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Abstract 
This NCEE Technical Methods report examines how to address the problem of missing data in the analysis of 
data in Randomized Controlled Trials (RCTs) of educational interventions, with a particular focus on the 
common educational situation in which groups of students such as entire classrooms or schools are randomized. 
Missing outcome data are a problem for two reasons: (1) the loss of sample members can reduce the power to 
detect statistically significant differences, and (2) the introduction of non-random differences between the treatment 
and control groups can lead to bias in the estimate of the intervention’s effect. The report reviews a selection of 
methods available for addressing missing data, and then examines their relative performance using extensive 
simulations that varied a typical educational RCT on three dimensions: (1) the amount of missing data; (2) the 
level at which data are missing─at the level of whole schools (the assumed unit of randomization) or for students 
within schools; and, (3) the underlying missing data mechanism. The performance of the different methods is 
assessed in terms of bias in both the estimated impact and the associated standard error. 
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Foreword 

The National Center for Education Evaluation and Regional Assistance (NCEE) conducts 
unbiased large-scale evaluations of education programs and practices supported by federal funds; 
provides research-based technical assistance to educators and policymakers; and supports the 
synthesis and the widespread dissemination of the results of research and evaluation throughout 
the United States. 

In support of this mission, NCEE promotes methodological advancement in the field of education 
evaluation through investigations involving analyses using existing data sets and explorations of 
applications of new technical methods, including cost-effectiveness of alternative evaluation 
strategies. The results of these methodological investigations are published as commissioned, 
peer reviewed papers, under the series title, Technical Methods Reports, posted on the NCEE 
website at http://ies.ed.gov/ncee/pubs/. These reports are specifically designed for use by 
researchers, methodologists, and evaluation specialists. The reports address current 
methodological questions and offer guidance to resolving or advancing the application of high-
quality evaluation methods in varying educational contexts. 

This NCEE Technical Methods report examines how to address the problem of missing data in 
the analysis of data in Randomized Controlled Trials (RCTs) of educational interventions, with a 
particular focus on the common educational situation in which groups of students such as entire 
classrooms or schools are randomized. Missing outcome data are a problem for two reasons: (1) 
the loss of sample members can reduce the power to detect statistically significant differences, 
and (2) the introduction of non-random differences between the treatment and control groups can 
lead to bias in the estimate of the intervention’s effect. The report reviews a selection of methods 
available for addressing missing data, and then examines their relative performance using 
extensive simulations that varied a typical educational RCT on three dimensions: (1) the amount 
of missing data; (2) the level at which data are missing─at the level of whole schools (the 
assumed unit of randomization) or for students within schools; and, (3) the underlying missing 
data mechanism. The performance of the different methods is assessed in terms of bias in both the 
estimated impact and the associated standard error. 
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1. Overview and Guidance 


A. Introduction 
Most statistics textbooks provide lengthy discussions of the theory of probability, 
descriptive statistics, hypothesis testing, and a range of simple to more complex statistical 
methods. To illustrate these discussions, the authors often present examples with real or 
fictional data─tidy tables of observations and variables with values for each cell. 
Although this may be entirely appropriate to illustrate statistical methods, anyone who 
does “real world” research knows that data are rarely, if ever, so complete. Some study 
participants may be unavailable for data collection, refuse to provide data, or be asked a 
question which is not applicable to their circumstances. Whatever the mechanism that 
causes the data to be missing, it is a common problem in almost all research studies. 

This report is designed to provide practical guidance on how to address the problem of 
missing data in the analysis of data in Randomized Controlled Trials (RCTs) of 
educational interventions, with a particular focus on the common educational situation in 
which groups of students such as entire classrooms or schools are randomized (called 
Group Randomized Trials, GRTs). The need for such guidance is of growing importance 
as the number of educational RCTs has increased in recent years. For example, the ten 
Regional Educational Laboratories (RELs) sponsored by the Institute of Education 
Sciences (IES) of the U.S. Department of Education are currently conducting 25 RCTs to 
measure the effectiveness of different educational interventions,1 and IES has sponsored 
23 impact evaluations that randomized students, schools, or teachers since it was 
established in 2002.2 

This report is divided into four chapters. Following a brief overview of the missing data 
problem, this first chapter provides our overall guidance for educational researchers 
based on the results of extensive data simulations that were done to assess the relative 
performance of selected missing data strategies within the context of the types of RCTs 
that have been conducted in education. Chapter 2 sets the stage for a discussion of 
specific missing data strategies by providing a brief overview of the design of RCTs in 
education, the types of data used in impact analysis, how these data can be missing, and 
the analytical implications of missing data. Chapter 3 describes a selection of methods 
available for addressing missing data, and Chapter 4 describes the simulation 
methodology and the statistical results that support the recommendations presented in this 
chapter. Appendices provide additional details on the simulation methods and the 
statistical results. 

1 The Regional Educational Laboratories serve the states in their regions with research and technical assistance, 
including both original studies—of which the RCTs are the largest—and syntheses of existing research.  For more 
information on the RELs, see http://ies.ed.gov/ncee/edlabs/. 
2 See ongoing and completed evaluation studies sponsored by IES's National Center for Education Evaluation and 
Regional Assistance at http://ies.ed.gov/ncee/projects/evaluation/index.aspyear. 
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B. Missing Data and Randomized Trials 
The purpose of a randomized controlled trial (RCT) is to allow researchers to draw causal 
conclusions about the effect, or “impact,” of a particular policy-relevant intervention 
(U.S. Department of Education, 2009). For example, if we wanted to know how students 
do when they are taught with a particular reading or math curriculum, we could obtain 
test scores before and after they are exposed to the new mode of instruction to see how 
much they learned. But, to determine if this intervention caused the observed student 
outcomes we need to know how these same students would have done had they not 
received the treatment.3 Of course, we cannot observe the same individuals in two places 
at the same time. Consequently, the RCT creates equivalent groups by randomly 
assigning eligible study participants either to a treatment group, that receives the 
intervention under consideration, or to a control group, that does not receive the 
particular treatment but often continues with “business as usual,” e.g., the mode of 
instruction that would be used in the absence of a new math curriculum.4 5  Because of 
the hierarchical way in which schools are organized, most education RCTs randomize 
groups of students─entire schools or classrooms─rather than individual children to study 
conditions. In these GRTs the treatment is typically delivered at the group or cluster level 
but the primary research interest is the impact of the selected treatment on student 
outcomes, although it is also not uncommon to look for intermediate impacts on teachers 
or schools. 

The advantage of the RCT is that if random assignment is properly implemented with a 
sufficient sample size, treatment group members will not differ in any systematic or 
unmeasured way from control group members except through their access to the 
intervention being studied (the groups are equivalent both on observable and 
unobservable characteristics). It is this elimination of confounding factors that allows us 
to make unbiased causal statements about the effect of a particular educational program 
or intervention by contrasting outcomes between the two groups. 

However, for an RCT to produce unbiased impact estimates, the treatment and control 
groups must be equivalent in their composition (in expectation) not just at the point of 
randomization (referred to as the “baseline” or pretest point), but also at the point where 
follow-up or outcome data are collected. Missing outcome data are a problem for two 
reasons: (1) the loss of sample members can reduce the power to detect statistically 
significant differences, and (2) the introduction of non-random differences between the 
treatment and control groups can lead to bias in the estimate of the intervention’s effect. 
The seriousness of the potential bias is related to the overall magnitude of the missing 

3 For simplicity we use an example of a simple two-group design with a single treatment and control group. Real world 
RCTs can include a variety of combinations including multiple treatment arms, and designs in which there is no control 
group, i.e., the study compares outcomes across different treatments. 
4 In some RCTs, the counterfactual represented by the control group reflects the conditions that would prevail in the 
absence of the intervention being tested. This counterfactual condition is often, and perhaps misleadingly, referred to 
as “business as usual.” In other RCTs, the study is designed to compare the impacts of two alternative interventions. 
5 In most cases, study participants are randomly assigned on an equal basis to the treatment and control groups. 
However, there are situations in which there is good reason to use unequal allocation, for example, where there is 
strong resistance to placing participants into the control group. Such variation from a 50:50 allocation will result in 
some loss of statistical power, but this is generally modest in magnitude. 
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data rate, and the extent to which the likelihood of missing data differs between the 
treatment and control groups. For example, according to the What Works 
Clearinghouse6 the bias associated with an overall attrition rate of ten percent and a 
differential treatment-control group difference in attrition rates of five percent can be 
equal to the bias associated with an overall attrition rate of 30 percent and a differential 
attrition rate of just two percent. 

Therefore, in a perfect world, the impact analysis conducted for an RCT in education 
would include outcomes for all eligible study participants defined at the time of 
randomization. However, this ideal is rarely ever attained. For example, individual 
student test scores can be completely missing because of absenteeism, school transfer, or 
parental refusal for testing. In addition, a particular piece of information can be missing 
because respondents refuse to answer a certain test item or survey question, are unable to 
provide the requested information, inadvertently skip a question or test item, or provide 
an unintelligible answer. In an education RCT, we have to also concern ourselves with 
missing data at the level of entire schools or classrooms if randomly assigned schools or 
classrooms opt either out of the study completely or do not allow the collection of any 
outcome data. 

As demonstrated by Rubin (1976, 1987), the process through which missing data arise 
can have important analytical implications. In its most innocuous form−a category that 
Rubin calls Missing Completely at Random (MCAR)−the mechanism that generates 
missing data is a truly random process unrelated to any measured or unmeasured 
characteristic of the study participants. A second category−Missing at Random 
(MAR)−is one in which missingness is random conditional on the observed 
characteristics of the study sample. For example, the missing data would be MAR if 
missingness on the post-test score were related to gender, but conditional on gender—that 
is, among boys or among girls—the probability of missing data is the same for all 
students. Typically, if one can reasonably assume that missing data arise under either the 
conditions of MCAR or MAR the missing data problem can be considered “ignorable,” 
i.e., the factors that cause missingness are unrelated, or weakly related, to the estimated 
intervention effect. In some situations, however, one cannot reasonably assume such 
ignorability–a category that Rubin calls Not Missing at Random (NMAR. 7 

Within the context of an RCT, if the missing data mechanism differs between the 
treatment and control groups, dropping cases with missing data may lead to systematic 
differences between the experimental groups which can lead to biased impact estimates. 
Furthermore, even if the missing data mechanism is the same for the treatment and 
control groups, we may still be concerned if certain types of teachers or students are 
under- or over-represented in the analysis sample. For example, if the impacts for 
underrepresented groups are higher than the average impact, then the impact estimates 
will be biased downward; if the impacts for underrepresented groups are lower than the 
average impact, the impact estimates will be biased upward. 

6 U.S. Department of Education, (2008). 
7 The category is also described in the literature as non-ignorable non-response (NINR). 
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C. Missing Data Methods 
As noted above, missing data is a common problem in educational evaluations. For 
example, in impact evaluations funded by the National Center for Educational Evaluation 
and Regional Assistance (NCEE), student achievement outcomes are often missing for 
10-20 percent of the students in the sample (Bernstein, et al., 2009; Campuzano, et al., 
2009; Constantine, et al., 2009; Corrin, et al., 2008; Gamse, et al., 2009; Garet, et al., 
2008; and Wolf, et al., 2009). Strategies used to address missing data in education RCTs 
range from simple methods like listwise deletion (e.g., Corrin, et al., 2009), to more 
sophisticated approaches like multiple imputation (e.g., Campuzano, et al., 2009). In 
addition, some studies use different approaches to addressing missing covariates and 
missing outcomes, such as imputing missing covariates but re-weighting complete 
cases to address missing outcomes (e.g., Wolf, et al., 2009). 

Despite the prevalence of the missing data challenge, there is no consensus on which 
methods should be used and the circumstances under which they should be employed. 
This lack of common standards is not unique to education research, and even areas where 
experimental research has a long history, like medicine, are still struggling with this 
issue. For example, guidance from the Food and Drug Administration (FDA) on the issue 
of missing data in clinical trials indicates that “A variety of statistical strategies have been 
proposed in the literature…(but) no single method is generally accepted as preferred” 
(FDA, 2006, p.29). 

The selection of the methods that are the focus of this report was based on a review of 
several recent articles by statistical experts seeking to provide practical guidance to 
applied researchers (Graham, 2009; Schafer & Graham, 2002; Allison, 2002; and Peugh 
& Enders, 2004). Specifically, this report examines the following analysis strategies for 
dealing with the two types of missing data that are of primary importance when analyzing 
data from an educational RCT─missing outcome or post-test data and missing baseline or 
pretest data: 

� Appropriate for Missing Pretest Data Only:  

o 	 Dummy Variable Adjustment─setting missing cases to a constant and 
adding “missing data flags” to the impact analysis model. 

� Appropriate for Missing Post-test Data Only:  

o 	 Weighting─re-balancing the analysis sample to account for the loss of study 
participants. 

o 	 Fully-Specified Regression Models─adding to the impact analysis model 
terms that interact the covariates with the treatment indicator.8  

8 This method may have only been used in the single study for which it was developed (Bell & Orr, 1994).  However, 
we decided to include it in our review because it reflects a fundamentally different approach to missing data focusing 
on the re-specification of the analysis model. 
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� Appropriate for Both Types of Missing Data:  

o 	 Imputation Methods─filling in missing values using one of four methods, 
single mean imputation, single non-stochastic regression imputation, single 
stochastic regression imputation, and multiple stochastic regression 
imputation. 

o 	 Maximum Likelihood─EM Algorithm with Multiple Imputation─a 
statistical estimation method that tries to find the population parameters that 
are most likely to have produced a particular data sample, using all of the 
available observations including those with missing data.  

o 	 Selection Modeling and Pattern Mixture Modeling─two attempts to deal 
with the NMAR situation by statistically modeling the missing data 
mechanism.   

In the discussions that follow, we intentionally include methods that are commonly 
criticized in the literature─listwise deletion and simple mean value imputation─for two 
reasons. First, the use of these methods is widespread in education. For example, a review 
of 545 published education studies by Peugh & Enders (2004) showed a nearly exclusive 
reliance on deletion as a way to deal with missing data. Second, because we are focusing 
on RCTs, we wanted to understand how different missing data strategies performed 
within this unique context, including commonly used but criticized methods. 

D. Guidance to Researchers 

Basis for the Recommendations 
Our recommendations for dealing with missing data in Group Randomized Trials in 
education are based on the results of extensive statistical simulations of a typical 
educational RCT in which schools are randomized to treatment conditions. As discussed 
in Chapter 4, selected missing data methods were examined under conditions that varied 
on three dimensions: (1) the amount of missing data, relatively low (5% missing) vs. 
relatively high (40% missing); (2) the level at which data are missing─at the level of 
whole schools (the assumed unit of randomization) or for students within schools; and, 
(3) the underlying missing data mechanisms discussed above (i.e., MCAR, MAR, and 
NMAR). 

The performance of the selected missing data methods was assessed on the basis of the 
bias that was found in both the estimated impact and the associated estimated standard, 
using a set of standards that were developed from guidance currently in use by the U.S. 
Department of Education’s What Works Clearinghouse (see Chapter 4 and Appendix E).  

The recommendations that are provided below are based on the following criteria: 

� In general, we recommend avoiding methods for which the simulations indicated a 
bias, in either the magnitude of the estimated impact or its associated standard error, 
that exceeded 0.05 standard deviations of the outcome measure (a standard developed 
on the basis of the current WWC guidance on sample attrition). 

5 




                                                 

 

� The recommendations are based on the simulation results in which data were missing 
for 40 percent of students or schools. This is because the alternative set of simulation 
results in which data were missing for five percent of either students or schools 
showed that all of the tested methods produced results that fell within the WWC-
based standard. We recognize that many studies in education will have lower missing 
data rates than 40 percent. However, our recommendations are designed to be 
conservative─avoiding methods that produce a large amount of bias when the 
missing data rate is 40 percent will reduce the likelihood that that an evaluation will 
suffer from bias of this magnitude if the missing data rate is less than 40 percent. 

� We provide recommendations separately for missing pretest scores9 and for missing 
post-test scores (covariates): 

o 	 For missing pretests, recommended methods must have produced bias below 
the established thresholds for both impacts and standard errors. Bias in either 
estimate can lead to biased t-statistics and invalid statistical inference. 
Therefore, we only recommend methods that produce estimates with low bias 
for both impacts and standard errors. 

In addition, we only recommend methods that produced estimates with low 
bias in all three scenarios, i.e., MCAR, MAR, and NMAR. Because each 
scenario reflects a different missing data mechanism, and the missing data 
mechanism is never known in actual studies, methods that produced estimates 
with low bias in all three scenarios can be considered “safer choices” than 
methods that produced estimates with low bias in some but not all of the 
scenarios. 

o 	 For missing post-test scores, none of the methods produced impact estimates 
with bias of less than 0.05 when missing data are NMAR. Therefore, requiring 
methods to produce estimates with low bias in all three scenarios would have 
left us with no methods to recommend to analysts facing missing outcome 
data in their studies. As a consequence, for missing post-test scores, we 
recommend methods that produced estimates meeting our performance 
standard when missing data are both MCAR and MAR, recognizing that even 
recommended methods may produce higher levels of bias under the NMAR 
condition. 

9 Although the detailed results provided in Chapter 4 and Appendix D include models that include or exclude the 
pretest covariate, our recommendations are based on the simulations in which pretest scores were available. When 
pretest scores were not available, some of the methods we recommend produced impact estimates with bias of greater 
than 0.05 standard deviations. Our simulation results suggest that to produce impact estimates with the bias below this 
threshold depends on both the choice of methods and the availability of data on important covariates.   
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Recommendations 
Missing Pretest Scores Or Other Covariates 

When pretest scores or other covariates are missing for students within schools in 
studies that randomize schools the simulation results lead us to recommend the use of the 
following missing data methods: 

� Dummy variable adjustment, 
� Single stochastic regression imputation, 
� Multiple stochastic regression imputation (i.e., “multiple imputation”), and 
� Maximum Likelihood─EM algorithm with multiple imputation. 

In this context, we would not recommend the use of three methods that produced impact 
estimates with bias that exceeded 0.05 in one or more of our simulations: case deletion, 
mean value imputation, and single non-stochastic regression imputation. 

Alternatively, when data on baseline variables are missing for entire schools, the 
simulation results lead us to recommend the use of the following methods:10  

� Case deletion, 
� Dummy variable adjustment, 
� Mean value imputation, 
� Multiple stochastic regression imputation, and 
� Maximum Likelihood─EM algorithm with multiple imputation. 

We would not recommend the use of two methods that produced standard error estimates 
with bias in at least one of our simulations that exceeded the WWC-based threshold: 
single non-stochastic regression imputation and single stochastic regression imputation. 

Across the two scenarios─i.e., situations when pretest or covariate data are missing either 
for students within schools or for entire schools─three methods were found to be 
consistently recommended so are likely to be the best choices: 

� Dummy variable adjustment, 
� Multiple stochastic regression imputation, and 
� Maximum Likelihood─EM algorithm with multiple imputation. 

It is important to stress that these recommendations are specific to situations in which the 
intent is to make inferences about the coefficient on the treatment indicator in a group 
randomized trial. If, for example, an analyst wanted to make inference about the 
relationship between pretest and post-test scores, and there were missing values on the 
pretest scores, we would not recommend use of the dummy variable approach. With this 
method, the estimate of the coefficient on the pretest score is likely to be biased, as has 
been described in previous literature. But when the interest is on the estimate of the 
treatment effect, the dummy variable approach yields bias in the coefficient of interest— 
the estimated treatment effect— that falls within the acceptable range as we defined it for 

10 Note that the “simple” weighting approach cannot be applied when data are missing for entire schools, because it 
involves weighting up respondents from a given school to represent nonrespondents from that school; with school-level 
missing data there are no respondents to use for this purpose. 
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these simulations, and is similar in magnitude to the biases obtained from the more 
sophisticated methods. 

Missing Post-Test Scores Or Other Outcome Variables 

When data on outcome variables are missing for students within schools in studies that 
randomize schools, the simulation results lead us to recommend the use of the following 
methods: 

� Case deletion, 
� Single non-stochastic regression imputation, 
� Single stochastic regression imputation, 
� Multiple stochastic regression imputation, 
� Maximum Likelihood─EM algorithm with multiple imputation, 
� “Simple” weighting approach using the inverse of observed response rates, 
� “Sophisticated” weighting approach that involved modeling non-response to create 

weights, and 
� Fully-specified regression models with treatment-covariate interactions. 

We would not recommend using mean value imputation because it was the only method 
that produced impact estimates with bias that exceeded 0.05 under the MAR scenario. 

When data on dependent variables are missing for entire schools, the simulation results 
lead us to recommend the use of the following methods: 

� Case deletion, 
� Multiple stochastic regression imputation, 
� Maximum Likelihood─EM algorithm with multiple imputation, 
� Sophisticated weighting approach, and 
� Fully specified regression model with treatment-covariate interactions. 

We would not recommend the use of the three methods that produced standard error 
estimates with bias that exceeded the WWC-based threshold: mean value imputation, 
single non-stochastic regression imputation, and single stochastic regression imputation. 

Across the two scenarios─i.e., situations when data on post-test or outcome data are 
missing either for students within schools or for entire schools─five methods were found 
to be consistently recommended so are likely to be the best choices: 

� Case deletion, 
� Multiple stochastic regression imputation, 
� Maximum Likelihood─EM algorithm with multiple imputation, 
� Sophisticated weighting approach, and 
� Fully-specified regression models. 

In addition, we recommend that if post-test scores are missing for a high fraction of 
students or schools (e.g., 40%), analysts should control for pretest scores in the impact 
model if possible. In our simulations, controlling for pretest scores by using them as 
regression covariates reduced the bias in the impact estimate by approximately 50 
percent, and this finding was robust across different scenarios and different methods.11   

11 For example, when missing post-tests depended on the values of the post-test scores, and data were missing for 40 
percent of students, including the pretest score as a covariate in the models reduced the bias from 0.124 to 0.67 for case 
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As a final note, the recommendations provided above indicate that some methods that are 
easy to implement performed similarly to more sophisticated methods. In particular, 
where pretest scores were missing for either students or entire schools, the dummy 
variable approach performed similarly to the more sophisticated approaches and was 
among our recommended methods. And when post-test scores were missing for either 
students or entire schools, case deletion was among our recommended approaches. 
Consequently, we suggest that analysts take the ease with which missing data can be 
handled, and the transparency of the methods to a policy audience, into consideration 
when making a final choice of an appropriate method. 

Other Suggestions For Researchers 

In addition to the recommendations that we derive from the simulation results presented 
in this report, we also recommend that all researchers adhere to the following general 
analysis procedures when conducting any education RCT: 

� What to do during the analysis planning stage? Researchers should carefully 
describe, and commit to, a plan for dealing with missing data before looking at 
preliminary impact estimates or any outcome data files that include the treatment 
indicator variable.   Committing to a design, and then sticking to it, is fundamental to 
scientific research in any substantive area.   This is best accomplished by publishing 
the missing data plan prior to collecting the outcome data. If the original plan then 
fails to anticipate any of the missing data problems observed in the data, the plan 
should be updated and revised before any impact estimates are produced. 

Researchers should also consider conducting sensitivity analysis to allow readers to 
assess how different the estimated impacts might be under different assumptions or 
decisions about how to handle missing data (see Chapter 3 for a discussion of one 
approach involving placing “best and worst case” bounds around the estimated 
impacts). These planned sensitivity tests should be specified ahead of time in the 
analysis plan. 

� What information should the impact report provide about missing data? In their 
impact report, researchers should report missing data rates by variable, explain the 
reasons for missing data (to the extent known), and provide a detailed description of 
how missing data were handled in the analysis, consistent with the original plan.12    
Impact reports should also provide key descriptive statistics for the study sample, 
including: (1) differences between the treatment and control group on baseline 
characteristics both at the point of random assignment and for the impact analysis 
sample (excluding, of course, any missing data imputations); and, (2) differences in 
baseline characteristics between treatment group respondents and non-respondents 
(i.e., those with and without outcome data), and similarly between control group 
respondents and non-respondents. 

deletion, and it reduced the bias from 0.122 to 0.061 for multiple stochastic regression imputation (see Appendix D, 

Table III.b.1).

12 Additional guidelines for reporting missing data patterns and procedures appear in Burton & Altman (2004). 
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Final Caveats 

Readers are cautioned to keep in mind that these simulation results are specific to a 
particular type of evaluation—an RCT in which schools are randomized to experimental 
conditions. Whether the key findings from these simulations would apply in RCTs that 
randomize students instead of schools is an open question that we have not addressed in 
this report. In addition, it is not clear whether the findings from our simulations would be 
sensitive to changes in the key parameter values that we set in specifying the data 
generating process and the missing data mechanisms. Finally, we could not test all 
possible methods to address missing data. These limitations notwithstanding, we believe 
these simulations yield important results that can help inform decisions that researchers 
need to make when they face missing data in conducting education RCTs. 

Finally, despite all of the insights gained from the simulations, we cannot propose a fully 
specified and empirically justified decision rule about which methods to use and when. 
Too often, the best method depends on the purpose and design of the particular study and 
the underlying missing data mechanism that cannot, to the best of our knowledge, be 
uncovered from the data. 
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2. Randomized Controlled Trials (RCTs) in 
Education and the Problem of Missing Data 

A. Why Conduct RCTs? 
The Randomized Controlled Trial (RCT) has long been a mainstay of medical research to 
examine the effectiveness of different types of health care services (e.g., approaches to 
medical and nursing practice) as well as technologies such as pharmaceuticals and 
medical devices. In recent years, RCTs have become the “gold standard” for social policy 
evaluation in a wide range of areas including education (U.S. Department of Education, 
2008). 

RCTs are well designed to solve the classic problem of causal inference (commonly 
referred to as the “Rubin Causal Model”) that arises when we can observe outcomes for 
individuals in the group that receive the treatment but we cannot observe what would 
have happened if these same individuals had not received the selected intervention (e.g., 
Imbens & Wooldridge, 2009). For example, we cannot observe how the same class of 
students would have performed on a standardized test if they had been taught using a 
different curriculum or teaching method. All we can observe for the children is how they 
did when taught by their current teacher with whatever that entails in terms of the 
curriculum or pedagogical approach. To address this problem, random assignment 
produces a control group that differs systematically from the treatment group in only one 
way—receipt of the intervention being evaluated. Therefore, the control group yields 
information on how the treatment group would have fared under the counterfactual, or 
“untreated,” condition. 

As discussed in Chapter 1, the advantage of the RCT is that if random assignment is 
properly implemented (i.e., the process is truly random) with a sufficient sample size, 
program participants are not expected to differ in any systematic or unmeasured way 
from non-participants except through their access to the new instructional program.13 By 
eliminating the effect of any confounding factors, randomization allows us to make 
causal statements about the effect of a particular educational program or intervention, i.e., 
observed outcome differences are caused by exposure to the treatment. In fact, with a 
randomized design, if one has complete outcome data a simple comparison of treatment-
control group average outcomes yields an unbiased estimate of the impact of the 
particular program or intervention on the study participants. 

This certainty of attribution to the right causal factor can never be achieved if schools and 
staff make their own choices regarding, for example, the type of instruction used for 
mathematics. Too many things about the schools, teachers, and students could potentially 
differ, and this can undermine our ability to reliably attribute observed outcome 
differences to the single causal factor─the treatment condition. Although researchers 
have suggested a large number of non-experimental methods for achieving the same 
purpose such as multivariate regression, selection correction methods (Heckman & Hotz, 

13 More precisely, there may be differences between individuals in the two groups, but other than the influence of the 
intervention the expected value of these differences is zero. That is, the bias that may result from individual selection is 
removed by random assignment. 
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1989), and propensity score methods (Rosenbaum & Rubin, 1983), a long line of 
literature, including recent analyses by Bloom, et al. (2002), Agodini & Dynarski (2001), 
and Wilde & Hollister (2002), suggests that none of these methods provides causal 
attribution matching the reliability of random assignment. 

B. RCTs in Education 
RCTs have been used in education to estimate the impacts of a wide range of 
interventions, including evaluations of broad federal programs such as Upward Bound 
(Seftor, et al., 2009) and Head Start (Puma, et al., 2005), school reform initiatives such as 
Success for All (Borman, et al., 2007) and Comer’s School Development Program (Cook, 
et al., 1999), and subject-specific instructional programs such as Accelerated Reader 
(Ross, et al., 2004; Bullock, 2005) and Connected Mathematics (REL-MA, 2008). In the 
case of instructional programs, the direct treatment that is being manipulated often 
involves training teachers in a new curriculum or instructional practice, and the trained 
teachers are then expected to implement the new approach in their classrooms. Because 
the primary interest of such RCTs is the impact on student learning, the actual treatment 
includes both the training itself plus how teachers, in fact, implement the new 
instructional method, including any real world adaptations and distortions of the expected 
intervention. For example, among the 25 RCTs currently being conducted by the IES-
funded Regional Educational Labs (RELs), 20 are testing different models of 
instructional practice that include a teacher professional development component.14 

Outside the field of education, it is common to randomly assign individuals to the 
treatment and control groups (e.g., individual patients who do or do not get a new drug 
regimen), but these are less common in the field of education. More typically, researchers 
conduct Group Randomized Trials (GRTs) in which the units of random assignment are 
intact groups of students─either entire schools or individual teachers and their 
classrooms─but the primary interest of the study is typically the impact of the selected 
treatment on student-level outcomes (although it is not uncommon to look for 
intermediate impacts on schools or teachers). This leads to a hierarchical, or nested, 
research design in which the units of observation are members of the groups that are the 
actual units of random assignment. As Murray (1998) describes, the groups that are the 
units of random assignment are not generally formed at random but there is some 
connection that creates a correlation among the individuals within the group. For 
example, 3rd grade students in the class of a particular teacher are likely to share a variety 
of similar characteristics. (This correlation has important analytic implications for the 
simulations described in Chapter 4.) 

GRT designs are well illustrated by the collection of 25 experimental studies currently 
being conducted by the RELs of which 17 randomly assigned entire schools and six 
assigned classes/teachers within schools (two assigned individual students). The studies 
typically involve a single cohort of study participants, but five have multiple annual 
cohorts. Most (22) are conducting follow-up testing of students using some form of 
standardized test to measure student achievement, while eight are collecting scores on 
state assessments from administrative records (either as the sole outcome measure or in 

14 For a review of the REL studies currently underway see http://ies.ed.gov/ncee/edlabs/relwork/index.asp. 
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conjunction with study-administered testing). Some (5) are also measuring student non-
achievement outcomes (e.g., course-taking, instructional engagement) from student 
surveys or school administrative records. Because many of the interventions involve 
teacher professional development, several (9) include measures of teacher practice and 
two have included teacher tests to gauge teacher knowledge. Follow-up data collection is 
typically conducted at a single point in time, approximately one year after randomization, 
but can also include multiple outcome testing points; essentially all of the studies 
collected baseline data to improve the precision of the impact estimates and identify 
student subgroups of particular interest (e.g., pre-intervention test scores, student 
demographic characteristics). 

C. Defining the Analysis Sample 
Because the unit of assignment is usually the school, classroom, or teacher, while the unit 
of analysis is the student, multi-level modeling is the typical approach to impact 
estimation in group RCTs to account for the associated clustering.15 These models 
include a dummy variable to distinguish the treatment group from the control group at the 
appropriate level, depending on the unit of assignment,16 and control variables at the 
student level, such as pre-intervention test scores, to increase the precision of the impact 
estimates. The estimated coefficient on the treatment indicator provides the study’s 
estimate of the average effect of the intervention on all students randomized. Referred to 
as the “intent-to-treat” (ITT) effect, this estimate would, for example, capture the impact 
of a policy which made professional development available to teachers regardless of 
whether all of the individual teachers actually took part in the training. In other words, 
the ITT effect captures the impact of the offer of a particular intervention, not the impact 
of a school or a teacher actually participating in the intervention. 

There are at least two reasons to focus on estimating the ITT effect. First, it is the true 
experimental impact estimate because all treatment and control group members are 
included in the analysis. Second, the ITT effect often reflects the impact of the feasible 
policy option─making a particular program available to a specified set of intended 
participants. That is, a program can be made available but whether it is implemented as 
intended, or whether all of the targeted participants actually get the intervention, is 
difficult if not impossible to control. For example, consider an RCT on teacher 
professional development that could inform a state policy decision on whether to offer a 
particular type of training to some or all schools in the state. In this case, state policy 
makers would benefit from evidence on the impacts of offering the professional 

15 Studies that fail to account for this nesting structure will typically underestimate the standard errors of the impact 
estimates, making them more likely to find significant impact estimates when the true impacts are zero.  For more 
information, see the What Works Clearinghouse’s on-line tutorial concerning the mismatch between the unit of 
assignment and the unit of analysis (http://ies.ed.gov/ncee/wwc/pdf/mismatch.pdf). 
16 For example, RCTs in which the school is the unit of assignment should include a treatment indicator to identify 
treatment schools in the school-level equation of the model. 
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development to schools—not on the effects of schools accepting the offer, teachers 
receiving the training, or other factors that are beyond the control of state policymakers.17 

If all RCTs in education need to do a good job of estimating the ITT effect, what sample 
becomes the target for data collection? In estimating the ITT effect, we need to collect 
data on and analyze all students and schools that were randomly assigned. For example, 
it would be convenient to simply exclude students from the study if they move to a school 
that cannot provide data, but there may be systematic differences between the “stayers” in 
the two groups, especially if the treatment affects the probability of remaining in the 
school. Therefore, excluding the “movers” from the sample—or removing any other 
group from the sample on the basis of a factor that could have been affected by the 
treatment—undermines the internal validity that randomization was designed to ensure.18 

Even treatment group members who do not get the intervention have to be part of the 
impact analysis sample. ITT analysis does not allow them to be omitted from the 
analytical sample, because their counterparts in the control group cannot be identified and 
similarly excluded to maintain the equivalence of the two groups. 

Therefore, it is important to either obtain data on the full randomized sample, or, when 
this is not feasible, to select appropriate methods for addressing missing data. Hence, 
regardless of the research goal, the missing data methods in this report should be applied 
to the full randomized sample, and in the chapters that follow the different methods are 
assessed in terms of their ability to successfully deal with the potential bias that may be 
introduced when data are missing. 

D. How Data Can Become Missing 
Most statistical textbooks rarely deal with the real world situation in which study 
participants are entirely absent from the data set, or situations where particular study 
participants lack data on one or more analytical variables. For example, as defined in the 
Stata manual, “Data form a rectangular table of numeric and string values in which each 
row is an observation on all of the variables and each column contains the observations 
on a single variable.”19 This “default” solution to missing data−referred to as listwise or 
casewise deletion, or complete case analysis−is a common feature of most statistical 
packages. This approach is simple to implement, but it can reduce the size of the 
available sample and associated statistical power, and, as discussed later in this report, 
may introduce bias in the impact estimate. 

17 The importance of the ITT estimate notwithstanding, there can also be interest in the impact of the intervention on 
the teachers or students who are directly affected by the treatment, referred to as the effect of the Treatment on the 
Treated (TOT). For example, in many education RCTs we may be interested primarily in the impact of actually 
receiving a particular type of professional development training on teacher performance, as measured by student test 
scores. However, even in this case, it is generally accepted that obtaining an unbiased estimate of the TOT effect 
begins by reliably estimating the ITT effect (see the recent discussion in Gennetian, et al., 2005). 

18 This is true even when statistical tests show no statistically significant impact of the intervention on mobility (i.e., no 
treatment minus control group difference in the proportion who move and thus lack follow-up data).  The proportions 
may differ but the test lack sufficient power to prove that they do, or the proportions may match even though the 
composition of the movers—and hence the composition of the non-movers actually analyzed—is affected by the 
intervention and differs between the treatment and control group analysis samples. 
19 Stata Release 9, User’s Guide, Stata Press, College Station, Texas (p 117). 
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The most obvious way that data can become missing is a failure to obtain any 
information for a particular participant or observation, a situation called “unit non-
response” in the survey literature. In education this can occur for several reasons. For 
example, individual student test scores may be missing because parents did not consent to 
have their child tested, students were absent or had transferred to another school, the 
child was exempted from taking the test (e.g., because of a disability or limited English 
language ability), or the student’s classroom was unavailable for testing (e.g., a fire drill 
took place). In the case of test scores from administrative records, the school or district 
may have been unwilling or unable to provide data. Teacher data may be missing because 
of a refusal to complete a survey or take a test, extended absence from school, or transfer 
to another school. 

In addition to the complete absence of data for a particular randomized study participant, 
an often more common problem is “item non-response” where respondents refuse to 
answer a particular question, are unable to provide the information (“don’t know”), 
inadvertently skip a question or test item, or provide an unintelligible answer. Sometimes 
data may be “missing” by design in survey data because a particular question is not 
applicable.20 Or certain questions may be skipped to reduce burden on individual 
respondents, who receive only a subset of the full set of possible questions (called 
“matrix sampling”). 

Longitudinal studies in which data are collected from study participants at multiple time 
points, or “waves,” present different missing data possibilities. For example, consider a 
study in which data were collected at four separate time points and data are available as 
shown in the example below: 

Student Wave 1 Wave 2 Wave 3 Wave 4 

A X X X X 

B X X X 

C X X X 

D X X X 

E X X 

F X X 

In this example, Student A was tested at all waves. Students B-E provided incomplete 
data, i.e. data were not obtained some data points (wave non-response). Student F only 
provided data at the first and second time points – this child was a “drop out” from the 
study (often called study attrition) because, for example, he left the study school. As will 
be discussed in the next chapter, these patterns of wave non-response can provide some 
opportunities for imputing or otherwise adjusting for the missing time points in the 

20 Take, for example, the question, “Do you own or rent?” If a respondent answers “Rent” to this screener question, he 
is then asked the amount of the monthly rent payment; if the respondent is not a renter, then the item is skipped.  Non-
responses to such skipped items are not generally considered to be missing data. 
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sequence, to the extent that outcome measures for a given student are likely to be 
correlated over time.21 

E. The Missing Data Problem 
As discussed in Chapter 1, there are two potential problems that can result from missing 
data.22 First, if the missing data mechanism is different for the treatment and control 
group, dropping cases with missing data can introduce systematic differences which can, 
in turn, lead to biased impact estimates. Second, even if the missing data mechanism is 
the same for the treatment and control groups, we may still be concerned about missing 
data if certain types of teachers or students are more likely to have missing data and thus 
are under-represented in the analysis sample. If the impact of the educational intervention 
varies, this can lead to biased impact estimates: for example, if the impacts for 
underrepresented groups are higher than the average impact, then the average impact 
estimates will be biased downward; alternatively, if the impacts for underrepresented 
groups are lower the average impact estimates will be biased upward. 

We believe that both of these problems are serious. In the first case, the seriousness of the 
problem is probably noncontroversial: if missing data produces systematic differences 
between the complete cases in the treatment group and the complete cases in the control 
group, then the impact estimates will be biased. However, the second problem may 
warrant additional consideration. In many RCTs in education, the schools in the sample 
constitute a sample of convenience: they are not selected randomly and thus cannot 
formally be considered representative of any larger population (e.g., Bernstein, et al., 
2009; Constantine, et al., 2009; and Garet, et al., 2008). Therefore, some analysts may 
argue that if the study is not designed to produce externally valid estimates, we should be 
less concerned about missing data problems that make the analysis sample “less 
representative.” However, some RCTs in education do in fact select schools or sites 
randomly. Furthermore, in those RCTs that select a nonrandom sample of convenience— 
schools willing to participate in the study—the study’s goal is presumably to obtain 
internally valid estimates of the intervention’s impact for that sample of schools. If 
missing data problems lead to a sample of students with complete data in those schools 
that is not representative of all students in those schools, we believe this is a problem that 
should be addressed. 

The bias that can be introduced by missing data can most easily be understood by 
considering a typical education RCT. For example, consider a study for which one has a 
primary student-level outcome variable, Y, such as a student assessment in reading, a 
treatment indicator “Trt” (Trt=1 if assigned to the treatment group, and =0 if assigned to 
the control group, which we assume is always known), and a set of covariates, X1 through 
Xn, all measured at the time of, or prior to, random assignment (e.g., a student’s prior 
assessment score and other demographic variables). Although we could have missing 

21 A technique that is often used in medical trials─“last observation carried forward (LOCF)”—uses the last observed 
data point as the final time point measure for patients who drop out of the study. We do not include this method in this 
report because it is highly criticized in the medical literature and other methods we do examine are superior. For more 
information see Wood, White & Thompson, 2004. 
22 Appendix A examines the problem of missing data from the additional perspective of omitted variable bias.  
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data for the outcome variable Y or for any of the control variables X1 through Xn, for 
simplicity let us consider cases where only the outcome variable is missing for some 
observations. 

As discussed in Chapter 1, the most innocuous form of missing data in the Rubin 
framework is called Missing Completely at Random (MCAR). In our example, this 
situation would hold if the probability of the outcome test score being missing is 
unrelated to the student’s “true” test score (i.e., students who would score higher or lower 
at the point of outcome testing are not more or less likely to be missing) or to any of the 
other important measured student characteristics (e.g., gender or race). This condition 
would, however, be violated if, for example, students with low pretest scores were more 
likely to be missing the post-test score because, for example, they refused or were unable 
to complete the test, or their parents were more likely to fail to provide consent for the 
outcome testing. MCAR is a strong assumption and one that, in our view, may not be 
reasonable in most situations.23 

The second category in Rubin’s framework, Missing at Random (MAR), would hold if 
the probability of the outcome being missing is unrelated to a student’s true test score 
after controlling for the other variables in the analysis.24 In other words, the missingness 
is random conditional on the observed X’s. For example, the missing data would be 
MAR if missingness on Y was related to gender but conditional on gender—that is, 
among boys or among girls—the probability of missing data is a constant. This condition 
would, however, be violated if, for example, students missing the post-test score were 
those students who would have scored lower (had they been tested) than those students 
who were actually tested (those without missing data). It is impossible, of course, to 
determine if this condition exists because the data on the untested students is missing so 
one cannot compare the scores for the tested and not tested students. 

If the assumptions of MCAR or MAR are true, the missing data mechanism can be 
considered “ignorable” (MCAR) or correctable (MAR); i.e., in effect the factors that 
cause missingness are unrelated (or weakly related) to the parameters to be estimated in 
the analysis. Under such conditions, a variety of techniques discussed in Chapter 3 are 
available to deal with missing data. In some situations, however, one cannot reasonably 
assume such ignorability, a category called Not Missing at Random (NMAR). In these 
situations, the methods that are available (discussed at the end of Chapter 3) require good 
information about the determinants of missingness to model the causal mechanism, and 
not surprisingly, the results of an impact analysis in a NMAR situation are quite sensitive 
to one’s choice of assumptions and statistical approach. 

23 One can see if there are differences by comparing the rates of missing data across categories of the available data but 
this would not rule out differences between missing and non-missing cases on unobservables. 
24 This is also referred to at times as “covariate dependent missingness” (e.g., Horton & Kleinman, 2007). 
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3. Selected Techniques for Addressing Missing Data in 

RCT Impact Analysis 


This chapter describes a selected set of techniques that are available to educational 
researchers to deal with the problem of missing data in group randomized trials.25 As 
discussed in Chapter 1, the methods were selected based on a review of several recent 
articles by experts in the field (Graham, 2009; Schafer & Graham, 2002; Allison, 2002; 
and Peugh & Enders, 2004)26 as well as a review of the techniques that have been used in 
RCTs recently sponsored by the U.S. Department of Education.27 

As shown in the chart below, some of the methods discussed in this chapter can only be 
used to address missing data for the dependent or outcome “Y” variable (e.g., student 
post-test scores), others are only applicable for missing data on the independent “X” 
variables (e.g., student demographics and pretest score), while some can be used to 
address missing data problems for both types of variables. 

Methods Discussed 

Can be Used for Missing Data in…. 

X Variables Y Variable 

Imputation Methods √ √ 

Maximum Likelihood Estimation √ √ 

Dummy Variable Adjustment √ 

Weighting Methods28 √ 

“Fully-Specified” Regression Models √ 

Selection Modeling √ 

Pattern Mixture Modeling √ 

The discussion of these different methods is organized into two parts. The first deals with 
what we refer to as “standard” missing data methods that are in common use, particularly 

25 General issues in conducting group randomized trials, independent of missing data, are covered in many excellent 
publications. See for example Klar & Donner (2001) from the medical literature, and Bloom (2005) concerning social 
policy experiments. For a thorough discussion of missing data issues and analysis options in studies that randomize 
individuals rather than groups see Carpenter & Kenward (2007). 
26 As discussed elsewhere, we intentionally include methods that are commonly criticized in the literature─particularly 
listwise deletion and simple mean value imputation─for two reasons: the use of these methods is widespread in 
education (see Peugh & Enders, 2004); and because we are focusing on RCTs as conducted in education, we want to 
understand how different missing data strategies performed within this unique context, including methods that may 
have shortcomings in more general applications.. 
27 For example, case deletion is commonly used to address missing outcomes (e.g., Bernstein, et al., 2009; Corrin, et 
al., 2009; Garet, et al., 2008), but studies sometimes use multiple imputation (e.g., Campuzano, et al., 2009) or re-
weighting (e.g., Wolf, et al., 2009) to address the missing data problem. 
28 Weighting methods could in theory be used to address both missing X variables and missing Y variables.  However, 
in our experience, RCTs in education never use weighting methods to address missing X variables. In our opinion, this 
may be because researchers are reluctant to drop observations with missing values of the X variables and re-weight the 
observed sample members. 
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when one can assume that missing data are MAR:29 imputation methods, maximum 
likelihood estimation, dummy variable adjustment, weighting methods, and fully-
specified regression models. The second section focuses on two methods that have been 
developed to address situations where the missing data can be considered to be NMAR:30 

selection modeling and pattern-mixture modeling. In this second section, we also discuss 
the use of sensitivity testing that can be used to enhance the reporting of RCT findings 
under either missing data circumstance. 

A. Standard Missing Data Methods31 

Imputation Methods 
Imputation methods handle missing data by “filling in” missing values to create a 
complete data set for subsequent analysis. For the purposes of discussing imputation 
methods, we assume that impacts are estimated using a model of the following form: 

Y = β + β Trt + β Y + β x + β x + ...β x + εPost 0 1 2 Pre 3 1 4 2 k +2 k 

In this ordinary least squares regression model, the impact of the treatment under 
investigation (Trt = 1 if assigned to the treatment group, and =0 if assigned to the control 
group), on a particular outcome measured post-treatment (YPost ) is estimated controlling 
for a pre-treatment score on the same measure (YPre ), and up to k baseline covariates 
measured prior to randomization ( x1, x2 ,...xk ). The concepts discussed in this section are 
not predicated on the assumption that the impact model is an ordinary least squares 
model, nor is the use of a pre-treatment score as a covariate a necessary component. The 
model above, however, will serve as a useful example for illustrating how imputation can 
be used to deal with missing data and the different ways it can be done. 

For simplicity, we start our discussion with the assumption that there are missing values 
only on the variable x2 , and that we have complete responses for all of the other variables 
in the analysis model. Our goal is to replace the missing values on x2  with imputed 
values so that we can proceed with fitting the impact model on all units that were 
assessed at the time of the post-test (for now, we ignore cases with missing outcomes). 

As a first step in the imputation process, one can determine whether any (or all) of the 
missing values on x2 can be logically imputed (also known as deductive imputation). To 
illustrate, suppose that x2 is an indicator for whether or not a student is eligible for free or 
reduced-price lunch, and for a set of newly-enrolled students the values of x2  were 

29 These methods in principle can also produce unbiased impact estimates in the NMAR situation with the specification 
of appropriate models for the missing data mechanism.  But, as discussed later, knowing what model is appropriate is 
the difficulty. 
30 While these two methods constitute ways to model missing data, they do not of themselves provide a means of 
estimating impacts. For that purpose, they have to be combined with other estimation techniques such as maximum 
likelihood. It is also worth noting that while they were developed to meet the challenges of NMAR data, these models 
can also be applied to the MAR situation. 
31 Case deletion, which is examined as part of the missing data simulations in the next chapter, is not specifically 
described here because it simply involves conducting the analyses using only those cases with complete data. 
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missing because the school had not yet made an eligibility determination. But, suppose 
that one had conducted a parent interview at baseline that obtained the same information 
that the schools use to make their eligibility determinations, such as family income and 
family size. In this instance one would actually have enough information to determine 
whether or not an individual student is eligible for subsidized school meals. 
Consequently, because we would be reasonably confident that we could determine, with a 
sufficient degree of accuracy, whether the student would be eligible, it would be a good 
strategy to replace as many of the missing values as possible with this logically-imputed 
information. 

When such logical imputations cannot be made, Little & Rubin (2002) identify two 
general classes of statistical imputation that can be considered, implicit modeling and 
explicit modeling. Procedures such as hot deck and cold deck32 imputation are commonly 
used examples of implicit modeling methods because there is an underlying model 
implied by the computational algorithm that relates the data used in the procedure to the 
generated imputed values (i.e., the model is not explicitly developed or stated). 
Consequently, Little & Rubin (2002) argue that the implicit nature of the underlying 
model makes it more difficult to assess whether the model assumptions are reasonable for 
a particular application. 

Alternatively, explicit  modeling procedures are based on specifically stated models that 
relate the observed data to the predicted or imputed values.  Because we agree that there 
is value in stating the imputation models explicitly, and because the explicit procedures 
are no more difficult to implement than the implicit approaches, we focus our remaining 
discussion on the following three explicit modeling approaches: 

� Mean value imputation – each missing value is replaced with an imputed value equal 
to the mean of the observed data. In the current example, a missing value for  x2  
would be replaced with the mean of x2 calculated over all non-missing cases. 

� Non-stochastic regression imputation – this approach also involves replacing missing 
data with imputed values but uses predicted values from a regression model. 

� Stochastic regression imputation – this approach extends the regression imputation by 
adding a varying component to the predictions so that the imputed values have the 
same variance as the observed values. 

The stochastic regression methods can be implemented either as a single imputation, or as 
a multiple imputation. In single imputation, each missing value is replaced with one 
unique value resulting in the creation of a single rectangular data set. In multiple 
imputation, each missing value is instead replaced with several separately derived 
imputed values, typically five to ten (see Rubin, 1987, 1996, and Little & Rubin, 2002), 
creating multiple analytical data sets. The impact analysis model is then fit to each of the 
generated data sets, and the overall estimate of treatment impact, and the associated 
standard error, is derived from combining the results across the multiple data sets. 

32 In “hot deck” procedures, study participants are first grouped into cells based on their similarity on measured 
characteristics for which data are not missing. Imputed values are then obtained as a random sample from the non-
missing values within the cell in which a given missing data case falls. “Cold deck” imputation is a similar procedure 
but utilizes data from an external source. 
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Mean Value Imputation 
Mean value imputation is essentially a special case of regression imputation (discussed 
below). Returning to our example, if we fit a simple model of the form, 

x2 = β0 + ε  

to the observed (non-missing) values of x2 , then the estimate β̂0 is the mean of x2 . In this 

procedure, we then replace all of the missing values of x2  with the value of β̂0 . This 
model assumes that the missing data mechanism, the process that caused there to be 
missing values on x2 , is independent of the values on all other measured covariates. 

In many instances, this assumption may be difficult to justify. In the example below, 
individuals with high values on x1 are more likely to have missing values for x2 . 
Consequently, if we replace the missing values on x2 with the mean of x2 , we will distort 
the relationship between x1 and x2 . Furthermore, if there were a relationship between x2  
and either the outcome (Y ) or the treatment indicator (Trt ),33 or both, then this 
imputation method will also distort the relationships between x2  and Y or x2  andTrt . 
Additionally, mean imputation will cause the estimate of the standard error of the mean 
of x2  to be too small. This is because the numerator of the standard error (σ x2 

) will be 
too small (i.e., the imputed values will all have the same value), and the denominator 
( n ) will be too big (i.e., n is the total number of both observed and imputed values, 
instead of just the number of observed values). However, it is not clear that the standard 
error that we really care about, i.e. the standard error of the coefficient for the treatment 
effect, will be consistently underestimated or overestimated. 

Higher Probability of Missing x2 when Value on x1 is 

High 


   x1 x2 

540 …  Í Fill in missing 
528 … values of x2   with 

510 355 mean of x2  
508 …  

505 340  

498 …  

491 322  

488 310  

483 305  

477 298  

474 295  

472 300  

470 284  

466 276  

465 280  

460 268  


Missing values on x2 are represented by dots ( “…”). 

33 Randomization ensures that in expectation, there is no relationship between x2  and Trt , but in any one particular 

obtained sample, there may be a correlation in the data between x2  and Trt . 
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According to Little & Rubin (2002), an analysis using mean value imputation does not 
produce consistent estimates of variances, covariances, or standard errors because this 
simple (albeit often used) imputation method when paired with standard analysis methods 
does not account for the uncertainty associated with using imputed values in place of 
observed values. 

A variant of simple mean value imputation involves the grouping of units based on their 
values on some important characteristic, and then using the respective group means as the 
imputed values to replace missing values for all individuals in the group (this is 
essentially a non-parametric version of the parameterized regression imputation model 
described below). For example, groups might be schools, and for a student in school j that 
has a missing value on x2 , one might use the mean of x2  among students in school j as the 
imputed value that would be substituted in place of the missing value. For a randomized 
design when an outcome variable is being imputed, mean value substitution should be 
implemented separately in treatment and control groups. 

Non-Stochastic Regression Imputation 
Regression imputation extends simple mean imputation by generating predicted values 
for missing data (e.g., the missing values of x2 ) conditional on other measured variables. 
These variables should include not just those that have scientific relevance to the research 
question at hand but also “auxiliary variables”34 that are potential causes or correlates of 
missingness of x2  or that correlate with the value of the variable being imputed ( x2 ). 

To implement regression imputation we would fit a model of the form shown below in 
which x2 is the dependent variable and all other covariates from the impact model are 
used as independent or predictor variables.35 The process is implemented separately in 
the treatment and control groups (see discussion below), therefore the treatment dummy 
does not appear in the imputation model. 

(3) x = β + β Y + β Y + β x + β x + ...β x + ε2 0 1 Post 2 Pre 3 1 4 3 k +1 k 

After estimating this equation using ordinary least-squares, we then replace missing 
values with the predicted values from the model where the predicted value x̂2 is obtained 
as, 

(4) x̂ = β̂ + β̂ Y + β̂ Y + β̂ x + β̂ x + ...β̂ x ,2 0 1 Post 2 Pre 3 1 4 3 k +1 k 

where the YPost, YPre, and xj terms are values from the data for the particular individual 
involved. 

The assumption underlying the use of a regression model to get imputed values is that, 
for the observations with the missing values, if the true values were known, then the 

34 See Collins, et al. (2001) for a discussion of “auxiliary variables” and their contribution to the strength of the 
imputation procedure. 
35 Rubin (1996) recommends the inclusion of as many variables as possible in the imputation model. Thus, all other 
variables from the impact model should be considered the minimally sufficient set, and inclusion of all other possibly 
relevant variables measured at baseline, potentially including higher order terms and interactions, is advised. 
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differences between the true values and the regression imputed values would be 
uncorrelated with the treatment group indicator or with any other variable in the analysis 
model. That is, the differences are assumed to be pure random error. This approach is 
expected to fix the previously described problem of distorting the relationships between 
x2 and x1 , Trt ,YPost , etc. But, as before, a limitation of this approach, when paired with 
the use of standard analysis methods on the filled-in data set, is that the method does not 
take into account the uncertainty associated with using imputed values rather than 
observed values for missing data cases. 

One important feature of the imputation model specified in equation (3) is that it includes 
the outcome variable (Y) among the predictors of the missing covariate x2. Surprisingly, 
this imputation method—and each of the imputation methods described below—is 
improved if the imputation of X variables takes Ypost into account (and MAR holds and 
the model is correctly specified). It may seem odd to use the outcome variable to predict 
one or more covariates in the model because it would appear to create circularity when 
the dependent variable Y is used to impute an explanatory variable such as x2, and then 
this connection is reversed to estimate the outcome equation that provides the main 
finding of the analysis (i.e., the treatment-control difference in outcomes representing the 
intervention’s impact). But, this is exactly what the experts recommend (see, Little & 
Rubin, 2002; Moons, et al., 2006; and Allison, 2002). 

To see the importance of using the outcome variable in imputing baseline covariates, 
consider a simple analysis model in which the outcome, a post-intervention test score, is 
specified as a function of randomly assigned treatment status and the student’s pre-
intervention test score and a set of demographic characteristics. If there is some 
unobserved variable associated with unusually high or low test score growth over time 
for certain students (e.g., an especially motivating teacher at a given grade level), then the 
post-intervention test scores will contain information about this unobserved variable not 
captured by the pretest scores or demographic characteristics.  In this circumstance, 
omitting the post-intervention test score will lead to omitted variable bias in the 
imputation model. However, to avoid attenuation of the impact estimate, one should do 
separate imputation for the treatment group and control group observations.36 

Do biased estimates in the imputation model for covariates translate into biased impact 
estimates in an RCT? Not necessarily. If the missing data mechanism is the same for the 
treatment and control groups, the consequences of specification error for biased 

36 In an RCT, the impact findings do not hinge on the relationship between the X variables and Y but rather on the 
relationship between the treatment indicator variable and Y (i.e., the effect of assignment to the treatment group on the 
outcome). The treatment indicator is never missing, and X variables measured prior to random assignment cannot 
correlate with it in expectation unless their imputed values inject correlation. This possibility is avoided by doing 
separate imputation for the treatment and control group samples.  Absent this separation, the impact of the intervention 
on the outcome—if non-zero—will influence how cases are classified by the imputation procedure.  For example, if 
girls tend to score better than boys on verbal achievement tests and the intervention raises the scores of all students, the 
positive relationship between test scores and the covariate X = 1 for girls, = 0 for boys will lead more of the cases with 
missing data for X in the treatment group to be imputed as girls than of cases with missing data for X in the control 
group. This makes the imputed version of X correlate positively (in expectation) with the treatment indicator, Trt, even 
though the original version did not (and cannot, having been measured prior to the creation of the Trt variable). Once 
divided into separate imputation procedures, higher or lower Y values for students with missing sex information within 
the treatment group can only arise because of the underlying girl/boy contrast and not because the intervention had any 
impact—and similarly for higher or lower Y values within the control group. 
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imputations will be symmetric for the two samples, making mean outcomes for the two 
samples following insertion of imputed values equally biased. Moreover, their 
difference—the basic measure of impact—will not be biased. However, if the missing 
data mechanism for baseline covariates differs between the two groups biased 
coefficients in the imputation model can lead to biased impact estimates.37 

Regression imputation can be used to impute missing dependent variables as well as 
missing covariates. Here again, it is considered good practice to include all of the 
covariates from the analysis model in the imputation model, plus any other baseline 
variables that may be associated with missing data (i.e., including auxiliary variables as 
noted by Collins, et al., 2001). In addition, if the analysis involves multiple dependent 
variables─for example, separate outcome tests for reading and math achievement─it is a 
good idea to include all the other dependent variables in the model when imputing any 
one outcome, to further protect against omitted variable bias in the imputation model. 

Single Stochastic Regression Imputation 
Stochastic regression imputation involves the addition of “noise” to the imputed value 
obtained from regression imputation to ensure that the variation among imputed values is 
the same as the variation among observed values. When the predictive model for x2  is fit 
to the data (e.g., equation (4) above), the residuals from the model are saved.38 Then to 
obtain an imputed value, a randomly selected residual from the residual file is added to 
the predicted value from the regression model (i.e., imputed value = x̂2 + a randomly 
selected residual). In single stochastic regression imputation, each missing value is 
replaced with a single imputed value resulting in a single rectangular analysis file.   

With this method, the imputed values have the same variance as the observed data. 
However, Little & Rubin (2002) caution that the use of standard analysis techniques on 
the filled-in data set may result in incorrect standard errors because the method does not 
take into account the uncertainty associated with using imputed values in place of 
observed values. 

Multiple Stochastic Regression Imputation 
Multiple stochastic regression imputation methods have been developed to account for 
the uncertainty caused by using imputed values. Conceptually the procedure is rather 
simple. First, imputed values are generated from a stochastic regression procedure like 
the one illustrated above 5 or 10 times, resulting in separate data sets for each replicated 

37 This problem should be less severe in RCTs than in quasi-experimental studies due to randomization.  In a RCT, if 
the baseline data are collected prior to randomization, the missing data mechanism cannot differ for treatment and 
control groups because the missing data process occurred prior to randomization.  However, in RCTs that obtain 
consent, collect prior year test scores, or conduct “baseline” classroom observations after schools have been 
randomized (e.g., randomization over the summer with baseline data collection in early fall), then the missing data 
mechanism for the covariates in the analysis model could differ between experimental groups. 
38 Residuals are the difference between the observed values and model predicted values (i.e., the residual for the ith unit 
is calculated as r = x2i − x̂2i ) .i 
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imputation.39 Assuming that 10 data sets are created, the imputed values across each of 
the ten data sets are likely to be slightly different from one another because in each 
instance a randomly selected residual (likely to be different from draw to draw) will be 
added to the predicted value to obtain the imputation value. 

Next, one fits the selected impact model to each of the ten data sets. For example, let “D” 
be the number of multiple imputations; in the current example D=10. Let “d” be an index 
for each of the ten data sets (d = 1, 2, … 10). The model for the dth data set is of the form: 

YPost,d = β0,d + β1,d Trtd + β2,dYPre,d + β3,d x1,d + β4,d x2,d + ...β k ,d xk ,d + ε d 

In this example, the process would produce 10 estimates for each parameter in the model: 

ˆ ˆ ˆβ 0,1, β 0,2 ,...β 0,10 , 

β̂1,1, β̂1,2 ,...β̂1,10 , 
..., 
ˆ ˆ ˆβ k ,1, β k ,2 ,...β k ,10 ,... 

The final estimate for a particular parameter (e.g., the treatment effect) is the mean over 
the estimates from the ten repetitions: 

10 

∑β̂1,d 
d =1β1 = 

10 

The standard error of the combined estimate (s.e.  ( β1 )) is calculated from (1) a within-
imputation variance component, (2) a between-imputation variance component, and (3) 
an adjustment factor for the number of repetitions (D).40 Let W1d be the estimated 

2variance of the parameter from repetition d, ( β̂1,d ) i.e., W1d =[s.e.(β̂1,d )] . Then the 
within-imputation variance is the average of the D=10 estimated variances, calculated 
as: 

10 

∑W1d 
d =1W1D = 

10 

The standard error estimate of a parameter is provided in all regression modeling 
software products. Therefore, W1D  is easily calculated by squaring the standard errors and 
taking the mean over the ten sets of computer output. 

39 For modest to relatively large amounts of missing data, little is gained by doing more than five to ten repetitions (see 
Rubin, 1987). 
40 Formulas for the standard error of the combined estimate are from Little & Rubin (2002). 
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The between-imputation variance component is given by the following equation: 

1 D 2

B ( ˆ 
1D = 

D − ∑ β
1 1,d − β1)  

d =1 

 
and the total is given by: 

D + 1T 1D = W 1D + B  
D 1D

 

In this equation, (D+1)/D is the adjustment factor for D repetitions. Thus, the standard 
error of β1  is as follows: 

s.e.(β1) = T1 D . 
 

Once the analyst has calculated β1  and s.e.(β1) , the statistical significance of the 
βtreatment effect can be calculated in the usual way by comparing the ratio 1 to the 

s.e.(β1 ) 
quantiles of a t-distribution with 	 v degrees of freedom, where 

1 Wv = (D −1)(1 + 1D ) 2 . Estimates and standard errors for other model terms are
D + 1 B1D 

calculated in a similar fashion. 

The multiple imputation process described above does not require any specialized 
software. First, one creates the different data sets required to make the procedure a 
multiple, rather than a single, stochastic regression imputation. And, then one repeats the 
impact analysis separately for each of the multiple data sets and calculates the mean of 
the parameter estimates. The formulas shown above for estimates of the standard errors 
and degrees of freedom can be programmed in practically any statistical analysis package 
or even in a simple spreadsheet. Consequently, the process can be done using whatever 
software the analyst usually uses to do data processing and analysis. 

One common question that arises is which covariates should be used when creating a 
model to obtain predicted values for a covariate that has missing values. The general 
recommendation of Little & Ragunathan (2004) is to use every available variable in the 
prediction model−there is no benefit of parsimony in the prediction model. In the case of 
stochastic regression imputation, one should also use the outcome variable (YPost ) on the 
right-hand side of the prediction model. While many analysts may be bothered by the 
seeming circularity of using YPost  in the prediction of imputed values for x2 , and then 
subsequently using x2  in the prediction model for YPost , it is strongly argued in Little & 
Rubin (2002) and Allison (2002) that omission of the dependent variable (YPost ) from the 
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imputation process can lead to downward bias in regression coefficients,41 and can lead 
to inconsistent estimates.42 This leads to the following guidelines: 

� Any variable that will be used in the analytic model (for our discussion the analytic 
model is the treatment impact model) should also be included in the imputation 
model, including the treatment status indicator variable; and, 

� One should err on the side of using all available information in the imputation model, 
rather than aiming for parsimony. 

For more information on the choice of covariates for the imputation model see the SAS 9 
documentation for PROC MI, and other suggested references including Rubin (1996), 
Barnard & Meng (1999), and van Buuren, Boshuizen, & Knook (1999). 

Bayesian Methods for Multiple Imputation 
There is one additional source of uncertainty in the parameter estimates that is not 
properly accounted for in the multiple stochastic regression imputation process described 
above. As a result, the process described in the previous section is referred to as 
“improper” multiple imputation. While this procedure largely addresses the problem that 
multiple imputation was designed to solve—that standard error estimates from single 
imputation methods are biased downward—the standard error estimates will still be 
biased downward. This section presents an approach to remove the remaining bias. 

Returning to our example, suppose we used an imputation model of the form shown 
below to model the non-missing values of x2 (as noted above, the treatment and control 
groups are modeled separately so there is no treatment dummy in the imputation model): 

x 2	 = β 0 + β 1Y Post + β 2Y Pre + β 3x 1 + β 4 x 3 + ...β k +1 x k + ε    

We then replace each missing value with an imputed value, ~x , where ~
2 x2 is the sum of 

the model-predicted value x̂2 and a randomly chosen residual, r. Note that the model-
predicted value is obtained as shown below where each beta-hat ( β̂ ) is an estimate from 
the model above. 

x̂ ˆ	 ˆ ˆ ˆ
2	 = β 0 + β 1Y Post + β 2Y Pre + β 3x + β̂ x + ...β̂1 4 3  k +1 x k .

The extra source of uncertainty arises because the beta coefficients in the prediction 
model are treated as true parameters instead of sample estimates. Rubin (1987) and Little 
& Rubin (2002) refer to a multiple imputation process that does not account for the use of 
sample estimated parameters to get the regression-predicted value as “improper.”  

The implementation of “proper” multiple imputation adds a layer of complexity to the 
imputation process. The methods are based on Bayes theory and relate the complete 
posterior distribution given no missing data to the posterior distribution given observed 
data. The methods involve forms of Markov Chain Monte Carlo algorithms, and are 
described by names such as data augmentation (Allison, 2002; Schafer, 1997; Little & 

41 Allison (2002) cites Landerman, Land, & Pieper (1997). 
42 Inconsistent estimates do not get closer to truth as the sample size increases. Little & Rubin (2002) provide citations 
to more details on inconsistency of estimation if the dependent variable is omitted from the imputation procedure. 
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Rubin, 2002) and Gibbs sampling (Little & Rubin, 2002; Little & Raghunathan, 2004). 
Unlike the stochastic regression multiple imputation process described in the previous 
section, these procedures would not be straightforward for a typical analyst to program 
using common data management and model fitting software. While there are data 
augmentation and Gibbs sampling routines available in some standard software packages 
such as the “Proc MI” procedure in SAS, these are limited to simple imputation models 
(SAS Institute, 2003). 

For example, in many education RCTs where most or all of the analytical models for 
estimating program impacts will be multilevel models with two or three levels (e.g. 
students at level 1 nested in schools at level 2), if one uses the improper procedure 
described above, the imputation model for obtaining predicted values for missing items 
can be of the same form as the analytic model. That is, the imputation model can be a 
two-level model with students nested in schools, and the correlation of students within 
schools can be accounted for in the same manner in the imputation model as it will be in 
the analytic model for program impacts. Using a procedure such as Proc MI, a researcher 
would have to assume a simpler multivariate normal model for the imputation model, 
with no random effects to capture the effects of the clustering of students within school. 
In this situation, the researcher might, for example, use dummy variables for schools in 
the imputation model to approximate the multilevel structure that will be used in the 
analytic model for program impacts. 

Analysts who would like to implement multiple imputation approaches to deal with 
missing data may be faced with what looks like two unsatisfactory options: (1) utilize a 
“proper” technique that properly propagates the uncertainty caused by having estimated 
instead of true parameters in the imputation prediction model, but has a mis-match 
between the imputation model and the impact model; or (2) utilize a multiple imputation 
technique that is “improper” but allows for an accurate match between the imputation 
model and the impact model, and may also more easily allow for prediction models for 
missing variables that are binary, ordered categorical, or unordered categorical. 
Fortunately, as Allison (2002) and Little & Ragunathan (2004) suggest, in terms of the 
extent to which methods produce correct standard errors, there is a large jump from 
single regression imputation to multiple stochastic regression imputation, then a much 
smaller difference between improper and proper stochastic regression multiple 
imputation. 

Examples of Multiple Stochastic Regression Imputation 
In this section we discuss some pragmatic approaches to the implementation of multiple 
imputation under various conditions that are frequently encountered in impact analyses 
for educational and other social science outcomes (some additional guidance for multiple 
imputation is provided in Appendix B). 
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Missing Values on Binary Variable:  When there are missing data on a binary variable 
(coded 0 or 1), a logistic regression model can be substituted in place of the linear 
regression model used in the example above. In the example below, we assume that the 
imputation model is fit separately to treatment and control groups, and we are using both 
pretest and post-test in obtain predicted probabilities: 

π xlog( 2 ) = β0 + β1YPost + β1 2YPre + β3 x1 + β4 x3 + ...β k +1xk  
− π x2 

where π x2 
is the probability that x2 = 1.   

Having estimated this model with logistic regression or an equivalent maximum 
likelihood estimation numeric algorithm, one then calculates the predicted probability 
that x2 = 1as: 

β̂ + β̂ Y + β̂ Y + β̂ x + β̂ x + β̂exp( 0 1 Post 2 Pre 3 1 4 3 ... k +1xk )π̂ x = 
2

) .
ˆ1 + exp(β̂0 + β̂1YPost + β̂2YPre + β̂3 x1 + β4 x + ˆ
3  ...β k +1xk )
 

Next, a random variate is generated from a binomial distribution with probability equal to 
π̂ x 2 

. All major statistics software packages have functions to generate random variates in 
this fashion. This randomly generated value is then used as the desired imputed value.  
For multiple imputation, if there were to be 10 replications, and if π̂ x 2 

were equal to 0.80,
one would expect that over ten multiple imputations, about eight of the imputed values 
would be ones, with the remainder equal to zero. 

Missing Values on Multi-category Categorical Variables:  If there are missing values on 
a variable that has more than two categories, and is either ordinal (has natural ordering 
such as high, medium, and low), or nominal (no natural ordering such as race and 
ethnicity categories), then ordinal logistic regression, or polytomous logistic regression, 
can be used to obtain imputed values in a manner similar to that described above for 
binary variables using logistic regression. 

Missing Values on More than One Covariate:  Usually, when one is faced with a 
missing data problem on one variable, the problem also exists for other variables. In the 
case of a monotone missing pattern like the pattern depicted below, where “.” and “x” 
indicate missing and non-missing values, respectively, the solution is to regress x2 on x1  
to obtain imputed values for x2, and then to regress x3 on x1 and x2 (including the imputed 
values of x2) to obtain imputed values on x3, and so on. 

Monotone Missing Pattern 
Unit ID x1  x2  x3  x4 

1 x x x X 
2 x x x X 
3 x x x . 
4 x x . . 
5 x . . . 

When faced with a general, non-monotone pattern of missing data, one can start with the 
variable that has the least amount of missing data, and impute values using stochastic 
regression multiple imputation to fill in the missing values using as much data as is 
available in the current step. 
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For example, for the pattern depicted below, one could impute the missing value of x1 for 
Unit ID=2, by creating a data set comprised of all individuals with patterns like those 
shown for Unit IDs 3 and 4, and regressing x1 on x2 and x3. Then, the missing values on 
x2 would be imputed by regressing x2 on x1, and so on. 

A General, Non-Monotone Missing Pattern 
Unit ID x1  x2  x3  x4 

1 x x . X 
2 . x x . 
3 x x x . 
4 x x x . 
5 x . . . 

An alternative to the process described above is to use Markov Chain Monte Carlo 
(MCMC) methods to impute enough values to produce a monotone missing data pattern, 
and then follow with stochastic regression multiple imputation to fill in the remaining 
cells. The MI Procedure in SAS Version 9 has an option to proceed in this manner under 
the assumption of a multivariate normal distribution for the data. 

Missing Values on a Variable that is Used to Create Subgroups for Subgroup Analysis:  
Suppose, for example, that a study aim were to estimate separate treatment effects for 
boys and girls, and that there were missing values on the variable that defines the 
subgroups (SexMale =1 if boy, =0 if girl). If the subgroup analysis is conducted by using 
interaction terms in impact analysis model (e.g., SexMale * Trt), then the analyst would 
multiply impute the missing values on the SexMale variable, and fit the model with the 
interaction term to the separate data sets. The estimates and standard errors from the 
multiple imputation model are calculated in the same manner as described previously. So, 
the fact that the imputed variable defines a subgroup does not present any special 
problems. 

If the approach to the subgroup analysis involves conducting analyses on subsets of data 
(e.g., making a data set that includes only boys, and estimating the treatment effect using 
that subset of data), then when the multiply imputed variable SexMale is used to create 
separate data subsets, the data sets vary slightly over the replications because of the 
stochastic nature of the imputation for SexMale. Again, each of the replications will 
produce a separate estimate, but they can be combined as described previously. 

Maximum Likelihood (ML) Estimation 
Maximum Likelihood (ML) is a statistical estimation method for identifying population 
parameter values that can be used in a variety of ways to deal with missing data. The 
different methods, described in more detail below, are: 

� Separate estimation of conditional and marginal distribution functions using all 
available data in each instance, then solving for the impact estimate as a function of 
the distributions’ parameters; 

� Prediction of missing values using the expectation maximization (EM) algorithm, 
with impact estimation conducted on a data set that replaces missing values with 
predicted values; 
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� Prediction of missing values using the EM algorithm multiple times, with a random 
residual added and impact estimation conducted multiple times and the separate 
results averaged; 

� Production of sufficient statistics using the EM algorithm, from which the impact 
model can be estimated; and, 

� Full information maximum likelihood that maximizes the joint distribution function 
of all the data, missing and non-missing. 

In general, ML estimation involves (a) specifying a “likelihood function”—i.e., the 
probability distribution function assumed to generate the data, (b) substituting the data 
into this function, and (c) finding the parameter values for the distribution that maximize 
the likelihood function. In other words, ML seeks the parameter values that make the 
observed data as likely as possible to have occurred. For some likelihood functions, there 
is a closed form solution to the maximization problem, and the parameter estimates that 
maximize the likelihood function can be identified using differential calculus.  In most 
applications, ML estimates are identified through an iterative process.43 This technique 
can be applied to situations in which none of the data are missing, but it can also be 
applied to situations with missing data. 

To illustrate how ML estimation works with complete data, consider the type of linear 
model we typically specify in an RCT: 
 

Y = β0 + β1Trt + β2 x1 + β3x2 + ...βk +1xk + ε  
 

where, Y is the student outcome variable, Trt is a variable that indicates the group to 
which the student was randomly assigned (Trt = 1 if treatment group, =0 if control), and 
X is a vector of k covariates measured prior to randomization. ML estimation requires the 
analyst to make an assumption about the joint distribution of all these variables. 
Commonly, we assume that the variables have a joint normal distribution. If some of the 
variables are not normally distributed (e.g., dichotomous outcome variables), other 
models can be specified and estimated via ML methods (e.g., probit and logit models).44   
ML estimation chooses values for all the parameters of the joint distribution of Y, Trt, and 
the x variables, including the impact estimate β1 . If the joint normality assumption holds, 
ordinary least-squares (OLS) can be used to compute ML estimates, i.e., OLS is 
equivalent to maximum likelihood estimation under the joint normality assumption. 

When some of the data are missing, ML can be extended in a number of ways, each of 
which are reviewed below with their associated strengths and weaknesses. 

43 The iterative process involves making small changes to the parameter estimates and re-evaluating the likelihood 
function. The process ends when further small changes to the parameter estimates leave the likelihood function 
virtually unchanged, indicating that a “peak” or maximum point has been attained. 
44 Moreover, as Allison (2002) asserts: “Although the assumption of multivariate normality is a strong one, it is 
completely innocuous for those variables with no missing data” (p. 18), such as is true for the treatment status indicator, 
Trt. 
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(1) Separate estimation of conditional and marginal distribution functions 

The first way to treat missing data using ML methods is to express the joint distribution 
function to be maximized as the product of a conditional distribution and a marginal 
distribution: 

f(Y, Trt, X) = f(Y│Trt, X) f(Trt, X) 

With missing data, ML can be used to estimate the parameters associated with each of 
these two distributions separately45 using only the observations for which the relevant 
variables are observed. For example, suppose only the outcome variable Y was missing 
for some cases, and X and Trt were never missing. This technique would (a) estimate the 
parameters of the conditional distribution function f(Y│Trt, X) using only those cases 
with non-missing outcomes, and (b) estimate the parameters of the marginal distribution 
function f(Trt, X) using all cases. In this way, ML uses all of the available information 
for cases with missing outcomes and cases with non-missing outcomes. The conditional 
and marginal distribution functions, with their parameters now estimated using ML 
methods, are then recombined to get the desired joint distribution, f(Y, Trt, X). The 
relationship of Trt to Y—the impact estimate—can be derived from this joint distribution 
and is unbiased if the right distributional type is adopted for f(Y, Trt, X) and its 
components. Moreover, the common assumption of a multivariate normal distribution 
produces impact estimates that become unbiased as sample size increases, regardless of 
the true distributional form. As Allison (2002) states, “Maximum likelihood under the 
multivariate normal assumption produces consistent estimates of the means and the 
covariance matrix [from which all distribution parameters can be derived] for any [true] 
multivariate distribution with finite fourth moments” (p. 88, emphasis added). 

This approach to ML with missing data is only feasible when the missing data are 
hierarchical—i.e., when missingness of a particular variable implies missingness for all 
variables with higher overall missing data rates. For a joint distribution involving three 
variables, this condition is satisfied if—in the case where Y is most often missing 
followed by x2 followed by x1 —all observations with x1  missing are also missing x2 and 
Y, and all observations with x2 missing are also missing Y. A dataset can be made 
hierarchical in its missing data patterns by dropping observations that violate the pattern. 
However, this would sacrifice useful information. Alternatively, analysts can impute 
values for the less commonly missing variables in order to achieve a hierarchical dataset. 
When conducting an impact analysis in an RCT, one can sometimes achieve a 
hierarchical missing data pattern with minimal imputation if the missing data rates for 
pre-randomization covariates are low. In these situations, one need only impute values for 
the X variables where x is missing but Y is non-missing to create a hierarchical dataset.46 

This has the disadvantage, though, of requiring two different procedures, imputation 
followed by ML estimation, with the first of the two not defined by the method. 

45 If each distribution is maximized, so is their product. 
46 The treatment/control indicator variable Trt is never missing (because the experiment creates it). 
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(2) Prediction of missing values using the expectation maximization (EM) algorithm 

Unlike option (1), the other ML methods on the list above do not require hierarchical 
missing data. Several of these use the expectation-maximization (EM) algorithm 
discussed by Allison (2002, p. 19) and Graham (2009, p. 6.7).  EM sets initial parameter 
values for the chosen distributional type (usually normal) and then uses those values to 
predict values for missing variables. It then puts all the data, real and imputed, into the 
likelihood function and solves for updated parameter values that maximize the likelihood 
function. The new parameters are used to re-impute the missing values, and the process 
iterates between ML parameter calculation and missing data imputation until the value of 
the likelihood function stops increasing (i.e., is maximized). This gives the final set of 
imputed values for use—along with the non-missing data—in the impact regression 
model. 

As noted by both Allison and Graham, the EM algorithm when used in this way may 
produce incorrect standard errors for regression coefficients, including the impact 
estimate. Indeed, Graham (p. 6.8) says that “Standard errors…will be too small, 
sometimes to a substantial extent.” 

(3) Prediction of missing values using the EM algorithm multiple times 

Graham (p. 6.8) offers two ways to obtain unbiased standard error estimates when using 
ML in the presence of missing data: direct maximization of the likelihood function, 
inclusive of missing values (see (5) below), and multiple imputation using the EM 
algorithm to impute values. Multiple imputation using EM parallels the multiple 
stochastic regression imputation method discussed earlier, except that it uses the EM 
algorithm, rather than a regression model, to obtain each set of imputed values. In both 
cases, a random residual is added to the imputed values to ensure unbiased standard error 
calculations. When run multiple times, this method produces N impact estimates and N 
standard errors, one for each EM-generated set of imputed values that replaces missing 
data. The N sets of findings are then combined as in multiple stochastic regression 
imputation to give an overall impact estimate and its correct standard error. Computer 
programming for this procedure is very similar to multiple stochastic regression 
imputation. 

(4) Create “sufficient statistics” using the EM algorithm 

Rather than impute values for missing cases, the EM algorithm can be used to produce 
estimates of the means and covariances of all the variables in a dataset, then these 
“sufficient statistics” can be used to estimate an impact model.  However, the use of 
sufficient statistics rules out the two-level random intercepts impact model that is 
typically used in education RCTs applications. 

(5) Full information maximum likelihood (FIML) 

The final ML approach from the literature—full information maximum likelihood (also 
called direct maximum likelihood)—maximizes the joint distribution function of all the 
data, missing and non-missing, in a single step. This method is recommended by many 
experts (e.g., see Allison (2002) and Graham (2008)), who indicate that it yields 
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regression coefficients and standard error estimates that are approximately unbiased. At 
the same time, full information maximum likelihood is quite difficult to implement as 
Graham notes (p. 6.10) “FIML methods deal with the missing data, do parameter 
estimation, and estimate standard errors all in a single step. This means that the regular, 
complete-cases algorithms must be completely rewritten to handle missing data.” 
However, there are specialized software packages written for structural equations 
modeling (e.g., Mplus, AMOS) that can be used to implement these algorithms. 

Based on this review of the different methods of maximum likelihood estimation that are 
available in the literature, multiple imputation using the EM algorithm is in our opinion 
the method most useful to test in the simulation analysis discussed in Chapter 4. It is the 
one variant that (a) can be implemented with all types of missing data (not just 
hierarchical missing data), (b) gives correct standard errors for impact estimates, (c) 
allows estimation of the two-level random intercepts impact model frequently used in 
educational RCTs, and (d) does not require specialized computer software or expertise. 

Dummy Variable Adjustment for Missing Covariates 
A simple alternative to the imputation of missing covariates is a method commonly called 
“dummy variable adjustment” that involves three related steps: 

1.	  Create a new variable Z  −  Z is set equal to X for all cases where X is non-missing 
and set to a constant value, C, for those cases where X is missing. C is often set to 0 
or the mean of X, but it does not matter which value is used. 

2. 	 Create a new variable D  –  This dichotomous variable is set equal to one for those 
cases where X is missing, and set equal to zero for those cases when X is not missing. 

3.	  Replace X in the impact analysis model with Z and D – With this new specification 
the impact model will estimate the relationship between Y and X when X is not 
missing, and it will estimate the relationship between Y and D when X is missing. 

For example, if there were 100 observations in a data set, and X is missing for 15 of the 
100 observations, we would: (1) set Z to zero and D to one for the 15 missing 
observations; (2) let Z equal X and set D to zero for the other 85 non-missing 
observations; and, (3) include both Z and D in the model in place of X. 

The academic literature seriously questions this approach for dealing with the general 
case of missing data. For example, Jones (1996) shows that in the general case, this 
approach leads to biased estimates of the coefficients in the regression model, and Allison 
(2002) shows a numeric example that lends support for this argument. It is easy to 
imagine that in general, the dummy variable approach would produce biased estimates of 
the relationship between Y and X controlling for other variables. 

However, although the dummy variable adjustment might not work well in general, we 
believe there are reasons why it may work well in the special case of an RCT. In RCTs 
with complete data, inclusion of the right covariates in a correctly specified impact model 
can help increase the precision of the impact estimates. However, these covariates are not 
necessary to obtain unbiased impact estimates. If the dummy variable adjustment’s main 
drawback is a misspecification of the functional form of the analysis model, this may not 
lead to bias in the impact estimates in an RCT. In fact, Jones (1996) shows that that the 
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dummy variable adjustment will generally produce biased impact estimates, but that the 
impact estimates will be unbiased if assignment to treatment is uncorrelated with the 
covariate that has some missing data. Because random assignment ensures that 
assignment to treatment is, in expectation, uncorrelated with all observed covariates, as 
well as unobservables, it would seem that the general concerns about the dummy variable 
method may not apply in RCTs. 

Of course, in real education studies, the covariates may not always be uncorrelated with 
assignment to treatment. For example, consider an RCT which randomizes schools over 
the summer and collects baseline data in the fall when school resumes. The level of 
cooperation from school staff in obtaining completed consent forms could be higher in 
treatment schools than in control schools. Furthermore, willingness of parents to sign a 
consent form may be associated with whether a school received the intervention or not. 
Therefore, in real education RCTs, the covariates—even the dummy variable itself (in 
evaluations that use the dummy variable adjustment)—could be correlated with 
assignment to treatment. 

Therefore, it is not clear whether one should expect the dummy variable adjustment to 
perform well or poorly in reducing bias in real RCTs in education. In light of how often 
this technique is used, we believe it deserves additional scrutiny and empirical testing to 
determine whether it should or should not be used in RCTs in education. 

Re-weighting Methods 
Another commonly used approach to account for missing data in the outcome variables 
involves re-weighting the observed data. To understand the problem that re-weighting is 
designed to address, consider the example of a follow-up survey of students with a 
response rate of 75 percent. If the probability of responding to the survey—and providing 
data for survey-based outcome variables—were the same for all students, there would be 
no problem other than a reduction in sample size. A 75-percent sample is smaller and 
provides less statistical power than a 100-percent sample, but the loss of 25 percent of the 
initial sample would not necessarily introduce any bias. 

However, it is well known that certain groups are more likely to respond to surveys than 
others and individuals from these groups will be overrepresented among survey 
respondents (Little, 1986; Lessler & Kalsbeek, 1992). Therefore, it is quite possible that 
in our example, the response rate could be higher than 75 percent for some groups and 
lower than 75 percent in other groups. This variation in response patterns can skew the 
sample of individuals for whom there are complete data towards those who are more 
likely to respond to surveys. The same logic applies to student-level administrative data 
from schools.47 

Skewing of the sample is likely to create a problem in most RCTs because it may lead to 
non-response bias in the average outcomes for the treatment and control groups. If the 
bias is the same in both groups for each outcome measure, then the impact estimates will 

47 If follow-up school records data for students are less likely to be available for students who move outside the school 
system, and some types of students are more likely to leave the schools system than others—perhaps for private 
schools, independent charter schools, or public schools in other districts—then the sample of students for which follow-
up student data are available may be skewed toward the types of students who are likely to remain in the district’s 
school system. 
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be unbiased. However, if the missing data mechanism is different for the two groups, the 
bias may be different as well, and this leads to biased impact estimates. 

Re-weighting deals with the problem of non-response bias by assigning larger weights to 
groups that are underrepresented among survey respondents—those with lower than 
average response rates—than to other groups that are overrepresented among survey 
respondents. Put differently, we can “weight down” respondents from groups with high 
response rates and “weight up” respondents from groups with low response rates. This 
approach can ensure that the weighted distribution of survey respondents matches the 
distribution for the complete population of interest for any observed variable, including 
those that may be systematically related to whether or not the sample member completes 
the follow-up survey. 

It is easy to see how re-weighting works in settings where we only have one group— 
maybe program participants—and we want to measure an average outcome for this 
group. For example, suppose our sample is split evenly between boys and girls, but girls 
are less likely to take a math achievement test than boys—say 1/3rd of girls and 2/3rds of 
boys take the test. In this scenario, the sample with available test data is skewed toward 
boys: while the ratio of boys to girls in the overall sample is 1:1, the ratio among the 
students with data is 2:1. If girls score higher than boys on the test, the skewing of the 
sample toward boys will depress the average post-test score and understate the average 
test score for the sample as a whole; if boys score higher than girls on the test, the 
skewing of the sample toward boys will have the opposite effect. 

To address this problem, we could simply re-weight students by the inverse of the 
response rate for the group to which the student belongs. Girls would receive a weight of 
(1/3)-1 or 3, and boys would receive a weight of (2/3)-1 or 1.5. Because every girl with 
outcome data receives twice the weight of every boy with outcome data, the weighted 
sample of test data is no longer skewed toward boys. This approach extends naturally to 
RCTs with two or more experimental groups—such as one treatment group and one 
control group—but the response rates should be calculated and weights computed 
separately for each group. 

Re-weighting can eliminate non-response bias if the characteristics used to stratify the 
sample fully explain the variability in response rates across the sample. In our example 
above, constructing separate weights for boys and girls would entirely remove the bias in 
mean outcomes if there is no variability in the response probability within group (e.g., all 
boys have the same response probability and all girls have the same response 
probability). 

In constructing weights, a common approach is to use the available covariates to 
construct “weighting classes”, which is similar to post-stratification (Lohr, 1999, p. 268). 
For example, if the researchers had reason to believe that the probability of responding to 
the survey varied by race and sex, sex-by-race weighting classes could be constructed, 
and respondents could be weighted by the inverse of the response rate within their class. 
This approach will produce unbiased impact estimates of the regression parameters if the 
missing data are MAR (Lohr, 1999, p. 265). More precisely, this approach yields 
unbiased parameter estimates under the following condition: “Respondents in weighting 
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class j are a random sample of the sampled units (that is, the data are MCAR within 
adjustment class j)” (Little & Rubin, 2002, p. 47). 

If some of the factors that influence both the probability of responding to the survey and 
the outcome of interest are not captured by the weighting classes, we would not expect 
re-weighting to yield unbiased regression coefficient estimates. However, as long as the 
weighting class variables capture some of these key factors, we would expect re-
weighting to reduce the non-response bias in the parameter estimates, including the 
impact estimate in RCTs. 

In constructing weights, researchers are often concerned about the tradeoff between bias 
and variance (Cox, 1991). As the number of key factors included in creating weighting 
classes increases, the amount of non-response bias that remains will generally decrease. 
However, this also increases the number of weighting classes, decreases the sample size 
in each weighting class, and increases the sampling error or “noise” in the estimated 
response probabilities. Random noise in the estimated response probabilities will produce 
additional variability in the weights and increase the standard error of the estimate. 
Therefore, adding additional weighting classes can reduce bias, but it can also reduce the 
precision of the impact estimates. 

These concerns sometimes lead researchers to conduct tests to determine which of the 
variables to include in post-stratifying the sample—either directly, as covariates in a 
propensity score method, or via some other approach—and constructing weights.48 A 
common approach is to run a regression of whether or not the sample member responded 
to the survey as a function of a broad set of variables that may—or may not—help to 
explain survey response. The process that statisticians use to select variables may vary, 
but the use of a p-value based criterion is common. The final model identifies the 
observed characteristics that the model suggests are important predictors of survey non-
response. These characteristics can then be used to post-stratify the sample for computing 
response rates and constructing weights. 

Unfortunately, the literature as a whole provides little guidance on how to balance bias 
and variance. In our view, if the increase in variance from including relatively 
unimportant variables is small, and the risks from excluding potentially important 
variables are large, it might make sense to exclude only variables with very high p-values 
(e.,g. >0.50). 

“Propensity score matching” provides a particularly sophisticated method for accounting 
for respondent and nonrespondent differences on all measured characteristics at once by 
using all available background variables to predict the probability of a particular person’s 
outcome observation being observed. Cases with observed Y values in the same predicted 
propensity score range as cases with missing Ys are then re-weighted upward to represent 
the missing cases as well.49 Because the predictive model uses all available background 
variables to compute the predicted “propensity scores,” Rosenbaum & Rubin (1984) 
prove that stratification on the resulting scores does as much to reduce non-response bias 

48 See, for example, Battaglia, et al. (2008). 
49 An alternative approach to using propensity scores for ranges is to form an analysis weight for each observation 
equal to its inverse propensity score. Baker, et al. (2006) discuss both procedures, and in particular the advantages of 
the range-based weighting approach over individualized weights. 
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as would full stratification on the cross-tab of all the individual background variables.50 

Note that in both approaches one must estimate the probability-of-missingness equation 
separately in the treatment and control groups to ensure that the procedure addresses the 
possibility of different missing data patterns in the two samples. This method does not 
addresses selection on unobservables, obviously, nor does it differ fundamentally from 
other stratified reweighting methodologies for dealing with missing outcome data except 
through its efficient inclusion of information on all potential stratifiers. 

One advantage of the weighting approach is that for users accustomed to conducting 
analysis with survey weights, also accounting for non-response may be an easy extension 
of the use of sampling weights. Furthermore, while this is not entirely clear, it may be 
true that the same procedures used to obtain correct standard errors when survey data 
need weights to offset differential initial sample-inclusion probabilities51 still provide 
correct standard errors when the weights have been adjusted as well for non-response.52 

Finally, if the missing data problem is largely one of “unit nonresponse,” such as missing 
all survey variables for students who did not complete the survey, instead of “item 
nonresponse,” which can generate a scattershot pattern of missing data across different 
variables, we need to construct only one weight variable per data collection instrument 
(e.g., survey or school records collection) to address the missing data problem. 

On the downside, weights are a cumbersome and little used approach to addressing item 
nonresponse because it would require constructing a separate weight for each variable 
with missing data. In contrast, multiple imputation can be used to directly address both 
unit and item nonresponse. In addition, while more analysts have used re-weighting 
methods than multiple imputation methods, in our view re-weighting requires as many 
steps and as much researcher judgment as multiple imputation. Finally, some experts 
have argued that multiple imputation yields more precise estimates than re-weighting 
(e.g., Schafer & Graham, 2002). 

50 While it is often argued that one must correctly specify the propensity-to-be-missing equation for this to be true, 
Baker, et al. (2006) explain that by using the propensity score to stratify before re-weighting (as opposed to giving each 
individual observation distinct weight equal to the inverse of its own propensity score) this need is eliminated.  In 
particular, they note that “Although the preliminary phase of computing the propensity-to-be-missing score requires the 
appropriate covariates for modeling the missing-data mechanism, the exact function form is not critical. . . . The reason 
is that within each [stratum] the probability of missing the outcome is similar for all subjects regardless of the 
[specification of the propensity score] model.” In other words, the computed propensity scores for individual 
observations do not need to be exact—and hence that equation does not need to assume the correct functional form— 
for the great majority of observations to be classified into the correct stratum. 
51 In an RCT with unequal sampling probabilities or assignment rates, the weight should be constructed to equal the 
inverse of the product of the random assignment and response probabilities. 
52 The difference in the case of weighting to offset differential non-response probabilities is that these probabilities are 
only estimated, not known from the sampling and random assignment procedures themselves. The added uncertainty 
from estimating rather than knowing the true probability of non-response for different subpopulations may imply that 
appreciably different (i.e., larger) standard errors are needed than conventional weighted data analysis procedures 
compute. 
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Fully-Specified Regression Models with Treatment/Covariate 
Interactions 

Another way to use pre-randomization covariates to adjust for missing outcome data is to 
interact the covariates in the impact regression with the treatment indicator. Though not 
as familiar in the literature as the other methods discussed in this report, this approach has 
appeared in the applied RCT literature (see Bell & Orr, 1994) and builds on the familiar 
notion of using covariates to adjust for chance differences in treatment versus control 
group outcome levels in impact regressions. Rather than chance differences arising 
during random assignment, in this application we are dealing with differences between 
the treatment and control group outcome data arising through differential non-response in 
the two samples.53 

To illustrate this approach, let’s return to our earlier example: 

Y = β + β Trt + β x + β x + ...β x + ε0 1 2 1 3 2 k +1 k 

where, Y is a student outcome variable, Trt  is an indicator variable for randomization of 
the student or his/her classroom or school into the treatment group (Trt = 1 if treatment 
group, = 0 if control), and x1, x2 ,...xk are a set of up to k covariates measured prior to 
randomization. Adding terms to the model that interact Trt with all of the x’s (covariates) 
yields the following equation: 

Y = β + β Trt + β x + β x + ...β x + β (Trt * x ) + β (Trt * x ) + ...β (Trt * x ) + ε0 1 2 1 3 2 k +1 k k +2 1 k +3 2 k +k +1 k 

Once this equation is estimated using ordinary least-squares regression, each individual 
sample member’s impact, mi, can be approximated by subtracting the predicted outcome 
if the individual were in the control group from the predicted outcome if the individual 
were in the treatment group: 

Trt=1 Ŷ = β̂ + β̂ *1+ β̂ x + β̂ x + ...β̂ x + β̂ (1* x ) + β̂ (1* x ) + ...β̂ (1* x )i 0 1 2 1i 3 2i k +1 ki k +2 1i k +3 2i k +k +1 ki 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆTrt=0 Y = β + β * 0 + β x + β x + ...β x + β (0 * x ) + β (0 * x ) + ...β (0 * x )i 0 1 2 1i 3 2i k +1 ki k+2 1i k +3 2i k +k +1 ki 

ˆ *1 ˆ ˆ ˆDifference m = β + β (1* x ) + β (1* x ) + ...β (1* x )i 1 k +2 1i k +3 2i k +k +1 ki 

53 If this were the only difficulty—that cases with non-missing outcome values differ between the treatment and control 
groups in measured background characteristics—inclusion of those characteristics as covariates in the impact model 
would be enough to offset the problem assuming the functional form relating x’s to Y is correct and the magnitude of 
impact does not vary with the x’s, without interacting the covariates with the treatment indicator variable. However, we 
expect that even with differential non-response removed from the data in this way, a base level of non-response 
common to both the treatment and control groups would remain and could bias impact estimates not because of 
treatment/control mismatches among cases with observed outcomes but because neither of these samples represents the 
full population of interest: all units randomly assigned. Thus, while including covariates without interactions can 
achieve internal validity for measuring impacts on respondents it cannot create the desired external validity in 
representing the full population of interest. The use of interaction terms described here makes this further adjustment by 
modeling how impact magnitude varies with background factors and then extrapolating to the background 
characteristics of the entire experimental sample, including cases whose outcome data are universally missing from 
both the treatment and control group respondent samples. 
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The mean impact for all members of the treatment group, m , is just the average of the mi 
calculated for all treatment group members for whom all of the x’s (covariates) are fully 
observed (and hence mi can be calculated).54  The statistical precision of this estimate can 
be increased by first calculating, and then averaging, mi for all members of the dataset for 
whom all of the x’s are observed, including members of the control group, since by 
random assignment these individuals represent the same population as treatment group 
cases as concerns the x variables and provide a major boost to the size of the sample 
across which m is averaged. Thus, 

m  = average(mi ) = 
average[β̂ *1+ β̂ (1* x ) + β̂ (1* x ) + ...β̂ (1* x )]1 k +2 1i k +3 2i k +k +1 ki 

= β̂ + average[ β̂ (1* x ) + β̂ (1* x ) + ...β̂ (1* x )]1 k +2 1i k+3 2i k +k +1 ki 

= β̂ + β̂ *average( x ) + β̂ *average( x ) + ...β̂ *average( x )1 k +2 1i k +3 2i k +k +1 ki 

ˆ ˆ ˆ ˆ= β + β x + β x + ...β x1 k +2 1 k +3 2 k +k+1 k 

where x1, x2 ,...xk are the average of the covariates across all cases, treatment and control, 
where the x variables are observed (regardless of whether the outcome Y is observed). 

This improved impact measure, m = β̂ + β̂ x + β̂ x + ...β̂ x , differs from the1 k+2 1 k +3 2 k +k+1 k 

original estimate of impact, β̂1 , the coefficient on Trt, to the extent that the magnitude of 
impact is sensitive to individual sample member characteristics—i.e., to the extent that 
the coefficients of the interaction terms (Trt * x1 ), (Trt * x2 ),...(Trt * xk ) differ from 0. It is 
in this sense that the methodology offsets the fact that the sample for which 

Y = β + β Trt + β x + β x + ...β x + β (Trt * x ) + β (Trt * x ) + ...β (Trt * x ) + ε0 1 2 1 3 2 k +1 k k+2 1 k +3 2 k +k +1 k 

can be estimated may not match in its background characteristics the full sample for 
which x’s are observed. Regression without the interactions, calculates the treatment 
estimate ( β̂1 ) as the reflection of treatment-control outcome differences in the restricted 
sample where Y is available. The new specification extends this estimate by projecting it 
to treatment-control outcome differences for all sample members where all x’s are 
observed, including those for whom y is not available. 

Of course, the projection is only an approximation, and only as good as the assumptions 
that underlie it. The impact estimate produced is unbiased if (i) the background X 
variables included in the model encompass all the predictors of non-response, (ii) the 
relationship of the included background characteristics to untreated outcomes in the 
control group is linear, and (iii) the relationship of the included background 
characteristics to the magnitude of impact is linear. Moreover, the latter two 
relationships need to be the same—i.e., to have the same sets of coefficients—in the 

54 This limits the technique to the subset of the population for which the covariates in X are observed, a property 
common to all missing data procedures that use background variables to adjust impact estimates for potential non-
randomness of outcome variable missingness conditional on the x’s, such as re-weighting or stratified imputation. This 
limitation applies unless missing x variables are imputed using procedures discussed earlier, in which case the current 
procedure—like all others that use imputed Xs—encompasses the full sample but is somewhat sensitive to the 
reliability of the covariate imputation method used. 
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sample on which the model is estimated (cases with non-missing Y) as in the sample as a 
whole, to which the projection attempts to generalize. 

A more sophisticated version of the methodology that allows for non-linear relationships 
between background characteristics and impact magnitudes includes higher-order 
interaction terms, such as in the following specification 

Y = β + β Trt + β x + β x + ...β x +0 1 2 1 3 2 k +1 k 

β (Trt * x ) + β (Trt * x ) + ...β (Trt * x ) +k +2 1 k +3 2 k +k +1 k 
2 2 2β (Trt * x ) + β (Trt * x ) + ...β (Trt * x ) +εk +k +2 1 k +k +3 2 k +k +k +1 k 

The implied “response function” in this equation—the expression conveying the 
magnitude of the intervention’s impact for a student having a particular background 
profile of x’s— is a quadratic rather than simply a linear function of the x’s, and hence 
much more capable of picking up that part of the intervention’s effect that becomes 
progressively more sensitive to the x’s or less sensitive to the x’s as the x’s move further 
from it their means. Of course, this way of expanding the model’s flexibility uses up 
more degrees of freedom than the simple linear response function. 

For any version of the model, one can simplify computation of both the impact estimate 
and its standard error by differencing the covariates from their observed means in the 
sample before estimating the equation. In the linear interaction case 

Y = β + β Trt + β x + β x + ...β x + β (Trt * x ) +0 1 2 1 3 2 k +1 k k +2 1 

β (Trt * x ) + ...β (Trt * x ) +ε [Eq.1]k +3 2 k +k +1 k 

can be restated and fit to the data in the form 
Y = α0 +α1Trt + β2 (x1i − x1) + β3(x2i − x2 ) + ...βk +1(xki − xk ) + 

βk +2 (Trt * (x1i − x1)) + βk +3(Trt * (x2i − x2 )) + ...βk +k +1(Trt * (xki − xk )) + ε [Eq. 2] 

where α0  in Eq. 2 is equivalent to β0 + β2 x1 + β3 x2 + ... + βk +1 xk from Eq. 1, and α1 is 
equivalent to β + β x + β x + ... + β x . If, for example, n=1,000 students were1 k +2 1 k+3 2 k +k +1 k 

randomized to treatment or control, and the pre-treatment covariate values on the x’s 
were known for all 1,000 students, but post treatment outcome measurements (Y) were 
obtained for only 800 students, the model above would be fit to the n=800 observations 
with observed Y’s. But the values of x1, x2 ,...xk for those 800 observations would be 
calculated from all n=1,000 students. 

With this model, the coefficient α̂1 is the estimated treatment effect when all covariate 
x’s are at their mean values. This coefficient is identical to m , described earlier. Thus, 
the desired impact estimate, m , and its standard error are easily obtained from this 
specification, already adjusted for differences in background characteristics between the 
students whose Y outcome measures are observed and those for whom they are not. The 
standard error is unbiased if observations are independent and homoskedastic (i.e., have 
equal variance)—the usual assumptions in ordinary least-squares regression.  If the data 
are known to have a different error structure, a different estimation method will be 
needed for the standard error (but not for the impact estimate) 
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B. Methods to Address Missing Data that are NMAR 
Missingness in the outcome variable, Y, may be associated not just with which students 
are in subpopulations traced by the background X variables, but also with the true values 
of Y itself within any subpopulation defined by measured pre-random assignment 
characteristics of the sample. The potential for biased impact estimates arises in this 
NMAR situation under all of the methodologies discussed up to this point. 
Consequently, this section examines three additional methods found in the missing data 
literature: selection modeling, pattern-mixture models, and the use of bounds and 
sensitivity analysis. The first two of these methods are ways of modeling the pattern of 
missingness in the data, and are not impact estimation techniques in their own right; 
consequently, they are often used with maximum likelihood methods to estimate 
treatment effects. The third method discussed here, sensitivity analysis, can be used to 
indicate how far the true impact may lie above or below measured impacts. 

Selection Modeling 
The simplest approach to addressing missing data is to drop the cases with missing values 
(i.e., case deletion); as indicated earlier, whether this approach introduces bias depends 
on the missing data mechanism. Selection modeling attempts to model the mechanism by 
which outcome values become missing for some observations but not others. Correct 
specification of the selection mechanism behind missingness removes the threat of biased 
impact estimates. Just as correct model specification can remove selection bias in quasi-
experimental studies, correct modeling of the missing data mechanism can remove 
sample selection bias due to missing data in RCTs. 

However, specifying the missing data mechanism correctly is at best difficult; “Given a 
model for the data…there are infinitely many different non-ignorable missing data 
mechanisms” (Allison 2002, p. 77). Therefore, because there are always multiple 
missing data mechanisms that are consistent with the observed data, it is impossible to 
determine whether the missing data model specified by the researcher is correct or 
incorrect.55 

The best-known version of selection modeling is the selection correction model of James 
Heckman (1976). This model assumes that missingness of the outcome variable Y is 
triggered by a non-observed “latent” variable related to Y, which we can call L. When L 
exceeds a particular threshold value, h, Y is not observed. For example, if L were a 
measure of parent protectiveness, parents may refuse to give consent for interviewing 
their child if L > h. If L is also correlated with the outcome Y, we have a non-ignorable 
missing data problem. 

In the Heckman procedure, the probability of missing Y data is assumed to follow a 
probit model, as it would if Y and L are jointly normally distributed. The likelihood 
function for missing cases follows from this assumption, and the joint likelihood of 
missing plus non-missing cases can be maximized using standard numerical methods (see 
Allison, 2002, p. 80). 

55 Some models can be ruled out through inspection of missing data patterns or by bounding the logical extremes of 
true impact compatible with the portion of the data that is observed. 
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However, this approach will produce biased results if any of the key assumptions behind 
the method do not hold. For example, if the selection process cannot be represented 
simply as “the data are observed if L <=0 and missing if L > 0,” or if L and Y are not 
normally distributed, then Heckman’s approach will yield biased impact estimates. 
Unfortunately, the approach is highly sensitive to the normality assumption (Little & 
Rubin, 2002; Stolzenberg & Relles, 1990, 1997; Allison, 2002). One version of the 
approach, known as the two-step estimator, is less sensitive to the normality assumption. 
However, it requires one additional assumption, known as an “exclusion restriction:” 
there must be one or more variables that influence the missing data rate that do not affect 
the value of the outcome, Y. This assumption is often problematic since in practice 
almost any reason one can think of for outcome data to be missing in educational RCTs is 
plausibly related to student achievement—the key outcome measure—and thus belongs 
as a covariate in the impact model. Other strategies for relaxing the normality assumption 
using semi-parametric methods have not fully removed this concern.56 

Pattern-Mixture Models 
An extension of maximum likelihood (ML) estimation─called pattern-mixture 
modeling─is often suggested to deal with NMAR cases where missingness of outcome 
data is not at random even conditional on background variables. 

Pattern-mixture modeling postulates that every distinctive pattern of missing data on the 
Y, Trt, and X variables in a dataset represents a different subpopulation of the population. 
Each such subpopulation, S, is given its own joint p.d.f., fS (Y, Trt, X), which is attached 
to the observations that exhibit that pattern. All the relationships among student 
outcomes, treatment assignment, and student/classroom/school/community background 
variables—that is, all the unknown parameters of fS (Y, Trt, X)—are then allowed to take 
a different form for every different subpopulation/missing data pattern. To estimate the 
impact of an intervention, the key parameters appear in the first term of the usual 
decomposition of fS (Y, Trt, X), 

fS (Y, Trt, X) = fS (Y│Trt, X) fS (Trt, X) , 

since it is the conditional distribution of Y given Trt and X that provides information on 
the influence of the treatment assignment variable, Trt, on outcome Y. 

Unfortunately, recognizing in this way that cases with missing data may differ 
systematically from other cases in terms of relationships among the variables rules out 
estimating many of the key parameters of interest without further assumptions (see 
Allison (2002), p. 82). In particular, it precludes estimation of the parameters of the 
overall conditional distribution of Y given Trt and X defined by the product of all of the 
separate fS (Y│Trt, X) distributions. Many of these subpopulation-specific distributions 
cannot be estimated by ML methods, especially the ones that are defined by missingness 
on one or more of the three variables are not estimatable by ML methods. 

For example, ML estimation will do a good job of estimating the parameters of fS (Trt, X) 
for the subpopulation of students defined by complete data on Trt and X but missing data 
on Y, and make those parameters sensitive to what is different about those students— 

56 See for example Chamberlain (1986), Ahn, et al. (1993), Powell (1994), and Das, et al. (2003). 
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including differences on unobservable characteristics that condition relationships between 
Trt and the various variables in X (as well as among the individual X variables).  But it 
can provide no information at all about the parameters of fS (Y│Trt, X), which 
characterize the relationships between the Trt or X variables and Y. This is because Y is 
never seen for any members of this subpopulation.  Thus, pattern mixture models replace 
the assumption of missingness at random conditional on observables with the more 
realistic assumption of non-random missing outcome data but only by introducing a set of 
non-estimatible parameters critical to obtaining the desired impact estimate once the 
“mixtures” in the pattern are put back together. (The literature calls these “non-
identified” parameters.) 

Allison (2002) provides a very simple yet highly illuminating example of the inherent 
problem. As he states, “To make any headway toward estimation, we must impose some 
restrictions on the [different] sets of parameters [for the different subpopulations]” (p. 82; 
emphasis added). He then imposes what Little (1993, 1994) calls “complete case 
missing-variable restrictions” as one way out of the quandary of non-identified 
parameters. Under this strategy, for the subpopulation defined by one variable but not all 
variables being missing, “the conditional distribution of the missing variable given the 
observed variable is equated to the corresponding [conditional] distribution for the 
complete-case pattern”, by which he means the subpopulation for which there are no 
missing variables (p. 83). In other words, Little proposes to estimate the distributional 
parameters needed to calculate the intervention’s impact for the subpopulation with 
complete data and then assume the same parameter values apply to other subpopulations 
that must play a part in producing one’s overall impact finding but where nothing about 
those relationships can be observed. Transparently, this requires the assumption that 
missing data cases have no systematic differences from complete-data cases—i.e., that 
missing data are completely at random given the X and Trt variables. 

Bounds and Sensitivity Tests 
In our view, none of the methods described above effectively address unobserved 
characteristics that influence both the outcome Y and the probability of having missing 
data on Y. Hence, they are ineffective at addressing the NMAR case and—in the cases of 
selection modeling and pattern mixture modeling—may be misleading in appearing to 
have done so when they do not. Such methods rely on untestable assumptions and can be 
very sensitive in their findings to the particular assumptions made (Allison 2002). In 
most settings, there is no way to know how important unobserved factors are because we 
do not know why data are missing. 

It is, however, vital for analysts to recognize that there are two separate sources of 
uncertainty in estimates of intervention impacts. The first is associated with selecting a 
random sample, where different samples may yield different estimates (i.e., sampling 
error), which is measured by the impact estimate’s standard error. The second source of 
uncertainty is related to whether the data are really MAR or whether unobserved factors 
play a role—and, if so, how great a role. This second source of uncertainty can be large 
and is not reflected in the standard errors used to do statistical significance testing or 
construct confidence intervals. Ignoring it can lead to a false sense of security about the 
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approach selected to “fix” the missing data problem, and too much confidence in the 
resulting intervention impact estimates. 

In our view, a useful addition to impact estimation is the presentation of “bounds” around 
the impact estimates themselves to reflect the underlying uncertainty about the true 
missing data mechanism. This approach, due to Manski and Horowitz,57 identifies the 
range of impact estimates consistent with the data if one is unwilling to make any 
assumptions about the mechanisms by which missing data are generated.  For example, 
consider studies in which student proficiency is the outcome of interest. For studies that 
simply measure average outcomes rather than impacts, the bounding approach would 
measure average achievement under (1) the best-case scenario, assuming that all students 
with missing outcome data on achievement are proficient and (2) the worst-case scenario, 
assuming that none of the students with missing outcome data are proficient. This 
approach is purposely based on the most extreme situations that could occur in each 
direction to ensure that the true value of the parameter being estimated lies between (1) 
and (2).58 

However, RCTs are not designed to measure average outcomes: they measure impacts. 
Consequently, in an RCT designed to measure the effects of, for example, a professional 
development program on student’s math proficiency, we recommend computing: (1) a 
best-case impact estimate—i.e., the largest possible impact estimate consistent with the 
available data—by assuming that all treatment students with missing data are proficient 
and no control students with missing data are proficient; and (2) a worst-case impact 
estimate—i.e., the smallest possible impact estimate consistent with the available data— 
by assuming that no treatment students with missing data are proficient and all control 
students with missing data are proficient.59 

The bounds implied by the best-case scenario and the worst-case scenario can be very 
wide if the rate of missing data is high. For example, suppose that math proficiency is 
missing for 15 percent of students in treatment schools and 20 percent of students in 
control schools. Exhibit 1 shows that in this example, the range between the best-case 
impact estimate and the worst-case impact estimate is 35 percentage points. One can 
similarly construct bounds for continuous outcome measures, such as scale scores or test 
scores of student achievement when these metrics have minimum and maximum values. 

Furthermore, Exhibit 1 shows that case deletion or complete case analysis yields an 
impact estimate of +7.4 percentage points, while the worst-case impact estimate is -10 
percentage points and the best-case estimate +25 percentage points. This illustrates the 
potential for uncertainty to emerge in a bounding analysis, and also points up the 
potential for the true impact to be very far from the estimate produced by the simplest 
missing data methodology, complete case analysis. 

57 See Manski (1990) and Horowitz & Manski (1998, 2000). 
58 More precisely, the width of the bounds reflects the amount of uncertainty due to the fact that the missing data 
mechanism is unknown. In principal, one could construct bounds that account both for sampling error and the 
uncertainty about the missing data mechanism. However, we have never seen this done in practice. 
59 More precisely, the “best-case impact estimate” and “worst-case impact estimate” provide the upper and lower 
bounds for true impact, if there were no sampling error. 
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Unfortunately, without additional information, there is no way to produce narrower 
bounds on the intervention’s true impact. One can produce a point estimate of the 
treatment effect by making some standard assumption (e.g., that the data are Missing at 
Random). However, these types of assumptions are inherently untestable.  Therefore, it 
is hard to be confident that any point estimate resulting from an untestable assumption is 
a better estimate of the treatment effect that any other point within the logical bounds. 

Of course, impact estimates that fall outside the logical bounds must be incorrect. If a 
particular methodology produces a point estimate that falls outside of the logical bounds, 
its assumptions must be incorrect. Therefore, one useful feature of logical bounds is that 
they can be used to conduct “specification tests” of methods that make different 
assumptions. 

An intermediate point between these two extremes—logical limits versus “pinpoint” 
assumptions—can help to make the bounding approach more useful by providing fewer 
possible impacts. This involves reducing, but not presuming to have eliminated, missing 
data uncertainty through further assumptions. One instance would assume that a share, s, 
of the missing values in the treatment group are missing completely at random (MCAR) 
or at random conditional on the covariates (MAR) and the remainder all equal “not 
proficient” on the outcome Y, and similarly for a share, r, of the missing values in the 
control group. One of the MAR imputation methods described above could then be used 
to generate unbiased imputed values for the s and r shares and the remaining missing 
cases addressed through Manski-Horowitz logical bounds (i.e., set to the extremes of 
“proficient” and “not proficient” in turn).60  This would not put the lower bound on 
impact as low as the Manski-Horowitz bounds nor the upper bound as high, thereby 
tightening the policy inference drawn from the results. Though this is clearly better than 
assuming that all missing data are MCAR or MAR, this approach still adopts arbitrary 
assumptions for a share of the data. 

60 The authors are indebted to Jeffrey Smith for this suggestion. 
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Exhibit 1: Numeric Example of Bounding Approach to Estimating Impacts on 
Dichotomous Outcomes 

A.  Observed Data 

  Yobs = Actual Math Proficiency 

  0 1 missing 

T = Treatment 0 20 60 20 
 1 15 70 15 
 
A complete case analysis yields an impact estimate of [70 / (70 + 15)] - [60 / (60 + 20)] = 
0.074, or positive 7.4 percentage points. 

 
B.  Best-Case Scenario for the Treatment 

  YB = Math Proficiency Under Best-Case Scenario 

  0 1  

T = Treatment 0 20 + 20 = 40 60  

 1 15 70 + 15 = 85  
 
The best-case scenario yields an impact estimate of [85 / (85 + 15)] - [60 / (60 + 40)] = 
0.25, or +25 percentage points. 
 

C. Worst-Case Scenario for the Treatment  

  YW = Math Proficiency Under Worst-Case Scenario 

  0 1  

T = Treatment 0 20 60 + 20 = 80  
 1 15 + 15 = 30 70  
 

The worst-case scenario yields an impact estimate of [70 / (70 + 30)] - [80 / (80 + 20)] = -
0.10, or -10 percentage points. 

47 




 

                                                 

 

 

Alternatively, one could follow Altonji, et al. (2005) and posit that the observed 
covariates on which one is able to condition are a random subset of the full set of 
potential determinants of non-response (i.e., of the complete set of conditioning variables 
one would need to use to generate unbiased impact estimates).61 This again seems 
arbitrary to us and not to be recommended. 

Another approach introduced by DiNardo, et al. (2006) uses random variation in the 
missing data rate on Y to learn more about non-response bias. For example, using data 
from the Moving to Opportunities experiment,62 wherein a subset of initial follow-up 
survey non-respondents were randomly selected and subjected to more intense data 
collection efforts, resulting in lower end-stage missing data rates on Y for those cases. 
By applying selection models, DiNardo and colleagues were able to use outcome 
information for members of the “swing group” whose Y values were observed only 
because of the enhanced data collection effort to extrapolate to all non-respondents and 
obtain a measure of impact on the entire treatment group. Unfortunately, as the authors 
acknowledge, this extrapolation works only when one makes assumptions about joint 
normality and/or “exclusion restrictions” similar—if less strong than—those required of 
selection modeling to deal with missing data absent variation in response rates induced 
by randomized follow-up. 

DiNardo, et al. (2006) provides a more promising approach by extending the Manski-
Horowitz bounding framework an added step. Here, the authors assume that assignment 
to treatment can only affect survey non-response in a single direction—either make the 
observation of Y more likely for all study participants or make it less likely for all 
participants. If this is the case, a potentially narrower set of bounds can be calculated for 
the impact of the intervention on the subset of individuals who will respond whether in 
the treatment group or the control group (the “complier” subpopulation). While this may 
be a useful range to report (along with the straight Manski-Horowitz bounds), it should 
be accompanied by the share of the entire study population of interest to which the range 
applies (a figure that equals the lower of the two response rates in the treatment and 
control groups). In addition, it would be prudent to hypothetically explore how treatment 
might increase or decrease response rates for some types of individuals, which would 
constitute a violation of the key assumption of the method. 

Finally, it may be possible for education researchers to develop “consensus bounds”— 
bounds that rule out estimates that are logically possible, but which a consensus among 
content experts says cannot occur. What are needed here are bounds tighter than the 
logical bounds that reflect the range of impact estimates that the RCT could “reasonably” 
have generated. For example, suppose the study were using a vertically scaled test, and 
the outcome were a measure of test score gains. There may be a consensus that the 
lowest plausible value of the test score gain for students with missing post-tests is zero— 
that is, that negative gains are simply not plausible (and perhaps never observed in the 

61 Additional assumptions in the approach are that there are a great many such conditioning factors that contribute to 
the probability of non-response for specific observations, and that none of them dominates the non-response generating 
process as a whole. 
62 DiNardo, J, J. McCrary, & L. Sanbonmatsu (2006). 
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complete data). Effectively, this is equivalent to assuming that their follow-up test score 
is no lower than their pretest score. Where consensus can be built from widely credited 
information from outside the evaluation, it may be all the more convincing. 

In the end, however, a wide range between the best- and worst-case impact estimates 
under the Manski-Horowitz bounding approach tells us that we cannot be totally 
confident about anything we say about the magnitude or even the direction of true 
impact. This is true unless we are confident that the data are missing completely at 
random or—if we adjust for observable background characteristics—missing at 
random—or at least close to it. We believe this is the right place to end up when 
providing guidance to policy makers and education practitioners who seek evidence, not 
speculation or assumptions or assertion, as the basis for their policy decisions. Logical 
bounds provide decision-makers with all of the hard evidence that is available from an 
RCT with missing outcome data; there is no way around this truism. 

When complemented by consensus bounds and a point estimate that reflects the author’s 
best attempt to address the bias that can result from missing data, the presentation of 
logical bounds seems to us the most honest and appropriate way to convey what one has 
learned from a given social experiment. Furthermore, the discipline of not stating 
findings derived through untestable, potentially strong assumptions when RCT data are 
missing communicates in the strongest possible terms the need for more complete data 
collection in future RCTs through wise study design and investments in high response 
rates, especially for outcome data and key covariates. 
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4. Testing the Performance of Selected Missing Data 
Methods 

To provide further guidance to education researchers regarding what to do about missing 
data in an RCT, we conducted simulations to test the performance of selected missing 
data analysis methods described in Chapter 3.  The simulations were run under conditions 
that varied on three dimensions: (1) the amount of missing data assumed, relatively low 
(5% missing) vs. relatively high (40% missing); (2) the level at which data are 
missing─at the level of schools (the assumed unit of randomization) and for students 
missing within schools; and, (3) the previously discussed underlying missing data 
mechanisms—i.e., MCAR, MAR, and NMAR. The benefit of conducting such 
simulations is that we know the true impact of our hypothetical intervention, and this 
allows us to compare the magnitude and precision of the estimated impacts produced by 
the different missing data methods under these varying conditions. This chapter begins 
with a description of the simulation methodology (greater details can be found in 
Appendices C and E), and then summarizes the simulation results (complete results are 
provided in Appendix D). 

A. Simulation Methods 
The simulations involved four steps: (1) developing parameters to define a hypothetical, 
but typical, educational RCT; (2) creating simulated data for the hypothetical RCT; (3) 
specifying different missing data mechanisms and test conditions; and, (4) implementing 
the selected missing data methods for both missing covariates and outcome measures. 
Each step is described below, followed by a summary of the results. 

A Hypothetical Education RCT 
To test the different missing data methods, we created a hypothetical, yet common, 
education RCT intended to measure the impacts of a particular intervention on student 
achievement in which schools are randomly assigned to two equal-size groups: (1) a 
treatment group, which receive some unspecified classroom or school-level intervention, 
or (2) a control group, which does not receive the intervention. Key features of this 
fictional RCT design include the following: 

� a sample of 60 schools with 30 schools assigned to treatment and 30 schools assigned 
to control (i.e., the probability of assignment to treatment is 50 percent); 

� 60 students in each school, for a total sample of 3,600 students; 

� baseline data are available for students on gender, an unspecified risk status variable 
(e.g., high income versus low income), and pretest achievement data in a single 
subject area (either reading or mathematics); and, 

� follow-up outcome data on achievement in the same subject area as the pretest. 

For estimating the average impacts of the treatment on student achievement, we assumed 
a linear model of the post-test score on the treatment indicator and a set of control 
variables. All of the models included controls for gender and risk status, but we varied 
the analysis by including the pretest score in some models and not in others. The decision 
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to collect pretest scores is an important design consideration in any evaluation, and the 
conventional wisdom suggests that the primary reason to collect pretest scores is to 
increase the precision of the impact estimates (e.g., Schochet, 2005). However, because 
the missing data mechanism may sometimes depend on the value of the pretest, and the 
pretest is such an important predictor of post-test scores, there is good reason to believe 
that controlling for pretest scores in the analysis may reduce bias from missing data.  
Therefore, in the simulations where some of the post-test scores are missing, we tested 
this hypothesis by estimating the analysis model with and without controlling for pretest 
scores. 

To account for the nested structure of the data, we estimated standard, two-level 
hierarchical models of student achievement. The student-level model (Level 1) includes 
fixed effects for gender, risk status, and, in some simulations, the students’ pretest score.  
The school-level model (Level 2) includes fixed effects for treatment assignment and 
random effects for individual schools (rj in the equation below). More specifically, the 
following models were used in the simulations: 

Level 1 Model (Students): 

Yij 	 = β 0 j + β1 (SEX ij )+ β 2 (RISK ij )+ β 3 (PRETEST ij )+ eij  

Level 2 Model (Schools): 

β0 j	 = γ 0 + γ 1 (Trt j ) + rj  

The parameter γ 1  indicates the intention-to-treat (ITT) average effect of the intervention 
on student achievement. 

Creating Simulated Data 
To implement the simulations we needed to create a data set that would be generated 
from our hypothetical study. This was done using the following parameters that are, of 
course, never known in an actual RCT: 

� The size of the treatment effect. We assumed that the treatment has an average 
effect size of 0.20, or 20 percent of a standard deviation of the outcome for control 
group students. However, we also wanted the treatment effect to vary across students 
reflecting the goal of many education interventions to reduce achievement gaps. 
Therefore, the simulated data has an overall average positive treatment effect of 0.20, 
but the effect ranges from approximately zero for initially high achieving students 
(those with relatively higher pretest scores) to approximately 0.40 for initially low 
achieving students (those with relatively lower pretest scores). 

� The distribution of the control variables. We constructed our two demographic 
control variables, gender and the unspecified risk factor, to be uncorrelated with each 
other. In addition, we assumed that both of these variables were correlated with the 
pretest measure. In particular, we set the parameters of the data generating process to 
ensure that: 

o 	 Average pretest scores are 0.20 standard deviations higher for girls 
than for boys.  For example, in the 2007 California Standards Test for 
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English/Language Arts, the average score for girls in the 3rd grade was 
0.19 standard deviations higher than the average score for boys.63 In 
addition, the National Assessment of Educational Progress shows a 
similarly sized gap between boys and girls at the national level.64   

o 	 Average pretest scores are 0.80 standard deviations higher for low-
risk students than for high-risk students. For example, in the 2007 
California Standards Test for English/Language Arts, the average score for 
3rd grade students eligible for free or reduced-price lunches was 0.79 
standard deviations lower than the average score for other 3rd grade 
students.65    

� The relationship between control variables and the outcome variable. We 
assumed that absent the intervention, the correlation between pretest and post-test 
scores was 0.50. In addition, we assumed that on average the pretest to post-test gain 
for girls was 0.02 standard deviation units more than boys, and that low-risk students 
gained 0.05 standard deviation units more than high-risk students. 

� The inter-class correlation. In most education settings, students tend to be more 
similar to other students in the same school than to students in other schools. As a 
result, some of the variability in student achievement across students can be explained 
by variability across schools. For our simulations, we assumed an inter-class 
correlation (ICC) of 0.10 in pretest scores, which means that 10 percent of the 
variation in achievement across students can be explained by variation in mean 
pretest scores across schools. 

Missing Data Mechanisms and Test Conditions 
To test the selected methods, we took the simulated data and randomly made some of the 
data missing. In a real evaluation, we face missing data problems where the mechanism 
behind the missing data is unknown─only the amount of missing data and the association 
between missingness and the observed variables are revealed in the data. However, in our 
simulations, we varied several aspects of missing data so that we could compare the 
relative performance of the different methods under controlled conditions: 

� What data are missing?  In RCTs in education, the two key variables are the pretest 
and the post-test measures of achievement, and missing values in either of these 
variables may be especially problematic. Consequently, we conducted two sets of 
simulations—one in which the pretest score is missing for some fraction of the 
sample, and one in which the post-test score is missing for some fraction of the 

63 Average test scores for boys (324.4) and girls (335.7) can be found at the California Department of Education 
website (http://star.cde.ca.gov/star2007/Viewreport.asp). The pooled standard deviation in test scores for boys and 
girls (59) is provided in technical documentation (http://www.cde.ca.gov/ta/tg/sr/documents/csttechrpt07.pdf). 
64 Average test scores for boys (216) and girls (223) can be found using the NAEP Data Explorer 
(http://star.cde.ca.gov/star2007/Viewreport.asp). The pooled standard deviation in test scores for boys and girls (36) is 
also provided by the NAEP Data Explorer in technical documentation. 
65 Average test scores for students eligible for free or reduced price lunches (310.6) and other students (357.3) can be 
found at the California Department of Education website (http://star.cde.ca.gov/star2007/Viewreport.asp). 
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sample. For simplicity, we assumed that we have complete data on all of the other 
analytical variables. 

� How is missing related to treatment assignment? For all of the simulations, we 
assumed that the rate of missing data was higher in the control group than in the 
treatment group (see, for example, Wolf, et al., 2009). This difference can often be 
explained by greater cooperation with data collection by treatment group schools and 
students compared to control schools and students. 

� What is the missing data mechanism?: To test the performance of different missing 
data methods, we simulated data and tested different methods under the following 
three scenarios defined by the mechanism causing missing data: 

o 	 Scenario I: The missing data mechanism is entirely random within the 
treatment group and within the control group. This is the most innocuous 
MCAR scenario. 

o 	 Scenario II: The missing data mechanism depends on treatment status 
and a student’s pretest score. More specifically, in this MAR scenario: (1) 
missingness was set to depend on both treatment and pretest scores; (2) 
missing data is more likely for students with lower pretest scores than for 
students with higher pretest scores, and (3) the relationship between 
missingness and pretest scores differs between the treatment and control 
groups. 

o 	 Scenario III:  The missing data mechanism depends on treatment status 
and a student’s post-test score. More specifically, in this NMAR scenario: 
(1) missingness was set to depend on both treatment and post-test scores; (2) 
missing data is more likely for students with lower post–test scores than for 
students with higher post–test scores; and (3) the relationship between 
missingness and post-test scores differs between the treatment and control 
groups. 

� How much data are missing?: The extent to which missing data can bias the 
estimated treatment effect may also depend on the amount of missing data. That is, if 
relatively few study participants have missing data, it may not matter which method is 
used to address the problem. However, if relatively many participants lack complete 
information, estimated impacts may be sensitive to the choice of analysis methods. 

Consequently, for each of these three scenarios, we simulated missing data at two 
relative extremes of missing data, a low of five percent missing outcome data and a 
high of 40 percent missing outcome data. These thresholds were set to extend beyond 
the experience of recent IES-sponsored RCTs in which missing outcome data has 
ranged from 10 to 20 percent.66  In our experience, few evaluations have missing data 
rates of less than 5 percent for both the key outcome measures and key covariates, 
and few high-quality evaluations in education have missing data rates that are greater 
than 40 percent. 

                                                 
66 See for example: Bernstein, et al., 2009; Campuzano, et al., 2009; Constantine, et al., 2009; Corrin, et al., 2008; 
Gamse, et al., 2009; Garet, et al., 2008; and, Wolf, et al., 2009. 
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In addition, for selected methods under one scenario, Scenario III, we also tested 
missing data rates between 5 percent and 40 percent to see how the performance of 
the methods varied with the missing data rate. 

� At what level are data missing?: We ran a separate set of simulations for all the 
permutations described above but under the assumption that outcome data are missing 
for either 5 percent or 40 percent of schools—instead of for 5 percent or 40 percent of 
students within each school. 

To better understand how we set values to missing, Exhibit 2 shows the missing data 
probabilities used to generate data with an overall missing data rate of 40 percent.  It also 
shows how we set the probabilities higher for the control group than for the treatment 
group, and higher for students with lower achievement, as described earlier in this 
section. 

Missing Data Methods Examined in the Simulations 
For addressing missing data in the pretest variable, which is included as a control 
variable in some of our simulations, we tested the following methods described in 
Chapter 3: 

� Case deletion (i.e., complete case analysis), 

� Dummy variable adjustment, 

� Mean value imputation, 

� Non-stochastic regression imputation (including the post-test in the imputation 
model), 

� Single stochastic regression imputation (including the post-test in the imputation 
model), 

� Multiple stochastic regression imputation (including the post-test in the imputation 
model), and, 

� Maximum likelihood─EM Algorithm with Multiple Imputaions. 

For the dummy variable adjustment, we created a missing data dummy variable that 
equals one for the cases with missing pretest scores and zero otherwise, replaced missing 
pretest scores with zeros, and included the new dummy variable as a control variable in 
the model. For mean value imputation, we computed the mean value of the pretest for 
non-missing cases separately for the treatment group and the control group, and we 
replaced missing pretest scores with the respective group means. 

Our approach to the three regression imputation methods varied depending on whether 
we were missing data on individual students or for entire schools. When data were 
missing on individual students, the imputation model included the student’s gender, risk 
status, and post-test. In addition, we included school dummy variables to ensure that the 
imputed values captured the variability across schools. This model was estimated on non-
missing cases and applied to missing cases to predict pretest scores, and we replaced the 
missing values with the predicted values from the model. 
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Exhibit 2: Missing Data Probabilities Under Three Different Scenarios: The Situation 
in Which the Overall Missing Data Rate = 40% 

Scenario I – Missingness Depends on Treatment Status Only (MCAR) 

Quartile on Pretest Scores Treatment Group Control Group 

1 (highest pretest scores) 35% 45% 

2 35% 45% 

3 35% 45% 

4 (lowest pretest scores) 35% 45% 

Average 35% 45% 

Scenario II - Missingness Depends on Treatment Status and Pretest Scores (MAR) 

Quartile on Pretest Scores Treatment Group Control Group 

1 (highest pretest scores) 30% 30% 

2 35% 40% 

3 35% 50% 

4 (lowest pretest scores) 40% 60% 

Average 35% 45% 

Scenario III - Missingness Depends on Treatment Status and Post-test Scores (NMAR) 

Quartile on Post-test Scores Treatment Group Control Group 

1 (highest post-test scores) 30% 30% 

2 35% 40% 

3 35% 50% 

4 (lowest post-test scores) 40% 60% 

Average 35% 45% 
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For stochastic regression imputation, we added a stochastic, student-level error term to 
the predicted value from the model by selecting randomly (and with replacement) from 
the residuals from the regression on non-missing cases.67 For multiple imputation, we 
implemented stochastic regression imputation five times for each missing value,68  
estimated five different impact estimates—one for each imputation—and combined the 
results using Rubin’s rules (e.g., Rubin, 1987, 1996). 

As noted above, when data on individual students were missing, we included school 
dummy variables in the imputation models to take advantage of the fact that while we did 
not know pretest scores for X percent of students, we did know what schools they came 
from—and could estimate the school-effect from the other students for which pretest data 
were available. However, when pretest scores are missing for entire schools, this 
approach is not feasible. For example, when data are missing for 40 percent of schools, 
the data on the other 60 percent of schools cannot provide any information that is useful 
in estimating the school effects in the missing schools. 

Therefore, when data were set to missing for entire schools, our imputation strategy 
involved calculating school-level means for each variable from the available data, 
imputing mean pretest scores for the schools with missing data, and estimating a one-
level model from the school means to estimate the average treatment effect. Stochastic 
regression imputation from school-level means added school-level residuals to the 
predicted values from the imputation model, to ensure that the imputed values capture the 
between-school variability in outcomes that are present in the true values of the data.  
Furthermore, when schools are randomized instead of students, one can measure the 
treatment effect by estimating a school-level model of the school’s mean outcome on a 
treatment indicator and school-level means of the individual-level covariates. 

The EM algorithm with multiple imputation method was implemented in a manner very 
similar to that described for multiple stochastic regression imputation.69 The difference 
being that in the latter case the imputed values were the predicted values from a 
regression model, and in the EM approach, the EM algorithm was used to obtain imputed 
values. In both approaches we generated five imputed data sets, and in both a random 
residual was added to each predicted value so that the imputed values in each of the five 
data sets would be slightly different from one another. 

For addressing missing data in the post-test variable, we tested the following methods 
described in Chapter 3: 

� Case deletion, 

� Mean value imputation, 

67 Effectively, our imputation strategy treated the schools as fixed, while the analysis model treated the schools as 
random. 
68 The literature suggests that 5-10 imputations are adequate (see Rubin, 1987, 1996 and Little & Rubin, 2002). 
69 Of the different methods of maximum likelihood estimation available, multiple imputation using the EM algorithm 
was judged the most useful to test in the simulation analysis since it (a) can be implemented with all types of missing 
data (not just hierarchical missing data), (b) gives correct standard errors for impact estimates, (c) allows estimation of 
the two-level random intercepts impact model frequently used in educational RCTs, and (d) does not require 
specialized computer software or expertise. See Chapter 3 for more details. 
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� Non-stochastic regression imputation (including the pretest in the imputation model), 

� Single stochastic regression imputation (including the pretest in the imputation 
model), 

� Multiple stochastic regression imputation (including the pretest in the imputation 
model), 

� Simple weighting approach using the inverse of observed response rates, 

� More sophisticated weighting approach that involved modeling non-response to 
create weights, 

� Fully-specified regression models with treatment/covariate interactions, and, 

� Maximum likelihood—EM algorithm with multiple imputation. 

The regression imputation methods, and the maximum likelihood method, were 
implemented in the same way as described above for missing pretests with one exception:  
we included the pretest in the model to impute the post-test. The simple weighting 
approach, designed to ensure that schools with high missing data rates are not 
underrepresented in the analysis, involves weighting each student with non-missing data 
by the inverse of the response rate in the same school.70 The more sophisticated method 
involved the following steps: (1) estimate a logit model of data availability (1=non-
missing post-test and 0=missing post-test) as a function of all of the available covariates, 
(2) divide the sample into quintiles based on the estimated probabilities of non-missing 
data, (3) compute response rates for each quintile, and (4) weight each student in a 
quintile by the inverse of the response rate for that quintile. For the fully-specified 
regression models with treatment/covariate interactions, we included the interaction 
between treatment and the pretest score in the analysis model, and we evaluated the 
impact at the mean of the pretest.71    

B. Simulation Results 
This section begins with a discussion of the standards we used to assess the relative 
performance of the different missing data methods that we tested, and then provides a 
summary of the simulation results (complete results are provided in Appendix D). 

Assessing the Performance of the Different Methods 
To judge the performance of the different missing data methods, we assessed the extent 
to which each approach produced bias in the impact estimate that would be considered 
“high” relative to the benchmark set by the What Works Clearinghouse (WWC). In the 
WWC, RCTs with attrition rates that are likely to yield non-response bias of 0.05 
standard deviations or greater are treated as if they were quasi-experimental studies and 
are required to provide additional evidence suggesting that impact estimates are unbiased 

70 Therefore, if we had post-test scores for 40 of 60 students in a particular school, each of the 40 “respondents” would 
receive a weight of (40/60)-1 or 1.5. 
71 We did not interact the treatment indicator with other covariates.  Because the simulated missing data mechanism is a 
function of the pretest—but unrelated to the other covariates after conditioning on the pretest—there is no reason to 
expect that the estimates would be any different if we had included interactions with all of the covariates in the model.  
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(U.S. Department of Education, 2008). Because the RCTs in education that are currently 
underway may at some point be subject to review by the WWC, we decided to accept the 
0.05 standard deviation threshold for bias in assessing the performance of different 
missing data methods. In each of our simulations, methods that yielded bias in the impact 
estimate of greater than 0.05 standard deviations were deemed to have produced “high 
bias,” while methods that yielded bias of less than 0.05 standard deviations were deemed 
to have produced “low bias.” 

Additionally, some of the methods may also yield biased standard errors which contribute 
to the hypothesis test of whether the impact estimate is statistically significant.72 

Therefore, we decided it was also important to set standards for assessing the magnitude 
of the bias in the estimates of the standard errors.  We classified the bias in a standard 
error estimate as large (“high bias”) if it would generate as much bias in the t-statistic as 
is produced a 0.05 standard deviation bias in the impact estimate itself. In this way, we 
rely entirely on the WWC’s attrition standard to determine whether the bias in the impact 
estimate or standard error should be treated as large (“high bias”) or small (“low bias”). 
For more details on how we calculated the bias thresholds for the standard errors, see 
Appendix E. 

Simulation Results 
Exhibit 3 summarizes the results from the simulations in which data were missing from 
40 percent of students within each school; Exhibit 4 summarizes the results from the 
simulations in which data were missing from 40 percent of schools. Each table presents 
the two key performance measures: (1) bias in the impact estimate, and (2) bias in the 
estimated standard error. The tables include three columns, one for each of the three 
scenarios—Scenario I, in which the data were missing at random within group (treatment 
or control); Scenario II, in which the data were missing at random after conditioning on 
group and pre-intervention characteristics of the students (demographics and pretest 
scores); and Scenario III, in which the missing data depended on the outcome measure— 
student post-test scores—even after conditioning on group and pre-intervention 
characteristics of the students. 

As discussed above, we also conducted simulations in which data were missing for five 
percent of students and schools, but none of the methods produced bias that exceeded the 
thresholds that we selected for these simulations under any of the three scenarios and for 
either missing pretests or post-tests. Therefore, we do not provide summary tables for the 
results from these simulations (the results themselves are provided in Appendix D). 

72 The t-statistic equals the estimated impact divided by the estimated standard error. 
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Exhibit 3: Summary of Simulation Results, Missing Data for 40% of Students 

  Impact Estimate  Standard Error of Impact Est.  Overall 

Pretest Low Bias in Low Bias in All Low Bias for Both 
Data  All Three Three Estimates in All 

Data Available? Scenario I  Scenario II Scenario III  Scenarios? Scenario I Scenario II Scenario III Scenarios? Scenarios? 
No Missing Data No Low Bias Low Bias Low Bias √  Low Bias Low Bias Low Bias  √  √ 
 Yes Low Bias Low Bias Low Bias √  Low Bias Low Bias Low Bias  √  √ 
          
A. Pretest (X) Data Missing           
Case Deletion Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Dummy Variable Method Yes Low Bias Low Bias Low Bias √  Low Bias Low Bias Low Bias  √  √ 
          
Mean Value Imputation Yes Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Single, Non-stochastic RI Yes Low Bias High Bias Low Bias   Low Bias Low Bias Low Bias   √  
          
Single, Stochastic RI Yes Low Bias Low Bias Low Bias √  Low Bias Low Bias Low Bias  √  √ 
          
Multiple, Stochastic RI (n = 5) Yes Low Bias Low Bias Low Bias √  Low Bias Low Bias Low Bias  √  √ 
          
EM Algorithm with MI (n = 5) Yes Low Bias Low Bias Low Bias √  Low Bias Low Bias Low Bias  √  √ 
          
B. Post-Test (Y) Data Missing           
Case Deletion No Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  
 Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Mean Value Imputation No Low Bias High Bias High Bias   High Bias High Bias High Bias     

Low Bias High Bias High Bias   High Bias High Bias High Bias     
          
Single, Non-stochastic No Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  

 

 

 

 

 

 

 

 

 

 

Yes 
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Exhibit 3: Summary of Simulation Results, Missing Data for 40% of Students 

  Impact Estimate  Standard Error of Impact Est.  Overall 

Pretest Low Bias in Low Bias in All Low Bias for Both 
Data  All Three Three Estimates in All 

Data Available? Scenario I  Scenario II Scenario III  Scenarios? Scenario I Scenario II Scenario III Scenarios? Scenarios? 
Regression Imputation Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Single, Stochastic No Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  
Regression Imputation Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Multiple, Stochastic No Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  
Regression Imputation (n = 5) Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
EM Algorithm with Multiple 
Imputation No Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  
(n = 5) Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Weighting - Simple No Low Bias High Bias High Bias   Low Bias Low Bias Low Bias   √  
 Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Weighting - Sophisticated No Not Estimated  Not Estimated   
 Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
          
Fully Specified Regression 
Models No Not Applicable  Not Applicable   
w/ Treatment-Covariate 
Interactions Yes Low Bias Low Bias High Bias   Low Bias Low Bias Low Bias   √  
Notes: 

 For more details on the simulations, see Chapter 4 and Appendix D. 
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Exhibit 4: Summary of Simulation Results, Missing Data for 40% of Schools 

 

Data 

 

Pretest Data 
Available? 

Impact Estimate  

Low Bias in 
 All Three 

Scenarios? 

Standard Error of Impact Est.  

Low Bias in 
 All Three 

Scenarios? 

Overall 

Scenario I Scenario II Scenario III Scenario I  Scenario II Scenario III 

Low Bias for Both 
Estimates in All 

Scenarios? 
No Missing Data 
 
 
A. Pretest (X) Data Missing 
Case Deletion 
 
Dummy Variable Method 
 
Mean Value Imputation 
 

No 
Yes 

 
 

Yes 
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Yes 
 

Low Bias 
Low Bias 

 
 

Low Bias 
 

Low Bias 
 

Low Bias 
 

Low Bias 
Low Bias 

 
 

Low Bias 
 

Low Bias 
 

Low Bias 
 

Low Bias 
Low Bias 

   
   

Low Bias 
   

Low Bias 
   

Low Bias 
   

 √ 
 √ 

 √ 

 √ 

 √ 

Low Bias 
Low Bias 

Low Bias 

Low Bias 

Low Bias 

Low Bias 
Low Bias 

 
 

Low Bias 
 

Low Bias 
 

Low Bias 
 

Low Bias 
Low Bias 

  
  

Low Bias 
  

Low Bias 
  

Low Bias 
  

 √ 
 √ 

 √ 

 √ 

 √ 

  

  

 √ 
 √ 

 
 
 √ 

 
 √ 

 
 √ 

 
  
 
  
 

Single, Non-stochastic RI 
 

Yes 
 

Low Bias 
 

Low Bias 
 

Low Bias 
   

 √ High Bias High Bias High Bias 
   

Single, Stochastic RI 
 

Yes 
 

Low Bias 
 

Low Bias 
 

Low Bias 
   

 √ High Bias High Bias High Bias 
   

Multiple, Stochastic RI (n = 5) Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
           
EM Algorithm with MI (n = 5) Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
           
B. Post-Test (Y) Data Missing           
Case Deletion No Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
 Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
          

  
  

 
  
  
 

Mean Value Imputation 
 
 

No 
Yes 

 

Low Bias 
Low Bias 

 

Low Bias 
Low Bias 

 

Low Bias 
Low Bias 

   

 √ 
 √ 

High Bias High Bias High Bias 
High Bias High Bias High Bias 
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Exhibit 4: Summary of Simulation Results, Missing Data for 40% of Schools 

  Impact Estimate  Standard Error of Impact Est.  Overall 

Low Bias in Low Bias in Low Bias for Both 
Pretest Data  All Three  All Three Estimates in All 

Data Available? Scenario I Scenario II Scenario III Scenarios? Scenario I  Scenario II Scenario III Scenarios? Scenarios? 
Single, Non-stochastic No Low Bias Low Bias Low Bias  √ High Bias High Bias High Bias     
Regression Imputation Yes Low Bias Low Bias Low Bias  √ High Bias High Bias High Bias     
           
Single, Stochastic No Low Bias Low Bias High Bias   High Bias High Bias High Bias     
Regression Imputation Yes Low Bias Low Bias Low Bias  √ High Bias High Bias High Bias     
           
Multiple, Stochastic No Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
Regression Imputation (n = 5) Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
           
EM Algorithm with Multiple 
Imputation No Not Estimated √ Not Estimated   √ 
(n = 5) Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
           
Weighting - Simple No Not Applicable  Not Applicable   
 Yes Not Applicable  Not Applicable   
           
Weighting - Sophisticated No Not Estimated  Not Estimated   
 Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
           
Fully Specified Regression 
Models No Not Applicable  Not Applicable   
w/ Treatment-Covariate 
Interactions Yes Low Bias Low Bias Low Bias  √ Low Bias Low Bias Low Bias  √  √ 
Notes: 

 For more details on the simulations, see Chapter 4 and Appendix D. 
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We used the simulation results to assess the performance of different missing data methods when 
applied to the specific context that our simulations were designed to inform—Group 
Randomized Trials in which schools are randomized to treatment or control. Below, we present 
the results for the different missing data methods in those simulations for which pretest scores 
were collected and included in the impact analysis model.73 

Case Deletion. Although often criticized, the technical literature provides a more nuanced view 
of case deletion. For example, Allison (2002) indicates that case deletion will work well in some 
situations and poorly in others. More specifically, he indicates that case deletion will yield 
biased impact estimates when missing data for an independent variable depends on the observed 
value of the dependent variable (see Allison 2002, p. 6).74 In our simulations, this scenario 
corresponds to missing pretest where the missingness depends on the post-test (Scenario III). 
However, he also indicates that case deletion yields less bias in the coefficient estimates than 
other methods when missing data on an independent variable depends on its unobserved value.75 

In our simulations, this corresponds to missing pretest where the missingness depends on the 
pretest (Scenario II). 

The results from our simulations are consistent with Allison’s assessment. When pretest data 
were missing for 40 percent of students, and missingness depended on the value of the post-test 
(Scenario III), case deletion yielded impact estimates with bias that exceeded 0.05 standard 
deviations. In contrast, most other methods yielded impact estimates with bias of less than 0.05 
standard deviations (see Exhibits 3 and 4). In addition, under Scenario III, when pretest scores 
were missing for either 40 percent of students or 40 percent of schools, case deletion produced 
impact estimates with greater bias than all of the other methods we tested, except for mean value 
imputation (see Appendix D, Tables III.b.1 and III.b.2). 

However, also consistent with Allison’s assessment, when missing pretest scores depended on 
the value of the pretest itself (Scenario II), case deletion yielded impact estimates with bias of 
less than 0.05 standard deviations (see Exhibits 3 and 4). In this scenario, case deletion of 
missing students or schools produced impact estimates that were closer to the true impact of 0.20 
than all of the other methods we tested (see Appendix D, Tables II.b.1 and II.b.2). Therefore, in 
summary, the simulation results for case deletion closely matched the results that the literature 
would lead us to expect for missing pretest scores, i.e., case deletion produced impact estimates 
with less bias than other methods under some conditions and more bias than other methods under 
other conditions. 

For missing post-test scores, however, case deletion worked as well as, or better than, all of the 
alternative methods across all of the missing data scenarios. In most of the missing post test 
scenarios, this method produced impact estimates that were less biased than the thresholds set for 
the simulations, and in all scenarios the biases in standard errors were less than the WWC-based 
thresholds. In the simulations where this method produced impact estimates with bias that 

73 In addition, for simulations involving missing outcomes, pretest scores are used in the imputation models, in constructing 
weights, and—in testing fully specified regression models with treatment-covariate interactions—in constructing the interaction 
terms. 
74 Allison (2002) refers to the missing data mechanism in this situation as MAR because missingness in the independent variable 
depends only on observed data on the dependent variable. 
75 Allison (2002) refers to the missing data mechanism in this situation as NMAR because missingness in the independent 
variable depends on the latent or unobserved values of the independent variable. 
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exceeded 0.05 standard deviations (Scenario III, missing post-test scores for 40 percent of 
students), none of the other methods produced impact estimates with bias of less than 0.05 
standard deviations. 

Finally, with respect to bias in the impact estimates from missing post-test scores, case deletion 
performed similarly to other methods in the following sense: it only produced bias of greater 
than 0.05 standard deviations under Scenario III when data were missing for 40 percent of 
schools (see Exhibit 3). In all other simulations, it produced bias of less than 0.05 standard 
deviations (see Exhibits 3 and 4). In addition, for missing post-test scores, the difference in bias 
between the case deletion and other tested methods were, in all but one case, less than 0.01 (see 
Appendix D). For example, under Scenario II, when data were missing for 40 percent of 
students, multiple stochastic regression imputation yielded an impact estimate that exactly equals 
the true impact of 0.20, while case deletion yields an impact estimate that equals 0.193—a 
difference of 0.007 standard deviations. 

In summary, case deletion produced bias in the impact estimates that exceeded the WWC-based 
threshold in two of our simulations: 

� When pretest scores were missing for 40 percent of students under Scenario III.  Under 
this scenario, case deletion produced impact estimates with bias of greater than 0.05 standard 
deviations, while most other methods produced impact estimates with bias of less than 0.05 
standard deviations. 

� When post-test scores were missing for 40 percent of students under Scenario III. 
Under this scenario, none of the methods produced impact estimates with bias of less than 
0.05 standard deviations. 

Dummy Variable Method. The dummy variable method has been criticized in the literature for 
producing biased coefficient estimates (Allison, 2002 and Jones, 1996). While Jones (1996) is 
commonly cited as evidence that this method yields biased estimates, the appendix to this journal 
article provides a proof that the coefficient estimates will be unbiased if the two independent 
variables in his example, the one with missing data and the one without missing data, are 
uncorrelated with each other. In RCTs the variable of interest is the treatment indicator, which is 
never missing. Furthermore, when data are complete, randomization ensures that the treatment 
indicator is uncorrelated with the other independent variables. This raises the question of whether 
the standard critique of the dummy variable method applies in the particular context of education 
RCTs—in particular, in Group Randomized Trials where schools are randomly assigned to 
treatment or control, but the pretest score (or some other covariate) is missing for some students 
or schools. 

The evidence from the simulation results indicates that for missing pretest scores, the dummy 
variable method performed similarly to the more sophisticated methods. In particular, we found 
that the dummy variable method produced impact estimates with bias of less than 0.05 standard 
deviations under all three scenarios (see Exhibits 3 and 4). In addition, in none of our simulations 
did the dummy variable produce standard errors with bias that exceeded the threshold established 
for these simulations (see Appendix D). Therefore, our simulation results cast doubt on whether 
the general concerns about this method, which we do not dispute, should deter analysts from 
adopting it in studies that randomly assign schools to educational interventions. 
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In summary, the dummy variable method produced impact estimates and standard error estimates 
with bias that fell within the acceptable range, as defined by the WWC-based criteria that we 
selected, in all of our simulations. 

Mean Value Imputation. In general, mean value imputation is known to produce biased 
estimates of the standard errors of coefficients in regression models (see Allison, 2002 and 
Haitovsky, 1968). While there is no particular reason to believe this conclusion would not apply 
to RCTs in which schools are randomly assigned to treatment or control, our simulations shed 
light on whether this method, when applied to missing pretest scores or missing post-test scores, 
yields standard error estimates (1) with more or less bias than other methods, and (2) with bias 
that exceeds the threshold we developed for these simulations. 

When data were missing for pretest scores, mean value imputation did not produce standard 
error estimates with bias that exceeded the WWC-based thresholds chosen for these simulations.  
When data were missing for 40 percent of students, however, mean value imputation produced 
impact estimates with bias that exceeded 0.05 for Scenarios II and III (see Exhibits 3 and 4). 

When data were missing for post-test scores, mean value imputation produced standard error 
estimates with bias that exceeded the WWC-based thresholds in many of our simulations (see 
Exhibits 3 and 4). In fact, mean value imputation was the only method to yield standard errors 
with bias that exceeded the chosen thresholds in all three scenarios when data were missing for 
40 percent of students and when data were missing for 40 percent of schools (see Exhibits 1 and 
2). Finally, it is worth noting that when data were missing for 40 percent of students, mean value 
imputation was the only method to yield bias of greater than 0.05 standard deviations under both 
Scenarios II and III. 

In summary, mean value imputation produced bias in the impact estimates and standard errors 
that exceeded the WWC-based thresholds in several of our simulations: 

� When pretest scores were missing for 40 percent of students under Scenario II.  Under 
this scenario, mean value imputation was one of two methods to produce impact estimates 
with bias greater than 0.05 standard deviations. 

� When pretest scores were missing for 40 percent of students under Scenario III.  Under 
this scenario, mean value imputation produced impact estimates with bias of greater than 
0.05 standard deviations, while most of the other methods we tested produced impact 
estimates with bias of less than 0.05 standard deviations. 

� When pretest scores were missing for 40 percent of schools.  Under all three scenarios, 
when pretest scores were missing for 40 percent of schools, mean value imputation produced 
standard error estimates with bias that exceeded the WWC-based threshold. 

� When post-test scores were missing for 40 percent of students under Scenario II.  Under 
this scenario, mean value imputation was the only method to produce impact estimates with 
bias of greater than 0.05 standard deviations. 

� When post-test scores were missing for 40 percent of students under Scenario III.   
Under this scenario, none of the methods produced impact estimates with bias of less than 
0.05 standard deviations. 

Single Non-Stochastic Regression Imputation. In general, single non-stochastic regression 
imputation is well-known to yield standard error estimates that are biased downward (see 
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Chapter 3). When used to impute missing pretest or post-test scores in a Group Randomized 
Trial, our simulation results can be used to address the question of whether this method yields 
standard error estimates (1) with more or less bias than other methods, and (2) with bias that 
exceeds the threshold chosen for these simulations. 

When either pretest or post-test scores were missing  for 40 percent of schools—the unit of 
random assignment—single non-stochastic regression imputation produced standard error 
estimates with bias that exceeded the WWC-based threshold (see Exhibit 4). In fact, when pretest 
scores were missing for 40 percent of students, the estimated bias was greater for this method 
than for any of the other methods. 

However, when either pretest or post-scores were missing for 40 percent of students within 
each school, single non-stochastic regression imputation produced standard error estimates with 
bias that fell below the WWC-based threshold (see Exhibit 3). In fact, the estimated bias was less 
than or equal to 0.001 standard deviations, or one percent of the true standard error, in all three 
simulations. This suggests that when schools are randomly assigned but data are missing at the 
student level, the general concerns about single non-stochastic regression imputation may not 
apply. 

In summary, single non-stochastic regression imputation produced bias in the impact estimates 
and standard errors that exceeded the WWC-based thresholds in several of our simulations: 

� When pretest scores were missing for 40 percent of students under Scenario II.  Under 
this scenario, single non-stochastic regression imputation was one of two methods to produce 
impact estimates with bias of greater than 0.05 standard deviations. 

� When pretest scores were missing for 40 percent of schools.  Under all three scenarios, 
when pretest scores were missing for 40 percent of schools, single non-stochastic regression 
imputation produced standard error estimates with bias that exceeded the WWC-based 
threshold. 

� When post-test scores were missing for 40 percent of students under Scenario III.   
Under this scenario, none of the methods produced impact estimates with bias of less than 
0.05 standard deviations. 

� When post-test scores were missing for 40 percent of schools under all three scenarios.   
Under all three scenarios, when post-test scores were missing for 40 percent of schools, 
single non-stochastic regression imputation produced standard error estimates with bias that 
exceeded the WWC-based threshold. 

Single Stochastic Regression Imputation.  Single stochastic regression imputation is 
considered to be a “partial fix” to the problem associated with single non-stochastic regression 
imputation (see Chapter 3). Therefore, we would expect the bias in the standard error to be lower 
with single stochastic regression imputation than with single non-stochastic regression 
imputation. 

Our simulation results indicate that relative to the WWC-based threshold for bias in the standard 
error, single stochastic regression imputation performed equally to single non-stochastic 
regression imputation. By this, we specifically mean that in each simulation (e.g., for both 
missing pretests and missing post-tests in all three scenarios), both methods produced standard 
errors that either exceeded the bias threshold or fell below the threshold (see Exhibits 3 and 4). 
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However, these results should not be interpreted as evidence against the conclusion from the 
literature that single stochastic regression imputation produces standard errors with less bias than 
single non-stochastic regression imputation. For each of the simulations with missing data for 40 
percent of schools, the estimated bias was smaller for single stochastic regression imputation 
than for single non-stochastic regression imputation (see Appendix D, Tables I.b.2, II.b.2, and 
III.b.2). 

Finally, with respect to bias in the impact estimates themselves, and relative to the WWC-based 
threshold, Exhibits 3 and 4 show that single stochastic regression imputation performed 
equivalently to most other methods, including single non-stochastic regression imputation. In all 
but one of the simulations, the bias in the impact estimate was either greater than 0.05 standard 
deviations for both of these two methods or less than 0.05 standard deviations for both 
methods.76 This is not surprising since the addition of a stochastic error term to the imputed 
values is not intended to reduce bias in the impact estimate; rather, it is intended to reduce bias in 
the estimated standard error of the impact estimate. 

In summary, single stochastic regression imputation produced bias in the impact estimates and 
standard errors that exceeded the WWC-based thresholds in some of our simulations: 

� When pretest scores were missing for 40 percent of schools.  Under all three scenarios, 
when pretest scores were missing for 40 percent of schools, single stochastic regression 
imputation produced standard error estimates with bias that exceeded the WWC-based 
threshold. 

� When post-test scores were missing for 40 percent of students under Scenario III. 
Under this scenario, none of the methods produced impact estimates with bias of less than 
0.05 standard deviations. 

� When post-tests score were missing for 40 percent of schools under all three scenarios. 
Under all three scenarios, when post-test scores were missing for 40 percent of schools, 
single stochastic regression imputation produced standard error estimates with bias that 
exceeded the WWC-based threshold. 

Multiple Stochastic Regression Imputation. Multiple stochastic regression imputation is 
considered to be a technically appropriate solution to the problem associated with single 
stochastic regression imputation (see Chapter 3). Therefore, we would expect the bias in the 
standard error to be either low or zero—and lower than the bias from single stochastic regression 
imputation. 

The simulation results were consistent with this expectation. In all of our simulations, multiple 
stochastic regression imputation produced standard errors with bias estimates that fell below the 
WWC-based threshold selected for these simulations (see Exhibits 3 and 4), including the 
scenarios where both of the single regression imputation methods produced bias that exceeded 
the WWC-based threshold (see Exhibit 4). 

With respect to bias in the impact estimates themselves, and relative to the WWC-based 
threshold, Exhibits 3 and 4 show that multiple stochastic regression imputation performed 

76 The exception was Scenario III with missing post-test scores for 40 percent of schools, where the bias was greater than 0.05 
standard deviations for single stochastic regression imputation but less than 0.05 for single non-stochastic regression imputation. 
However, there is no reason to expect systematic differences between these two methods, so this difference can be attributed to 
random chance. 
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equivalently to most other methods, including single stochastic regression imputation. In all but 
one the scenarios, the bias in the impact estimate was either greater than 0.05 standard deviations 
for both of these two methods or less than 0.05 standard deviations for both methods.77 This is 
not surprising since multiple imputation is not designed to produce less biased impact estimates 
than single stochastic regression imputation: it is intended to reduce bias in the estimated 
standard error of the impact estimate. 

In summary, multiple stochastic regression imputation produced bias in the impact estimates that 
exceeded the WWC-based thresholds in only one of our simulations: when post-tests scores 
were missing for 40 percent of students under Scenario III.  Under this scenario, none of the 
methods produced impact estimates with bias of less than 0.05 standard deviations. 

EM Algorithm with Multiple Imputation. As discussed in Chapter 3, the EM algorithm is a 
maximum likelihood approach that can be used to directly obtain coefficient estimates or to 
impute missing values. When combined with multiple imputation, the literature suggests this 
approach should yield standard errors with little or no bias (see Chapter 3). 

The simulation results are consistent with this expectation. Our simulation results indicate that 
relative to the WWC-based threshold for bias in the standard error, the EM algorithm with 
multiple imputation performed equally to multiple stochastic regression imputation. When data 
were missing for 40 percent of students or schools, the EM algorithm with multiple imputation 
produced standard errors with estimated bias that fell below the WWC-based threshold selected 
for these simulations in all three scenarios and for both missing pretests and missing post-tests 
(see Exhibits 3 and 4). 

In addition, with respect to bias in the impact estimates themselves, relative to the WWC-based 
threshold, Exhibits 3 and 4 show that the EM algorithm with multiple imputation performed 
equivalently to most other methods, including multiple stochastic regression imputation. Like 
multiple stochastic regression imputation, when data were missing for 40 percent of students, 
the EM algorithm with multiple imputation produced impact estimates with bias of less than 0.05 
when the missing data mechanism could be characterized as MCAR or MAR (e.g., Scenarios I 
and II for missing post-test scores), and it produced impact estimates with bias of greater than 
0.05 when the missing data mechanism could be characterized as NMAR (e.g., Scenario III for 
missing post-test scores). When data were missing for 40 percent of schools, the EM algorithm 
with multiple imputation produced impact estimates with bias of less than 0.05 standard 
deviations for both missing pretests and post-tests under all three scenarios. 

In summary, the EM algorithm with multiple imputation produced bias in the impact estimates 
that exceeded the WWC-based thresholds in only one of our simulations: when post-tests scores 
were missing for 40 percent of students under Scenario III. 

Weighting, Simple Approach. The simple weighting approach, which can be applied in 
evaluations in which data are missing for selected students in each school, involves weighting up 
the students with non-missing data to the count of all students in the school. If the impact of the 
intervention varies across schools, this method might be expected to produce impact estimates 
with less bias than case deletion. If impact of the intervention does not vary across schools, then 
we might expect this method to produce impact estimates with bias that is equivalent to that of 
case deletion. In our simulation scenarios, the true impact was constant across schools. 

77 Ibid., footnote 77. 

68 


http:methods.77


 

 

Therefore, we would not expect this method to produce impacts that are much different from the 
impacts produced by case deletion. 

The simulation results are consistent with these expectations. Relative to the bias standards that 
we adopted for both impacts and standard errors, the performance of the simple weighting 
approach was equivalent to the performance of case deletion for all simulations (see Exhibits 3 
and 4). In addition, the difference in impacts between the simple weighting approach and case 
deletion was less than or equal to 0.003 standard deviations in all of the simulations (see 
Appendix D, Tables I.b1, II.b.1, and III.b.1). 

In summary, the simple weighting approach produced bias in the impact estimates that exceeded 
the WWC-based thresholds in only one of our simulations: when post-tests scores were missing 
for 40 percent of students under Scenario III. 

Weighting, More Sophisticated Approach. As described earlier, this approach involves 
estimating a propensity model and using this model to assign weights to cases with non-missing 
data. In the literature, this method is considered an acceptable alternative to multiple imputation.  

Relative to the bias standards that we adopted for both impacts and standard errors, the 
performance of the more sophisticated weighting approach was equivalent to the performance of 
both multiple stochastic regression imputation and the EM algorithm with multiple imputation 
for all simulations (see Exhibits 3 and 4). In addition, the difference in impacts between the 
more sophisticated weighting approach and multiple stochastic regression imputation was less 
than or equal to 0.001 standard deviations in simulations with missing data for 40 percent of 
students (see Appendix D, Tables I.b1, II.b.1, and III.b.1) and less than or equal to 0.01 standard 
deviations in simulations with missing data for 40 percent of schools (see Appendix D, Tables 
I.b.2, II.b.2, and III.b.2). 

In summary, the more sophisticated weighting approach produced bias in the impact estimates 
that exceeded the WWC-based thresholds in only one of our simulations: when post-tests scores 
were missing for 40 percent of students under Scenario III. 

Fully Interacted Regression Models with Treatment-Covariate Interactions. As described 
earlier in this chapter, we tested this approach by adding the interaction between the treatment 
indicator and the pretest variable as an independent variable in the model used to estimate the 
impacts of the intervention. This method ensures that the average treatment effect is evaluated at 
the mean for the entire sample—not just the mean for the sample with complete post-test data. 
Because of this, we would expect this method to produce impact estimates with less bias than 
case deletion. However, we had no prior expectations regarding the expected performance of 
this method relative to the other methods. 

Relative to the bias standards that we adopted for both impacts and standard errors, the 
performance of this method was equivalent to the performance of the methods we have 
recommended thus far (see Exhibits 3 and 4). In addition, the difference in impacts between 
fully interacted regression models with treatment-covariate interactions and multiple stochastic 
regression imputation was less than or equal to 0.002 standard deviations in simulations with 
missing data for 40 percent of students (see Appendix D, Tables I.b1, II.b.1, and III.b.1) and less 
than or equal to 0.009 standard deviations in simulations with missing data for 40 percent of 
schools (see Appendix D, Tables I.b.2, II.b.2, and III.b.2). 
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In summary, fully interacted regression models with treatment-covariate interactions produced 
bias in the impact estimates that exceeded the WWC-based thresholds in only one of our 
simulations: when post-tests scores were missing for 40 percent of students under Scenario III. 

Testing a Range of Missing Data Rates 
As discussed above, our simulations tested the performance of selected missing data methods at 
two levels of missing data for schools and students, i.e., we ran the simulations at five percent 
and 40 percent missing, respectively. This raised an obvious question, “Is there a point along this 
range of possible attrition at which the results change?” To explore the sensitivity of the results 
to intermediate missing data rates, we ran simulations within the 5%-40% range for a subset of 
missing data methodologies. In particular, for missing post-test data and Scenario III—the 
scenario that analysts worry the most about because the data are NMAR—we tested the 
performance of case deletion, non-stochastic regression imputation, and multiple stochastic 
regression imputation with missing data rates of 10 percent, 20 percent, and 30 percent. Then we 
combined those results with the results for missing data rates of 5 percent and 40 percent to map 
out the relationship between the missing data rate and the performance of these three measures. 
We found that as the missing data rate increases, the bias also increased; however, these changes 
are smooth and gradual, revealing no obvious “tipping point.” 
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Appendix A: Missing Data Bias as a Form of Omitted 

Variable Bias 


One way to better understand the missing data problem is to see how it is related to the 
very first type of bias to which most of us were introduced in our first regression class, 
omitted variable bias. Suppose the true model of impacts is shown in equation (1): 

(1) Y = β + β X + β Trt +ε , where ε ~ N (0,σ • I )0 1 2 1 

where X is the baseline covariate and Trt is the treatment group indicator. However, 
suppose that the researchers conducting the RCT estimate a simpler model that excludes 
the baseline variable, as shown in equation (2): 

(2) Y =α 0 +α1Trt + v , where v ~ N (0,σ 2 • I ) 

The decision to estimate equation (2) instead of (1) may be driven by lack of 
knowledge—the researchers may not realize that the baseline variable affects the 
outcome—or by necessity—if the variable is inherently unobservable. However, the 
decision may have been based on the belief that “simpler is better” in RCTs since without 
missing data problems, RCTs yield unbiased impact estimates even when no control 
variables are included. 

However, suppose some of the data are missing. More specifically, suppose that the 
outcome variable (Y) is missing for some cases, and the researchers plan to drop cases 
with missing values. (Other approaches to missing data are considered in the body of  the 
report, but the consequences of dropping cases with missing values may be the best tool 
for illustrating the consequences of missing data.) In this very common scenario, will the 
researchers obtain unbiased estimates of the treatment effect (β2)? The answer is “it 
depends” or “only in special cases.” If the observations with non-missing values are just 
a simple random sample of the larger sample (MCAR), the answer would be yes. The 
only consequence is a smaller sample and less statistical power. If the observations with 
non-missing values are at least random conditional the independent variables in the 
model (the MAR category), then the answer is still yes. 

What does this mean for our simple example? It means the RCT can obtain unbiased 
impact estimates if (1) the data are missing completely at random (just a coin toss or roll 
of the dice) or (2) the data are missing at random within each group defined by the only 
covariate included in the model: the treatment indicator. Exactly how this can be 
achieved is a core portion of the remainder of this appendix. Scenario (2) warrants some 
additional consideration since a difference in response rates between the treatment and 
control groups might be taken as a sign that the impact estimates are biased. However, as 
long as the process behind the missing data is completely random within group, it 
does not matter if the percentage of cases with missing data differs between the two 
groups: the treatment effect will still be unbiased. 

However, there are still two potential pitfalls that could lead to biased estimates of the 
average impact of the treatment (both fall under the NMAR case). First, even where the 
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occurrence of “missingness” is unrelated to treatment status, it can be related to other 
variables that have been omitted from the model (like X has been omitted from equation 
(2)) and cause bias. This is a case where missingness causes the observed treatment and 
control group outcome samples to be “equally unrepresentative” of the population of 
interest (i.e., the population these samples would represent if the outcomes data were 
totally complete). For example, suppose the outcome variable in equation (2) is the 
student’s score on the state assessment in reading, and the observed baseline variable 
excluded from the model (X in equation (1)) equals 1 for Limited English Proficiency 
(LEP) students and 0 for non-LEP students. If the missing data rate is larger for LEP 
students than for other students, and equally larger for the treatment group and the control 
group samples, then the analysis sample of students—that is, the students with non-
missing data—would be skewed toward non-LEP students in both the treatment group 
and the control group. 

So when is this a problem? It is a problem when the impact of the treatment differs 
between LEP students and other students. For example, suppose the impact of the 
program on reading achievement is larger for LEP students than for other students. If 
LEP students are underrepresented in the analysis sample due to missing data, this will 
pull the estimated impacts downward. In this example, and many like it, random 
assignment will provide an unbiased estimate of the treatment’s average impact for 
students with nonmissing data. However, because missing data has skewed both the 
treatment and control samples toward non-LEP students, for whom the impacts are 
relatively small, equation (2) will yield an downwardly biased estimate of the treatment’s 
average impact for students in the broader study sample (and for whatever population 
this sample was designed to represent). 

The second potential pitfall arises if missing data are related to both treatment status and 
a variable that has been omitted from the model. In this context, the analysis sample in 
both groups (treatment and control) will be unrepresentative of the broader population of 
students. However, because missing data is related to both treatment status and the 
omitted variable, the analysis samples in the treatment group and the control group will 
not be “equally unrepresentative,” i.e., the treatment and control samples will be 
“differentially skewed” toward non-LEP students. While the first pitfall yields unbiased 
impact estimates for the wrong population, this pitfall yields biased impact estimates for 
the wrong population. In both instances, the wrong population is being studied in relation 
to the information policy makers need about the full set of students potentially impacted 
by an intervention. 

To gain a better understanding of the second pitfall, let us build on the example 
developed in this section. The treatment and control samples used in the analysis could 
be “differentially skewed” toward non-LEP students if the treatment itself has a positive 
effect on English proficiency, and LEP students with higher English proficiency are more 
likely to be required to take the state test used to create the outcome variable for the 
analysis. In this scenario, within the analysis sample, the treatment group would be less 
skewed toward non-LEP students than the control group. 

Mathematically, this introduces omitted variable bias by creating a positive correlation 
between treatment status (Trt in equation (2)) and the omitted variable (X or LEP status 
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in equation (1)) in the observed sample.78  Among students with complete data, LEP 
students are more likely to be in the treatment group than in the control group. If LEP 
status has a negative effect on the outcome—reading achievement, as measured by the 
state test—the positive correlation between the treatment and LEP status among students 
in the analysis sample will produce a negative bias in the impact estimate. Put 
differently, in this scenario, the RCT will understate the true impact of the treatment.  
More generally, when there are a variety of omitted variables that are related to both the 
outcome and its missing data pattern the bias due to missing data could be positive or 
negative. 

There are two major lessons that can be gleaned from this discussion: 

� The situations under which we can obtain unbiased impact estimates if we 
simply exclude students with missing data are very restrictive: Excluded students 
must be a random sample of students conditional on the independent variables 
included in the model, including the treatment indicator. Furthermore, the scenarios 
under which the missing data process is more complicated are quite plausible in many 
settings. 

� When missing data bias is considered, covariates play a more important role in 
RCTs than is commonly believed. In fact, because we can see that bias due to 
missing data can be thought of as omitted variable bias, one approach to the problem 
is clear: include in the regressions used to estimate impacts variables that may 
influence both the outcome and the probability of having missing data on outcomes.  
While this is not the only approach to addressing missing data, it may be the simplest 
and most straightforward approach. Therefore, while covariates only serve to improve 
precision in RCTs when data are complete, in the real world, where data are never 
complete, covariates can help to reduce bias due to missing data. 

78 A non-zero correlation between the treatment/control group status indicator and an X variable measured prior to 
random assignment can never occur for the sample as a whole in an expected value sense, since treatment status is 
generated subsequent to that measurement and bears no relationship to anything else (having emerged from a random 
number generator or flip of a coin). 

79 


http:sample.78


                                                 

Appendix B: Resources for Using Multiple Imputation 
In the section titled “Multiple Stochastic Regression Imputation,” we provided some 
guidance on how to use multiple imputation to address missing data. Before 
implementing MI, or any other method to address missing data, we would recommend 
additional reading, such as Allison (2002) and articles by the statisticians who have 
developed and refined MI methods (e.g., Rubin, 1996; Schafer, 1999). However, in the 
end, researchers need to know how to use available software to implement MI should 
they choose that option for dealing with missing data. Therefore, we provide some 
guidance and references to other resources that may be helpful. 

As shown earlier in this report, specialized software or MI-specific procedures in general 
purpose statistical software is not required to use MI methods. However, programming 
one’s own multiple imputation algorithm is considerably more challenging than the 
programming required to specify analysis models in most evaluations. Therefore, 
specialized MI software may be useful for people who expect to conduct MI regularly.  
Furthermore, MI-specific procedures in the software that education researchers 
commonly use can make MI an easier choice in education-related RCTs. 

In this section we list some specialized software packages for conducting MI, and we also 
list some MI-specific procedures in general purpose statistical software that may make 
MI easier for users to implement. For a comprehensive treatment of the software 
packages available to implement MI, see Horton & Kleinman (2007).79 We conclude 
with a more extensive example of how to conduct MI in SAS for purposes of illustration.  
We have selected SAS for this example—without recommending it over other 
alternatives—because it is a commonly used general-purpose statistical package, and 
because it can handle the imputation, estimation, and combination steps all in a single 
package. 

Software for Multiple Imputation 
Specialized, stand-along software has been developed for implementing MI. Some 
examples include:  

� IVEware.  Developed by T. E. Raghunathan, Peter W. Solenberger, and John Van 
Hoewyk at the University of Michigan. It is available for download at 
www.isr.umich.edu/src/smp/ive/. 

� Amelia II.  Developed by James Honaker, Gary King, and Matthew Blackwell at 
Harvard University. It is available for download at http://gking.harvard.edu/amelia/. 

� SOLAS. SOLAS is a commercial package that can be purchased at 
http://www.statsol.ie/html/solas/solas_home.html. 

 

79 This paper is available online at http://maven.smith.edu/~nhorton/muchado.pdf.  The appendix showing code and 
output is available online at http://www.math.smith.edu/muchado-appendix.pdf. 
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Some statistical packages commonly used in education research also have MI procedures, 
modules, or options, while others do not. Some of the software packages used by 
education researchers include: 

� Stata. A multiple imputation procedure developed by Patrick Royston can be 
installed directly through Stata.  

� SPSS. SPSS Inc offers an add-on package named PASW Missing Values that will 
implement MI. The SPSS base package does not include canned routines for 
conducting MI.  

� HLM. HLM can be used to analyze multiple data sets and can aggregate the results 
in an MI framework, provided that the multiple data sets are created by the user 
beforehand. http://www.ssicentral.com/hlm/example6-1.html  

� SPlus. There are several Splus libraries available that contain functions for multiple 
imputation. These include:  

o	  Missing Data Library, built-in in Splus 6.0 and higher  

o 	 Hmisc Library, for more information see http://www.multiple-
imputation.com/  

o 	 MICE. For more information see http://www.multiple-imputation.com/  

o 	 NORM, CAT, MIX, and PAN. Developed by Joe Schafer at Penn State 
University. It is available for download at 
http://www.stat.psu.edu/~jls/misoftwa.html#top  

� R. Most of the SPlus libraries listed above are also available for R. For more 
information, see http://cran.r-project.org/web/views/SocialSciences.html 

� SAS. Specific SAS  procedures have been developed to facilitate MI.   See the 
example below.  

An Example of MI Using SAS 
SAS includes procedures that allow the user to (1) generate k multiple imputed values for 
each missing value in the data—which yields k different data sets—(2) estimate impacts 
for each imputed data set using one’s preferred regression procedure (e.g., PROC 
MIXED for mixed, hierarchical, or multi-level modeling), and (3) combine the estimates 
across imputations. The last step will produce estimates of the coefficients in the model, 
including the treatment effect, and estimates of their standard errors. 

Suppose we are conducting an RCT of an educational intervention, and 60 schools are 
randomly assigned—30 to treatment (T=1) and 30 to control (T=0). Furthermore, 
suppose that we want to estimate the average impacts of the intervention on three student 
outcomes, Y1, Y2, and Y3, controlling for four student-level background variables, X1, 
X2, X3, and X4, and two school-level descriptive variables, S1 and S2. The sample 
includes 1,000 students, but data for some students and some variables are missing.  
Suppose we plan to estimate impacts using a two-level model, where level 1 is the 
student-level model and level 2 is the school level model. Proc MI does not have the 
capability to explicitly fit at two-level “imputer’s model”, but we can approximate the 
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two-level structure by adding 59 dummy variables corresponding to the 60 schools (less 
1) to the imputers model. Let us represent those dummy variables as D1, D2, …, D59. 
We cannot simultaneously enter the school level variables S1 and S2 and the 59 dummy 
variables, so the variables S1 and S2 will not be used in the imputer’s model, but their 
effects will be captured in the dummy variables. 

In this context, MI can be used to address missing data in three steps: 

Step 1 – Create Imputed Data 

proc mi data=data1 noprint out=data2 seed=37851 NIMPUTE=5; 

var T Y1 Y2 Y3 X1 X2 X3 X4 D1 - D59; 


run; 


One can use any number for the value of “seed.” If we omit the seed value, SAS will 
generate are random number for use as the seed value.  By explicitly specifying a seed 
value, as shown above, we can replicate our results if we re-run the same program at a 
later time. The seed’s value does not matter; it is only a starting point for a procedure 
with a common end result using any seed. 

This procedure reads the input data set data1 and creates an output data set data2 with 5 
observations for every observation in data1. Data2 contains a variable _Imputation_ that 
equals 1, 2, 3, 4, or 5. Non-missing values for each variable are repeated across 
imputations; missing values are replaced with imputations based on a model that uses all 
of the variables in the var statement above. 

Step 2 – Estimate the Model (e.g., Y1 only) 

proc mixed data=data2; 
class school; /* school is a variable that uniquely identifies each school 

*/ 
Model Y1 = T X1 X2 X3 S1 S2; 

 by _Imputation_; 
random intercept/type=un sub=school; 
ods output SolutionF=data3a CovB=data3b; 

run; 

For each of the five imputed data sets, this procedure specifies a linear, multi-level model 
to estimate the average treatment effect on the first outcome variable (Y1). The random 
option allows the intercept to vary randomly across schools. 

Step 3 – Combine the Estimates 

proc mianalyze parms=data3a covb=data3b edf=994; /* 994 = 1000 students – 
6 X variables */ 

var T X1 X2 X3 S1 S2; 
run; 

This procedure combines the five sets of estimates. The output will include an estimate 
of the average treatment effect (coefficient on T) and its standard error. 
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Appendix C: Specifications for Missing Data Simulations  

Introduction to Notation 
The following notation is used throughout this appendix: 
YPre,ij  is a student achievement test score, measured at baseline (pre-

treatment) for the ith student, nested in the jth school; 
 i = 1…60 (students per school); j = 1…60 (schools); 

Y Post,ij  is a student achievement test score, measured at follow-up (post-
treatment) for the ith student, nested in the jth school; 

Femaleij  = 1 if student is female, = 0 if male; 

Female _ Cenij	  is the grand-mean centered covariate for Female, obtained as 

∑∑
60 60 

Femaleij 

Female_ Cen ij = Female ij −
j =1 i=1  

(60*60) 

HiRisk ij  = 1 if student is high risk (e.g., low income), = 0 otherwise; 

 
HiRisk _ Cenij	  is the grand-mean centered covariate for HiRisk, obtained as 

∑∑
60 60 

HiRiskij 

HiRisk _ Cen  j=1 i=1
,ij = HiRiskij −  

(60 * 60) 

Trt j  = 1 if school j was randomly assigned to the treatment condition, =0 if
school j was randomly assigned to the control condition. 

As part of the simulations, values of pretest and post-test scores were set to missing. The 
following variables represent the observed pretest and post-tests scores, where some of 
the scores are observed (non-missing) and others have missing values: 

Ymiss  ith
Pre,ij	 is a pretest achievement score of the  student, nested in the jth school; 

Some values are missing, others are non-missing. 

YmissPost,ij	  is a post-test achievement score of the ith student, nested in the jth  
school; Some values are missing, others are non-missing. 

Some additional notation is introduced in subsequent sections. 

Hypothetical Education RCT Used in the Simulations 
The assumed study design for the simulations is a randomized controlled trial (RCT) with 
random assignment of schools to treatment and control conditions. The goal of the 
fictional study that forms the basis of the simulations is to estimate the average impact of 
the treatment on student achievement. Key features of our fictional RCT design include: 
(1) 60 schools, with 30 assigned to treatment and 30 assigned to control; (2) 60 students 
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per school; (3) baseline data on gender, an unspecified risk factor (e.g., low income), and 
pretest or pre-intervention achievement data in a single subject area (either reading or 
mathematics); and (4) follow-up outcome data on achievement in the same subject area 
as the pretest. 

Estimation of the average impact of the hypothetical intervention on student achievement 
is assumed to be done using a 2-level hierarchical linear model, where students (level-1) 
are nested in schools (level-2), and the model includes gender and high risk status as 
student-level covariates. However, two different models are assumed to be estimated for 
the simulations: (1) Model A does not include a student-level pretest score as a covariate, 
and (2) Model B does include a student-level pretest score as a covariate: 

Model A. Pretest score not available  
YPost,ij = β 0 + α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β 3 (HiRisk _ cenij ) + ε ij  

 
Model B. Pretest score is available  
YPost,ij = β0 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β 4 (YPre,ij ) + ε ij  

In each model, α0 j is a random school-level intercept that is assumed to be normally 
distributed with mean zero and variance τ 2 , i.e., α 0 j ~ N (0,τ 2 ) .  It is also assumed to be   
independent of ε ij , the student-level error term, and ε ij  is assumed to be normally 
distributed with mean 0 and variance σ 2 , i.e., ε ij ~ N (0,σ 2 ) . The coefficient β̂ 1 provides 
an estimate of the Intent-to-Treat Effect, or, in the absence of noncompliance, the average 
impact of the treatment. 

Later in this appendix, when we describe how the different missing data methods are 
implemented, we will refer back to these two generic analysis models to indicate how we 
estimated the treatment effect when data were missing. 

Generation of the Simulated Data 
This section describes the generation of data for a single simulated data set. The process 
described here was replicated 1,000 times, producing 1,000 simulated data sets.   Letting 
missing data occur at random (within defined probabilities) many times, and then 
averaging the results of estimation models across the 1,000 data sets, ensures the 
robustness of the simulation findings and of any conclusions about the performance of 
various missing data methodologies drawn from them. Multiple replications also provide 
distributions of impact estimates and their standard errors, reflective of the sampling 
variability built into the data (and present in real data).  Estimates from these multiple 
replications converge on population parameters; for example, if there were no missing 
data and we increased the number of generated data sets towards infinity, the mean of the 
parameter estimates from the many simulations would converge to the true population 
mean. For scenarios where there are missing data, we use all the replications to 
determine the closeness of the impact estimator’s mean across the replications to the true 
population parameter. This serves as the measure of bias in the impact estimate. 
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Generating Demographic Characteristics 
To generate the sex and academic risk indicators, we first generated 60 school IDs, and 
within each school generated 60 student IDs. Within each school, we set the value of 
Female to “0” for 30 of the students, and set the value of Female to “1” for the remaining 
30 students. Within each school, 12 students (6 females and 6 males) had the value of 
HiRisk set to “1,” the remaining 48 students had the value of HiRisk set to “0.” To 
summarize: 

� each data set included 60 schools; 

� each school consisted of 60 students─30 students (50%) were Female, and 12 
students (20%) were HiRisk and, 

� Female was independent of HiRisk.  

Generating Pretest Scores 
To generate pretest scores, we began by generating random errors terms for schools and 
students. To generate random school effects, we used the Normal function in SAS to 
generate 60 random normal deviates from a normal distribution with mean equal 0 and 
variance equal to 0.10. As will be shown subsequently, these will represent the deviations 
of each of the 60 school’s individual intercepts from the grand mean intercept. In model 
notation, these are the values of α 2 

0 τ 20 j , generated α j ~ N (0,τ ) , where is set to equal 
0.10. In each simulated data set, each of the 60 schools was assigned one of these values.  
All students within a particular school shared the same common value on the school-level 
random deviate. 

In the next step, we again used SAS’s Normal function to generate values from a normal 
distribution. This time we generated 3,600 values from a distribution with mean equal 0 
and variance equal to 0.90, corresponding to the 60 students within each of the 60 
schools. Each of the simulated students was assigned a value from this random normal 
distribution. These values correspond to the random deviation terms, ε ij , that represent 
the difference of an individual student’s pretest score from his/her school’s average 
value, and conditional on the student’s covariate value. To summarize, we generated: 

� school-level random effects, i.e., 60 values of α0 j , from a normal distribution with 
mean 0 and variance 0.10, and 

� student-level random error terms, i.e., 3,600 values of ε ij , from a normal distribution 
with mean zero and variance 0.90. 

Next, we generated the values of each student’s pretest (i.e., baseline) achievement score.  
The value of each student’s pretest score was generated as a function of: 

� a grand-mean intercept; 

� student’s gender; 

� student’s status on the HiRisk variable; 
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� the school-level mean pretest score, specifically, the school’s deviation from the 
grand-mean intercept, α0 j ; and, 

� student-level residual error, ε ij . 

Using the values of the variables as described above, each student’s pretest achievement 
score, YPre,ij , was generated from the following equation: 

 
YPre,ij = β0 + β1(Female _ cenij ) + β2 (HiRisk _ cenij ) +α0 j + ε ij  

 
where: 

β0 = 0
 

β1 = 0.20
 

β2 = −0.80
  
α0 j ~ N(0,0.1)
 

ε ij ~ N(0,0.9)
 

(See Chapter 4 for citations to justify our choices of β1  and β 2 .) Note that the mean of 
YPre,ij  is,

= Mean(β 0 ) + Mean(β1 (Female _ cenij )) + Mean(β 2 (HiRisk _ cenij )) + Mean(α 0 j ) + Mean(ε ij ) 

= 0 + (β1)(0) + (β2 )(0) + 0 + 0  
= 0 

And note that the level-1 (student-level) variance of YPre,ij is, 
= Var(β0 ) + Var(β1(Female _ cenij )) + Var(β2 (HiRisk _ cenij )) + Var(α0 j ) + Var(ε ij ) 

= 0 + (β β 2
1)2Var(Female _ cenij ) + ( 2 ) Var(HiRisk _ cenij ) + 0 +Var(ε ij )  

= 0 + (.2)2 (.5*.5) + (−.8)2 (.2 *.8) + 0 + 0.90  
= 1.01  

The level-2 (school-level) variance of YPre,ij is, 
= Var(α0 j )  
= 0.10  

Thus, the intraclass correlation (ICC) of the pretest scores is, 
0.10ICC = = 0.09 . 

(0.10 +1.01) 
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Generating Post-test Scores 
To generate post-test scores, we began by generating random deviates for schools, 
α *

0 j ~ N(0,τ 2	 ) , and students, ε *
ij ~ N (0,σ 2 ) , where the stars are used to indicate that these 

are different sets than the random deviates used to create the pretest scores. The value of 
each student’s post-test score was generated as a function of: 

� a grand-mean intercept; 

� student’s gender; 

� student’s status on the HiRisk variable; 

•	  student’s pretest achievement score, YPre,ij ; 

• 	 treatment status, Trt j ; 
•	  a negative interaction effect of treatment by pretest (Trt j * YPre,ij )—the treatment 

effect is larger for students with lower pretest scores than for students with higher 

pretest scores; 


• 	 the school-level mean post-test score, or put differently, the school’s deviation from 
the grand-mean, α * 

0 j ; and, 

• 	 student-level residual error, ε *
ij . 

Post-test scores are generated from the following model: 

Y = β * + *	 _ cen) + β *
Post,ij 0 β1 (Female 2 (HiRisk _ cen) + β * * * 

3 (YPre,ij) + β4 (Trt j ) + β5 (Trt j *YPre,ij) + C(α * *
0 j +ε ij ) 

 
where:80  

β * 
0 = 0 

β * 
1 = 0.02 

β * 
2 = −0.05 

β * 
3 = 0.50 

β * 
4 = 0.20  

β * 
5 = − 0.20 3 

C = 0.50
 

α * 
0 j ~ N (0,0.1) 

ε *ij ~ N (0,0.9) 

80 The constant C below was included as a multiplier in this equation to ensure that the unconditional variance of post-
test scores would equal 1. 
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The process described above, to generate a single data set, was replicated 1,000 times to 
generate 1,000 data sets. Because we generated random values of α0 j , ε ij , α0

* 
j , and ε ij 

* 

from the distributions described above, each data set was different from all the others.  

Missing Data Mechanism 
The process described in the previous section was used to generate 1,000 complete data 
sets—that is, data sets without any missing values. In this section, we describe the 
process by which we generated missing values. Effectively, this involved selecting a 
random subsample from each of the 1,000 randomly generated samples, and for each 
subsample, setting the value of either the pretest or the post-test to missing. 

The first step in this process involved specifying how the subsample would be selected. 
In particular, we specified the probability that the pretest or post-test would be missing 
from the data. Then these probabilities were used to select the subsample of cases for 
which the pretest or post-test would be set to missing. 

In one set of simulations, we assumed that data were missing for a sample of students in 
each school. For these simulations, we randomly selected individual students within 
schools and set the value of their pretest score or post-test score to missing.  In another 
set of simulations, we assumed that data were missing for entire schools (i.e., all students 
with a school had missing values). For these simulations, we randomly selected 
subsamples of schools and set the value of the pretest score or post-test score to missing 
for all students in these schools. 

Missing Data Mechanism for Students 
First, we generated missing values for those simulations in which data were missing for a 
sample of students in each school. We generated the missing indicator for three base 
scenarios--or missing data mechanisms—and for each base scenario, generated missing 
values such that either 5 percent of cases were missing or 40 percent of cases were 
missing.81  For each combination, we also generated data in which the pretest was set to 
missing and data in which the post-test was set to missing. None of our simulations set 
both variables to missing simultaneously, and no other variables were set to missing (e.g., 
female or risk status) in any of our simulations. 

Scenario I - Missingness depends on treatment assignment. 

In this scenario, the missing data mechanism is dependent only on treatment assignment. 
In particular, the missing data rates are higher for students in control schools than for 
students in treatment schools. But within each group, missing cases are a simple random 
sample of all cases in the group. 

Sub-scenario I, Missing data rate = low (5% overall) 

For some simulations, we set either the pretest score or post-test score to missing for 5 
percent of students in the sample. To do this, we first created a variable which indicated 

81 For a special analysis, we also generated missing data under three additional missing data rates—10 percent, 20 
percent, and 30 percent , described subsequently in the section on Scenario III. 

88 


http:missing.81


the probability of missing data, and we called it MissProb.. For treatment students (Trt = 
1), MissProb was set to 0.04, and for control students (Trt = 0), MissProb was set to 0.06. 

We then used SAS’s RanBin function to generate values of 0 or 1 from a binomial 
distribution. The probability of generating a value of 1 was set to MissProb, and the new 
0-1 variable was called MissIndicator (e.g.,   MissIndicator = RanBin(0,1, MissProb)). 

Finally, we created values for the observed pretest scores and post-test scores, given that 
some values had been set to missing and would not be observed in the analysis. The 
observed pretest variable was set equal to the actual pretest score when the pretest score 
was non-missing; the observed pretest variable was set to a numeric missing value when 
the actual pretest score was missing from the data (e.g., not observed), as shown below: 

� Ymiss Pre,ij  =YPre,ij  

� Ymiss Post,ij  =YPost,ij  

� If MissIndicator=1 then Ymiss Pre,ij  = . (set to missing) 

� If MissIndicator=1 then Ymiss Post,ij  = . (set to missing) 

Sub-scenario II, Missing data rate = high (40% overall) 

The missing data mechanism for this scenario was the same as that described in the 
previous section, except that the missing data rates were higher for both treatment schools 
and control schools. In particular: 

� if Trt = 1 then MissProb = 0.35 

� if Trt = 0 then MissProb = 0.45 

All other steps were the same as described above. 

Scenario II, Missingness depends on treatment assignment, pretest scores, and the 
interaction of the two.   

The process we used for setting pretest and post-test scores to missing was the same as 
the process described for Scenario I, except that probability of missing values (MissProb)  
was dependent upon assignment to treatment, the pretest score, and the interaction of 
treatment assignment and pretest score. In particular: 

� The missing data rate is higher in the control group than the treatment group; 

� The missing data rate is higher for students with low pretest scores in both groups; 
but 

� The relationship between pretest and the missing data rate is much stronger in the 
control group than in the treatment group (to generate a difference in the missing data 
mechanism between the two groups). 
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Sub-scenario I, missing data rate = low (5% overall) 

For this subscenario, we set the missing data probability (MissProb) for each student as 
follows: 

Quartile on Pretest Score 
If Trt=1 
Set MissProb to: 

If Trt=0 
Set MissProb to: 

4 (>= 0.717) .03 .03 
3 (>= 0.011, < 0.717) .04 .05 
2 (>= -0.703, < 0.011) .04 .07 
1 (< -0.703) .05 .09 
Overall Average .04 .06 

Note that in both treatment and control groups, the probability of missing data is higher 
for students with lower pretest scores, but that difference between the probabilities at the 
lowest and highest pretest quartiles is much greater in the control group than in the 
treatment group. 

Sub-scenario II, missing data rate = high (40% overall) 

For this subscenario, we set the missing data probabilities (MissProb) for each student as 
follows: 

Quartile on Pretest Score 
If Trt=1 
Set MissProb to: 

If Trt=0 
Set MissProb to: 

4 (>= 0.717) .30 .30 
3 (>= 0.011, < 0.717) .35 .40 
2 (>= -0.703, < 0.011) .35 .50 
1 (< -0.703) .40 .60 
Overall Average .35 .45 

Scenario III, Missingness depends on treatment assignment, post-test scores, and the 
interaction of the two.   

In particular: 

� The missing data rate is higher in the control group than the treatment group; 

� The missing data rate is higher for students with low post-test scores in both groups; 
but 

� The relationship between post-test and the missing data rate is much stronger in the 
control group than in the treatment group (to generate a different missing data 
mechanism for the two groups). 
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Sub-scenario I, missing data rate = low (5% overall) 

For this subscenario, we set the missing data probability (MissProb) for each student as 
follows: 

If Trt=1 If Trt=0 
And Quartile on 
Post-Test Score is 

Then 
Set MissProb to: 

And Quartile on 
Post-Test Score is 

Then 
Set MissProb to: 

4 (>= 0.865) .03 4 (>= 0.695) .03 
3 (>= 0.205, < 0.865) .04 3 (>= 0.004, < 0.695) .05 
2 (>= -0.457, < 0.205) .04 2 (>= -0.691, < 0.004) .07 
1 (< -0.457) .05 1 (< -0.691) .09 
Overall Average .04 .06 

Note that for post-test scores, unlike pretest scores, the quartile cutoffs differ between the 
treatment and control groups due to the effect of the treatment on post-test scores. 

Sub-scenario II, missing data rate = high (40% overall) 

For this subscenario, we set the missing data probability (MissProb) for each student as 
follows: 

If Trt=1 If Trt=0 
And Quartile on 
Post-Test Score is 

Then 
Set 
MissProb 
to: 

And Quartile on 
Post-Test Score is 

Then 
Set MissProb 
to: 

4 (>= 0.865) .30 4 (>= 0.695) .30 
3 (>= 0.205, < 0.865) .35 3 (>= 0.004, < 0.695) .40 
2 (>= -0.457, < 0.205) .35 2 (>= -0.691, < 0.004) .50 
1 (< -0.457) .40 1 (< -0.691) .60 
Overall Average .35 .45 
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Other subscenarios 

Under Scenario III, when the missing data mechanism depends on the post-test, we tested 
selected missing data methods at three different missing data rates between 5 percent and 
40 percent: 10 percent, 20 percent, and 30 percent. The values of MissProb for these 
three missing data rates are provided below: 

Missing Data Rate = 10 Percent 
If Trt=1 If Trt=0 
And Quartile on 
Post-Test Score is 

Then 
Set 
MissProb 
to: 

And Quartile on 
Post-Test Score is 

Then 
Set MissProb to: 

4 (>= 0.865) .06 4 (>= 0.695) .06 
3 (>= 0.205, < 0.865) .08 3 (>= 0.004, < 0.695) .10 
2 (>= -0.457, < 0.205) .08 2 (>= -0.691, < 0.004) .14 
1 (< -0.457) .10 1 (< -0.691) .18 
Overall Average .08 .12 

Missing Data Rate = 20 Percent 
If Trt=1 If Trt=0 
And Quartile on 
Post-Test Score is 

Then 
Set 
MissProb 
to: 

And Quartile on 
Post-Test Score is 

Then 
Set MissProb to: 

4 (>= 0.865) .14 4 (>= 0.695) .14 
3 (>= 0.205, < 0.865) .17 3 (>= 0.004, < 0.695) .20 
2 (>= -0.457, < 0.205) .17 2 (>= -0.691, < 0.004) .26 
1 (< -0.457) .20 1 (< -0.691) .32 
Overall Average .17 .23 

Missing Data Rate = 30 Percent 
If Trt=1 If Trt=0 
And Quartile on 
Post-Test Score is 

Then 
Set 
MissProb 
to: 

And Quartile on 
Post-Test Score is 

Then 
Set MissProb 
to: 

4 (>= 0.865) .22 4 (>= 0.695) .22 
3 (>= 0.205, < 0.865) .26 3 (>= 0.004, < 0.695) .30 
2 (>= -0.457, < 0.205) .26 2 (>= -0.691, < 0.004) .38 
1 (< -0.457) .30 1 (< -0.691) .46 
Overall Average .26 .34 
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Missing Data Mechanism for Schools 
In some RCTs, the missing data problem results from a lack of cooperation from schools 
and districts. Therefore, to account for this possibility, we ran a set of simulations under 
the assumption that data were missing for either 5 percent or 40 percent of schools— 
instead of for 5 percent or 40 percent of students within each school. The process used 
to generate missing values for all students in selected schools was largely parallel to the 
process used to generate missing values for selected students in each school. 

However, for schools, the process for setting the missing data indicator to “1” operated at 
the school level. When school had a value of “1” on the missing data indicator, all 
pretest or all post-test scores within that school were set to missing. For example, for 
Scenario 1, the probability of missing data for an entire school was set to 4 percent for 
treatment schools and 6 percent for control schools. Within those schools—if picked as 
missing data cases---all pretest scores or all post-test scores were set to missing. For 
Scenarios II and III, quartiles were created from school-level means of pretest scores or 
post-test scores. However, the missing data probabilities were set to exactly the same 
values as shown in the previous section for missing students within schools. 

Missing Data Methods 
The following missing data methods were tested in the simulations under each of the 
missing data scenarios described in the previous section: 

� Case deletion, 

� Dummy variable adjustment, 

� Mean value imputation, 

� Non-stochastic regression imputation, 

� Single stochastic regression imputation, 

� Multiple stochastic regression imputation, 

� Maximum Liklihood─EM algorithm with multiple imputation, 

� Simple weighting, 

� Sophisticated weighting, and, 

� Fully-specified regression models with treatment/covariate interactions. 

Case Deletion 
Case deletion means simply that, if there is a missing value for any variable used in the 
model, the entire observation (student or school) is omitted from the analysis. This 
method is also known as complete case analysis because only observations that have 
complete data (no missing values) for every variable in the model are used in the 
analysis. 

Therefore, regardless of whether we are missing pretest scores or post-test scores, and 
regardless of whether data are missing for students within schools or for entire schools, 
we implemented case deletion by dropping the cases with missing values. 
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To estimate the treatment effect once cases had been deleted, we estimated either Model 
A or Model B, as described in the Generic Analysis Plan presented earlier in this 
appendix. When pretest score was missing for a fraction of the sample, we estimated 
Model B.  When post-test score was missing for a fraction of the sample, the model we 
estimated depended on whether pretest scores were available or unavailable: 

� When pretest scores were available, we estimated Model B. 

� When pretest scores were unavailable, we estimated Model A. 

Dummy Variable Adjustment (Missing Pretest Scores Only) 
The dummy variable adjustment required the creation of two new variables, Y .dvPre,ij , and 
Dummy ij , defined as follows: 
Y .dvPre,ij	  = Ymiss Pre,ij  if Ymiss Pre,ij is non-missing
 = 0 if  Ymiss Pre,ij is missing 
      
Dummy	 ij	  = 1 if  Ymiss Pre,ij is missing

= 0 if  Ymiss Pre,ij is non-missing

The analytical model used to estimate the treatment effect is similar to Model B, but the 
true value of the pretest is replaced by Y .dvPre,ij , and the dummy variable Dummy ij  is 
added to the model, as shown below: 

YPost,ij = β 0	 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β 3 (HiRisk _ cenij ) + β 4 (Y .dvPre,ij ) + β 5 (Dummy ij ) +ε ij 
 
Mean Value Imputation 
 

Missing Pretest Scores  
When pretest scores are missing for a fraction of the sample, mean value imputation 
involves replacing the missing values of the pretest score with the mean of the non-
missing values of the pretest score for students in the same group (treatment or control). 
The data were first divided into the two groups—the treatment group and the control 

group. In the treatment group, the variable Ymiss Treat.Pre, ij  was created as the mean of all 
non-missing values ofYmiss Pre,ij . Similarly, for the control group, the variable 

YmissControl.Pre,ij  was created as the mean of all non-missing values of Ymiss Pre,ij . 
Finally, the variable Y .mv Pre,ij , was created as:
 
Y .mv Pre,ij	  = Ymiss Pre,ij  if Ymiss Pre,ij is non-missing 

= if Ymiss is missing and the student is inYmiss Treat.Pre, ij  Pre,ij 
treatment group 

= Ymiss Control.Pre,ij if Ymiss Pre,ij is missing and the student is in control
group 
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The analytical model used to estimate the treatment effect is similar to Model B, but 
where the pretest variable with missing values is replaced by Y .mvPre,ij , as shown below: 

YPost,ij = β 0 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β 3 (HiRisk _ cenij ) + β 4 (Y .mvPre,ij ) +ε ij  

Missing Post-test Scores 
When post-test scores are missing for a fraction of the sample, mean value imputation is 
conducted just as we conducted it for missing pretest scores. For each group, treatment 
and control, we replaced the missing post-test values by the mean of the non-missing 
post-test score for students in the same group—that is, separately for the treatment and 
control groups—to create the outcome variable Y .mvPost,ij . 

For the simulations where we assumed pretest scores were available for the entire sample, 
the analytical model used to estimate the treatment effect is similar to Model B, but the 
true value of the post-test is replaced by Y .mvPost,ij , as shown below:  

Y .mv = β + α + β ( Trt ) + β ( Female _ cen ) + β ( HiRisk _ cen ) + β ( Y ) + εPost,ij 0  0 j  1 j  2 ij  3 ij  4  Pre,ij ij 

 

For the simulations where we assumed pretest scores were not available for any sample 
members, the analytical model used to estimate the treatment effect is similar to Model 
A, but the post-test variable with missing values is replaced by Y .mvPost,ij , as shown 
below: 

Y .mv = β + α + β (Trt ) + β ( Female _ cen ) + β ( HiRisk _ cen ) + εPost,ij 0 0 j 1 j  2 ij  3 ij ij  

Non-stochastic Regression Imputation 
This method involves the replacement of missing values with predicted values from 
regression models. First we describe our approach to imputing values and analyzing the 
data when data were missing for students within schools; then we describe our approach 
to imputing values and analyzing the data when data are missing for entire schools. 

 
Missing Pretest Scores for Students Within Schools  

The data were first divided into the two groups—the treatment group and the control 
group. For the treatment group, we fit an imputer’s model with the following form: 

29 

YmissPre,ij = β + β (Female _ cenij ) + β (HiRisk _ cenij ) + β (YPostij ) +∑β +1 2 3 4+ j Sch j ε0 ij  
j =1 

where Schj  =1 if student is in school j, and = 0 else. Note the use of school fixed effects 
(e.g., school dummy variables) in this imputer’s model instead of the random intercept 
terms for schools that are used in the analytical model used to estimate the treatment 
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effect. This approach is consistent with the recommendations in Reiter, Raghunathan, and 
Kinney (2006).82    

For treatment students, we obtained a predicted value of the pretest score as: 
29
 

ŶTreat.Pre, = β̂ + β̂ 
0 1 (Female _ cen ˆ ˆ

ij ij ) + β 2 (HiRisk _ cen 

ij ) + β 3 (YPostij ) +∑β 4+ j Sch j  

j=1 

For control students, we estimated the same imputers model estimated for treatment 
students: 

59 

Ymiss ij = β
*
0 + β

* 
1 (Female _ cen * * * *

Pre, ij ) + β2 (HiRisk _ cenij ) + β3 (YPostij) + ∑β4+ jSch j +ε ij  
j=30 

Then we used this model to produce predicted pretest scores for control students. Note 
that we put stars on parameters and estimates to emphasize that the model estimates for 
the control group are not identical to the model estimates for the treatment group: 

59
 

Ŷ  ˆ *
Control.Pre,ij = β0 + β̂

* ˆ ˆ ˆ
1 (Female _ cen ) + * 

ij β 2 (HiRisk _ cenij ) + β
*  3 (Y ) *

Postij ∑β 

4+ j Sch j  

j=30 

Finally, we created a new variable, Y .nriPre,ij , defined as follows: 

Y .nri Pre,ij  = Ymiss Pre,ij  if Ymiss Pre,ij Is non-  
missing 

= Ŷ  
Treat.Pre,ij  if Ymiss Pre,ij is missing and the student is in treatment

group 

= Ŷ  
Control.Pre,ij  if Ymiss Pre,ij is missing and the student is in control

group 
The analytical model used to estimate the treatment effect is similar to Model B, but the 
pretest variable with missing values is replaced byY .nriPre,ij , as shown below: 

 YPost,ij = β0 +α0 j + β1 (Trt j ) + β2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β4 (Y .nriPre,ij ) + ε ij  
 

Missing Pretest Scores for Entire Schools  

When schools had missing pretest scores (i.e., every student within a school had missing 
pretest values), we aggregated data to the school level, then used non-stochastic 
regression imputation to obtain predicted values of school-level mean pretest scores, then 
replaced the missing, school-level mean pretest scores with the imputed values, and then 
conducted impact analyses using the school-level aggregate data. We describe this 
process in more detail below. 

82 We conducted a set of simulations where the imputer’s model included school random intercepts instead of school 
fixed effects. From this exercise, we found that the models with school fixed effects yielded more accurate standard 
error estimates than the models with school random effects.  Therefore, in Section 4 and in Appendix E, we present 
results from the models that included school fixed effects. 
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For each school, the following school-level means were created from the observed (non-
missing) student-level data: 

= the mean of YmissPr e.ij over all students in school j (i.e., theYmissPre.j 
school-level mean pretest score for schools with non-missing 
pretest scores) 

= the mean of YPost.ij  over all students in school j (i.e., school-YPost.j 
level mean post-test score) 

= the mean of Female_ Cenij over all students in school j (i.e., theFemale _ cen.j 
proportion of students in the school who are female) 

= the mean of HiRisk _ Cenij over all students in school j (i.e., theHiRisk _ cen.j 
proportion of students in the school who are at high-risk) 

For the treatment group, we fit an imputer’s model of the following form: 

Ymiss = β + β Female _ cen j ) + β HiRisk _ cen j ) + β Y + εPre.j 0 1 ( . 2 ( . 3 ( Post.j ) j 

Then we computed the predicted value from the regression for each school: 

ŶTreat.Pre.j = β̂0 + β̂1 (Female _ cen . j ) + β̂2 (HiRisk _ cen . j ) + β̂3 (YPost.j) 

For the control group, we repeated the same steps. More specifically, we fit an imputer’s 
model of the following form: 

* * * * Ymiss = β + β (Female _ cen j ) + β (HiRisk _ cen j ) + β Y + εPre.j 0 1 . 2 . 3 ( Post.j ) j 

The stars on the betas emphasize that the model estimates for the control group are not 
identical to the model estimates for the treatment group. For control schools, we 
computed the predicted value from the regression for each school: 

* * * * Ŷ = β̂ + β̂ (Female _ cen j ) + β̂ (HiRisk _ cen j ) + β̂ ( )Control.Pre.j 0 1 . 2 . 3 YPost. j 

Finally, we created a new pretest variable, Y .nriPre.j as follows 

Y .nri = YmissPre.j 
if YmissPre.j 

is non-
Pre.j 

missing 

= Ŷ if is missing and the student is in treatment
Treat.Pre.j YmissPre.j 

group 

= Ŷ if is missing and the student is in control
Control.Pre.j YmissPre.j 

group 

The analytical model used to estimate the treatment effect is different from the Model B 
because the data has been aggregated to the school level.  Therefore, we estimate a 
school-level analysis model, as shown below: 

YPost.j = β 0 + β1 (Trt j ) + β 2 (Female _ cen j ) + β3 (HiRisk _ cen j ) + β 4 (Y .nriPre.j ) + ε j 
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Missing Post-test Scores for Students Within Schools  

For missing post-test scores for students within schools, we took an almost identical 
approach to the imputation approach described earlier for addressing missing pretest 
scores for students within schools. However, instead of using the post-test to impute the 
pretest, we used the pretest to impute the post-test. The resulting outcome measure 
Y .nriPost,ij equals the true value when it is observed and the imputed value when the true 
value is missing. 

For the simulations where we assumed pretest scores were available for the entire sample, 
the analytical model used to estimate the treatment effect is similar to Model B, but the 
post-test variable with missing values is replaced by Y .nriPost,ij , as shown below: 

Y .nriPost,ij = β 0 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β 4 (YPre,ij ) + ε ij  

For the simulations where we assumed pretest scores were not available for any sample 
members, the analytical model used to estimate the treatment effect is similar to Model 
A, but the post-test variable with missing values is replaced by Y .nriPost,ij , as shown 
below: 

Y .nriPost,ij = β0 +α0 j + β1 (Trt j ) + β2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + ε ij  
 

Missing Post-test Scores for Entire Schools  

For missing post-test scores for entire schools, we took an almost identical approach to 
the imputation approach described earlier for addressing missing pretest scores for entire 
schools—except that we used the school’s mean pretest score to impute the school’s 
mean post-test score, instead of the reverse. 

When pretest data are available, the analytical model used to estimate the treatment effect 
is different from the Model B because the data has been aggregated to the school level.  
Therefore, we estimate a school-level analysis model, as shown below: 
Y .nriPost.j = β + β (Trt j ) + β (Female _ cen j ) + β (HiRisk _ cen j ) + β0 1 2 3 4 (YPre.j) + ε j  

When pretest data are not available, the analytical model used to estimate the treatment 
effect is different from the Model A—again because the data has been aggregated to the 
school level. Therefore, we estimate a school-level analysis model, as shown below: 
Y .nriPost.j = β + β 0 1 (Trt j ) + β 2 (Female _ cen j ) + β (HiRisk _ cen j ) + ε3 j  

Single Stochastic Regression Imputation 
Missing Pretest Scores for Students Within Schools  

When pretest data are missing for students within schools, the procedure we used for 
implementing single stochastic regression imputation builds on the procedures we used 
for implementing non-stochastic regression imputation. However, in single stochastic 
regression imputation, a randomly selected residual is added to the predicted value from 
the imputer’s model. For the treatment group, we fit the same imputer’s model as for 
non-stochastic regression imputation; generate predicted values from the model, ŶTreat.Pre,ij ;
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use the model to generate level-1 residuals, rij ; and create a new outcome variable 
Y .sriPre,ij . This new outcome variable equals the true value when it is observed, and it 
equals ŶTreat.Pre,ij + rij when the true value is missing, where rij is a randomly selected 
residual. Finally, we repeat the process separately for the control group. 

The analytical model used to estimate the treatment effect is similar to Model B, but the 
pretest variable with missing values is replaced by Y .sriPre,ij , as shown below: 

YPost.ij = β0 +α0 j + β1 (Trt j ) + β2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β4 (Y .sriPre,ij ) + ε ij 

Missing Pretest Scores for Entire Schools 

When pretest data are missing for entire schools, the procedure for implementing single 
stochastic regression imputation is almost the same as that described earlier for non-
stochastic regression imputation—except that a randomly selected residual is added to the 
predicted value. For the treatment group, we create a file of school-level means; fit the 
same school-level imputer’s model; generate predicted values from the model for each 
treatment school, Ŷ ; use the model to generate school-level residuals, rj

k . WeTreat.Pre.j 

repeat this process for the control group to generate predicted values from the model for 
each control school, Ŷ  and school-level residuals rj

l* .Control.Pre.j 

From these estimates, a new pretest variable is created as follows; 

= if is non-Y .sriPre.j YmissPre.j YmissPre.j 
missing 

k= Ŷ rj 
if is missing and student is in

Treat.Pre.j + YmissPre.j 
treatment group 

= Ŷ + rj
l* if is missing and student is in

Control.Pre.j YmissPre.j 
control group 

where rj
k is a randomly selected residual from the treatment group, and rj

l* is a randomly 

selected residual from the control group. 


The analytical model used to estimate the treatment effect was of the form: 


YPost.j = β0 + β1 (Trt j ) + β2 (Female _ cen j ) + β3 (HiRisk _ cen j ) + β (Y .sri ) + ε j4 Pre.j 

Missing Post-test Scores for Students within Schools 

When post-test data are missing for students within schools, the procedure we used for 
implementing single stochastic regression imputation builds on the procedures we used 
for implementing non-stochastic regression imputation. However, in single stochastic 
regression imputation, a randomly selected residual is added to the predicted value from 
the imputer’s model. For the treatment group, we fit the same imputer’s model as for 
non-stochastic regression imputation, which uses pretest scores to impute post-test 
scores; generate predicted values from the model, Ŷ ; use the model to generateTreat.Post,ij 
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level-1 residuals, rij ; and create a new outcome variable Y .sri Post,ij . This new outcome
variable equals the true value when it is observed, and it equals ŶTreat.Post,ij + rij when the 
true value is missing, for a randomly selected residual rij . Finally, we repeat the process
separately for the control group. 

For scenarios where pretest data were available, the analytical model used to estimate the 
treatment effect was of the form: 

 Y .sriPost,ij = β 0 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β 4 (YPre,ij ) + ε ij  

For scenarios where pretest data were not available, the analytical model used to estimate 
the treatment effect was of the form: 

 Y .sriPost,ij = β 0 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + ε ij  
 

Missing Post-test Scores for Entire Schools  

An analogous imputation procedure to that described for missing pretest scores of entire 
schools was used. To obtain imputed values for the treatment group, we create a file of 
school-level means; fit a school-level imputer’s model to predict post-test school means; 
generate predicted values from the model for each treatment school; use the model to 
generate residuals; add residuals to predicted values to obtain imputed values; and replace 
missing values with imputed values. The process is repeated for the control group. 

For scenarios where pretest data were available, the analytical model used to estimate 
treatment impact was of the form: 

 Y .sriPost.j = β0 + β1 (Trt j ) + β2 (Female _ cen j ) + β3 (HiRisk _ cen j ) + β4 (YPre.j ) + ε j  

For scenarios where pretest data were not available, the analytical model used to estimate 
treatment impact was of the form: 

Y .sriPost.j = β0 + β1 (Trt j ) + β2 (Female _ cen j ) + β3 (HiRisk _ cen j ) + ε j  

Multiple Stochastic Regression Imputation 
Multiple stochastic regression imputation is conducted in the same manner as single 
stochastic regression imputation, except that we produced five imputed values for each 
missing value.83  Because each imputed value is created by randomly generating a 
residual and adding it to the imputation model’s predicted value for the missing case, the 
five imputed values will be slightly different. Analysis of the five data sets produce five 
estimates of the treatment effect, which we will denote as β̂ 1 , β̂ 2 , β̂ 3

1 1 1 , β̂ 4 , β̂ 5 
1 1 . The overall

treatment effect is computed as the mean of the five estimates. The standard error is 
computed as function of the standard error of each estimate, and the variation in the 
estimates across the five replications. For more details, see Chapter 3. 

83 The literature suggests that 5-10 imputations is adequate (see Rubin 1987, 1996 and Little & Rubin, 2002). 
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Missing Pretest Scores for Students Within Schools  

For our implementation of multiple stochastic regression imputation, we used SAS’s 
PROC MI to generate the imputed values, and SAS’s PROC MIANALYZE to fit the 
analytical model to the data sets with the imputed values. One detail of our use of PROC 
MI to generate the imputed values is worthy of note. There is no way to fit a two-level 
hierarchical linear model (HLM) in PROC MI. Therefore, to approximate the two-level 
HLM model in our imputation model, we used fixed effects dummy variables for schools, 
in place of the random intercept terms that we used in the impact analysis models. 

For the treatment group, we used PROC MI to fit an imputers model of the form: 
29 

YmissPre,ij = β + β0 1 (Female _ cenij ) + β2 (HiRisk _ cenij ) + β3 (YPostij ) +∑Sch j +ε ij  
j=1 

where Schj  =1 if student is in school j, and = 0 otherwise. We fit a model of the same 
form to the data from control group members. PROC MI then generates predicted values, 
and rather than sampling a residual, generates a residual from a normal distribution with 
mean 0 and variance equal to the estimated variance of ε ij . The generated residual is 
added to the predicted value to obtain an imputed value, which we will denote as 
Ŷ  r k 

ij if student is in treatment group, and as Ŷ 
Control.Pre.j + rl*

Treat.Pre,ij + j , if student is in control 
group. 

As in single stochastic regression imputation, we define 

 
Y .mriPre,ij  = Ymiss Pre,ij  if Ymiss Pre,ij	  is non-
  

missing 


= Ŷ  k
Treat.Pre,ij + rij  if Ymiss Pre,ij  is missing 	 and the student is in 

treatment group 

= ŶControl.Pre,ij + r l* 
ij  if Ymiss Pre,ij  is missing 	 and the student is in 

control group 

where rk * 
j is a randomly selected residual from the set rj , and r l

j is a randomly selected 
residual from the set r*

j . 

For each of the five data sets produced, the analytical model used to estimate the 
treatment effect was of the form: 

YPost,ij = β +α + β0 0 j 1 (Trt j ) + β2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β4 (Y .mriPre,ij ) +ε ij 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

 
Missing Pretest Scores for Entire Schools  

As described for non-stochastic and single stochastic regression imputation, data were 
aggregated to the school level to produce school-level means and imputation and impact 
analyses were conducted on the school-level data sets. We used SAS’s PROC MI to fit 
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the imputer’s model, and SAS’s PROC MIANALYZE to fit the analytical models to 
estimate impacts. The analytical model to estimate the treatment effect was of the form: 

YPost.j = β + β (Trt j ) + β (Female_ cen j ) + β (HiRisk _ cen j ) + β (Y .mriPre.j) +ε j0 1 2 3 4 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Missing Post-test Scores for Students Within Schools 

An analogous imputation procedure to that described for missing pretest scores of 
students was used. For scenarios where pretest data were available, the analytical model 
used to estimate the treatment effect was of the form: 

Y .mriPost,ij = β0 +α0 j + β1 (Trt j ) + β2 (Female_ cenij ) + β3 (HiRisk _ cenij ) + β4 (YPre,ij ) +ε ij 

For scenarios where pretest data were not available, the analytical model used was of the 
form: 

Y .mriPost,ij = β +α + β (Trt j ) + β (Female_ cenij ) + β (HiRisk _ cenij ) +ε0 0 j 1 2 3 ij 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Missing Post-test Scores for Entire Schools 

An analogous imputation procedure to that described for missing pretest scores fpr entire 
schools was used. As before, data were aggregated to the school level to produce school-
level means, and imputation and the impact analyses were conducted on the school-level 
data sets. We used SAS’s PROC MI to fit the imputer’s model, and SAS’s PROC 
MIANALYZE to fit the analytical models to estimate impacts. For scenarios where 
pretest data were available, the analytical model used was of the form: 

Y .mriPost.j = β0 + β1 (Trt j ) + β2 (Female_ cen j ) + β3 (HiRisk _ cen j ) + β4 (YPre.j) + ε j 

For scenarios where pretest data were not available, the analytical model used was of the 
form: 

Y .mriPost.j = β + β (Trt j ) + β (Female_ cen j ) + β (HiRisk _ cen j ) +ε j0 1 2 3 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Maximum Liklihood─EM Algorithm with Multiple Imputation 
The EM algorithm with multiple imputation method was implemented in a manner very 
similar to that described for multiple stochastic regression imputation. The difference 
being that in the latter the imputed values were the predicted values from a regression 
model, and in the EM approach, the EM algorithm was used to obtain imputed values. In 
both approaches we generated five imputed data sets, and in both a random residual was 
added to each predicted value such that the imputed values in each of the five data sets 
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would be slightly different from one another. Analysis of the five data sets produced five 
estimates of the treatment effect, which we denote as β̂ 1 ˆ 2

1 , β1 , β̂ 3 ˆ 4 ˆ 5 
1 , β1 , β1 . The overall

treatment effect is computed as the mean of the five estimates. The standard error is 
computed as function of the standard error of each estimate, and the variation in the 
estimates across the five replications. For more details, see Chapter 3. 
 

Missing Pretest Scores for Students Within Schools  

For our implementation of the EM algorithm with multiple imputation, we used SAS’s 
PROC MI to generate the imputed values and SAS’s PROC MIANALYZE to fit the 
analytical model to the data sets with the imputed values. As described previously, there 
is no way to specify the two-level hierarchical data structure (students nested in schools) 
in PROC MI. Therefore, to represent the two-level data structure in the implementation 
of the EM algorithm, we used fixed effects dummy variables for schools in place of the 
random intercept terms that we used in the impact analysis models. 

For the treatment group, we entered the following variables into the EM algorithm: 

YmissPre,ij 

Female _ cenij 

HiRisk _ cenij  
YPostij 

Sch 1, Sch 2 ,..., Sch29 

where Schj  =1 if student is in school j, and = 0 otherwise. We separately entered data for 
control group members into the EM algorithm. The same variables were entered, except 
the school dummies corresponded to the control group schools. PROC MI used the EM 
algorithm to generate predicted values and added a randomly generated residual to the 
predicted value to obtain an imputed value. We denote the imputed value as Ŷ k 

Treat.Pre,ij + rij  
if student is in treatment group, and as ŶControl.Pre.j + rl*

j , if student is in control group. 

As in multiple stochastic regression imputation, we define 

Y .emmi Pre,ij  = Ymiss Pre,ij  if Ymiss Pre,ij  is non-  
missing 

= Ŷ 
Treat.Pre,ij + r k 

ij  if Ymiss Pre,ij  is missing and the student is in
treatment group 

= Ŷ 
Control.Pr ij + l* 

e, rij  if Ymiss Pre,ij  is missing and the student is in
control group 

where rk 
j is a randomly selected residual from the set rj , and r l* 

j is a randomly selected 
residual from the set r*

j . 
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For each of the five data sets produced, the analytical model used to estimate the 
treatment effect was of the form: 

YPost,ij = β0 +α0 j + β1 (Trt j ) + β2 (Female _ cenij ) + β3 (HiRisk _ cenij ) + β4 (Y .emmiPre,ij ) + ε ij 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Missing Pretest Scores for Entire Schools 

As described for the regression imputation methods, data were aggregated to the school 
level to produce school-level means, and imputation and impact analyses were conducted 
on the school-level data sets. We used SAS’s PROC MI to implement the EM algorithm, 
and SAS’s PROC MIANALYZE to fit the analytical models to estimate impacts. The 
analytical model to estimate the treatment effect was of the form: 

YPost.j = β +α + β (Trt j ) + β (Female _ cen j ) + β (HiRisk _ cen j ) + β (Y .emmiPre.j ) +ε0 0 j 1 2 3 4 j 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Missing Post-test Scores for Students Within Schools 

An analogous EM imputation procedure to that described for missing pretest scores of 
students was used. For scenarios where pretest data were available, the analytical model 
used to estimate the treatment effect was of the form: 

Y .emmiPost,ij = β +α + β (Trt j ) + β (Female_ cenij ) + β (HiRisk _ cenij ) + β (YPre,ij ) +ε0 0 j 1 2 3 4 ij 

For scenarios where pretest data were not available, the analytical model used was of the 
form: 

Y emmiPost,ij = β0 +α + β1 (Trt j ) + β2 (Female_ cen ) + β3 (HiRisk _ cenij ) +ε ij. 0 j ij 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Missing Post-test Scores for Entire Schools 

An analogous EM imputation procedure to that described for missing pretest scores for 
entire schools was used. As before, data were aggregated to the school level to produce 
school-level means, and imputation and impact analyses were conducted on the school-
level data sets. We used SAS’s PROC MI to fit the imputer’s model, and SAS’s PROC 
MIANALYZE to fit the analytical models to estimate impacts. For scenarios where 
pretest data were available, the analytical model used was of the form: 

Y .emmiPost.j = β0 +α0 j + β1 (Trt j ) + β2 (Female _ cen j ) + β3 (HiRisk _ cen j ) + β4 (YPre.j ) +ε j 
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For scenarios where pretest data were not available, the analytical model used was of the 
form: 

Y .emmiPost.j = β0 +α0 j + β1 (Trt j ) + β2 (Female _ cen j ) + β3 (HiRisk _ cen j ) +ε j 

The estimates from the five impact models were combined, as described in Chapter 3, to 
obtain the overall impact estimate and its standard error. 

Fully-Specified Regression Models with Treatment/Covariate Interactions 
Missing Post-test Scores for Students or Entire Schools 

To implement this approach, we calculated the sample centered value of the pretest score 
by subtracting the sample mean of the pretest from the pretest score for each student: 

* = the mean ofYPre,ij YPre,ij 

*YsampCenPre,ij =YPre,ij -YPre,ij . The mean of YsampCenPre,ij  is zero. 

The analysis model is of the form:84 

Ymiss Post,ij = β 0 +α 0 j + β1 (Trt j ) + β 2 (Female _ cenij ) + β 3 (HiRisk _ cenij ) + 

β 4 (YsampCen Pre,ij ) + β 5 (Trt j *YsampCen Pre,ij ) + ε ij 

and β̂1 is the estimate of the average treatment effect.85 

Simple Weighting Approach 
We use weighting to deal with missing post-test data only. Simple weighting can only be 
used when data are missing for students within schools, since it uses the non-missing 
cases in a school to represent the missing cases. With data missing for entire schools 
there are no non-missing to use. 

Missing Post-test Scores for Students 

For this method, in each school, respondents are simply weighted up to the total number 
of students sampled from the school. 

Let N j be the number of students sampled in the jth school, and let n j , be the number 
respondents in the the jth school (i.e, the number of students with non-missing post-test 
scores). Within each school, each student with a non-missing post-test score is assigned a 

weight equal to wij = 
N j ; each student with a missing post-test score is assigned a weight 
n j 

of 0. Thus, for each school, the sum of the student weights will equal the number of 
students selected in the sample from that schools ( N j ). For example, if 60 students were 
sampled in school j and 40 students had non-missing post-test scores, each of the 40 

84 This method assumes the pretest is available, so only one model is specified.

85 Ordinarily, the fully specified regression model would have interaction terms between the treatment 

dummy variable and all of the baseline covariates in the model, not just some of them as shown here. 

Iinteractions of the treatment dummy and the female and risk covariates were not entered into the model 

here because in our synthetic data impact does not vary with these factors. 
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students would be assigned a weight equal to 60/40. The sum of the weights over the 40 
respondents equals the size of the original sample. 

Using the WEIGHT statement, the following models were fit to the data using SAS 
PROC MIXED.86  For scenarios where pretest data were available, a weighted version of 
Model B was used to estimate the treatment effect, where the weight was set to wij (as
defined in above). For scenarios where pretest data were not available, a weighted 
version of Model A was used to estimate the treatment effect, where the weight was set to 
wij . 

More Sophisticated Weighting Approach 
Missing Post-test Scores for Students or Entire Schools  

Like the simple weighting approach described above, in this method we created weights 
for each respondent, then fit the same models as specified above to the complete cases, 
but applied the weights to the data using the weight statement in SAS PROC MIXED.  
The procedure for calculating the weights under the more sophisticated approach was as 
follows: 

1. 	 Estimate a logit model of response as a function of (1) dummy variables for 59 of the 
schools, (2) sex and race/ethnicity, and (3) pretest. 

2. 	 Using the model to compute estimated response probabilities for each student. 

3. 	 Divide the entire sample—including both respondents and nonrespondents—into 
quintiles based on the estimated response probability. 

4. 	 Compute the response rate (between 0 and 1) for each quintile. 

5. 	 Set the weight wij for each student to the inverse of the response rate for all students
in the same quintile. This effectively creates five different weights—one for all 
students in each quintile: w 1	, w 2 , w 3 , w 4 , and w 5 .

For scenarios where pretest data were available, a weighted version of Model B was used 
to estimate the treatment effect, where the weight was set to wij . For scenarios where
pretest data were not available, a weighted version of Model A was used to estimate the 
treatment effect, where the weight was set to wij .
 

86 In estimating the standard errors, we did not account either for the variation in the weights across sample members or 
for the sampling variability in the model estimates used to compute the weights.  In principal, failure to account for 
these sources of variation should lead us to underestimate the standard error of the treatment effect.  However, our 
simulation results suggest that the size of the bias in the estimated standard errors is very small (see third figure from 
each exhibit in Chapter 4). Therefore, while these corrections may be generally advisable with weighted data, we 
concluded that they were unnecessary for these simulations. 
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Appendix D: Full Set of Simulation Results  

 
This appendix presents all tables of estimates produced in conducting the simulations 
reported in Chapter 4 and described in more detail in Appendix C. For these simulations, 
we generated 1,000 data sets, each with its own pattern of missing data . By letting 
missing data occur at random (within defined probabilities) many many times, and then 
averaging statistical results across the 1,000 data sets, we ensure the robustness of the 
simulation findings—and of the conclusions drawn from those findings concerning the 
performance of the different missing data methods examined. Multiple replications also 
give us distributions for the impact estimates and their standard errors, reflective of the 
sampling variability built into the data (and present in real data). 
 
As described in Appendix C, different scenarios are used in the simulations, defined by 
(a) the nature of the missing data mechanism; (b) the missing data rate (5 percent or 40 
percent); and (c) whether data are missing for students within schools or for entire 
schools. Therefore, the appendix contains 12 tables: 

� Four tables for Scenario I (Table I.a.1 – Table I.b.2) 

� Four tables for Scenario II (Table II.a.1 – Table II.b.2) 

� Four tables for Scenario III (Table III.a.1 – Table III.b.2) 
 
Each table consists of two panels: 

1.	  Panel A, which shows the simulations results for situations where the pretest is 
missing for a fraction of the sample. 

2.	  Panel B, which shows the simulations results for situations where the post-test is 
missing for a fraction of the sample. 

The goal of these simulations was to estimate the bias in the impact estimates and 
standard errors from using different approaches to addressing missing data. Since bias is 
defined by the difference between the expected value of the estimator and the true 
parameter value, we estimated the bias in the two key estimates in the following way: 

� Impact estimate.  For the impact estimate, we estimated the bias by subtracting the 
true impact of 0.20 from the average of the impact estimates across the 1,000 
samples. 

� Standard error.  For the estimate of the standard error of the impact estimate, we 
estimated the bias by subtracting an unbiased estimate of the standard error—the 
standard deviation of the 1,000 impact estimates—from the average of the standard 
error estimates across the 1,000 samples. 

Note that each table begins by displaying the estimates from simulations in which none of 
the data were missing. These estimates do not match the true parameter values exactly 
due to random error. For example, the impact estimate with no missing data equals 0.203, 
which differs from the true impact of 0.200. When none of the data are missing, the 
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impact estimates and standard error estimates are unbiased, and the non-zero bias 
estimates are entirely due to sampling error. 
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Table I.a.1: Scenario I, Missing Data Not Dependent on Pretest or Post-test:  
Data Missing for 5% of Students 

Impact Estimate Standard Error of Impact Est. 90% CI 

Pre-test % of Samples in 
Data True Standard Unbiased Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002 Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.886 

Dummy Variable Method No 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.886 

Mean Value Imputation No 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.887 

Single, Non-stochastic No 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.882 

Single, Stochastic No 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.883 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.883 

EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.884 

B. Post-Test (Y) Data Missing 

Case Deletion No 0.200 0.200 0.000 Low Bias 0.086 0.086 0.000 Low Bias 0.895 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.886 

Mean Value Imputation No 0.200 0.200 0.000 Low Bias 0.081 0.086 -0.004 Low Bias 0.876 
Yes 0.201 0.200 0.001 Low Bias 0.059 0.063 -0.004 Low Bias 0.868 

Single, Non-stochastic No 0.200 0.200 0.000 Low Bias 0.086 0.086 0.000 Low Bias 0.896 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.886 

Single, Stochastic No 0.200 0.200 0.000 Low Bias 0.086 0.086 0.000 Low Bias 0.891 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.883 

Multiple, Stochastic No 0.199 0.200 -0.001 Low Bias 0.086 0.086 0.000 Low Bias 0.898 
Regression Imputation (n = 5) Yes 0.200 0.200 0.000 Low Bias 0.062 0.063 -0.001 Low Bias 0.890 

EM Algorithm with Multiple Imputation No 0.200 0.200 0.000 Low Bias 0.086 0.086 0.001 Low Bias 0.899 
(n = 5) Yes 

Weighting - Simple No 0.200 0.200 0.000 Low Bias 0.086 0.086 0.000 Low Bias 0.895 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.886 

Weighting - Sophisticated No 0.200 0.200 0.000 Low Bias 0.086 0.086 0.000 Low Bias 0.896 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.886 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.201 0.200 0.001 Low Bias 0.062 0.063 -0.001 Low Bias 0.888 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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 Pre-test 

Impact Estimate Standard Error of Impact Est. 90% CI 

% of Samples in 
Data  True Standard Unbiased  Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002  Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000  Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.200 0.200 0.000 Low Bias 0.063 0.064 -0.001  Low Bias 0.895 

Dummy Variable Method No 
Yes 0.200 0.200 0.000 Low Bias 0.063 0.064 -0.001  Low Bias 0.889 

 Mean Value Imputation No 
Yes 0.201 0.200 0.001 Low Bias 0.063 0.064 -0.001  Low Bias 0.887 

Single, Non-stochastic No 
Regression Imputation Yes 0.200 0.200 0.000  Low Bias 0.061 0.064 -0.002 Low Bias 0.885 

Single, Stochastic No 
Regression Imputation Yes 0.201 0.200 0.001  Low Bias 0.062 0.065 -0.002 Low Bias 0.886 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.200 0.200 0.000  Low Bias 0.063 0.064 -0.001 Low Bias 0.891 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.200 0.200 0.000 Low Bias 0.063 0.064 -0.001  Low Bias 0.890 

B.   Post-Test (Y) Data Missing 

Case Deletion No 0.199 0.200 -0.001 Low Bias 0.087 0.087 0.000  Low Bias 0.896 
Yes 0.200 0.200 0.000 Low Bias 0.063 0.064 -0.001  Low Bias 0.895 

Mean Value Imputation No 0.199 0.200 -0.001 Low Bias 0.083 0.087 -0.004  Low Bias 0.872 
Yes 0.200 0.200 0.000 Low Bias 0.061 0.066 -0.005  Low Bias 0.873 

Single, Non-stochastic No 0.199 0.200 -0.001  Low Bias 0.083 0.087 -0.004 Low Bias 0.872 
Regression Imputation Yes 0.200 0.200 0.000  Low Bias 0.061 0.064 -0.004 Low Bias 0.880 

Single, Stochastic No 0.198 0.200 -0.002  Low Bias 0.085 0.090 -0.005 Low Bias 0.871 
Regression Imputation Yes 0.199 0.200 -0.001  Low Bias 0.062 0.066 -0.004 Low Bias 0.876 

Multiple, Stochastic No 0.198 0.200 -0.002 Low Bias 0.087 0.087 0.000  Low Bias 0.892 
Regression Imputation (n = 5) Yes 0.199 0.200 -0.001  Low Bias 0.064 0.065 -0.001 Low Bias 0.894 

EM Algorithm with Multiple Imputation No 0.200 0.200 0.000 Low Bias 0.064 0.064 -0.001  Low Bias 0.891 
(n = 5) Yes 

Weighting - Simple No 
Yes 

Weighting - Sophisticated No 
Yes 0.200 0.200 0.000 Low Bias 0.063 0.064 -0.001  Low Bias 0.895 

 Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.200 0.200 0.000  Low Bias 0.063 0.064 -0.001 Low Bias 0.895 

  
     

       
      

   

Table I.a.2: Scenario I, Missing Data Not Dependent on Pretest or Post-test:  
Data Missing for 5% of Schools 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table I.b.1 Scenario I, Missing Data Not Dependent on Pretest or Post-test: 
Data Missing for 40% of Students 

Impact Estimate Standard Error of Impact Est. 90% CI 

Pre-test % of Samples in 
Data True Standard Unbiased Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002 Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.203 0.200 0.003 Low Bias 0.065 0.065 0.000 Low Bias 0.888 

Dummy Variable Method No 
Yes 0.203 0.200 0.003 Low Bias 0.069 0.069 -0.001 Low Bias 0.894 

Mean Value Imputation No 
Yes 0.203 0.200 0.003 Low Bias 0.068 0.065 0.004 Low Bias 0.921 

Single, Non-stochastic No 
Regression Imputation Yes 0.203 0.200 0.003 Low Bias 0.066 0.065 0.000 Low Bias 0.897 

Single, Stochastic No 
Regression Imputation Yes 0.203 0.200 0.003 Low Bias 0.064 0.064 0.000 Low Bias 0.886 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.203 0.200 0.003 Low Bias 0.065 0.064 0.002 Low Bias 0.900 

EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.202 0.200 0.002 Low Bias 0.066 0.064 0.002 Low Bias 0.900 

B. Post-Test (Y) Data Missing 

Case Deletion No 0.204 0.200 0.004 Low Bias 0.089 0.091 -0.002 Low Bias 0.887 
Yes 0.203 0.200 0.003 Low Bias 0.065 0.065 0.000 Low Bias 0.888 

Mean Value Imputation No 0.204 0.200 0.004 Low Bias 0.054 0.092 -0.038 High Bias 0.669 
Yes 0.203 0.200 0.003 Low Bias 0.041 0.073 -0.033 High Bias 0.650 

Single, Non-stochastic No 0.204 0.200 0.004 Low Bias 0.089 0.091 -0.002 Low Bias 0.891 
Regression Imputation Yes 0.203 0.200 0.003 Low Bias 0.065 0.065 0.000 Low Bias 0.889 

Single, Stochastic No 0.205 0.200 0.005 Low Bias 0.091 0.094 -0.003 Low Bias 0.885 
Regression Imputation Yes 0.204 0.200 0.004 Low Bias 0.066 0.067 -0.001 Low Bias 0.888 

Multiple, Stochastic No 0.204 0.200 0.004 Low Bias 0.095 0.092 0.003 Low Bias 0.911 
Regression Imputation (n = 5) Yes 0.203 0.200 0.003 Low Bias 0.069 0.065 0.004 Low Bias 0.905 

EM Algorithm with Multiple Imputation No 0.208 0.200 0.008 Low Bias 0.097 0.092 0.005 Low Bias 0.921 
(n = 5) Yes 0.204 0.200 0.004 Low Bias 0.070 0.066 0.005 Low Bias 0.904 

Weighting - Simple No 0.204 0.200 0.004 Low Bias 0.089 0.091 -0.002 Low Bias 0.889 
Yes 0.203 0.200 0.003 Low Bias 0.065 0.065 0.000 Low Bias 0.889 

Weighting - Sophisticated No 0.204 0.200 0.004 Low Bias 0.089 0.091 -0.002 Low Bias 0.890 
Yes 0.203 0.200 0.003 Low Bias 0.065 0.065 0.000 Low Bias 0.890 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.203 0.200 0.003 Low Bias 0.065 0.065 0.000 Low Bias 0.889 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table I.b.2: Scenario I, Missing Data Not Dependent on Pretest or Post-
 test: Data Missing for 40% of Schools 

 
Impact Estimate Standard Error of Impact Est. 90% CI 

 Pre-test % of Samples in 
Data  True Standard Unbiased  Which 90% CI 

Data 

No Missing Data 

Available? 

No 

Estimate 

0.203 

Impact 

0.200 

Bias 

0.003 

Bias Level 

Low Bias 

Estimate 

0.085 

Estimate 

0.088 

Bias 

-0.002 

Bias Level 

 Low Bias 

Contains .20 

0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000  Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.202 0.200 0.002 Low Bias 0.081 0.080 0.001  Low Bias 0.901 

Dummy Variable Method No 
Yes 0.203 0.200 0.003 Low Bias 0.073 0.075 -0.001  Low Bias 0.893 

 Mean Value Imputation No 
Yes 0.203 0.200 0.003 Low Bias 0.073 0.079 -0.006  Low Bias 0.869 

Single, Non-stochastic No 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.055 0.081 -0.026 High Bias 0.736 

Single, Stochastic No 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.062 0.079 -0.017 High Bias 0.780 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.205 0.200 0.005  Low Bias 0.069 0.074 -0.005 Low Bias 0.871 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.200 0.200 0.000 Low Bias 0.072 0.076 -0.004  Low Bias 0.875 

B.   Post-Test (Y) Data Missing 

Case Deletion No 0.202 0.200 0.002 Low Bias 0.112 0.112 0.000  Low Bias 0.886 
Yes 0.202 0.200 0.002 Low Bias 0.081 0.080 0.001  Low Bias 0.901 

Mean Value Imputation No 0.202 0.200 0.002 Low Bias 0.065 0.112 -0.047 High Bias 0.679 
Yes 0.202 0.200 0.002 Low Bias 0.055 0.097 -0.042 High Bias 0.677 

 Single, Non-stochastic No 0.202 0.200 0.002 Low Bias 0.065 0.112 -0.047 High Bias 0.679 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.048 0.082 -0.034 High Bias 0.674 

 Single, Stochastic No 0.205 0.200 0.005 Low Bias 0.083 0.129 -0.046 High Bias 0.694 
Regression Imputation Yes 0.203 0.200 0.003 Low Bias 0.060 0.095 -0.034 High Bias 0.702 

Multiple, Stochastic No 0.195 0.200 -0.005 Low Bias 0.107 0.114 -0.007  Low Bias 0.863 
Regression Imputation (n = 5) Yes 0.196 0.200 -0.004  Low Bias 0.077 0.084 -0.007 Low Bias 0.853 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.204 0.200 0.004 Low Bias 0.085 0.083 0.002  Low Bias 0.878 

Weighting - Simple No 
Yes 

Weighting - Sophisticated No 
Yes 0.202 0.200 0.002 Low Bias 0.081 0.080 0.001  Low Bias 0.899 

 Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.202 0.200 0.002  Low Bias 0.081 0.080 0.001 Low Bias 0.900 

  
     

       
      

   

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table II.a.1: Scenario II, Missing Data Dependent on Pretest: Data Missing 
for 5% of Students 

Impact Estimate Standard Error of Impact Est. 90% CI 

Pre-test % of Samples in 
Data True Standard Unbiased Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002 Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.062 0.000 Low Bias 0.889 

Dummy Variable Method No 
Yes 0.208 0.200 0.008 Low Bias 0.062 0.063 -0.001 Low Bias 0.884 

Mean Value Imputation No 
Yes 0.213 0.200 0.013 Low Bias 0.062 0.063 -0.001 Low Bias 0.878 

Single, Non-stochastic No 
Regression Imputation Yes 0.206 0.200 0.006 Low Bias 0.062 0.062 -0.001 Low Bias 0.883 

Single, Stochastic No 
Regression Imputation Yes 0.206 0.200 0.006 Low Bias 0.062 0.062 0.000 Low Bias 0.881 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.207 0.200 0.007 Low Bias 0.062 0.062 -0.001 Low Bias 0.881 

EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.206 0.200 0.006 Low Bias 0.062 0.062 0.000 Low Bias 0.884 

B. Post-Test (Y) Data Missing 

Case Deletion No 0.191 0.200 -0.009 Low Bias 0.085 0.089 -0.003 Low Bias 0.883 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.062 0.000 Low Bias 0.889 

Mean Value Imputation No 0.189 0.200 -0.011 Low Bias 0.081 0.089 -0.008 Low Bias 0.864 
Yes 0.189 0.200 -0.011 Low Bias 0.059 0.063 -0.004 Low Bias 0.869 

Single, Non-stochastic No 0.191 0.200 -0.009 Low Bias 0.086 0.089 -0.003 Low Bias 0.882 
Regression Imputation Yes 0.202 0.200 0.002 Low Bias 0.062 0.062 0.000 Low Bias 0.890 

Single, Stochastic No 0.191 0.200 -0.009 Low Bias 0.086 0.089 -0.003 Low Bias 0.883 
Regression Imputation Yes 0.202 0.200 0.002 Low Bias 0.062 0.062 0.000 Low Bias 0.889 

Multiple, Stochastic No 0.191 0.200 -0.009 Low Bias 0.086 0.089 -0.003 Low Bias 0.884 
Regression Imputation (n = 5) Yes 0.201 0.200 0.001 Low Bias 0.062 0.062 0.000 Low Bias 0.893 

EM Algorithm with Multiple Imputation No 0.191 0.200 -0.009 Low Bias 0.086 0.089 -0.003 Low Bias 0.891 
(n = 5) Yes 0.201 0.200 0.001 Low Bias 0.062 0.062 0.000 Low Bias 0.890 

Weighting - Simple No 0.191 0.200 -0.009 Low Bias 0.086 0.089 -0.003 Low Bias 0.884 
Yes 0.201 0.200 0.001 Low Bias 0.062 0.062 0.000 Low Bias 0.891 

Weighting - Sophisticated No 0.191 0.200 -0.009 Low Bias 0.086 0.089 -0.003 Low Bias 0.884 
Yes 0.202 0.200 0.002 Low Bias 0.062 0.062 0.000 Low Bias 0.891 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.202 0.200 0.002 Low Bias 0.062 0.062 -0.001 Low Bias 0.891 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table II.a.2: Scenario II, Missing Data Dependent on Pretest: Data Missing 
for 5% of Schools 

 Pre-test 

Impact Estimate Standard Error of Impact Est. 90% CI 

% of Samples in 
Data  True Standard Unbiased  Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002  Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000  Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.201 0.200 0.001 Low Bias 0.063 0.064 -0.001  Low Bias 0.891 

Dummy Variable Method No 
Yes 0.203 0.200 0.003 Low Bias 0.063 0.064 -0.001  Low Bias 0.885 

 Mean Value Imputation No 
Yes 0.205 0.200 0.005 Low Bias 0.063 0.064 -0.001  Low Bias 0.889 

Single, Non-stochastic No 
Regression Imputation Yes 0.203 0.200 0.003  Low Bias 0.061 0.064 -0.003 Low Bias 0.874 

Single, Stochastic No 
Regression Imputation Yes 0.204 0.200 0.004  Low Bias 0.062 0.064 -0.002 Low Bias 0.880 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.204 0.200 0.004  Low Bias 0.063 0.064 -0.002 Low Bias 0.883 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.203 0.200 0.003 Low Bias 0.063 0.064 -0.002  Low Bias 0.884 

B.   Post-Test (Y) Data Missing 

Case Deletion No 0.197 0.200 -0.003 Low Bias 0.087 0.091 -0.004  Low Bias 0.883 
Yes 0.201 0.200 0.001 Low Bias 0.063 0.064 -0.001  Low Bias 0.891 

Mean Value Imputation No 0.197 0.200 -0.003 Low Bias 0.083 0.091 -0.008  Low Bias 0.860 
Yes 0.198 0.200 -0.002 Low Bias 0.061 0.066 -0.005  Low Bias 0.877 

Single, Non-stochastic No 0.197 0.200 -0.003  Low Bias 0.083 0.091 -0.008 Low Bias 0.860 
Regression Imputation Yes 0.201 0.200 0.001  Low Bias 0.061 0.065 -0.005 Low Bias 0.866 

Single, Stochastic No 0.197 0.200 -0.003  Low Bias 0.085 0.092 -0.007 Low Bias 0.863 
Regression Imputation Yes 0.201 0.200 0.001  Low Bias 0.062 0.066 -0.004 Low Bias 0.869 

Multiple, Stochastic No 0.197 0.200 -0.003 Low Bias 0.087 0.091 -0.004  Low Bias 0.882 
Regression Imputation (n = 5) Yes 0.201 0.200 0.001  Low Bias 0.064 0.066 -0.002 Low Bias 0.884 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.202 0.200 0.002 Low Bias 0.064 0.066 -0.002  Low Bias 0.882 

Weighting - Simple No 
Yes 

Weighting - Sophisticated No 
Yes 0.202 0.200 0.002 Low Bias 0.063 0.064 -0.001  Low Bias 0.891 

 Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.202 0.200 0.002  Low Bias 0.063 0.064 -0.001 Low Bias 0.892 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table II.b.1: Scenario II, Missing Data Dependent on Pretest: Data Missing 
for 40% of Students 

Impact Estimate Standard Error of Impact Est. 90% CI 

Pre-test % of Samples in 
Data True Standard Unbiased Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002 Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.193 0.200 -0.007 Low Bias 0.065 0.065 0.000 Low Bias 0.887 

Dummy Variable Method No 
Yes 0.238 0.200 0.038 Low Bias 0.068 0.069 -0.001 Low Bias 0.836 

Mean Value Imputation No 
Yes 0.293 0.200 0.093 High Bias 0.068 0.065 0.004 Low Bias 0.622 

Single, Non-stochastic No 
Regression Imputation Yes 0.252 0.200 0.052 High Bias 0.066 0.066 0.000 Low Bias 0.797 

Single, Stochastic No 
Regression Imputation Yes 0.242 0.200 0.042 Low Bias 0.064 0.064 -0.001 Low Bias 0.821 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.242 0.200 0.042 Low Bias 0.065 0.063 0.002 Low Bias 0.834 

EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.241 0.200 0.041 Low Bias 0.066 0.063 0.002 Low Bias 0.835 

B. Post-Test (Y) Data Missing 

Case Deletion No 0.110 0.200 -0.090 High Bias 0.088 0.090 -0.002 Low Bias 0.717 
Yes 0.193 0.200 -0.007 Low Bias 0.065 0.065 0.000 Low Bias 0.887 

Mean Value Imputation No 0.093 0.200 -0.107 High Bias 0.053 0.091 -0.038 High Bias 0.374 
Yes 0.093 0.200 -0.107 High Bias 0.041 0.072 -0.032 High Bias 0.270 

Single, Non-stochastic No 0.113 0.200 -0.087 High Bias 0.089 0.090 -0.002 Low Bias 0.724 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.065 0.065 0.000 Low Bias 0.887 

Single, Stochastic No 0.113 0.200 -0.087 High Bias 0.091 0.093 -0.002 Low Bias 0.727 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.066 0.066 0.000 Low Bias 0.894 

Multiple, Stochastic No 0.112 0.200 -0.088 High Bias 0.095 0.091 0.004 Low Bias 0.751 
Regression Imputation (n = 5) Yes 0.200 0.200 0.000 Low Bias 0.069 0.065 0.004 Low Bias 0.914 

EM Algorithm with Multiple Imputation No 0.112 0.200 -0.088 High Bias 0.096 0.091 0.005 Low Bias 0.761 
(n = 5) Yes 0.201 0.200 0.001 Low Bias 0.070 0.065 0.005 Low Bias 0.908 

Weighting - Simple No 0.112 0.200 -0.088 High Bias 0.089 0.090 -0.002 Low Bias 0.721 
Yes 0.193 0.200 -0.007 Low Bias 0.065 0.065 0.000 Low Bias 0.889 

Weighting - Sophisticated No 0.113 0.200 -0.087 High Bias 0.089 0.090 -0.002 Low Bias 0.724 
Yes 0.200 0.200 0.000 Low Bias 0.065 0.065 0.000 Low Bias 0.886 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.201 0.200 0.001 Low Bias 0.065 0.065 0.000 Low Bias 0.886 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table II.b.2: Scenario II, Missing Data Dependent on Pretest: Data Missing 
for 40% of Schools 

 Pre-test 

Impact Estimate Standard Error of Impact Est. 90% CI 

% of Samples in 
Data  True Standard Unbiased  Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002  Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000  Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.199 0.200 -0.001 Low Bias 0.081 0.082 -0.002  Low Bias 0.888 

Dummy Variable Method No 
Yes 0.213 0.200 0.013 Low Bias 0.073 0.075 -0.002  Low Bias 0.890 

 Mean Value Imputation No 
Yes 0.233 0.200 0.033 Low Bias 0.073 0.078 -0.006  Low Bias 0.837 

Single, Non-stochastic No 
Regression Imputation Yes 0.224 0.200 0.024 Low Bias 0.055 0.083 -0.029 High Bias 0.698 

Single, Stochastic No 
Regression Imputation Yes 0.219 0.200 0.019 Low Bias 0.062 0.081 -0.019 High Bias 0.783 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.215 0.200 0.015  Low Bias 0.078 0.074 0.004 Low Bias 0.908 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.222 0.200 0.022 Low Bias 0.074 0.076 -0.002  Low Bias 0.874 

B.   Post-Test (Y) Data Missing 

Case Deletion No 0.165 0.200 -0.035 Low Bias 0.111 0.114 -0.003  Low Bias 0.873 
Yes 0.199 0.200 -0.001 Low Bias 0.081 0.082 -0.002  Low Bias 0.888 

Mean Value Imputation No 0.165 0.200 -0.035 Low Bias 0.064 0.114 -0.050 High Bias 0.622 
Yes 0.165 0.200 -0.035 Low Bias 0.055 0.099 -0.044 High Bias 0.615 

 Single, Non-stochastic No 0.165 0.200 -0.035 Low Bias 0.064 0.114 -0.050 High Bias 0.622 
Regression Imputation Yes 0.202 0.200 0.002 Low Bias 0.048 0.086 -0.038 High Bias 0.651 

 Single, Stochastic No 0.165 0.200 -0.035 Low Bias 0.083 0.120 -0.037 High Bias 0.710 
Regression Imputation Yes 0.200 0.200 0.000 Low Bias 0.061 0.090 -0.029 High Bias 0.729 

Multiple, Stochastic No 0.170 0.200 -0.030 Low Bias 0.152 0.121 0.031  Low Bias 0.929 
Regression Imputation (n = 5) Yes 0.205 0.200 0.005  Low Bias 0.112 0.092 0.020 Low Bias 0.932 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.194 0.200 -0.006 Low Bias 0.087 0.089 -0.002  Low Bias 0.879 

Weighting - Simple No 
Yes 

Weighting - Sophisticated No 
Yes 0.201 0.200 0.001 Low Bias 0.081 0.082 -0.002  Low Bias 0.891 

 Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.202 0.200 0.002  Low Bias 0.081 0.082 -0.002 Low Bias 0.889 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table III.a.1: Scenario III, Missing Data Dependent on Post-test:  Data 
Missing for 5% of Students 

Impact Estimate Standard Error of Impact Est. 90% CI 

Pre-test % of Samples in 
Data True Standard Unbiased Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002 Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.195 0.200 -0.005 Low Bias 0.062 0.060 0.002 Low Bias 0.898 

Dummy Variable Method No 
Yes 0.204 0.200 0.004 Low Bias 0.062 0.060 0.002 Low Bias 0.904 

Mean Value Imputation No 
Yes 0.210 0.200 0.010 Low Bias 0.062 0.060 0.002 Low Bias 0.900 

Single, Non-stochastic No 
Regression Imputation Yes 0.202 0.200 0.002 Low Bias 0.062 0.060 0.002 Low Bias 0.899 

Single, Stochastic No 
Regression Imputation Yes 0.202 0.200 0.002 Low Bias 0.062 0.060 0.002 Low Bias 0.909 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.202 0.200 0.002 Low Bias 0.062 0.060 0.002 Low Bias 0.902 

EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.202 0.200 0.002 Low Bias 0.062 0.060 0.002 Low Bias 0.904 

B. Post-Test (Y) Data Missing 

Case Deletion No 0.187 0.200 -0.013 Low Bias 0.086 0.084 0.001 Low Bias 0.895 
Yes 0.195 0.200 -0.005 Low Bias 0.062 0.060 0.002 Low Bias 0.898 

Mean Value Imputation No 0.185 0.200 -0.015 Low Bias 0.081 0.084 -0.003 Low Bias 0.876 
Yes 0.186 0.200 -0.014 Low Bias 0.059 0.060 -0.001 Low Bias 0.868 

Single, Non-stochastic No 0.187 0.200 -0.013 Low Bias 0.086 0.084 0.001 Low Bias 0.894 
Regression Imputation Yes 0.196 0.200 -0.004 Low Bias 0.062 0.060 0.002 Low Bias 0.898 

Single, Stochastic No 0.187 0.200 -0.013 Low Bias 0.086 0.085 0.001 Low Bias 0.895 
Regression Imputation Yes 0.195 0.200 -0.005 Low Bias 0.062 0.061 0.002 Low Bias 0.895 

Multiple, Stochastic No 0.188 0.200 -0.012 Low Bias 0.086 0.084 0.002 Low Bias 0.898 
Regression Imputation (n = 5) Yes 0.196 0.200 -0.004 Low Bias 0.062 0.060 0.002 Low Bias 0.904 

EM Algorithm with Multiple Imputation No 0.188 0.200 -0.012 Low Bias 0.086 0.084 0.002 Low Bias 0.902 
(n = 5) Yes 0.195 0.200 -0.005 Low Bias 0.062 0.060 0.002 Low Bias 0.900 

Weighting - Simple No 0.187 0.200 -0.013 Low Bias 0.086 0.084 0.001 Low Bias 0.894 
Yes 0.195 0.200 -0.005 Low Bias 0.062 0.060 0.002 Low Bias 0.898 

Weighting - Sophisticated No 0.187 0.200 -0.013 Low Bias 0.086 0.084 0.001 Low Bias 0.894 
Yes 0.195 0.200 -0.005 Low Bias 0.062 0.060 0.002 Low Bias 0.898 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.195 0.200 -0.005 Low Bias 0.062 0.060 0.002 Low Bias 0.898 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table III.a.2: Scenario III, Missing Data Dependent on Post-test:  Data 
Missing for 5% of Schools 

 Pre-test 

Impact Estimate Standard Error of Impact Est. 90% CI 

% of Samples in 
Data  True Standard Unbiased  Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002  Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000  Low Bias 0.886 

A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.199 0.200 -0.001 Low Bias 0.063 0.061 0.002  Low Bias 0.903 

Dummy Variable Method No 
Yes 0.202 0.200 0.002 Low Bias 0.063 0.061 0.002  Low Bias 0.904 

 Mean Value Imputation No 
Yes 0.204 0.200 0.004 Low Bias 0.063 0.062 0.002  Low Bias 0.899 

Single, Non-stochastic No 
Regression Imputation Yes 0.202 0.200 0.002  Low Bias 0.061 0.061 0.000 Low Bias 0.898 

Single, Stochastic No 
Regression Imputation Yes 0.202 0.200 0.002  Low Bias 0.062 0.062 0.000 Low Bias 0.895 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.203 0.200 0.003  Low Bias 0.062 0.062 0.001 Low Bias 0.894 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.202 0.200 0.002 Low Bias 0.063 0.061 0.002  Low Bias 0.905 

B.   Post-Test (Y) Data Missing 

Case Deletion No 0.196 0.200 -0.004 Low Bias 0.088 0.086 0.002  Low Bias 0.902 
Yes 0.199 0.200 -0.001 Low Bias 0.063 0.061 0.002  Low Bias 0.903 

Mean Value Imputation No 0.196 0.200 -0.004 Low Bias 0.083 0.086 -0.003  Low Bias 0.881 
Yes 0.197 0.200 -0.003 Low Bias 0.061 0.062 -0.001  Low Bias 0.886 

Single, Non-stochastic No 0.196 0.200 -0.004  Low Bias 0.083 0.086 -0.003 Low Bias 0.881 
Regression Imputation Yes 0.200 0.200 0.000  Low Bias 0.061 0.061 -0.001 Low Bias 0.896 

Single, Stochastic No 0.196 0.200 -0.004  Low Bias 0.085 0.088 -0.002 Low Bias 0.897 
Regression Imputation Yes 0.199 0.200 -0.001  Low Bias 0.062 0.063 -0.001 Low Bias 0.894 

Multiple, Stochastic No 0.193 0.200 -0.007 Low Bias 0.086 0.086 0.000  Low Bias 0.895 
Regression Imputation (n = 5) Yes 0.198 0.200 -0.002  Low Bias 0.063 0.062 0.001 Low Bias 0.908 

EM Algorithm with Multiple Imputation No 
 (n = 5) Yes 0.200 0.200 0.000 Low Bias 0.064 0.062 0.002  Low Bias 0.909 

Weighting - Simple No 
Yes 

Weighting - Sophisticated No 
Yes 0.199 0.200 -0.001 Low Bias 0.063 0.061 0.002  Low Bias 0.903 

 Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.199 0.200 -0.001  Low Bias 0.063 0.061 0.002 Low Bias 0.902 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on
 
the simulations, see Chapter 4 and Appendix C.
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Table III.b.1: Scenario III, Missing Data Dependent on Post-test:  Data 
Missing for 40% of Students 

Impact Estimate Standard Error of Impact Est. 90% CI 

Pre-test % of Samples in 
Data True Standard Unbiased Which 90% CI 

Data Available? Estimate Impact Bias Bias Level Estimate Estimate Bias Bias Level Contains .20 

No Missing Data No 0.203 0.200 0.003 Low Bias 0.085 0.088 -0.002 Low Bias 0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

A. Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.133 0.200 -0.067 High Bias 0.064 0.063 0.001 Low Bias 0.723 

Dummy Variable Method No 
Yes 0.215 0.200 0.015 Low Bias 0.067 0.067 0.000 Low Bias 0.886 

Mean Value Imputation No 
Yes 0.267 0.200 0.067 High Bias 0.069 0.065 0.003 Low Bias 0.749 

Single, Non-stochastic No 
Regression Imputation Yes 0.200 0.200 0.000 Low Bias 0.065 0.064 0.001 Low Bias 0.899 

Single, Stochastic No 
Regression Imputation Yes 0.201 0.200 0.001 Low Bias 0.064 0.063 0.001 Low Bias 0.890 

Multiple, Stochastic No 
Regression Imputation (n = 5) Yes 0.201 0.200 0.001 Low Bias 0.065 0.062 0.003 Low Bias 0.903 

EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.202 0.200 0.002 Low Bias 0.066 0.063 0.003 Low Bias 0.899 

B.  Post-Test (Y) Data Missing 

Case Deletion No 0.076 0.200 -0.124 High Bias 0.087 0.087 0.000 Low Bias 0.574 
Yes 0.133 0.200 -0.067 High Bias 0.064 0.063 0.001 Low Bias 0.723 

Mean Value Imputation No 0.058 0.200 -0.142 High Bias 0.053 0.087 -0.035 High Bias 0.261 
Yes 0.057 0.200 -0.143 High Bias 0.040 0.069 -0.030 High Bias 0.127 

Single, Non-stochastic No 0.079 0.200 -0.121 High Bias 0.088 0.087 0.000 Low Bias 0.592 
Regression Imputation Yes 0.140 0.200 -0.060 High Bias 0.064 0.063 0.000 Low Bias 0.758 

Single, Stochastic No 0.080 0.200 -0.120 High Bias 0.090 0.089 0.001 Low Bias 0.600 
Regression Imputation Yes 0.141 0.200 -0.059 High Bias 0.065 0.065 0.001 Low Bias 0.763 

Multiple, Stochastic No 0.078 0.200 -0.122 High Bias 0.094 0.087 0.007 Low Bias 0.632 
Regression Imputation (n = 5) Yes 0.139 0.200 -0.061 High Bias 0.068 0.063 0.005 Low Bias 0.797 

EM Algorithm with Multiple Imputation No 0.080 0.200 -0.120 High Bias 0.095 0.088 0.007 Low Bias 0.636 
(n = 5) Yes 0.138 0.200 -0.062 High Bias 0.069 0.063 0.006 Low Bias 0.800 

Weighting - Simple No 0.079 0.200 -0.121 High Bias 0.088 0.087 0.000 Low Bias 0.588 
Yes 0.135 0.200 -0.065 High Bias 0.064 0.063 0.001 Low Bias 0.735 

Weighting - Sophisticated No 0.079 0.200 -0.121 High Bias 0.088 0.087 0.000 Low Bias 0.593 
Yes 0.140 0.200 -0.060 High Bias 0.064 0.063 0.001 Low Bias 0.761 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.138 0.200 -0.062 High Bias 0.064 0.063 0.001 Low Bias 0.752 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on

 the simulations, see Chapter 4 and Appendix C.
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 Pre-test 

Impact Estimate Standard Error of Impact Est. 90% CI 

% of Samples in 
 Data True  Standard Unbiased  Which 90% CI 

Data 

No Missing Data 

Available? 

No 

Estimate 

0.203 

Impact 

0.200 

Bias 

0.003 

Bias Level 

 Low Bias 

Estimate 

0.085 

Estimate 

0.088 

Bias 

-0.002 

Bias Level 

 Low Bias 

Contains .20 

0.892 
Yes 0.203 0.200 0.003 Low Bias 0.062 0.062 0.000 Low Bias 0.886 

  A.  Pre-Test (X) Data Missing 

Case Deletion No 
Yes 0.176 0.200 -0.024 Low Bias 0.080 0.081 0.000 Low Bias 0.876 

Dummy Variable Method No 
Yes 0.207 0.200 0.007 Low Bias 0.072 0.073 0.000 Low Bias 0.904 

Mean Value Imputation No 
Yes 0.225 0.200 0.025 Low Bias 0.073 0.081 -0.008 Low Bias 0.851 

Single, Non-stochastic No 
Regression Imputation Yes 0.203 0.200 0.003  Low Bias 0.055 0.081 -0.026 High Bias 0.734 

Single, Stochastic No 
Regression Imputation Yes 0.203 0.200 0.003  Low Bias 0.062 0.078 -0.017 High Bias 0.790 

Multiple, Stochastic No 
 Regression Imputation (n = 5) Yes 0.197 0.200 -0.003  Low Bias 0.067 0.073 -0.006  Low Bias 0.865 

 EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.202 0.200 0.002 Low Bias 0.074 0.075 -0.001 Low Bias 0.897 

 B.  Post-Test (Y) Data Missing 

Case Deletion No 0.152 0.200 -0.048 Low Bias 0.110 0.112 -0.003 Low Bias 0.850 
Yes 0.176 0.200 -0.024 Low Bias 0.080 0.081 0.000 Low Bias 0.876 

Mean Value Imputation No 0.152 0.200 -0.048 Low Bias 0.064 0.112 -0.048 High Bias 0.590 
Yes 0.151 0.200 -0.049 Low Bias 0.055 0.099 -0.044 High Bias 0.573 

Single, Non-stochastic No 0.152 0.200 -0.048 Low Bias 0.064 0.112 -0.048 High Bias 0.590 
Regression Imputation Yes 0.177 0.200 -0.023  Low Bias 0.048 0.083 -0.036 High Bias 0.632 

Single, Stochastic No 0.150 0.200 -0.050 High Bias 0.082 0.126 -0.045 High Bias 0.655 
Regression Imputation Yes 0.176 0.200 -0.024  Low Bias 0.060 0.092 -0.032 High Bias 0.697 

Multiple, Stochastic No 0.166 0.200 -0.034 Low Bias 0.101 0.116 -0.015 Low Bias 0.807 
 Regression Imputation (n = 5) Yes 0.187 0.200 -0.013  Low Bias 0.074 0.085 -0.011  Low Bias 0.824 

 EM Algorithm with Multiple Imputation No 
(n = 5) Yes 0.177 0.2 -0.023 Low Bias 0.086 0.085 0.001 Low Bias 0.876 

 Weighting - Simple No 
Yes 

 Weighting - Sophisticated No 
Yes 0.177 0.200 -0.023 Low Bias 0.080 0.081 0.000 Low Bias 0.879 

Fully Specified Regression Models No 
w/ Treatment-Covariate Interactions Yes 0.178 0.200 -0.022 Low Bias 0.080 0.081 0.000 Low Bias 0.877 

  
     

         
     

 
 

  

Table III.b.2: Scenario III, Missing Data Dependent on Post-test:  Data 
Missing for 40% of Schools 

Notes:
 
When pre-test scores are available, they are used as a covariate in the analysis model. In addition, we used pre-test scores to impute values and create weights.
 
Bias estimates were computed as described in Chapter 4 and repeated at the beginning of this appendix. The level of the bias is characterized as "High Bias" or
 
"Low Bias" based on the criteria established in Chapter 4. 90% CI refers to the 90-percent confidence interval around the impact estimate. For more details on

 the simulations, see Chapter 4 and Appendix C.
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Appendix E: Standards for Judging the Magnitude of 
the Bias for Different Missing Data Methods 

To assess the performance of different missing data methods, we set objective standards 
and applied those standards in interpreting the results. This appendix describes these 
standards and how they were chosen. In summary: 

� We relied on the attrition standards of the What Works Clearinghouse. 

� An impact estimate was considered to have “high bias” if the absolute value of the 
bias was greater than 0.05 of a standard deviation of the outcome measure. 

� A standard error estimate was considered to have “high bias” if it yielded as much 
bias in the t-statistic as did bias in the impact estimate of 0.05 standard deviations. 

A. 	Bias Standards for the Impact Estimates 

To summarize the performance of the different measures, we identify the methods that 
yielded bias that would be considered “high” relative to a benchmark set by the What 
Works Clearinghouse (WWC). In developing its attrition standards, as well as its 
standards for baseline equivalence, the WWC decided that bias in the impact estimate of 
more than 0.05 standard deviations was unacceptably large (US ED, 2008, p. 14, 30-31). 
Like most performance standards, this threshold is inherently arbitrary. However, 
because WWC plays a large role in assessing the quality of impact studies in education, 
we adopted this threshold for assessing whether missing data methods yield bias that is 
large or small. 

Specifically, in our simulations, we classified an impact estimate as having “high bias” if 
the absolute value of the bias was greater than 0.05 standard deviations. Because this 
threshold is based on the WWC’s attrition standards, simulation results that show a 
particular method yields lower bias than 0.05 can be treated as evidence that the method 
produced estimates with a level of bias that is treated as acceptable by the WWC.87  

B. 	Bias Standards for the Estimated Standard Errors of the Impact Estimates 

Missing data can lead to biased standard errors, as well as biased impact estimates.  In 
addition, impact and standard error estimates both contribute to the hypothesis test of 
whether an impact is statistically significant: the t-statistic equals the estimated impact 
divided by the estimated standard error. Therefore, for our simulations, we decided it 
would be useful to set standards for assessing the magnitude of the bias in the standard 
errors. In interpreting the results from the simulations, we apply these standards to assess 
whether a given missing data method produced a standard error for the impact estimate  
with “high bias” or “low bias.” 

Building on the chosen standards for impact estimates described in Section A, we 
classified a standard error estimate as having “high bias” if it would yield a t-statistic 
with as much bias as the t-statistics that result from an impact estimate for which the 

87 It is important to note that this does not mean that studies which employ the missing data method in question would 
necessary, if reviewed by the WWC, be determined to have met WWC’s standards. In fact, there are no WWC 
standards for which missing data methods are acceptable and which methods are unacceptable (US ED, 2008). 
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absolute value of the bias is greater than 0.05 when the impact estimate has zero bias. In 
this way, we rely entirely on the WWC’s attrition standard to determine whether to 
classify the bias in the impact estimate or standard error as large or small. 

To calculate the bias thresholds for the estimated standard errors, let SE equal the true 
standard error of the impact estimate, given the extent of missing data and the choice of 
method for addressing missing data.88 Then the t-statistic used to test the null hypothesis 
of zero impact is given in equation (1) below: 

0.20(1) t = 
SE 

How much bias in the t-statistic is introduced by a bias in the impact estimate of 0.05 
standard deviations? If the bias is positive—that is, the impact estimate converges to 
0.25 instead of the true impact of 0.20—then equation (2) shows the value of the t-
statistic that results from this bias. This equation shows that a positive bias of 0.05 
standard deviations yields a t-statistic that is 25 percent larger than it would be with an 
unbiased estimate of the standard error: 

(0.20 + 0.05) 0.25 1.25 × 0.20+0.05(2) 	 t = = = = 1.25 × t 
SE SE SE 

If the bias is negative—that is, the impact estimate converges to 0.15 instead of the true 
impact of 0.20—then equation (3) shows the value of the t-statistic that results from this 
bias. This equation shows that a negative bias of 0.05 standard deviations yields a t-
statistic that is 25 percent smaller than it would be with an unbiased estimate of the 
standard error: 

(0.20 − 0.05) 0.15 0.75 × 0.20−0.05(3) 	 t = = = = 0.75 × t 
SE SE SE 

The results from equations (2) and (3) can be used to set thresholds for bias in the 
standard errors. Equation (4) shows the magnitude of the standard error ( SE +0.05 ) 
necessary when there is no bias in the impact estimate to generate the same bias in the t-
statistic as a positive 0.05 standard deviation bias in the impact estimate when there is no 
bias in the standard error: 

+0.050.25 0.20	 SE 0.20 4(4) = , which is equivalent to = = = 0.80 .+0.05SE SE	 SE 0.25 5 

This implies that the standard error would need to be 20 percent smaller than the true 
standard error to have the same effect on the t-statistic as a positive bias in the impact 
estimate of 0.05 standard deviations. 

88 Note that this is not the same as the standard error of the impact estimate that researchers would have obtained with 
complete data. 
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Similarly, equation (5) shows the magnitude of the standard error ( SE−0.05 ) necessary 
when there is no bias in the impact estimate to generate the same bias in the t-statistic as a 
negative 0.05 standard deviation bias in the impact estimate when there is no bias in the 
standard error: 

0.15 0.20 SE −0.05 0.20 4(5) = − , which is equivalent to = = = 0.05 1.33 .
SE SE SE 0.15 3 

 

This implies that the standard error would need to be 33 percent larger than the true 
standard error to have the same effect on the t-statistic as a negative bias in the impact 
estimate of 0.05 standard deviations. 

 

123 



	What to Do When Data AreMissing in Group RandomizedControlled Trials
	Disclosure of Potential Conflicts of Interest
	Foreword
	Table of Contents
	1. Overview and Guidance
	A. Introduction
	B. Missing Data and Randomized Trials
	C. Missing Data Methods
	D. Guidance to Researchers

	2. Randomized Controlled Trials (RCTs) inEducation and the Problem of Missing Dat
	A. Why Conduct RCTs?
	B. RCTs in Education
	C. Defining the Analysis Sample
	D. How Data Can Become Missing
	E. The Missing Data Problem

	3. Selected Techniques for Addressing Missing Data inRCT Impact Analysis
	A. Standard Missing Data Methods
	B. Methods to Address Missing Data that are NMAR

	4. Testing the Performance of Selected Missing DataMethods
	A. Simulation Methods
	B. Simulation Results

	References
	Appendix A: Missing Data Bias as a Form of OmittedVariable Bias
	Appendix B: Resources for Using Multiple Imputation
	Appendix C: Specifications for Missing Data Simulations
	Appendix D: Full Set of Simulation Results
	Appendix E: Standards for Judging the Magnitude ofthe Bias for Different Missing Data Methods



