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Abstract 

This paper is an easy-to-understand primer on three important concepts of factor analysis: Factor 

scores, structure coefficients, and communality coefficients. An introductory overview of 

meanings and applications of each is presented. Additionally, four methods for calculating factor 

scores are compared: (1) The Anderson-Rubin method (Anderson & Rubin, 1956); (2) the Bartlett 

method (Bartlett, 1937); (3) the regression method (Gorsuch, 1983); and (4) the Thompson method 

(Thompson, 1993). Step-by-step instructions are provided for utilizing these four methods, with 

heuristic examples.  
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Factor scores, structure and communality coefficients: A primer 

Factor scores, structure coefficients, and communality coefficients are integral to the 

interpretation and reporting of factor analytic research results. Therefore, a foundational 

understanding of these three concepts is useful for students and researchers. This easy-to-follow 

primer is intended to provide an introductory overview of factor scores, structure and 

communality coefficients with a heuristic example using real world data from the 1939 

Holzinger and Swineford data set.   

An introductory overview of meanings and applications of factor scores, structure 

coefficients, and communality coefficients is presented. Additionally, four methods for calculating 

factor scores are compared: (1) The Anderson-Rubin method (Anderson & Rubin, 1956); (2) the 

Bartlett method (Bartlett, 1937); (3) the regression method (Gorsuch, 1983); and (4) the Thompson 

method (Thompson, 1993). Step-by-step instructions are provided for utilizing these four methods, 

with heuristic examples utilizing publically-accessible data and the commonly used statistical 

program SPSS.  Interested readers may opt to follow these examples and on their own to enhance 

the learning of the presented concepts (full syntax for all examples in Appendix). 

After thoughtful review of this paper, readers should gain an introductory understanding of 

the purposes of factor scores, structure coefficients, and communality coefficients in factor 

analyses, and how to utilize SPSS for conducting various factor score estimation methods in a 

factor analysis. Given that statistical analyses are a part of a global general linear model (GLM), 

and utilize weights as an integral part of analyses (Thompson, 2006; Thompson, 2004), 

terminology used for factor analytic procedures are analogous to terminology in other GLM 

analyses. Therefore, transfer of ideas across various GLM analyses is anticipated. 
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Heuristic Data 

The Holzinger and Swineford (1939) data set will be used to illustrate computations and 

aid discussion of factor analytic statistics. For heuristic purposes, all scores for the 301 original 

participants on six of the original twenty-five measured variables will be used: “t14” – Memory 

of Target Words; “t15” – Memory of Target Numbers; “t16” – Memory of Target Shapes; “t20” 

– Deductive Math Ability; “t21” – Math Number Puzzles; and, “t22” – Math Word Problem 

Reasoning. There seems to be two general categories that these six variables may naturally fall 

into: (1) Memory; and, (2) Math ability. It would not be unreasonable, therefore, to expect to find 

two factors for our six variables. A factor analysis will confirm or contradict this educated guess.  

Factor Analytic Statistics 

Terminology for statistical techniques can be confusing and cumbersome, especially for 

those with limited statistical backgrounds. Here, relevant terms will be introduced, defined, and 

presented with relevant SPSS syntax and outputs using the aforementioned six variables. 

Pattern Coefficients 

Pattern coefficients are weights applied to measured variables to obtain scores on latent 

variables (sometimes called composite or synthetic variables) and are analogous to beta weights in 

the regression equation, the set of weights for the predictors in regression analyses (Thompson, 

2004). In all GLM analyses (including factor analysis), “weights [here, pattern coefficients] are 

invoked (a) to compute scores on the latent variables or (b) to interpret what the composite 

variables represent” (Thompson, 2004, p. 15). Because latent variables “are actually the focus of 

all analyses” (Wells, 1999, p. 123), pattern coefficients are an important part of the process, as they 

are part of equation to compute latent variables. See Table 1 for an example pattern coefficient 

matrix for our selected six variables, as computed by SPSS. 
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Factor Scores 

Factor scores are the composite (latent) scores for each subject on each factor (Thompson, 

2004; Wells, 1999). Factor scores are analogous to the Ŷ (Yhat) scores in the regression equation 

and are calculated by applying the factor pattern matrix to the measured variables. Factor scores 

are most commonly used for further statistical analyses in place of measured variables, especially 

when numerous outcome scores are available: “In real research, factor scores are typically only 

estimated when the researcher elects to use these scores in further substantive analyses (e.g., a 

multivariate analysis of variance comparing mean differences on three factors across men and 

women)” (Thompson, 2004, pp. 57-58). 

As part of a factor analysis, SPSS calculates factor scores and automatically saves them in 

the data file, where they are easily accessible for further analyses (see Table 2). Table 2 is a factor 

score matrix for our population of 301 participants on the six variables. All factor scores have a 

matrix rank of FNxF. Note that the leftmost column (labeled “ID”) consists of participant 

identification. In other words, there is one row for each of our 301 study participants. Thus, each 

row in this matrix represents an individual participant‟s factor score for any given number of 

factors (in this case, there are two factors). The subscript “N” in the matrix rank represents the fact 

that the rows in a factor score matrix represent the study population. The columns (labeled 

REG_PA1 and REG_PA2, respectively) represent the two factors that were extracted when a 

regression analysis was run with principal axes extraction method (more on extraction methods to 

come). You can manually change these variable names in the SPSS data file, if you wish. Note that 

the “F” in the matrix rank denotes that the columns in a factor score matrix represent the factors. 

This rank could be rewritten as F301x2 to represent the 301 participants and 2 factors. 
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Factor Scores vs. Factors 

Students sometimes confuse factor scores with the factors themselves (Wells, 1999). 

Factors scores are the composite (latent) scores for each subject on each factor, which is a grouping 

of measured variables. A few distinctions between the two: 

1. Factor score matrices (FNxF) and factor matrices (WVxF) have different ranks. 

2. Remember that there will be “N" factor scores on each factor (e.g., one factor score for 

each person in a given study) and “V” rows in a factor matrix.  

3. Factor scores are latent scores on the factors themselves. 

4. Factor scores are specific to each research participant on each factor (i.e., each participant 

has an individual factor score on each factor). 

5. Factors are specific to a group of measured variables. 

6. Factor scores will be located in the SPSS data file. 

7. Factors will be located in the SPSS output file. 

In factor analysis, it is possible to have more than one factor (unlike in multiple regression 

where there is only one regression equation). The number of factors “worth keeping” ranges 

between 1 to the total number of variables (Thomson, 2004, p. 17). The number of worthy 

factors is a subjective call on the noteworthiness of the amount of information or variability the 

factor reproduces. Very little variability might not be “worth” taking into account, in many cases.  

In addition to the factor score matrix seen in Table 2, SPSS creates a factor matrix that 

includes all extracted factors from a factor analysis (see Table 3). The entries in Table 3 are an 

indication of how useful each factor is for explaining the variance of the measured variables; but 

do not be misled: They ARE NOT FACTOR SCORES! Note that the leftmost, unlabeled column 

consists of measured variable names. This signifies that each row in this matrix represents a 
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measured variable. The subscript “V” in the factor matrix rank represents this fact – the fact that 

the rows in a factor matrix represent the variables. The middle and right most columns (labeled “1” 

and “2”, respectively) represent the two factors that were extracted from the data set. Note that the 

“F” in the matrix rank (i.e., WVxF) denotes that the columns in a factor matrix represent the factors. 

This rank could be rewritten F6x2 because there are six measured variables and two factors in this 

example.  

The factor matrix can sometimes be labeled “component matrix”. In Table 3, the matrix is 

labeled “factor matrix” because the extraction method used was principal axes. However, when 

principal components extraction method is utilized, the matrix containing the factors is labeled 

“component matrix” in the SPSS output. Don‟t be confused by the differing terminology, “factor 

matrix” and “component matrix” both illustrate the factors in a given factor analysis. 

Factor Structure Coefficients 

Factor structure coefficients are always, always called structure coefficients in GLM 

analyses. They are the bivariate correlations (e.g., Pearson‟s r; or correlation between x and Ŷ) 

between measured variables (e.g., x) and their composite variables (e.g., Ŷ). When factors are 

perfectly uncorrelated, structure coefficients are exactly equal to pattern coefficients and can be 

labeled pattern/structure coefficients. The case of perfectly uncorrelated factors is analogous to 

case #1 in regression, when only pattern coefficients (i.e., beta weights) or structure coefficients 

(Pearson‟s r) are needed for result interpretation, since they are exactly equal (Thompson, 2004). 

See Table 4 for the factor structure coefficients for our current research example. There are two 

sets of factor structure coefficients in this example: One set using the principal components 

extraction method (more on extraction methods later), in the two far right columns labeled 

REG_PC1 and REG_PC2 and a second set utilizing the principal axes extraction method, labeled 
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REG_PA1 and REG_PA2. Note that both extraction methods identified two factors, but the 

individual factor structure coefficients differ between the two methods.  

Communality Coefficients (h
2
) 

A communality coefficient measures how much variance in a measured variable the 

factors, as a set, reproduce. They answer the question: “How well do the factors represent the 

measured variables?” Or, conversely: “How well do the measured variables load into the factors?” 

When h
2
 = 0%, then the variable of interest in not being represented in the factors and additional 

factors may need to be extracted. Note that when h
2
 > 100%, it is labeled a Heywood case, an 

indication of a statistically inadmissible result, as reliability of scores is bound by 0% and 100% 

(Thompson, 2004). Additionally, communality coefficients provide a “„lower bound‟ estimate of 

reliability of the scores on the variable” (Thompson, 2004, p. 20). That is, if h
2
 = 50%; we may 

discern that the reliability of the scores on the variable is at least 50%.  

SPSS computes communality coefficients as part of its factor analysis and conveniently 

prints them in the output file (see Table 5). The communality coefficients are located in the far 

right column of Tabe 5, labeled “extraction”. For example, the communality coefficient for 

variable t14 is .638, or 63.8%, because communality coefficients (h
2
) are already squared. While it 

is convenient that SPSS computes these communality coefficients for us, we have the ability to 

compute them for ourselves by summing the pattern/structure coefficients: 

h
2
 = ps1

2
 + ps2

2
 + ps3

2
 + psn

2
… 

This equation is only for uncorrelated factors, which is the aim of factor analyses. Because the 

factors in our example are uncorrelated, we can use this formula to calculate the communality 

coefficients for ourselves (see Table 6). To calculate communality coefficient values, we need the 

component (or factor) matrix from the SPSS output (the bolded portion of Table 6). Then, we 
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simply square the component values for component (factor) 1 and add this product to the squared 

value of component (factor) 2. Note that the manual computation of communality coefficients 

exactly equals the communality coefficients values computed by SPSS in Table 5, providing us 

with confidence in our mathematical skills. 

Computing Factor Scores 

Extraction Methods 

The two most commonly used extraction methods in factor analyses are (1) principal 

components and (2) principal axes. We‟ll briefly consider how these methods differ when coupled 

with three factor score estimation methods: The regression method, the Bartlett method, and the 

Anderson-Rubin method (these methods are discussed later). Table 7 illustrates the factor scores 

for participant 1-4 and 298-301 on our six measured variables when the principal component 

extraction method is used. This is a factor score matrix. Notice that the regression score for 

participant #1 on factor 1 (labeled REG_PC1) is exactly identical to the Bartlett factor score for 

participant #1 on factor 1 (labeled BART_PC1), which is also exactly identical to the Anderson-

Rubin factor score for participant #1 on factor 1 (labeled AR_PC1). This illustrates how factor 

scores are exactly identical for each participant across these three methods when the principal 

component extraction method is used. Look at the other scores in the table for confirmation. The 

take home message is that when principal components extraction method is used, it doesn‟t matter 

which of these factor score estimation methods you employ because they will all yield exactly 

identical factor scores.  

With principal axes extraction method, however, it does matter which factor score 

estimation method you employ because the factor scores differ slightly across the methods (see 

Table 8). Notice that the regression score for participant #1 on factor 1 is not exactly identical 
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across all three methods (-0.172 with regression; -0.021 with Bartlett; -0.118 with Anderson-

Rubin). Indeed, the factor scores vary for all participants across the methods. Thus, when principal 

axes extraction method is used, it does matter which factor score estimation method is used.  

A further illustration of the difference between principal components and principal axes is 

evident when a correlation between the two extracted factors is calculated. Remember that SPSS 

saves factor scores in the data file, so further analyses may easily be run. To run a correlation 

between extracted factors – in our current example there are 2 – the following SPSS syntax can be 

utilized:  

CORRELATIONS 

 /VARIABLES=REG_PA1 REG_PA2 

  /PRINT=TWOTAIL NOSIG 

  /STATISTICS DESCRIPTIVES 

  /MISSING=PAIRWISE. 

CORRELATIONS 

  /VARIABLES=REG_PC1 REG_PC2 

  /PRINT=TWOTAIL NOSIG 

  /STATISTICS DESCRIPTIVES 

  /MISSING=PAIRWISE.  

 

Note that the first correlation analysis is between the two factors, using principal axes 

(REG_PA1 and REG_PA2), while the second analysis uses principal components (REG_PC1 and 

REG_PC2). Regression is the factor score extraction method for each, but Bartlett or Anderson-

Rubin could also have been utilized. With the principal component method, the two extracted 

factors are perfectly uncorrelated with one another (see Table 9), which is desirable as we prefer 

factors that are perfectly uncorrelated with one another.  

Another appealing characteristic of principal components for factor score computation is 

that the factor score correlations exactly match the factors themselves. For example, the rotated 

component matrix created by SPSS with principal components (in Tables 1, 3, and 4) is identical to 

the Pearson‟s r correlation between the measured variables and factor scores with all three factor 
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score estimation methods when principal components extraction method is employed (see Table 

10). The same does not hold true with principal axes. 

Estimation Methods 

There are dozens of factor score estimation methods available and we‟ll consider four of 

the more common methods in this paper: (1) Regression; (2) Bartlett; (3) Anderson-Rubin; and, (4) 

Thompson. The first three methods (Regression, Bartlett, Anderson-Rubin) provide factor scores in 

z score form. The Thompson method provides standardized, noncentered factor scores.  

The Regression Method. The regression method is a popular choice because of the 

familiarity with multiple regression techniques. Additionally, the regression method is desirable for 

calculation of higher-order factor scores in addition to primary (Thompson, 2004; Gorsuch, 1983). 

In this method, measured variables are converted into z scores then multiplied by the standardized 

score matrix and the inverse of the variable correlation matrix:  

FNxF = ZNxV RVxV
-1

 PVxF 

Fortunately for the mathematically challenged researchers and students, SPSS provides a user-

friendly way to compute regression factor score values. The following SPSS syntax can be used: 

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT INITIAL EXTRACTION ROTATION 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE REG(ALL) 

  /METHOD=CORRELATION.  

 

The Bartlett Method. The Bartlett method uses the least squared procedure to minimize the 

sums of squares of the factors over the range of variables (Bartlett, 1937). This is intended to keep 
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noncommon factors “in their place” so that they are only used to explain differences between 

observed scores and reproduced scores (Gorsuch, 1983, p. 264). The Bartlett method leads to high 

correlation between factor scores and factors being estimated. 

The Bartlett method is both univocal and unbiased. Univocal means that each measured 

variable only speaks through one factor. It is desirable for a variable to only be highly correlated 

with one factor so that we have a simple structure. When variables speak through multiple factors, 

the factors might be too correlated with one another to be the best selection of factors. When 

variables speak through multiple factors, we need to look at our factors to determine if they are, in 

fact, the best factors for our given sample. Our aim is uncorrelated factors. Unbiased refers to the 

capacity of repeated samples invoking a statistic to yield accurate estimates of corresponding 

parameters. For example, if we draw infinitely many random samples from a population, all at the 

same time, the averages of the sample means will equal the population mean (Thompson, 2006). 

To run the Bartlett method in SPSS, the following syntax can be used: 

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT INITIAL EXTRACTION ROTATION 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE BART(ALL) 

  /METHOD=CORRELATION.  

 

The Anderson-Rubin Method. The Anderson-Rubin method is similar to the Bartlett 

method, but more complex. The factor scores must be orthogonal to utilize the Anderson-Rubin 

method, which generates factor estimates whose correlations form an Identity Matrix (Wells, 
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1999). This method is neither univocal nor unbiased. (Anderson & Rubin, 1956; Thompson, 2004; 

Wells, 1999). To run the Anderson-Rubin method in SPSS, the following syntax can be utilized:  

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT INITIAL EXTRACTION ROTATION 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE AR(ALL) 

  /METHOD=CORRELATION.  

 

The Thompson Method. Conventional methods (e.g., Regression, Bartlett, Anderson-

Rubin) produce factor score estimates in a z score form, with means equal to zero and a standard 

deviation score equal to one (i.e., standardized). Z score form is not useful for comparison of factor 

scores across factors within the whole data set: 

While in many applications this score form is appealing, the result does preclude 

comparison of the mean factor score on any given factor with the means on other factor 

scores, because the means of each set of factor scores will have been set to zero…This is 

unfortunate, because sometimes we wish to compare means on factor scores across factors 

to make some judgment regarding the relative importance of given factors (Thompson, 

1993, p. 1129). 

The Thompson methods solves this issue of comparison of means across factor scores by 

calculating factor scores that are still standardized but with means that are determined by the 

original variable means. The benefit of the Thompson method, as described by its creator is its 

ability produce standardized, noncentered factor scores that permit comparison across factors. 

Execution of the Thompson method in SPSS has three steps: (1) Z scores must be computed; (2) 
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the original measured variable means must be added back onto the z scores; and, (3) the weight 

matrix (i.e., factor/component score coefficient matrix) must be applied to the standardized, 

noncentered scores: 

(1) DESCRIPTIVES variables=t14 t15 t16 t20 t21 t22/SAVE. 

(2) compute ct14 = zt14 + 175.15 . 

compute ct15 = zt15 + 90.01 . 

compute ct16 = zt16 + 102.52 . 

compute ct20 = zt20 + 26.89 . 

compute ct21 = zt21 + 14.25 . 

compute ct22 = zt22 + 26.24 . 

print formats zt14 to ct22 (F7.2) . 

list variables=id zt14 to ct22/cases=10 . 

DESCRIPTIVES variables= zt14 to ct22 .  

(3) compute BTscr1 = (-.119 * ct14) + (-.159 * ct15) + (.142 * ct16) + (.383 * ct20) + 

(.417 * ct21) + (.467 * ct22) . 

compute BTscr2 = (.512 * ct14) + (.537 * ct15) + (.295 * ct16) + (-.021 * ct20) + (-

.078 * ct21) + (-.175 * ct22) . 

print formats BTscr1 BTscr2 (F8.3) . 

 

A comparison of regression factor scores and Thompson factor scores is available in Table 

11. Note that participant #1‟s Thompson factor scores on factor 1 (labeled BTscr1) and factor 2 

(labeled BTscr2) are 235.503 and 94.497, respectively. Because the Thompson factor scores allow 

for mean comparisons across factors, we compare this individual‟s factor scores with the mean 

score on each individual factor. This provides a comparison of how one participant‟s scores on a 

factor compare to other participants.  

Communality Coefficients as R
2
 

We know that another GLM principal is that all analyses compute r
2
–type effect sizes 

(Thompson, 2006). In factor analyses, the communality coefficients (h
2
) can be the R

2
–type effect 

size (Thompson, 2004). We noted that communality coefficients signify how much of measured 

variables‟ variance the factors as a set can reproduce. Stated otherwise, they indicate how much of 

the measured variables‟ variance was useful in delineating the extracted factors. With orthogonal 
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(uncorrelated) factors, beta weights for the individual factor scores will be the correlation 

coefficients between the predictors and the outcome variable also equal the structure coefficients 

for the measured variables (Thompson, 2004) . In our ongoing example, because the factor scores 

are uncorrelated, the beta weights for the two factors are also the correlation coefficients. 

To calculate the R
2
–type effect size for our given six variables, we can use syntax provided 

by Thompson (2004, p. 62): 

regression variables=reg_pc1 to reg_pc2  

t14 t15 t16 t20 t21 t22 / dependent = t14 /  

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2  

t14 t15 t16 t20 t21 t22 / dependent = t15 /  

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2  

t14 t15 t16 t20 t21 t22 / dependent = t16/ 

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2  

t14 t15 t16 t20 t21 t22 / dependent = t20 /  

enter reg_pc1 to reg_pc2 . 

regression variables=reg_pc1 to reg_pc2  

t14 t15 t16 t20 t21 t22 / dependent = t21 /  

enter reg_pc1 to reg_pc2. 

regression variables=reg_pc1 to reg_pc2  

t14 t15 t16 t20 t21 t22 / dependent = t22  

enter reg_pc1 to reg_pc2. 

 

The resulting SPSS output with the calculated R
2
 can been seen in Table 12. Compare the 

R
2
 values with our original communalities matrix in Table 5. They are exactly identical, as we 

expected. Therefore, the communality coefficients are indicative of effect sizes. 

Discussion 

Factor scores, structure coefficients, and communality coefficients are important statistics 

within factor analysis. An understanding of the function of these three concepts is helpful for 

deciphering factor analytic techniques. A recap of key ideas on factor scores, structure coefficients, 

and communality coefficients: 
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1. Factor scores are the latent variables for a given factor and are useful for conversion of 

large sets of measured variables into a smaller set of composite constructs for further 

inquiry. 

2. Factor structure coefficients are correlations between measured and latent variables. 

They are always called structure coefficients in GLM analyses, and are essential to 

correctly interpreting results. 

3. Communality coefficients indicate the variance of a measured variable reproduced by a 

set of extracted factors. They, can be considered a R
2
-type effect size. 

4. With principal component extraction method, regression, Bartlett, and Anderson-Rubin 

factor score calculation methods will yield identical factor scores for each participant 

on each factor. With principal axes, the factor scores will likely differ. 

5. All GLM analyses use weights applied to measured variables to yield scores on 

composite variables. Factor analysis is part of the GLM; therefore, factor analysis 

techniques will be analogous to other GLM analyses‟ but terminology will mostly 

differ. 

Given the GLM, a transfer of these ideas is anticipated across various other GLM analyses, 

providing usefulness beyond factor analytic techniques.  
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Table 1  

Pattern Coefficient Matrices with Principal Axes and Principal Component Analyses

Rotated Component Matrix
a
 

 
Component 

1 2 

t14 MEMORY OF TARGET 
WORDS 

.101 .792 

t15 MEMORY OF TARGET 
NUMBERS 

.040 .809 

t16 MEMORY OF TARGET 
SHAPES 

.461 .591 

t20 DEDUCTIVE MATH 
ABILITY 

.720 .210 

t21 MATH NUMBER 
PUZZLES 

.748 .135 

t22 MATH WORD PROBLEM 
REASONING 

.782 .003 

 
Extraction Method: Principal Component Analysis.  
 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 

  

Rotated Factor Matrix
a
 

 
Factor 

1 2 

t14 MEMORY OF TARGET 
WORDS 

.143 .623 

t15 MEMORY OF TARGET 
NUMBERS 

.104 .611 

t16 MEMORY OF TARGET 
SHAPES 

.421 .506 

t20 DEDUCTIVE MATH 
ABILITY 

.594 .222 

t21 MATH NUMBER 
PUZZLES 

.607 .168 

t22 MATH WORD PROBLEM 
REASONING 

.610 .077 

 
Extraction Method: Principal Axis Factoring.  
 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 
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Table 2 

Regression Factor Scores using Principal Axes Extraction Method 

ID REG_PA1 REG_PA2 

1 -0.17201 -0.67845 

2 -0.80644 0.00998 

3 -1.22832 -0.58106 

4 -1.07467 -0.62952 

**** **** **** 

298 -0.14524 -0.46028 

299 0.57567 -0.01107 

300 -0.82847 0.17395 

301 1.20948 0.42473 

  



 Factor Scores 20 

 

Table 3 

Factor Matrices from SPSS with Principal Axes and Principal Component Analyses

Rotated Factor Matrix
a
 

 
Factor 

1 2 

t14 MEMORY OF TARGET 

WORDS 

.143 .623 

t15 MEMORY OF TARGET 

NUMBERS 

.104 .611 

t16 MEMORY OF TARGET 

SHAPES 

.421 .506 

t20 DEDUCTIVE MATH 

ABILITY 

.594 .222 

t21 MATH NUMBER 

PUZZLES 

.607 .168 

t22 MATH WORD PROBLEM 

REASONING 

.610 .077 

Extraction Method: Principal Axis Factoring.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 

 

Rotated Component Matrix
a
 

 
Component 

1 2 

t14 MEMORY OF TARGET 

WORDS 

.101 .792 

t15 MEMORY OF TARGET 

NUMBERS 

.040 .809 

t16 MEMORY OF TARGET 

SHAPES 

.461 .591 

t20 DEDUCTIVE MATH 

ABILITY 

.720 .210 

t21 MATH NUMBER 

PUZZLES 

.748 .135 

t22 MATH WORD PROBLEM 

REASONING 

.782 .003 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 3 iterations. 
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Table 4 

Structure Coefficients with Principal Axes and Principal Component Analyses 

Correlations   

 
REG_PA1  

factor score 1  

REG_PA2  

factor score 2  

REG_PC1  

factor score 1  

REG_PC2  

factor score 2  

t14 MEMORY OF TARGET WORDS .179 .807 .101 .792 

t15 MEMORY OF TARGET NUMBERS .131 .791 .040 .809 

t16 MEMORY OF TARGET SHAPES .528 .655 .461 .591 

t20 DEDUCTIVE MATH ABILITY .745 .288 .720 .210 

t21 MATH NUMBER PUZZLES .761 .218 .748 .135 

t22 MATH WORD PROBLEM REASONING .766 .100 .782 .003 
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Table 5 

Communality Coefficients with Principal Component Analysis 

Communalities 

 Initial Extraction 

t14 MEMORY OF TARGET 

WORDS 

1.000 .638 

t15 MEMORY OF TARGET 

NUMBERS 

1.000 .656 

t16 MEMORY OF TARGET 

SHAPES 

1.000 .562 

t20 DEDUCTIVE MATH 

ABILITY 

1.000 .563 

t21 MATH NUMBER 

PUZZLES 

1.000 .577 

t22 MATH WORD PROBLEM 

REASONING 

1.000 .611 

Extraction Method: Principal Component Analysis. 
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Table 6 

Manual Calculation of Communality Coefficients 

Component Matrix
a
 

   

 

Component 
   

1 2 h
2
 = ps1

2
 + ps2

2
 + ps3

2
 … h

2
 h

2
 

t14 MEMORY OF TARGET 

WORDS 
.588 .540 (.588)

2
 + (.540)

2
 0.638 63.8% 

t15 MEMORY OF TARGET 

NUMBERS 
.553 .592 (.553)

2
 + (.592)

2
 0.656 65.6% 

t16 MEMORY OF TARGET 

SHAPES 
.733 .155 (.733)

2
 + (.155)

2
 0.562 56.2% 

t20 DEDUCTIVE MATH 

ABILITY 
.686 -.304 (.686)

2
 + (-.304)

2
 0.563 56.3% 

t21 MATH NUMBER 

PUZZLES 
.658 -.379 (.658)

2
 + (-.379)

2
 0.577 57.7% 

t22 MATH WORD 

PROBLEM REASONING 
.599 -.502 (.599)

2
 + (-.502)

2
 0.611 61.1% 

Extraction Method: Principal Component Analysis. 
   

a. 2 components extracted. 

    
Note. The Component Matrix (in bolded box) is from the SPSS output. 
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Table 7  

Selected Factor Scores with Principal Component Extraction Method 

 
  Regression Bartlett Anderson-Rubin 

ID REG_PC1 REG_PC2 BART_PC1 BART_PC2 AR_PC1 AR_PC2 

1 -0.088 -0.878 -0.088 -0.878 -0.088 -0.878 

2 -1.009 0.101 -1.009 0.101 -1.009 0.101 

3 -1.475 -0.591 -1.475 -0.591 -1.475 -0.591 

4 -1.246 -0.698 -1.246 -0.698 -1.246 -0.698 

**** **** **** **** **** **** **** 

298 -0.154 -0.576 -0.154 -0.576 -0.154 -0.576 

299 0.725 -0.085 0.725 -0.085 0.725 -0.085 

300 -1.100 0.344 -1.100 0.344 -1.100 0.344 

301 1.490 0.361 1.490 0.361 1.490 0.361 
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Table 8 

Selected Factor Scores with Principal Axes Extraction Method 

 

  

 
  Regression Bartlett Anderson-Rubin 

ID REG_PA1 REG_PA2 BART_PA1 BART_PA2 AR_PA1 AR_PA2 

1 -0.172 -0.678 -0.021 -1.132 -0.118 -0.869 

2 -0.806 0.010 -1.343 0.335 -1.034 0.136 

3 -1.228 -0.581 -1.812 -0.549 -1.485 -0.583 

4 -1.075 -0.630 -1.540 -0.693 -1.282 -0.669 

**** **** **** **** **** **** **** 

298 -0.145 -0.460 -0.060 -0.761 -0.116 -0.588 

299 0.576 -0.011 0.961 -0.245 0.739 -0.101 

300 -0.828 0.174 -1.442 0.631 -1.086 0.354 

301 1.209 0.425 1.839 0.280 1.482 0.380 
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Correlations 

 

REG_PC1 

REGR factor 

score   1 for 

analysis 1 

REG_PC2 

REGR factor 

score   2 for 

analysis 1 

REG_PC1 REGR factor 

score   1 for analysis 1 

Pearson Correlation 1 .000 

Sig. (2-tailed)  1.000 

N 301 301 

REG_PC2 REGR factor 

score   2 for analysis 1 

Pearson Correlation .000 1 

Sig. (2-tailed) 1.000  

N 301 301 

 

Table 9 

 Correlations between Factors in Principal Component and Principal Axes 

 

 

 

  

 

Correlations 

 

REG_PA1 REGR 

factor score   1 

for analysis 1 

REG_PA2 REGR 

factor score   2 

for analysis 1 

REG_PA1 REGR factor 

score   1 for analysis 1 

Pearson Correlation 1 .228
**
 

Sig. (2-tailed)  .000 

N 301 301 

REG_PA2 REGR factor 

score   2 for analysis 1 

Pearson Correlation .228
**
 1 

Sig. (2-tailed) .000  

N 301 301 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 10 

Pearson’s r Correlation Matrix  

Pearson‟s r values between Measured Variables and Factor Scores with Principal 

Component Extraction Method 

  REG_PC1 REG_PC2 BART_PC1 BART_PC2 AR_PC1 AR_PC2 

t14 0.101 0.792 0.101 0.792 0.101 0.792 

t15 0.040 0.809 0.040 0.809 0.040 0.809 

t16 0.461 0.591 0.461 0.591 0.461 0.591 

t20 0.720 0.210 0.720 0.210 0.720 0.210 

t21 0.748 0.135 0.748 0.135 0.748 0.135 

t22 0.782 0.003 0.782 0.003 0.782 0.003 
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Table 11 

Comparison of Regression and Thompson Factor Scores 

  

 

Regression Thompson 

ID REG_PA1 REG_PA2 BTscr1 BTscr2 

1 -0.17201 -0.67845 235.503 94.497 

2 -0.80644 0.00998 235.369 95.569 

3 -1.22832 -0.58106 233.653 95.379 

4 -1.07467 -0.62952 233.874 95.212 

**** **** **** **** **** 

298 -0.14524 -0.46028 235.834 94.685 

299 0.57567 -0.01107 237.929 94.533 

300 -0.82847 0.17395 235.565 95.743 

301 1.20948 0.42473 239.793 94.427 
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Table 12 

Communality Coefficients at R
2
                                                                                                                                                                                          

 

  
Model Summary 

Model R R Square 
Adjusted  
R Square 

Std. Error of the 
Estimate 

t14 .799
a
 .638 .635 6.950 

t15 .810
a
 656 .653 4.550 

t16 .750
a
 .562 .559 5.069 

t20 .750
a
 .563 .560 12.829 

t21 .760
a
 .577 .574 2.977 

t22 .782
a
 .611 .608 5.755 

a. Predictors: (Constant), REG_PC2 REGR factor score   2 
for analysis 1, REG_PC1 REGR factor score   1 for 
analysis 1 
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Appendix 

SPSS Syntax to Execute Factor Score Calculation with Regression,  

Bartlett, Anderson-Rubin and Thompson Methods 

  

*********************************************************************** . 

COMMENT    Holzinger, K.J., & Swineford, F. (1939). A study in factor analysis:. 

COMMENT      The stability of a bi-factor solution (No. 48). Chicago, IL:. 

COMMENT      University of Chicago. (data on pp. 81-91). 

*********************************************************************** . 

 

************************************   . 

 PRINCIPAL AXES  

************************************   . 

SET printback=listing tnumbers=both tvars=both . 

 

**** Regression ****. 

DATASET ACTIVATE DataSet1. 

SUBTITLE 'Regression Factor Analysis with PA'. 

EXECUTE . 

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT UNIVARIATE INITIAL CORRELATION EXTRACTION ROTATION FSCORE 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION paf 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE REG(ALL) 

  /METHOD=CORRELATION. 

 

**** Bartlett ****. 

DATASET ACTIVATE DataSet1. 

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT UNIVARIATE INITIAL CORRELATION EXTRACTION ROTATION FSCORE 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION paf 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE bart(ALL) 

  /METHOD=CORRELATION. 



 Factor Scores 31 

 

 
**** Anderson Rubin ****. 

DATASET ACTIVATE DataSet1.  

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT UNIVARIATE INITIAL CORRELATION EXTRACTION ROTATION FSCORE 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION paf 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE ar(ALL) 

  /METHOD=CORRELATION. 

 

 

************************************   . 

 PRINCIPAL COMPONENT 

************************************   . 

 

**** Regression ****. 

DATASET ACTIVATE DataSet1. 

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT UNIVARIATE INITIAL CORRELATION EXTRACTION ROTATION FSCORE 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE REG(ALL) 

  /METHOD=CORRELATION. 

 

**** Bartlett ****. 

DATASET ACTIVATE DataSet1. 

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT UNIVARIATE INITIAL CORRELATION EXTRACTION ROTATION FSCORE 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 
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  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE bart(ALL) 

  /METHOD=CORRELATION. 

 

**** Anderson Rubin ****. 

DATASET ACTIVATE DataSet1.  

FACTOR 

  /VARIABLES t14 t15 t16 t20 t21 t22 

  /MISSING LISTWISE  

  /ANALYSIS t14 t15 t16 t20 t21 t22 

  /PRINT UNIVARIATE INITIAL CORRELATION EXTRACTION ROTATION FSCORE 

  /PLOT EIGEN 

  /CRITERIA MINEIGEN(1) ITERATE(25) 

  /EXTRACTION PC 

  /CRITERIA ITERATE(25) 

  /ROTATION VARIMAX 

  /SAVE ar(ALL) 

  /METHOD=CORRELATION. 

 

 

************************************************  . 

THOMPSON METHOD 

************************************************  . 

 

**** (1) compute z scores ****  . 

DESCRIPTIVES variables=t14 t15 t16 t20 t21 t22/save . 

 

**** (2) add original measured variable means back onto z scores **** . 

compute ct14 = zt14 + 175.15 . 

compute ct15 = zt15 + 90.01 . 

compute ct16 = zt16 + 102.52 . 

compute ct20 = zt20 + 26.89 . 

compute ct21 = zt21 + 14.25 . 

compute ct22 = zt22 + 26.24 . 

print formats zt14 to ct22 (F7.2) . 

list variables=id zt14 to ct22/cases=10 . 

DESCRIPTIVES variables= zt14 to ct22 . 

 

**** (3) apply weight matrix **** . 

compute BTscr1 = (-.119 * ct14) + (-.159 * ct15) + (.142 * ct16) + (.383 * ct20) + (.417 * ct21) 

+ (.467 * ct22) . 

compute BTscr2 = (.512 * ct14) + (.537 * ct15) + (.295 * ct16) + (-.021 * ct20) + (-.078 * ct21) 

+ (-.175 * ct22) . 

print formats BTscr1 BTscr2 (F8.3) . 

 


