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Abstract 

In this paper, we develop a new chained equipercentile equating procedure for the nonequivalent 

groups with anchor test (NEAT) design under the assumptions of the classical test theory model. 

This new equating is named chained true score equipercentile equating. We also apply the kernel 

equating framework to this equating design, resulting in a family of chained true score 

equipercentile equating functions, which include the Levine true score equating model as a 

special case. 

Key words: NEAT design, chained true score equipercentile equating (CTSEE), Levine true 

score equating (LTSE), kernel equating (KE) 
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Introduction 

Non-IRT equating has been evolving for more than 80 years. At ETS, for a nonequivalent 

groups anchor test (NEAT) design, commonly used equating methods are linear and 

equipercentile chained equating (CE), linear and equipercentile post-stratification equating 

(PSE), the Tucker method, and the Levine true and Levine observed score methods (Angoff, 

1982; Braun & Holland, 1982). Only the equipercentile CE and equipercentile PSE are 

nonlinear. 

Kernel equating (KE) methodology (von Davier, Holland, & Thayer, 2004) gives a 

systematic treatment of several commonly used equating designs. One of its main properties is 

that it is able to connect a linear method with a nonlinear method by changing the values of the 

parameter known as the bandwidth.  

Levine true score equating (LTSE) and Levine observed score equating (LOSE; see 

Kolen & Brennan, 2004), which have not been discussed to date in regard to the KE framework, 

have some favorable properties under certain circumstances. Recently, some work has been done 

to find nonlinear versions of LOSE, such as a hybrid Levine equipercentile equating (von Davier, 

Fournier-Zajac, & Holland, 2006), and a modified post-stratification equating (Wang & Brennan, 

2007).  

This paper constructs a new nonlinear equating method called chained true score 

equipercentile equating (CTSEE), based on the classical test theory model. Using the KE 

framework, we will construct a family of CTSEE functions and show that LTSE is a special 

member of this family.  

There are six sections in this paper. After the introduction, the next section reviews the 

chained equating and Levine true score equating. The third section discusses KE process steps 

and their properties, and the fourth covers the construction of CTSEE. The fifth section has 

examples and discussion, and with the last section is the conclusion. 

Review of Chained Equating and Levine True Score Equating 

CE is a classical method that applies to a NEAT design (Angoff, 1971; Dorans, 1990; 

Livingston, Dorans, & Wright, 1990). For tests X and Y with anchor A, and populations P and Q 

taking X and Y, respectively, the chained equipercentile from X to Y is the composition of two 

equipercentile equatings from X to A with population P and from A to Y with population Q. If we 

assume that for each test the marginal distributions of all involved test scores are of similar 
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shapes, then each equipercentile equating can be approximated by a suitable linear equating (von 

Davier et al., 2004, p. 12, Theorem 1.1.). Hence, the resulting chained equipercentile equating 

can be approximated by a suitable linear equating called a chained linear equating. 

LTSE uses true scores to equate X to Y. By the classical test theory model (see Feldt & 

Brennan, 1989): 

X = TX + EX, 

where TX is the true scores associated with X, and EX is the errors with zero mean and zero 

correlation with the true scores (i.e., μX = μTX and σ2
X = σ2

TX + σ2
EX). The correlation of X with TX, 

2( , ) ( , ) ( , )        X X

X

X X X

T TX X X X X
XT

X T X T X T X

Cov X T Cov T T Cov E T σ σ
ρ

σ σ σ σ σ σ σ
+

= = = = , 

is the square root of the reliability of test X (see Lord & Novick, 1968). Similar results also hold 

for AP (A with population P), Y and AQ. For convenience, for any univariate distribution X: 

   .                                                                  (1) XT
X

X

σ
ρ

σ
=  

One assumption of LTSE is that the true scores of the test and its anchor are perfectly correlated, 

which makes linking X to AP in true score form a linear function that has this form:  

    ( )  ( ) .                                (2)A Ap p

X A pp
X X

T T

T T X A
T T

a x x
σ σ

μ μ μ μ
σ σ

= − + = − +  

Similarly, there is a linear linking from AQ to Y: 

    ( )  ( ) .                               (3)Y Y

A Y QQ
A AQ Q

T T
T T A Y

T T

y a a
σ σ

μ μ μ μ
σ σ

= − + = − +  

Under the assumptions that (2) and (3) are population invariant, substitute (2) into (3) to get the 

formula for LTSE: 
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  =  LTSE( )  ( )

                         ( ( ) )  

                         ( ) ( ).                                 (4)

Y

Q

AQ

AY P

P Q

A XQ

Y AP Y

P Q

X A AQ Q

T
A Y

T

TT
X A A Y

T T

T T T
X Y A A

T T T

y x a

x

x

σ
μ μ

σ

σσ
μ μ μ μ

σ σ

σ σ σ
μ μ μ μ

σ σ σ
−

= − +

= − + − +

= − + +

 

Another assumption for Levine’s methods is that error variances are invariant among all 

populations. This is used, along with the linearity between a test and its anchor on true scores, to 

calculate σT● (hence ρ●T● and ρ●) for any distribution. See Brennan (1990) for detailed 

computations.  

Review of Kernel Equating Procedures Applied to Chained Equating 

KE, first proposed by Holland and Thayer (1989) and later fully developed by von Davier 

et al. (2004), gives a systematic treatment for many well-known equating designs to derive the 

equating functions. It consists of five basic steps:  

1.   Presmoothing the score probabilities by fitting a log-linear model. This step can be 

omitted or modified by using alternative models.  

2.   Estimating the score probabilities. This step estimates the score distributions for both 

test X and test Y, denoted as r and s, respectively. The equating design will play a 

crucial role in this step. 

3.   Continuizing r and s. Use kernel techniques to make continuized density functions 

and the related continuized distribution functions (CDFs) from the discrete density 

distributions created in Step 2. This is the unique step that defines KE. The kernel 

used here is the normal distribution function, also known as the Gaussian kernel. 

4.   Computing the equating. This step computes the equating function by composing two 

or more CDFs made in Step 3. 

5.   Calculating the standard error of equating. This step use C-matrices either generated 

in Step 1 or calculated within KE for nonpresmoothed data (Moses & Holland, 2006). 
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The book The Kernel Method of Test Equating (von Davier et al., 2004) explicitly details 

the five steps applied to a chained equating. This paper deals with only Steps 2–4 since the other 

steps are not relevant to the topic of this paper. 

Estimation of the Score Probabilities for Chained Equating  

Given tests X and Y with common items known as anchor A, two bivariate score 

distributions are obtained. Then the marginal distributions are estimated for X and its anchor 

from the first data set and are denoted as X and AP, respectively. Similarly, marginal distributions 

Y and AQ are obtained from the second data set. 

Continuization of the Marginal Distributions 

Unlike other designs, CE needs four continuized score densities. The details on X are 

given below. 

Let {(xi, ri)} be the marginal distribution of X with probability ri for each score xi. Let μx 

and σx be the mean and standard deviation of X, respectively. For any positive number hx, called 

the bandwidth, a
X
 is defined as: 

2

2 2  ,                                                                  (5)X
X

X X

a
h

σ

σ
=

+
 

and η = a
X
hx. 

Then for each xi, RiX(x) is defined as  

(  -  )( )  ,                                                  (6)X X i X
iX

x a xR x μ μ
η

− −
=  

and the continuized distribution function (CDF) of X with bandwidth hX is: 

 ( )  ( ( )),                                                       (7)Xh i iXi
F x r R x= Φ∑  

where Φ is the CDF of the standard normal function. 

It is convenient to define a new random variable X(hX) to study the properties of Fhx(x).  

Let V be independent of X with the standard normal distribution, with given hX: 
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( )  ( ) (1- ) .                               (8)X X X X XX h a X h V a μ= + +  

It is shown in von Davier et al. (2004) that 

( ) Prob( ( ) ).                                             (9)Xh XF x X h x= ≤  

Some properties of X(hX) are: 

0
1.    lim ( )  .                                                                                                 (10)

X
Xh

X h X
→

=  

2.    lim ( ) .                                                                                       (11)
X

X X Xh
X h Vσ μ

→∞
= +  

2 23.    ( ( ))    and   (( ( ) - ) )  ,  for  .                               (12)X X X X X XE X h E X h hμ μ σ= = ∀  

Property 1 shows that X can be approximated by X(hX) with small hX (≤ 0.5). Property 2 

indicates that X(hX), or any other distribution with a large bandwidth, is almost a normal 

distribution. In particular, all such modified distributions are (almost) of the same shape. 

Property 3 certifies that the mean and standard deviation of X(hX) will never change.  

Similarly, GhY(y), the CDF of Y on population Q, HP,hAP
(a), the CDF of A on population P, 

and HQ,hAQ
(a), the CDF of A on population Q, can be defined with given bandwidths hY, hAP

, and 

hAQ
, respectively. 

Computation of the Chained Equating Function êY(CE)(x)  

The computation of the chained equating function êY(CE)(x) is: 

-1 -1
( ) , ,ˆ ( )  ( ( ( ( )))).                                  (13)

Y A A XQ PY CE h Q h P h he x G H H F x=  

When both hX and hAP are small, by Property 1 of X(hX) (and A(hA)), the composition 

function -1
, ( ( ))

A XPP h hH F x  is an approximation of the equipercentile equating function from X to A. 

For very large hX and hAP, since the density functions for both , ( )
APP hH a  and ( )

XhF x are normal 

density functions by Property 2, -1
, ( ( ))

A XPP h hH F x  becomes a linear equating (von Davier et al., 

2004, p. 12, Theorem 1.1.), which has the form: 
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  ( ) .                                                     (14)p

p

A
X A

X

a x
σ

μ μ
σ

= − +  

The same arguments apply to test Y with anchor AQ. Hence, for small hX , hY, hAP, and 

hAQ, êY(CE)(x) is the chained equipercentile equating, but for large bandwidths, it is the chained 

linear equating, whose function is: 

CE  =  Lin ( )  ( ) ( ).                                   (15)P

P Q

Q Q

Y A Y
X Y A A

X A A

y x x
σ σ σμ μ μ μ
σ σ σ

−= − + +  

Constructing a Chained True Score Equipercentile Equating 

via the Kernel Equating (KE) Framework 

From the previous discussion of chained equipercentile equating, it is easy to see how to 

construct a CTSEE; that is, to make the linkings on the true scores under the assumption that the 

linking from TX to TA and from TA to TY are both population invariant. Now the problem is how 

to get the true scores when an observed score distribution is given. Theoretically, the problem is 

unsolvable. In practice, however, there are many ways to approximate the true scores.  

To find a true score XT for X when σTX is given, the basic criteria are: 

2 2

 1. ( )  .                                                                                                       (16)

2. ((  - ) )  .                                                     
X

T X

T X T

E X

E X

μ

μ σ

=

=                                     (17)
 

By the discussion in the previous section on KE, the goal is to construct a distribution defined 

in (18): 

( )  ( ) ,                                                          (18)
X XT X T X TX h a X h V b= + +  

for a given number hX, and solve (18) through (20) for both aTX and bTX: 

( ( ))                                                                                (19)T X XE X h μ=  

2 2(( ( ) - ) )  .                                                               (20)
XT X X TE X h μ σ=  

Substitute (18) into (19) to get 
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( ( ))  ( ) ( ) ( ) 0   .  (21)
X X X X XT X T T X T T X T X

setE X h E a X E a h V E b a bμ μ== + + = + + ⎯⎯⎯→  

Hence,  

 (1 ) .                                                            (22)
X XT T Xb a μ= −  

Substitute (18) and (22) into (20) to get 

2 2

2

2 2 2

(( ( ) -  ) )  (( ( ) (1- )  -  ) ) 

                                  (( ( )) ) 

                                  { (( ) ) (( ) )} 

                               

X X

X

X

T X X T X T X X

T X X

T X X

E X h E a X h V a

E a X h V

a E X E h V

μ μ μ

μ

μ

= + +

= − +

= − +

2 2 2 2   ( ) .                                        (23)
X XT X X T

Seta hσ σ== + ⎯⎯⎯→

 

The solution for aTX is  

2

2 2  .                                                               (24)X

X

T
T

X X

a
h

σ

σ
=

+
 

Since hX is an arbitrary number, a family of true scores {XT(hX)} related to X is created. 

Substitute (22) and (24) into (18), with the properties that lim 0
X

X
Th

a
→∞

=  and lim
X X

X
T X Th

a h
→∞

= σ , to 

get 

lim ( )  .                                                               (25)
X

X
T X T Xh

X h Vσ μ
→∞

= +  

Families of true scores can also be made for AP, Y, and AQ, with similar properties in (19), (20), 

and (25), respectively. Then, for very large bandwidths, the CTSEE is virtually the LTSE. The 

result can be stated as a theorem: 

Theorem. For a NEAT design having test X with anchor AP, test Y with anchor AQ, let T( ) be the 

true score of, and h( ) be the bandwidth associated with the specified test, μ( ), and σ( ) be the mean 

and standard deviation of the labeled distribution, if in the continuization step of KE process, the 

following is defined:  
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222 2

2 2 2 2 2 2 2 2 ,    ,    ,   and  ,   AA QX Y P

X Y A AP Q
P P Q Q

TTT T
T T T T

X X Y Y A A A A

a a a a
h h h h

σσσ σ

σ σ σ σ
= = = =

+ + + +
 

and  

,

,

        ( )  ( ) (1 )

        ( )  ( ) (1 )

        ( )  ( ) (1 )

        ( )  ( ) (1 ) .

X X

Y Y

P A P A PP P

Q A Q A QQ Q

T X T X T X

T Y T Y T Y

P T A T P A T A

Q T A T Q A T A

X h a X h V a

Y h a Y h V a

A h a A h V a

A h a A h V a

μ

μ

μ

μ

= + + −

= + + −

= + + −

= + + −

 

Let  

,

,

, ,

, ,

        ( ) Prob( ( ) ) 

        ( ) Prob( ( ) ) 

        ( ) Prob( ( ) )

        ( ) Prob( ( ) ),

XT

YT

AP T P

AQ T Q

h T X

h T Y

P h P T A

Q h Q T A

F x X h x

G y Y h y

H a A h a

H a A h a

= ≤

= ≤

= ≤

= ≤

 

and then for the equating function:  

, ,

-1 -1
( ) , ,ˆ ( )  ( ( ( ( )))),                                (26)

Y A A XT Q T P T TY T h Q h P h he x G H H F x=  

with large bandwidths (preferably no less than 30 times of the related standard deviations, 

respectively), it follows that 

( )ˆ ( )  LTSE( ).                                                   (27)Y Te x x=  

The ( )ˆ ( ) 'Y Te x s  are called CTSEE functions. 

Example and Discussion 

Any equating method can be decomposed as a linear part and a nonlinear part. The 

decomposition will be quite natural if using the KE framework. The original equating in KE (i.e., 

with quite small bandwidths) is a sum of the linear portion (i.e., with very large bandwidths) and 

the remainder, which can be written as: 
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( )  Lin ( ) + Rsd ( ),                                            (28)=Y y ye ee x x x  

where Rsd ( )  ( ) - Lin ( ),Yy ye ex e x x=  is the residue of the equating function minus its linear 

portion. There is a belief that if two equating methods are related but different, the majority of 

their differences lies in their linear portions. This idea led to the development of the hybrid 

Levine equipercentile equating (von Davier et al., 2006). So if one method is to replace another 

method under some conditions for data, the difference between these two methods is expected to 

be mainly in their linear portions. The following example, (29), checks to see if it is true for both 

CE and CTSEE.  

The design and data sets are given in Chapter 10 of von Davier et al. (2004). Test X has 

78 items with external anchor AP, which has 35 items, and test Y has 78 items with anchor AQ = 

AP. Using the same notation as before,  

                       39.2515,   32.6866,   17.0540,   14.3864, 

                        17.2252,   16.7271,    8.3329,    8.2082, 

                     ( , ) ( ,

P Q

P Q

P

X Y A A

X Y A A

P X ACov X A Cov T T

μ μ μ μ

σ σ σ σ

= = = =

= = = =

= ,

,

) 126.4198,  

and               ( , ) ( , ) 120.0982,                               (29)
X A X AP P

Q Y A Y AQ Q

T T

Q Y A T TCov Y A Cov T T

ρ σ σ

ρ σ σ
Τ Τ

Τ Τ

= =

= = =

 

where ,X APT Tρ  is the correlation coefficient of TX and TAP
. Next, calculate σTX, and so on, using the 

formulas in Brennan (1990) with the assumptions of the classical congeneric model, in 

particular, that both ,X APT Tρ and ,Y AQT Tρ  = 1. Later, this paper will cover the case that at least one 

of them < 1.  

Using the numbers in (29) and the formula in Brennan (1990; with external AP): 

2

2

2

2

( , ) ( , )                                                          
( , )

126.4198 17.2252       126.4198 273.1159 16.5262.              (30)
126.4198 8.3329

X

P

P X
P

P

Cov X A Cov X A
Cov X A

σσ
σΤ

Α

+
=

+

+
= = =

+

 

Similarly,  
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 16.0056,    7.6497,    7.5035.                    (31)
Y A AP QT T Tσ σ σ= = =  

Substituting suitable numbers from (29) into (15) results in  

CELin ( )  0.98584   0.57295.                                         (32)x x= −  

Substituting the suitable numbers from (29) through (31) into (4) results in 

LTSE( )  0.98736   0.37874.                                         (33)x x= −  

Hence,  

CELTSE( ) - Lin ( )  0.00152   0.19421.                        (34)x x x= +  

Using (28) and (34) and the fact that the linear part of CTSEE is LTSE, the difference between 

CTSEE and CE can be written as  

CTSEE CE CE

CE CTSEE CE

CTS

CTSEE( ) - CE( )  (LTSE( ) + Rsd ( )) - (Lin ( ) + Rsd ( ))
                               LTSE( ) - Lin ( ) + Rsd ( ) - Rsd ( )
                               0.00152   0.19421 + Rsd

x x x x x x
x x x x

x

=
=
= + EE CE( ) - Rsd ( ).                (35)x x

 

Using the data above, CTSEE(x) and CE(x), both with bandwidths = 0.5, and LTSE(x) 

and LinCE(x), both with bandwidths = 500, were computed with KE Software, which is currently 

under development at ETS. Both LTSE(x) - LinCE(x) and RsdCTSEE(x) - RsdCE(x) are plotted in 

Figure 1. 

It is obvious that LTSE(x) - LinCE(x) has some bias, while RsdCTSEE(x) - RsdCE(x) has 

almost none. Simple computations show that Mean(LTSE(x) - LinCE(x)) = 0.254, and 

Mean(RsdCTSEE(x) - RsdCE(x)) = 0.059. The data sets are highly correlated (both correlation 

coefficients are in the range of 0.87–0.88), and LTSE(x) is quite close to LinCE(x). Otherwise, 

Mean(LTSE(x) - LinCE(x)) would be much bigger. Both LTSE(x) and LinCE(x) as computed by 

the software agree with (33) and (32), respectively, up to four decimal places. 

Computing σTX, and so on, is impossible without additional assumptions. By using the 

classical congeneric model, which assumes that the true scores between the main test and its 

anchor are perfectly correlated, it is purely technical to compute the values of the terms in both 
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(30) and (31). In general, making such an assumption will contradict the purpose of CTSEE. 

However, in practice, for most equating cases, the correlation coefficient of two related true 

scores > 0.99, which is demonstrated in Figure 2. 

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

0 20 40 60 80

LTSE - Lin(CE) (y = 0.00153x + 0.19394)
Rsd(CTSEE) - Rsd(CE)

 

Figure 1. The linear difference and the residue (Rsd) difference between chained true score 

equipercentile equating (CTSEE) and chained equating (CE).  

y = 0.5319x - 1.7957
R2 = 0.991

-10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80

Y=0.000028*X^3+(-0.001)*X^2+0.45*X

 

Figure 2. Computing the correlation coefficient for a curvilinear function. 
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Both X and Y are assumed to be true scores, with Y a function of X, as shown in Figure 2, 

which may represent a general pattern of an equating function that is not linear. By fitting a line 

to the curve, ,X YT Tρ  = R = 0.991  =  0.9959.  

For the case that the correlation coefficient of true scores is smaller than 0.99, an iterating 

process will be used. First, (30) is used to compute σTX, and so on. Secondly, a true score 

equipercentile equating from TX to TAP
 will be constructed, using previously computed σTX and 

σTAP
, resulting in a function from TX to TAP

. Hence ,X APT Tρ  can be computed. Then σTX is 

computed again, but replacing ( , )PCov X A  with 
,

( , )

X AP

P

T T

Cov X A
ρ

 in (30). This process continues 

until ,X APT Tρ  converges. However, whether ,X APT Tρ  will converge or under what conditions it will 

converge are not the topics in this paper. 

What happens to XT(hX) when h → 0? It is apparent that aTX becomes ρX defined in (1), so 

0 0
lim ( ) lim ( ( ) (1 ) ) (1 ) ,               (36)

X X
X X

T X T X T X X X Xh h
X h a X h V a Xμ ρ ρ μ

→ →
= + + − = + −  

which is the squeezing process to replace the original score distribution by its true scores, 

proposed by Brennan and Lee (2006) and used by Wang and Brennan (2007) on the anchor 

marginal distributions for their modified PSE method.  

Conclusion 

CTSEE extends LTSE so that equating on true scores is not a linear function, just as 

chained equipercentile equating extends chained linear equating on observed scores. Under the 

KE framework, CTSEE and LTSE can be connected naturally by varying the values of the 

bandwidths. Additional computations for CTSEE are needed and can be done with the help of 

the classical congeneric model, although sometimes adjustments are needed.  

Just like LTSE, CTSEE only equates true scores. This makes it less practical than other 

curvilinear equating methods. However, this new approach opens the field. More studies on this 

method will reveal properties so far unknown to researchers and practitioners, leading to the 

improvements of this method, as well as the developments of new methods. 
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