AIC).   

The Unconditional Model 

The first step of LGM requires an unconditional model to define growth of the outcome 

variable over the ten-year time frame (see Figure 1).  Consistent with AMOS specification, 

observed variables are indicated by boxes and latent variables are designated with circles or ovals.  

Single-headed arrows indicate direct relationships and double-headed arrows (such as that seen 

between the intercept and slope) represent correlations to be estimated from the data.   

The unconditional model provides information about the trend of the outcome variable, 

including the intercept (i.e., starting point) and slope (i.e., growth) parameters.  In addition, LGM 

allows researchers to capture the variance associated with the growth parameters.  These variances, 

or residual values, (labeled “DI” and “DS” in Figure 1) demonstrate how much institutions vary 

around the group’s estimated model parameters.     

 
Figure 1. Unconditional model of undergraduate degrees per FTE from 1997-2007 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

The Conditional Model 

For the second stage of analysis, the unconditional model is expanded to include the two 

covariate variables hypothesized to influence the output of undergraduate degrees (see Figure 2).  

Both yield rate and faculty salaries vary across time, so they are included in the model as time-
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varying covariates (TVCs).  In the present model, undergraduate degrees receive effects from these 

resources and the pattern of growth at each time point6

All TVCs are examined with a nested model structure.  First, the model is estimated with 

all TVCs included in the model.  Next, the factor loading of one covariate is estimated while the 

loading for the other is set to zero.  Finally, factor loadings for both covariates are estimated.  This 

series of model estimates allows a chi-square test to determine the significance with which each of 

these iterations improves the fit of the model to the sample data.  The most parsimonious model 

resulting from this series of tests is retained.  

, as demonstrated by the factor loadings.  In 

addition, the residuals for TVCs between each year are correlated, as these values are likely related 

over time.   

The conditional model addresses how TVCs influence the outcome variable of degree rate.  

This influence is examined with two analysis questions; 1) whether the inclusion of TVCs explains 

any of the variance (DI and DS) in the average slopes or intercepts for undergraduate degree rates 

and 2) how the inputs are directly related to the output.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                   
6 Because yield rate data was not available for the first two time points, this variable is only added as a 
covariate in the third time point, attesting to the flexibility of LGM to handle data limitations.   
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Figure 2. Conditional latent growth model of undergraduate degrees from 1997-2007 with 
time-varying predictors 

 
 

 
 

 
 
 
 
 

 
 

 
 
 

 
 
 
 
 

 
 

 
 
 
 

Results 

Unconditional Model  

Results of the analysis are presented in Table 2.  Fit statistics were positive, suggesting that 

the models had reasonable fit to the data.  The unconditional model of undergraduate degree rates 

per FTE answered the first two questions of this study, which asked the extent to which degrees 

grew over the ten-year period and the degree of variation in that growth.  

To answer the first question, the pattern of growth (the linearity or nonlinearity of the 

growth curve) was tested by constraining and then freely estimating the slope parameters, or pattern 

coefficients.  By constraining the coefficients to 5 and 10 for both of the outputs, the model tested a 

linear growth between time points.  The fit of this model was compared to a non-linear, or spline7

                                                   
7 Spline method allows non-linear growth to be modeled more parsimoniously than polynomial 
growth because fewer parameters are estimated (Bollen & Curran, 2006).   

, 
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growth model, estimated by anchoring the first and last time points, and allowing the middle time 

point to be freely estimated (Bollen & Curran, 2006).  In Figure 1, the pattern coefficients for 

undergraduate degrees were set to 0 for 1997 and 10 for 2007, but the slope factor loading for year 

2002 was freely estimated from the data.  Results indicated that the spline model fit the data better 

than the linear model.   

 
Table 2. Standardized parameter estimates for unconditional and conditional models 
 

 
Unconditional 

Model 
Conditional 

Model 
Pattern Coefficients1   
1997 (Time 1) 1, 0 1, 0 
2002 (Time 2) 1, 32.6 S 1, 33.3 S 
2007 (Time 3) 1, 10 1, 10 
Intercept .172* .152* 
Slope .001* .001* 
   
Intercept Variance .002* .002* 
Slope Variance .000 .000 
Correlation I,S .481 .392 
   
Time-varying Covariates   
FS on Degrees (Time 1) - .114* 
FS on Degrees (Time 2) - .207* 
FS on Degrees (Time 3) - .091* 
YR on Degrees 3 - .042* 
   
Fit Statistics   
Chi-sq (df) 17.3 (2) 93.1 (10) 
TLI .899 .935 
CFI .966 .977 
RMSEA .106 .085 

NOTES:  1Coefficients listed as intercept, slope growth or spline (S) estimate; *p<.000 
 
 

As shown in Table 2, the estimated pattern coefficient at time 2 was 32.6 (linear growth 

would have reflected a parameter at time 2 equal to 5).  The rate of growth for the group was 

significant at .001 degrees per FTE.   

Therefore, average growth for undergraduate degrees for this group of institutions over the 

ten-year period was .010 degrees per FTE (10*.001=.010).  From 1997 to 2002, undergraduate 
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growth was .033 degrees per FTE (32.6*.001=.0326).  Growth from 2002 to 2007 for 

undergraduate degrees was (10-32.6)*.001=-.0226.  In other words, the number of undergraduate 

degrees produced decreased from 2002 to 2007 by .023 degrees per FTE.  Most of the growth in 

undergraduate degrees produced per FTE occurred in the first five years of the selected time period 

(.0326/.010=3.26).  Growth then decreased in the last five years (-.023/.010=-2.3).  This resulted in 

the overall increase of 1% in undergraduate degrees per FTE between 1997 and 2007.      

The second research question asked the extent to which these institutions varied around the 

average slope parameter.  Though the variation estimate was statistically significant, it was 

negligible ( 2
Slopeσ <.001), meaning that institutions grew in a similar way over the time period.   

Conditional Model  
 

The final question asked to what extent an institution’s student and faculty resources 

influenced its change in degree rates over time.  This question was answered with results from the 

estimated conditional model.  As shown in Table 2, inclusion of TVCs did not account for any of 

the variation around the fixed effects parameters of the model, but they did influence the model in 

other ways.  First, inclusion of the two TVCs slightly improved the model fit, as demonstrated by a 

chi-square difference test between the full estimated model and the model with the effects of the 

covariates on the outcome variables set equal to zero ( 2
Dχ (4)=95.4, p<.001).   

Standardized regression weights, or direct effect estimates, for both covariates on the 

outcome variable were significant across all time points (see Table 2). Controlling for these 

covariates decreased the average starting point for the full sample of institutions to .152 degrees per 

FTE but did not change the statistically significant estimated growth.  Further, the correlation 

between the intercept and slope value in this model was slightly less than the unconditional model, 

but both demonstrated that institutions with high starting values of degrees per FTE increased at a 

higher rate over the ten-year period.   
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Next, the direct relationships between the covariates and the outcome variable were 

analyzed.  The coefficients for TVCs are conceptualized as “the time-specific prediction of the 

repeated measure after controlling for the influence of the underlying growth process,” (Bollen & 

Curran, 2006, p. 194).  In other words, the effect of each TVC is interpreted as the influence on the 

production of undergraduate degrees above and beyond what would be expected as the normal 

growth in the production of degrees captured by the model.  The direct effect influences of faculty 

salaries and yield rate were significant and positive on undergraduate degrees per FTE across all 

three time points.  This could suggest that, all other factors remaining consistent, an increase in 

yield rate or faculty salaries could have a small but positive influence on the number of social 

science degrees produced per FTE.   

Longitudinal Datasets 

The illustrative example in this paper is one demonstration of the many opportunities to 

utilize longitudinal data available to higher education researchers.  IPEDS is a federally maintained 

database to which all postsecondary institutions receiving federal aid must report8

                                                   
8 The Higher Education Act of 1992 declared that reporting to IPEDS is mandatory for all institutions who 
participate in federal student financial assistance programs (NCES, n.d.), and currently, over 3,000 public and 
private higher education institutions report annual data to IPEDs.   

.  In addition to 

institution-level data, panel data is also collected at the student level.  For example, national sample 

surveys conducted by the National Center for Education Statistics (NCES) and the National Science 

Foundation (NSF) collect data from high school students and their families and teachers, college 

students, and graduate students.  Descriptions of the Education Longitudinal Study (ELS), the 

Baccalaureate and Beyond (B&B), and the Survey of Earned Doctorates (SED) will be presented in 

this paper.  While access to some of this data is restricted to licensed users, education researchers 

and graduate students affiliated with institutions should have little trouble gaining access, and 

would benefit from taking time to get acquainted with the data housed on the NCES and NSF 

websites.  Access to panel data provides a wealth of opportunities for researchers, including easier 

investigation into patterns of growth and change over time.   
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Conclusion 

This paper demonstrates that LGM offers incredible potential as a tool for longitudinal 

analysis.  First, the method allows examination of average change over time as well as individual 

variation in that change.  Second, covariates can be added to account for variability among the units 

and then tested for statistical significance.  Finally, the prevalence of user-friendly programs such 

as the SPSS module AMOS makes LGM more accessible to education researchers.   

Longitudinal analysis is helpful for higher education researchers to investigate trends in 

their data which often hold the keys for understanding progress in higher education.  This paper 

walks the researcher through the development of the latent growth model, illustrates an institution-

level application of the method, and interprets the results.  The researcher is then introduced to a set 

of national longitudinal datasets which offer many opportunities to explore trends, change, and 

growth in higher education.    
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