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Abstract. Knowledge tracing (KT)[1] has been used in various forms for adaptive 
computerized instruction for more than 40 years. However, despite its long history 
of application, it is difficult to use in domain model search procedures, has not 
been used to capture learning where multiple skills are needed to perform a single 
action, and has not been used to compute latencies of actions. On the other hand, 
existing models used for educational data mining (e.g. Learning Factors Analysis 
(LFA)[2]) and model search do not tend to allow the creation of a “model overlay” 
that traces predictions for individual students with individual skills so as to allow 
the adaptive instruction to automatically remediate performance. Because these 
limitations make the transition from model search to model application in adaptive 
instruction more difficult, this paper describes our work to modify an existing data 
mining model so that it can also be used to select practice adaptively. We compare 
this new adaptive data mining model (PFA, Performance Factors Analysis) with 
two versions of LFA and then compare PFA with standard KT. 
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Introduction 

Adaptive instruction systems often utilize a computational model of the effect of 
practice on KCs (i.e. knowledge components, which may include skills, concepts or 
facts) as a means to individually monitor and adapt to student learning. Similarly, 
efforts to analyze and determine the KCs in existing data sets (educational data mining) 
use computational models of the effect of practice on KCs as a means to understand a 
learning domain with the hope that results can be applied to improving existing systems 
from which the data was drawn. Although these applications are similar, often different 
models are used for each task. Because of this it is often not easy to determine how one 
moves from an educational data mining result directly to an adaptive tutoring system. 
In an attempt to address this problem, this paper describes how we have taken a model 
that is more applicable to educational data mining and modified it so that it retains its 
advantages for educational data mining while gaining the ability to make the individual 
student KC inferences that can be used in an adaptive manner. 

Our ultimate goal is to foster what can be called "closed loop” tutor development 
systems. Such systems can be referred to as closed loop because they would require 
very little technical expertise to add items to the system, gather data for those items, fit 
a model to the entire learning system, and then decide which items the model suggests 
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are poorly learned or do not transfer to other content and drop those items. This 
development loop begins each cycle with a portion of new items being added, and ends 
each cycle with a refined system that retains what is useful and discards what is useless. 
Such a system would allow educators to take a much larger role in tutor development 
and improve the speed of tutor development. In contrast to such a system, currently 
items are added somewhat arbitrarily to tutors, parameters may be fixed across years of 
use of a tutoring system, models are rarely fit to existing tutor data, and when models 
are fit it is rare that the results transfer easily to an adaptive system in the classroom. 

The educational data mining model we begin with is the Learning Factors Analysis 
(LFA) model. This model has been used as a data mining tool in various ways. For 
example, as part of a search algorithm this model has been used to split knowledge 
components along multiple factors to determine the KC to item assignment (also 
known as the Q matrix) that represents the data best while still controlling for model 
complexity [2]. The LFA model captures three important factors influencing the 
learning and performance of KCs. First, it captures subject ability in a single parameter 
for each subject. Second, it captures KC easiness with a single parameter for each KC. 
Third, it captures the learning rate for each KC with a single parameter for each KC. 
However, while the LFA model has considerable power to fit data given this 
formulation, it has very little power to dynamically differentiate between individual 
KCs for particular students because ignores the correct and incorrect response produced 
by the student. Therefore, while this model is sensitive to practice frequency, it offers 
very poor affordances for adapting this frequency because it ignores the evidence of 
learning in the correct and incorrect responses produced by each student. Essentially, 
the LFA model says that all students accumulate learning in an identical fashion. Of 
course, this is not true, and therefore the LFA model is unsuitable for adaptive learning 
algorithms. (This issue also causes problems for datamining since it means that student 
level KC covariance can only be modeled as a function of performance frequency.) 

As a contrast, it helps to consider the knowledge tracing (KT) procedure pioneered 
by Atkinson[3] and developed by Corbett[1]. In KT (Corbett's version) there are 4 
parameters fit to each KC which represent initial learning, learning rate, guess 
parameter, and slip parameter. One advantage of this model is that these 4 parameters 
are interpretable, so it is easy to understand their effects on performance in the model. 
These 4 parameters can be fit from prior student data for each KC in a domain, and 
they allow a tutoring program to use a student’s prior history of performance with 
items for a KC to feed into the model equation so as to update the current estimate of 
student learning based on the students performance. Having this dynamic estimate 
provides a powerful ability to track individual differences with each KC. This 
personalized "model overlay" can then be used to make personalized decisions about 
which KCs a student has learned, and which KCs need more practice. Because of its 
simplicity and accuracy, the KT model has been used extensively in commercial tutors 
in addition to many experimental studies. All 3 of the Carnegie Learning Inc. datasets 
described further in the paper were from tutors that used KT. 

While KT has desirable properties, the LFA model has some advantages that make 
it more tractable for data mining and performance optimization applications. First, the 
LFA model has been more extensively investigated as a solution to the problem of 
multiple KC performances[4,5]. A solution to this issue is useful because often tutor 
designers create practice steps where the student’s response requires multiple KCs. If 
our model cannot explicitly capture these multiple KC performances, it cannot be used 
with datamining procedures to search for the optimal structure for such a conjunctive 



KC performance model. Although the KT model has been explored for such purposes 
by multiplying the probabilities from the model when multiple KCs occur [6], such 
models have not been used to search for domain models as with LFA. The LFA model 
in this paper models conjunction by summing the contributions from all KCs needed in 
a performance. This sort of "compensatory" model of multi-KC behaviors allows lack 
of one KC to compensate for the presence of another in addition to showing 
conjunctive effects. 

Second, models such as LFA (which produce a real valued estimate of strength for 
each KC) have been frequently employed predict the duration of each action (latency in 
the cognitive psychology literature). KT models might be explored in an attempt to 
build such a mechanism, but such work would be novel. Therefore, LFA seems more 
appropriate for advanced adaptive tutoring since LFA allows us to develop practice 
selection algorithms that maximize the learning rate (normally computed as learning 
gain per unit of time)[7] as an alternative to current algorithms which simply schedule 
practice until 95% mastery of the KC. Further model complexity than we describe in 
this paper is necessary to implement this goal, but predicting latency is a first step and 
may be crucial to using an adaptive practice algorithm effectively [3]. 

Because of these possible advantages to LFA and our desire to speed tutor 
development by closing the development loop, it would be desirable if we could 
formulate a version of LFA that could be used adaptively. To do this the following 
sections explain how we have reconfigured LFA to create a version we call 
Performance Factors Analysis (PFA). PFA provides the adaptive flexibility to create 
the model overlay we need for it to be used adaptively in a tutor, while retaining the 
data mining advantages that will allow us to use it in model search procedures. 

1. Performance Factors Analysis 

LFA’s standard form is shown in Equation 1, where m is a logit value representing the 
accumulated learning for student i (ability captured by α parameter) using one or more 
KCs j. The easiness of these KCs is captured by the β parameters for each KC, and the 
benefit of frequency of prior practice for each KC is a function of the n of prior 
observations for student i with KC j (captured by the addition of γ for each observation). 
Equation 2 is the logistic function used to convert m strength values to predictions of 
observed probability. This model is an elaboration of the Rasch item response model 
which has an equivalent form to Equation 1 with γ set to 0 and only a single β value. 

 (1) 

 (2) 

Because of its usefulness in various data mining applications we might wish to 
reconfigure this model so that it could be used to engineer practice selection in a 
similar way as is done using the KT model. One way to reconfigure the model is to 
make it sensitive to the strongest indicator of student learning: performance. 

p( )m =
1

1 e m + 



Performance is indicative of student learning for two reasons[8]. First, correct 
responses are strongly indicative that current strength is already high, therefore, given a 
correct response it will help our model to increase our strength estimate. Second, 
correct responses may simply lead to more learning than incorrect responses. This may 
be due to intrinsically greater processing during the production of a correct response, or 
perhaps due to ineffective review procedures after incorrect responses. However, while 
making the model sensitive to correctness is a good start, it also seems useful to make 
the model specifically sensitive to incorrectness. Sensitivity to incorrectness allows 
incorrectness to act as indicator and measure of learning in an inverse to correctness. 
Together, the inclusion of both correctness and incorrectness in the model will make it 
sensitive to not only the quantity of each, but also the relative ratio of correct to 
incorrect. See that in Equation 3, α has been removed from the model since it is not 
usually be estimated ahead of time in adaptive situations (however, as noted by Corbett, 
models that do track subject level learning variability can greatly improve model 
adequacy[1]). β has been previously explained, s tracks the prior successes for the KC 
for the student, f tracks the prior failures for the KC for the student, and γ and ρ scale 
the effect of these observation counts. Equation 2 is still applied for conversion to 
probability predictions. (Again, the model can be used in a compensatory fashion for 
observations requiring multiple KCs by summing the βs and γ and ρ frequency 
components for all j KCs needed.) We call this model PFA (Performance Factors 
Analysis). 

 (3) 

We fit the parameters (β, γ, α and/or ρ) for each model (LFA or PFA) to maximize 
loglikelihood of the model for 4 datasets. We also included a simpler third model (LFA 
ns) that was equivalent to LFA, but without any student parameter. The comparison of 
these three models allows us to see the improvement the PFA model over the LFA ns 
model which is identical but for the new performance accounting. We expect this 
comparison to set a lower bar on acceptability. In contrast, while full LFA has a 
powerful ability to capture individual differences because of the α parameter, by 
comparing PFA to it we can see how well our adaptive method approaches the 
accuracy of standard non-adaptive LFA. 

These 4 datasets were from various sources. Fractions and Algebra (grades 5-8) 
were subsections of units from the Bridge to Algebra Cognitive Tutor from Carnegie 
Learning. The Geometry data (grades 9-12) were from the Angles and Areas units of 
the Carnegie Learning Geometry Cognitive Tutor. The Physics dataset (grades 9-12) 
comes from the Andes Physics tutoring system courtesy of VanLehn. Both geometry 
and physics datasets were download directly from the Pittsburgh Science of Learning 
Center DataShop service. All of these datasets came with preset domain content KC 
labels for each performance. These labels designated what KC was hypothetically 
responsible for the performance. Table 1 shows the organization of the data files for a 
short example sequence for a KC for a student (with fit PFA model values shown), 
which shows how each response has associated student, KC, subgoal and correctness 
values, from which the model predictions were computed. When subgoal (and student 
and response) maintained the same value for consecutive rows, this indicated that 
multiple KCs were coded for a single response at that subgoal. 

m( )i jKCs, s, f, = 
jKCs

( )β j γ jsi,j + ρ j f i,j + 



Table 1. Example of data and model format. 

Student Correct Subgoal Skill Model Pred. 
a51864 1 a51864C101019 S44IdentifyGCFonenumbermultipleofother 0.6058313 
a51864 0 a51864C10810 S44IdentifyGCFonenumbermultipleofother 0.6351781 
a51864 1 a51864C101020 S44IdentifyGCFonenumbermultipleofother 0.6089495 
a51864 1 a51864C10796 S44IdentifyGCFonenumbermultipleofother 0.6382028 
a51864 1 a51864C101021 S44IdentifyGCFonenumbermultipleofother 0.6664663 

... ... ... ... ... 
 

1.1. Model Comparison Results 

Table 2 shows the results of the comparison for several fit statistics, and also lists the 
number of parameters and observations. According to Bayesian Information Criterion 
(BIC), and loglikelihood (LL), LFA is marginally superior in 3 of 4 datasets. While this 
is to be expected considering that LFA includes a subject parameter unlike the other 2 
models, we can also see that the new PFA version ties (LL) or beats (BIC) LFA in the 
Fractions dataset. Despite the fact that LFA is better, the PFA model compares well to 
LFA relative to the LFA no subject (ns) model. Although the BIC values suggest 
overfitting relative to the other models, the mean absolute deviation for a 7-fold 
crossvalidation (MAD CV) shows the model generalizes well. This demonstrates that 
the new mechanism is working to pick up individual differences nearly as effectively as 
a subject parameter. These comparisons demonstrate that the PFA model is a new 
alternative that may be useful for detecting and reacting to student learning in a tutor. 
The fact that the subject parameter in LFA captures slightly more student variability 
than the performance accounting in PFA implies that future work might further 
improve the adaptive PFA model by adaptively estimating a subject parameter.  
 
Table 2. Comparison of the 3 LFA model versions for the 4 datasets. 

Dataset Model Par. Obs. LL BIC MAD CV 
Physics       

 LFA ns 376 4.093E+4 -2.124E+4 4.648E+4 0.349 
 LFA 451 4.093E+4 -2.074E+4 4.627E+4 0.340 
 PFA 564 4.093E+4 -2.099E+4 4.797E+4 0.346 

Geometry       
 LFA ns 240 4.478E+4 -2.07E+4 4.398E+4 0.305 
 LFA 274 4.478E+4 -2.011E+4 4.316E+4 0.295 
 PFA 360 4.478E+4 -2.015E+4 4.416E+4 0.297 

Algebra       
 LFA ns 276 4.657E+4 1.629E+4 3.554E+4 0.210 
 LFA 387 4.657E+4 1.564E+4 3.545E+4 0.203 
 PFA 414 4.657E+4 1.58E+4 3.605E+4 0.204 

Fractions       
 LFA ns 128 1.01E+5  -3.689E+4 7.525E+4 0.216 
 LFA 269 1.01E+5  -3.533E+4 7.377E+4 0.208 
 PFA 192 1.01E+5  -3.533E+4 7.287E+4 0.207 

2. Performance Factors Analysis compared to Knowledge Tracing 

KT is based on a 2 state Markov model with 4 parameters controlling the probability of 
these 2 states, learned or unlearned. The 4 parameters, L0, T, G, and S, stand for initial 
learning probability, learning transition probability, guess probability and slip 



probability. Full details of how these parameters are used to compute predictions for a 
series of practices has been explained previously[1]. To summarize, L0 is the estimate 
of the learned state for the first practice, and T describes the probability of transition 
from unlearned to learned (the learning rate) after each practice. G and S are used to set 
floor and ceiling levels of performance, and make the inference from the students 
response history non-deterministic (e.g. if they get it right, it could have been a guess, 
and if they get it wrong, it could have been a slip.) 

We were interested in comparing this model with the PFA model since if the PFA 
model should prove comparable or better, this would, given the advantages of PFA 
model mentioned in the introduction, constitute strong support for using the PFA more 
extensively in model-based adaptive instruction systems. To produce this comparison 
we used the 4 datasets used in the previous section. However, the previous comparisons 
(Table 2) applied the PFA model with the original multiple KCs per performance 
model that was coded in the datasets. We could not do this with the KT model since the 
KT model only allows one KC per step. To resolve this problem, we recoded the data 
by splitting each multiple KC performance into multiple single KC performances. (Of 
course, this increases the effective number of observations, but seems to do so in a way 
that favors neither model.) We then fit both the PFA and KT models to the datasets. 

Unlike PFA, which takes the form of standard logistic regression and therefore 
allows fast optimization by computing the true solution gradient to maximize the 
loglikelihood, KT has less well explored options for finding parameters. We used 
preexisting unpublished code written by Beck and Leszczenski and adapted by Cen to 
find the KT 1 model for each dataset, and we used preexisting unpublished code 
written by Baker (which worked by performing an exhaustive search of the parameter 
space) to find the KT 2 model for each dataset. We used both of these options so that it 
would seem implausible that our method of fitting the parameters could be the cause of 
any advantage we found. Further, while PFA rarely produces near 0 or 1 predictions, 
occasionally KT can produce near these values which might inflate LL comparisons. To 
mitigate this issue, we used a prediction floor of 0.01 and a ceiling of 0.99 when 
computing the LL and r after the KT models had been fit according to the algorithms in 
the preexisting code. Additionally, PFA was bounded to a minimum of 0 γ to prevent 
over fitting from resulting in negative learning rates, and both KT versions were 
bounded to a maximum slip probability of 0.1 and a maximum guess probability of 0.3, 
values suggested by Corbett as appropriate to prevent over fitting. In keeping with the 
preexisting settings in the code, KT 2 was also bounded initial learning and transition 
probabilities at maximums of 0.85 and 0.3, respectively. 

2.1. Model Comparison Results 

Table 3 shows the results of the comparison for several fit statistics. While the 
differences are not large, the PFA model has better LL, BIC, r and A’. (A’ has been 
described previously [9].) To get a better idea as to the meaning of the difference 
between the two models we did 2 subsidiary analyses. First, we supposed that the poor 
loglikelihoods for KT were caused by the fitting procedure. Specifically, while the KT 
2 code used exhaustive bounded search, it attempted to minimize the sum of squared 
error (SSE) rather than maximize the sum loglikelihood. To see if this difference was 
responsible for the difference in fit for the models, we modified the KT 2 code to fit 
using the sum LL instead of SSE and tested the modified model (KT 2LL) for the 



fractions and geometry datasets. For these two datasets, the result showed that using the 
SSE fit statistic did not appear to be driving misfit. 

We also analyzed the learning curves produced by each model in the fractions and 
geometry datasets. Specifically, we looked at the predicted performance probability for 
each repeated observation with a KC conditional on the previous response for that KC. 
We noticed that the KT model had a tendency to predict much worse performance after 
a failure than did PFA, with the observed average in the data (for performance 
following failure) falling between the two model predictions, but much closer to PFA. 
Because of this pattern, one can speculate that the KT model has problems because it 
over estimates the importance of failure relative to correctness when attributing student 
learning. This effect is inherent in the KT model’s assumption that a single failure 
(assuming a slip has not occurred) indicates the KC is unlearned. In contrast the PFA 
model assumptions mean a more gradual adjustment if a student fails a single trial. 
Although it could be argued that this is an effect of bounding the slip parameter, it also 
could be argued that the slip parameter becomes implausibly high in many cases (a 
problem with identifiability) when it is left unbounded. 
Table 3. Comparison of the KT and PFA model versions for the 4 datasets. 

Model Data Par. Obs. LL BIC r A’ 
Physics        

 KT 1 752 4.099E+4 -2.234E+4 5.267E+04 0.326 0.708 
 KT 2 752 4.099E+4 -2.25E+4 5.249E+04 0.326 0.705 
 PFA 564 4.099E+4 -2.105E+4 4.809E+04 0.358 0.719 

Geometry        
 KT 1 480 2.102E+5 -1.322E+5 2.703E+05 0.270 0.660 
 KT 2 480 2.102E+5 -1.409E+5 2.877E+05 0.282 0.667 
 KT 2LL 480 2.102E+5 -1.376E+5 2.811E+05 0.269 0.654 
 PFA 360 2.102E+5 -1.223E+5 2.490E+05 0.305 0.685 

Algebra        
 KT 1 552 1.37E+5 -5.867E+4 1.239E+05 0.224 0.687 
 KT 2 552 1.37E+5 -5.795E+4 1.224E+05 0.247 0.692 
 PFA 414 1.37E+5 -5.596E+4 1.168E+05 0.272 0.711 

Fractions        
 KT 1 256 1.043E+5  -3.711E+4 7.718E+04 0.308 0.706 
 KT 2 256 1.043E+5  -3.711E+4 7.718E+04 0.306 0.692 
 KT 2LL 256 1.043E+5  -3.707E+4 7.710E+04 0.307 0.696 
 PFA 192 1.043E+5 -3.643E+4 7.508E+04 0.320 0.723 

3. Conclusion 

PFA was described and compared to KT[1]. This comparison was highly relevant for 
the AIED audience because the “artificial intelligence” component in educational 
software often uses KT to create a student model overlay that allows the software to 
adapt to the student as learning progresses. Our results suggested that the PFA model 
was somewhat superior to the KT model overall. Secondary analysis suggested that the 
KT model assumption that a performance error indicates that (unless a slip occurred) 
the KC is unlearned was an exaggeration of the data. In contrast, PFA uses a parameter 
to scale how much is inferred by the model in the case of performance error, and this 
mechanism resulted in much less aggressive adjustment in prediction after a single 
error with a KC. This more gradual reaction to errors seemed to drive the advantage 
seen for the PFA model. Although KT has other advantages such as the fact that it 
results in different predictions depending on the order of practice, the misfit we saw 



seems to depend on the KT model assumption that student knowledge is well 
represented as a Bernoulli distribution. Many results in the psychological literature, 
(e.g. forgetting results and overlearning results) suggest that the knowledge state might 
be better modeled by a continuous distribution that represents strength of learning, 
rather than a discrete probability distribution. By assuming that learning is continuous, 
the PFA model naturally lends itself to gradual adjustments in response to errors. 

The accuracy advantage should also be considered in light of the two advantages 
described in the introduction. First, PFA can be applied to conjunctive and 
compensatory situations in a way that may be more difficult to accomplish with KT 
model. This advantage may allow greater complexity when using the model to search 
for how the domain should be split into KCs and how those KCs may combine in 
certain performances. Second, the PFA model produces the logit value which can be 
converted to a prediction of performance latency or duration. Having the ability to 
predict such action duration allows the model to be used in instructional engineering 
since it provides an estimate of the cost of each action. Knowing the cost of each action 
is an essential requisite in making decisions about the optimal action to take[3]. 
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