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ABSTRACT 
This paper reports the observed behaviors and difficulties that eleven precalculus and 
calculus students exhibited in reading new passages from their mathematics textbooks. 
To gauge the effectiveness of these students’ reading, we asked them to attempt 
straightforward mathematical tasks, based directly on what they had just read. These 
students had high ACT mathematics and high ACT reading comprehension test scores 
and used many of the helpful metacognitive strategies developed in reading 
comprehension research. However, they were not effective readers of their mathematics 
textbooks. In discussing this, we draw on the psychology literature to suggest that 
cognitive gaps, that is, periods of lapsed or diminished focus, during reading may explain 
some of the ineffectiveness of the students’ reading. Finally, we suggest some 
implications for teaching and pose questions for future research.  
 
Keywords:  reading mathematics, first-year university mathematics textbooks, 
precalculus, calculus  
 
 INTRODUCTION 

In a previous technical report, we described a study of students’ difficulties in 
reading their first-year university mathematics textbooks. The current technical report is a 
reexamination of that data, along with conjectures as to why these students, who were 
good at reading and good at mathematics, as judged by their ACT reading and 
mathematics test scores, and their use of many of the metacognitive strategies of good 
readers, were in fact not effective readers of their textbooks. For completeness, and in 
order to make this technical report self-contained, we include much of the previous data 
and examples, but in addition, we provide several conjectures derived from the 
psychological literature as to why these students had difficulties. 

From our own experience and in talking with colleagues, we have come to suspect 
that many, perhaps most, first-year university students do not read large parts of their 
mathematics textbooks effectively, that is, they cannot work straightforward tasks based 
on that reading. Whether this is because they cannot read efffectively, or choose not to do 
so, seems not to have been established. However, there have been a number of calls for 
mathematics teachers to instruct their students on how to read mathematics (Bratina & 
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Lipkin, 2003; Cowen, 1991; Datta, 1993; DeLong & Winter, 2002; Draper, 2002; 
Fuentes, 1998; Pimm, 1987; Shuard & Rothery, 1988). In addition, textbooks for many 
first-year university courses, such as college algebra, precalculus, and calculus seem to be 
written with the assumption that they will be read thoroughly, precisely, and effectively.  

For example, the preface of the precalculus book used by the students in this 
study asserts:  

The following suggestions are made to help you get the most out of this book and 
your efforts. As you study the text we suggest a five-step approach. For each 
section, 

1. Read the mathematical development. 
2. Work through the illustrative examples. 
3. Work the matched problem. 
4. Review the main ideas in the section.  
5. Work the assigned exercises at the end of the section. 

All of this should be done with a graphing utility, paper, and pencil at hand. In 
fact, no mathematics text should be read without pencil and paper in hand; 
mathematics is not a spectator sport. Just as you cannot learn to swim by watching 
someone else swim, you cannot learn mathematics by simply reading worked 
examples—you must work problems, lots of them. (Barnett, Ziegler, & Byleen, 
2000, p. xxxi). 

Most teachers of beginning undergraduate mathematics would probably agree that the 
above is good advice. But it is not clear that it is realistic to assume that students will, or 
even can, adequately carry out the above five steps. 

In this partly empirical, partly theoretical, exploratory study we examined what 
first-year undergraduate mathematics students did when reading their mathematics 
textbooks both from the perspective of the reading comprehension literature, and from a 
specifically mathematical perspective, noting the difficulties students encountered. 
Drawing on those observations, and also on information on our students’ reading and 
mathematical backgrounds, we concluded that our students – and probably many, if not 
most, first-year mathematics undergraduates – cannot read their mathematics textbooks 
effectively. This led to an apparent anomaly. Our students were good at both mathematics 
and reading, applied their reading skills to their textbooks, and did not find the notation 
or syntax of these textbook passages very burdensome, but still could not read their 
textbooks effectively. How could this be? We offer a possible psychological explanation 
for the students’ errors, and make some suggestions for teaching and future research. 

In the first section, we describe the Constructively Responsive Reading (CRR) 
framework, a theoretical framework developed in reading comprehension research 
(Pressley & Afflerbach, 1995), discuss how mathematics textbooks differ from other 
books, and note the limited amount of research that has been done on how students read 
their mathematics textbooks. In the next section, we lay out our research questions. After 
that, in the following section, we describe the students, their courses, and our research 
methodology. Next there follows a section in which we describe our data and 
observations concerning students’ use of CRR-based strategies, and students’ difficulties 
in working straightforward tasks from their mathematics textbooks. After that, drawing 
on results from psychology, we provide a possible explanation for such difficulties. 
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Finally, we summarize our findings and suggest some implications for teaching, as well 
as propose directions for future research. 

 
BACKGROUND AND LITERATURE REVIEW 

 
Reading Comprehension Research 

During the past fifty years, conceptual shifts have led reading researchers to view 
reading as an active process of meaning-making in which readers use their knowledge of 
language and the world to construct and negotiate interpretations of texts in light of the 
particular situations within which they are read. (Borasi, Seigel, Fonzi, & Smith, 1998; 
Brown, Pressley, Van Meter, & Shuder, 1996; Dewitz & Dewitz, 2003; Flood & Lapp, 
1990; Kintsch, 1998; McNamara, 2004; Palincsar & Brown; 1984; Pressley & 
Afflerbach, 1995; Rosenblatt, 1994; Schuder, 1993; Siegel, Borasi, Fonzi, Sanridge, & 
Smith, 1996). These conceptual shifts have expanded the notion of reading from that of 
simply moving one’s eyes across a page of written symbols and translating these symbols 
into verbalized words, into the idea of reading as a mode of thinking and learning 
(Draper, 2002).  

Current discussions of reading focus on how the reader creates meaning as a 
result of the interaction, or transaction, between the text and the reader (Flood & Lapp, 
1990; Pressley & Afflerbach, 1995; Rosenblatt, 1994). Reading researchers have found 
that competent readers actively construct meaning through a process in which they 
interact with the words on the page, integrating new information with their preexisting 
knowledge structures (Flood & Lapp, 1990). 

Reading and literacy researchers agree that reading includes both decoding and 
comprehension. Research on comprehension indicates that there are several strategies 
that good readers employ before, during, and after they read. These strategies seem to 
vary from reader to reader and to depend on the material being read and the goals of the 
reader (Borasi et al., 1998; Brown et al., 1996; Flood & Lapp, 1990; Fuentes, 1998; 
Palincsar & Brown; 1984; Pressley & Afflerbach, 1995; Siegel et al., 1996).  

One of the most comprehensive metastudies of reading research was conducted by 
Pressley and Afflerbach (1995). They developed a framework called Constructively 
Responsive Reading (CRR) that combined the frameworks of many previous reading 
researchers (e.g., Brown, Kintsch, Rosenblatt, and others). They noted about 330 
different activities that readers were reported, or were observed, doing while reading. 
They produced a “Thumbnail Sketch” of the CRR framework that categorized activities 
of good readers into fifteen constructive responses. We have reduced these fifteen 
responses to the following eight that we call CRR-based strategies.1 Good readers:  

1. Preview the text to be read before reading to gain an overview and to make 
predictions about it. 

2. Pay greater attention to information perceived as the most important. 
3. Activate, that is, bring to mind, prior knowledge, integrate reading within the 

text using prior knowledge to interpret the text, construct meaning and 
revise/adjust prior knowledge as appropriate. 

4. Make inferences about information not explicitly stated. 
5. Determine the meanings of new or unfamiliar words. 
6. Monitor comprehension and change reading strategies if needed. 
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7. Evaluate the text, remember the text, and reflect on it after reading. 
8. Anticipate the use of the knowledge gained. 

 
In addition to the above CRR-based strategies, we found four slightly different 

collections of reading strategies. Each included a subset of the eight strategies given 
above and suggestions on how they might be encouraged or taught. The four strategies 
are: Reciprocal Teaching (Palincsar & Brown, 1984), Transactional Strategies Instruction 
(Brown et al., 1996), Transactional Reading Strategies (Borasi et al., 1998) and Self-
Explanation Reading Training (McNamara, 2004).  

 
The Writing Style of Mathematics Textbooks  

In their own writing, mathematicians appear to prize brevity, conciseness, and 
precision of meaning. Most first-year university mathematics textbooks currently 
published in the U.S. contain exposition, definitions, theorems and less formal 
mathematical assertions, as well as graphs, figures, tables, examples,2 and end of section 
exercises. Often the definitions, theorems, and examples are set apart from the expository 
text by boxes, colors, or spacing. Figures containing graphs and explanatory material 
often appear in the margins. Typically there is a repeated pattern consisting of first 
presenting a bit of conceptual knowledge, such as a definition or theorem and perhaps 
some less formal mathematical assertions, followed by procedural knowledge in the form 
of a few closely related worked examples (tasks), and finally students are invited to work 
very similar tasks themselves. In these respects, the textbooks (Barnett, Ziegler, & 
Byleen, 2000; Larson, Hostetler, & Edwards, 2002) read by the students in this study 
appear to us to be typical.  
 Some special features of the style of mathematical writing that can sometimes 
lead to student difficulties, as indicated by Barton and Heidema (2002) and Shuard and 
Rothery (1988), include: 

1. Reading mathematics often requires reading from right to left, top to bottom, 
bottom to top, or diagonally. 

2. The writing in mathematics textbooks has more concepts per sentence, per 
word, and per paragraph than other textbooks. 

3. Mathematical concepts are often abstract and require effort to visualize. 
4. The writing in mathematics textbooks is terse and compact—that is, there is 

little redundancy to help readers with the meaning. 
5. Words have precise meanings which students often do not fully understand. 

Students’ concept images3 of them may be “thin.”  
6. Formal logic connects sentences so the ability to understand implications and 

make inferences across sentences is essential.  
7. In addition to words, mathematics textbooks contain numeric and non-

numeric symbols. 
8. The layout of many mathematics textbooks can make it easy to find and read 

worked examples while skipping crucial explanatory passages. 
9. Mathematics textbooks often contain complex sentences which can be 

difficult to parse and understand. 
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 In addition, we note that definitions are to be read and used in a special way, and 
play an especially important role in mathematics. That is, readers of mathematical writing 
must know how to read a definition as a stipulation of meaning, attending to every part, 
not adding anything, and ignoring most connotations.4 Such definitions are unlike 
dictionary definitions which are often only approximate descriptions extracted from 
everyday language usage. Edwards and Ward (2004) found that even advanced university 
mathematics students have difficulty understanding the role and use of mathematical 
definitions. In our experience, even when students can correctly state and explain a 
mathematical definition, they may not use it correctly because they do not understand the 
distinction between mathematical (stipulated) and dictionary (extracted, descriptive) 
definitions.5   

When reading mathematical writing, there appears to be little room for an 
acceptable interpretation of a passage that is different from the one intended by the 
author. In spite of this, Edwards and Ward (2004) found that formal definitions are not 
used by students as much as their concept images when reasoning about the kind of 
abstract ideas encountered in a typical upper-level mathematics class such as abstract 
algebra. This dependence on concept images also occurs for students in lower-division 
courses (Tall & Vinner, 1981). Furthermore, the concept images of different readers may 
contain different examples or procedures.  

 
Previous Research on Reading Mathematics Textbooks 

Only a little research has been done on how students read their mathematics 
textbooks. Osterholm (2008) surveyed 199 articles having to do with the reading of word 
problems, but found little about reading comprehension of more general mathematical 
text. He has done several studies on secondary and university students’ reading of 
mathematical text (Osterholm, 2005, 2008), but the passages he used were written by him 
especially for that research.  

Recently, Weinberg and Wiesner (2010) presented a framework for considering 
students’ reading of their mathematics textbooks in order to construct meaning. It focused 
on the concepts of the intended reader (the one the author had in mind), the implied 
reader (the one with the competencies necessary to make sense of the text), and the 
empirical reader (the one who actually reads the text).  We see Weinberg and Wiesner’s 
views as complementary to ours. Students need both to extract conceptual and procedural 
knowledge from their mathematics textbooks and to reflect on, interact with, and 
construct meaning from that knowledge.  

In addition, there has been an interest in, and some research on, how students read 
their science textbooks in order to learn science. The April 10, 2010 issue of the journal 
Science had a special section devoted to research on, and to the challenges of, reading the 
academic language of science. It was noted that, while students have mastered the 
reading of English texts (mostly narratives), this does not suffice for science texts that are 
precise and concise, avoid redundancy, use sophisticated words and complex 
grammatical constructions, and have a high density of information-bearing words (Snow, 
2010, p. 450). 
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RESEARCH QUESTIONS 
From the perspective of the reading comprehension literature, we ask what our 

first-year undergraduates did when reading their mathematics textbooks. In particular, 
what did they do relative to the eight CRR-based strategies? Did our students exhibit the 
characteristics generally observed in good readers? 

We also ask what our students did from the mathematical perspective. In 
particular, what mathematical difficulties did they encounter when reading their 
mathematics textbooks? To what degree were such difficulties traceable to the writing 
style characteristic of mathematics textbooks, such as any unusual symbolism, syntax, or 
treatment of definitions? 

We go on to ask, could our students read their mathematics textbooks effectively? 
That is, could they carry out straightforward tasks (that mathematics textbooks often label 
as examples, exercises, or problems) immediately after reading passages explaining how 
these tasks should be carried out, and with those passages still available to them? 

Finally, the answers to these questions will uncover an apparent anomaly, which 
suggests a further, more theoretical, question. Is there some further perspective, different 
from that of good reading strategies and of the unusual nature of mathematical writing, 
that might help explain students’ difficulty reading their mathematics textbooks? And 
how can it be that most mathematicians apparently do not have such reading difficulties, 
despite having had no explicit training in avoiding them or recovering from them?  

 
METHODOLOGY 

The Students  
The eleven precalculus and calculus students in this study attended a U.S. mid-

western comprehensive state university at which they took all their coursework. The 
university has a student body of 6,500 students of which 5,500 are undergraduates. It has 
a moderately selective admissions standard. Six were university students. An additional 
five were students in a mathematics/science magnet secondary school located on the 
campus of the university. Eight of the students were female, none were minorities. The 
mathematics courses taken by the eleven students in this study carried normal university 
credit and were taught by a member of the regular university faculty -- the first author.  

Students for the study were selected from a precalculus class of 17 (the secondary 
magnet school students) and from two sections of Calculus I with 41 students total. In the 
fourth week, we first identified 33 good readers (12 precalculus, 21 calculus) with a 
ACT6 reading scores ranging from 24 (70th percentile) to 36 (99th percentile). Based on 
the instructor’s judgment, nine students (4 precalculus, 5 calculus) were eliminated 
because it appeared they had no problems reading mathematics and may have seen the 
material in previous courses. Of the remaining twenty-four students, eleven (5 
precalculus, 6 calculus) volunteered to participate in this study. Ten of the students 
received a small amount of extra credit for participating in the study. The amount of extra 
credit received did not change any final grades. One calculus student dropped the class 
before the fourth week of the semester, but agreed to participate anyway. That student 
was grouped with the precalculus students since that was the passage the student read for 
the study. 

The average reading ACT score for the eleven students was 28.6 (the median, 28, 
corresponds to the 87th percentile) which compares favorably with the university average 
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reading ACT score of 22.3 for incoming first-year students. For these eleven, the reading 
ACT scores were further broken down into Social Studies/Science, where their subscores 
ranged from 12 (68th percentile) to 17 (98th percentile), and Arts/Literature, where their 
subscores ranged from 12 (63rd percentile) to 18 (99th percentile). 

All but two volunteers — both calculus students who were not first-year 
university students—had ACT mathematics scores ranging from 23 (71st percentile) to 30 
(96th percentile). The average ACT mathematics score for the eleven students was 25.2 
(median score 27) which compares very favorably with the university average ACT 
mathematics score of 20.9 for all incoming first-year students at this university. Thus, 
according to their ACT scores, these students were good students generally, good at 
mathematics, and good readers in both the Social Studies/Science and the Arts/Literature 
portions of the ACT.  

 
The Courses  

From the beginning, both the precalculus and calculus courses from which the 
students in this study were chosen had a strong class emphasis placed on reading their 
mathematics textbooks. The students were given handouts about reading mathematics on 
the first day of class, and beginning the second class period, students were given reading 
guides for use with the first several sections of their mathematics textbooks. An example 
of a reading guide and additional information about the teaching practices of this 
instructor appeared in Author (2005).  

During the first two weeks of the courses, all 58 students from the pre-calculus 
and calculus classes participated in a diagnostic interview as part of the instructor’s 
normal teaching practice. This consisted of reading one of four short (one-half to two 
page) passages on partial fractions, algebraic vectors, absolute value, or symmetry. 
Students at this level are unlikely to be familiar with readings on these topics, but will 
normally find them accessible. After reading the short passage, each student was asked to 
complete a task, based on the passage read. In addition to being used diagnostically in 
teaching, these interviews served to familiarize the 11 subsequent volunteers with the 
interview procedures that they would experience later.  

 
The Conduct of the Study  

During the sixth and seventh weeks of the courses, the volunteers each selected a 
90-minute time slot during which they were asked to read aloud a new section selected by 
the instructor/researcher from their respective textbooks. These passages were selected 
because the students would be familiar with the notations and prior definitions used in 
their respective textbooks and because the students were judged to have the necessary 
prerequisites for reading them. The five pre-calculus students, and the one calculus 
student who had dropped the course, read the section entitled “The Wrapping Function” 
in Barnett, et al. (2000, pp. 336-343). The five calculus students read the section entitled 
“Extrema on an Interval” in Larson et al. (2002, pp. 160-164). Along with definitions, 
theorems, examples, figures, and discussions, the precalculus book has 
“Explore/Discuss” and the calculus book has “Exploration” tasks to encourage students 
to become active as they read. 

The students were stopped at intervals during their reading and asked to try a task 
based on what they had just read, or asked to try to work a textbook example (task) 
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without first looking at the provided solution. These were the places that the textbook 
authors would probably have assumed they would independently pause for such activities 
(see Introduction). The precalculus students were stopped an average of three times (a 
maximum of four times, a minimum of three times). The calculus students were stopped 
an average of eight times (a maximum of nine times, a minimum of seven times). The 
tasks were straightforward ones based directly on the reading and required very little in 
the way of problem-solving skills. They were what might be called “routine exercises.” 
For instance, after the textbook had defined the wrapping function, W, and had explained 
the calculation of the exact values for ( ) ),(,2),0( ππ WWW  and ( )23πW , the routine 
exercise given was: Find the coordinates of the circular point ( )2π−W . 

The reading passages along with the interruptions and requested tasks appear in 
Appendix A for precalculus and in Appendix B for calculus. For example, for the reading 
from Barnett et al. (2000), the precalculus students were asked to find the coordinates of 
a circular point, that is, a point such as ( / 2)W π on the unit circle, given by the wrapping 
function, W. From Larson et al. (2002), the calculus students were asked to determine 
from a graph whether a function had a minimum on a specified open interval. After the 
entire section had been read and a few final tasks were attempted, the students were 
questioned about how reading during the interview differed from their normal reading of 
their mathematics textbooks (Appendix C). 

All interviews were audio-recorded and transcribed. The interviewer also made 
notes during the interviews. The written work produced by the students during the 
interview was collected. The first author listened to the recordings carefully at least three 
times, making additional notes. These additional notes, along with the notes taken during 
the interview and the students’ written work, were compared with the transcripts to create 
Tables 1 and 2 below. The number and kind of CRR-based strategies used (Table 1) and 
the kinds of mathematical difficulties the students incurred were noted. The number of 
tasks attempted, done correctly, incorrectly, or not done, by each student was noted 
(Table 2). 

 
DATA COLLECTION AND OBSERVATIONS 

Use of the CRR-Based Strategies 
Table 1 indicates that, for the most part, the students were employing the CRR-

based strategies characteristic of good readers. It confirms that they were, in general, 
good readers, as indicated by their ACT reading scores. In Table 1, for each of the eight 
CRR-based strategies, we provide examples of observed behaviors, together with the 
number of students exhibiting those behaviors. For example, six students read the title of 
the section, the introduction, or the caption at the start of their reading and were judged to 
have employed CRR-based Strategy 1. In another example, Christie7 made the following 
comment after reading the definition of the wrapping function. “So, to me it sounds like 
that they have a circle at […] and it has to have [a] start at this point and there’s going to 
be a line going around it and we’re going to find the points on that line.”8 This was coded 
as a paraphrase in CRR-based Strategy 7. However, some additional good reading 
strategies might have been present without having been observed.  
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TABLE 1: Observed CRR-Based Student Strategies 
 
CRR-based strategies 
(shortened) 

Number  
of 
students 
observed 

CRR-based strategies, along with examples of observed behaviors 

1.  Preview text to be 
read before reading to 
gain overview and to 
make predictions about 
it. 

 
6 

• Preview text to be read. 
  a.  Read the title, the introduction, or the caption at the start of the reading. 

2.  Pay greater attention 
to information 
perceived as most 
important. 

 
11 
3 
2 

• Look for and pay attention to material perceived as more important. 
  a.  Reading selectively, slowing down, pausing and rereading sentences. 
  b.  Specifically stated something like, “This must be important.” 
  c.  In questioning at the end, reported only looking at the examples. 

3.  Allow interaction of 
prior knowledge and 
text to interpret text, 
construct meaning and 
revise/adjust prior 
knowledge. 

 
7 
11 
 
 
6 
 
 
 
7 
 
 
5 
 
 
 
None 

• Attempt to relate important points in text to one another. 
  a. Tried to relate a point in the current reading to earlier points. 
  b. Looked at tables or went back in the reading to reread previous parts. 
 
• Activate and use prior knowledge to interpret text. 

a.  Students did not activate prior knowledge before reading but were observed  
     recalling things learned in previous mathematics courses while reading. 

 
• Relate text content to prior knowledge.   
  a.  Specifically related what they read to something in their prior knowledge. 
 
• Reconsider or revise hypotheses about meaning of text. 
  a.  Showed that they had revised their understanding of the text by the end of the 
       reading. 
 
• Reconsider or revise prior knowledge based on text.   
  a.  There were no overt observations of the changing of prior knowledge, however this  
       does not mean students did, or did not, do this. 

4.  Make inferences 
about information not 
explicitly stated. 

 
11 
1 

• Infer information not explicitly stated. 
  a.  Tried to fill in details and give reasons while reading the examples. 
  b.  Filled in a reason incorrectly and subsequently corrected his reasoning. 

5.  Determine meanings 
of new/unfamiliar 
words  

 
11 

• Determine meaning of new words. 
  a.  Recognized when something was not understood and many tried different strategies,  
       such as rereading definitions or paraphrasing, hoping to determine some meaning. 

6.  Monitor 
comprehension and 
change reading 
strategies if needed. 

 
3 

• Change reading strategies when comprehension is not occurring.   
  a.  Stated they would “go ask for help.” 

7.  Evaluate text, 
remember it and reflect 
on it. 

 
11 
4 
1 
 
3 
 
11 
 
 
7 
 
 
 
 
11 
3 
 
 
3 

• Use strategies to remember text. 
  a.  Repeated or reread parts of passage. 
  b.  Wrote notes or copied important ideas onto paper. 
  c.  Seemed to create a concrete visualization of a concept; for instance, comparing the 
       wrapping function to a ribbon. 
  d.  Constructed analogies, identifying the u-v coordinate system as the x-y coordinate 
        system. 
  e.  Paraphrased, though, not always correctly. 
 
• Evaluate the qualities of text.  
  a.  Several students had specific comments about the text in the debriefing (see 
       Appendix B) related to the appropriateness of examples, the clarity of the author,  
       etc. 
 
• Reflect on text after text has been read. 
  a.  Gave some indication of reflecting on the text while reading. 
  b.  Specifically recognized some unresolved understanding at the end of the reading. 
 
• Carry on responsive conversation with the author.   
  a.  Several students commented on “what the book wants” while reading or working  
       examples. 

8.  Anticipate the use of 
knowledge gained from 
the reading. 

2 • Anticipate how the reading would be used in an application. 
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Difficulties in Working Tasks 
All of the students in our study had considerable difficulty correctly completing 

some of the straightforward tasks based on their reading. The percent of tasks done 
correctly by individual students ranged from 13% to 76%. Five of the six students who 
read the precalculus passage did not find correct values of the wrapping function, W, in 
two or more instances. Also, four of the five students who read the calculus passage 
containing the definition of extrema of a function on an interval could not determine from 
its graph whether it had a minimum. Ten of the students stated at some point that they did 
not understand something, but made no attempt to understand whatever was causing 
confusion. Five students, three precalculus and two calculus, gave up at some point. They 
stated that they had no idea what to do either while trying to work a task or when reading 
through a worked example. When questioned, one calculus student stated she would just 
move on, the other four stated they would quit and ask for help before continuing. 
However, they continued to read at the request of the interviewer.  

 
TABLE 2: Correctness of Tasks and Number of CRR-Based Strategies Observed 

 
Student # tasks 

attem
pted

# C
orrect 

(%
 correct) 

# Incorrect 

# not done 
(skipped or 
gave up) 

Incom
plete 

R
ead/ not 

w
orked 

R
ead as 

w
orked 

“correct” 
w

/w
rong 

reasons 

# C
R

R
-based  

strategies 
observed 

Precalculus         
  Alicia * 19 9      (47%) 5 5     7 
  Bryan  18 9      (50%) 4 2 1 2   8 
  Christie 21 3      (14%) 7 7 1 2  1 10 
  Darcy 8 1      (13%) 2 2 1 2   12 
  Ellis 17 13    (76%) 2 1 1    11 
  Faye 20 6      (30%) 6 7  1   8 
Calculus          
  Tara 22 8      (36%) 2 2 4 5  1 9 
  Vannie 22 12.5 (57%) 2.5 1  2 4  11 
  Winnie 22 10.5 (48%) 1.5 3 1  6  11 
  Yates 22 8      (36%) 4 2 2 1 5  10 
  Zoe 23 8.5   (38%) 6.5 1 1 1 5  8 
*All students’ names are pseudonyms. 

 
There appears to be little or no relationship between the number of good reading 

strategies observed and the percent of correctly performed tasks (Table 2).  
 
Understanding and Using Definitions. In mathematical writing, it is intended 

that everyone who reads the definition of a concept with comprehension will have 
essentially the same basic understanding of the definition. Different individuals’ concept 
images need not agree, but everyone should be able to agree on whether or not an 
example satisfies the concept’s definition.  

For the calculus students, one difficulty appeared to come from an inadequate 
concept image of the word “function.” After reading the definition of extrema (Appendix 
B), Vannie was asked to look at the graphs of eight functions and determine whether they 
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had minimum values. As she looked at the graph of the first one, 51a, a function with a 
jump discontinuity, she went back to the definition and tried to compare the graphical 
information with the definition.  

“You’re on the interval I as they designate. You’re supposed to look at […] Is it c 
or x they use? … For all the x’s, )(cf is supposed to be your minimum point. 
Well, )(cf  on this portion is your minimum point, is a real number, but on this 
one it is not because it is open. So, if you look at it from [...] since it’s totally two 
different things coming in. I don’t know if you say well this one does have a 
minimum and this one doesn’t or if they go together, then they don’t. I don’t [...] 
that part I [...] I’m not clear on.”   

Vannie came to no resolution. Although she clearly tried to use the definition of extrema, 
she did not appear to recognize the graph of a function with a jump discontinuity as 
representing a single function. 

A second difficulty apparently arose from not rereading a definition. Christie read 
about the wrapping function and how to calculate its values for integer multiples of 2/π , 
orally answered two worked examples incorrectly (with the work hidden), and then read 
their solutions. Next she tried to answer the first matched problem, Find the coordinates 
of )( π−W . She said, “It’s going to be (1,0) because you’re going . . . up π  every time, 
every quarter of a circle…. So if we just start at the top [(0,1)] and then go down one π , I 
think we’d be at (1,0).” Not only did Christie start wrapping at the wrong point, but she 
also did not know that the measure of a quarter circle is 2π  and that positive angles are 
measured in the counterclockwise direction. She had not gone back to the definition to 
check her starting point. Somewhat later in her reading, she did discover that the starting 
point was (1,0) instead of (0,1). However, at the end of the interview, when asked if there 
was any notation that had bothered her, she was still confused about the starting point. 
She said, “And I still don’t [...] I mean they still start you at the v-axis sometimes, and 
they start you at the u-axis sometimes, I think. So, I’m not real sure on that aspect of it.” 

A third difficulty related to definitions apparently came from not distinguishing 
between definitions with similar wording, such as relative extrema versus absolute 
extrema. One of the tasks given the calculus readers included the directions, Determine 
whether the function has a relative maximum, relative minimum, absolute maximum, 
absolute minimum, or none of these on the interval shown. (Larson, et al., 2002, p. 165) 
Zoe worked through the exercise, looked up the definition of extrema on an interval 
which included absolute extrema, but not relative extrema (Appendix B). In the 
debriefing (Appendix C), she was asked if there were any words that had bothered her. 
From her comments, one can see that Zoe had not distinguished between definitions of 
related concepts.  

“It said to find any relative minimum, relative maximum, absolute minimum, and 
absolute maximum. But in the first of it [definition of extrema], they said that 
those are the same things. So I wasn’t quite sure why they were asking me to find 
possibly four different things if they’re supposed to be just the same thing, but 
synonyms.  … Since I didn’t know, I just went under the assumption that they’re 
the same thing.” 
 
Using Theorems. The students in this study also had difficulties related to 

theorems encountered in the textbook. Some students could not assign the correct 
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authority to a theorem and some had difficulties understanding the implications of a 
theorem. The calculus students read the Extreme Value Theorem, followed by an 
Exploration (Appendix B). They were then asked to answer a true/false question: If a 
function is continuous on a closed interval, then it must have a minimum on the interval. 
One student, Tara, answered the true/false question correctly and correctly gave the 
Extreme Value Theorem as the reason.  

Vannie tried to use the definition of Extrema on an Interval, but could not use it to 
answer the true/false question. She consulted the definition of Extrema on an Interval, 
and then “pled the fifth” because she did not know the answer. Vannie seemed to 
understand that the definition was not enough, but did not know where else to look, even 
though she had just read the Extreme Value Theorem.  

Two errors combined when Zoe seemed to rely on a visual part of her concept 
image that incorrectly indicated that a horizontal line had no extrema, and also confused 
an implication with its converse. Zoe justified her incorrect answer with an example that 
seemed to show visual reasoning instead of using the Extreme Value Theorem. She said, 
“That’s false, … it’s not continuous. [...] If a function’s continuous on a closed interval, 
[...]  Well, … I can’t think of an example. If it were a [horizontal] line it wouldn’t 
necessarily have a minimum. I guess that will be my example.” She seemed unaware that 
her answer was incorrect. 

 
Consideration of Examples. In the interviews, students were asked to solve each 

worked example (task) with the textbook solution covered with a Post-it© note. Most of 
the precalculus readers could work through most of these examples without looking at the 
solutions. These worked examples required only one or two reasoning steps. After 
working the example themselves, some students read the textbook’s solution thoroughly, 
while others only skimmed it. One precalculus student, Christie, did not write down her 
answers so upon checking the solution, was unaware of errors she had made. Two 
precalculus students, Faye and Darcy, had difficulties with fractions, such as recognizing 
that 6 32

π π= . 

None of the calculus readers was able to complete the final three worked 
examples (tasks) in their textbook passage, without looking at the solutions provided or 
comparing their work with that of the book. These worked examples concerned finding 
the extrema of a trigonometric function and estimating extrema for graphically presented 
functions. The calculus textbook provides procedural knowledge in the form of a list of 
steps to follow to find extrema on a closed interval. Although the calculus students tried 
to follow these steps, three of them had difficulty with algebraic concepts (negative 
exponents, factoring, trigonometric identities), and all of them gave up trying to figure 
out the trigonometric example.  

Although they continued to read for the interview, two calculus students stated 
they would normally give up before reaching the final example. Vannie indicated she 
would ask her group for help before continuing, and Tara indicated she would ask the 
teacher about the example in the next class period. Another difficulty occurred when 
students did seem to not pay close attention to relevant definitions as they worked 
examples.  

Another difficulty occurred when one precalculus student, Faye, focused on the 
development of the wrapping function and tried to derive its values for multiples of 4/π  
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directly, rather than using symmetry as suggested by the textbook. Of the five precalculus 
students who read this passage, she was the only one who did not use symmetry. Faye 
seemed very interested in showing she could derive the values directly. Faye first read the 
algebraic development of the coordinates of )4/(πW . Then, just before an example to 
work, she read: “Using the symmetry properties of a circle, the unit circle is symmetric 
with respect to both axes [She repeated this phrase.] and the origin, we can easily find the 
coordinates of any circular point that is reflected across the vertical axis, horizontal axis, 
or origin from )4/(πW .” Faye then read the directions to Example 2:  

“Find the coordinates of the circular points A. )4/5( πW  and B. )4/( π−W . …  
Let’s see, one, two, three, four, five […] I don’t think so […]There’s nothing for  
me to count. [...] There’s no axis there […] I don’t know if … my counting 

 would be equal … I didn’t know, if I would … count like, in one ...  
I don’t know, just because there’s nothing to count on.”  

She started to rederive by writing 122 =+ ba , then read the solution to part A, mostly 
silently. She did some deriving, but the answer she wrote was )21,21(− which is 
incorrect. She read the solution to part B concerning ( / 4)W π− .  

“ … (1,0) we proceed one-eighth the way around the unit circle in a clockwise  
direction…the fourth quadrant…wait … that’s right…on the circle halfway 
 between (0,-1) and (1,0) as indicated in Figure 6 [in the textbook]”  

followed by silence and low whispering. She rederived the values during this silence. 
“That works. OK.” She had written the answer to Example 2B as ( 2/1,2/1 −− ), 
which is incorrect. When Faye next tried the matched exercise 2A, which was her third 
attempt to calculate one of these values, she apparently did use symmetry to find her 
answer. At the end of the interview, when Faye tried to find the value of the wrapping 
function at 6/π , she correctly rederived the wrapping function at 4/π , instead of 
finding W( 6/π ).  

The students, particularly those in the calculus group, seemed to find it difficult to 
work the examples and reconcile their work with that shown in the textbook. At the end 
of the interview, Winnie said, “A lot of the times their examples are the easier problems 
and then the ones you see in the lesson are […] (shrugging).”  

Perhaps not surprisingly, the two students with the lowest ACT mathematics 
scores 16 and 20 (23rd and 55th percentile, respectively), Tara and Vannie, had great 
difficulty completing the required algebra and in explaining the solutions given in the 
calculus textbook. Their incomplete prior knowledge of algebra caused them difficulties. 

In particular, Vannie’s incomplete prior knowledge of negative fractional 
exponents caused her to become frustrated and give up attempting to understand a 
calculation. She tried to work Example 4 that asked the reader to find the extrema of 

3
2

32)( xxxf −=  on the interval [-1,3]. Vannie attempted to take the derivative and set it 

equal to zero. She incorrectly wrote 022)(' 3
1
=−=

−xxxf . At this point she checked the 
solution to confirm her derivative and said,  

“They did something crazy. Ok. What did they do? […] I’m confused. . . . I don’t 
 understand their math or their […] what they did. … I figured it was just a basic  
[...] you did the derivatives in the subtraction.”  
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She eventually fixed her derivative but still could not get the form of the derivative 

shown in the textbook, which was ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=−= 31

31

31

1222)('
x

x
x

xf . The negative exponent 

confused her, even though she had tutored college algebra in the past. Her final comment 
after reading through the entire solution was, “At this point, if I was really reading this I 
would be frustrated and quit and then I would go ask somebody.” Vannie did not seem to 
realize that incomplete prior knowledge was a component of this difficulty and did not 
attempt to do anything about it herself. 
 

Explorations. A feature of both textbooks in this study is a more open-ended type 
of task, called an “Explore/Discuss” or an “Exploration” task, where no guidance is given 
and an explanation may be required. The precalculus students were given the option of 
doing the two Explore/Discuss tasks (Appendix A), and the calculus students were given 
the option of attempting the Exploration which had two parts (Appendix B). Most of the 
precalculus students chose not to do the Explore/Discuss tasks either with comments such 
as, “I don’t understand what they want me to do,” from Christie, or “They might think 
that’s an effective memory aid but that’s confusing me so I’m moving on” from Ellis.  

Four of the five calculus students chose to do the first part of the Exploration, and 
one, Tara, also did the second part. Tara came to a wrong conclusion on the first part, 
saying that there was no maximum for a quadratic function on a closed interval. She said, 
“I think it’s infinity because the graph keeps going and I can’t see any point.” On the 
second part with a cubic on the same closed interval, she said, “I think the minimum and 
maximum of both of these is infinity since I can’t find an ending point on either one of 
them.” The fact that she had read the Extreme Value Theorem just prior to this did not 
lead her to see a conflict between the theorem and her answers. However, as noted above, 
Tara answered correctly, with a correct reason, the true/false question posed immediately 
after this, If a function is continuous on a closed interval, then it must have a minimum on 
the interval. Zoe chose not to do the Exploration because “…that’s not going to help me.”  

 
Reading the Exposition. All students read the expository parts of the textbook 

since that was part of the interview, but upon questioning at the end, some students 
viewed exposition as of minor importance -- something often to be skipped or skimmed. 
Students wanted to concentrate on problems and find worked examples similar to the 
exercises given in the text, and often ignored the exposition that tied together conceptual 
and procedural knowledge.  

Some of the student comments included: “I learn by examples.”—Winnie. 
“Sometimes it’s just jibberish. But stuff that they mean to attempt to stand out, then I read 
that. But usually, at the beginning of the chapter, I try not to read. I just read the 
definition because otherwise it’s just confusing.”—Zoe. “It takes quite a while to read 
through [the section] like that, too, maybe an hour, hour and a half.”—Yates. 

 
Students’ Difficulties and the Unusual Style of Mathematical Writing 

We pointed out a number of ways that reading mathematical writing can differ 
from reading other text, and such differences might in some situations contribute to 
ineffective reading. However, most of these differences did not occur in the passages our 
students read, and what differences were there did not often cause our students to stumble 
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in reading. For example, they could read equations and the notations for functions, 
intervals, and points without difficulty.  

 
Summary of Observations 

According to our eight CRR-based strategies, our students exhibited the 
characteristics of good readers, in agreement with their relatively high ACT reading 
scores. Also their relatively high ACT mathematics scores indicated they were good at 
mathematics.  

However, all of our students had considerable difficulties completing many of the 
straightforward tasks based on the readings. The difficulties occurred across a wide 
spectrum and were associated with tasks involving definitions, theorems, examples, and 
explorations. Only the expository passages did not produce difficulties, although many 
students regarded them as of little importance. There appeared to be little relationship 
between the percent of students’ correctly performed tasks and the number of good 
reading strategies they employed (Table 2). There also appeared to be little connection 
between the students’ difficulties and the writing style of mathematical textbooks such as 
unusual symbolism, syntax, or treatment of definitions. 

It is perhaps a main purpose of this kind of textbook that readers should be able to 
reliably work such tasks, or similar tasks, to demonstrate their understanding, and in 
support of later understanding of more complex tasks. However, only three of our eleven 
students (Bryan, Ellis, and Vannie) could work at least half of the tasks, and only one of 
these, Ellis, could work three-fourths of them (Table 2). Furthermore, our judgment 
agrees with the students’ own views, that is, they believe they do not benefit from reading 
major parts of their mathematics textbooks, and often avoid doing so.  

In short, our students were good at mathematics and reading, applied their reading 
skills to these texts, and did not find the unusual style of mathematical writing very 
burdensome, but still could not read their textbooks effectively. This apparent anomaly 
suggests another anomaly. It is common knowledge among mathematicians that some of 
them occasionally teach a course in order to learn the topic, which requires the very 
reading skills our students lacked. Of course, it should not be surprising that 
mathematicians can benefit from reading a textbook more than students. What is 
remarkable is that mathematicians appear to have developed what can be seen as a major, 
complex skill without having noticed much, if any, of their learning processes. Thus, to 
more fully understand our observations, it might be helpful to look for an additional 
perspective from which to view them. In the next section, we consult the psychological 
literature. 

 
ANALYSIS AND AN ADDITIONAL PERSPECTIVE 

 
We have examined our students’ reading from the perspective of the writing style 

of their mathematics textbooks; however, there is another significant aspect of the 
textbooks to consider. 

 
The Integration of Conceptual and Procedural Knowledge  

Much of the content in our students’ textbooks is a close integration of conceptual 
knowledge with corresponding procedural knowledge, introduced through worked 
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examples (tasks) immediately following the conceptual knowledge. Both the conceptual 
knowledge and the tasks often call on students’ assumed prior knowledge, and often the 
procedures needed to work the tasks are explicitly described.  
  For example, for the precalculus students the description of the concept of the 
wrapping function, W, calls on assumed prior knowledge including an understanding of 
the real number line, the rectangular coordinate system, the unit circle, and the concept of 
function. Then calculation of W(x), for various real numbers x, is illustrated by giving 
steps sufficient to determine that ( / 2)W π = (0,1). These steps include recalling that the 

circumference of the unit circle is 2π , that 2
π  is one-fourth of 2π , and that starting at 

(1,0) and moving counterclockwise one-fourth of the way around the circle arrives at 

(0,1). Then the student is asked to calculate other values, such as ( )
2

W π
− . (See 

Appendix A.)  
For the calculus students, the definition of the concepts of minimum and 

maximum of a function on an interval calls on assumed prior conceptual knowledge 
including an understanding of the concepts of function, interval of real numbers, and the 
usual order relation on the real numbers. Finding minimums and maximums is 
immediately illustrated in Figure 3.1. Shortly thereafter students were invited to work 
similar tasks in Exercises 51-54. (See Appendix B.) These tasks present graphs of 
functions in the first quadrant and ask for minimums, if any. Procedural methods are not 
explicitly provided for these tasks, but some students may have sufficient experience to 
just “see” the minimum or note that there is none. A student without such experience 
would need to recall that f(x) is the length of the vertical line segment from the x-axis to 
the graph of f, after which trial and error might be used to identify a minimum or suggest 
that there is none. 

From a constructivist perspective, when a concept is introduced in a textbook as 
above, a reader’s own subsequent development of procedural knowledge associated with 
tasks should help that reader construct a corresponding (inner) conception.9 Indeed, after 
some time, the reader’s conception may owe as much to the reader’s induction from 
working tasks, as it does to the original textual representation of the concept. Also, 
calling on his or her own prior knowledge while working tasks should help the reader 
integrate the new conception into his or her existing knowledge base. Finally, the results 
of attempting to work the tasks should provide the reader with evidence for, or against, 
the developing conception’s viability (von Glasersfeld, 1995, pp. 68-69), as well as 
evidence as to whether that conception can be taken-as-shared (Cobb, Yackel, & Wood, 
1990), relative to the textbook author’s conception. 

Thus, working tasks, along with the associated procedural knowledge, is useful, 
perhaps even necessary, in the construction of mathematical conceptions. The textbooks’ 
close integration of conceptual with corresponding procedural knowledge, and the 
textbooks’ authors expectation that students will work tasks as they proceed in their 
reading make it reasonable for us to use students’ working of tasks to judge their reading 
effectiveness. 
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Reading Effectiveness  
We have also examined our students’ reading from the perspective of their 

reading comprehension strategies (Table 1). However, reading comprehension appears to 
differ from what we are calling reading effectiveness. 

In undergraduate mathematics teaching, it is common to assess students’ 
knowledge (including their understanding and comprehension) through their 
demonstrated ability to use that knowledge – typically in working tasks. The working of 
tasks is guided by a student’s related (inner) procedural knowledge and often involves 
activities such as solving an equation or proving a theorem, rather than, say, merely 
stating a definition. Perhaps tasks are used in assessments because it is widely recognized 
that the ability to state a theorem or definition, or even describe a procedure, does not 
imply the ability to actually use it properly. In this study, Tara could correctly answer a 
true-false question about the Extreme Value Theorem, but could not use the theorem in 
an exploration. 

In judging the effectiveness of our students’ reading, we followed the usual 
practice of teachers of first-year university courses, and examined students’ ability to 
work straightforward tasks. That is, we asked them to work tasks that had typically just 
been explained or illustrated, but that did not involve many steps or long sequences of 
inferences or much logic beyond common sense. The working of the tasks should have 
been facilitated by our students’ textbooks that link conceptual knowledge to procedural 
knowledge that is intended for use in working the subsequent tasks. 

 
A Comparison of what the ACT Tests Measure with Effective Reading 

Our students were good readers in the sense that they did well on the ACT general 
reading comprehension test, as well as on the Social Studies/Science and the 
Arts/Literature parts of the test. The test calls on students’ reasoning skills to: determine 
main ideas, find significant details, understand sequences, make comparisons, understand 
cause-effect relationships, understand context-dependent words, draw generalizations, 
and understand an author’s voice or method (ACT Reading Test Description, 2010). 
However, the test does not emphasize students’ working tasks that are dependent on 
newly read procedural knowledge, which in turn depends on newly read conceptual 
knowledge. Thus, while the skills indicated by a good score on the ACT reading 
comprehension test might be helpful in effective reading of mathematics textbooks, there 
seems to be no reason to suppose they are sufficient. 

Our students were also good at mathematics in the sense that they did well on the 
ACT mathematics test. This test is a 60-question, 60-minute test designed to measure the 
mathematical skills students have typically acquired in courses taken by the end of 11th 
grade (ACT Mathematics Test Description, 2010). The test does ask students to work 
tasks. However, those tasks call on well integrated prior knowledge and practiced 
procedures gained through instruction, not on recently read conceptual knowledge and 
procedures. Thus, while the knowledge and skills indicated by a good score on the ACT 
mathematics test are likely to be helpful in effective reading of mathematics textbooks, 
again there seems to be no reason to suppose they are sufficient. 

Now we are in a position to explain the apparent anomaly mentioned earlier. The 
ACT tests of reading and mathematics do not test the kinds of skills sufficient to yield 
effective reading of mathematics textbooks. However, this alone does not explain why 
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our students made many errors in working recently explained, straightforward tasks. An 
understanding of the sources of such errors might be useful to a teacher or a researcher in 
helping students become more effective readers of their mathematics textbooks. 

 
Possible Sources of Error 

We have described our students’ difficulties in working tasks, including a number 
of errors. Some errors arose unavoidably from a student’s inadequate or incorrect prior 
knowledge. For example, this was the case for Vannie, whose inadequate conception of 
function apparently prevented her from recognizing the graph in Problem 51a as that of a 
single function with one jump discontinuity. But there were other kinds of errors, where 
the source is less clear. For example, in attempting to find ( )W π− , Christie started the 
wrapping function at the wrong point, (0,1). This error could not have been a matter of 
incorrect prior knowledge, as W had just been introduced.  

We described difficulties that we observed in terms of mathematics, but their 
origins might also be described in psychological terms. In order to work a task, our 
students must have combined an inner model,10 that they had just constructed from 
externally presented procedural knowledge, with their own prior knowledge, to guide 
their actions. We suspect it is not uncommon for such inner models to have incorrect or 
incomplete parts for psychological reasons. What are some possible psychological 
sources of student errors? A definitive answer to this question is beyond the scope of this 
study. While our observations are adequate for detecting errors in working tasks, they 
indicate little of the psychological sources of such errors. We will, however, suggest a 
perspective through which some psychological sources of error might be understood and 
investigated. 

 
Cognitive gaps. The external representation of mathematical knowledge, such as a 

definition or a description of how a task can be worked, often consists of a number of 
smaller parts that fit together in a specific way. In constructing an inner model of the 
external representation, a student needs to maintain a sustained focus on that 
representation long enough to notice and comprehend all of its smaller parts and their 
interrelations. Apparently maintaining such a sustained focus is more difficult than might 
be thought, and cognitive gaps, that is, periods of lapsed or diminished focus can occur. 
A period of lapsed focus may result in a part of an external representation being missing 
from a student’s inner model. However, where coherence demands it, that missing part 
may be replaced with some plausible, but possibly incorrect, information.11 Also, a period 
of diminished focus may correspond to a part of an external representation containing 
fine distinctions, and some of those fine distinctions may be missing from a student’s 
inner model.  

The idea of cognitive gaps and their consequences for inner knowledge 
construction from reading, and for working tasks, appears to be consistent with our 
students’ ineffective textbook reading. Below we give three examples from our students’ 
reading to illustrate this. We emphasize that we have not observed such gaps, but only 
that they are consistent with some of our students’ difficulties.  

First, Christie seems to have missed the fact that one starts the wrapping function 
at (1,0), and from there, measures around the circle in the counterclockwise direction. 
This is consistent with having a lapse in focus while she was reading that part of the 
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passage on the winding number. Since she must start wrapping somewhere on the circle, 
it would be plausible for her to follow the convention of clocks, and start at the “top,” 
that is, at (1,0) and move clockwise, which is what she did. She was acting as if her inner 
model, constructed from the reading, included this incorrect information.  

Second, from Zoe’s debriefing comments, it is clear that she did not distinguish 
between relative and absolute extrema, as she incorrectly asserted, that the textbook said 
they were the same. But she had read the definition of absolute extrema, which does not 
include relative extrema. Somewhat later she read the definition of relative extrema (in 
terms of absolute extrema). Then she consulted the definition of absolute extrema again 
while working a task asking for any relative minimum, relative maximum, absolute 
minimum, and absolute maximum, which she did incorrectly. This suggests she had 
diminished or lapsed focus at least while reading the definition of relative extrema. 

Third, Vannie, having recently read the Extreme Value Theorem, could not 
answer the true/false task: If a function is continuous on a closed interval, then it must 
have a minimum on the interval. Except for omitting the “f” and “[a,b]” and substituting 
the words “a minimum” for “a minimum and a maximum,” this task is very close to the 
textbook’s statement of the theorem. Since the logic required for this task is not much 
beyond common sense, and since readers do not normally forget the existence of what 
they have read (and comprehended) only one paragraph ago, we think that Vannie may 
have had a lapse in focus when reading the theorem.  

Probably cognitive gaps can occur for a number of reasons, including tiredness or 
insufficient sleep, and may not always be observable. In addition, there is research from 
psychology that supports the existence of cognitive gaps for other reasons. Both the work 
on mind wandering during reading (Schooler, Reichle, & Halpern, 2004; Smallwood, 
Fishman, & Schooler, 2007; Smallwood & Schooler, 2006) and on sensory awareness 
(Hurlburt, Heavey, & Bensaheb, 2009) suggest that there are likely to be occasional gaps 
in many people’s sustained focus. Much of that research has been described in terms of 
the content of the gaps, that is, in terms of what is being focused upon (during the time of 
the gaps), rather than in terms of the gaps’ existence, that is, on what is not being focused 
upon, and the resulting consequences.  

 
Mind wandering during reading. Psychological research related to mind 

wandering has been conducted under several different constructs, such as task-unrelated 
thought, task-unrelated images and thoughts (TUITs), stimulus-independent thought, 
mind pops, and zone-outs (Smallwood & Schooler, 2006). While many of the 
experiments have considered mind wandering when subjects were given dull tasks, such 
as signal detection, to perform, a few have considered mind wandering (or zoning out) 
during reading. Schooler, Reichle, and Halpern (2004) report two such experiments that 
specifically checked participants’ zoning out during reading. 

In the first experiment, 45 participants were to self report zoning out, and were 
also probed randomly every 2- 4 minutes. Participants were familiar with the concept of 
zoning out, described to them as having “no idea what [they had] just read” and “not 
really thinking about the text, but … of something else altogether.” They read parts of the 
opening chapters of War and Peace for 45 minutes. On average, participants caught 
themselves zoning out 5.4 times. On approximately 67% of the zone-out responses, 
participants indicated that they believed they had not been aware that they had been 
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zoning out. When asked, they reported thinking about such things as school-related topics 
(27% of the time), fantasies (19% of the time), nothing at all (18% of the time) and 
themselves (11% of the time). Though participants were often unaware that they were 
zoning out, their minds were occupied “with rich thoughts that were completely unrelated 
to what they were reading” (Schooler, Reichle, & Halpern, 2004, p. 210).  

The second experiment replicated those of the first, but in addition, when 
compared on text recognition performance, participants who were zoning out had “lower 
comprehension levels than the baseline performance of those participants who were 
randomly given text recognition probes. … This finding provides behavioral evidence 
consistent with the claim that zoning-out episodes are associated with particularly low 
levels of attention to the [meaning of the] text” (Schooler, Reichle, & Halpern, 2004, p. 
212).12  

A third experiment reported by Smallwood, Fishman and Schooler (2007) used 
two types of probes to determine the effect of mind wandering on reading 
comprehension: inference-critical probes and random probes. Because readers need to 
build a coherent narrative, or situational model, of what they read, the experimenters had 
participants read Sherlock Holmes’ detective story, “The Red-Headed League,” to 
determine whether they could identify the villain. The story has four inference-critical 
events and some participants received probes at junctures in the text that reveal a fact 
critical to subsequently identifying the villain. Participants whose minds were wandering 
when they received these inference-critical probes were less able to identify the name of 
the villain than those who received random probes, suggesting that “even brief failures in 
attention, if they occur at critical junctures in the narrative, can impair an individual’s 
ability to create a model of the discourse, leading to downstream failures … ” 
(Smallwood, Fishman & Schooler, 2007, p. 233). Similarly, since every step in executing 
a procedure is critical, a lapse in focus when learning, or executing, one step is likely to 
lead to failure to get a correct answer. In addition, “Successful learning requires that 
individuals integrate information from the external environment with their own internal 
representations. … Because mind wandering is a state of decoupled attention, it 
represents a fundamental breakdown in the individual’s ability to attend (and therefore 
integrate) information from the external environment.” (Smallwood, Fishman, & 
Schooler, 2007, p. 230).  

 
Sensory awareness. This is the direct, primary focus on some sensory aspect of 

the body or inner or outer environment, without regard to its instrumental purpose. It is 
not some aspect of perception, but a central feature of one’s experience, and a completed 
phenomenon in its own right (Hurlburt, Heavey, & Bensaheb, 2009, pp. 239 & 245). 

The prevalence of sensory awareness (Hurlburt, Heavy, & Bensaheb, 2009) was 
detected using the Descriptive Experience Sampling (DES) method in order to investigate 
the momentary conscious, inner contents of a person’s mind in natural environments 
(Hurlburt, 1997; Hurlburt & Schwitzgebel, 2007). In this method, a subject carries a 
beeper that sounds randomly, through an earphone, about six times per day. Subjects are 
to attend to their experiences at the last undisturbed moment before the beep and to 
immediately jot down notes on it. Within 24 hours, the subjects are interviewed, and this 
sampling and interview procedure is typically repeated on two more days. According to 
Hurlburt, Heavey, and Bensaheb (2009), sensory awareness is just one of the five most 
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common inner experiences; the others are inner speech, inner seeing, feeling, and 
unsymbolized thinking. 

It appears that during an experience of sensory awareness, a person can carry on 
an unrelated activity, such as engaging in a conversation or dialing a phone, especially if 
that activity has been more-or-less automated. However, that person’s primary focus is 
upon the prevailing experience of sensory awareness. The phenomenon of sensory 
awareness is perhaps best understood through two examples given by Hurlburt, Heavey, 
and Bensaheb (2009, pp. 231-232).  

The first example shows how one can “tune out” to what another person is saying. 
Betty was in a conversation with her friend Wendy. At the moment of the beep, she was 
taking a sip of the drink, Dr. Pepper. She was drawn to the coldness of the liquid as it 
moved down her throat. Wendy continued to talk, but Wendy’s voice was not part of 
Betty’s (main) conscious experience. She was focused on the coldness in her throat. The 
second example shows that one can carry on an unrelated activity, perhaps automatically, 
while having an experience of sensory awareness. Andrew was dialing his cell phone. At 
the moment of the beep, he was “zeroed in” on the shiny blueness of the aluminum phone 
case. He was not paying attention to the number he was dialing. His conscious experience 
had momentarily left the task, which continued as if on autopilot. 

According to Hurlburt (1997), sensory awareness is a common occurrence and 
most subjects exhibit or report embarrassment when describing such experiences. Also, 
without the stimulus of the beeper and the note taking, experiences of sensory awareness 
tend be forgotten immediately. Indeed, some subjects who reported experiences of 
sensory awareness using the DES method were previously completely unaware that they 
had such experiences. Among 30 students, representative of entering students in a large 
U.S. university, Heavey & Hurlburt (2008) found that sensory awareness occurred in 
22% of sampled experiences.  

We suggest that experiences of sensory awareness while reading might have 
implications for students’ reading difficulties. While attempting to construct an inner 
model of an outer multi-part representation of mathematical knowledge, experiences of 
sensory awareness are likely to lead to cognitive gaps, and hence, to errors in working 
associated mathematical tasks. Furthermore, the contents of sensory awareness and mind 
wandering tend to be rather different, suggesting that taken together the rate of 
occurrence of gaps in sustained focus that are due to these two phenomena is likely to be 
more than either of their separate rates of occurrence. 

 
Cautious Reading 

The existence of mind wandering and experiences of sensory awareness, 
especially where unrecognized, suggest that in an initial reading some students may not 
be able to entirely avoid errors and omissions in the inner models they construct of the 
externally represented knowledge in their mathematics textbooks. Thus they could not 
entirely avoid errors in associated tasks. But this applies to mathematicians’ reading of a 
similar kind of text on an unfamiliar topic, so it is reasonable to expect that they, too, 
would occasionally construct imperfect inner models of what they have just read, and 
hence make errors in working associated tasks. However, mathematicians are generally 
very effective readers of mathematics, so much so that they sometimes successfully teach 
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undergraduate courses that they have never studied. Furthermore, many mathematicians 
seem to have acquired this ability without noticing much about how they acquired it. 

We suggest that this apparent anomaly can be resolved not so much by comparing 
the errors and confusions in learning from reading made by mathematicians with those 
made by students, but by comparing their respective reactions to those errors and 
confusions. Most of our students appeared to be strikingly unconcerned about their errors 
or lack of understanding and did not seem to believe they could have independently done 
anything about it. Ten of the students stated they did not understand something during the 
interviews, but made no attempt to determine what was causing their confusion, and five 
gave up at some point.  

In contrast, our experience as mathematicians suggests that most mathematicians 
read the above kind of material in what might be called a very cautious way. They tend to 
be sensitive to, and to look for, hints of their own misunderstanding. They work, and 
evaluate their performance on, tasks provided by the author, and even occasionally invent 
and work additional tasks. When they find an error or confusion, mathematicians are 
likely to reread the associated passage and rework the task until the error is corrected or 
the confusion is resolved. This suggests that, in contrast to our students, mathematicians 
have come to believe they can (autonomously) succeed in understanding mathematical 
texts through such reworking. Finally, we further suspect that this kind of careful, usually 
slow, reading is based on the (perhaps tacit) meta-mathematical knowledge that in 
mathematics neglected small errors are likely to lead to significant later errors, and that 
one’s own reading can occasionally generate such small errors.  

The above combination of sensitivity, belief, and meta-mathematical knowledge 
that contributes to cautious reading was probably learned tacitly and inductively by most 
mathematicians from their experiences working tasks, and conjecturing and proving 
theorems. That is, we suggest that mathematicians learn cautious (and effective) reading 
because they experience it as a necessary part of doing advanced mathematics. The 
characteristics of cautious reading suggested here are similar to those of the CRR-based 
strategies in that both are meant to be characteristics of good readers. However, their 
emphasis is different. The CRR-based strategies are about constructing as much 
knowledge as possible from text, while cautious reading is about detecting and correcting 
errors, misunderstandings, and confusions. We suspect that good readers, in the sense of 
both comprehension and effectiveness, will show both kinds of characteristics.  

Although a more thorough examination of the nature and genesis of cautious 
reading is beyond the scope of this study, we can point to evidence of its early 
development in one of our students. Ellis was the most effective reader, as indicated by 
the highest percent of correct tasks (Table 2). He was the only student who, when he did 
not find the correct coordinates for )67( π−W , created his own example to make sure he 
had understood the calculation. Thus, some of Ellis’ actions were consistent with cautious 
reading.  

 
DISCUSSION AND CONCLUSIONS 

 
After first reviewing the literature, we posed several research questions. Did our 

students exhibit the characteristics of good readers? What mathematical difficulties did 
they encounter when reading their mathematics textbooks and was the writing style 
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burdensome? Could our students read their mathematics textbooks effectively? Is there 
some further perspective, different from that of the good reading strategies and of the 
unusual writing style of mathematical textbooks that might help explain our, and other, 
students’ reading difficulties? And how can it be that most mathematicians apparently do 
not have such reading difficulties, despite having had no explicit training in avoiding, or 
repairing, them? 

We found that our students did seem to exhibit many of the characteristics of 
good readers as given by the CRR-based strategies (Table 1). They were also not very 
disturbed by the writing style. However, we observed our students having considerable 
difficulties in working tasks over a wide spectrum of definitions, theorems, examples, 
and explorations. Consequently, we judged that our students could not read their 
mathematics textbooks effectively, as indicated by their inability to properly carry out 
many straightforward tasks. We then suggested an additional perspective based on their 
textbook’s integration of conceptual and procedural knowledge. This allowed us to 
suggest possible sources of error, in addition to inadequate prior knowledge, namely, the 
existence of cognitive gaps due partly to mind wandering or sensory awareness during 
reading. We went on to discuss the cautious reading of mathematicians, who seem to be 
able to repair imperfect knowledge arising from cognitive gaps during reading.  

 
Refinements of the CRR-Based Strategies  
  Our students were ineffective readers of mathematics, but called on many of the 
CRR-based strategies (Table 1). Two kinds of observed difficulties suggest refinements 
in what effective readers of mathematics might be expected to do. Both move the CRR-
based strategies toward cautious reading.  

Strategies 1 and 2 indicate that good readers often preview parts of the text and 
decide which parts are worthy of the most attention. Our students clearly did that, but 
decided where to focus their attention badly. Some reported normally reading mainly 
examples13 and said that exposition was confusing and of minor importance. They read 
the expositions only because they were part of the interview. But in reading mathematics 
little can be safely omitted entirely, except possibly historical notes. We expect effective 
readers of mathematics would understand this and attend to much more of the text. 

Strategies 4 and 5 indicate that good readers infer the meaning of implicit 
information, and in particular, of new or unfamiliar words. But how this is done in 
mathematics differs considerably from how it is done in most other reading.  
In most nonmathematical reading inferring information, including the meanings of words, 
is very common, and it is even one of the reading comprehension skills tested by the 
ACT reading test. Different readers can infer different, even conflicting, information 
because the words on which the inferences are based can sometimes be interpreted in 
more than one way. However, for the stipulated definitions of mathematics, it is 
necessary for readers to construct inner models whose outer applications are logically 
equivalent to the author’s. Furthermore, for previously introduced words, authors of 
mathematics textbooks assume their readers’ meanings will yield the same results as their 
own in working tasks.  
 
Implications for Teaching 
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This study suggests that many first-year university students, including those good 
at reading and mathematics, could benefit from some instruction in reading their 
mathematics textbooks. The CRR-based strategies might be one useful guide for such 
instruction, especially for students less well-prepared than ours. However, this study also 
suggests that for students to become effective readers, something more should guide 
teaching, perhaps the refinements of the CRR-based strategies mentioned above. 
Instructors may wish to encourage their students to become more active in the way they 
read. This might include getting students to do a better job of activating their prior 
knowledge, teaching students strategies to help them integrate what they are reading and 
learning with prior knowledge, getting students to approach definitions as stipulative 
rather than descriptive, and teaching students how to construct their own examples and 
nonexamples by carefully consulting the formal mathematical definitions of concepts. 
Also, students need to actively engage in working from their concept images to the actual 
definitions, and vice versa, in order that they come to a reasonable semblance of the 
meaning intended by textbook authors (Pinto & Tall, 2002). 

Readers need to know how to “look up” definitions, and that it is important, 
sometimes even necessary, to go back to definitions when reading mathematical writing. 
Also, readers need to learn to pay attention to each word in a definition since changing 
even one word can signal a difference between two concepts. The students in this study 
did sometimes look up definitions, but frequently did not appear to, or could not, use that 
information correctly when attempting to carry out a mathematical task.  

One approach might be to try to help beginning university students both with the 
tendency to, and ability to, work through and understand the mathematical tasks that 
typically follow immediately after the introduction of new ideas or techniques. Perhaps it 
would be helpful to assign, in each class, a brief passage of new material to be read as 
homework. A small portion of the next class could then be devoted to helping students 
having difficulties with that passage. In that way, some of the difficulties we observed 
might be identified and dealt with. Students might come to understand that it is 
appropriate to look back to previous definitions and theorems, and to be very careful 
about the meanings of words. Indeed, they might develop the habit of doing these things, 
and thus move towards cautious reading. For a more nuanced, but still practical, approach 
to helping students with reading their mathematics textbooks, see Author (2005).  

 
Future Research Questions  

Turning to future research, here are a few questions that have come up in this 
study. It would be interesting to know how the CRR-based strategies could be further 
developed and used as a guide for teaching. What additional specialized strategies are 
critical for understanding mathematics textbooks? In what ways would using such 
extended strategies reduce the kinds of student reading difficulties we observed?  

It would also be very helpful to investigate student attitudes and beliefs about 
reading mathematics textbooks. Do many students believe that they cannot usefully read 
a textbook without help? Do many students believe that they will benefit most by reading 
mainly, or only, the worked examples? Do they feel it is worth attempting a task that is 
already worked out in the textbook?  

This study looked at good readers, as indicated by their high ACT reading scores 
and their use of many of the CRR-based strategies, and found many could not read their 
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mathematics textbooks effectively, despite being in a class that emphasized reading their 
textbooks. What are the actual reading practices of more typical students? Are some of 
them cautious readers? For example, do they look back to the details of a definition while 
attempting a task? Students’ actual practices may differ from what they report doing. 

It would be good to better understand the genesis of flaws in the inner knowledge, 
or mental models, that students construct directly from reading, or for that matter, from 
any kind of direct communication or teaching of procedural mathematical knowledge. 
One might expect both incorrect prior knowledge and cognitive gaps due to periods of 
mind wandering or sensory awareness to play roles in causing errors in immediately 
thereafter worked tasks. The genesis of flaws in the construction of mental models seems 
not to have been well investigated in mathematics education research. 

Cautious reading appears to be a fairly unusual skill that mathematicians have 
acquired and that leads to reading effectiveness. One could describe and analyze the 
cautious reading of mathematicians by observing them read. In this regard, it would also 
be good to investigate: (a) whether, and to what extent, mathematicians believe that small 
errors generated in reading mathematical text can lead to significant later errors; (b) the 
extent of mathematicians’ sensitivity to, and search for, their own misunderstandings; and 
(c) whether, and to what extent, mathematicians believe that they can autonomously 
eventually succeed in understanding most mathematical text. Without these three traits, 
most students may be unwilling to invest the time required for cautious reading. An 
investigation of cautious reading might go some way towards explaining the centuries old 
folk belief that “mathematics trains the mind.  

 
 

END NOTES 
1. Here we use “strategy” to indicate that the reader tends to carry out certain activities in certain situations, 
not that the activities necessarily result from conscious intention or in response to advice. 
2. The word “example,” as used here, normally refers to a mathematical task, sometimes with a solution 
provided in the textbook, sometimes not. This contrasts with some other mathematical writing where 
“example” refers to an object, such as in saying “6 is an example of an even integer.” 
3. One’s concept image (Tall & Vinner, 1981) is a mental construct including such knowledge as relevant 
examples, non-examples, facts, properties, relationships, diagrams, images, and visualizations, that one 
associates with the concept.  
4. In normal writing, “but” means “and” with a negative connotation. However, in the logic of 
mathematical reasoning, “but” simply means “and”. 
5. In a stipulated, also called an analytic, definition one must use all parts of the definition and not infer 
additional conditions. Such a definition can bring a concept or mathematical entity into existence. In 
contrast an extracted, also called a synthetic or a descriptive, definition is a description of an already 
existing entity. One need not use all parts of such a synthetic definition and may even appropriately infer 
additional conditions (Edwards & Ward, 2004). Synthetic definitions can be right or wrong; analytic 
definitions cannot. 
6. The ACT (American College Test, 2010) is a university admissions examination that includes a 
mathematics portion and a general reading portion. More information is provided in the section, “A 
Comparison of what the ACT Tests Measure with Effective Reading”. 
7. All student names are pseudonyms. Names starting with letters at the beginning of the alphabet are 
precalculus students and names starting with letters at the end of the alphabet are calculus students. 
8. When students are speaking, their comments are shown in regular typeface; when they are reading from 
their textbooks, this is shown in italics; pauses are shown as […] and … indicate omissions. 
9. We will use concept for an external, textual description or a definition and conception for an inner 
mental structure corresponding to that concept. 
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10. We are not suggesting anything about the psychological or neurological nature of such an inner model, 
except what might be inferred from the students’ subsequent actions. 
11. This is similar to the way one’s experience of a large relatively high resolution visual field is 
constructed, outside of consciousness, from a large low resolution field, plus a number of small high 
resolution areas, with the gaps filled in plausibly. 
12. Schooler, Reichle, & Halpern (2004) speak of “attention” instead of “focus” or “focus of attention.” 
13. Mathematics textbook authors may inadvertently encourage this by visually setting apart information 
such as definitions. This is probably to encourage readers to look back to that information when reading 
later passages. Such looking back to check details is a common practice among skilled readers of 
mathematics. 
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Appendices A and B include copies of the textbook pages that the students were asked to 
read.  Permission to include these pages has been received from the publisher.   The 
pages have been cut apart so that comments and tasks could be inserted to indicate when 
the students were asked to perform a task.   
 
Appendix A contains the passage read by the precalculus students.  All tasks that the 
precalculus students were asked to perform were contained within the selected pages.  
 
Appendix B contains the passage read by the calculus students.  In addition to the 
selected pages and indicated tasks, it also includes copies of the exercises that the 
students were asked to attempt. 
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Appendix A (Part I) —Precalculus reading passages with interruptions: 

 



 
 

27

 

The student readers were interrupted at this point and asked to work this example without 
looking at the solution, which was covered with Post-it© notes.  Then each student was 
asked to read through the solution and work the Matched Problem. 
 

 

The student was then asked to continue reading: 
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The student was interrupted at this point and asked to work this example without looking 
at the solution which was covered with a Post-it© note.  The student was then asked to 
read the solution and work Matched Problem 2. 
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After checking answers, the student was asked to continue reading: 
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Appendix A (Part II) —Precalculus reading passages (continued) 
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The student was stopped and was asked if he/she would do the Explore/Discuss.  None 
did.  The student was then asked to continue reading: 

 

Again, the student was asked to stop and to try to work this example with the solution 
covered. Then the student read the solution, worked Matched Problem 3, and continued 
reading. 
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If the interview got this far, the student was asked to try this Explore/Discuss. 
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Appendix B  Calculus reading passages with interruptions: 

 

The student was stopped at this point and was asked to try Exercises 51-54 below. 
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The student was asked to continue reading.  (Note some of the figures are on the left side 
of the first portion of the reading which is on the previous page.) 
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The student was stopped and was asked if he/she would try the Exploration.  Upon 
completion of the Exploration, student asked to try the two true/false questions below 
from Calculus textbook, page 167. 
 
 
True or False?  In Exercises 61-64, determine whether the statement is true or false.  

If it is false, explain why or give an example that shows it is false. 

61. The maximum of a function that is continuous on a closed interval can occur at two 
different values in the interval. 

62. If a function is continuous on a closed interval, then it must have a minimum on the 
interval. 

 
 
Then the student was asked to continue reading: 
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The student was stopped and was asked to work Example 1 with the solution covered 
with Post-It© Notes.  Note that the remaining two figures for Figure 3.3 are beside the 
solution given below.  After the student had worked the example, he/she was asked to 
read the solution and then continue reading. 
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At the end of the proof, the student was stopped and was asked what the proof meant to 
him/her.  The student was then asked to continue reading: 
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The student was stopped and was asked to try the example without looking at the solution 
which was covered.  Then the student was asked to read the solution and continue 
reading. 
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The student was stopped and was asked to try the example without looking at the solution 
which was covered, and then to read the solution. 
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The student was stopped and was asked to try the example without looking at the solution 
which was covered.  The student was then asked to read the solution. 
 

 

The student was then stopped (this was the end of the reading section) and asked to try 
Exercises 8 and 12. 
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In Exercises 11-16, find any critical numbers of the function. 

12. )4()( 22 −= xxxg  
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Appendix C—Debriefing questions: 

1. Were there any words or terms that bothered you as you read? 

2. Were there any symbols or notation that bothered you as you read? 

3. Are there any other ways this passage was difficult for you to read and/or 

understand? 

4. What things do you do when you read the textbook? 

5. Have you seen the material this passage covered anywhere before?  (If so, 

where?) 

6. Did the reading help you do the task?  In what way? 

7. Is there anything else you would like to say? 

 
 


