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BACKGROUND
Perspective

Based on a long series of international comparisons of student mathematics
achievement (e.g., TIMSS, PISA) it is clear that US students are not achieving to their
potential. The reasons for this are obviously complex, but “the TIMSS curricular reports
suggested that at least part of the problem resided in American curricula, which were seen
as more skills oriented, more repetitive, and less conceptually deep than those of nations
that scored better on TIMSS (Schmidt, McKnight, & Raizen, 1997)” (Schoenfeld, 2006, p.
14).

Disappointing performance of US students in international studies spurred the
National Science Foundation to invest in the development of “reform” curricula that
embodied tenets of the National Council of Teachers of Mathematics’ Curriculum and
Evaluation Standards for School Mathematics (1989). These NSF-funded curricular
materials differed from “traditional” mathematics textbooks by integrating several
branches of mathematics, focusing on the development of mathematical thinking and
problem solving, and deemphasizing skills and symbol manipulation (see Nathan, Long, &
Alibali, 2002). Because these new approaches to curriculum organization have only
recently entered the mainstream, “relatively small numbers of students have worked their
way through a full reform curriculum... (and) there are scant data regarding the
effectiveness of these curricula—either on their own merits or in comparison with
traditional curricula” (Schoenfeld, 2006, p. 15).

Paper presented at the Annual Meeting of the American Education Research Association,
Denver, May 2010. The authors wish to thank Michael Harwell for his methodological
expertise. This paper is based on research conducted as part of the Comparing Options in
Secondary Mathematics: Investigating Curriculum (COSMIC) project, a research study
supported by the National Science Foundation under grant number REC-0532214. Any
opinions, findings, and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the National Science Foundation.
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The NSF-funded curricula are indeed controversial, having both outspoken
advocates and detractors. For more than a decade, mathematics education has endured
“math wars” in which traditionalists have argued that “standards-based” curricula are
“superficial and undermine classical mathematical values; reformers claim that such
curricula reflect a deeper, richer view of mathematics than the traditional curriculum”
(Schoenfeld, 2006, p. 15) (for a more detailed history of the “math wars,” see Schoenfeld,
2004). To placate teachers, administrators, students, and parents, some school districts
recently began to offer parallel curriculum paths in which students are presumably “free”
to study mathematics using one of two organizational schemes, an integrated approach or a
(traditional) subject-specific approach. It is in the special context of parallel curricular paths
that we examine curricular effectiveness.

The COSMIC Project

Funded by the National Science Foundation, Comparing Options in Secondary
Mathematics: Investigating Curriculum (COSMIC) is a research project that involves a three-
year longitudinal comparative study of integrated mathematics curricula and subject-
specific mathematics curricula on mathematical learning in schools that offer parallel
curricular paths. The primary goal of the COSMIC Project is to evaluate secondary school
students’ mathematics learning using multiple measures of student achievement while
carefully attending to curriculum implementation via classroom observations, opportunity-
to-learn (OTL) data, teacher surveys and interviews. Preliminary work for the COSMIC
project began in 2005 with data collection starting in the Fall of 2006 and continuing
through the 2008-2009 school year.

RESEARCH QUESTIONS
Given the large federal investment in NSF-funded curricular materials, their infusion
into US mathematics classrooms, and the corresponding response by teachers,
administrators, students and parents, the COSMIC Project sought to answer the following
research questions:

1. Are there differential effects on high school students’ mathematics learning when
they study from an integrated approach textbook and when students study from a
subject-specific textbook? In particular, are there differential curricular effects with
respect to student performance on assessments of:

o Common objectives;
o Mathematical reasoning;
o Mathematics concepts and problem solving.

2. What are the relationships among curriculum type, fidelity of implementation, and
student learning? In particular,

o What curriculum implementation factors are associated with high school
students’ mathematics learning?

o What teacher characteristics are associated with high school students’
mathematics learning?

OBJECTIVES OF THIS MANUSCRIPT
In this paper we address key issues in the design of longitudinal studies of curricular
effectiveness with particular emphasis on data collection, reduction, and coherence in
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modeling student achievement in year 1 of the COSMIC Project. Reduction and coherence
are important in the context of large data sets such as ours that include extensive
information about teachers as well as detailed information about their teaching practice. In
particular, there is a need to strike a balance between the collection of massive amounts of
student and teacher data to help explain and understand the student learning that takes
place and moving forward with developing parsimonious models of the important
variables that relate to student learning. In this paper, we describe our approach to
balancing these competing demands and share insights related to year 1 of the COSMIC
Project.

SIGNIFICANCE OF THE STUDY

Developing a clear understanding of the dynamics of parallel curriculum use and a
comprehension of the factors associated with how and what students learn under different
curricular approaches is imperative for many reasons. For example, understanding a
parallel-use context is essential for future curriculum change because parallel programs
can likely be an intermediate step in curricular change in many schools. Furthermore, if
and when, a scaling up of an integrated content approach occurs in US schools then the
findings from this study will provide valuable information for the decision making that will
need to take place as part of such a movement. The improved understanding that this study
provides (albeit in a special context) concerning the relationships among curricular
organization, curriculum implementation factors, and gains in student learning will be
useful to the field in theory building, curriculum writing, professional development, and
decision making by school administrators.

THEORETICAL PERSPECTIVES:
On Evaluating Curricular Effectiveness

In designing the COSMIC project research we took account of the comprehensive
framework for evaluating curriculum effectiveness developed by the National Research
Council (2004) (see Figure 1). As the figure shows, the first step in developing a research
design is to attend to Program Theory, which essentially means determining program
components, identifying implementation strategies including processes and contextual
influences, and deciding on student outcomes to be taken into account. In the COSMIC
project, the program components of mathematical content and curriculum design elements
were characterized using a comprehensive content analysis of each of the two curriculum
types studied. Implementation components, in particular implementation resources and
processes, were ascertained by curriculum type in two ways: examination of teacher’s
editions of textbooks and textbook author interviews. Our careful attention to teachers’
implementation of curricular materials was necessary in order to draw causal inferences
between curriculum and student learning; the National Research Council advocates that
studies of curricular effectiveness account for treatment integrity, or what we refer to as
fidelity of implementation. Student outcomes were carefully considered for inclusion in this
study, including multiple assessments, enrollment patterns, attendance, and attrition.
Because there are multiple important student outcomes but limits on how many
assessments can be administered in one study, we decided to focus on the most important
outcome in our view, namely student learning. We annually measured student learning in
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three distinct ways in the study by using what we call a fair test, a mathematical reasoning
test, and a standardized achievement test.

Articulation of Program Theory

Implementation Components
Resources
Processes

Program Components
Mathematical context
Curricular design elements

Conceptual influences

Secondary Components
Systemic factors
Intervention strategies
Unanticipated Influences

Student Outcomes
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Methodological Choice(s)

'

!

Clarity and comprehensiveness
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development
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Document implementation components
Selection of disaggregation of outcome
measures
Statistical tests
Constraints to generalizability

Content Comparative c Stud
Analysis Analysis asestudy
1
Experimental Qu_aSI 3
experimental
— Critical Decisions DI
Comparative Analysis

Content Analysis Type of design Case Study
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Backed claims
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Prepared reports
Ensured evaluator independence

Synthesis and accumulation of
evidence

Figure 1. Framework for evaluating curricular effectiveness (National Research Council,

2004).
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SAMPLE
Curriculum Types

The COSMIC project studied two curriculum types where the organization of the
mathematics content differed, namely subject-specific organization and integrated
organization. Commercially-developed, traditional mathematics textbooks exemplify
subject-specific curricula and these widely-used textbooks focus on a particular strand of
mathematical content each year, such as algebra or geometry. Textbook series of Holt,
Prentice Hall, Glencoe, McDougal Littell, and HRW constitute the sample of subject-specific
curricula; subject-specific courses include common titles such as Algebra 1, Geometry,
Algebra 2, and Precalculus. By way of contrast, in the integrated curriculum organization
multiple strands of mathematical content (geometry, algebra, discrete mathematics and
statistics) are coalesced. During the 1990s, the National Science Foundation invested
heavily in the integrated approach to mathematics curricula. Among the curriculum
development projects at the high school level, Core-Plus emerged as the most popular and
maintains the greatest market share. In this study, the Core-Plus textbook series was
selected as the representative for the integrated curricula; students studying from the
integrated curriculum took Course 1, Course 2, and Course 3.

A primary difference between the subject-specific curricula and the integrated
curricula is how lessons are structured. Each subject-specific lesson usually has a Lesson
Preview, Teach (containing numerous worked examples), Practice and Apply, and closure
component. Teachers enacting a subject-specific curriculum generally facilitate student
learning using teacher-led, whole-class discussions. The integrated curriculum is
structured such that, following a relatively brief Launch, students work in small-group
setting to Explore mathematical ideas while the teacher serves as facilitator; subsequently
students participate in a Share and Summarize component in which they share their
thinking in a whole-class discussion, and discuss the important mathematical ideas of the
lesson. In the integrated curricula, a lesson Launch occurs at the beginning of a unit, so
there may be multiple days in which students engage in Explore and Share and Summarize
without a Launch component of the lesson. Notwithstanding the preceding, for the
integrated curricula, the textbook publisher recommends that closure be included in all
lessons.

Schools

Selection method. To identify an appropriate sample the COSMIC project did an
extensive search for high schools throughout the US that offered parallel curriculum paths
to their secondary students, and students were free to choose between either path. In
particular, we searched for schools that offered both integrated mathematics and a subject-
specific (Algebra 1, Geometry, Algebra 2, Pre-calculus) curriculum organization. This
requirement narrowed the field of possible high schools significantly, but it was a crucial
requirement for the design of this research study. Satisfying this requirement helped
ensure that there would be a balance between curriculum types with regard to the number
of days of instruction, and controlled for many other contextual factors such as homework
and technology policies, organization and length of class periods, professional development
provided during the study, SES make-up of the student body, and so forth. Moreover, we
stipulated that schools were eligible for participation only if students were not tracked,;
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that is, schools were ineligible if policies channeled high-performing students into one
curriculum type while directing lower-performing students into another curriculum.

We also selected schools that would provide diversity in our sample with regard to
geographic region, race/ethnicity, and social economic levels. Furthermore, we selected
only schools that were not using either of their mathematics textbook series for the first
time. This requirement ensured that most teachers were familiar and had experience using
the textbooks in our sample.

Once schools that met our criteria were identified, we visited the schools to talk
with school representatives. This always included mathematics teachers, mathematics
chair/coordinator (where they existed) and the school principal. In the majority of cases it
also required meeting with the district superintendent, and in all of these meetings the
researchers described the nature of the research and what commitments were required by
the district (e.g., providing prior achievement test data, allowing researchers to observe
classes, and committing three days for assessments). We also discussed the benefits the
district would receive from this research effort, including results from the additional
assessments, modest honoraria for teachers, and the findings from the research. The latter
point was particularly persuasive, as all of the schools were interested in research data
regarding the impact of these two curricular paths on the performance of students. The
process described above resulted in choosing 11 schools in six school districts that were
located in five geographically dispersed US states.

Demographic data. Consistent with the selection criteria, there was diversity in the
student sample for year 1. As depicted in Table 1, data were collected from 2,621 students,
with slightly more females comprising the sample than males. While the majority of
students were White (77.56%), the sample represented a relatively diverse ethnic
population with the proportion of White students ranging substantially from 50.45% in
District R to 94.02% in District C. A larger percentage of Black students were reported in
District W (20.44%) than in other districts; while District R reported nearly 40% of its
student population as Hispanic. Other races—including Asian/Pacific Islander, Native
American/Alaskan Native, Mixed Race, and Unclassified—comprised 4.36% of the sample
but accounted for nearly 7% in District R.

With regard to characteristics that qualify students for school services and/or
resources, there was similar diversity across districts. For example, the portion of students
with Individual Educational Plans (IEP) ranged from 1.66% in District W to 10.12% in
District B. The percentage of students classified as Limited English Proficiency (LEP) was as
high as 4.89 in District C while District I reported none. The use of Free/Reduced Lunch
(FRL) is commonly used in educational research despite its limitations (Harwell & LeBeau,
2010) as a measure of SES. In this study, there was a wide range in the percent of students
qualifying for FRL, from 19.09% in District R to 53.27% of District I.
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Table 1
Demographic Data for Each School District in the COSMIC Project, Year 1
Gender Race/Ethnicity Qualifications

District | Students | Male | Female | Black | Hispanic | White | Other! IEP LEP | FRL
B 257 46.70 53.30 1.56 6.23 90.27 1.94 10.12 3.11 | 28.79
C 184 50.00 50.00 0.00 4.89 94.02 1.09 9.78 4.89 | 46.20
I 336 47.62 52.38 10.12 8.04 77.98 3.86 7.74 0.00 | 53.27
R 440 47.05 52.73 2.95 39.77 50.45 6.83 4.32 3.86 | 19.09
T 802 50.00 50.00 0.62 2.99 92.77 3.62 8.60 1.12 | 25.31
w 602 46.35 53.65 20.44 7.31 66.44 5.81 1.66 1.66 | 25.75

Totals 2,621 48.04 | 51.93 6.83 11.25 77.56 4.36 6.41 2.02 | 29.76

As depicted in Table 2, the 2,621 students comprising the year 1 sample were
largely evenly distributed across the two curriculum types, with 48% enrolled in integrated
and 52% enrolled in subject-specific curriculum. Although the number of students enrolled
in each curriculum type was similar overall, far more students enrolled in the integrated
path in District [ while the opposite was true for District R. Correspondingly, there were
slightly more teachers of the subject-specific curriculum than taught the integrated
curriculum. Of the 43 teachers who participated in the COSMIC project, 20 taught the
integrated curriculum while the remaining 23 taught the subject-specific curriculum; this
includes a few teachers who taught both curriculum types.

Table 2
Number of Teacher and Student Participants in Year 1, by School District and Curriculum

Type

administered during the final six weeks of year 1. Although discussion of the outcome

Teachers Students
District Integrated Subject-Specific Integrated Subject-Specific

B 3 2 127 130

C 1 2 97 87

I 4 2 286 50

R 1 5 47 393

T 6 4 462 340
w 5 8 237 365

Total 20 23 1,256 1,365

Student participation necessitated the writing of three end-of-year exams,

measures is offered subsequently, it is worth noting that 2,615 of 2,621 students took at
least one test in year 1 of the COSMIC Project, an astonishing participation rate of 99.77%.

LITERATURE REVIEW
The notion that NSF-funded curricula are more effective than traditional curricula in
yielding student mathematical learning is highly controversial (Senk & Thompson, 2003).

1 Includes Asian/Pacific Islander, American Indian/Alaskan Native, Mixed Race, and Unavailable.
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In a comprehensive review of research on curricular effectiveness, the National Research
Council (2004) identified numerous methodological limitations of studies on the impact of
mathematics curriculum on student learning. Among these, the NRC noted that few studies
utilized an experimental design, included multiple measures of student learning outcomes,
or were sensitive to treatment integrity (or fidelity of implementation). Moreover, they
acknowledge a dearth of longitudinal studies of curricular effectiveness. Although the NRC
advocates additional studies, Cai and Moyer (2006) argue that selecting the optimal way to
conduct research on the effects of different curricula on student learning is as equally
controversial.

Most studies measuring the effectiveness of NSF-funded curricula have been
conducted in the context of field-tests (Senk & Thompson, 2003). Considering the potential
bias that field tests conducted by the curriculum developers might carry into the studies,
Harwell et al. (2007) and Post et al. (2008) based their curriculum research on district-
wide curricula adoptions, where teachers were required to teach the adopted curriculum,
as opposed to the case of field-test versions of the curricular material. Harwell et al. (2007)
examined mathematics achievement of secondary students while comparing different
types curricula; Post et al. (2008) studied achievement models of middle school students
who were enrolled in a Standards-based curriculum. Both studies utilized hierarchical
linear modeling (HLM) to differentiate the effects of student- and classroom-level variables
that offer predictive power in modeling student achievement. Descriptive data suggest that
low socioeconomic status (SES), African American, nonnative English speakers and special
education students were consistently outperformed by their peers.

In both Harwell et al. (2007) and Post et al. (2008), student-level variables included
prior mathematics achievement, SES (i.e., students qualifying for free or reduced-price
school lunch [FRL]), gender, and attendance. Classroom-level variables included class SES
level, percent ethnic minority (Black, Asian, and Hispanic), English Language Learners,
special education students, and female students as well as attendance and school district
affiliation. Harwell et al. (2007) added curriculum type as a classroom-level predictor. HLM
analyses results revealed that SES level and prior mathematics achievement consistently
and strongly predicted mathematics performance at both student- and classroom-levels
whereas gender and attendance were not found to explain significant variability in
students’ mathematics performance. Post et al. (2008) found that suburban classrooms
outscored urban classrooms in mathematics achievement, indicating how school location
may impact student performance. A key finding by Harwell et al. (2007) was that when all
variables were taken into account, there was no statistically significant difference among
different types of curricula. In both of these studies, the teacher-level variable “professional
development hours” was not a significant predictor of student achievement. However,
neither of the previous studies was able to carefully assess the extent of curriculum
implementation in the classroom.

Schoen et al. (2003) and McCaffrey et al. (2001) investigated effects of teacher
variables on student achievement. The former was a field test study that examined
teachers’ preparation, practices and concerns related to students’ mathematics
achievement in the implementation of the Core-Plus curriculum. This study measured the
teacher achievement index, which was defined as the mean of each teacher’s students’
adjusted mean posttest score (posttest scores after removing the variance due to the
pretest). Although pretest results revealed that the percentage of free or reduced-price
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lunch (FRL) and the sum of percentages of African American, Native American and Hispanic
students were strongly and negatively correlated with the pretest achievement, the
adjusted mean posttest scores were not statistically significantly correlated with any of
these variables. Using regression analysis, the authors proposed a model of student
achievement. In contrast to the findings of Harwell et al. (2007), Schoen et al. determined
that teachers’ completion of a developer-sponsored summer workshop was the most
significant variable predicting their students’ achievement. Moreover, they identified
several other variables that were positively and significantly associated with adjusted
student achievement, including (a) cooperation with other teachers and having confidence
in teaching, (b) using group work instead of teacher presentation and whole group
discussion, (c) spending less time on non-academic matters, (d) using a variety of
assessment methods, (e) not replacing the curriculum materials with the ones that are less
open-ended and more skill-oriented, (f) high expectations on homework and grading, and
(g) high observer rating based on the criteria for effective reform teaching.

Investigating the relationship between teachers’ use of reform-based instructional
practices and student achievement, McCaffrey et al. (2001) based their study on self-
reported data collected from NSF-funded and traditional curriculum teachers while also
taking into account of different student variables. Results revealed that teachers’ reported
use of reform teaching practices were positively correlated to the achievement of the
students in the integrated mathematics classes while no significant correlation was
observed for the achievement of students in the traditional mathematics classes. In general,
students whose teachers had a graduate degree in mathematics or mathematics education
tended to score higher in achievement tests. Nevertheless, teacher’s level of training was
excluded from the model due to its possible interaction with teaching practices in
classroom. Teacher background variables defined as their degree, certification status,
coursework in mathematics, gender, ethnicity and years of teaching experience were not
found to have significant predictive power on reported reform-practices.

DESIGN AND DATA SOURCES
Hierarchical Linear Modeling

Because students experience the school mathematics curriculum in groups, not as
individuals, it is not appropriate to use student as the unit of analysis in curriculum
evaluation studies (National Research Council, 2004; Osborne, 2000). The recognition of
this fact warrants the use of group means (e.g., class averages, scores aggregated by
teacher) or multi-level modeling, in which students are nested in hierarchical structures.
For example, students experience mathematics as a class; several sections of the same class
are taught by the same teacher; several teachers are nested within the same school; and
(public) schools are held accountable to the same state curriculum framework. In principle,
one could argue that students represent the first of many levels in a nested, hierarchical
educational system. However, modeling student achievement across many levels is
extraordinarily complex, necessitates a sufficient number of cases in each level, and
interpretation of results is particularly challenging.

Although students experience curriculum as a class, we argue that several classes
taught by the same teacher are not independent because it is likely many aspects of
instruction do not vary within the school day. For example, throughout a given school day,
a high school Algebra 1 teacher is likely to cover the same mathematics content in a single
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lesson for each class period he teaches Algebra 1 that day. Moreover, the same Algebra 1
teacher is likely to emphasize the same mathematics (e.g., procedural fluency), spend
approximately the same amount of time on particular lesson components, and assign the
same homework from the Algebra 1 textbook. Because the independence of cases is
fundamental in hypothesis testing, we use teachers (not classes) as the unit of analysis. Our
design is a two-level model, students nested within teachers, and we seek to identify
student-level and teacher-level variables for inclusion in models of student achievement.

Independent Variables

Student-level. Recent studies of curricular effectiveness provide insight into what
data are essential to collect. At the student-level, it seems requisite to collect data regarding
prior achievement, gender, race/ethnicity, and other designations such as Individual
Education Plan (IEP) and Limited English Proficiency (LEP). A complete list of the student
variables to which we attended appears in Table 3. In studies of curricular effectiveness, it
is imperative to include measures of student prior achievement in order to (a) establish the
equivalence of treatment groups, or (b) control for non-equivalence of treatment groups. In
a subsequent section, we provide detailed narrative on how we generated a common prior
achievement score across districts in our sample, and data that show that mean student
prior achievement scores across our two curriculum types are not significantly different.

Table 3

Student-level Control Variables

Control Variable Data Type Data Source

COSMIC Prior Mathematics Achievement | Interval Transformation of scores on state-mandated tests
Gender Dichotomous | Student Records

Race/Ethnicity Polytomous | Student Records

Individual Education Plan Dichotomous | Student Records

Limited English Proficiency Dichotomous | Student Records

Teacher-level. At the teacher-level, it is essential to collect information regarding
characteristics such as experience, hours of professional development, knowledge and
beliefs. Moreover, in response to the NRC (2004) stipulation that treatment integrity be
documented in studies of curricular effectiveness, it is clearly necessary to collect data on
teachers’ implementation of curricular materials, including how the curriculum was
enacted and what opportunity-to-learn mathematics students were afforded. As reported
in another paper (see McNaught et al. 2010), we examined the fidelity of implementation of
curricular materials through two lenses: content fidelity and presentation fidelity. We used
multiple data sources to gauge teachers’ implementation of curricular materials including
Table of Contents Records, Textbook-Use Diaries, Initial Teacher Survey, and observations
using a Classroom Visit Protocol.

Collectively, nearly 30 variables were measured and these are listed in Table 4.
Because of the large number of teacher variables, it was hypothesized that several
attributes might be highly correlated, and hence essentially measuring the same construct.
For example, consider the variables Seating and Collaboration, from our Classroom Visit
Protocols. The extent to which students worked collaboratively during observed lessons
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(Collaboration) is likely related to how likely students were seated in groups (Seating);
students tend not to work collaboratively if desks are arranged in rows. It follows that
subsequent analyses were employed to reduce the number of teacher variables to a more
manageable number. Without doing so, we run the risk of introducing bias and explaining
far more variance that can be attributable to student- and teacher-level variables.

Table 4

Teacher-level Variables, by Data Source

TABLE OF CONTENTS RECORDS

OTL Index Opportunity to Learn Index represents the percentage of textbook lessons taught

ETI Index Extent of Textbook Implementation index represents the extent to which teachers
followed their textbook using weighted averages

TCT Index Textbook Content Taught index represents the extent to which teachers, when teaching

textbook content, followed their textbook, supplemented their textbook lessons, or used
altogether alternative curricular materials

CLASSROOM VISIT PROTOCOLS

Pres Fidelity

Global rating of presentation fidelity of textbook in observed lessons

Content Fidelity

Global rating of content fidelity of textbook in observed lessons

Tech_Teacher

Likelihood that teacher utilized graphing calculators in instruction

Tech_Students

Likelihood that most students utilized graphing calculators during instruction

Reasoning

Classroom Learning Environment: Reasoning about Mathematics

Students’ Thinking

Classroom Learning Environment: Students’ Thinking in Instruction

Sense-Making

Classroom Learning Environment: Sense-Making about Mathematics

Closure Relative frequency that teacher brought closure to the observed lessons.

Engage Extent to which most students were engaged (on-task) during observed lesson
Seating Relative frequency that students were seated in groups during observed lessons.
Collaboration Relative frequency that students worked collaboratively during observed lessons.
Time_LD Percent of class period devoted to lesson development

Time_NI Percent of class period devoted to non-instructional time

Time_PA Percent of class period devoted to practice and apply (homework)

INITIAL TEACHER SURVEY

Teach_Exp Number of years teaching

Math_Exp Number of years teaching mathematics

Belief 1 Teacher beliefs about reform-oriented practices

Belief 2 Teacher beliefs about didactic approaches

Belief 3 Teacher beliefs about students’ self-efficacy

PD_12 Number of hours of professional development in the last 12 month

PD_3 Number of hours of professional development in the last 3 years

Familiar Familiarity with Principles and Standards for School Mathematics (NCTM 2000)
Agreement Agreement with Principles and Standards for School Mathematics (NCTM 2000)
Implement Implementation of Principles and Standards for School Mathematics (NCTM 2000)
Text Number of years teaching from the district-adopted textbook

Preparation Preparedness to teach the district-adopted textbook

Rating Rating of satisfaction with the district-adopted textbook

TEXTBOOK-USE DIARIES

Days

Number of days spent on target content
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It is worth further noting that we use FRL as a proxy for SES despite its limitations
(see Harwell & LeBeau, 2010). For at least two reasons, we aggregated the percentage of
FRL students for each teacher rather than use FRL as a student-level variable. First, FRL as
a student-level variable often yields extraordinary—arguably unwieldy—slopes that seem
implausible. Second, District W was unwilling to provide FRL status for individual students
(but was willing to provide it at the class-level), and this decision introduced
methodological challenges. Accordingly, FRL is treated as a teacher-level covariate.

Dependent Variables

Project-developed tests. Following the recommendations of the NRC (2004), we
developed assessment instruments using items written around topics common to both
curriculum programs with the deliberate goal of not being biased towards either of the two
curriculum programs. For the three years of the study, we developed five project tests.
Each test was developed following a cycle of curriculum analyses and several rounds of
external and internal reviews, pilots, and revisions. For each of the first two years of the
study, two tests were developed: the first test, Test A, was comprised of items that focused
on common topics (the fair test) across the two curriculum types; the second test, Test B,
assessed students’ mathematical reasoning and problem solving. The items in the
reasoning tests were based on topics that were appropriate to the grade level, according to
the content in the textbooks, and as identified during our internal and external reviews. For
a detailed discussion of the test development process, see Chavez et al. (2010).

The majority of the items in the fair test (Test A) used in year 1 deal with linear
relationships, a topic holding a central position in both Algebra 1 and integrated textbooks.
The mathematical reasoning test (Test B) included problems on data analysis, algebra, and
geometry. Although analyses are not reported here, in year 2, the fair test included some
items on algebraic topics, although it was focused primarily on geometric topics and
concepts common to the two curriculum types (e.g., coordinate geometry, perimeter and
area, and trigonometry). The mathematical reasoning test for year 2 included geometric
items and an algebraic item. In year 3, we developed only one test that focused on functions
as the central mathematical idea. The items in these tests were constructed response with
but one or two exceptions.

The scoring rubrics were refined in an iterative manner, following a process parallel
to the development of the tests. We examined the reliability of our scoring process and the
results were excellent, with an inter-rater reliability above 94% for all five tests.

After the tests were administered to 2,621 students in year 1, analyses of scores revealed
that the rubrics we developed were applied in a highly reliable manner.

Standardized test. The standardized measure of achievement we selected was the
Iowa Test of Educational Development [ITED]: Mathematics: Concepts and Problem
Solving. It received high ratings in the Buros Mental Measurements Yearbook (Schafer,
2005) with regard to reliability and validity and it has been described as “among the best
general-purpose assessments of high school students’ educational development available”
(p. 10). Furthermore, it is nationally-normed, which makes it particularly useful in a
comparative study. Naturally, there are important differences between the ITED and our
project-developed tests. The ITED is a multiple-choice test. Large-scale assessments that
rely on multiple-choice items permit only indirect inferences about students’ thinking
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(Silver, Alacaci, & Stylianou, 2000). The items in our project-developed tests are
constructed-response items. Our scoring rubrics were designed to score separately each
item’s answer and the work done to get that answer. In this way we have collected ample
direct evidence regarding students’ performance on more complex problem-solving tasks.

DATA ANALYSIS
Student Data

COSMIC Prior Achievement (CPA). Consistent with our theoretical framework
(NRC, 2004) our quasi-experimental design necessitated that comparability be established
by matching samples or making statistical adjustments using, among other factors, prior
achievement measures. Because a pre-test administered to all students is rarely feasible in
large-scale studies of curricular effectivness across multiple states such as ours, we opted
for a reasonable alternative, namely the utilization of scores on state-mandated grade 8
tests, typically administered during the 2004-05 school year. These high-stakes tests
generally purport to measure student achievement in mathematics at a common point in
time (grade 8), and so they provided useful information in characterizing student
knoweldge prior to curricular treatments in the COSMIC Project. Nevertheless, state tests
are usually not nationally-normed, and are scored using different scales. Consequently, it
was necessary to put the scores on a common scale that would take into account
differences across states, as average National Assessment of Educational Progress (NAEP)
scores vary considerably across states. In particular, because participating school districts
were located in five US states, it was important to acknowledge and subsequently adjust for
differences in student achievement across each state. For example, given that grade 8
mathematics students in State X scored above the US average on NAEP while students in
State B scored below the US average, we mapped each student’s grade 8 state test score in
mathematics onto the NAEP scale score for grade 8 mathematics.

In grade 8, some students in District B were assessed using a nationally-normed
mathematics achievement test. In these cases, we simply converted their scores to a
national z-score, which we then mapped onto an NAEP scale score. Therefore, a grade 8
student in State X scoring at the mean (z = 0) was assigned to the mean NAEP scale score
for State X. A student scoring 1 standard deviation above the mean was assigned a NAEP
scale score that corresponded to the mean NAEP scale score plus 1 standard deviation.

For the vast majority of students in COSMIC, grade 8 scores on state-mandated tests
were not nationally-normed. In these cases, we converted students’ scores in each state to
z-scores before mapping these scores onto a NAEP scale score (see National Center for
Educational Statistics, 2007). We called the resulting score COSMIC Prior Achievement Score
(CPA Score). The diagram in Figure 2 illustrates the process.
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Student score
on district test

Convert to national z-score:

Is it a nationally .
normed test? YES —| Test score - National Mean

National SD

NO

v

Convert to state z-score:

Test score - State Mean
State SD

\ 4

Map state z-score to NAEP Scale Score:

(NAEP State Mean) + (State z-score) x (NAEP State SD)

\ 4

Map national z-score to NAEP Scale Score:

(NAEP National Mean) + (National z-score) x (NAEP National SD)

\ 4

—

CPA score <

Figure 2. Algorithm for generation of the COSMIC Prior Achievement (CPA) score.

Consider a second illustrative example in which Student A has a scale score of 709 on the
2005 grade 8 test mandated in State Y . Because the assessment for State Y is not a
nationally normed test, we converted this student’s scale score to a state z-score using
descriptive statistics for the 2005 State Y test: mean score of 682 and a standard deviation
of 35. As depicted in Figure 3, this state z-score was then mapped onto the NAEP Scale
Score: State Y had an average NAEP scale score of 263 and a standard deviation of 34,
yielding a CPA score of 289. Thus, although Student A scores 0.77 standard deviations
above the mean relative to grade 8 students in State Y, Student A scored approximately
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0.28 standard deviations above the mean relative to grade 8 students in the US (see Figure
4).

Student A's
scale score on
state test: 709

Is it a nationally
normed test?

NO

'

Convert to state z-score:

709 — 682

35 =0.77

\ 4

Map state z-score to NAEP Scale Score:

263 + 34 x 0.77 ~ 289

Student A’s
CPA score:
289

Figure 3. Generating Student A’s COSMIC Prior Achievement (CPA) score.
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Figure 4. Mapping Student A’s state score onto the grade 8 NAEP scale.

Equivalence of treatment groups: Students. The transformation of student prior
achievement scores on state-mandated tests to COSMIC Prior Achievement (CPA) scale
scores yielded a relatively normal distribution across the year 1 sample (see figure 5). A
preliminary analysis revealed there was no significant difference in mean CPA scores
across curriculum types. Stated differently, while there was substantial variation in prior
achievement within the year 1 sample, there was a comparable distribution in student
achievement across curriculum types.

0.161
g 0.144
Q
v 0121

o

-

==

16

150

200

250

CPA

300

350 400

Figure 5. Distribution of COSMIC Prior Achievement scores, year 1.
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Scaling student outcomes on constructed-response tests. For each student, scale
scores were generated from raw scores on each of the project-developed exams, Test A
(common objectives) and Test B (mathematical reasoning). By using Item Response Theory
scale scores, additional information related to item difficulty and item discrimination can
be incorporated in the determination of student scores. More specifically, two-parameter
IRT was employed, using item difficulty and item discrimination indices to generate theta
scores for each student on each test. The large number of students, sufficient number of
test items, and sound psychometric properties of the assessment allowed the models to
converge, and checks were done to ensure proper model fitting.

Teacher Data

Equivalence of treatment groups: Teachers. All teachers who participated in the
COSMIC study completed an Initial Teacher Survey (ITS) in which they reported numerous
background characteristics, including: number of years of experience teaching
mathematics; beliefs about teaching and learning mathematics; familiarity and agreement
with NCTM Standards; implementation of NCTM Standards; the amount of time allotted for
and the focus of professional development; the impact professional development had on
instructional practices; and the use of technological tools in mathematics instruction (for a
more comprehensive set of attributes on the ITS, see Table 4).

A comparison of group means, using a one-way analysis of variance (ANOVA), of
responses from teachers of subject-specific curricula and of integrated curricula revealed
that the differences between the two groups were not significantly different for most of the
variables assessed. For example, the two groups of teachers were remarkably comparable
in terms of teaching experience, teaching licensure, and mathematics background.
Nevertheless, a few differences were discerned. For example, teachers of integrated
curricula were significantly more inclined to report familiarity with the NCTM Standards (F
=13.126, p =.000), agreement with the Standards (F = 9.394, p =.003), and (self-reported)
implementation of the Standards (F = 5.161, p =.025) than teachers of subject-specific
curricula. Furthermore, teachers of the integrated curriculum reported approximately one
more year of experience using the integrated textbook than teachers of using subject-
specific curricula, a significant difference (F=7.107, p =.009). No other differences were
detected across the two groups of teachers.

Teacher beliefs. Teachers responded to 32 five-point Likert scale items on the ITS
to report their beliefs about the teaching and learning of mathematics. Factor analysis of
teachers’ belief responses extracted three factors of teachers’ beliefs: (1) reform practices?
(Ellis, Malloy, Meece, & Sylvester, 2007), (2) didactic approaches3 (Nie & Lau, in press), and
(3) self-efficacy* (Hoffman, in press). A scale score for each factor was generated for each

2 “For the purposes of this study, ‘reform-oriented’ refers to a teacher’s use of instructional practices aligned with the
curriculum and teaching Standards of the National Council of Teachers of Mathematics (NCTM, 1989, 1991) and Principles
and Standards for School Mathematics (NCTM, 2000), collectively referred to as the NCTM Standards” (Ellis, Malloy,
Meece, & Sylvester, 2007, p. 2).

3 “Didactic instruction focuses on the transmission of knowledge as represented in curriculum and textbooks and student
learning focuses on the passive receipt of knowledge reinforced through drill and practices” (Nie & Lau, in press, p. 2).

4 “Self-efficacy, the belief in one’s ability to execute courses of action to achieve desired results (Bandura, 1986), is related
to superior performance and may moderate the influence of anxiety on mathematics (Hackett,1985; Jain & Dowson, 2009;
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teacher. Although the two sets of teachers were remarkably comparable on most teacher
characteristics and self-reported practices, our analysis revealed that teachers’ beliefs were
markedly different. With regard to Belief 1 reform practices, the mean scale score for
teachers of integrated curricula was significantly higher (F = 11.648, p =.001) than the
mean for teachers of the subject-specific curriculum. In contrast, for Belief 2 didactic
approaches, means for teachers of subject-specific curricula were significantly higher (F =
9.009, p =.003) than for integrated. These differences suggest that teachers of integrated
curricula held beliefs more consistent with a reform approach while teachers of subject-
specific curricula held beliefs that embodied a more didactical instruction orientation. No
differences were found with regard to Belief 3, teachers' self-efficacy toward the discipline
of mathematics.

Principal Components Analysis (PCA). Given the large number of teacher variables
from a number of sources (including Initial Teacher Surveys, Table of Content Records,
Midcourse Teacher Surveys, and Classroom Visit Protocols), Principal Components
Analysis (PCA) was used to reduce the large number of teacher variables (Table 4) from
these sources. The initial extraction was conducted with 27 variables and 151 cases; data
from the TUD were excluded and are not reported. Each case represented one teacher of a
given curriculum type in a given year. Teachers who taught multiple years or both
curriculum types had multiple cases. Although classroom visits were not conducted for
teachers in the third year, their data from all other sources were used in the PCA.

Throughout the process, parallel analysis was used to determine the number of
factors that should be extracted. This technique simulates a factor analysis with the same
number of cases and variables on a random set of data. The eigenvalues for each factor
indicate the amount of variance that the factor explains, and only factors that explain more
variance than the factor based on random data should be kept. Each parallel analysis
suggested that seven factors should be kept.

A number of tests were conducted to examine the strength of the model and fit to
the variables. For each extraction the Kaiser-Meyer-0Olkin Measure and Bartlett’s Test of
Sphericity were used to confirm that the sample was adequate and that the factor model
produced was not inappropriate. Residuals from reproduced correlations were also
examined to identify specific variables that were not being modeled well. In addition, the
communalities of each variable were examined to determine how well the factor model
explained its variance. From the initial extraction, two variables from the ITS (Belief 3, and
Preparation - see Table 4), and one variable from the CVP (Closure - see Table 4) were
dropped because of low communalities. The final extractions were based on 24 variables,
each with communalities over 0.450.

Extracted factors were rotated using the Varimax method. The rotation converged in
seven iterations. These seven factors explained 69.6% of the variance in the original set of
data. An Anderson-Rubin technique was used with the final model to generate factor scores
for each case without missing data. This technique produces scores with a mean of
approximately zero and standard deviation of about one.

Pajares, 1996; Pajares & Graham, 1999; Pajares & Kranzler, 1995; Pajares & Miller, 1994; Shores & Shannon, 2007)”
(Hoffman, in press, p. 1).
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Table 5
Factors Related to Curriculum Implementation, Primary Loadings, Data Source.

19

FACTOR 1: STANDARDS-BASED INSTRUCTION

Variable: Description (Data Source). Loading
Focus on Sense-Making: Multiple solution strategies were encouraged, the enacted lesson .880
developed procedural knowledge in meaningful ways and conceptual understanding of

mathematics, and connections within mathematics were explored. (CVP)

Reasoning about Mathematics: Students were afforded opportunities to make conjectures .855
about mathematical ideas, students’ mathematical arguments were challenged by others,

mathematical authority rested with students, not with the teacher or textbook. (CVP)

Students’ Thinking in Instruction: Formative assessment techniques were used to guide .835
instructional decision making, student statements were used to build a shared understanding,

student misconceptions or mistakes were used as a learning site for others. (CVP)

Presentation Fidelity Rating: Global rating of how closely the teacher’s enactment of the .647
lesson was consistent with authors’ recommendations. (CVP)

Belief 2: Teacher beliefs regarding didactic instruction. (ITS) -418

FACTOR 2: IMPLEMENTATION FIDELITY

followed their textbook. (TOC)

Variable: Description (Data Source). Loading
TCT Index: Textbook Content Taught index represents the extent to which teachers, when .826
teaching textbook content, followed their textbook, supplemented their textbook lessons, or

used altogether alternative curricular materials. (TOC)

Content Fidelity Rating: Global rating of how closely the content of the teacher’s enacted .807
lesson reflected the textbook content. (CVP)

Rating: Teacher’s reported rating of satisfaction with their textbook. (ITS) 616
ETI Index: Extent of Textbook Implementation index represents the extent to which teachers 514

FACTOR 3: TECHNOLOGY & COLLABORATIVE LEARNING

(CVP)

Variable: Description (Data Source). Loading
Technology by Students: Percent of lessons in which most students used graphing .783
calculators. (CVP)

Technology by Teacher: Percent of lessons in which the teacher used graphing calculator. .739
(CVP)

Belief 1: Teacher beliefs about reform-oriented approaches to teaching and learning .529
mathematics. (ITS)

Text: Number of years teaching from the district-adopted textbook. (ITS) 492
Seating Arrangement: The seating arrangement of observed lessons. (CVP) 463
Collaboration: The extent to which most students worked collaboratively during the lesson. 439

FACTOR 4: OPPORTUNITY TO LEARN

Variable: Description (Data Source). Loading
OTL Index: Percent of textbook lessons taught by the teacher during the school year. (TOC) .876
ETI Index: Extent of Textbook Implementation index represents the extent to which teachers .763
followed their textbook. (TOC)

Seating Arrangement: The seating arrangement of observed lessons. (CVP) -514
Engage: The dominant level of student engagement in observed lessons. (CVP) 408
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Teacher-level factors. The seven factors extracted from our teacher data file
generally clustered around two themes: (1) curriculum implementation, and (2) teacher
characteristics. More specifically, four factors were related to teachers’ implementation of
curricular materials: (Factor 1) Standards-Based Instruction, (Factor 2) Implementation
Fidelity, (Factor 3) Technology and Collaboration, and (Factor 4) Opportunity-to-Learn
(see Table 5). Each of these factors embodies coherence in that the variables that “load” on
each factor are related conceptually. For example, in Factor 1, the three elements of the
Classroom Learning Environment—Focus on Sense-Making, Reasoning about Mathematics,
and Students’ Thinking in Instruction—have factor loadings between .835 and .880,
compelling loadings indeed, and all gathered from observations of classroom practices.

As depicted in Table 6, three factors were related to teacher characteristics: NCTM
Standards (Factor 5), Experience (Factor 6), and Professional Development (Factor 7). As
was the case with implementation factors, each of the factors related to teacher
characteristics reflects coherence in the data. For example, in Factor 5, teacher responses
to the three questions about the NCTM Standards (2000)—Familiarity with, Agreement
with, and Implementation of NCTM Standards—have factor loadings between .559 and
.805, suggesting that these questions are closely related (as one might expect them to be).
Moreover, scale scores for Belief 2 didactic instruction loaded negatively with Factor 5,
suggesting that teachers holding strong beliefs about didactic instruction generally
disagreed with NCTM'’s vision for school mathematics.

Table 6
Factors Related to Teacher Characteristics, Primary Loadings, Data Source

FACTOR 5: NCTM STANDARDS: FAMILIARITY, AGREEMENT, AND IMPLEMENTATION

Variable: Description (Data Source). Loading
Agreement: Extent to which the teacher agrees with the overall vision of Principles and .805
Standards for School Mathematics (NCTM 2000) (ITS)

Familiar: Extent to which the teacher is familiar with Principles and Standards for School 778
Mathematics (NCTM 2000) (ITS)

Implementation: Extent to which the teacher has implemented the recommendations of .559
Principles and Standards for School Mathematics (NCTM 2000) (ITS)

Belief 2: Teacher beliefs regarding didactic instruction (ITS) -453
Belief 1: Teacher beliefs about reform-oriented approaches to teaching and learning 405

mathematics. (ITS)

FACTOR 6: EXPERIENCE

Variable: Description (Data Source). Loading
Experience: Number of years teaching experience. (ITS) 943
Mathematics Experience: Number of years mathematics teaching experience. (ITS) 926
Text: Number of years teaching from the district-adopted textbook. (ITS) 405
Variable: Description (Data Source). Loading
PD_12: Number of hours of professional development in last 12 months. (ITS) .874

PD_3: Number of hours of professional development in last 3 years. (ITS) .864
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The Principal Components Analysis (PCA) allowed us to responsibly and
substantially reduce the number of teacher-level variables, resulting in a more manageable
and coherent data set. Such results yielded interdependencies that were important for at
least two reasons. First, while we suspected that several measures of curriculum
implementation were related (e.g., TCT Index and Content Fidelity Rating), the PCA
supported this notion empirically. Second, there were additional relationships among
teacher variables that we did not anticipate but were discerned only through factor
analysis. Moreover, this technique was likewise useful in ascertaining which teacher
variables were tenuous. For example, Belief 3 simply did not “perform” well when
examined in relation to every other measure; this variable was ultimately excluded from
the final PCA because it explained the smallest portion of variance in the set of teachers’
beliefs.

In summation, the PCA elucidated the key relationships among a large number of
variables, and in so doing helped us to achieve data reduction. The fact that the teacher
variables clustered around two themes, curriculum implementation and teacher
characteristics, supports the notion that our copious teacher data are, after all, coherently
related. Having achieved data reduction and coherence, we proceeded to examine the
relationships among student outcome measures and teacher-level variables.

RESULTS
The National Science Foundation (2004) recommends that studies of curricular
effectiveness report participation (i.e., testing) rates as well as attrition. Given our exclusive
focus on year 1 data only, we do not report attrition rates herein. Nevertheless in this
section we offer testing rates, as well as bivariate correlations, and partial correlations.

Testing Rates

During year 1, students were assessed on a fair test (Test A), a reasoning and
problem solving test (Test B), and a standardized test (ITED 15). Overall, participation
rates were remarkably high on any given test (see Table 7). As reported in Table 7,
participation rates on Test A ranged from 94.5% of target students in District R to 98.8% in
District W; on Test B, ranged from 92.5% in District R to 99.0% in District W; and on ITED-
15, ranged from 93.4% in District R to 99.9% in District W. Not surprisingly, “complete”
testing data was available for 84.1% of students in District R but as high as 97.3% in
District W. As stated previously, nearly (99.77%) all students took at least one test in year 1
of the COSMIC Project.
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Table 7
Participation Rates of Students in Year 1 Testing, by School District
Test A TestB ITED-15 All Three Exams
District Tests Rate Tests Rate Tests Rate Tests Rate
B 247 96.9 247 96.9 247 96.9 237 92.9
C 182 98.9 180 97.8 181 98.4 177 96.2
[ 321 95.5 314 93.5 331 98.5 300 89.3
R 415 94.5 406 92.5 410 93.4 369 84.1
T 773 96.6 765 95.6 778 97.3 730 91.3
w 594 98.8 595 99.0 595 99.0 585 97.3
Total 2,532 96.8 2,507 95.9 2,542 97.2 2,398 91.7

Correlations between Student Outcome Measures and Teacher-Level Variables

It is important to note that the student outcomes used in the correlations that follow
are IRT scale scores that were adjusted for students’ prior achievement (CPA) and
subsequently aggregated by teacher; that is, they represent mean residualized gain scores
for each teacher. Curriculum Type is a dichotomous variable with integrated coded 1 and
subject-specific coded 0. The time variable is a continuous variable and the implementation
and teacher characteristic factors are centered on the grand mean (X =0, SD = 1).

The bivariate correlations between student outcomes, curriculum type, %FRL, use
of time, implementation factors, and teacher characteristics appear in Table 8. However, it
important to note that each correlation reported merely represents the magnitude of an
association; the correlations do not represent causal relationships nor will they be used to
model the variation of student achievement. Notwithstanding these caveats, in year 1,
Curriculum Type was found to be significantly correlated with both Test A (.304) and Test
B (.518). In particular, mean residualized gain scores (adjusted for prior achievement)
were positively correlated in favor of teachers of one curriculum type. Bivariate
correlations between Curriculum Type and scores on the ITED-15 were not significantly
different than 0.

The %FRL variable was significantly and negatively correlated with scores on both
Test A and ITED-15 in year 1. Thus, regardless of Curriculum Type, teachers with larger
percentages of FRL students had generally lower scores on the fair test and standardized
measure than teachers with lower percentages of FRL students. Teachers with higher scale
scores for Technology & Collaboration (Factor 3) tended to have student scores that were
higher on Test B and ITED-15. Opportunity to Learn (Factor 4) was significantly and
positively correlated with higher performance on all three outcome measures, meaning
that more OTL was associated with higher performance. With respect to teacher
characteristics, Knowledge of Standards (Factor 5) was strongly correlated with scores on
Test A and Test B, but exhibited no significant relationship with ITED-15. Teacher
experience and professional development was not significantly related to scores on any
student outcome measure.



MODELING VARIATION OF STUDENT ACHIEVEMENT 23

Table 8
Correlations between Student Outcomes and Ten Potentially Related Variables
Implementation Teacher
Factors Characteristics
Curr % Time FAC1 FAC2 FAC3 FAC4 FAC5 FAC6 | FAC7
Type FRL LD (SBI) | (Fidelity) | (T&C) [ (OTL) | (KoS) | (Exp) | (PD)
Test r 304 -.338 -.029 .157 -.189 270 .388 332 246 .035
A p .038* .020* .846 .293 .204 067 .007** | .023* .095 .816
Test r .518 -.245 .183 227 -.085 .387 .370 331 .186 .089
B p .000*** .096 .219 126 .568 .007** | .010* .023* 212 .551
ITED- | r 264 -.318 217 231 -115 415 291 .011 .254 -172
15 D .073 .029* 144 117 442 004**% [ .047* 942 .085 247

*p <.05.*p <.01. **p <.001.

We reiterate that associations do not necessarily imply causal effects and therefore
sweeping generalizations are unwarranted; greater scrutiny of the data is required. It is
worth noting that we also examined the association between student outcomes and
pairwise interactions of teacher variables. Several key interactions were significantly
correlated with student outcomes including: (a) Curriculum Type x %FRL, (b) Curriculum
Type x Factor 3, (c) Curriculum Type x Factor 4, (d) %FRL x Factor 3, (e) %FRL x Factor 7,
(f) Factor 3 x Factor 4, (g) Factor 4 x Factor 5, and (h) Factor 4 x Factor 7. Each of these
interactions was examined in subsequent analyses.

Partial Correlations

Given the potential interdependency among the 10 teacher-level variables in Table
8, we performed additional analyses to examine correlations of individual variables when
the effects of another variable was controlled or partialled out. Stated alternatively, we
used partial correlations to determine the association of one teacher variable when another
variable is essentially held constant. For example, when %FRL is partialled out, the
correlation of Curriculum Type is significantly correlated with scores on each dependent
measure, Test A, Test B, and ITED-15 (Table 9). More specifically, when controlling for
%FRL, the magnitude of the correlation between Curriculum Type and student outcomes
becomes significantly different than 0, and this was the case for all three tests. When
holding %FRL constant, teacher scores for Factor 3 (Technology & Collaboration) and
Factor 5 (Knowledge of Standards) become significantly (and positively) correlated with
two of the three tests. Moreover, the importance of OTL (Factor 4) is substantially reduced
with the partialling out of %FRL, suggesting that %FRL and OTL may be closely related.
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Table 9
Correlations between Student Outcomes and Other Variables, Partialling Out %FRL
Implementation Teacher
Factors Characteristics

Curr Time FAC1 FAC2 FAC3 FAC4 FAC5 FAC6 | FAC7
Type LD (SBI) | (Fidelity) | (T&C) | (OTL) | (KoS) (Exp) | (PD)
Test 459 -.017 141 -172 275 .259 347 166 .087
A 001** 910 .349 254 .065 .082 .018* 270 .565
Test .646 .198 216 -.067 390 291 337 124 128
B 000*** .187 149 656 .007** [ .050 .022* 411 .398
ITED- 404 242 221 -.094 426 .149 .006 .180 -137
15 .005%* 106 140 .535 .003** | 324 967 232 .363

*p <.05.*p <.01. **p <.001.

As represented in Table 10, when partialling out Factor 3 (Technology &
Collaboration), the magnitude of the correlations between Curriculum Type and student
outcomes is weakened, with significance found only on Test B. When holding this factor
constant, OTL maintains a significant relationship with Test A and Test B, and significance
is attained for Knowledge of Standards on Test A and Test B.

Table 10
Correlations between Student Outcomes and Other Variables, Partialling Out Technology &

Collaboration

Implementation Teacher
Factors Characteristics

Curr % Time FAC1 FAC2 FAC3 | FAC4 FAC5 FAC6 FAC7

Type FRL LD (SBI) | (Fidelity) | (T&C) | (OTL) | (KoS) (Exp) (PD)

Test 196 -.342 -157 171 -178 375 379 264 .014
A 192 .020* 297 254 237 .010* | .009** .076 929
Test .398 -.252 .031 .259 -.065 .358 409 213 .063
B .006** .091 .838 .083 .667 .015* ] .005** 155 .678
ITED- .053 -334 .058 .268 -.096 271 .064 293 -227
15 726 .023* .700 .071 .524 .068 .672 .048* 129

*p <.05.*p <.01. **p <.001.

When partialling out the effect of OTL, Curriculum Type become significantly
correlated with each of the three outcome measures (see Table 11) and mediates the effect
of %FRL. Knowledge of Standards (Factor 2) continues to be significantly (and positively)
correlated with scores on the project-developed tests.
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Table 11
Correlations between Student Outcomes and Other Variables, Partialling Out OTL
Implementation Teacher
Factors Characteristics

Curr % Time FAC1 FAC2 FAC3 FAC4 FAC5 FAC6 FAC7
Type FRL LD (SBI) | (Fidelity) | (T&C) | (OTL) | (KoS) (Exp) | (PD)
Test 411 -.165 -.052 .155 -251 248 .330 .286 122
A .005** 274 .733 .303 .093 .097 .025* .054 421
Test .638 -.057 178 .230 -135 .375 327 217 176
B .000*** .707 .237 124 372 .010* .027* 147 241
ITED- .335 -.199 212 231 -.153 403 -012 279 -124
15 .023* 184 157 122 310 .006** .939 .060 413

*p <.05.*p <.01. **p <.001.

Because the interaction between Curriculum Type and Technology & Collaboration
(Factor 4) was significantly correlated with student achievement, we examined its effect by
partialling the interaction out of the initial bivariate correlations in Table 8. As reported in
Table 12, when holding constant the interaction between Curriculum Type and Factor 3,
scores on Test B continue to be significantly correlated with Curriculum Type. When
controlling for this same interaction, both Knowledge of Standards (Factor 5) and OTL
emerge as significantly correlated with both Test A and Test B.

Table 12
Correlations between Student Outcomes and Other Variables, Partialling Out the Interaction

between Curriculum and Technology & Collaboration

Implementation Teacher
Factors Characteristics

Curr % Time FAC1 FAC2 FAC3 FAC4 FAC5 FAC6 | FAC7

Type FRL LD (SBI) | (Fidelity) | (T&C) | (OTL) (KoS) (Exp) (PD)

Test 202 -311 -.083 .146 -.183 165 .386 .386 220 .070
A 178 .035* .584 .334 224 274 .008** | .008** 142 .644
Test 438 -.209 .140 220 -073 .288 .369 393 152 133
B .002%** 162 .353 141 .631 .053 .012* .007** 312 379
ITED- .149 -.289 .178 225 -.105 325 .283 .047 227 -.150
15 323 .052 .235 132 489 .027* .057 757 129 321

*p <.05.*p <.01.

Similarly, because the interaction between Curriculum Type and %FRL was
significantly correlated with student achievement, we examined its effect by partialling out
this interaction from our initial bivariate correlations. When holding constant the
interaction between Curriculum and %FRL, many correlations become mediated (Table
13). Nevertheless, despite the overall mediation in correlations, Curriculum Type is
significantly correlated with each of the three dependent measures: .399 (Test A), .604
(Test B), and .320 (ITED-15). Moreover, Factor 3 (Technology & Collaboration) becomes
significantly correlated with Test B and the ITED-15 while Knowledge of Standards hold
significant relationships with the two project-developed measures.
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Table 13
Correlations between Student Outcomes and Other Variables, Partialling Out the Interaction
between Curriculum and %FRL

Implementation Teacher
Factors Characteristics

Curr % Time FAC1 FAC2 FAC3 FAC4 FAC5 FAC6 | FAC7

Type FRL LD (SBI) | (Fidelity) | (T&C) | (OTL) (KoS) (Exp) | (PD)

Test .399 -.078 .005 .080 -112 201 207 329 130 125
A .006** .608 973 .595 460 .180 .168 .025* .388 409
Test .604 -.019 227 171 -012 341 229 322 .085 164
B .000*** .899 130 .255 935 .020* 126 .029* .575 277
ITED- .320 -151 .256 .182 -.052 375 152 -.019 173 -127
15 .030* .318 .086 227 729 .010* 313 .899 251 402

*p <.05.*p <.01. ***p <.001.

Finally, with each variable that was partialled out, we monitored changes in the
magnitude of correlations between Curriculum Type and student outcomes, and several are
worth reporting. For example, when %FRL is partialled out, the magnitude of correlations
related to Curriculum Type increase in the range of .128 to .155, suggesting that %FRL
should be included in multi-level modeling of student achievement. Partialling out
Technology & Collaboration decreased the magnitude of correlations related to Curriculum
Type by .108 to .211, suggesting that Factor 3 should be entered into the model.
Additionally, partialling out OTL increased the correlation for Curriculum Type between
.071 and .120. No interactions affected the magnitude of the correlation between
Curriculum Type and student outcomes in substantial ways.

DISCUSSION

Until recently, there existed scant data regarding the effectiveness of “reform”
curricula, either in their own right or in relation to more traditional approaches
(Schoenfeld, 2006). The relatively few studies of curricular effectiveness have been
wrought with limitations and the subject of much scrutiny. In particular, previous
investigations of NSF-funded curricula were often field tests and, as such, questions were
raised about the objectiveness of researchers who conducted the studies (NRC, 2004).
Moreover, previous curriculum evaluation studies typically have not carefully accounted
for curriculum implementation and, as a consequence, the degree to which curriculum
explains variation in students’ mathematics achievement cannot be ascertained. The
COSMIC Project has sought to address these deficiencies by conducting a systematic
examination of the many variables, including student- and teacher variables as well as
curricular effects that might contribute to student learning in mathematics. While our
analyses are ongoing and multi-level modeling of student achievement has yet to be
completed, our preliminary analyses have provided insight into key issues in data
collection, reduction, and coherence. Although we do not directly address the question
“which curriculum is best?”, we offer ideas for the identification of student- and teacher
variables in studies of curricular effectiveness.




MODELING VARIATION OF STUDENT ACHIEVEMENT 27

Not surprisingly, our analyses revealed a significant and positive relationship
between students’ prior achievement and their scores on a variety of outcome measures. In
particular, prior achievement correlated with scores on Test A, Test B, and ITED-15 in the
magnitude of .70, suggesting that much of student performance on year 1 assessment can
be attributed to their initial referent of mathematics achievement. These strong
correlations between baseline and outcome measures suggest that prior achievement must
be carefully considered in searching for other determinants of student outcomes.

The importance of prior achievement cannot be discounted, but there were
significant methodological challenges associated with specialized context of our research
project that had to be overcome. More specifically, given that participating schools were
located in numerous US states, it was necessary to place students on a common prior
achievement scale. Without such, valid comparisons across schools would simply be
impossible. Accordingly, in this study, we developed an algorithm (Figure 2) for generating
the COSMIC Prior Achievement (CPA) scale. In doing so, the CPA enabled us to examine
student outcomes after adjusting for prior achievement; that is, the CPA scale score served
as a covariate in subsequent analyses. Both within and across schools, there was
substantial variation in test scores (prior- and post-achievement); the existence of
variation is necessary in order to identify correlations between Curriculum Type, student
variables, and teacher factors and to enable the construction of statistical models of student
achievement.

In the COSMIC Project, it was important to determine the equivalence (or
comparability) of student groups prior to their experience in one of two curricular
treatments, integrated or subject-specific. Our analysis of CPA scale scores confirmed our
sample selection criterion that students not be tracked into one curriculum path or
another. This finding is important for at least two reasons. First, the comparability of prior
achievement is consistent with our stipulation that participating schools provide a free
choice between parallel curricular options. Although students were not randomly assigned
to treatment groups, the two sets of students nonetheless appear to have begun with
similar prior knowledge of mathematics. It follows that differential performance across
curriculum types cannot be attributable to differences in student characteristics, namely
prior achievement.

Another key finding is the relationship between opportunity-to-learn (OTL) and
student learning. In particular, we found that OTL was the only variable to significantly
correlate with all three dependent measures. This finding is consistent with a growing body
of evidence suggesting “that students do not learn content to which they are not exposed”
(Stein, Remillard, & Smith, 2007, p. 327). Moreover, this suggests that studies of curricular
effectiveness should take into account whether students are afforded equitable
opportunities to study the content on which they are likely to be assessed. As reported in
another paper (McNaught et al.,, 2010), teachers of integrated curricula covered
significantly less textbook content than teachers of subject-specific curricula. This finding
may have moderated the effect of Curriculum Type. Without consideration of OTL,
Curriculum Type was significantly correlated with two of three dependent measures.
However, when controlling for OTL, correlations between Curriculum Type all three
dependent measures were strengthened. A similar pattern emerged with %FRL, suggesting
that %FRL and OTL may be acting as suppressor variables in the relationship between
Curriculum Type and mean gains on the tests, and therefore will be important variables to
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include in our modeling processes.

Of further importance is the relationship between OTL and other variables. In
particular, initial bivariate correlations indicated a significant negative relationship
between FRL status and student scores on Test A and ITED-15. However, when controlling
for OTL, the correlation between %FRL and dependent measures decrease in magnitude,
and they are no longer significantly different than 0. Likewise, when %FRL is partialled out,
the relationship between OTL and student outcomes is diminished to a level of
insignificance. Stated differently, by holding %FRL constant, we learn that the effect of OTL
is reduced substantially. This finding suggests that OTL and %FRL are likely closely
affiliated; this is, there is likely overlap in what each variable is measuring. On some level,
the relationship between OTL and %FRL may be attributable to the differential (slower)
pace of content coverage in classes with more FRL students. By controlling for OTL and
%FRL, we can more carefully measure the impact of curriculum on student learning.

The NRC (2004) stipulates that examinations between curriculum and student
learning must carefully document teachers’ use of curricular materials. In this study, we
measured fidelity of implementation in ways that were previously unprecedented. As
depicted in Table 4, we measured more than 30 teacher variables that potentially held
predictive power in explaining student outcomes. While we retain our position that
multiple measures of curriculum implementation are important, we concede that it is
possible to attend to too many variables. In theory, each of the 31 teacher variables could
be utilized in the construction of models of student achievement. However, in doing so, it is
conceivable that all (or nearly all) variation is collectively accounted for by the 31
variables. Such models would inherently offer precision that is unwarranted and therefore
inappropriate. Consequently, it was necessary to explore the relationship between teacher
variables—independent of student outcomes—to achieve coherence in the data and
ultimately position us to construct relatively parsimonious models.

We successfully reduced the number of teacher variables to “only” seven, and these
factors clustered around two coherent themes, curriculum implementation and teacher
characteristics. With regard to the former, it was somewhat surprising that neither
Standards-Based Instruction (Factor 1) nor Implementation Fidelity (Factor 2) were
significantly correlated with any of the dependent measures. These findings might be
considered counterintuitive and certainly warrant further research. Similarly, with regard
to teacher characteristics, some might be surprised to learn of the lack of significance of
Experience (Factor 6) and especially Professional Development (Factor 7) in relation to
student outcomes. This result is consistent with a recent report of the American Institutes
for Research (AIR) that found an intensive teacher professional development program for
middle school mathematics teachers had no statistically significant impact on student
achievement (Garet et al., 2010). With respect to our findings, one might ask, “Was the PD
long enough?”, “Was the PD sustained?”, “Was the PD targeted (or focused) enough?”,
“Were teachers receptive to the PD?” It is plausible that the amount of professional
development may not represent an ideal measure of its impact on instructional practices.

Finally, although teacher variables clustered around two coherent themes, it seems
reasonable that a single measure within each factor might serve as a proxy in analyses of
student achievement data. Consider the case of Technology & Collaboration (Factor 3). For
this factor, scale scores for each teacher were generated using data from Classroom Visit
Protocols and the Initial Teacher Survey. Rather than collect data on the extent to which
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students are using technology (Tech_Students), the teacher is using technology
(Tech_Teacher), whether students are seated in groups (Seating) and working
collaboratively (Collaboration), and teachers’ beliefs regarding reform practices (Belief 1),
is it possible that only one of these variables essentially “tells the story”? If one variable
were to effectively serve as a proxy, this would considerably reduce the cost of data
collection, render more parsimonious models, and provide greater ease in the
interpretation of coefficients used in hierarchical models of student achievement. Through
ongoing analyses, we continue our long journey toward the attainment of such models.

CONCLUSION

The historical sub-standard performance of US mathematics students in
international comparisons has resulted in a reform movement, including the development,
adoption, and enactment of NSF-funded integrated curricula in secondary classrooms. In
some US schools, dual curricular options represent a compromise between seemingly
warring factions that each profess to know which curriculum is best. The COSMIC Project
has embarked on a rigorous study to examine the impact of curriculum and numerous
other variables that have the potential to explain student achievement in mathematics.
However, the results reported herein represent only one piece of the large, complex puzzle
of developing comprehensive profiles of what students learn when mathematics content is
organized in fundamentally different ways. In short, correlational studies are insufficient to
determine whether traditional or integrated approaches to curriculum organization yield
different profiles of student learning. The application of more sophisticated analytic
techniques such as HLM have not been completed and therefore readers are urged to
exercise great caution when interpreting results reported in this manuscript. Data
represent the findings for year 1 only; longitudinal findings as well as result of year 2 and
year 3 analyses will provide important additions to our understanding of the impact of
mathematics curriculum on student learning. This paper provides insight into the design of
studies of curricular effectiveness and offer recommendations related to key issues in data
collection, reduction, and coherence that are prerequisite to the productive modeling of
student achievement data.
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