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Abstract Body 
Limit 5 pages single spaced. 

 
Background/context:  
Description of prior research, its intellectual context and its policy context. 
 

Mathematical equivalence is a foundational concept of algebraic thinking that serves as a key 
link between arithmetic and algebra (MacGregor & Stacey, 1997). Typically represented by the 
‘=’ symbol, equivalence is the principle that two sides of an equation represent the same value. 
True understanding of equivalence requires thinking about the relation between the two entities 
on either side of the equal sign (i.e., relational thinking). Several studies have shown that 
knowledge of the concept supports greater algebraic competence, including equation-solving 
skills and algebraic reasoning (Kieran, 1992; Knuth, Stephens, McNeil & Alibali, 2006; 
Steinberg, Sleeman & Ktorza, 1990).  

Unfortunately, numerous past studies have also pointed to the difficulties that elementary-
school children have understanding equivalence. Although elementary school students have 
some basic understanding of what it means for quantities to be equal, these children often 
interpret the equals sign as simply an operator signal that means ‘‘adds up to’’ or ‘‘gets the 
answer.’’ (Baroody & Ginsburg, 1983; Kieran, 1981; Rittle-Johnson & Alibali, 1999; Sfard & 
Linchevski, 1994). This operational view of the equal sign can impede the development of a 
relational view of the equal sign. An operational view of the equal sign often persists for many 
years, and students who have this view often have difficulty solving equations (Knuth, et al., 
2006). As a result, most elementary-school children reject equations not in a standard “a + b = c” 
structure as false (e.g., 3 = 3 and 3 + 5 = 5 + 3). A long list of studies spanning the last 35 years 
of research has shown that a majority of first through sixth graders treated the equal sign 
operationally when solving equations not in a standard “a + b = c” structure, often leading to 
both computational and conceptual errors (Alibali, 1999; Behr, Erlwanger, & Nichols, 1980; 
Falkner, Levi, & Carpenter, 1999; Jacobs, et al., 2007; Li, Ding, Capraro, & Capraro, 2008; 
McNeil, 2007; Perry, 1991; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 1999; Weaver, 
1973).  

Despite the importance of the topic and the years of research dedicated to its study, few 
researchers have used psychometrically validated measures when investigating mathematical 
equivalence. Indeed, this measurement problem is prevalent in math education more generally –  
for example, Hill & Shih (2009) found that less than 20% of studies published in the Journal for 
Research in Mathematics Education over the past 10 years had reported on the validity of the 
measures. The lack of valid measures makes it difficult to evaluate changes in knowledge over 
time or the effectiveness of interventions. Cognizant of these facts, we have been developing an 
instrument for measuring school students’ knowledge of mathematical equivalence using the 
assessment development framework laid out by the AERA/APA/NCME Standards for 
Educational and Psychological Testing.  
 
 
Purpose / objective / research question / focus of study:  
Description of what the research focused on and why. 
 

In this study, we wanted to examine whether success on items testing basic equivalence 
knowledge, such as the meaning of the equal sign and ability to solve problems such as 3 + 5 = 4 
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+ _, predicted success on items testing more advanced algebraic thinking (i.e. principles of 
equality and solving equations that use letter variables). This investigation is a follow up study to 
our initial efforts to design an instrument to measure children’s understanding of equivalence 
(Rittle-Johnson, et. al. under review). This replication and extension with a new sample also 
provides evidence for the validity and generalizability of our instrument. 

We had  two specific predictions about the relations between basic-level and advanced-level 
knowledge items.  First, we expected that the relative difficulty of the two types of knowledge 
would be born out on the Rasch model.  That is, we expected that our empirically derived 
difficulty scores would be higher for the advanced-level items than for the basic-level item.  
Second, we expected that performance on basic-level items could be used to predict performance 
on advanced-level items.  
 
Setting: 
Description of where the research took place.  
 

Data was collected during class time in 13 second- through sixth grade classrooms in two 
suburban, public schools in Tennessee.  Data were collected at a single time point for each class. 
 
Population / Participants / Subjects:  
Description of participants in the study: who (or what) how many, key features (or characteristics). 
 

224 second- through sixth-grade students participated near the end of the school year. Of the 
students who completed the assessment, 53 were in second grade (23 girls), 46 were in third 
grade (25 girls), 29 were in fourth grade (14 girls), 59 were in fifth grade (26 girls), and 37 were 
in sixth grade (16 girls). The mean age was 10.2 years (SD = 1.6; Min = 7.7; Max. = 14.1). The 
students were predominantly Caucasian; approximately 2% of students were from minority 
groups. The schools served a working- to middle-class population. 
 
Intervention / Program / Practice:  
Description of the intervention, program or practice, including details of administration and duration.  
 

This study focused on instrument development, so there was no intervention. Thus, what 
follows describes the creation and administration of our assessment.  

In a previous study, we followed the construct modeling approach of Wilson (2005), 
using item response theory (IRT) and to create a criterion-referenced framework for determining 
students’ understanding of mathematical equivalence. Specifically, we previously 1) developed a 
construct map covering students’ knowledge of mathematical equivalence (Table 1),  2) used the 
construct map to develop a comprehensive assessment, 3) administered the assessment to 
students in Grades 2 to 6, and then 4) used the data to evaluate the construct map and the 
assessment (Rittle-Johnson et. al., under review). 

We developed two comparable forms of an assessment tool from a pool of assessment items 
selected from past research, state and national assessments, and standardized tests. The items 
took an assortment of formats, including multiple choice, fill in the blank, and short answer. 
Both forms of the assessment were comprised of three sections, based on the three most 
commonly used types of items in the literature: 

 Equal-sign items – These items were designed to probe students’ explicit knowledge of 
the equals sign as an indicator of equivalence.   
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 Equation-structure items – These items were designed to probe students’ knowledge of 
valid equation structures.  

 Equation-solving items – These items were designed to probe students’ abilities to solve 
equations.  

In the construct map, we proposed four levels of increasing knowledge guided in part by the 
benchmarks proposed by Carpenter, Franke & Levi (2003).  We generated items to cover each of 
the following four levels in order of increasing difficulty: 

1. Rigid operational, in which children hold an operational view and can only solve 
problems in the standard “a + b = c” format; 

2. Flexible operational, in which children hold an operational view, but can solve 
equations in some nonstandard formats (e.g. c = a + b) 

3. Relational with computational support, in which a nascent relational coexists with 
an operational view, allowing students to solve equations with operations on both 
sides (e.g. a + b + c = a + _)  

4. Relational without need to compute (full relational), in which a relational view 
predominates and children demonstrate understanding for the arithmetic 
properties of equivalence. 

We defined advanced-level items as Level 4 items that test students’ understandings of the 
principles of equality and their abilities to solve equations that use letter variables.  We defined 
basic-level items as those falling on Levels 1-3, with the exception of one Level 3 item that used 
a letter variable. 

Based on feedback from a panel of experts in mathematics education and empirical 
evidence of item performance, we made some minor changes to the original assessments we 
designed for Rittle-Johnson, Taylor, Matthews & McEldoon (under review).  The most 
significant change was the addition of several more advanced-level items.  For example, we 
added a new section of items that focused on students’ understanding of the principles of 
equivalence. For instance, one such problem began by stating “25+14=39 is true.”  It then asked, 
“Is 25+14+7=39+7 true or false?”  Students were asked to circle either “True,” “False,” or, 
“Don’t Know,” and to explain the answers that they chose. These problems were designed to test 
students’ knowledge of the arithmetic properties of equivalence, which hold that an equivalence 
relationship remains true as long as an identical operation is performed on both sides of the equal 
sign. These types of problems have been cited as addressing the types of thought that underlie 
formal transformational algebra (Kilpatrick, Swafford, & Findell, 2001).  

A second set of additional problems addressed the principles of equivalence using letter 
variables (literals) that are typically seen in formal algebra.  For instance, one asked, “Find the 
value of c,” for the equation c + c + 4 = 16. These items are important because the use of 
variables—particularly multiple instances of the variable— tests whether students comprehend 
that a variable represents a specific and constant number value.   

The final versions of the assessments each consisted of 39 items, 9 of which qualified as 
advanced-level items and 22 of which qualified as basic-level items.  The total does not sum 
to39, because six of the remaining items were Level 4 items that neither explicitly tested the 
arithmetic principles of equality nor used letter variables, and one item was a Level 3 item that 
used a letter variable. The assessments were administered on a whole-class basis by a member of 
the project team.  Completion of the assessment required approximately 45 minutes and was 
performed within a single class period. Test directions were read aloud for each type of item in 
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2nd grade classrooms to minimize the possibility that reading level would affect performance.  
Otherwise, test administration was identical across grade levels. 
 
Research Design: 
Description of research design (e.g., qualitative case study, quasi-experimental design, secondary analysis, analytic 
essay, randomized field trial). 
 

This study focused on measurement development and utilized item response theory (IRT) 
and the construct modeling approach of Wilson (2005) to create a criterion-referenced 
framework for determining students’ understanding of mathematical equivalence. Specifically, 
we previously 1) developed a construct map covering students’ knowledge of mathematical 
equivalence (Table 1),  2) used the construct map to develop a comprehensive assessment, 3) 
administered the assessment to students in Grades 2 to 6, and then 4) used the data to evaluate 
the construct map and the assessment (Rittle-Johnson et. al., under review). 

In the construct map, we proposed four levels of increasing knowledge guided in part by the 
benchmarks proposed by Carpenter, Franke & Levi (2003). We used factor analysis to confirm 
the unidimensionality of our construct and Rasch analysis to ensure that item difficulty levels 
operated as hypothesized. Our analyses suggested that we had developed a very promising 
assessment of equivalence knowledge.  We made minor adjustments to the construct map and 
assessment based on this first round of data, and this study was carried out to further test the 
assessment with a different sample of students. 
 
Data Collection and Analysis:  
Description of the methods for collecting and analyzing data. 
 

After test administration, all items on the assessment were coded as binary responses (1 = 
correct). Next, we assessed the degree of internal consistency among the items using Cronbach’s 
alpha (α’s > .94).  We supplemented this measure of internal consistency with confirmatory 
factor analysis to assess the dimensionality of the constructed measured.  Then, we fit the data to 
a Rasch model. This model is a member of the IRT family of analytic models and simultaneously 
plots difficulty levels and student skill levels on a logit scale. This allows us to calculate the 
probability that a participant will get a given question right given his/her ability level. Of a total 
of 43 test items, four were dropped because multiple fit indicators suggested that they failed to 
have good psychometric properties. For the remaining 39 items, we performed a univariate 
ANCOVA to investigate the relations between basic level knowledge and advanced knowledge.   
 
Findings / Results:  
Description of main findings with specific details. 
 

As detailed above, we tested two primary hypotheses: 1) that the hypothesized relative 
difficulty of the two types of knowledge would be born out empirically; and 2) that performance 
on basic-level items could be used to predict performance on advanced-level items.  

Validity of Relative Difficulties. An item-respondent map (i.e., a Wright Map, see Figure 1) 
generated by the Rasch model was used to evaluate our construct map. Our Wright Map places 
respondents or participants on the left side of the vertical axis and place test items on the right 
side of the axis.  Participants of higher ability are located the upper portion of the map, while 
those of lesser ability are located on the lower portion. Similarly, on the right, items of greater 
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difficulty are located near the top of the map and those of lesser difficulty are lower on the map.  
The locations of participants and respondents are measured in logits (i.e., log-odds units), which 
for a given item-participant pairing is calculated as the natural logarithm of the participant’s 
estimated probability of success divided by the estimated probability of failure on an item. 

Our hypotheses about the relative difficulties of the various items were largely borne out 
by the empirical data – the items we classified as higher level were place higher on the scale than 
more basic level items, with a few exceptions.  These exceptions gave us potentially valuable 
feedback for reassessing the difficulty of some of the items. 

As in prior studies, many students failed to demonstrate a relational understanding of 
equivalence. On average, participants were only 27 percent accurate on Level 4 items across 
grade and only 57 percent accurate on level 3 items as compared to 76, and 85 percent accurate 
on Level 2 and Level1, items respectively.  

Predictive relations between advanced and basic-level items. To investigate the 
correlation between proficiency with basic-level items with higher-level items, we ran a 
univariate ANCOVA, with performance on higher level problems as a dependent measure and 
performance on lower level items and grade as predictor variables.   
Performance on lower level items was significantly associated with success on higher level 
items, F(1, 217) =102.40, p < .01, η2 = .32.  There was also a significant effect for grade, F(4, 
217) = 6.46, p < .01, η2 = .11.  Thus, performance on lower level items was able to predict 32 
percent of the variance in performance on higher-level items.  Of course, we found this 
relationship using cross-sectional data using measures that were administered within a single 
sitting.  Thus, we interpret our results with caution and recognize the need to replicate our results 
on future data sets to confirm our findings. On the whole, the data replicate and extend our 
previous investigation using a new sample of participants. 
 
Conclusions:  
Description of conclusions and recommendations based on findings and overall study. 

 
Previous studies have suggested that students’ understandings of the equals sign should inform 
their use of algebraic strategies (Knuth et. al., 2006; Alibali, Knuth, Hattkudur, McNeil & 
Stephens, 2007). We sought corroborating evidence for this claim by examining whether 
understanding of basic-level difficulty items that tap equivalence knowledge could also predict 
facility with more difficult higher-order items in elementary school. Our study had the added 
virtue of using a psychometrically sound measurement instrument.  We found that proficiency 
with basic-level items explained much of the variance in student success on more advance 
problems. Our findings provides evidence for the assumption that supporting basic algebraic 
thinking in elementary school may improve more traditional algebraic competence in middle 
school. 

Our instrument has the potential to be of considerable benefit to educational researchers 
and practitioners. First, it can provide a valid metric for the evaluation of experimental 
interventions. The development of such methods is integral to SREE’s mission to “increase the 
capacity to design and conduct investigations that have a strong base for causal inference”. 
Second, it can provide a tool for teachers to identify students’ knowledge levels. Research has 
shown a) that teachers often over-estimate what their students know about the equal sign 
(Falkner, et al., 1999); b) that raising teachers’ awareness of their students’ lack of understanding 
can be a powerful motivator for changing their instruction (Carpenter, Fennema, Peterson, 
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Chiang, & Loef, 1989; Fennema, Carpenter, Franke, Levi, & et al., 1996; Jacobs, et al., 2007); 
and c) that differentiated instruction has been shown to improve student achievement (e.g., 
Mastropieri, et al., 2006; Richards & Omdal, 2007), but that teachers often lack the tools for 
identifying students’ knowledge levels and customizing their instruction (e.g., Houtveen & Van 
de Grift, 2001). Our instrument can help address each of these issues.  
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Appendix B. Tables and Figures 
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Table 1: Equal sign construct map 

Levels Performances Items Expected to  
Get Correct 

Response Exemplars 

4. Relational 
without need to 
compute 

Successful with 
equations with 
large numbers 
because can use 
relation between 
expressions, rather 
than computing.  
Understand 
principles of 
equivalence (doing 
same thing to both 
sides). 

1) 67 + 84 = _ + 83 
2) What is the best 

definition of the equal 
sign? 

3) Without subtracting the 9, 
can you tell if the 
statement below is true or 
false?  

    76 + 45 = 121 is true.  
 
Is 76 + 45 – 9 = 121 – 9 true 
or false? 
 
True  False Can’t 
tell without subtracting 
 
How do you know? 

1) 68 
2) The equal sign means 

two amounts are the 
same  

3) You did the same 
thing to both sides, so 
they’re the same. 

 
 
  

    
3. Relational 
with 
computational 
support 

Successful with 
equations with 
operations on both 
sides, by computing 
solutions, and 
knows a relational 
definition of the 
equal sign, although 
it co-exists with an 
operational 
definition. 

1) _ + 9 = 8 + 5 + 9 
 
2) What does the equal sign 
mean?  
 
3) For this example, decide if 
the number sentence is true. 
Then, explain how you 
know. 

4 + 1 = 2 + 3  
True False Don’t Know  

 
How do you know?\ 

1)  13 
 
2) “the same as”, but may 
give second definition 
(e.g. the answer) 
3) True 
 
You get five on each side, 
so they’re the same. 
 

    
2. Flexible 
Operational 

Successful with 
equations with 
operations on the 
right (c = a + b) 
because they are 
just “backwards” 
but continues to 
think of equal sign 

1) 7 = _ + 3  
2)  Is this statement true or 
false? 
1 quarter = 25 pennies  
True  False Don’t Know 
 
3) After each problem, circle 
True, False, or Don’t Know.  

1) 4 
2) True 
 
 
 
 
3) True 
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operationally, or in 
other non-relational 
ways. 

4 = 4 + 0 
True False Don’t Know  

    
1. Rigid 
Operational 

Only successful on 
equations in 
standard “a + b = c” 
format and think of 
equal sign 
operationally (e.g., 
it means “get the 
answer”). 

1) 6 + 2 = _ 
2)Which of these pairs of 
numbers is equal to 3 + 6?  
Circle your answer. 
2+7  3+3   3+9   none  
3) After each problem, circle 
True, False, or Don’t Know.  
7 + 6 =  0 
True False Don’t Know  

1) 8 
2) 2 + 7 
 
 
 
3) False 
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Figure 1: Wright map of respondents and item difficulties  

 
 




