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Introduction

This vertical scale permits inferences to be made about student achievement from
elementary to high school grades. This vertical scale can be viewed as a developmental
continuum. As students develop new capabilities, they move along the continuum, as
demonstrated by their scale score. Scale scores are units of a single, equal-interval
scale applied across all levels of TerraNova regardless of grade or time of testing.
These scores are expressed in numbers that range theoretically from 0 to 999. The
equal-interval property of scale scores permits arithmetic functions to be performed
using the scale scores. (p. 322)

--Technical Manual for CTB-McGraw Hill’s TerraNova Test Battery, 2001.

The developmental scale score is like a ruler that measures growth in reading and
math from year to year. Just like height in inches, the student’s scores in reading and
math are expected to increase each year.

--Newsletter sent to the public from a state board of education?.

The quotations above are representative of a common assumption about the
inherent properties of vertical scales as created through the use of item response
theory. Itis an assumption made explicitly both by the organizations that craft the

scales, and by the stakeholders that make use of them. Interestingly, it is also an

1 In this article all specific references to states are kept anonymous.
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assumption that many—if not most—prominent psychometricians in industry and
academia appear not to endorse. This would seem to indicate a gap between theory
and practice; a gap recently brought to light in a publication by Dale Ballou (2009).
In this paper I investigate the nature of this gap both theoretically and empirically. I
do so theoretically by asking the question: if the aim was to create the analog to a
ruler for the measurement of mental abilities, on what grounds could a case be
made that the endeavor had been a successful one? I do so empirically by
comparing growth interpretations from grades 3 through 8 for a subset of 14 states
with vertically scaled assessment systems.

However, before getting to the heart of the matter, I want to begin by posing
some premises that I consider relatively uncontroversial, but nonetheless important
because I think they establish why this issue is one that is fundamental to test
validity and validation, and therefore not just a matter of academic nit-picking.

1. Learning is the principal purpose of sending students to school.

2. Students are tested to find out what they know (and how they know it).

3. We assume that growth in what students know provides a marker that

learning has taken place.

4. Teaching should have a positive effect on student growth.

[ submit that if you are willing to accept the premises above, then it follows
that the creation of a vertical (i.e., developmental) score scale can be plausibly
viewed as a precondition to establishing the validity of any standardized
assessment. This hinges upon the meaning given to the term “growth”. Consider the

plotin Figure 1 below. If this is the image that came to mind when you saw the

3



word growth connected to student learning, then [ would argue you are implicitly
invoking the concept of a developmental score scale, where the horizontal axis
represents the dimension of time (e.g., grade), and a vertical axis represents some

construct of knowledge and skills in an academic domain.

Figure 1. An Intuitive Conception of Growth in Student Learning
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By invoking the image above it should be clear that one is defining growth in
terms of some absolute change in magnitude. In my view it is only in drawing and
comparing pictures such as these that we can best evaluate premises 3 and 4 above,
along with their relationship to one another.

So at this point I need to lay my cards on the table. In this paper [ will argue
that the purpose of creating a vertical score scale is to make it possible to compare
students in terms of changes in magnitude. These changes in magnitude should be in

reference to a common unit; that is, the scale should have interval properties. When



this has been accomplished one can claim to measure growth in a sense that is both
coherent and meaningful. Yet it is probably safe to say that the purpose for creating
a vertical scale that [ have defined above is not one with which there would be much
agreement among the psychometricians responsible for the development of vertical
scales for large-scale assessments. I suspect most would argue that vertical scales
communicate only ordinal information about student performance. But this points
to a problem. If the purpose of vertical scales are used to make absolute statements
about growth, then such statements will be entirely equivocal if the scale is ordinal
instead of interval. What then, is the point of going through the effort and expense
of creating and maintaining a vertical scale?

There are three sections that follow. In the first [ present with the existing
operational perspective for how one should develop and evaluate a vertical scale
and contrast this to what I consider a much stronger approach: the theory of
conjoint measurement. In the second, I present results from an analysis of 14 states
with existing vertical scales to illustrate how the problems identified with extant
theory can cloud subsequent evaluations of practice. In the third section I offer
some concluding comments and speculate about future courses of action.

In what follows [ will be assuming that the reader has some basic familiarity
with the use of item response theory (IRT) modeling in conjunction with a common
item test linking design to “calibrate” a vertical score scale. For a recent overview of
these methods with many salient references to the existing research literature, see

Briggs & Weeks, 2009.



Ordinal, Interval, or Neither?

In a recent publication, Ballou (2009) analyzes the theoretical basis behind
any claim that a vertical scale created through the use of IRT calibration will have
interval properties. Ballou (using a framework attributed to Hand (1996) that was
actually first described by Michell (1986)) distinguishes between three theories of
measurement that might be invoked to justify an interval interpretation: the
classical, operational and representational? theories of measurement. He rejects
both the classical and operational theories because in the former one simply
assumes that the scale is interval a priori, while in the latter one should regard the
issue as largely “meaningless” because scale properties are only established with
respect to their subsequent use. (I will return to this latter conception
momentarily.) In contrast, Ballou considers the view of measurement found in
representational theory as providing the only available vehicle for an empirical
justification of scale properties. The “vehicle” in this case is primarily the theory of
additive conjoint measurement (Luce & Tukey, 1964).

In the most general sense, conjoint additivity implies that two attributes can
be scaled such that their additive combination forms a third measure. A classic
example of this is of the relationship between force (f), mass (m) and acceleration
(a) in Newton'’s second law of motion after taking logarithms: A = F + M where A =

log(a), F = log(f) and M = -log(m). It can be shown that the formulation of the Rasch

Z Also called axiomatic measurement theory (Krantz et al, 1971). I will use the terms
“representational measurement” and “axiomatic measurement” interchangeably throughout.
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Model (1960), because it involves the linear and noninteractive combination of
person “ability” and item “difficulty” to predict the log odds of a correct response, is
one instance of just the sort of situation treated by the theory of conjoint

measurement (Brogden, 1977; Perline, Wright & Wainer, 1979; Wright, 1997;

P(X, =1)

Michell, 2008a), since log| ——*——
P(X,,=0)

} =6, —b,. The left side of the equation

represents the log odds (“logit”) of a correct item response and the right side of the
equation consists of parameters for a person’s ability (“theta”, indexed by the
subscript p for each respondent) and the item’s difficulty (b indexed by the
subscript i for each test item). It is in this sense that one can, on the basis of three
key axioms (cancellation, solvability and the Archimedean condition) attempt to
justify the logit scale that results from the application of the Rasch model as
possessing interval properties3.

Now by no means do [ wish to suggest that it is a trivial matter to satisfy the
axioms of conjoint measurement and that if one chooses to apply the Rasch Model to
test data, an interval scale is the magic result. The key point is that that theory of
conjoint measurement provides a set of criteria that would need to be met before a
scale could be described as possessing interval properties. These criteria (i.e.,
axioms) are internal to the data that is gathered when a standardized test has been
administered. To be sure, the axioms would be challenging to satisfy, and only one

(cancellation) can be tested directly. But they are the only formal way that can be

3 A full explication of conjoint measurement and its relationship to the Rasch Model is outside the
scope of this paper, but for good presentations see Ballou (2009, 356-364) and Kyngdon (2008a, b).
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found in the reseach literture to motivate an empirical distinction between and
ordinal and interval score scale.

It has been suggested that the mathematical sophistication necessary to
follow the initial presentations of conjoint additivity is the reason that so few
psychometricians have taken the time to gain more than a surface level
understanding of it. For these and other reasons, as of the early 1990s the
psychometrician Norman Cliff (1992) called axiomatic measurement theory the
“revolution that never happened.” But over the past 20 years a number of very
approachable presentations of both the theory of conjoint measurement along with
some applications of the theory to real data have made their way into the
psychometric research literature (Michell, 1990, 1997; Kyngdon 2008).
Furthermore, the mathematics that underlies axiomatic measurement theory is no
more daunting than the mathematics found regularly in the pages of Psychometrika.
So if the purpose of vertical scaling is what [ have defined (something that allows for
interval comparisons of absolute growth) then we would expect by now to see that
some attention to the axioms of conjoint additivity—or at the very least an
awareness of them—would be driving recommendations for psychometric practice.

This is unequivocally not the case. The book Test Equating, Scaling and
Linking by Michael Kolen and Robert Brennan is considered an authoritative source
for guidance in methods of developing and maintaining vertcal scales for large-scale
assessments. Yet there is no reference at all to conjoint measurement as a basis for
scale construction. Instead, the authors assert (p. 332) that “There is no reason to

believe, for example, that scores that arise from fitting the Rasch model to
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achievement test data are on an interval scale based on the scaling theory of Stevens
(1946) and Suppes and Zinnes (1963).” The authors then quote a personal
communication from Lord as cited by Angoff (1971) in which the assertion is made
that “Any set of measurements can be expressed in terms of a scale with equal units,
in some sense, if only we can agree on a definition in operational terms of what is
meant by equality.” From this Kolen & Brennan conclude that “from the perspective
of scaling theory, there is little that can be done to help decide whether one scale is
more ‘equal interval’ than another scale.”

Now with all due respect to Kolen & Brennan, two very eminent
psychometricians whom [ admire, this is simply not true. With the first sentence
cited above they dismiss axiomatic measurement theory as a basis for justifying
interval scale properties without acknowledging the theoretical basis (i.e., the
theory of conjoint measurement) by which this could, in fact, be accomplished if one
is interested in quantifying a latent construct. Then in the span of two pages they
shift to a purely operational conception of what is meant by the term
“measurement” in their invocation of Lord’s perspective that anything can be an
interval scale “in some sense”. Finally, they advance the argument that scaling can
only be evaluated with respect to the purposes of a test. At this point, what is being
described does not strike me as much of a theory of scaling, because it is not
something that can or will ever be falsified. The implicit message from Kolen &
Brennan in adopting Lord’s operational theory of measurement is that if the
purpose of a test is to compare averages, then the scale is de facto interval; if the

purpose is to rank students then the scale is de facto ordinal. If this is the theory
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driving psychometric practice, then it should be little wonder that psychometricians
have lost track of the whole point of creating a vertical scale in the first place.

The operational perspective on scale properties endorsed by Kolen &
Brennan appears to derive primarily from two sources: Lord’s remarks in an
unpublished research bulletin (1950), a one page aside on p. 84 of his 1980 book
Applications of Item Response Theory to Practical Testing Problems, and a more
detailed discussion by Yen (1986) in an article published in the Journal of
Educational Measurement. Lord had objected to Stevens’s (1946; 1951) mapping of
scale type (ratio, interval, ordinal, ratio) to permissible statistical procedures,
famously claiming “the numbers don’t remember where they came from.” In the
specific case of the scale associated with person parameters (i.e., theta) from IRT
models, Lord argued that there was “no obvious reason” to prefer the theta
parameterization to some monotonic transformation of theta, using as an example

0" = K exp(k6). Now from the perspective of representational measurement theory

in general, and the theory of additive conjoint measurement in particular, I think
Lord was clearly wrong about this, and it is a point that has been made by Ballou
(2009, 362-363) and Briggs & Betebenner (2009). If one’s aim in developing a scale
is to justify interval properties by satisfying the axioms of conjoint additivity, then
any transformation made to theta that does not preserve an additive relationship
with item difficulty would violate the assumption of independence necessary for the
axiom of cancellation to hold. Only if one is denying the meaningfulness of the

distinctions Stevens initially formalized between scale types and permissible
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statistics is the contention being made here—that there is no “obvious” reason to
prefer one monotonically transformed version of theta to another—a coherent one.
Yen’s influential 1986 article adds to the confusion over the scale properties

of the theta logit metric when she writes (p. 309)

IRT produces scale values for items and examinees. These values can be used to make
testable, nontrivial predictions about the probability that examinees at different trait (scale)
levels will correctly answer each item. When these predictions are accurate, the IRT model
produces an equal-interval scale according to the requirements of representational
measurement (van der Ven, 1980, p. 255), because only a linear transformation of the item

parameter and trait values preserves the model predictions (Allen & Yen, 1979, p. 256).

This statement is confusing for two reasons. First, there is nothing in the citation of
van der Ven to support the claim that the IRT model produces an equal interval
scale “according to the requirements of representational measurement*.” Second,
the claim that only a linear transformation preserves IRT model predictions
conflicts with the perspective just attributed to Lord, a point Yen actually presents
later on the same page to seemingly argue that the IRT scale is either inherently
ordinal, or that the distinction between ordinal and interval is not something that
can be resolved empirically. It is on these grounds that Yen rejects “internal
consistency” as a criterion for choosing a test score scale. Instead she focuses the

bulk of her article on criteria that are external to the scale itself (e.g., common sense,

4 van der Ven (1980, p. 255) writes “The level of measurement of the normal ogive model is interval.”
He makes no attempt to justify this according to representational measurement theory because Lord
himself had no interest is such a justification when he proposed a derivation of the IRT model based
on the normal ogive (Lord & Novick, 1968, p. 370). Taken in isolation, the normal ogive cdf simply
assumes the existence of a continuous variable on an interval scale, so there is no contradiction in
van der Ven’s statement here unless it is taken out of context.
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statistical properties, intended use, etc). There is considerable wisdom is what Yen
has to say about the difficulties in using these sorts of subjective criteria to justify
scale properties (c.f.,, Yen, 1986, pp. 311-313). But her position implies that this is
the only recourse available, and this seems to be the position that has been driving
the psychometric practice of vertical scaling ever since (c.f.,, Harris, 2007; Patz &
Yao, 2007; Young, 2006).

To summarize, the use of the term “interval” in conjunction with IRT scales
produced in contemporary vertical scaling practice can only be justified by taking
the operational perspective on measurement endorsed by Lord. The seeming
contradiction here is that what Lord meant by interval is not what representational
measurement theorists, or for that matter, most people mean by interval. This is
apparent in the many analogies made to between vertical score scales and the
measurement that result from the use of a ruler or thermometer. If one accepts that
it is important to distinguish whether a scale has interval as opposed to ordinal
properties, then I see no way to avoid the default conclusion that unless evidence
can be presented to the contrary, the vertical scales that have resulted from the
application of IRT should be assumed to communicate fundamentally ordinal
information. Is there any harm in this? I think the answer is yes because it makes
growth interpretations based on a vertical scale inherently equivocal. In the next

section I demonstrate this using empirical data from 14 states.

12



(Mis)Interpreting Growth Using Contemporary Vertical Scales

The information presented in what follows was gathered between the Fall of
2008 and the Fall of 2009 by visiting the web sites for 24 states reported to have
vertically “equated” score scales in the annual “Quality Counts” issue produced by
Education Week in 2008. For four of these states (Alaska, Minnesota, Mississippi
and Rhode Island) no information could be found to support the assertion that these
assessment systems contained tests had been vertically scaled. However, two other
states (Connecticut and Missouri) were found with vertical scales though they had
not been reported as having them by Education Week, leaving the total population of
states with vertical scales at 22 during the 2007-2008 period. This final number
included the following states: Alabama, Arizona, Arkansas, Colorado, Delaware,
Florida, Idaho, Illinois, Indiana, lowa, Mississippi, Missouri, New Mexico, North
Carolina, North Dakota, Oregon, South Carolina, South Dakota, Tennessee, West
Virginia, Wisconsin, and Wyoming®. The most recent and available technical manual
and interpretive guide associated with the state’s criterion referenced assessment
was subsequently retrieved and reviewed. For 14 out of these 22 states, it was
possible® to locate both the mean scale scores and standard deviations on the state’s

large-scale math and reading assessments for the grades 3 and 8. In all of these

5 During the time that this research was being conducted, Texas announced its plans to develop a
vertical scale for use in future test administrations. There may be examples of other states
contemplating this course of action, but they obviously are outside the scope of the present analysis.
6 By this I mean that the information was readily available at the state’s web site, or it was made
available to me upon request. I am still in the process of tracking down this information for the
remaining 8 states with vertical scales.
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cases IRT methodology was used to create and maintain the vertical scale. When
reporting results by state in what follows, the names of specific states are kept
anonymous.

Over the past 30 years, vertical score scales have been evaluated on an
operational basis, consistent with the scaling “theory” I have sketched out above.
What this means in practice is that one examines the empirical patterns of grade by
grade means and standard deviations (SDs) after tests have been calibrated onto a
common scale. The next step is to determine whether these patterns appear
sensible. Along these lines, much of the impetus behind Yen’s 1986 publication on
vertical scales was the empirical observation of scale shrinkage—that for CTB’s test
batteries (vertically scaled using the 3PLM) the variability in scale scores decreased,
in many cases quite dramatically, as grade level increased. Yen had hypothesized
that that this phenomenon could be explained by a violation to the IRT assumption
of unidimensionality as items increased in difficulty and complexity across grade
levels. In contrast, others had argued that scale shrinkage was merely an artifact of
the approach taken for parameter estimation (Camilli, Yamamoto, & Wang, 1993).
Another empirical observation that has been frequently made with regard to
interpretations of growth along vertical scales is that there is typically a sharp
deceleration of growth in the later grades (at the top end of the vertical scale). Some
have argued that this is sensible, citing studies that have shown a similar pattern
when students at different ages are given the same test and then scores are plotted
by age (Martin & Dirir, 2009). Others have argued that this appears symptomatic of

“problems” with the use of IRT to establish the scale (Ballou, 2009).
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Figure 2 plots the grade by grade SDs in reading and math assessments for

the vertical scales of 14 states. (Note that the absolute values on the vertical axis

should not be given any interpretation because the SDs do not refer to a common

scale metric.) It should be apparent from these plots that among these vertical

scales scale shrinkage appears to be the exception rather than the rule. Unless the

assessments have become less multidimensional since Yen's research was

conducted in the 1980s, this would seem to cast some doubt on the hypothesis that

increasing dimensionality over grades is a cause of scale shrinkage.

Figure 2. Assessing Scale Shrinkage in 14 Vertical Scales
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Nationally, the two predominant test contractors responsible for the

development of state-specific vertical scales between 2007 and 2008 were CTB-

McGraw Hill (hereafter “CTB”) and Harcourt Educational Measurement (Harcourt)’.

This is in large part because CTB and Harcourt maintained the commercial test

7 In 2008, Pearson Educational Measurement acquired Harcourt. So states that had previously
contracted with Harcourt became clients Pearson. However, the vertical scale scores reported in this
study derive from technical reports that were written by Harcourt staff.
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batteries the TerraNova and the Stanford Achievement Test (SAT10) respectively.
Both of these test have vertical scales created using nationally representative
samples, a common item nonequivalent groups linking design, and IRT methods to
calibrate the vertical scale. For what appears to be a mixture of historical and
substantive reasons, the vertical scales produced by CTB tend to involve use of the
3PLM for the calibration of dichotomously scored items and the 2PPCM for the
calibration of polytomously scored items. In contrast, vertical scales developed by
Harcourt have involved the use of the Rasch Model for dichotomous items in
combination with the Partial Credit Model for polytomous items. For most states
that contract with CTB, TerraNova items are used to anchor a state-specific test to
the Terra Nova vertical scale. Likewise, a similar strategy was often taken among
states that contracted with Harcourt in their use of tests items taken from the SAT10
to create a state-specific vertical scale.

Table 1 provides effect size information? for states with vertical scales that
were (a) developed by CTB or Harcourt, (b) reported (or made available upon
request) grade specific scale score means and SDs by grade for any year within the
window between 2006 and 2008, and (c) tested students during the spring in a

given year. This reduced the available sample of states from the 14 shown in Figure

8 Effect Size = ,where and represent the mean scale scores for the

higher and lower grades or years in the scale respectively, and and represent the
respective variance for the scores in each grade or year.
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2 to 9. The growth across these nine states in math and reading is shown graphically
in Figures 3 and 4.

Table 1. Effect Size Growth Patterns for Nine States with Vertical Scales

Test Contractor/State Reading Growth Math Growth
3to4 4to5 5tob6 6to7 7to8 [ 3to4 4to5 S5to6 6to7 7to8
CTB State A 0.35 0.34 0.17 0.33 0.13 0.64 0.41 0.29 0.45 0.15
State B 0.38 0.39 0.19 0.17 0.17 0.41 0.36 0.23 0.27 0.13
State C 0.34 0.32 0.32 0.45 0.16 0.44 0.31 0.67 0.30 0.42
State D 0.51 0.47  -0.01 0.14 0.46 0.63 0.46 0.42 0.07 0.50
State E 0.52 0.28 0.25 0.26 0.15 0.77 0.57 0.44 0.43 0.17
Harcourt State F 0.64 0.56 -0.05 0.40 0.65 0.37 0.68 0.43 0.17 0.51
State G 0.42 0.44 0.25 0.15 0.24 0.45 0.40 0.40 0.26 0.34
State H 0.54 0.60 -0.14 0.62 0.27 0.83 0.45 0.28 0.42 0.52
State | 0.37 0.20 0.51 0.31 0.31 0.38 0.41 0.63 0.38 0.25
Mean 0.45 0.40 0.17 0.31 0.28 0.55 0.45 0.42 0.30 0.33
Range 0.30 0.40 0.65 0.48 0.51 0.46 0.37 0.44 0.38 0.39
SD 0.10 0.13 0.20 0.16 0.17 0.17 0.11 0.15 0.13 0.16

Figure 3. Reading Growth Patterns for 9 States with Vertical Scales
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Figure 4. Math Growth Patterns for 9 States with Vertical Scales
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When examining Figures 3 and 4 what stands out is the variability in these

estimates of growth across scales within each of the four adjacent grade

combinations (e.g., grade 3 to 4, 4 to 5, etc). Mean growth in student performance

for any pair of adjacent grades ranges from a low of .30 SDs (grade 3 to 4 Reading)

to a high of .65 SDs (grades 5 to 6 Reading). This variability is much larger for tests

of reading than tests of math. With respect to the reading vertical scales, it is also

clear that there is greater variability among the four states with scales calibrated

using the Rasch family of IRT models (Harcourt, solid dark lines) than there is

among the five states using the 3PLM/2PPCM combination (CTB, dashed light lines).

For math tests, one sees a trend from grades 3 through 8 consistent with that of

decelerating growth—in general, effect sizes decrease in magnitude with increasing
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grade. There is no such discernible trend for the reading tests. Numerical
summaries of the results in Figures 3 and 4 disaggregated by test contractor are
provided in Table 2 below.

One might be tempted to look for other factors germane to the development
of a vertical that might explain the variability in growth from state to state beyond
the choice of test contractor and, by extension, choice of IRT model for item
calibration. For example, perhaps it is the number and choice of common items on
tests between adjacent grades that lead to variability in subsequent growth
interpretations? Or perhaps the answer can be found in differences in the
triangulation of content standards, curricular emphasis, and test design from state
to state? Can differences in growth be explained by something schools within a
given state are doing to effect learning? One might ask certainly ask these
questions, but I suspect the answers may ultimately provide only fool’s gold because
there is no reason to believe that these vertical scales provide anything beyond an
ordinal interpretation. As a result, comparisons of means and SDs such as those
made above are largely built upon sand. To illustrate this contention, consider

Figure 5 below.
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Figure 5. Some Empirical Growth Trajectories
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What has been plotted in Figure 5 are seven empirical growth trajectories on
the basis of seven distinct vertical scales. Most observers would conclude that these
trajectories represent entirely different patterns of growth. In fact, these seven
trajectories are based on the exact same underlying set of student item responses
from a unique state assessment system. (For details, see Briggs & Betebenner,
2009.) The bold line in black represents effects sizes deriving from this state’s
publicly reported vertical score scale for reading. All the other lines represent
monotonic transformations of the base vertical scale, transformations that are
admissible if the underlying scale communicates solely ordinal information. The
reader might protest that the practice of monotonically transforming test scores so
as to insure that growth takes on some predetermined trajectory and/or
predetermined variability is the sort of practice that no commercial test developer

would actually support. But they do, and for “theoretical” support they need only
20



reference Kolen & Brennan (2004), who contend that this is defensible so long as
the state has developed a “conceptual definition of growth” and communicated this

to the test developer. As an example:

“The theta scale also can be nonlinearly transformed to provide for growth patterns that
reflect the kind of patterns that are expected [my emphasis]. Consider a situation in which a
test developer believes that the variability of scale scores should increase over grades. If the
variability of the theta estimates is not found to increase over grades, a nonlinear

transformation of the ability scale might be used that leads to increased variability.” (p. 393)

Instances of these sorts of practices were readily found in the technical
manuals of two of the states shown above in Figures 3 and 4. The growth
trajectories of these two states have been distinguished by red and green colored
lines. In the state marked by the red line it was found empirically that the mean
scale scores in grade 7 in both reading and math were lower than those found in
grade 6 after the tests had been vertically linked. Rather than report these results,
the state—in consultation with its test contractor—decided to adjust the grade 7
scale scores so that the reported mean was that which would have been observed if
successive grade means followed a polynomial trend. A similar approach was taken
for the reading scale as of grade 8 in the state with the green colored line.

As discussed in the previous section, for the states with vertical scales based
on the use of the 3PL and 2PPC models, there is theoretical justification internal to
the tests themselves that the resulting scales have interval properties on the basis of
the axioms of additive conjoint measurement. This makes any resulting
interpretations and comparisons of growth using parametric statistics questionable,

for reasons that have just been illustrated. In contrast, it would be possible to make
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a case that the states employing the Rasch family of IRT models have vertical scales
with interval properties if it could be shown that they are probabilistic versions of
conjoint measurement. However, this hinges upon careful consideration of whether
there is evidence that the Rasch Model fits the data. Showing, for example, that the
assumption of non-intersecting item characteristics curves holds empirically is a
necessary (but not sufficient) condition for an additive conjoint data structure. Yet
among the states that use the Rasch Model and its polytomous extensions to create
their vertical scales such evidence is either entirely absent or woefully inadequate.

To illustrate this, consider the case of two states, G and H. In the 2007
technical report for state G’s large-scale assessment system, the following claim was
made with respect to the fit of the Rasch model: “The statistical fit of the Rasch
model to the [name of test removed] multiple-choice tests has been previously
examined and found to be satisfactory.” Having read this I next looked for the
results from this “previous examination” in the 2006 technical report. Instead, I
found the exact same sentence referring to a previous examination. In fact, the exact
same sentence is used in state G’s annual technical report dating back 8 years to the
version from the year 2000. Prior to that, in the 1999 report, no mention is made of
model fit at all. And no criteria was provided in any of these reports for what would
constitute fit considered “satisfactory.”

By contrast, state H does provide tables of fit statistics for the items used on
its various content assessments in its technical reports. Here is how it is suggested

that these statistics be interpreted:
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Infit is a statistic that assesses the fit of the observed data to the Rasch IRT model with
respect to the parameters that were estimated for that item. Essentially, it answers the
question, “How closely does the observed data hold to the values that are predicted by the
model?” The infit statistic is sensitive to unexpected responses for examinees with abilities
near to the difficulty of the item. Its expected value is 1.0; values greater than 1.5 indicate

that the data contains unexpected response patterns.

This proposed interpretation is common among states that use the Rasch
Model, and it is usually followed by a table showing that a vast majority of test items
have infit statistics within the “acceptable” range between .5 and 1.5. But as a recent
paper by Wu & Adams (in press) makes clear, such interpretations are misguided.
First, the infit statistic does not answer the question of “how closely the observed
values hold to the values predicted by the model.” Rather, the statistic gives an
indication of the effect size for misfit when there is evidence that the assumption of
common slopes among item characteristic curves has been violated. Second, the
commonly used “rule of thumb” interval from .5 and 1.5 was derived from a
simulation study with a sample size of 100 respondents. If the simulation were to
be done with sample sizes in the hundred thousands or millions (as will be the case
when using the data for a state), the sampling distribution of the infit statistic under
the null hypothesis of equal ICC slopes would be very tightly packed around the
expected value of 1. Given this, observing a fit statistic of say, 1.2 or .8, which is
currently regarded as acceptable, is in fact a strong indication of a misfitting item.
Given this, there is also no good reason to regard the vertical scales developed in

states using the Rasch Model as having anything beyond ordinal properties.
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Discussion

In a series of publications over the past decade Joel Michell (2000, 2004,
2008a) has argued that the field of psychometrics is a “pathological” science using
the following line of reasoning®:

a) Psychometricians claim to be able to measure psychological attributes.

b) In this, they imply theories presuming that these attributes are quantitative.

c) There is, however, no hard evidence that these attributes are quantitative.

d) So their claim to be able to measure these attributes is at best premature, at
worse false.

e) Instead of putting such claims to the empirical test, the field has erected
barriers that prevent its members from recognizing (and thereby responding

to) b-d.

It is hard to escape the conclusion that contemporary vertical scaling practices
support Michell’s thesis. The loophole the field of psychometrics has seemingly
invoked to escape the implications of the present critique is to deny the classical
definition of measurement (consistent with the purpose for vertical scaling I posited
at the outset of this paper) as “the discovery or estimation of the ratio of some
magnitude of a quantitative attribute to a unit of that magnitude” (Michell, 1990;
1999) by embracing a philosophy of pragmatism over realism. In my view this is

the only philosophically coherent rationale for accepting the currently prevalent

9 In Michell’s presentation of this argument, an attribute that is quantitative is one that by definition
has interval properties.
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(and conveniently all-encompassing) definition of measurement originally
advocated by Stevens (1946) as “the assignment of numerals to objects and events
according to rule.” An example of this can be seen in a 2007 report on vertical
scaling commissioned by The Council of Chief State School Officers written by

Richard Patz, senior psychometrician at CTB:
...these statistical models enable us to estimate and assign numerical values for proficiency given
an examinee’s responses to test items, they are appropriately called measurement models. Scaling
refers to the establishment of units for reporting measures of proficiency, and scaling occurs in
conjunction with the identification of measurement models.

Patz later concludes

A measurement scale should have the property that the units of measurement possess the
same meaning across the range of the scale. Although true of familiar measures of height and
weight, for example, this property is only at best approximated in scales built for measuring
latent variables such as proficiency or achievement. A ten point difference in scale score
units may mean something different at the low end of the score scale than it does at the
middle or high end, for example. This challenge to interpreting changes in scale scores is
made more difficult when vertical scales are involved. Growth from 300 to 350 in scale score
units may have a different meaning for third graders than for fifth graders, for example. The
failure of achievement scales to achieve true “equal-interval” properties suggests that
caution and additional validation efforts are appropriate when changes in scale scores

become a focus of interest or accountability.

In these passages Patz is both endorsing a definition of measurement consistent
with Stevens’s operationally motivated conception while at the same time
acknowledging that a test score scale with interval properties cannot be justified
through the use of IRT methods. What is not at all clear is what he has in mind when

he suggests the need for additional validation efforts given that changes in scale
25



scores are indeed the focus of current (and in all likelihood future) accountability
policies. If there are no fixed criteria available to judge the properties of the scale,
how can they be validated beyond a surface level appraisal in which policymakers
are asked whether the observed growth matches what they expected? And if there
is no a priori psychometric rationale to conclude that vertical scales have interval
properties, how does this square with the assertions that can presently be found at

the web site of Patz’s employer?

The Scale Score is the basic score for TerraNova and other CTB assessments. It is used to
derive all the other scores that describe test performance. Scale Scores can be obtained by
one of two scoring methods. The first is [tem Response Theory (IRT) item-pattern scoring, a
procedure offered only by CTB among the major K-12 test publishers. With item-pattern
scoring, Scale Scores are derived numerically using all the information contained in a
student's pattern of item responses. The second method is number correct scoring. This
method converts the number of correct responses (or points earned for constructed-
response items) to a Scale Score. For groups of 25 or more students, the item-pattern and
number-correct Scale Scores produce equivalent results. Customers can choose to use either
scoring method. CTB recommends item-pattern scoring because it provides more accurate
results for individual students. Scale Scores are equal-interval scores that can be averaged
and used in other statistical analyses.

(Retrieved from http://www.ctb.com/static/about assessment/popup_faq6.jsp on April 21, 2010)

[ am not necessarily opposed to a pragmatic orientation toward the practice
of educational measurement. A pragmatist would argue against any notion of
absolute truth underlying the conception of a latent construct in IRT models. In this
sense “math ability” is only a convenient label for operationalized knowledge and

skills in some content domain. For a pragmatist, the proof is in the pudding of
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practical consequences. Along these lines Bob Mislevy has argued that the use of the
term “measurement model” in psychometric practice should be regarded as
metaphorical. But if psychometricians—at least those in positions of leadership in
the United States—wish to explicitly embrace pragmatism, they cannot
simultaneously appropriate the syntax and semantics of measurement as it is
understood in the physical sciences. If the distinction between ordinal and interval
is to be regarded as meaningless, then the consumers of psychometric products
should be placed under no illusions to the contrary.

There are some rather thorny issues that need to be resolved to reconcile the
creation of vertical scales with the current operational perspectives deriving from
Lord’s imprint that dominate the research literature. First and foremost we need a
better answer to the question of why it is a good idea for large-scale assessments to
be placed onto a developmental score scale. If the purpose of vertical scaling is
different from the one I defined at the outset of this paper, what is the purpose? It
should be clear that any answer having to do with growth'? implicitly brings us back
to the intuition of Figure 1, and that intuition is grounded in an assumption of
interval scale properties. If the claim is that the purpose is to produce “quasi-
interval” scales this just skirts the issue. Finally, the notion that it should be up to
consumers to decide upon a conception of growth that must be met by a vertical

scale a priori is little more than an invitation for chicanery.

10 This is true even if the argument is advanced that a vertical scale allows for the possibility of direct
comparisons among items administered at different grades. It is not just the ranking of items that is
of interest put the magnitude of the distance between items on the logit scale.
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There is a great need and demand for vertically scaled tests because there is
a great desire to make absolute statements about differences in the quantity of what
students have learned. Because of this the distinction between qualitative and
quantitative differences is critical, and hence a good argument can be made that we
need methods that demarcate ordinal from interval. I think the field has much to
gain by rising to this challenge. Imagine if tests were to be developed not solely to
satisfy a process by standards blueprint, but to produce an empirical relational
system that satisfied the demands of conjoint additivity. This would require test
developers to have theories about what makes items harder or easier, and to
develop tests with more than a criterion of maximizing score reliability in mind.
Instead of a situation in which every state can claim to be “measuring” a unique
math and reading construct, we might come to appreciate the (novel?) idea that all
these assessments should really be communicating the same fundamental thing
about the progress students make in learning during their formative years. We
really do need a ruler, but the work will be daunting. Are psychometricians
prepared to rise to the challenge while showing greater humility about what our
methods can and cannot presently accomplish? The first step is to engage in this

conversation, and I hope to that end this paper is a step in the right direction.
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