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Abstract 

Orlando and Thissen (2000, 2003) proposed an item-fit index, S-X2, for dichotomous 

item response theory (IRT) models, which has performed better than traditional item-fit 

statistics such as Yen’s (1981) Q1 and McKinley and Mill’s (1985) G2.  This study extends 

the utility of S-X2 to polytomous IRT models, including the generalized partial credit model 

(GPCM: Muraki, 1992), partial credit model (PCM: Masters, 1982), and rating scale model 

(RSM: Andrich, 1978).  The performance of the generalized S-X2 in assessing item-model 

fit was studied in terms of empirical Type I error rates and power as compared to results 

obtained for G2 provided by the computer program PARSCALE (Muraki & Bock, 1997).  

The results show that the generalized S-X2 is a promising item-fit index for polytomous items 

in educational and psychological testing programs. 
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An Investigation of the Performance of  
the Generalized S-X2 Item-Fit Index for Polytomous IRT Models 

 

Introduction 

Ever since Lawley (1943) and Lord (1952) established the basic concepts of item 

response theory (IRT), many IRT models have been developed and applied to various fields 

of study such as psychological scaling and educational measurement.  Unless an appropriate 

IRT model for a given data set is used, however, the benefits of IRT for applications such as 

test development, item banking, differential item functioning (DIF), computerized adaptive 

testing (CAT), and test equating might not be attained. In brief, the success of IRT 

applications requires satisfactory fit between the model and the data.  The most critical 

problem caused by model-data misfit may be that the hallmark feature of IRT, parameter 

invariance, no longer applies (Shepard, Camilli & Williams, 1984; Bolt, 2002; Rupp & 

Zumbo, 2004). 

Numerous statistical procedures have been developed to evaluate item fit under an 

IRT model, and goodness-of-fit studies have been conducted and reported in the voluminous 

IRT literature (see Bock, 1972; Douglas & Cohen, 2001; Glas & Suarez-Falcon, 2003; Liang 

& Wells, 2007; McKinley & Mills, 1985; Orlando & Thissen, 2000, 2003; Sinharay, 2003, 

2005; Stone, 2000; Stone & Zhang, 2003; Suarez-Falcon & Glas, 2003; Wells, 2004; Yen, 

1981).  Among them, several Chi-square based item-level goodness-of-fit indices using 

significance tests such as Yen’s (1981)  for dichotomous items, the traditional log-

likelihood Chi-square, , for both dichotomous and polytomous items

1Q

2G  (McKinley & Mills, 

1985), and Orlando and Thissen’s (2000, 2003) S-X2 for dichotomous items have been 

utilized for IRT applications. Type I error rates for these goodness-of-fit indices have been 

investigated and reported. 
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A shortcoming of the item-fit tests based on  and  is their sensitivity to test 

length and sample size.  For instance, on a short test of 10 dichotomous items, these 

traditional statistics exhibited inflated empirical Type I error rates as high as 0.96 and 0.97, 

respectively, for a given nominal rejection rate of 

1Q 2G

05.0=α  (Orlando & Thissen, 2000). 

DeMars’ (2005) simulation studies with a sample size of 1,000 used PARSCALE’s (Muraki 

& Bock, 1997) fit index which is similar to McKinley and Mill’s (1985) , and discovered 

empirical Type I error rates of 0.142 under the partial credit model (PCM: Masters, 1982) and 

0.304 under the graded response model (GRM: Samejima, 1969) on a 10 polytomous item 

test. Stone and Hansen (2000) found that an item-fit test using  for a 32 polytomous item 

test under the GRM showed inflated empirical Type I error rates between 0.142 and 0.181 for 

cases with 1,000 examinees, and between 0.229 and 0.396 for cases with 2,000 examinees, 

even though the true item parameter values were used in calculating predicted proportions.  

2G

2G

Besides studies on  and , there have been noteworthy studies on S-X1Q 2G 2 by 

Orlando and Thissen (2000, 2003).  In their simulation studies using test lengths of 10, 40, 

and 80 dichotomous items and a sample size of 1,000, they showed that S-X2 adequately 

controlled Type I error rates (Orlando & Thissen, 2000).  Under the 1-, 2-, and 3-parameter 

logistic models (1PLM, 2PLM, and 3PLM, respectively), the empirical Type I error rates for 

tests based on S-X2 were found to be between 0.04 and 0.07 with nominal α of 0.05. 

Additionally, the empirical power of S-X2 improved as sample size increased from 500 to 

2,000 (Orlando & Thissen, 2003).   

The S-X2 index could also be generalized and applied to the goodness-of-fit test for 

polytomous items (Roberts, in press).  The main purpose of this study is to assess the 

performances of the generalized S-X2 under the polytomous IRT models including the 

generalized partial credit model (GPCM: Muraki, 1992), PCM, and the rating scale model 

(RSM: Andrich, 1978) for different combinations of test length and sample size.  The paper 
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begins with a review of , , and S-X1Q 2G 2 statistics followed by a discussion on the 

generalization of S-X2 for polytomous items.  Finally, the performances of the generalized 

S-X2 and PARSCALE’s are compared through a simulation study.   2G

Chi-Square Based Item Fit Indices 

According to Hambleton, Swaminathan and Rogers (1991), and Stone (2000), a 

common strategy for assessing item-fit of an IRT model can be summarized as follows: (1) 

estimate the item and ability parameters under the chosen model, (2) classify examinees into 

K homogeneous groups in terms of their ability estimates, (3) calculate observed response 

proportions in each group for the item under investigation, (4) derive predicted response 

proportions in each group using the item and ability parameter estimates under the IRT model 

of interest, and (5) compute Chi-square based statistics by comparing the observed and 

predicted values. 

The Traditional Chi-Square Based Fit Indices 

Both  and  are considered to be traditional Chi-square based fit indices.  

Yen’s (1981)  for a dichotomous item i can be expressed as follows:  

1Q 2G

1Q
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where z indicates the item score, k represents the number of groups of examinees,  is the 

number of examines in group k, and (= 1- ) and  (= 1- ) are, respectively, 

the observed and predicted proportions of correct responses for group k.  To compute , 

the item and ability parameter estimates are first obtained under the chosen IRT model, and 

the total number of groups (K) is set to 10 with each group having approximately an equal 

number of examinees. The predicted proportions of correct responses, , is computed as the 

mean predicted proportion of each group.  Since K = 10, the degrees of freedom (df) 

kN
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associated with  equal 10 – m where m is the number of item parameters estimated. 1Q

For assessing model-item fit for both dichotomous and polytomous items, 

PARSCALE provides as the goodness-of-fit index.  Given an item denoted i, can be 

computed as follows: 

2G 2G
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where z indicates item scores ranging from zero to the highest item score of , k represents 

the number of groups of examinees,  equals the observed number of examinees scoring 

 in group k , N

iZ

ikzr

z ik is total number of examinees in group k, and )( kizP θ  is the response 

function for item score z evaluated at the mean ability of examinees in group .   k

The total number of groups  could however vary across items because 

neighboring groups can be collapsed to avoid expected values,

iK

)(PN kizik θ , less than 5.  In 

general, the df of  for dichotomous items equals  which is different from that of 

Yen’s  as no adjustment for the number of estimated parameters m is made for .  

Mislevy and Bock (1990) argued that m is not considered in determining the df for  

because the parameter estimation procedure has nothing to do with minimizing .  

2
iG iK

1Q 2
iG

2G

2G

Orlando and Thissen’s S-X2 Index for Dichotomous Items 

Though Orlando and Thissen’s (2000) S-X2 procedure follows much the same pattern 

as the  procedure, it has a notable advantage over  and .  For both  and , 

the grouping procedure relies on sample- and model- dependent cut scores, whereas S-X

1Q 1Q 2G 1Q 2G

2 is 

based on test scores (i.e., number-correct scores). 

Using the same notation defined earlier, S-X2 for a dichotomous item i on an I-item 

test is given by: 
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The summation over the test score k in equation (3) excludes k = 0 and k = I, since the 

proportion of examinees who respond to an item correctly and have a test score of zero is 

always zero, and it is always 1 for those having a perfect test score of I.   

Also, in equation (3), the expected proportion of examinees in  group who got 

item  right, E

kx =

i ik1, could be calculated using the following formula: 
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where )|( θkf  is the conditional predicted test score ( kx = ) distribution given θ, 

 represents the conditional predicted test score distribution without item , and )|(* θkf i i

)(θφ  is the population distribution of θ . )|( θkf  and  could be computed with 

the help of the recursive algorithm developed by Lord and Wingersky (1984).  

)|(* θkf i

Similar to , neighboring groups could be collapsed to maintain a minimum 

expected cell frequency of 5.  For S-X

2G

2, the minimum value is set to 1 according to the 

studies of Larntz (1978) and Orlando and Thissen’s (2000).  If it is not necessary to collapse 

groups, then the df equals I – 1 – m where m is the number of item parameters estimated; 

otherwise an adjustment for the number of groups being collapsed is needed.   

The Generalized S-X2 Index for Polytomous Items 

The current study extends the application of S-X2 to the assessment of item fit for 

polytomous items. For a polytomous item denoted i on a test of I polytomous items with each 

having  scoring categories (i.e., category score z = 0, 1, …, Z1+iZ i ), the generalized S-X2 

can, using notation defined earlier, be expressed as follows: 
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where z indicates category scores,  is the highest score of item i, and F is a perfect test 

score (i.e., ).  The expected category proportions, , in equation (5), can be 

computed using the following formula: 

iZ
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To compute )|z(f θ and in equation (6), the generalized recursive algorithm 

developed by Thissen, Pommerich, Billeaud and Williams (1995) can be used.  

)|z(f i* θ

Similar to that for dichotomous items, the computation for the generalized S-X2 

procedure excludes groups with a test score of zero (i.e., k = 0) or perfect test score (i.e., k = 

F).  Also, in equation (5), the summation for k is from  throughiZ iZF − .  This is because 

within some groups with extremely low or high test scores, the expected proportions of 

examinees ( ) for some categories are always zero.  For instance, for the group with k = 

38 on a test of 10 polytomous items with each having 5 categories (i.e., z = 0, 1, 2, 3, 4) in 

Table 1, the observed and predicted proportions of examinees for the z = 0 and z = 1 

categories are always zero.  Similarly, for the group with k = 2, they will always be zero for 

the z = 3 and z = 4 categories.  For the generalized S-X

ikzE

2 procedure, such groups are 

collapsed to the groups with k = Zi or k = F– Zi.  For example, the groups with k = 1, 2 and 3 

for the illustrative item in Table 1 will be combined with the k = 4 group, and the groups with 

k = 37, 38, and 39 will be merged with the k = 36 group.  Hence, for an item with 1+iZ  
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scoring categories, the total number of groups included in the generalized S-X2 procedure is 

equal to . 1212 +−⎟
⎠
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TABLE 1 

The Observed and Expected Cell Frequencies of an Illustrative Item 

 

Observed Frequencies ( ) ikzkON Expected Frequencies( ) ikzk EN
Item Category Score Item Category Score Test 

Score 
Group k 0 1 2 3 4 0 1 2 3 4 

1 
2 
3 

0 
4 
6 

0 
0 
1 

# 
0 
0 

# 
# 
0 

# 
# 
# 

0 
3.34 
5.20 

0 
.65 

1.76 

# 
.01 
.05 

# 
# 
* 

# 
# 
# 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

4 
8 

10 
7 
4 
6 
7 
3 
2 
5 
3 
0 
3 
1 
1 
1 
2 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
9 
5 
5 
7 

15 
18 
20 
30 
28 
19 
14 
16 
12 
15 
14 

6 
9 
6 
3 
3 
2 
2 
1 
1 
0 
1 
0 
0 
0 
0 
0 
0 

0 
1 
1 
1 
3 
1 

10 
5 
7 
8 

18 
9 

18 
23 
17 
21 
19 
20 
21 
15 
13 
19 
11 
6 
9 
3 
1 
2 
4 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
3 
6 
5 
9 

10 
15 

9 
14 
18 
18 
18 
20 
23 
21 
13 
19 
12 
16 

8 
11 
2 
2 
1 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
1 
3 
2 
2 
3 
2 
6 
5 
6 
3 
8 

10 
6 
8 
6 
4 
5 

3.24 
10.05 

7.57 
5.14 
4.58 
5.87 
7.75 
4.80 
5.26 
4.28 
3.41 
1.72 
1.82 
1.43 

.95 

.76 

.37 

.30 

.20 

.10 

.06 

.04 

.02 

.01 

.01 
* 
* 
* 
* 
* 
* 
* 
* 

1.68 
7.44 
7.68 
6.92 
7.99 

13.07 
21.69 
16.73 
22.63 
22.64 
22.12 
13.61 
17.60 
16.82 
13.72 
13.26 

7.84 
7.77 
6.19 
3.92 
2.78 
2.37 
1.66 

.92 

.55 

.32 

.18 

.15 

.06 

.03 

.01 
* 
* 

.07 

.50 

.73 

.90 
1.37 
2.88 
6.07 
5.87 
9.86 

12.16 
14.60 
11.01 
17.39 
20.29 
20.18 
23.74 
17.07 
20.54 
19.87 
15.27 
13.13 
13.56 
11.55 
7.75 
5.71 
4.04 
2.86 
2.84 
1.38 
1.06 

.31 

.14 

.08 

* 
.01 
.02 
.03 
.06 
.18 
.48 
.59 

1.23 
1.89 
2.80 
2.59 
5.02 
7.17 
8.70 

12.47 
10.90 
15.93 
18.68 
17.38 
18.09 
22.60 
23.27 
18.92 
16.90 
14.56 
12.58 
15.43 

9.37 
9.12 
3.44 
2.22 
1.82 

* 
* 
* 
* 
* 
* 
* 

.01 

.02 

.03 

.06 

.07 

.17 

.30 

.44 

.77 

.82 
1.46 
2.07 
2.33 
2.93 
4.42 
5.50 
5.40 
5.82 
6.07 
6.38 
9.58 
7.19 
8.79 
4.25 
3.63 
4.10 

37 
38 
39 

# 
# 
# 

0 
# 
# 

0 
0 
# 

1 
1 
0 

7 
5 
2 

# 
# 
# 

* 
# 
# 

.05 

.01 
# 

1.85 
.93 
.16 

6.10 
5.06 
1.84 

# indicates that the cell has a value of zero always. 
* indicates that the expected value is less than 0.005 but larger than 0. 
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In light of Orlando and Thissen (2000), neighboring test score groups need to be 

collapsed to maintain a minimum expected category frequency ( ) of 1.  However, this 

collapsing method could be infeasible for the case of polytomous items.  For example, if 

Orlando and Thissen’s cell collapsing approach is applied to the illustrative item in Table 1, 

only two groups with k = 18 and 19 would remain, and too much information would be lost.  

An even worse scenario would be that only one group remains.   

ikzk EN

Thus, instead of collapsing test score groups, the current study suggests, if needed, 

collapsing adjacent cells of item score categories for a given group k to ensure a minimum 

expected category frequency of 1.  For instance, in the group with k = 11 of the illustrative 

item in Table 1, the z = 3 and z = 4 categories could be combined with the z = 2 category.  

Pett (1997) mentioned that cell-collapsing should be undertaken carefully so that the 

combined cells make intuitive sense.  Since the item score categories are ordered, the 

suggested method is considered reasonable.  Also, Muraki (1996) used this approach for 

combining response categories.  With this collapsing algorithm, the generalized S-X2 has df 

of  where m is the number of item parameters estimated, and Ciii CmZK −− i indicates the 

total number of item score categories being collapsed.  For the illustrative item with 5 

scoring categories in Table 1, the df = 66615433 =−−*  under the GPCM.  Also, the 

generalized S-X2 for this item was found to be 62.11 (p-value = 0.61).  So, the GPCM 

appeared to fit the item adequately.  

Method 

Design of Simulation Study  

To assess the performance of the generalized S-X2 index, a simulation study varying 

polytomous IRT models, test lengths, and sample sizes was conducted.  The index selected 

for comparison was PARSCALE’s  because it appears to be the most frequently 

employed index in applied settings.  Three commonly used polytomous IRT models (RSM, 

2G
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PCM and GPCM) were explored in this study.  Under the GPCM, the probability that an 

examinee j scores z with z = 0, 1, …, Zi on item i with 1+iZ  response categories is modeled 

by the following: 

[ ]

[ ]∑ ∑

∑

= =

=

−−

−−
=

iZ

y

y

c
ciiji

z

c
ciiji

ciiij

)(exp

)(exp
),,,|z(P

0 0

0

τβθα

τβθα
τβαθ ,                    (7) 

 
where iα  is the discrimination of item i, iβ  denotes the difficulty of item i, and ciτ  

represents the location parameter for a category on item i.  Equation (7) needs to set 00 =iτ , 

 and  for model identification. ∑
=

=
iZ

c
ci

1

0τ [ 1
0

0
=−−∑

=c
ciiji )(exp τβθα ]

The three polytomous IRT models considered in this study are hierarchically related.  

If iα  in equation (7) is fixed at 1 across items, equation (7) reduces to the PCM.  Moreover, 

if theτ values for each category are, respectively, the same across items, equation (7) further 

reduces to the RSM.  Consequently, RSM is nested within PCM, while PCM is nested 

within GPCM.   

In addition to the three generating models (RSM, PCM, and GPCM), this simulation 

study employed three test lengths (I = 5, 10, and 20 items), and four sample sizes (N = 500, 

1,000, 2,000, and 5,000 examinees).  The three test lengths mimic tests having small, 

moderate and large numbers of polytomously scored items. The four sample sizes represent 

small, moderate, large and very large samples.  

Data Generation  

A standard method was employed for item response generation for this study.  The 

steps for data generation include: (1) generate item and ability parameters, (2) under the 

chosen IRT model, calculate the probability, ),,,|z(P ciiij τβαθ , for the responses using the 
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generated item and ability parameters, and then the cumulative probability denoted 

, and (3) with a random number denoted u 

drawn from the uniform distribution, U(0,1), assign a response of 0 if , or z if 

 for z = 1, 2, …, or Z

∑
=

=
z

x
ciiijciiij

* ),,,|x(P),,,|z(P
0

τβαθτβαθ

)0(*Pu ≤

)()1( ** zPuzP ≤<− i. 

For this study, the item parameters used for simulating response data under the GPCM 

were obtained as follows.  The discrimination parameters (αi) were randomly sampled from 

a lognormal (0, .52) distribution.  For each item, four item step parameters (i.e., 

ciici τβδ −=  where c = 1, 2, 3, or 4) were randomly drawn from four normal distributions 

with a common standard deviation of 0.5 and means of -1.5,  -0.5, 0.5, and 1.5, respectively.  

The mean of these four step parameters is then used as the item difficulty parameter ( iβ ), and 

the difference between iβ  and δci is taken as ciτ .  This item-parameter generating 

procedure was repeated for all I items.  The values for the θ parameter were randomly drawn 

from the standard normal distribution, N(0,1).  With these item and ability parameters, a 

response dataset under the GPCM was generated.  The generating procedure for datasets 

under the PCM is the same as that for the GPCM except that the iα  parameters were fixed 

at 1.  For generating the dataset under the RSM, only one random sample of each step 

parameters ( ciτ ) was generated and used for all items, while the discrimination parameters for 

each item were also fixed at 1. 

Finally, there were a total of 36 different conditions simulated in this study (3 

generating models  3 test lengths × ×  4 sample sizes).  One hundred replications were 

generated for each condition, and each condition mimicked 100 different I-item tests from the 

same item pool administered to 100 equivalent groups of n examinees, respectively. 
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Item Parameter Calibration 

The item and ability parameters in each simulated dataset were calibrated using the 

computer program PARSCALE (Muraki & Bock, 1997).  Examples of the PARSCALE 

codes used for GPCM, PCM, and RSM calibration are given in Appendix A.  Paralleling 

Orlando and Thissen’s (2000) study, the number of item parameters of the calibration model 

(CM) was always fewer than or equal to that of the generating model (GM).  As shown in 

Table 2, when the CM and GM were the same, results were used to evaluate the empirical 

Type I error rates of the generalized S-X2 and PARSCALE’s .  And, when the CM was a 

simpler model than the GM, results were used to calculate the empirical power of the item-fit 

indices.   

2G

TABLE 2 

 Model Calibration Design in the Simulation Study 

Generating Model (GM) 
Calibrating Model 

(CM) 
RSM PCM GPCM 

RSM Type I Error Rate Power Power 

PCM - Type I Error Rate Power 

GPCM - - Type I Error Rate 

 

This study used a nominal α of 0.05.  An item was flagged for misfit if the 

significance level (i.e., p-value) for the observed fit index under investigation was less than 

0.05.  Under each condition, the simulated Type I error rates or power for the fit indices 

were obtained by dividing the number of flagged items by 100× I upon the completion of the 

100 replications. 
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Results 

When the CM was same as the GM, the PARSCALE calibrations ran properly and 

converged successfully for all study conditions.  However, when the CM is a simpler model 

than the GM, the calibration runs did not converge successfully for some conditions with 100 

EM cycles.  The worst situation occurred for the condition with 20 items and 2,000 

examinees under CM = PCM and GM = GPCM.  For this condition, 24 out of 100 data sets 

were not successfully calibrated.  In the current study, the problematic cases were excluded 

from the calculations of empirical power.   

The proportions of items wrongly flagged for misfit are shown in Table 3 for each 

condition.  At a glance, the simulated Type I error rates of the generalized S-X2 did not 

change much across conditions, while the values for the PARSCALE’s  differed 

drastically.  In the short (5-item) and medium (10-item) test length conditions, the Type I 

error rates of  appeared to be severely inflated in most cases.  This is not surprising 

because it is a well-known problem for the traditional item-fit indices as mentioned earlier.  

Also, even though the test length is as long as 20 items,  had inflated Type I error rates in 

the 5,000 examinee conditions (0.213 for the RSM, 0.118 for the PCM, and 0.074 for the 

GPCM).  In contrast to the poor performance of , the generalized S-X

2G

2G

2G

2G 2 did not seem to 

be affected by test length, and had empirical Type I error rates ranging from 0.040 and 0.065 

for all study conditions except those with long (20-item) test length and small sample size of 

500 examinees.  In the long (20-item) test conditions, the performance of S-X2 appeared to 

improve consistently as the sample size increased from 500 to 2,000, but this pattern was not 

observed for . 2G



14 

TABLE 3 

Type I Error Rates: Proportions of Indices with Significance Level Greater Than .05,  
Under GM = CM 

 
Generalized S-X2 PARSCALE G2Test Length and 

Sample Size RSM PCM GPCM RSM PCM GPCM 
500 0.048 0.050 0.058 0.432 0.310 0.350 

1,000 0.044 0.048 0.046 0.816 0.762 0.676 
2,000 0.050 0.052 0.052 0.998 1.000 0.930 5 

5,000 0.064 0.060 0.040 1.000 1.000 0.994 
500 0.048 0.048 0.065 0.085 0.048 0.034 

1,000 0.063 0.056 0.058 0.177 0.103 0.100 
2,000 0.061 0.056 0.042 0.424 0.280 0.290 10 

5,000 0.047 0.046 0.052 0.926 0.875 0.654 
500 0.095 0.098 0.126 0.055 0.024 0.015 

1,000 0.065 0.064 0.054 0.061 0.027 0.015 
2,000 0.057 0.054 0.049 0.088 0.051 0.025 20 

5,000 0.046 0.055 0.053 0.213 0.118 0.074 
 

Table 4 shows the empirical power of the generalized S-X2 and  when the GM is 

more complex than the CM.  As expected, the greater the difference that exists between GM 

and CM, the higher the power is.  When CM was RSM, the generalized S-X

2G

2 was found to 

be more sensitive in detecting misfit with GM = GPCM than with GM = PCM.  Similarly, 

for the conditions with GM = GPCM, the conditions with CM = RSM yield higher power 

than those with CM = PCM.  For all combinations of test length and sample size, the highest 

power was found when GM = GPCM and CM = RSM.  These findings reflect the nested 

structure of the three IRT models.  Although both the generalized S-X2 and  showed 

better power as the sample size increased, the power values for  were not very useful 

because of the inflated Type I error rates of this index under most study conditions.   

2G

2G
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TABLE 4 

Empirical Power: Proportions of Indices with Significance Level Greater Than .05,  
Under GM > CM 

 
Generalized S-X2 PARSCALE G2

Test Length and 
Sample Size PCM > 

RSM 
GPCM > 

RSM 
GPCM > 

PCM 
PCM > 
RSM 

GPCM > 
RSM 

GPCM > 
PCM 

500 0.368 0.615 0.252 0.756 0.731 0.389 
1,000 0.606 0.829 0.415 0.966 0.896 0.672 
2,000 0.808 0.941 0.625 1.000 0.982 0.848 5 

5,000 0.942 0.981 0.755 1.000 0.998 0.979 
500 0.289 0.565 0.293 0.562 0.755 0.432 

1,000 0.536 0.793 0.459 0.802 0.889 0.565 
2,000 0.734 0.918 0.609 0.949 0.973 0.754 10 

5,000 0.929 0.980 0.733 0.998 0993 0.877 
500 0.302 0.571 0.341 0.494 0.805 0.480 

1,000 0.471 0.740 0.406 0.751 0.926 0.630 
2,000 0.673 0.888 0.550 0.897 0.970 0.755 20 

5,000 0.889 0.973 0.714 0.971 0.996 0.896 
 

Discussion  

As the empirical Type I error rates of  were found to be inappropriately inflated, 

its performance is not discussed further in this section. The discussion presented here focuses 

on issues related to the generalized S-X

2G

2 index.  This section begins with a scrutiny on the df 

adjustment for the number of estimated item parameters followed by the discussion on the 

performance of the generalized S-X2.   

The df Adjustment for the Number of Estimated Item Parameters 

For the applications of item-fit indices, controversies over the df adjustment for the 

number of estimated item parameters have been found in the IRT literature.  For instance, 

the df of Yen’s Q1 is adjusted for the number of estimated item parameters, while the df of 

PARSCALE’s  is not adjusted.  DeMars (2005) explained that the disagreement comes 

from the difference in item parameter estimation methods.  Yen’s Q

2G

1 is designed for item-fit 

analysis when the joint maximum likelihood (JML) method is used.  In contrast, 

PARSCALE employs the marginal maximum likelihood (MML).  Mislevy and Bock (1990) 

mentioned, for the MML approach, “the residuals are not under linear constraints and there is 
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no loss of degrees of freedom due to the fitting of the item parameters (p.1-11).”   

Even though Orlando and Thissen (2000, 2003) used the MML method with the 

computer program MULTILOG (Thissen, 1991), they applied the df adjustment. An argument 

for using the df adjustment was given by Stone and Zhang (2003):  Regardless of item 

parameter estimation approach, the df adjustment should be used “to account for the fact that 

expected frequencies are based on estimated item parameters (p. 347).”  Applying the df 

adjustment to their studies on S-X2 for dichotomous items, both Orlando and Thissen (2000) 

and Stone and Zhang (2003) found empirical Type I error rates to be close to the nominal 

rates. 

Based upon these discussions, a preliminary investigation was conducted to compare 

the applications of the generalized S-X2 with and without the df adjustment.  The results 

showed no dramatic difference in the simulated Type I error rates and power even though the 

cases without the df adjustment were slightly more conservative.  Additionally, since the 

generalized S-X2 was derived on the basis of Orlando and Thissen’s S-X2, the df adjustment 

was utilized for the current study. 

Performance of the Generalized S-X2

Similar to Orlando and Thissen’s (2000) study on S-X2 for dichotomous items, the 

current study found that the generalized S-X2 exhibited empirical Type I error rates ranging 

from 0.040 to 0.065 for all study conditions except that with test length of 20 items and 

number of examinees equal to 500.  For this condition, the Type I error rates of the 

generalized S-X2 appeared to be inflated as high as 0.095 for the RSM, 0.098 for the PCM, 

and 0.126 the GPCM, as shown in Table 3.  This could be explained by the inevitable 

sparseness in expected frequencies.  Given that there are more score categories and hence 

more total score groups on an I polytomous item test than on an I dichotomous item test, the 

applications of generalized S-X2 would encounter more sparseness in expected frequencies 
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for conditions with long tests (e.g., 20 items) and small sample sizes (e.g., 500).   

Another issue related to control of Type I errors is how close the sampling distribution 

of the item-fit statistics under the null hypothesis is to the theoretical distribution. To study 

the extent to which the null distribution of the S-X2 index followed a Chi-square distribution, 

Orlando and Thissen (2000) examined the first two moments of the index.  For a Chi-square 

distribution, the mean and variance equal the df and 2×df, respectively.  Also, Stone (2000) 

used the technique of Q-Q plots to compare the empirical distribution of the fit statistics of 

 to the expected Chi-square distribution with an estimated df.  These two methods were 

employed for examining the empirical distribution of the generalized S-X

2G

2 index. 

It is believed that the generalized S-X2 has approximately a Chi-square distribution.  

However, for a given test length and a chosen IRT model, the df would vary due to the total 

number of cells being collapsed.  For example, the observed df ranged from 25 to 47 for the 

100 replicates under the condition with test length of 5 items and sample size of 5,000 in the 

Type I error rate analysis under the GPCM.  From the 500 simulated items (5 items  100 

replicates) under this condition, the observed mode of the df was 42 with a frequency count 

of 65.  The mean and variance of these 65 empirical S-X

×

2 values were found to be 41.00 and 

82.99, respectively.  For other conditions, the two moments were also found to be close to 

their expected values.  In addition, Figure 1 presents the Q-Q plot to compare the empirical 

distribution of the 65 S-X2 observations to a theoretical Chi-square distribution with df = 42. 

The plot has a slope and intercept close to 1 and 0, respectively. 
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FIGURE 1. Q-Q Plot of Empirical S-X2 Distribution Compared to a Chi-Square Distribution 
with df = 42  
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The results of power analysis in a simulation study for item-fit statistics are closely 

related to how to generate misfitting items under the non-null cases.  As shown in Table 4, 

the more different the GM and CM were, the better the observed power analysis results.  

Therefore, the generalized S-X2 had the highest power when the model fit of the RSM was 

investigated for the data simulated under the GPCM. Also, for these conditions, a moderate 

sample size of 1,000 would yield adequate power.  When the GPCM was the GM and the 

PCM was the CM, however, a very large sample size (e.g., 5,000 examinees) was required to 

yield acceptable power higher than 0.7 regardless of the test length.  Similarly, when the 

PCM was the GM and the RSM was the CM, sample sizes of 2,000 or higher are needed for 

the generalized S-X2 index to produce satisfactory power.  
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Conclusion 

Similar to the findings reported in the literature, the results of the current study 

showed that the performance of  appeared to be poor in most conditions with short and 

moderate test lengths or very large sample sizes (e.g., 5,000 examinees).  In contrast, for 

such tests with 5 or 10 polytomous items, the generalized S-X

2G

2 showed superior performance 

in terms of Type I error rate control and power.  Similar performance pattern of the index 

was also found for the cases with very large sample sizes regardless of test length.  

Consequently, the generalized S-X2 is a promising index for investigating item-fit in 

educational and psychological assessments.  

To gain a better understanding of this promising item-fit index, additional studies 

need to be conducted.  First, with the design of this simulation study, all generated items 

were considered misfit for the power study.  Following Orlando and Thissen’s (2003) study, 

the sensitivity of the generalized S-X2 in detecting different percentages of misfit items on a 

test form needs to be further studied.  Second, the number of test score groups and hence the 

df are determined by the test length and the numbers of item score categories.  All of the 

simulated items in the current study had a fixed number of score categories.  Thus, studies 

on the impact due to different numbers of item score categories could provide some insight 

on the behavior of the index.  Third, it is not rare for ability distributions to be non-normal 

for an educational or psychological assessment (Micceri, 1989).  The performance of the 

generalized S-X2 needs to be investigated under conditions where the ability distribution is 

not normal (e.g., uniform or skewed).  Finally, noteworthy behavior of S-X2 has been found 

for dichotomous and polytomous items separately, yet it might behave differently for mixed 

format tests because of format effect or multidimensionality.  So, further studies on the S-X2 

index for mixed format test data are required. 
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Appendix A 
 

Examples of the PARSCALE Codes Used for GPCM, PCM and RSM Calibration 
 

 
 
< A-1: GPCM > 
------------------------------------------------------------------------ 
>FILE DFNAME='ca001.dat', SAVE; 
>SAVE PARM='gpgp22ca001.par'; 
>INPUT NIDW=3, NTOTAL=10, NTEST=1, LENGTH(10), NFMT=1; 
(3A1,T1,10A1) 
>TEST1 TNAME=gp22ca001, ITEM=(1(1)10), NBLOCK=10; 
>BLOCK BNAME=SBLOCK1, NITEMS=1, NCAT=5, SCORING=(1,2,3,4,5), REPEAT = 10; 
>CALIB PARTIAL, LOGISTIC, CYCLES=(100,1,1,1), SCALE=1.0, NQPTS=40, ITEMFIT=10; 
>SCORE NOSCORE; 
------------------------------------------------------------------------ 
 
< A-2: PCM > 
------------------------------------------------------------------------ 
>FILE DFNAME='ca001.dat', SAVE; 
>SAVE PARM='pgp22ca001.par'; 
>INPUT NIDW=3, NTOTAL=10, NTEST=1, LENGTH(10), NFMT=1; 
(3A1,T1,10A1) 
>TEST1 TNAME=gp22ca001, ITEM=(1(1)10), NBLOCK=10; 
>BLOCK BNAME=SBLOCK1, NITEMS=1, NCAT=5, SCORING=(1,2,3,4,5), REPEAT = 10; 
>CALIB PARTIAL, LOGISTIC, CYCLES=(100,1,1,1), SCALE=1.0, NQPTS=40,  
ITEMFIT=10,SPRIOR, PRIORREAD; 
>PRIORS SMU=(1(0)10), SSIGMA=(0.0000001(0)10); 
>SCORE NOSCORE; 
------------------------------------------------------------------------ 
 
< A-3: RSM > 
------------------------------------------------------------------------ 
>FILE DFNAME='ca001.dat', SAVE; 
>SAVE PARM='rgp22ca001.par'; 
>INPUT NIDW=3, NTOTAL=10, NTEST=1, LENGTH(10), NFMT=1; 
(3A1,T1,10A1) 
>TEST1 TNAME=gp22ca001, ITEM=(1(1)10), NBLOCK=1; 
>BLOCK BNAME=SBLOCK1, NITEMS=10, NCAT=5, SCORING=(1,2,3,4,5); 
>CALIB PARTIAL, LOGISTIC, CYCLES=(100,1,1,1), SCALE=1.0, NQPTS=40, 
ITEMFIT=10,SPRIOR, PRIORREAD; 
>PRIORS SMU=(1(0)10), SSIGMA=(0.0000001(0)10); 
>SCORE NOSCORE; 
------------------------------------------------------------------------ 
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