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In two experiments, 216 college students learned a mathematical procedure and returned for a test either one or 
four weeks later. In Experiment 1, performance on the four-week test was virtually doubled when students 
distributed 10 practice problems across two sessions instead of massing the same 10 problems in one session. This 
finding suggests that the benefits of distributed practice extend to abstract mathematics problems and not just rote 
memory cognitive tasks. In Experiment 2, students solved 3 or 9 practice problems in a single session, but this 
manipulation had no effect on either the one-week or four-week test. This result is at odds with the virtually 
unchallenged support for the strategy of continuing practice beyond the point of mastery in order to boost long-
term retention. The results of both experiments suggest that the organization of practice problems in most 
mathematics textbooks is one that minimizes long-term retention.  

 
 
 
Perhaps no mental ability is more 

important than our capacity to learn, but the 
benefits of learning are lost once the material is 
forgotten. Such forgetting is particularly 
common for knowledge acquired in school, and 
much of this material is lost within days or 
weeks of learning. Thus, the identification of 
learning strategies that extend retention would 
prove beneficial to students and any others who 
wish to retain information for meaningfully long 
periods of time. Toward this aim, the two 
experiments presented here examined how the 
retention of a moderately abstract mathematics 
procedure was affected by variations in either the 
total amount of practice or the scheduling of this 
practice.  

Specifically, the two learning strategies 
assessed here are known as overlearning and 
distributed practice. By an overlearning strategy, 

a student first masters a skill and then 
immediately continues to practice the same skill. 
For example, after a student has studied a set of 
20 vocabulary words until each definition has 
been correctly recalled once, any immediate 
further study of these definitions entails an 
overlearning strategy. Overlearning is 
particularly common in mathematics education 
because many mathematics assignments include 
a dozen or more problems of the same type. A 
distributed or spaced practice strategy requires 
that a given amount of practice be divided across 
multiple sessions and not massed into just one 
session. For example, once a mathematics 
procedure has been taught to students, the 
corresponding practice problems can be massed 
into one assignment or distributed across two or 
more assignments. As detailed in the general 
discussion, the practice problems in most 
mathematics textbooks are arranged so that 
students rely on overlearning and massed 
practice.   

 

The strategies of distributed practice and 
overlearning are not complementary, and the two 
strategies cannot be compared directly. Instead, 
distributed practice is the complement of massed 
practice, and the comparison of these two 
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strategies requires that the total amount of 
practice be held constant. For example, one 
group of students might divide 10 problems 
across two sessions while another group solves 
all 10 problems in the same session (as in 
Experiment 1). By contrast, assessing the 
benefits of overlearning requires a manipulation 
of the total amount of practice given within a 
single session. Thus, one group might be 
assigned three problems while another is 
assigned nine problems (as in Experiment 2). 
Thus, because overlearning and distributed 
practice are orthogonal and not complementary, 
it is logically possible that neither, both, or just 
one of these strategies could benefit long-term 
retention.  Naturally, both strategies have been 
the focus of numerous previous studies, but the 
following review of the research literature 
reveals caveats, gaps, and inconsistencies with 
regard to the benefits of each strategy for 
conceptual mathematics tasks. 
Overlearning 
 An overlearning experiment requires a 
manipulation of the total amount of practice 
within a single session, so that one condition 
includes more practice than another. Numerous 
experiments have shown that this increase in 
practice can raise subsequent test performance 
(e.g., Bromage & Mayer, 1986; Earhard, Fried, 
& Carlson, 1972; Gilbert, 1957; Kratochwill, 
Demuth, & Conzemius, 1977; Krueger, 1929; 
Postman, 1962; Rose, 1992). This benefit of 
overlearning is also supported by a meta-analysis 
by Driskell, Willis, and Cooper (1992), who 
examined 51 comparisons of overlearning versus 
learning-to-criterion in experiments using 
cognitive tasks and found a moderately large 
effect of overlearning on a subsequent test (d = 
.75). By these data, it is not surprising that 
overlearning is a widely advocated learning 
strategy (e.g., Fitts, 1965; Foriska, 1993; Hall, 
1989; Jahnke & Nowaczyk, 1998).  

Yet a closer review of the empirical 
literature reveals that the benefits of overlearning 
on subsequent retention may not be long lasting. 
This is because most previous overlearning 
experiments have employed a relatively brief 
retention interval (RI), which is the duration 
between the learning session and the test. For 

instance, in the Driskell et al. meta-analysis 
described above, only 7 of the 51 comparisons 
relied on a retention interval of more than one 
week, and the longest was 28 days. Moreover, 
the largest effect sizes were observed for 
retention intervals lasting less than one hour, and 
Driskell et al. astutely observed that benefits of 
overlearning declined sharply with retention 
interval.  

The possibility that the benefits of 
overlearning may dissipate with time is also 
supported by several overlearning experiments 
including an explicit manipulation of retention 
interval. For example, in Experiment 1 of 
Reynolds and Glaser (1964), some students 
studied biology three times as much as others, 
and the high studiers recalled 100% more than 
the low studiers after 2 days but just 7% more 
after 19 days. A similar decline in the test score 
benefits of overlearning was observed in two 
recent experiments reported by Rohrer, Taylor, 
Pashler, Wixted, and Cepeda (2005).  

Finally, it appears that the benefits of 
overlearning are especially unclear in 
mathematics learning because, to our knowledge, 
every previously published overlearning 
experiment relied solely on verbal memory tasks. 
Moreover, virtually all of these tasks required 
only rote memory. Thus, the results of these 
experiments may not generalize to abstract 
mathematical tasks. This gap in the literature is 
surprising in light of the heavy reliance on 
overlearning by students in mathematics courses, 
as further detailed in the general discussion. In 
summary, because of the uncertainty surrounding 
the long-term benefits of overlearning and the 
apparent absence of overlearning experiments 
using mathematics tasks, it is unclear whether 
overlearning is efficient or even effective when 
long-term retention is the aim.  
Distributed Practice 

When practice is distributed or spaced, a 
given amount of practice is divided across 
multiple sessions and not massed into one 
session. The duration of time between learning 
sessions is the inter-session interval (ISI). For 
example, if 10 math problems are divided across 
two sessions separated by one week, the ISI 
equals one week. By contrast, massed practice 
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entails an ISI of zero. When practice is 
distributed, the retention interval refers to the 
duration between the test and the most recent 
learning session. For example, if a concept is 
studied on Monday and Thursday and tested on 
Friday, the RI equals one day. (Incidentally, 
while the benefits of distributing practice across 
sessions is the focus of the present paper, one 
can also distribute practice within a session when 
multiple presentations are separated by unrelated 
tasks, e.g., Greene, 1989; Toppino, 1991).  

Distributed practice often yields greater 
test scores than massed practice, and this finding 
is known as the spacing effect (e.g., Baddeley & 
Longman, 1978; Cull, 2000; Bjork, 1979, 1988; 
Bloom & Shuell, 1981; Carpenter & DeLosh, 
2005; Dempster, 1989; Fishman, Keller, & 
Atkinson, 1968; Seabrook, Brown, & Solity, 
2005). At very brief retention intervals, however, 
spaced practice may be no better or even worse 
than massed practice (e.g., Bloom & Shuell, 
1981; Glenberg & Lehman, 1980; Krug, Davis, 
& Glover, 1990). By this result, students are 
behaving optimally when they mass their 
learning into one session just prior to an exam if 
they do not need the information after the exam. 
At longer retention intervals, though, the benefits 
of spacing are often sizeable, and many 
researchers have therefore argued that students 
should rely more heavily on distributed practice 
in order to extend retention (Bahrick, Bahrick, 
Bahrick, & Bahrick, 1993; Bjork, 1979; Bloom 
& Shuell, 1981; Dempster, 1989; Schmidt & 
Bjork, 1992; Seabrook, Brown, & Solity, 2005).  

Even at longer retention intervals, 
though, the benefits of spacing are more 
equivocal for tasks that require abstract thinking 
rather than only rote memory. In a recent meta-
analysis of 112 comparisons of distributed and 
massed practice, Donovan and Radosevich 
(1999) found that the size of the spacing effect 
declined sharply as task complexity increased 
from low (e.g., rotary pursuit) to average (e.g., 
word list recall) to high (e.g., puzzle). By this 
finding, the benefits of spaced practice may be 
muted for mathematical tasks that require more 
than rote memory. As for mathematical tasks that 
do rely solely on rote memory, a spacing effect 
has been demonstrated. For example, Rea and 

Modigliani (1985) observed a spacing effect with 
young children who were asked to memorize five 
multiplication facts (e.g., 8 x 5 = 40). While such 
facts are certainly useful, the present study 
focuses on mathematical tasks that require more 
than rote memory.  

A second reason to question the benefits 
of distributed practice for non-rote mathematics 
learning is given by the design of three previous 
mathematics learning experiments that are often 
cited as evidence of a spacing effect with a non-
rote mathematics task. In these experiments, the 
retention interval was shorter for Spacers than 
for Massers, and this confound undoubtedly 
benefited the Spacers. For instance, in Grote 
(1995), the Massers learned only on Day 1 while 
the Spacers’ learning continued from Day 1 
through Day 22. Yet every student was tested on 
Day 36, which produced a 35-day RI for the 
Massers and a 14-day RI for the Spacers. This 
undoubtedly benefited the spacers. The same 
confound between ISI and RI occurred in the two 
mathematics learning experiments reported by 
Gay (1973). We are not aware of any previously 
published, non-confounded experiment that 
examines how the distribution of practice affects 
the retention of a non-rote mathematics task.  

There are, however, non-experimental 
studies that have found benefits of distributed 
practice of mathematics. Most notably, perhaps, 
Bahrick and Hall (1991) assessed the retention of 
algebra and geometry by people who had taken 
these courses between 1 and 50 years earlier. A 
regression analysis showed that retention was 
positively predicted by the number of courses 
requiring the same material. For example, much 
of the material learned in an algebra course 
reappears in an advanced algebra course, and the 
completion of both courses therefore provides 
distributed practice of this overlapping material. 
Thus, the results suggest that distributed practice 
may be beneficial in mathematics learning. This 
possibility is assessed here with a controlled 
experiment, albeit with retention intervals that 
are measured in weeks rather than years. 
Task   

In the experiments reported here, college 
students learned to calculate the number of 
unique orderings (or permutations) of a letter 
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sequence with at least one repeated letter. For 
example, the sequence abbbcc has 60 
permutations, including abbcbc, abcbcb, bbacbc, 
and so forth. The solution is given by a formula 
that is presented and illustrated in the Appendix. 
While the number of permutations can also be 
obtained by listing each possible permutation, 
this alternative approach fails when the number 
of permutations is large and the problem must be 
completed in a relatively brief amount of time 
(as in the present study). No student saw a given 
letter sequence more than once. A total of 17 
different sequences were used in the two 
experiments, and these are listed in the 
Appendix.  

              Base Rate Survey 
We assessed the base rate knowledge of 

this task for our experiment participants by 
giving a brief test to a sample of students drawn 
from the participant pool used in Experiments 1 
and 2. We expected that few if any of the 
students would be able to perform the task 
because we have never encountered this 
particular kind of permutation problem in an 
undergraduate level textbook. 
Method 

Participants.  The sample included 50 
undergraduates at the University of South 
Florida. These included 43 women and 7 men. 
None participated in Experiments 1 or 2.  
 Procedure. After a brief demographic 
survey, students were given three minutes to 
solve the following three problems: aabbbbb, 
aaabbbb, and abccccc. These sequences yield 
answers of 21, 35, and 42, respectively.  
Results and Discussion 

Not surprisingly, none of the students 
correctly answered any of the three problems. 
Many of them attempted to solve the problems 
by listing every permutation, but none exhibited 
knowledge of the necessary formula. Thus, this 
mathematics procedure appears to be unknown 
to the participant pool used in Experiments 1 and 
2. Furthermore, even if some participants in 
these experiments did possess any relevant 
knowledge before the experiment, the use of 
random assignment ensured that their presence 
would not be a confounding variable.  
  

Experiment 1 
 The first experiment examined the benefit 
of distributing a given number of practice 
problems across two sessions rather than 
massing the same practice problems into one 
session. As shown in Figure 1A, the Spacers 
attempted 5 problems in each of two sessions 
separated by one week, whereas the Massers 
attempted the same 10 problems in session two. 
Each group received a tutorial immediately 
before their first practice problem, and the 
students were tested one or four weeks after their 
final practice problem.  
Method 

Participants. All three sessions were 
completed by 116 undergraduates at the 
University of South Florida. The sample 
included 95 women and 21 men. An additional 
39 students completed the first session but failed 
to show for either the second or third session. 
None of the students participated in Experiment 
2. 

Design. There were two between-subjects 
variables: Strategy (Space or Mass) and 
Retention Interval (1 or 4 weeks). Thus, each 
student was randomly assigned to one of four 
groups: Spacers with 1-week RI, Spacers with 4-
week RI, Massers with 1-week RI, and Massers 
with 4-week RI.  

Procedure.  The students attended three 
sessions. At the beginning of the first session, 
each student was randomly assigned to one of 
the four conditions listed above. Students were 
not told what tasks awaited them in future 
sessions. It is not known whether some students 
practiced the procedure outside of the 
experimental sessions, although there was no 
extrinsic reward for test performance. If any self 
review did occur, we know of no reason why its 
prevalence would vary among Spacers and 
Massers. 

All students completed a tutorial, two 
practice sets, and a test. Students read the tutorial 
immediately before their first practice set. The 
tutorial included two pages of instruction (3 min) 
and written solutions to Problem 11 (3 min) and 
Problem 12 (2 min) of the Appendix. The first 
practice set included Problems 1 – 5 of the 
Appendix, in that order, and the second practice 
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set included Problems 6 – 10 of the Appendix, in 
that order. Each problem appeared in a booklet 
with only one problem per page. Students were 
allotted 45 s to solve each problem. Immediately 
after each attempt, students were shown the 
solution for 15 s before immediately beginning 
the next problem.  

The first two sessions were separated by 
one week. The Spacers completed the first five-
problem practice set in session one and the 
second five-problem practice set in session two. 
The Massers completed both practice sets in 
session two, without any delay between the two 
sets.  

One or four weeks after the second 
session, every student returned for a test. The test 
included the five test problems listed in the 
Appendix in the order shown. The five test 
problems were presented simultaneously, and 
students were allotted five minutes to solve all 
five problems. No feedback was given during the 
test.  
Results  
 Learning. The tutorial was sufficiently 
effective, as evidenced by performance on the 
five problems given to every student 
immediately after the tutorial. Of the 116 
students, 65 scored a perfect five, 27 scored four, 
12 scored three, 6 scored two, 3 scored one, and 
3 scored zero. All further analyses excluded the 
students who correctly answered zero (n = 3) or 
one (n = 3) of these five problems. It appears that 
the three students with scores of one were 
guessing, as four of the five correct answers were 
multiples of ten. Notably, this inclusion criterion 
of at least two correct is based solely on 
performance during the first session because the 
additional reliance on performance during the 
second practice set (which was delayed for the 
Spacers) would have confounded the experiment. 
Naturally, the Massers and Spacers performed 
equivalently on the first practice set because the 
procedures for these groups did not diverge until 
after the first practice set was complete. 
Specifically, the Massers averaged 88% (SE = 
2.3%) and the Spacers averaged 87% (SE = 
2.5%), F < 1.  
  However, for the second set of five 
practice problems, the Massers averaged 94% 

(SE = 1.6%) while the Spacers averaged only 
85% (SE = 3.2%), F (1, 108) = 6.79, p < .05, ηp

2 
= .06. This difference was due to very poor 
performance by a subset of Spacers who 
apparently forgot the procedure during the one 
week inter-session interval. Thus, the one-week 
ISI introduced a disadvantage for the Spacers, 
but this worked against the spacing effect rather 
than for it. 
 Test. The mean percentage accuracy for 
the five test problems is shown in Figure 1B. As 
illustrated, the Spacers and Massers were not 
reliably different at the 1-week RI, but the 
Spacers sharply outscored the Massers at the 4-
week RI. This parity at one week caused the 
main effect of Strategy (Space vs. Mass) to fall 
short of statistical significance, F (1, 106) = 3.67, 
p = .06, ηp

2 = .03. Not surprisingly, the main 
effect of RI was reliable, F (1, 106) = 12.92, p < 
.001, ηp

2 = .11. The reliance of the spacing effect 
on retention interval was evidenced by an 
interaction between ISI and RI, F (1, 106) = 
7.21, p < .01, ηp

2 = .06. This pattern was further 
confirmed by Tukey tests showing that the 
difference between Spacers and Massers was 
reliable at the 4-week RI (p < .05) but not the 1-
week RI. These post hoc tests also showed that 
the difference between the one- and four-week 
test scores was significant for the Massers (p < 
.05) but not the Spacers.  
Discussion 
 For the longer retention interval of four 
weeks, the distribution of 10 practice problems 
across two sessions was far more useful than the 
massing of all 10 problems in the same session. 
Thus, these data provide an instance of the 
spacing effect for a non-rote mathematics 
learning task in a non-confounded experiment.  
At the one-week retention interval, there was no 
reliable difference between the two strategies 
among students who were tested only one week 
after learning. This result is consistent with 
previous findings demonstrating no spacing 
effect or even massing superiority at sufficiently 
short retention intervals, as described in the 
introduction. Despite this ambiguity after one 
week, though, the spacing superiority after four 
weeks suggests that long-term retention, which is 
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the focus of the present paper, is better achieved 
by distributing practice problems across sessions. 

Experiment 2 
 The second experiment assessed the 
effect of overlearning on retention by varying the 
number of practice problems within a single 
session. The Hi Massers attempted 9 practice 
problems, whereas the Lo Massers attempted 
only 3 practice problems (as detailed in Figure 
1C). Thus, the Hi Massers relied heavily on 
overlearning. Because this increase in the 
number of practice problems produced a 
concomitant increase in time devoted to practice, 
this manipulation is effectively a manipulation of 
total practice time. Students were tested either 
one or four weeks later. As detailed in the 
introduction, many researchers have found 
benefits of overlearning on a subsequent test, but 
the bulk of these experiments relied on relatively 
brief retention intervals.  
Method 

Participants. All three sessions were 
completed by 100 undergraduates at the 
University of South Florida. The sample 
included 83 women and 17 men, and none 
participated in Experiment 1. An additional 17 
students completed the first session but failed to 
show for the second session. 

Design. We manipulated two between-
subjects variables: Practice Amount (Hi or Lo) 
and Retention Interval (1 or 4 weeks). Thus, each 
student was randomly assigned to one of four 
groups: Hi Massers with 1-week RI, Hi Massers 
with 4-week RI, Lo Massers with 1-week RI, and 
Lo Massers with 4-week RI.  

Procedure. Each student attended two 
sessions, separated by one or four weeks. At the 
beginning of the first session, each student was 
randomly assigned to one of the four conditions 
listed above. Each student then observed a 
tutorial consisting of screen projections that 
included the complete solutions to Problems 10, 
11, and 12 of the Appendix, in that order. 
Immediately after this tutorial, all students began 
the practice problems. Each Hi Masser was given 
nine problems (which were Problems 1 through 
9 of the Appendix), and each Lo Masser was 
assigned three of these nine problems. The three 
problems assigned to each Lo Masser varied, so 

that each of the nine problems was presented 
equally often. This was done to equate the 
selection of practice problems given to Lo and 
Hi Massers. In addition, the nine problems given 
to the Hi Massers were presented in one of three 
different orders so that the first three problems 
corresponded to the only three problems given to 
the same number of Lo Massers. The other 
aspects of the procedure, including the five-
problem test, were the same as those in 
Experiment 1. 
Results  

Learning.  The tutorial was again 
sufficient to produce learning, as demonstrated 
by students’ performance on the three practice 
problems completed immediately after the 
tutorial. Specifically, 65 of the 100 students 
correctly answered all three problems, 23 scored 
two, 10 scored one, and 2 scored zero. As in 
Experiment 1, students with scores of zero or 
one were excluded from further analysis.  

As expected, there was no reliable 
difference between Hi and Lo Massers on the 
first three problems because these two groups 
underwent the same procedure until after these 
three problems were completed. Specifically, the 
Hi Massers averaged 90% (SE = 2.3%) and the 
Lo Massers averaged 88% (SE = 2.3%), F < 1. 
For the additional six practice problems given 
only to the Hi Massers, accuracy averaged 95% 
(SE = 1.3%).  
 Test. As shown in Figure 1D, there was 
virtually no difference between the Hi and Lo 
Massers on either the one- or four-week test. 
Consequently, an analysis of variance revealed 
no main effect of Practice Amount (F < 1) and 
no interaction between Practice Amount and 
Retention Interval (F < 1). Not surprisingly, the 
main effect of retention interval was significant, 
F (1, 84) = 33.16, p < .001, ηp

2 = .28.  
Discussion  
 The increase in the number of practice 
problems given during a single learning session 
had virtually no effect on subsequent test scores 
at either retention interval. This null effect of 
overlearning is not well explained by a lapse in 
attention by the Hi Massers during their 
additional six practice problems because these 
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problems were solved with 95% accuracy.  Thus, 
as fully described in the general discussion, these 
results provide no  support for the oft cited claim 
that overlearning boosts long-term retention and 
therefore cast doubt on the utility of mathematics 
assignments that include many problems of the 
same type. 

       General Discussion  
The two experiments assessed the 

benefits of distributed practice and overlearning 
on subsequent test performance. In Experiment 
1, distributing 10 practice problems across two 
sessions instead of massing all 10 problems in 
the same session had no effect on one-week test 
scores but virtually doubled four-week test 
scores. In Experiment 2, increasing the number 
of problems solved in a single session from three 
to nine had virtually no effect on test scores on 
either the one- or four-week test. In brief, the 
extra effort devoted to additional problems 
produced no observable benefit, whereas the 
distribution of a given number of number of 
practice problems produced benefits without any 
extra effort.  

The results of previous experiments have 
provided little support for distributed practice 
with non-rote mathematics tasks. As detailed in 
the introduction, three previously published 
experimental findings that are cited as instances 
of a spacing effect with a non-rote mathematics 
task are, in fact, confounded in favour of the 
spacing effect. The results of Experiment 1, 
however, suggest that the superiority of 
distributed practice over massed practice extends 
to these more abstract cognitive tasks. 
Consequently, we concur with those authors who 
have urged greater reliance on distributed 
practice as a means of boosting long-term 
retention (Bahrick & Hall, 1991; Baddeley & 
Longman, 1978; Bjork, 1979, 1988; Dempster, 
1989; Reynolds & Glaser, 1964; Schmidt & 
Bjork, 1992: Seabrook, Brown, & Solity, 2005).  

With regard to overlearning, however, the 
present results strongly conflict with the 
numerous claims about its utility as a learning 
strategy (e.g., Fitts, 1965; Foriska, 1993; Hall, 
1989; Jahnke & Nowaczyk, 1998). Indeed, the 
strategy of overlearning is widely advocated. As 
Jahnke and Nowaczyk advised, “Practice should 

proceed well beyond that minimally necessary 
for an immediate, correct first reproduction” (p. 
181). Fitts concluded that, “The importance of 
continuing practice beyond the point in time 
where some (often arbitrary) criterion is reached 
cannot be overemphasized” (p. 195). And Hall 
wrote, “The overlearning effect would appear to 
have considerable practical value since continued 
practice on material already learned to a point of 
mastery can take place with a minimum of effort, 
and yet will prevent significant losses in 
retention” (p. 328). In contrast to these 
conclusions, the results of Experiment 2 revealed 
no effect of overlearning on retention. 
 Conceptually, the minimal effect of 
overlearning on retention can be interpreted as an 
instance of diminishing returns. That is, with 
each additional amount of practice devoted to a 
single concept, there is an ever smaller increase 
in test performance. Thus, after the initial 
exposure to a concept, the first one or two 
practice problems might yield a large increase in 
a subsequent test score. Yet each additional 
practice problem provides an ever smaller gain 
until, ultimately, any additional practice within 
the same session will yield very little gain.  

It should be noted, though, that a small 
amount of overlearning may be useful if 
overlearning is strictly defined as any practice 
beyond one correct problem. By this definition, 
overlearning occurs even when a student 
correctly solves only two or three problems, 
which means that even the Lo Massers in 
Experiment 2 relied on a small amount of 
overlearning. Consequently, the results of 
Experiment 2 do not support the extreme view 
that students should be assigned only one 
problem of each type in a given session. Instead, 
the results suggest that students who correctly 
solve several problems of the same kind have 
little to gain by working more problems of the 
same type within the same session. After these 
first problems are solved correctly, students 
could devote the remainder of the practice 
session to problems drawn from previous lessons 
in order to reap the benefits of distributed 
practice.  

A final caveat concerns two important 
limitations on the extent to which the present 
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finding will generalize. First, all of the 
participants in the present experiments were 
college students, and it is not known whether the 
results of both experiments would have been 
observed with much younger students. However, 
we suspect that young children would provide 
qualitatively similar results because such 
parallels have been observed in previous 
distributed practice experiments (e.g., Seabrook, 
Brown, & Solity, 2005; Toppino, 1991). Second, 
because the experiments reported here relied on a 
test that required students to solve problems 
identical to those presented during the practice 
session (albeit with different numerical values), 
it is unknown whether the benefit of distributed 
practice or the futility of overlearning would 
have occurred if the test had required students to 
apply their previous learning in novel ways (i.e., 
assessed what is known as transfer).   
The Organization of Practice Problems in 
Mathematics Textbooks 

Many mathematics textbooks rely on a 
format that fosters both overlearning and massed 
practice. In these textbooks, virtually all of the 
problems for a given topic appear in the 
assignment that immediately follows the lesson 
on that topic. This format fosters overlearning 
because each assignment includes many 
problems of the same kind. This format also 
fosters massed practice because further problems 
of the same kind are rarely included in 
subsequent assignments. As an illustration, we 
examined every problem in the most recent 
editions of four textbooks in pre-algebra 
mathematics or introductory algebra that are very 
popular in the United States. The proportion of 
the problems within each assignment that 
corresponded to the immediately preceding 
lesson, when averaged across assignments, 
equalled between 75% and 92% for the four 
books. Thus, the format of these practice sets 
facilitates overlearning and massing.  

Fortunately, there is an alternative format 
that minimizes overlearning and massed practice 
while emphasizing distributed practice, and it 
does not require an increase in the number of 
assignments or the number of problems per 
assignment. With this distributed-practice 
format, each lesson is followed by the usual 

number of practice problems, but only a few of 
these problems relate to the immediately 
preceding lesson. Additional problems of the 
same type then appear perhaps once or twice in 
each of the next dozen or so assignments and 
once again after every fifth or tenth assignment 
thereafter. In brief, the number of practice 
problems relating to a given topic is no greater 
than that of typical mathematics textbooks, but 
the temporal distribution of these problems is 
increased dramatically.  

While the distributed practice format 
should improve retention, it might also prove 
more challenging than the massed practice 
format. With a massed practice format, students 
who have solved the first few problems have 
little difficulty with the remaining problems of 
the same type. Indeed, they merely need to 
repeat the procedure. A distributed practice 
format, however, ensures that each practice set 
includes many different challenges. Thus, the 
challenge and long-term returns of a distributed 
practice format provide an example of what 
Bjork and his associates have called a “desirable 
difficulty” (Christina & Bjork, 1991; Schmidt & 
Bjork, 1992). Despite this difficulty, however, 
some students might find the mixture of 
problems more interesting than a group of 
similar problems.  

A distributed practice format is used in 
the Saxon series of mathematics textbooks (e.g., 
Saxon, 1997). While numerous non-controlled 
studies have compared Saxon textbooks to other 
textbooks, we are not aware of any published, 
controlled experiments with these textbooks. 
However, there may be little information to be 
gained from an experiment in which students are 
randomly assigned to a condition that uses a 
Saxon or non-Saxon textbook because the 
numerous differences between two such 
textbooks would confound the experiment. For 
example, if such an experiment did show 
superior retention for users of the Saxon 
textbook, it is logically possible that this benefit 
was the result of textbook features other than the 
distributed practice format. (Neither author has 
had any affiliation with Saxon Publishers; 
however, the first author is a former mathematics 
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teacher who has used both Saxon and non-Saxon 
mathematics textbooks in the classroom.) 

Perhaps a more informative experiment 
would compare two groups of students who 
underwent instruction programs that differed 
only in the temporal distribution of practice 
problems. For example, a class of students could 
be divided randomly into two groups, with each 
group participating in the same class activities. 
Every student would also receive a packet that 
included the same lessons in the same order. The 
selection of practice problems would also be 
identical, but the practice problems of each type 
would be distributed or massed.  

Textbook publishers could adopt a 
distributed-practice format with little trouble or 
cost. They would merely rearrange the practice 
problems in the next edition of their textbooks, 
regardless of whether the lessons are changed as 
well. Oddly, practice problems typically receive 
relatively little attention from publishers and 
textbook authors, and the practice problems are 
often written by sub-contracted writers. Yet the 
practice sets are as least as important as the 
lessons. In fact, as many mathematics teachers 
will attest, a majority of their students never read 
the lessons and instead devote all of their 
individual effort to the practice sets.  

In addition to the implications for 
textbook design, the benefits of distributed 
practice are equally applicable to the design of 
the algorithms used in computer-aided 
instruction (CAI). Unlike textbooks, the 
programs can provide individualized training and 
error-contingent feedback, and an increasing 
number of educators and agencies have urged 
greater reliance on such technologies (e.g., 
Department for Education and Skills, United 
Kingdom, 2003). Yet virtually all currently 
available CAI programs are designed to foster 
learning rather than retention. Of course, such 
programs could be easily adapted to incorporate 
distributed rather than massed practice, and 
students’ compliance to a distributed practice 
schedule could be verified by ensuring that the 

program record the date of each problem 
attempt.  
 In addition to its effect on retention, a 
distributed-practice format can also facilitate 
learning because it allows students ample time to 
master a particular skill. For instance, if a student 
is unable to solve the problems of a given type in 
a single lesson, a distributed-practice format will 
provide further opportunities throughout the 
year.  
Conclusion 
 The results of Experiment 1 suggest that 
the retention of mathematics is markedly 
improved when a given number of practice 
problems relating to a topic are distributed across 
multiple assignments and not massed into one 
assignment. Moreover, this benefit of distributed 
practice can be realized without increasing the 
number of practice problems included in a 
practice set typical of most mathematics 
textbooks. Specifically, rather than require 
students to work far more than just a few 
problems of the same kind in the same session, 
which had no effect in Experiment 2, each 
practice set could instead include problems 
relating to the most recent topic as well as 
problems relating to previous topics. This 
distributed practice format could be easily 
adopted by the authors of textbooks and CAI 
software. 
 Any resulting boost in students’ 
mathematics retention might greatly improve the 
mathematics achievement, and there is little 
doubt that the mathematics skills of most 
students need improving. In one recent report on 
mathematics achievement, less than one third of 
a sample of U.S. students received a rating of “at 
or above proficient” (Wirt et al., 2004). Such 
reports often lead people to conclude that 
students are not learning, but it may be that many 
mathematical skills and concepts are learned but 
later forgotten. The prevalence of such forgetting 
may partly reflect the widespread reliance on 
practice schedules that proved to be the worst 
strategies in the experiments reported here. 
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     Appendix 

Students were taught to calculate the number of unique orderings (or permutations) of a letter sequence 

with at least one repeated letter (e.g., abbbcc). For n items and k unique items, the number of 

permutations equals n! / (n1! n2! … nk!), where ni = number of repetitions of item i. For example, abbbcc 

includes six letters (n = 6) and three unique letters (k = 3), and the letters a, b, and c appear 1, 3, and 2 

times, respectively (n1 = 1, n2 = 3, n2 = 2). Thus, by the formula, the number of permutations equals 

        6! / (1! 3! 2!)  

    = (6Χ5Χ4Χ3Χ2Χ1) / [(1)Χ(3Χ2Χ1)Χ(2Χ1)]  

    = (6Χ5Χ4) / (2)  

    = 60.  

Tutorial and Learning Session (see the procedures of each experiment for details) 
1. abccc 20 
2. abcccc 30 
3. aabbbbb 21 
4. abbcc 30 
5. aaabbb 20 
6. aabbbb 15 
7. aabb  6 
8. abbccc 60 
9. abccccc 42 
10. aabbbbbb 28 
11. abbcccc 105 
12. abcccccc 56 
 
Test  
abcc  12 
aabbb  10 
aabbcc  90 
aaabbbb 35 
aaaabbbb 70 
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Figure 1.  Learning Procedure and Test Results for Experiments 1 and 2. Accuracy 

represents the mean percentage correct. Error bars reflect plus or minus one standard error.     
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