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Abstract 
 

The concept of dynamic vertical scaling (DVS) from longitudinal point of view has been 

proposed as comparing to traditional vertical scaling or static vertical scaling  (SVS) from cross 

sectional perspective.  The effects of differences between DVS and SVS on large-scale student 

achievements have been investigated. The potential application of DVS on creating or explaining 

students growths was explored. In general, DVS can account for many factors that could affect 

students growth where SVS has limitations on its cross-sectional design for applications unless 

strong assumptions has to be made.   
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Introduction 

 

The purpose of vertical scaling is to measure student growth in achievement by linking 

tests that (a) measure a similar construct across grades and (b) differ in difficulty across grades. 

Though vertical scales of large-scale commercial achievement tests and state assessments are 

created with different scaling designs, they all employ cross-sectional data collection designs. 

Later when these vertical scales are used in practice, they are interpreted from a longitudinal 

perspective.  Due to a variety of reasons, the growth of students could change from year to year. 

For example, establishing a vertical scale in 2005 could be different from establishing a vertical 

scale in 2006 due to policy, curriculum, schooling, and social economics factors changes. While 

conducting vertical scaling every year may closely match student real growth, practical 

limitations, such as costs and collecting the scaling data, can make it impossible.  

Traditional vertical scaling is called static vertical scaling (SVS) because once the 

vertical scale is created; it is assumed that there is no change in student growth across many 

years from grade to grade. Dynamic vertical scaling (DVS), on the other hand, treats vertical 

scaling constants as a function of time.  The major application steps of SVS (see Figure 1) in the 

real world are: 

 
1. Create the vertical scale for Form A at year one based on samples of students across 

different grades using one of the vertical scaling designs. 

2. Apply vertical scaling constants obtained with Form A across grades to measure 

students growth for many years down the road. 

3. When there is a need to create a new Form B, equate Form A and Form B horizontally 

at each grade. Apply the same vertical scaling constants from Form A across grades 

plus equating constant between Forms A and B to Form B to measure students growth 

using Form B.    

 

By applying the vertical scaling from one year to others, a strong assumption has been 

made: student achievement growth, i.e., the mean differences between grades, are constant 

across cohort groups at different time points. In reality, however, the growth may vary from 

cohort to cohort and from year to year (see Figure 2). 
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The No Child Left Behind Act of 2001 (NCLB) requires the reporting of adequate yearly 

progress (AYP) for student performance within selected subject areas. Although, a vertical scale 

is not necessary for AYP, in a few states the properties of a vertical scale are used as part of 

growth models in AYP. Many standardized large-scale state criterion-referenced tests and 

commercial norm-referenced achievement tests such as The Iowa Tests of Basic Skills (ITBS, 

Hoover, Dunbar, & Frisbie, 2003),  TerraNova (CTB/McGraw-Hill, 1999), and Stanford 

Achievement Test (Harcourt Assessment, 2004) all report scores on a vertical scale that allows 

assessment of student group growth trends and individual growth in achievement. Typically, for 

commercial achievement tests, multiple subject tests are constructed by using either classical test 

theory or item response theory (IRT) to assess student performance at each grade, and test scores 

are linked to a vertical scale because a well-constructed vertical scale connects forms across 

different grades and can be used to illustrate patterns of growth over time and model changes in 

student achievement (Kolen & Brennan, 2004).  

In spite of the many advantages using a vertical scale in large-scale assessment, vertical 

scaling has been considered as a very challenging psychometric procedure for many years (Feuer, 

Holland, Green, Bertenthal & Hemphill, 1999).  Some major challenges include that different 

types of errors can be introduced into a vertical scale because of limitation in method and design 

used to create the scale, therefore, the scale may be flawed (Camilli, 1999; Doran & Cohen, 2005; 

Doran & Jiang, 2006; Lissitz & Huynh, 2003& 2005; Schafer, 2006). Some possible sources of 

error or major criticism of vertical scale include (1) stages of development represent different 

latent traits, not levels of attainment of a single trait; (2) constructs exhibit differences in 

dimensionality at different time points; and (3) violations of unidimensionality can prevent 

accurate measurement of ability. (Haertel, 1991; Martineau, 2006; Yovanoff, Duesbery, Alonzo, 

& Tindal, 2005). However, one more source of error which is often ignored about vertical 

scaling is the difference between static (cross-sectional) and dynamic (longitudinal) vertical 

scaling designs.  

As described earlier, for static vertical scaling, the fixed vertical scaling constants created 

at one time point are applied to different cohort groups across time, i.e., making the assumption 

that the vertical scaling is time invariant. On the other hand, with dynamic scaling the vertical 

scaling constants vary with time. One of the strengths of DVS is that it can reveal the impact of 

the particular circumstances in which students grow and reflect student real longitudinal 
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development. For example, Table 1 shows an example of a vertical scale across grades for 

different cohorts (C1 to C10). If a vertical scale is created at year Y1 (base year) based on cross-

sectional sample data of C4 to C10, then for next 4 years, the same growth pattern between grades 

4 to 8 will apply for years Y2 to Y5, despite of the fact that the nature of cross-sectional sample 

data are very different (Y2 is C3 to C9, Y3 is C2 to C8, …etc.).  The differences between SVS and 

DVS are shown in Figures 1 and 2 based on fabricated examples; in these examples, the vertical 

constant is assumed to be in logit scale based on the IRT Rasch model. 

Conventional SVS methods either avoid the issue of the vertical scale that is created based 

on different cross-section data or ignore the fact that vertical constants may be a function of time. 

Ignoring the difference among cross-sectional data across years may result in errors in growth 

estimation which may lead to misleading conclusions of student growth. DVS based on a 

longitudinal growth model that reflects longitudinal change in populations across time combined 

with SVS method allows the potential capability to address the issue directly by modifying base 

year scaling constants using a longitudinal model based on accumulated longitudinal data over a 

period of time. Because learning by definition is a change phenomenon and DVS focus on this 

phenomenon, a longitudinal design represents it well.  

The purpose of this study is to demonstrate differences between static and dynamic vertical 

scales inherent in data collection designs and applications. The current study explores the 

relationship between SVS and DVS using simulation approaches and provides an understanding 

on how differently they reflect student true achievement growth. 

 

Methods 

 In educational assessment, estimation errors mainly come from estimation of person 

effects, item effects, or a combination of the two.  In vertical scaling, another source of error may 

come from changes in the population across years. In the SVS approach, population variation is 

not taken into consideration. Thus, this study focuses on sample variations over time in addition 

to the nested structure in the sampling process. Because true vertical scaling constants are 

unknown for both DVS and SVS, only estimates of them may be obtained. The best way to 

evaluate estimation error is to use simulation methods in which true parameters are known.  

In practice, only a single observed linking constant, L
∧

, an estimate of the true unknown 

linking parameter L, is obtained and it can be expressed as a liner combination of L plus an error 
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term.  In theory, if it is possible to conduct vertical scaling repeatedly either at the same time 

(using different random samples) or at different time points (years), there is variance of L or 

var(L).  The deviation of L
∧

 from L could come from both random and system errors.  For SVS 

using cross-sectional data at the same time point, the source of error comes from inter-individual 

difference, while for DVS using longitudinal data at different time points, the source of error 

comes from both inter- and intra-individual differences.  The assumption of the traditional SVS 

application has a shortcoming: by ignoring the difference between cohorts as a function of time 

implies, SVS treats intra-individual (change within individual) differences as constants across 

time (here time is year, see Table 1) and this deficiency is inherant in all cross-sectional designs. 

With longitudinal designs, on the other hand, DVS tries to model intra-individual differences 

differently across time. Besides variation in how individual differences are treated, there are also 

additional three sources of variation associated with L
∧

for within individual differences that DVS 

could model: (1) measurement error; (2) unobserved covariates; (3) serial correlation (Diggle, 

Liang, & Zeger, 2002). In practice, because vertical scaling is only conducted once, the variance 

of L is zero. By using simulation methods (Monte Carlo), the linking variance on vertical scaling 

constants can be quantified.  The departures of L
∧

from L can be modeled by replicating various 

simulation conditions.   

 
A. Dynamic Vertical Scaling 
 

Longitudinal ability θ in DVS are created by using both linear and nonlinear mixed 

models (LMM, Goldstein, 1995; Molenburg & Verbeke, 2005; Raudenbush & Bryk, 2002) to 

generate correlated multivariate longitudinal “true θ ” over time for a student in a particular 

cohort across grades. Student ability θ across grades can be expressed (in the logit scale) in the 

Rasch model as an input for the longitudinal model. Before further discussion, two terms should 

be clearly defined: 1) between-cohort differences refer to the differences between grades 

evaluated at different times; 2) inter-individual differences refer to the difference between an 

individual within a particular cohort (grade) and does not mean the difference across cohorts. For 

this study, individual student growth is measured by both linear and non-linear (quadratic form) 

LLM models, see Appendix A.  LMM has many advantages for longitudinal data that are related 

to this study: LMM can model individual change over time, model between-and within-
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individual variations, model the covariance structure of the repeated measures, model non-linear 

patterns (polynomial or spline), and model higher level data structures (such as student nested 

within school).  The general equation for LMM (Little, Milliken, Stroup, & Wolfinger, 1996) is  

 

           θ i = XiΓ + ZiUi + Ri                                                   (1) 

 

For example, nonlinear growth for a cohort can be modeled as: 

   Level-1 (within Individual)                

        Quadratic growth          θ it = π0i + π1i·Yearit + π2i·Yearit
2 + eit.                          (2) 

 

   Level-2 (Between Individual)       

        Intercept                          π0i = β00 + Covariate0 + u0i,                                               (2a) 

        Linear slope                    π1i = β10 + Covariate1 + u1i,                                         (2b) 

        Quadratic slope               π2i = β20 + u2i,                                                               (2c)  

  
where in the level 1 model, θ it is the ability of student i on the logit scale at time point t (=year-

1), t= 0, 1, 2, … T.  Equations (2) can be expressed in matrix format as (without concerning 

covariate terms):  
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    (3) 

 
In this study, only the random intercept and random slope models are examined, so the 

quadratic slope was fixed and u2i= 0.  The distributions of the random effect of the nonlinear 

model used in this study (see equation A2h in Appendix A) are  
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In order to match the SVS simulation design, a common-person design is used to 

generate longitudinal data, i.e., at each year, students took on-grade and below-grade tests with 

40 items in each. Simulated samples are drawn from a multivariate normal distribution with 

specified mean vector and variance-covariance matrix for each cohort. In general, the correlation 

of θ between adjacent years is around 0.8 (Lockwood & McCaffrey, 2007) for achievement tests, 

and as the time lag increases, the correlation decreases. Because multiple cohorts’ data are 

needed, multiple samples are generated using different sets of parameter values.  

For all cohorts, the unconditional means (β00) matches the means of SVS for both on-

grade and below-grade results. A sample size of 2000 per cohort is used.                                                                

 

B. Static Vertical Scaling 

Linear growth can be modeled as in equation (A1) in Appendix A.  The attempt here is to 

incorporate SVS into a DVS frame work and, as a matter of fact, the SVS is a special case of the 

longitudinal model.  At the base year (year = 1), student achievement can be expressed as: 

 

                     θ it = (β00 + u0i) + (β10 + u1i) ·Yearit +  eit =  β00 +  u0i + eit                           (5)  
 
where year= t + 1, (t=0, 1, 2, …T) presents time and i (i=1,2,3,…Np) presents person.  For a 

particular cohort at a particular time point, the SVS model can be expressed as an unconditional 

mean model or the null model (in both the linear and nonlinear cases),  as in equation (5) except 

there is no modeling of intra-individual variation. Because of this, the level-1 variance is zero 

and the student score for grades x and y can be expressed as:  

                                                 
                        θ itx = β00x + u0ix                                                                                           (6) 
                        θ ity = β00y + u0iy                                                                                            (7) 
 
The average difference between grade x and y is the vertical scaling constant, i.e.: 
 
                       Scaling-Constant = β00x - β00y                                                                        (8) 
 

The conventional SVS method is used to create reference vertical scale (base year scale) 

in this study. A common-person scaling design is used in which both below-grade and on-grade 

items are used to link adjacent grades as shown in Table 2a. As in Table 1, to simulate multiple 

“true score” growth patterns (C1 - C10 at Y1 with a cross-sectional design, which will apply to the 
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rest of the years), student abilitiesθ are generated from a multivariate normal distribution 

(N(M,SD)). 2000 students for each grade and 40 items for each grade are also simulated, and the  

mean Rasch difficulty of items are listed in Table 3. For other years (not base years), a first order 

autoregressive process (AR1) is used to model serial correlation (part C in Appendix A). For 

example, parameters for linear growth of both intercept (Part A in Appendix A) and intercept 

plus slope models for on-grade can be generated as: 
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    (9) 

The difference between cross-sectional and longitudinal data resembles the difference 

between univariate and multivariate data. Linear and non-linear growth parameters are shown in 

Figures B1 and B2 in Appendix B. After generating the longitudinal data, only the base year was 

used for the SVS, because that model assumes the cross-sectional data apply to multiple years.  

The mean and variance parameters of the linear intercept model used in this study (see equation 

A1 in Appendix A) are  
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                          (10) 

Because the purpose of this study is to explore the accuracy of vertical scaling across years 

using DVS versus time-invariant SVS, in order to see the effect of different types of growth, the 

artificially induced constant “noise” in growth that show non-constant differences of growth 

among cohorts are added to two cohorts (C1 and C6, grade 1 and grade 6 at the base year) 

throughout the years (year 1-5). For both linear and nonlinear model, the covariates are added 
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into level-2 equations that present inter-individual differences (see equations A1a-A1b and A2a-

A2c in Appendix A). Two simulation approaches are used to explore the effect of DVS.  

 

Approach I 
 

First approach is to apply common practices method on different types of growth. In this 

approach, the recovered growth patterns are compared with the simulated true patterns in the 

following section.  The major steps of the Monte Carlo simulation of first approach are: 

1. Generate both linear and nonlinear true growth (See Figures B1 and B2 in Appendix B) 

using the unconditional longitudinal model and multivariate distributions with known 

true parameters for base year. The unconditional model is also called the null model, 

which mirrors cross-sectional data. The scaling design is a common-person design.  

2. Create SVS by using separate calibrations applying the Rasch model by grade and 

connecting the vertical scale using 40 common items with the Stocking-Lord (Stocking 

& Lord, 1983) linking procedure, in which both on- and below-grade tests taken by the 

same students are linked (see Table 2a).  

3. Using the scale obtained from SVS to generate linear and nonlinear true growth with or 

without “noise” using both random intercept and random slope longitudinal models for 

both on- and below grades. Both random intercept and random slope longitudinal 

models introduce time variant errors where SVS does not have these.   

4. Conduct separate calibration for each grade.  

5. Create DVS by linking each year scale by grade to the base year vertical scale using 10 

common-items equating design with the Stocking-Lord linking procedure (see Table 

2b). 

6. Winsteps (Linacre, 2008) software was used to conduct item calibration by grade and 

IceDog software (Robin, Holland, & Hemat, 2006) was used to estimate the Stocking-

Lord transformation function constants, intercept B and slope A. 

There are a total 2 growth patterns (Linear model & nonlinear model) x 3 models (null 

model, random intercept model, and random intercept and slope model) x 2 cohort changes (non-

noise and noise) – 2 (null model has no noise) = 10 simulation conditions.  The bias, SE, and 

RMSE are used to evaluate how well true parameters are recovered for each of 6 simulation 

conditions.  These formulas are,                                               
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where i, g, and r represent individual, grade, and replication, respectively. ĝriθ  is the estimated 

person parameter for grade g, replication r, and person i. gθ is the mean of the generated true 

students’ abilities in grade g used in the null models. Np is the number of simulated examinees 

and NR is the number of replications of the simulation. There are a total of 50 replications used in 

this study.  Different random numbers are used as seeds for each of the 50 replications. Based on 

a past research suggestion (Harwell, Stone, Hsu, & Kirisci, 1996), descriptive procedures are 

used to summarize the simulation results.  All estimates for the 10 different simulation 

conditions are compared to SVS. 

 

 

Approach II 

Second approach is to conduct vertical scaling at each year by using the same vertical 

scaling design as SVS used for the base year and the vertical scaling constants at each year are 

then compared for different growth patterns. If there are different vertical growths in each cross-

sectional data for certain year, the difference of cross-sectional growth should be reflected by 

vertical scaling constant by that year. After all, DVS is multiple SVS at different time point. The 

major steps of the Monte Carlo simulation of second approach are: 
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1. Generate both linear and nonlinear true growth (See Figures B1 and B2 in Appendix B) 

using the unconditional longitudinal model and multivariate distributions with known 

true parameters for base year. The unconditional model is also called the null model, 

which mirrors cross-sectional data. The scaling design is a common-person design.  

2. Create SVS by using separate calibrations applying the Rasch model by grade and 

connecting the vertical scale using 40 common items with the Stocking-Lord (Stocking 

& Lord, 1983) linking procedure, in which both on- and below-grade tests taken by the 

same students are linked (see Table 2a).  

3. Using the scale obtained from SVS to generate linear and nonlinear true growth with or 

without “noise” using both random intercept and random slope longitudinal models for 

both on- and below grades for different cohorts from year 2 to year 5. Both random 

intercept and random slope longitudinal models introduce time variant errors that SVS 

does not have.   

4. Conduct separate SVS at each year (year 2 to year 5) across grades based on step 2.  

5. Winsteps (Linacre, 2008) software was used to conduct item calibration by grade and 

IceDog software (Robin, Holland, & Hemat, 2006) was used to estimate the Stocking-

Lord transformation function constants, intercept B and slope A. 

 

Results 

 
A. Results of Approach I 
 

The major goal of this study is to examine the relationship between SVS and DVS as true 

growth changes with time. If vertical scaling treats the dynamic growth as static growth,  then 

how much distortion will SVS produce? The effect of the distorted SVS is examined in terms of 

bias, SE, and RMSE.  

A1. Linear growth 

Tables 4 and 5 lists the bias, SE, and RMSE of 6 different linear model conditions 

without and with noise. Figures 3 and 4 also show the bias, SE, and RMSE of linear models 

without and with noise across years and grades. It is clear that on average, bias, RMSE, and SE 

increase as the model becomes more complex. In general, the null model has less bias, SE, and 

RMSE than the random intercept model, and the intercept model has less bias, SE, and RMSE 
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than the random intercept + slope model. Models with noise have larger bias, SE, and RMSE 

than these models without noise. This is no surprise because the SVS method only accounts for 

cross-sectional data as a one-time estimate of true growth. When true growth includes both inter- 

and intra-individual variation, SVS cannot capture multiple sources of variation. The presented 

tables and figures also show that the more distant from the base year, the larger the bias, SE, and 

RMSE become. In particular, for all three models the deviations of SVS from the true model 

increase with time (year) (Figures 3 and 4).  This result implies that once the vertical scale was 

created, the longer time it is used, the larger chance it misrepresents the true growth. 

 A further observation is that, in general, as grade increases, the bias, SE, and RMSE 

increase. This result is an artifact of the vertical scaling design, which used a chain linking 

design in which grade 1 was chosen as the base and each grade was linked to the next lower 

grade; given this linking design, the errors are accumulated going up the grades. This trend is 

especially evident for the SE when years are close to the base year. If the linking design had 

chosen grade 10 as the base year, then the opposite effect would have been observed. 

 

A2. Nonlinear growth 

Tables 6 and 7 presents the bias, SE, and RMSE of 6 different nonlinear model without 

and with noise.  Figures 5 and 6 demonstrate the bias, SE, and RMSE of nonlinear models across 

years and grades. Similar to the linear model results, on average, bias, RMSE and SE increase as 

models change from null to intercept, and from intercept to intercept + slope.  The models 

without noise have less bias, SE, and RMSE. The reason for this trend is the same as the linear 

cases, in that the SVS method created for cross-sectional data design cannot account for the true 

growth that includes across-year change. When true growth includes both within- and between-

year variations, SVS cannot accurately reflect this type of growth. Tables 4 and 5 and Figures 2 

and 4 also show that for years further apart from the base year, the larger the bias, SE, and 

RMSE.  In particular, the variations for all three models show the increase in accuracy when the 

year increases.  This result indicates that the older the vertical scale becomes, the larger the 

chance it misrepresents true growth.  

 Other evidence shows, in general, as grade increases, the bias, SE, and RMSE increase. 

As described earlier, this is an artifact of the chain vertical scaling design used.   
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In general, for both linear and nonlinear models, the chance of errors increases when: 1) 

the model becomes more complex or realistic and 2) year increases or is farther apart from the 

base year when vertical scale was created.   

 

B. Results of Approach II 
 
 Table 8 list simulated vertical scaling constants (VSC) under different models with and 

without noise and Figures 7 and 8 (Null models figures are based on assumption: VSC is 

constant across years) depict these VSCs for different models without and with noise for the 

second approach. It is clearly that the VSC is function of time (year) and assumption of constant 

vertical scaling doesn’t hold for any of the given simulated conditions. In general, as growth 

model become more complex from null model to intercept plus slope model without and with 

noise, the deviations of VSC from SVC increases, in particular, the noise has an important 

impact on the VSC, which implies that ignoring the difference between cohorts as SVS does 

distort the VSC because SVS doesn’t account for student’s longitudinal growth.   

  

Discussion and Summary   

 

Many state and standardized large-scale achievement tests report scores on a vertical 

scale that allows assessment of student group trends and individual growth in achievement.  

However, developing a valid vertical scale is a time consuming, expensive and complicated 

process so that test developers cannot update the vertical scale frequently. The vertical scaling 

design, growth pattern, and dimensionality of the data are some of the most important 

considerations in creating the scale. Because of major limitation on time and cost to create 

vertical scales, common practice is to make the strong assumption that once a vertical scale is 

created at a particular time point by using a particular sample, applying a particular design and 

model, then one can treat the estimates of grade-to-grade growth constants as invariant to reflect 

student growth for all assessments tied to that vertical scale. However, the nature of student 

growths is a very complex social and educational phenomenon. Ignoring the complexity of 

growth phenomena can distort student achievement results. This paper focuses on how much 

difference SVS and DVS can make by simulating different growth patterns and using different 

models that try to mirror as closely as possible actual student growth (such as variation within 
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student scores).  Given the reality of creating a vertical scale, this paper attempted to demonstrate 

the distorted dynamic growth pattern that can occur when using the static modeling approach and 

explore the theoretical possibility of using longitudinal modeling to improve the quality of the 

vertical scale.  For example, each year, some states and testing vendors anticipate the so called 

“unexpected changes” of student’s achievements when comparing to previous year (see Figure 9) 

results, i.e., a large decrease or increase in the proportion of student passing certain performance 

standard. One of the most difficulty tasks for state and testing vendor in this situation is to 

explain the reason(s) for such phenomenon. This study proposes a concept of DVS and 

underscores the importance of longitudinal points of view of student development. It provides an 

alternative way to develop a valid vertical scale, to explain the “unexpected changes”, and 

possibly to strengthen the defensibility of using vertical scales.  

The limitations of the proposed DVS method will be the increase of the complexity in the 

construction process and the interpretations of the vertical scale.  DVS would complicate the test 

design by including the use and analysis of cross-grade linking items every year.  In addition, the 

DVS would complicate the interpretation of scale scores, because the scale score system would 

change every year. What the DVS does contribute is the possibility of more accurate comparison 

of amounts growth at different parts of a scale at one point of time (e.g., longitudinal growth 

from grade 3 to grade 4 compared to longitudinal growth from grade 4 to grade 5 for one 

particular pair of years).  

This paper only puts forward a hypothesis. For example, no missing cases across time are 

assumed in the longitudinal model.   Whether the real world changes in a manner like that 

simulated in this study also awaits further investigation. The next step of this line of research is 

to find longitudinal data sets which may fall close to the design simulated in this study and use 

the proposed approach to examine the utility of DVS in analyzing real data. 
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Appendix A 

Longitudinal Linear and Nonlinear Models Used to Generate Data 

 

A. Linear Model 

Level-1 (Within Individual)                

        Linear growth                  θit = π0i + π1iYearit + eit.                                    (A1)                             
   
Level-2 (Between Individual)       

        Intercept                           π0i = β00 + Covariate0 + u0i,                                    (A1a) 

        Linear slope                     π1i = β10 + Covariate1 + u1i,                                   (A1b) 

 
      In the level 1 model, θit is the score in logits at each time point, i indicates the student and t is 
“time” (Year = t + 1), often coded as t = 0, 1, 2, … T. There is no second level covariate for most 
of grade except for grade 1 and 6 in this study. 
 
θit = individual score in logits 
π0i  = individual true score at time 0 
π1i  = individual true linear slope (linear change of rate) 
β00 = the average overall true initial score at time 0 
β10 = the average overall true linear change between individual 
Covariate0 (noise)  
                  = 0 for growth patterns that are the same as SVS  
                  = 0.1 for growth patterns that are different as SVS for cohort at grade 1 (Table 1) 
                  = -0.1 for growth patterns that are different as SVS for cohort at grade 6 (Table 1) 
Covariate1 (noise)  
                  = 0 for growth patterns that are the same as SVS  
                  = 0.05 for growth patterns that are different as SVS for cohort at grade 1 (Table 1) 
                  = -0.05 for growth patterns that are different as SVS for cohort at grade 6 (Table 1) 
 
eit = The random error with the t

th 
time point in the i

th 
individual.  

u0i= The random effect for intercepts 
u1i = The random effect for linear slopes 
 
    The level-1 error term follows a normal distribution, eti ~ N (0, σ

2
), where, the common 

variance σ
2 
is determined by the reliability average across the level-1 coefficients (cf. 

Raudenbush & Bryk, 2002). eit ~ N (0, σ
2
)  it is assumed to be independent of level-2 random 

effects (u0i, and u1i,), that is cov(eit, ui) = 0. 
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The level-2 error terms also follows normal distributions: 
u0i ~ N (0, τ0

2
), τ0 is the variance of level 2 residuals u0i from predicting the level 1 intercept ( π0i) 

u1i ~ N (0, τ1
2
), τ1 is the variance of level 2 residuals u1i from predicting the level 1 slope ( π1i) 

 
cov(u0i, u1i) = cov(π0i, π 1i) = τ10 
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Together for linear growth (without Covariates): 
 
θit = (β00 + u0i) + (β10 + u1i) ·Yearit +  eit =  (β00 + β10 * Yearit ) +  (u0i  + u1i* Yearit + eit)  
     = (fixed) + (random)                                                                                                           (A1d) 
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   θi  =           XiΓ             +         ZiUi                       +    Ei                                                              (A1f) 
 
where i =1,….N (number of person) and n = number of time points for individual i. 
The marginal model (without Covariates) can be expressed:   
 
Var (θ it ) = E[(θ it – E(θ it))2] = τ0

2
 + 2 τ10 Yearit + τ1

2
 Yearit

2 + σ
2  

                                   (A1g) 
θ it ∼ N((β00 + β10 * Yearit ),  (τ0

2
 + 2 τ10 Yearit + τ1

2
 Yearit

2 + σ
2
))                                     (A1h) 

 

 

B. Nonlinear Model 

Level-1 (Within Individual)                

        Quadrature growth          θ it = π0i + π1i·Yearit + π2i·Yearit
2 + eit.              (A2) 

 

Level-2 (Between Individual)       

        Intercept                          π0i = β00 + Covariate0 + u0i,                                               (A2a) 

        Linear slope                    π1i = β10 + Covariate1 + u1i,                                         (A2b) 
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        Quadrature slope            π2i = β20 + u2i,                                                               (A2c)  

 
Together for quadrature growth (without covariates): 
 
θ it = (β00 + u0i) + (β10 + u1i) ·Yearit +  (β20 + u2i) * Yearit

2 + eit. 
     = β00 + β10 * Yearit + β20 *  Yearit

2 + u0i  + u1i* Yearit + u1i* Yearit
2 + eit.                        (A2d) 

 
In the level 1 model, θ it is achievement score in logits at each time point, i indicates the student 
and t is “time” (Year = time + 1), often coded as t= 0, 1, 2, … T. There is no second level 
covariate for most of grade except for grade 1 and 6 in this study. 
 
θ it = individual score in logit 
π0i  = individual true score at time 0 
π1i  = individual true linear slope (linear change of rate) 
π2i  = individual true quadrature slope (quadrature change of rate) 
β00 = the average overall true initial score at time 0 
β10 = the average overall true linear change between individual 
β20 = the average overall true quadrature change between individual 
Covariate0 (noise)  
                  = 0 for growth patterns that are the same as SVS  
                  = 0.1 for growth patterns that are different as SVS for cohort at grade 1 (Table 1) 
                  = -0.1 for growth patterns that are different as SVS for cohort at grade 6 (Table 1) 
Covariate1 (noise)  
                  = 0 for growth patterns that are the same as SVS  
                  = 0.05 for growth patterns that are different as SVS for cohort at grade 1 (Table 1) 
                  = -0.05 for growth patterns that are different as SVS for cohort at grade 6 (Table 1) 
eit : The random error with the t

th 
time point in the i

th 
individual.  

u0i: The random effect for intercepts 
u1i: The random effect for linear slopes 
u2i: The random effect for quadrature slopes 
 
eit ~ N (0, σ

2
)  it is assumed to be independent of level-2 random effects (u0i, u1i, and u2i), that is  

                       cov(eti, ui) = 0. 

u0i ~ N (0, τ00
2
) , τ00 is the var of level 2 residuals u0i from predicting the level 1 intercept (π0i) 

u1i ~ N (0, τ11
2
), τ11 is the var of level 2 residuals u1i from predicting the level 1 linear slope (π1i) 

u2i ~ N (0, τ22
2
), τ22 is the var of level 2 residuals u1i from predicting the level quadrature slope      

                          (π2i) 
   
cov(u0i, u1i) = cov(π0i, π 1i) 
 



  19

2 2 2
00 10 200
2 2 2

1 10 11 12

2 2 2
2 20 12 22

2

   00
   00

,
0    0
0 0    0     0   

i

i

i

it

u
u

N
u
e

τ τ τ

τ τ τ

τ τ τ

σ

⎡ ⎤⎛ ⎞⎡ ⎤ ⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟
⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟
⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟
⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

                                                                                (A2e) 

 
Without covariate terms: 
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θ i  =           XiΓ             +         ZiUi                       +    Ei                                                                (A2g)   
 
where i =1,….N (number of person) and n = number of time points for individual i. 
The marginal model (without Covariates) can be expressed:   
 
Var (θ it ) = E[(θ it – E(θ it))2]  
                = τ0

2
 + + τ1

2
 Yearit

2 + τ1
2
 Yearit

4 + 2 τ10 Yearit + 2 τ20 Yearit
2 + 2 τ12Yearit

3 + σ
2
  (A2h) 

 
θ it ∼ N((β00 + β10 * Yearit + β20 *  Yearit

2),  Var (θ it ))                                                        (A2i) 
 
 
C. Model for Serial Correlation 
 
First order autoregressive process, AR1: 
 
Eit = ρEi,(t-1) + εit 
 
Where  εit ∼N(0, σε

2)  and ρ is autocorrelation coefficient.  In SAS,  
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Simulation Design 

 

Table B1.  Simulation Parameters (C ~ Cohort) 
 Linear Non_Linear                   
Grade theta theta                    
1 -2 -2.00 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0         
2 -1.6 -1.19  C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0        
3 -1.2 -0.53   C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0       
4 -0.8 0.07    C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0      
5 -0.4 0.59     C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0     
6 0 1.05      C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0    
7 0.4 1.44       C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0   
8 0.8 1.76        C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0  
9 1.2 2.00         C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 
10 1.6 2.18          C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 
            Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 
            Base         
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Figure B1. Simulated Linear Growth 

 

 
Figure B2. Simulated Nonlinear Growth 
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Table 1.  Example of Vertical Scale across Grades for Different Cohort Groups (C1 to C10) 

      Year     

Grade Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 

1 C1 C0 C-1 C-2 C-3      

2 C2 C1 C0 C-1 C-2 C-3     

3 C3 C2 C1 C0 C-1 C-2 C-3    

4 C4 C3 C2 C1 C0 C-1 C-2 C-3   

5 C5 C4 C3 C2 C1 C0 C-1 C-2 C-3  

6 C6 C5 C4 C3 C2 C1 C0 C-1 C-2 C-3 

7 C7 C6 C5 C4 C3 C2 C1 C0 C-1 C-2 

8 C8 C7 C6 C5 C4 C3 C2 C1 C0 C-1 

9 C9 C8 C7 C6 C5 C4 C3 C2 C1 C0 

10 C10 C9 C8 C7 C6 C5 C4 C3 C2 C1 

 

Table 2a. Vertical Scaling Linking Design for On-grade and Below-grade Items for Base Year 

(Year 1). 

      Item     

Grade G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1 G1_on          

G2 G1_below G2_on         

G3  G2_below G3_on        

G4   G3_below G4_on       

G5    G4_below G5_on      

G6     G5_below G6_on     

G7      G6_below G7_on    

G8       G7_below G8_on   

G9        G8_below G9_on  

G10         G9_below G10_on 
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Table 2b.  Examples of Common-Item Chain Equating Design for On-grade Items of Different 

Years Linked to Base Year for Grade 1 

Grade Year 1 Year 1 & Year 2 Year 2 
G1 30 items 10 items  
  10 items 30 items 
 Year 2 Year 2 & Year 3 Year 3 
G1 30 items 10 items  
  10 items 30 items 
 Year 3 Year 3 & Year 4 Year 4 
G1 30 items 10 items  
  10 items 30 items 
 Year 4 Year 4 & Year 5 Year 5 
G1 30 items 10 items  
  10 items 30 items 

 

 

 

Table 3. Simulation Rasch difficulty Parameters of 40 Item Test Forms across Grades ~ N(M, 

SD) 

Grade Off_mean On_mean 
1  -2 
2 -2 -1.6 
3 -1.6 -1.2 
4 -1.2 -0.8 
5 -0.8 -0.4 
6 -0.4 0 
7 0 0.4 
8 0.4 0.8 
9 0.8 1.2 
10 1.2 1.6 
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            Table 4. Bias, SE, and RMSE for Linear Null, Intercept, and Intercept + Slope Models Without Noise 

Linear  Null     Intercept     Intercept + Slope   
Grade Year1 Year2  Year3 Year4 Year5 Year1 Year2 Year3 Year4 Year5 Year1 Year2  Year3 Year4 Year5 

                 
Bias 1 0.02 0.03 0.07 0.04 0.06 0.03 0.00 0.01 0.01 0.01 0.02 0.04 0.02 0.02 -0.01 
 2 0.03 0.00 0.03 0.07 0.03 0.04 0.05 0.02 0.00 0.01 0.05 0.01 0.04 0.04 0.04 
 3 0.03 0.03 0.00 0.03 0.04 0.07 0.06 0.05 0.02 0.00 0.03 -0.01 0.04 0.09 0.02 
 4 0.04 0.08 0.06 0.05 0.10 0.09 0.11 0.09 0.10 0.06 0.10 0.08 0.05 0.16 0.09 
 5 0.05 0.02 0.05 0.06 0.04 0.06 0.05 0.09 0.06 0.05 0.10 0.06 0.05 0.04 0.08 
 6 0.06 0.06 0.01 0.03 0.07 0.05 0.08 0.05 0.06 0.10 0.10 0.05 0.08 0.04 0.00 
 7 0.06 0.08 0.09 0.04 0.07 0.09 0.04 0.14 0.09 0.08 0.10 0.10 0.09 0.17 0.03 
 8 0.07 0.03 0.04 0.06 0.05 0.06 0.05 -0.01 0.07 0.04 0.02 0.07 0.08 0.06 0.10 
 9 0.07 0.11 0.11 0.13 0.08 0.05 0.11 0.13 0.05 0.08 0.11 0.07 0.10 0.08 0.13 
 10 0.08 0.02 0.11 0.09 0.13 0.02 0.00 0.09 0.12 0.02 0.09 0.05 0.02 0.00 0.05 
 Mean 0.05 0.05 0.06 0.06 0.07 0.06 0.05 0.07 0.06 0.05 0.07 0.05 0.06 0.07 0.05 
                 
SE 1 0.00 0.04 0.05 0.06 0.07 0.01 0.03 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.05 
 2 0.02 0.03 0.04 0.05 0.05 0.02 0.03 0.04 0.05 0.05 0.02 0.03 0.05 0.05 0.06 
 3 0.03 0.04 0.05 0.05 0.05 0.03 0.03 0.04 0.05 0.05 0.02 0.04 0.05 0.06 0.06 
 4 0.03 0.04 0.05 0.05 0.05 0.03 0.03 0.05 0.06 0.06 0.03 0.03 0.04 0.05 0.06 
 5 0.03 0.04 0.05 0.05 0.05 0.03 0.05 0.05 0.06 0.06 0.03 0.04 0.04 0.05 0.07 
 6 0.03 0.03 0.05 0.05 0.06 0.03 0.04 0.05 0.05 0.05 0.03 0.04 0.06 0.06 0.06 
 7 0.03 0.04 0.05 0.06 0.06 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.06 0.05 0.06 
 8 0.04 0.05 0.05 0.05 0.06 0.04 0.05 0.06 0.06 0.06 0.03 0.04 0.05 0.05 0.06 
 9 0.04 0.04 0.05 0.05 0.06 0.04 0.04 0.05 0.06 0.07 0.04 0.05 0.06 0.07 0.08 
 10 0.04 0.05 0.05 0.06 0.07 0.04 0.04 0.05 0.06 0.06 0.04 0.05 0.06 0.09 0.09 
 Mean 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.05 0.06 0.07 
                 
RMSE 1 0.02 0.05 0.08 0.07 0.09 0.03 0.03 0.04 0.04 0.05 0.02 0.04 0.04 0.04 0.05 
 2 0.03 0.03 0.05 0.08 0.06 0.04 0.06 0.04 0.05 0.06 0.05 0.03 0.06 0.07 0.07 
 3 0.04 0.05 0.05 0.06 0.07 0.08 0.07 0.07 0.06 0.05 0.04 0.04 0.06 0.11 0.06 
 4 0.05 0.09 0.07 0.07 0.11 0.09 0.11 0.10 0.12 0.08 0.10 0.09 0.06 0.16 0.11 
 5 0.06 0.04 0.07 0.08 0.07 0.07 0.07 0.10 0.08 0.08 0.11 0.07 0.07 0.07 0.11 
 6 0.06 0.07 0.05 0.06 0.09 0.06 0.09 0.07 0.08 0.12 0.10 0.07 0.10 0.07 0.06 
 7 0.07 0.09 0.10 0.07 0.10 0.09 0.06 0.15 0.10 0.10 0.11 0.11 0.10 0.18 0.07 
 8 0.08 0.05 0.07 0.08 0.08 0.07 0.07 0.06 0.09 0.07 0.04 0.08 0.09 0.08 0.11 
 9 0.08 0.12 0.12 0.14 0.10 0.06 0.12 0.13 0.08 0.11 0.12 0.08 0.12 0.10 0.15 
 10 0.09 0.05 0.12 0.11 0.14 0.05 0.04 0.10 0.14 0.06 0.09 0.07 0.07 0.09 0.10 
 Mean 0.06 0.06 0.08 0.08 0.09 0.06 0.07 0.09 0.08 0.08 0.08 0.07 0.08 0.10 0.09 
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Table 5. Bias, SE, and RMSE for Linear Null, Intercept, and Intercept + Slope Models With Noise* 

Linear Null Model     Intercept Model    Intercept + Slope Model  
Grade Year1 Year2  Year3 Year4 Year5 Year1 Year2 Year3 Year4 Year5 Year1 Year2  Year3 Year4 Year5 

                 
Bias 1 0.02 0.03 0.07 0.04 0.06 0.04 -0.10 -0.09 -0.08 -0.08 0.03 -0.06 -0.06 -0.07 -0.10 
 2 0.03 0.00 0.03 0.07 0.03 -0.06 0.06 -0.07 -0.09 -0.07 -0.05 0.07 -0.05 -0.05 -0.06 
 3 0.03 0.03 0.00 0.03 0.04 -0.03 -0.03 0.07 -0.06 -0.09 -0.06 -0.11 0.14 -0.01 -0.10 
 4 0.04 0.08 0.06 0.05 0.10 0.00 0.01 0.00 0.12 -0.04 0.00 -0.03 -0.05 0.27 -0.01 
 5 0.05 0.02 0.05 0.06 0.04 -0.02 -0.04 -0.01 -0.04 0.06 0.00 -0.03 -0.04 -0.05 0.22 
 6 0.06 0.06 0.01 0.03 0.07 -0.14 -0.01 -0.04 -0.03 0.01 -0.10 -0.06 -0.03 -0.07 -0.12 
 7 0.06 0.08 0.09 0.04 0.07 -0.01 -0.15 0.05 0.00 -0.02 0.00 -0.16 0.00 0.08 -0.05 
 8 0.07 0.03 0.04 0.06 0.05 -0.03 -0.03 -0.20 -0.02 -0.04 -0.09 -0.03 -0.22 -0.05 -0.01 
 9 0.07 0.11 0.11 0.13 0.08 -0.03 0.03 0.04 -0.14 0.00 0.01 -0.04 0.00 -0.26 0.02 
 10 0.08 0.02 0.11 0.09 0.13 -0.06 -0.09 0.00 0.04 -0.17 -0.01 -0.05 -0.07 -0.11 -0.31 
 Mean 0.05 0.05 0.06 0.06 0.07 -0.03 -0.04 -0.02 -0.03 -0.04 -0.03 -0.05 -0.04 -0.03 -0.05 
                 
SE 1 0.00 0.04 0.05 0.06 0.07 0.01 0.02 0.04 0.04 0.06 0.01 0.02 0.04 0.04 0.05 
 2 0.02 0.03 0.04 0.05 0.05 0.01 0.03 0.04 0.04 0.11 0.02 0.03 0.04 0.05 0.05 
 3 0.03 0.04 0.05 0.05 0.05 0.02 0.04 0.05 0.05 0.06 0.03 0.03 0.05 0.06 0.07 
 4 0.03 0.04 0.05 0.05 0.05 0.02 0.03 0.04 0.04 0.05 0.03 0.04 0.05 0.07 0.07 
 5 0.03 0.04 0.05 0.05 0.05 0.03 0.03 0.04 0.04 0.05 0.03 0.06 0.07 0.08 0.08 
 6 0.03 0.03 0.05 0.05 0.06 0.03 0.04 0.04 0.06 0.06 0.03 0.04 0.05 0.05 0.07 
 7 0.03 0.04 0.05 0.06 0.06 0.03 0.04 0.04 0.05 0.06 0.04 0.04 0.05 0.06 0.07 
 8 0.04 0.05 0.05 0.05 0.06 0.04 0.05 0.05 0.06 0.06 0.04 0.05 0.06 0.07 0.07 
 9 0.04 0.04 0.05 0.05 0.06 0.04 0.05 0.05 0.06 0.06 0.04 0.05 0.06 0.07 0.07 
 10 0.04 0.05 0.05 0.06 0.07 0.04 0.05 0.05 0.06 0.07 0.04 0.05 0.06 0.06 0.07 
 Mean 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.04 0.05 0.06 0.03 0.04 0.05 0.06 0.07 
                 
RMSE 1 0.02 0.05 0.08 0.07 0.09 0.04 0.10 0.09 0.09 0.10 0.03 0.06 0.07 0.08 0.11 
 2 0.03 0.03 0.05 0.08 0.06 0.06 0.07 0.08 0.10 0.13 0.05 0.08 0.07 0.07 0.08 
 3 0.04 0.05 0.05 0.06 0.07 0.03 0.05 0.08 0.08 0.11 0.07 0.12 0.14 0.06 0.12 
 4 0.05 0.09 0.07 0.07 0.11 0.02 0.04 0.04 0.12 0.07 0.03 0.05 0.07 0.28 0.07 
 5 0.06 0.04 0.07 0.08 0.07 0.04 0.05 0.04 0.06 0.08 0.03 0.06 0.08 0.09 0.23 
 6 0.06 0.07 0.05 0.06 0.09 0.15 0.04 0.06 0.06 0.06 0.11 0.07 0.06 0.09 0.14 
 7 0.07 0.09 0.10 0.07 0.10 0.03 0.15 0.06 0.05 0.06 0.04 0.16 0.05 0.10 0.09 
 8 0.08 0.05 0.07 0.08 0.08 0.05 0.06 0.20 0.06 0.07 0.10 0.06 0.23 0.08 0.07 
 9 0.08 0.12 0.12 0.14 0.10 0.05 0.06 0.07 0.15 0.06 0.04 0.06 0.06 0.26 0.08 
 10 0.09 0.05 0.12 0.11 0.14 0.07 0.10 0.05 0.07 0.18 0.05 0.07 0.10 0.12 0.32 
 Mean 0.06 0.06 0.08 0.08 0.09 0.05 0.07 0.08 0.08 0.09 0.05 0.08 0.09 0.12 0.13 
                 

                    

                    *: There is no noise in the null model  

 

 

 

             



  28

           Table 6. Bias, SE, and RMSE for Nonlinear Null, Intercept, and Intercept + Slope Models without Noise 
Nonlinear Null     Intercept    Intercept + Slope   
 Grade Year1 Year2  Year3 Year4 Year5 Year1 Year2 Year3 Year4 Year5 Year1 Year2  Year3 Year4 Year5 
                 
Bias 1 -0.02 -0.05 -0.05 -0.04 -0.01 -0.01 0.01 -0.02 -0.07 -0.09 -0.01 0.02 -0.03 -0.02 0.03 
 2 0.01 0.02 -0.04 -0.02 -0.01 -0.09 -0.01 0.03 0.01 -0.07 -0.04 0.09 0.09 0.01 -0.01 
 3 0.02 0.06 0.06 0.01 0.01 0.06 -0.08 0.02 0.06 0.02 0.08 -0.02 0.13 0.07 -0.07 
 4 0.03 0.06 0.08 0.07 0.04 -0.01 0.03 -0.06 0.01 0.08 0.02 0.14 -0.09 -0.05 0.06 
 5 0.04 0.06 0.07 0.09 0.10 0.09 -0.01 0.02 0.02 0.08 0.02 0.06 0.14 -0.28 -0.22 
 6 0.04 0.05 0.08 0.08 0.11 0.13 0.09 0.03 0.06 0.08 0.08 0.02 -0.01 -0.05 -0.35 
 7 0.05 0.06 0.07 0.07 0.07 0.04 0.13 0.07 0.05 0.01 0.08 0.09 -0.05 -0.23 -0.22 
 8 0.05 0.06 0.04 0.05 0.05 0.03 0.07 0.13 0.07 0.03 0.02 0.08 0.01 -0.23 -0.39 
 9 0.05 0.11 0.09 0.09 0.10 0.06 0.13 0.13 0.14 0.14 0.07 0.05 0.00 -0.08 -0.19 
 10 0.05 0.02 0.07 0.06 0.02 0.00 -0.01 0.06 0.06 0.05 0.02 0.02 -0.03 -0.15 -0.20 
 Mean 0.03 0.05 0.05 0.05 0.05 0.03 0.04 0.04 0.04 0.03 0.03 0.06 0.02 -0.10 -0.16 
                 
SE 1 0.00 0.04 0.04 0.05 0.06 0.01 0.03 0.04 0.04 0.04 0.01 0.02 0.03 0.04 0.04 
 2 0.02 0.04 0.04 0.05 0.06 0.02 0.04 0.05 0.05 0.06 0.02 0.03 0.05 0.06 0.07 
 3 0.02 0.03 0.04 0.05 0.05 0.02 0.03 0.04 0.07 0.07 0.02 0.03 0.04 0.06 0.06 
 4 0.02 0.03 0.05 0.05 0.06 0.03 0.04 0.04 0.05 0.06 0.02 0.04 0.05 0.06 0.07 
 5 0.03 0.04 0.05 0.06 0.06 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.05 0.06 0.07 
 6 0.03 0.04 0.04 0.06 0.06 0.04 0.04 0.05 0.07 0.08 0.04 0.04 0.06 0.06 0.06 
 7 0.03 0.04 0.04 0.05 0.05 0.04 0.04 0.06 0.06 0.06 0.04 0.05 0.06 0.07 0.07 
 8 0.03 0.04 0.04 0.05 0.05 0.04 0.06 0.07 0.07 0.08 0.04 0.05 0.06 0.08 0.09 
 9 0.04 0.04 0.05 0.06 0.07 0.04 0.05 0.06 0.06 0.07 0.04 0.04 0.05 0.06 0.08 
 10 0.04 0.04 0.05 0.05 0.06 0.04 0.05 0.05 0.06 0.07 0.04 0.05 0.05 0.07 0.09 
 Mean 0.03 0.04 0.04 0.05 0.06 0.03 0.04 0.05 0.06 0.06 0.03 0.04 0.05 0.06 0.07 
                 
RMSE 1 0.02 0.06 0.07 0.06 0.06 0.01 0.03 0.04 0.08 0.10 0.02 0.03 0.04 0.04 0.05 
 2 0.02 0.04 0.06 0.05 0.06 0.09 0.04 0.06 0.05 0.09 0.05 0.09 0.10 0.06 0.07 
 3 0.03 0.07 0.07 0.05 0.05 0.07 0.08 0.05 0.09 0.08 0.08 0.03 0.14 0.09 0.09 
 4 0.04 0.07 0.09 0.09 0.07 0.03 0.05 0.08 0.05 0.10 0.03 0.14 0.10 0.08 0.10 
 5 0.05 0.07 0.09 0.11 0.12 0.09 0.04 0.05 0.05 0.10 0.03 0.08 0.15 0.29 0.23 
 6 0.05 0.06 0.09 0.10 0.12 0.14 0.10 0.06 0.10 0.11 0.09 0.05 0.06 0.08 0.36 
 7 0.06 0.07 0.09 0.09 0.08 0.05 0.13 0.09 0.08 0.06 0.09 0.10 0.08 0.24 0.23 
 8 0.06 0.07 0.06 0.07 0.07 0.05 0.09 0.15 0.10 0.08 0.05 0.09 0.06 0.24 0.40 
 9 0.06 0.12 0.10 0.11 0.12 0.07 0.14 0.14 0.15 0.15 0.08 0.07 0.05 0.10 0.20 
 10 0.07 0.04 0.08 0.08 0.07 0.04 0.05 0.08 0.08 0.08 0.04 0.05 0.06 0.17 0.22 
 Mean 0.04 0.07 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.10 0.06 0.07 0.08 0.14 0.20 
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                Table 7. Bias, SE, and RMSE for Nonlinear Null, Intercept, and Intercept + Slope Models with Noise* 
Nonlinear Null     Intercept    Intercept + Slope   
 Grade Year1 Year2  Year3 Year4 Year5 Year1 Year2 Year3 Year4 Year5 Year1 Year2  Year3 Year4 Year5 
                 
Bias 1 -0.02 -0.05 -0.05 -0.04 -0.01 -0.01 -0.09 -0.12 -0.17 -0.19 -0.01 -0.06 -0.10 -0.10 -0.05 
 2 0.01 0.02 -0.04 -0.02 -0.01 -0.19 -0.01 -0.07 -0.09 -0.16 -0.13 0.15 0.01 -0.09 -0.12 
 3 0.02 0.06 0.06 0.01 0.01 -0.04 -0.18 0.02 -0.05 -0.09 -0.02 -0.10 0.25 -0.02 -0.16 
 4 0.03 0.06 0.08 0.07 0.04 -0.11 -0.07 -0.16 0.01 -0.02 -0.07 0.05 -0.16 0.07 -0.01 
 5 0.04 0.06 0.07 0.09 0.10 -0.01 -0.11 -0.07 -0.09 0.08 -0.08 -0.03 0.06 -0.37 -0.13 
 6 0.04 0.05 0.08 0.08 0.11 -0.07 -0.01 -0.07 -0.05 -0.03 -0.11 -0.07 -0.10 -0.13 -0.45 
 7 0.05 0.06 0.07 0.07 0.07 -0.07 -0.08 -0.03 -0.05 -0.10 -0.01 -0.16 -0.13 -0.31 -0.29 
 8 0.05 0.06 0.04 0.05 0.05 -0.07 -0.04 -0.09 -0.04 -0.09 -0.07 -0.03 -0.28 -0.32 -0.49 
 9 0.05 0.11 0.09 0.09 0.10 -0.04 0.02 0.02 -0.09 0.01 -0.03 -0.04 -0.08 -0.36 -0.26 
 10 0.05 0.02 0.07 0.06 0.02 -0.11 -0.11 -0.04 -0.05 -0.16 -0.08 -0.06 -0.11 -0.22 -0.46 
 Mean 0.03 0.05 0.05 0.05 0.05 -0.07 -0.07 -0.06 -0.07 -0.07 -0.06 -0.04 -0.07 -0.19 -0.24 
                 
SE 1 0.00 0.04 0.04 0.05 0.06 0.01 0.02 0.03 0.04 0.05 0.01 0.04 0.05 0.06 0.06 
 2 0.02 0.04 0.04 0.05 0.06 0.01 0.04 0.04 0.05 0.06 0.02 0.03 0.04 0.04 0.05 
 3 0.02 0.03 0.04 0.05 0.05 0.02 0.04 0.04 0.05 0.05 0.02 0.03 0.04 0.05 0.06 
 4 0.02 0.03 0.05 0.05 0.06 0.03 0.03 0.04 0.05 0.06 0.03 0.04 0.05 0.07 0.08 
 5 0.03 0.04 0.05 0.06 0.06 0.03 0.04 0.05 0.05 0.06 0.03 0.04 0.05 0.07 0.07 
 6 0.03 0.04 0.04 0.06 0.06 0.04 0.05 0.05 0.06 0.07 0.04 0.04 0.05 0.06 0.07 
 7 0.03 0.04 0.04 0.05 0.05 0.04 0.05 0.06 0.07 0.08 0.04 0.05 0.06 0.08 0.07 
 8 0.03 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.07 0.09 0.04 0.05 0.06 0.06 0.08 
 9 0.04 0.04 0.05 0.06 0.07 0.05 0.06 0.07 0.08 0.08 0.04 0.05 0.07 0.07 0.07 
 10 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.08 0.09 0.04 0.05 0.06 0.06 0.07 
 Mean 0.03 0.04 0.04 0.05 0.06 0.03 0.05 0.05 0.06 0.07 0.03 0.04 0.05 0.06 0.07 
                 
RMSE 1 0.02 0.06 0.07 0.06 0.06 0.01 0.10 0.13 0.17 0.19 0.01 0.07 0.12 0.11 0.08 
 2 0.02 0.04 0.06 0.05 0.06 0.19 0.04 0.08 0.11 0.17 0.14 0.16 0.04 0.10 0.13 
 3 0.03 0.07 0.07 0.05 0.05 0.05 0.19 0.05 0.06 0.10 0.03 0.11 0.25 0.06 0.18 
 4 0.04 0.07 0.09 0.09 0.07 0.11 0.08 0.17 0.05 0.06 0.08 0.06 0.17 0.10 0.08 
 5 0.05 0.07 0.09 0.11 0.12 0.03 0.12 0.08 0.10 0.10 0.08 0.05 0.08 0.38 0.15 
 6 0.05 0.06 0.09 0.10 0.12 0.08 0.05 0.09 0.07 0.07 0.12 0.08 0.11 0.14 0.46 
 7 0.06 0.07 0.09 0.09 0.08 0.08 0.09 0.07 0.09 0.13 0.04 0.17 0.15 0.32 0.30 
 8 0.06 0.07 0.06 0.07 0.07 0.09 0.07 0.11 0.08 0.12 0.08 0.05 0.29 0.33 0.50 
 9 0.06 0.12 0.10 0.11 0.12 0.07 0.07 0.07 0.12 0.08 0.05 0.07 0.11 0.37 0.27 
 10 0.07 0.04 0.08 0.08 0.07 0.12 0.13 0.08 0.09 0.18 0.09 0.08 0.13 0.23 0.47 
 Mean 0.04 0.07 0.08 0.08 0.08 0.08 0.09 0.09 0.10 0.12 0.07 0.09 0.14 0.21 0.26 
                 

 

                     *: There is no noise in the null model  
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Table 8. Vertical Scaling Constants of Linear and Nonlinear Null, Intercept, and Intercept + Slope  

   Models without and with Noise 
 Null     Intercept    Intercept + Slope   
 Grade Year1 Year2  Year3 Year4 Year5 Year1 Year2 Year3 Year4 Year5 Year1 Year2  Year3 Year4 Year5 
                 
Linear 1 -2.00 -2.00 -2.00 -2.00 -2.00 -1.99 -2.02 -2.01 -2.00 -2.01 -1.99 -1.99 -1.99 -2.00 -2.02 
without  2 -1.60 -1.60 -1.60 -1.60 -1.60 -1.58 -1.62 -1.60 -1.62 -1.62 -1.57 -1.61 -1.58 -1.57 -1.59 
Noise 3 -1.20 -1.20 -1.20 -1.20 -1.20 -1.14 -1.20 -1.16 -1.22 -1.25 -1.18 -1.24 -1.24 -1.11 -1.21 
 4 -0.80 -0.80 -0.80 -0.80 -0.80 -0.76 -0.80 -0.79 -0.81 -0.85 -0.75 -0.83 -0.87 -0.72 -0.77 
 5 -0.40 -0.40 -0.40 -0.40 -0.40 -0.34 -0.40 -0.36 -0.42 -0.40 -0.31 -0.39 -0.43 -0.37 -0.26 
 6 0.00 0.00 0.00 0.00 0.00 0.06 0.04 0.02 0.02 0.05 0.11 -0.02 -0.02 0.07 -0.06 
 7 0.40 0.40 0.40 0.40 0.40 0.47 0.38 0.48 0.42 0.40 0.49 0.41 0.37 0.60 0.32 
 8 0.80 0.80 0.80 0.80 0.80 0.87 0.79 0.76 0.85 0.82 0.83 0.80 0.82 0.91 0.82 
 9 1.20 1.20 1.20 1.20 1.20 1.22 1.17 1.26 1.17 1.22 1.28 1.15 1.16 1.32 1.23 
 10 1.60 1.60 1.60 1.60 1.60 1.63 1.50 1.65 1.67 1.55 1.69 1.61 1.52 1.58 1.72 
                 
Nonlinear 1 -2.00 -2.00 -2.00 -2.00 -2.00 -1.99 -1.97 -1.99 -2.05 -2.07 -1.99 -1.96 -2.00 -2.00 -1.94 
without  2 -1.19 -1.19 -1.19 -1.19 -1.19 -1.27 -1.19 -1.14 -1.17 -1.26 -1.22 -1.08 -1.10 -1.16 -1.19 
Noise 3 -0.53 -0.53 -0.53 -0.53 -0.53 -0.46 -0.62 -0.49 -0.48 -0.52 -0.45 -0.53 -0.41 -0.42 -0.61 
 4 0.07 0.07 0.07 0.07 0.07 0.05 0.06 0.01 0.04 0.13 0.07 0.23 0.01 0.08 0.08 
 5 0.59 0.59 0.59 0.59 0.59 0.67 0.54 0.64 0.57 0.66 0.60 0.68 0.71 0.30 0.52 
 6 1.05 1.05 1.05 1.05 1.05 1.16 1.07 1.06 1.04 1.10 1.11 1.11 0.97 0.96 0.67 
 7 1.44 1.44 1.44 1.44 1.44 1.46 1.51 1.51 1.46 1.44 1.50 1.55 1.33 1.24 1.23 
 8 1.76 1.76 1.76 1.76 1.76 1.79 1.78 1.92 1.80 1.78 1.79 1.88 1.74 1.52 1.36 
 9 2.00 2.00 2.00 2.00 2.00 2.05 2.05 2.17 2.08 2.11 2.06 2.05 1.96 1.99 1.74 
 10 2.18 2.18 2.18 2.18 2.18 2.21 2.14 2.34 2.26 2.25 2.23 2.24 2.19 2.11 2.07 
                 
Linear 1 -2.00 -2.00 -2.00 -2.00 -2.00 -1.98 -2.12 -2.11 -2.10 -2.11 -1.99 -2.09 -2.09 -2.09 -2.12 
with  2 -1.60 -1.60 -1.60 -1.60 -1.60 -1.67 -1.55 -1.67 -1.69 -1.68 -1.67 -1.56 -1.66 -1.66 -1.67 
Noise 3 -1.20 -1.20 -1.20 -1.20 -1.20 -1.24 -1.27 -1.11 -1.27 -1.30 -1.27 -1.34 -1.11 -1.21 -1.33 
 4 -0.80 -0.80 -0.80 -0.80 -0.80 -0.85 -0.90 -0.81 -0.75 -0.88 -0.85 -0.87 -0.92 -0.52 -0.91 
 5 -0.40 -0.40 -0.40 -0.40 -0.40 -0.43 -0.52 -0.37 -0.47 -0.37 -0.41 -0.46 -0.47 -0.47 -0.23 
 6 0.00 0.00 0.00 0.00 0.00 -0.14 -0.07 0.00 -0.05 -0.02 -0.10 0.01 -0.03 -0.02 -0.20 
 7 0.40 0.40 0.40 0.40 0.40 0.38 0.19 0.45 0.37 0.34 0.39 0.28 0.36 0.50 0.21 
 8 0.80 0.80 0.80 0.80 0.80 0.78 0.74 0.63 0.77 0.74 0.72 0.83 0.59 0.80 0.73 
 9 1.20 1.20 1.20 1.20 1.20 1.14 1.16 1.23 0.99 1.15 1.18 1.18 1.20 0.97 1.17 
 10 2.18 2.18 2.18 2.18 2.18 1.55 1.48 1.65 1.62 1.39 1.59 1.61 1.60 1.60 1.22 
                 
Nonlinear 1 -2.00 -2.00 -2.00 -2.00 -2.00 -1.99 -2.07 -2.09 -2.15 -2.17 -1.99 -2.05 -2.09 -2.09 -2.04 
with  2 -1.19 -1.19 -1.19 -1.19 -1.19 -1.36 -1.18 -1.25 -1.27 -1.33 -1.31 -1.02 -1.16 -1.26 -1.30 
Noise 3 -0.53 -0.53 -0.53 -0.53 -0.53 -0.57 -0.71 -0.49 -0.57 -0.63 -0.54 -0.65 -0.24 -0.54 -0.70 
 4 0.07 0.07 0.07 0.07 0.07 -0.05 0.00 -0.11 0.05 0.02 -0.02 0.09 -0.01 0.18 0.03 
 5 0.59 0.59 0.59 0.59 0.59 0.57 0.50 0.48 0.45 0.61 0.51 0.52 0.66 0.19 0.57 
 6 1.05 1.05 1.05 1.05 1.05 0.96 1.06 0.96 0.92 0.96 0.92 0.95 0.96 0.92 0.52 
 7 1.44 1.44 1.44 1.44 1.44 1.36 1.40 1.40 1.32 1.31 1.41 1.24 1.32 1.12 1.09 
 8 1.76 1.76 1.76 1.76 1.76 1.69 1.78 1.71 1.66 1.63 1.69 1.71 1.55 1.40 1.38 
 9 2.00 2.00 2.00 2.00 2.00 1.94 2.02 2.03 1.83 1.98 1.96 1.92 1.92 1.69 1.68 
 10 2.18 2.18 2.18 2.18 2.18 2.10 2.10 2.20 2.09 2.03 2.13 2.12 2.16 1.99 1.86 
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Figure 1. Static Vertical Scale across Years 

 

 

 
                                          Figure 2.  Dynamic Vertical Scale across Year

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5
Year

V
S 

C
on

st
an

t (
L

og
it)

Grade4
Grade5
Grade6
Grade7
Grade8

0
0.5

1

1.5
2

2.5
3

3.5
4

4.5

1 2 3 4 5
Year

V
S 

C
on

st
an

t (
Lo

gi
t)

Grade4
Grade5
Grade6
Grade7
Grade8

`



  32

 

 

 

   

   

   
Figure 3. Bias, SE, and RMSE of Linear Models (Null, Intercept, and Intercept + Slope) without Noise 
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Figure 4. Bias, SE, and RMSE of Linear Models (Null, Intercept, and Intercept + Slope) with Noise 
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Figure 5. Bias, SE, and RMSE of Nonlinear Models (Null, Intercept, and Intercept + Slope) without Noise 
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Figure 6. Bias, SE, and RMSE of Nonlinear Models (Null, Intercept, and Intercept + Slope) with Noise
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Figure 7. Vertical Scaling Constants of Both Linear and Nonlinear Models (Null, Intercept, and 

Intercept + Slope) without Noise 

 

 

 

 

 

Vertical Scaling Constant (VSC) Across Years 
for Linear Null Model Based on Assumption
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Figure 8. Vertical Scaling Constants of Both Linear and Nonlinear Models (Null, Intercept, and 

Intercept + Slope) with Noise 
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  Figure 9. Example of Student Achievement Scores across Years 
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