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Abstract 

This study investigated kernel equating methods by comparing these methods to operational 

equatings for two tests in the SAT Subject Tests™ program. GENASYS (ETS, 2007) was used 

for all equating methods and scaled score kernel equating results were compared to Tucker, 

Levine observed score, chained linear, and chained equipercentile equating results. The results of 

the kernel chained equatings using a large fixed bandwidth were nearly identical to the results 

from the chained linear equatings whereas the comparisons of the kernel poststratification 

equatings using a large bandwidth showed differences from both Tucker and Levine observed 

score equating results, although for most of the score range those differences were small. 

Similarly, the differences were small for most of the score range in the comparisons of kernel 

poststratification equatings and kernel chained equatings using the optimal bandwidth with 

chained equipercentile equatings. 

Key words: Equating, kernel equating, observed score equating 
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Introduction 

The typical large scale testing program continually faces the problem of putting new 

forms of its tests onto the appropriate reporting scale, usually in a fairly short period of time. 

Therefore, the methods of equating that such a program uses need to be reliably accurate, simple 

to code, fast to run, and easy to review. A variety of equating methods have been utilized in the 

SAT Subject Tests™ program to produce scaled scores that are comparable across different test 

forms and administrations. The usual equating design for the SAT Subject Tests program is the 

nonequivalent groups with anchor test (NEAT) design. The program currently employs the 

typical traditional classical linear and nonlinear equating methods: Tucker, Levine observed 

score, chained linear, and chained equipercentile. The final raw-to-scale conversion is obtained 

by applying the raw-to-scale conversion used on the reference form to the equated raw scores for 

the new form. These methods and procedures are all run using GENASYS (ETS, 2007), a 

comprehensive data analysis system that has standardized coding as well as results and reports 

that those familiar with them find easy to review. It is a software system that can run the 

equating methods selected from those available in the system, calculate the raw-to-scale 

conversions, and store the results on a database. 

The kernel method of test equating promises to unify several methods of test equating 

into a single method while providing new statistical measures. Kernel equating (KE) provides 

both chained and poststratification observed-score equating methods, which approximate several 

commonly used traditional equating methods. Since KE can provide both linear and curvilinear 

equating results, the comparison of curvilinear and linear equatings is possible within the KE 

methodology. In addition, KE can be applied to all of the usual equating designs. KE also 

employs the standard error of equating difference (SEED), which is used primarily in a plot that 

shows the limits of ±2 times the SEED around one equating function and the difference of the 

other KE function from that criterion line. If the difference line is mostly within the SEED limits, 

then the function can be considered linear; if it is outside of the line, then the function is 

curvilinear. Unfortunately, at the time this study was conducted, the SEED was not available in 

GENASYS (ETS, 2007). Although KE methods have been well developed in theory, thus far 

they have not been used much operationally. 

This study was part of a 2007 initiative to investigate kernel equating in parallel with 

operational equatings and to evaluate the possible application of KE in testing programs at ETS. 
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The initiative was directly focused on programs at ETS that currently use observed-score 

equating methods. As a part of that 2007 research initiative, this study concentrated on the 

application of the KE method in the operational work of the SAT Subject Tests. This study 

examined how well the KE method performed compared to traditional equating methods in the 

testing program. 

In this research, KE methodologies were applied in parallel with the classical anchor test 

equating methods employed operationally for the NEAT design on selected SAT Subject Tests. 

The equating of a new form for two different tests was examined. Equating results from KE 

methods were compared with results from traditional linear and nonlinear methods. This study 

also investigated the conditional standard errors of equating (CSEE) in the different KE methods 

and compared them to the CSEEs obtained operationally with the traditional equating methods. 

This study concentrated on the potential application of KE in the operational work of SAT 

Subject Tests. The main research questions were: How do the KE results compare to the results 

of the equating methods currently used operationally? And, what are the advantages or 

disadvantages of the KE method in the SAT Subject Tests operational setting?  

Previous Studies 

A variety of equating methods have been developed to meet different operational needs 

and these methods were generated based on different assumptions or theories to produce scores 

that can be comparable across different test forms. The kernel method of test equating was 

introduced by Holland and Thayer (1989), who described it as “a new and unified approach to 

test equating … based on log-linear models for smoothing score distributions and on the kernel 

method of non-parametric density estimation” (p. i). In 1993, Livingston investigated the 

accuracy of KE with small samples compared to equipercentile results for both observed 

distributions and discrete distributions produced by log-linear smoothing. He found that the KEs 

were much more accurate than the equipercentile equatings using the observed distributions, but 

they were only slightly more accurate than the equipercentile equatings that used the smoothed 

distributions. 

Thereafter little was published about KE until von Davier, Holland, and Thayer (2004) 

extensively developed KE. They provided both the theoretical basis for the methodology and 

examples of KE in commonly encountered testing situations. One of the most distinctive 

differences between KE and traditional equipercentile equating is that the score distributions are 
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converted from discrete distributions to continuous distributions in KE by use of Gaussian kernel 

smoothing as opposed to using a linear interpolation as in the traditional percentile rank 

approach. “KE is a unified approach to test equating based on a flexible family of equipercentile-

like equating functions that contains the linear equating as a special case” (p. 45). KE also 

provides a new measure of statistical accuracy, SEED, which can be used to compare two KE 

functions, usually the linear and curvilinear results. 

More recently, KE has been explored intensively from different perspectives using both 

operational data sets from various testing programs and simulated data. The research has covered 

several topics concerning how closely KE approximates classical equating methods under a 

variety of circumstances. For example, equatings that were conducted operationally using 

traditional equating methods were repeated using KE (Allspach & Damiano, 2007) and KE 

results were compared with operational results for testing situations with different test 

administration designs with different samples sizes and different characteristics (Mao, von 

Davier, & Rupp, 2006). Other research included using pseudotests with significant differences in 

difficulty levels for new and reference forms and substantial differences in the ability of new and 

reference groups (von Davier, Holland, Livingston, Casabianca, Grant, & Martin, 2006), 

sampling from real data to equate with very small samples (Grant, Zhang, Damiano, & Lonstein, 

2006), equating with similar and different populations (Liu & Low, 2007), and equating with 

varying degrees of presmoothing (Moses & Holland, 2007). There has even been research to 

expand the scope of KE to include an equipercentile version of Levine (von Davier, Fournier-

Zajac, & Holland, 2007). 

Kernel equating has been examined and investigated theoretically and practically, and the 

results from these different perspectives have shown that KE might be a promising method in 

answering the variety of challenges encountered in operational work. Kernel equating has been 

shown to be as effective as traditional equating methods. However, even those studies using real 

data have, so far, been hampered by computer software considerations. Kernel equating has 

been, for the most part, an experimental methodology, often using stand-alone software. Even as 

part of a comprehensive and operationally used software, such as GENASYS (ETS, 2007), KE 

has not been fully developed or tested for use in truly operational circumstances. 
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Methodology 

This study was conceived to conduct KEs completely in parallel with the operational 

equating of two new test forms in the SAT Subject Tests program during the actual processing 

time of an administration. The KEs were to be run using the same software system, GENASYS 

(ETS, 2007), that was used for the operational equatings. In addition, the final evaluation of the 

effectiveness of KE was to be completed using equated scaled scores rather than equated raw 

scores. 

The two tests chosen for this study were the SAT Subject Test in Mathematics Level 2 

and the SAT Subject Test in U.S. History. Both tests were expected to have reasonably large 

volumes at the time of equating. The mathematics test has 50 items. Previous forms of this test 

had reliabilities of .90 or higher. The history test has 90 items, and previous forms had 

reliabilities of .92 or higher. Both tests are five-option multiple choice tests administered with a 1 

hour time limit. The test forms were scored with a formula score, a correction for guessing 

calculated as the number of correct responses minus 0.25 times the number of incorrect 

responses. Finally these formula scores were rounded to the nearest whole number to create the 

examinees’ raw scores. Possible raw total scores for each form of the mathematics test ranged 

from -12 to 50, and for the history test, the possible raw total scores ranged from -23 to 90. 

Examinees taking the SAT Subject Tests select which of the 20 subject tests they will take, and 

they usually choose those tests that will best highlight their individual strengths. Therefore the 

ability level of those taking the SAT Subject Tests tends to be higher than that of the SAT 

Reasoning Test™ population and higher than that of the general college-going population. 

Consequently, relatively few scores fall below the mean chance score on these tests. 

The reference form (the old form in the equating) and the new form shared a set of 

common items as an internal anchor for the equatings. The total sample for the mathematics test 

equating used scores from all available records at the time of the operational equating: 13,541 

examinees in the new form sample and 14,271 examinees in the reference form sample (see 

Table 1). The total sample for the history test equating also used scores from all available records 

at the time of the operational equating: 17,373 examinees in the new form sample and 39,851 

examinees in the reference form sample (see Table 2). For the forms used in this study, the 

mathematics test new form sample was slightly more able and more variable than the reference 

form sample (see Tables 1 and 3) and the new form was slightly easier than the reference form 
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with scores that were more variable (see Table 4). The history test new form sample was slightly 

less able than the reference form sample and slightly more variable (see Tables 2 and 3), while 

the new form was harder than the reference form with scores that were slightly more variable 

(see Table 4). 

Table 1 

Summary Statistics for Anchor and Total Test for the SAT Subject Test in Mathematics Level 2 

Form  New form Reference form 

Sample size 13,541 14,271 

  Anchor Total Anchor Total 

 Number of items 16 50 16 50 

 Raw score mean 9.53 27.12 9.20 25.94 

 Raw score SD 3.98 11.84 3.75 10.86 

Observed raw score range  -4 – 16 -6 – 50  -4 – 16  -7 – 50  

Skewness -0.3796 -0.2091 -0.2276 -0.1348 

Kurtosis 2.52 2.25 2.44 2.35 

Correlation of anchor and total 0.93 0.92 

Table 2 

Summary Statistics for Anchor and Total Test for the SAT Subject Test in U.S. History 

Form New form Reference form 

Sample size 17,373  39,851 

 Anchor Total Anchor Total 

Number of items 23 90 23 90 

Raw score mean 13.66 51.32 13.99 53.75 

Raw score SD 5.38 19.70 5.10 18.05 

Observed raw score range  -4 – 23  -8 – 90  -4 – 23  -9 – 90 

Skewness -0.5713 -0.6149 -0.6091 -0.6374 

Kurtosis 2.72 2.71 2.88 2.87 

Correlation of anchor and total 0.92 0.92 
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Table 3 

Comparison of Examinee Performance on Anchor Test 

Test SAT Mathematics Level 2 SAT U.S. History 
SD in anchor test means 
  |MNA – MRA| / σNARA 0.09 0.06 

Ratio of anchor test variances 
  σ2

NA / σ2
RA 1.12 1.11 

Table 4 

Synthetic Group Estimates for Total Scores Using the Tucker Equating Method 

Form  SAT Mathematics SAT U. S. History 

Mean 26.65 52.09 New form  
SD 11.56 19.12 

Mean  26.37 53.43 Reference form 

SD  11.14 18.31 

All of the equatings were conducted using the GENASYS (ETS, 2007) software. Total 

sample equating with traditional equating methods and KEs were used to obtain both linear and 

nonlinear raw-to-scale equating results. The traditional equating methods used were Tucker, 

Levine observed score, chained linear, and chained equipercentile. Kernel equating was run with 

an input bandwidth set to 0.0 that causes GENASYS to solve for the optimal curvilinear result 

for both chained equating (CE) and poststratification equating (PSE). It should be noted that the 

optimal curvilinear result solved has a bandwidth value that is actually greater than 0.0; it is, in 

fact, impossible to compute a KE function with a bandwidth of 0.0. To obtain linear results in 

KE, the bandwidth was fixed at approximately 10 times the raw score standard deviation for 

PSE; this was a bandwidth of 150 for the mathematics test and 200 for the history test. For KE 

CE, to obtain linear results, a value of 400 was designated as the fixed bandwidth for both the 

total test and anchor test for both the mathematics test and the history rest. Other parameters in 

the KE GENASYS coding were set to the default values. 

For KE and for the chained equipercentile equatings, the distributions were smoothed 

using log-linear presmoothing in GENASYS. The moments preserved in the log-linear 

smoothing for KE were the same as those used for the chained equipercentile method in the 
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operational equating, which were six univariate moments and one bivariate moment for both the 

total test and the anchor. No moments were preserved for smoothing the teeth separately even 

though the two tests used in this study were formula scored. It has been demonstrated that if the 

teeth were smoothed separately in the presmoothing stage, KE would essentially undo that part 

of the smoothing in the continuization phase (Moses, 2008). In those situations, KE and 

traditional methods do show somewhat different results.  

The normal operational equatings were performed during the administration processing 

period. Additional GENASYS (ETS, 2007) requests were coded for the KE of the two test forms 

selected. These were run within the administration processing window as planned, however, the 

runs ended abnormally. Problems were encountered in the software execution; consequently, not 

all of the requested KE results were produced and not all of the requested reports were printed. 

Therefore, the KEs for this study were postponed until after the administration, by which time 

the difficulties had been addressed. The KEs for both test forms were completed successfully at 

that time using the same samples as were used during the on-time classical equatings. 

Data Analyses 

For both tests, each of the KE results was compared to results from the classical method 

or methods that were most similar. The results from the KE CE with a large fixed bandwidth 

were compared with the chained linear equating results. The results from the KE PSE with a 

large fixed bandwidth were compared with the results from the Tucker equating. They were also 

compared with the Levine observed score equating results even though these methods are not 

exactly parallel. At the time of the study, KE in GENASYS (ETS, 2007) had no exact parallel to 

Levine observed score equating. However, Levine employs a synthetic group, as does Tucker, 

although the assumptions and procedures for the two methods are different. When the abilities of 

the two groups are similar with similar standard deviations and when the correlation between 

anchor scores and total scores are relatively high (see Tables 1, 2, and 3), the results from Levine 

tend to be close to those of Tucker. Therefore, the results from KE PSE with a large fixed 

bandwidth were compared to the Levine results as well as to the Tucker results. The results from 

KE CE with an optimal bandwidth were compared to chained equipercentile results. The obvious 

comparison for results from KE PSE with optimal bandwidth would be frequency estimation 

equipercentile equating, however, the SAT Subject Tests program does not use frequency 

estimation in its current equating procedures. As chained equipercentile is the only curvilinear 
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method employed by the program, under the circumstances it seemed prudent to compare both 

KE curvilinear results with results from the one curvilinear traditional method available. 

Therefore, the results from KE PSE with an optimal bandwidth were also compared to the results 

from the chained equipercentile equating in spite of the fact that the chained and 

poststratification methods are based on different assumptions and procedures. 

In developing the idea of the difference that matters (DTM), Dorans and Feigenbaum 

(1994) stated that a difference that is less than one-half of a scaled score interval can be 

considered small enough to ignore. The value of the DTM is the smallest value that would round 

to a whole scaled score unit. In the case of the SAT Subject Tests, the DTM value is 5 since the 

scaled scores are reported in intervals of 10. The difference between the unrounded scaled score 

results at each raw score point from the KE and traditional methods was compared relative to the 

DTM to determine at what points the KE results were substantially different form those obtained 

using the traditional equating methods. 

The root mean square is a measure of the magnitude of a series of values, such as the 

difference, at set points, of estimated values and baseline values. The root mean square difference 

(RMSD) is the square root of the mean of the squares of those differences, represented by 

2

1

1 n

i
i

RMSD d
n =

= ∑
, 

where, in this case, di is the difference between the scaled score results from the newly 

introduced KE method and the scaled score results obtained using the classical equating method 

for the ith new form raw score, and n is the number of new form raw scores. The magnitude of 

the differences between the KE scaled scores and the corresponding classical equating scaled 

scores were examined. 

Because the distributions of scores were negatively skewed, few scores fell below the 

mean chance score of zero on the two tests. Therefore, the RMSD values were calculated using 

the scaled score differences for only those raw formula scores at or above the mean chance 

formula score (i.e., at and above zero). The smaller or the closer to zero the RMSD was, the 

better a given KE result approximated the corresponding classical equating method result. Since 

scaled scores are reported in intervals of 10, an RMSD value less than 5 indicated that the KE 
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method was a good approximation of the classical method, and an RMSD value in the 5 to 10 

range indicated that it was a reasonable approximation. 

The standard error of equating is defined as random equating error, and it is present when 

the scores of examinees are sampled from the population. If the whole population were available, 

then random equating error would not be present. Thus, the amount of random error in 

estimating the equating relationship becomes negligible as the sample size increases (Kolen & 

Brennan, 2004). The CSEE is the estimate of the standard error of equating conditioned on the 

distribution of the raw scores of the new form. The CSEE is used in GENASYS (ETS, 2007) to 

measure the uncertainty in the estimated equating function of an equated score. The procedures 

and methods used in GENASYS to compute the CSEE are determined by the different equating 

methods in the different data collection designs. The descriptions of CSEE procedures and 

formulas for the different methods can be found in von Davier (2002). The CSEEs produced by 

GENASYS for the KEs were examined. They were then compared to the CSEEs produced by 

GENASYS for the same corresponding classical methods that were used in comparing the 

equating results. It should be noted that the CSEEs used in this study are for the raw-to-scale 

conversions, not for the raw-to-raw conversions. 

Results 

Comparison of Equating Lines 

The KE equating methods do not map one-to-one with those currently used in equating the 

SAT Subject Tests. The KE CE with a large fixed bandwidth results were compared with the 

chained linear results, and the KE PSE with a large fixed bandwidth results were compared with 

both the Tucker and Levine results. Currently only one classical nonlinear equating method is used 

in the SAT Subject Tests program: chained equipercentile with presmoothed distributions. 

Therefore, both the results from the KE CE with an optimal bandwidth and the results from the KE 

PSE with an optimal bandwidth were compared to the chained equipercentile equating results. 

Figures 1 through 6 are all difference plots with the relevant operational result subtracted 

from the corresponding kernel result. Consequently, the scale on the Y-axis is difference in 

scaled scores. 

Figures 1 and 2 clearly show that the KE CE method with large fixed bandwidths for total 

test and anchor yields results are nearly identical to the traditional chained linear equating 

method for both tests. For the mathematics test, the largest difference in the scaled score was 
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0.0005 at the extreme lower end of the scale, while for the history test, the maximum difference 

was 0.0018, also at the extreme lower end of the scale. Because the KE results, even with a large 

bandwidth, are not truly linear, there is some, albeit very small, deviation from a straight line. 

As expected, for both tests the results from the KE PSE with a large fixed bandwidth 

more closely resemble the Tucker results than the Levine results (see Figures 3 and 4). For the 

mathematics test only six scaled scores resulting from the KE PSE were closer to Levine than to 

Tucker. The differences from Tucker never exceeded the DTM, while the differences from 

Levine exceeded the DTM for 15 raw score values mostly at the extreme low end of the scale, 

specifically, -12 to 2, and for two raw scores at the top of the scale, 48 and 49. For the history 

test, the results from KE PSE with a large fixed bandwidth were clearly more like the results 

from Tucker than the results from Levine. The differences from the Tucker results did not exceed 

the DTM at any point, whereas the differences from the Levine results exceeded the DTM at 24 

raw score values at the extreme lower end of the scale from -22 to 1. It should be noted that most 

of these values are below the mean chance score where there were few observed scores.  

For the mathematics test the curvilinear results are less clear. Of the values that can be 

compared, those for raw score values of -6 to 47, 32 scaled score values from the KE PSE with 

an optimal bandwidth results are closer to the chained equipercentile results than the KE CE with 

optimal bandwidth results, and only 22 scaled score values from the KE CE with an optimal 

bandwidth results are closer to the chained equipercentile results than the KE PSE with an 

optimal bandwidth results. Figure 5 shows that the two KE methods produce results that are 

similar in the center to top of the raw score scale, from 7 to 45. The KE CE differences from 

chained equipercentile only exceeded the DTM at five raw score values at the bottom of the raw 

score scale, from -6 to -2, and one raw score value, 47, at the top of the raw score scale. On the 

other hand, the KE PSE differences from chained equipercentile exceeded the DTM at 12 raw 

score values near the bottom of the raw score scale, values of -8, -7, and from -5 to 4.  

For the history test, the results from the KE CE with an optimal bandwidth were closer to 

the chained equipercentile results than were the KE PSE with an optimal bandwidth results 

except at the lower end of the scale (see Figure 6). The differences of the KE CE with an optimal 

bandwidth from the chained equipercentile results were greater than those for the KE PSE 

optimal results primarily for the raw score values of zero and below. But all of the differences for 

both methods were substantially less than the DTM. 



11 

-0.0100

-0.0050

0.0000

0.0050

0.0100

-12 -9 -6 -3 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Raw Scores

D
iff

er
en

ce
  i

n 
  S

ca
le

d 
Sc

or
es

difference
[KE(CE)
fixed -
chained
linear]

 

Figure 1. Difference in scaled scores for equating functions for kernel equating (KE) 

chained equating (CE) with a large fixed bandwidth and chained linear equating for the 

SAT Subject Test in Mathematics Level 2. 
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Figure 2. Difference in scaled scores for equating functions for kernel equating (KE) 

chained equating (CE) with a large fixed bandwidth and chained linear equating for the 

SAT Subject Test in U.S. History. 
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Figure 3. Difference in scaled scores for equating functions for kernel equating (KE) 

poststratification equating (PSE) with a large fixed bandwidth and Tucker equating, and 

difference in scaled scores for equating functions for KE PSE with a large fixed bandwidth 

and Levine equating for the SAT Subject Test in Mathematics Level 2. 
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Figure 4. Difference in scaled scores for equating functions for kernel equating (KE) 

poststratification equating (PSE) with a large fixed bandwidth and Tucker equating, and 

difference in scaled scores for equating functions for KE PSE with a large fixed bandwidth 

and Levine equating for the SAT Subject Test in U.S. History. 
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Figure 5. Difference in scaled scores for equating functions for kernel equating (KE) 

chained equating (CE) with an optimal bandwidth and chained equipercentile equating, 

and difference in scaled scores for equating functions for kernel equating (KE) 

poststratification equating (PSE)  ith an optimal bandwidth and chained equipercentile 

equating for the SAT Subject Test in Mathematics Level 2. 
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Figure 6. Difference in scaled scores for equating functions for kernel equating (KE) 

chained equating (CE)  ith an optimal bandwidth and chained equipercentile equating, and 

difference in scaled scores for equating functions for kernel equating (KE) 

poststratification equating (PSE) with an optimal bandwidth and chained equipercentile 

equating for the SAT Subject Test in U.S. History. 
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Root Mean Square Difference (RMSD) 

Because the distributions of scores were negatively skewed, a few scores fell below the 

mean chance score of zero in this testing program. For the total samples, only 22 examinees 

(0.15% of scores) were below zero in the reference form sample and 27 (0.20%) in the new form 

sample for the mathematics test; 49 examinees (0.12% of scores) were below zero in the 

reference form sample and 77 examinees (0.44%) in the new form sample for the history test. 

Since log-linear smoothing methods populate those scores with small fractions of examinees 

based on the moments preserved in the actual distribution, the equating results for those methods 

requiring or using the smoothed distributions can be somewhat erratic where little or no real data 

are available. Therefore, the RMSDs were calculated for raw scores from the mean chance score 

(zero) and above only, rather than for all of the values. 

Table 5 shows the RMSD values for all comparisons for both tests. The RMSD values for 

the differences between KE CE with a large fixed bandwidth and chained linear showed that the 

KE was a very good fit with the chained linear results. In fact, those results were close to zero. 

For the comparisons of KE PSE with a large fixed bandwidth to Tucker and Levine, the RMSDs 

for both tests indicated that the KE results were a better fit with Tucker than Levine; but the 

RMSD for both methods for both tests were less than 5.0, and therefore, the KE PSE results were 

a good fit to both classical methods. For the history test, the results for KE CE with an optimal 

bandwidth were clearly a better fit with the chained equipercentile results than were the results 

for KE PSE with an optimal bandwidth where the RMSD for KE CE is 0.57 and the RMSD for 

KE PSE is 1.01. However, for the mathematics test, the RMSDs showed that the fit of the KE 

PSE with an optimal bandwidth results and the KE CE with an optimal bandwidth results 

compared to the chained equipercentile results were essentially the same where the RMSD for 

KE CE is 2.61 and for KE PSE it is 2.74. In general, the fit for the mathematics test is not as 

good as the fit for the history test. But, again, all of the RMSD values are less than 5.0. 

Therefore, for both tests the results for the KE CE and KE PSE with optimal bandwidths were 

good fits to the chained equipercentile results at and above a raw score of zero. 

It should be noted that the Levine and Tucker methods differ from each other more than 

the relevant continuization method; specifically, the KE PSE with a large fixed bandwidth differs 

from the traditional PSE method (i.e., Tucker; see Table 5). Therefore, one would expect to see 

differences between the results from KE PSE with a large fixed bandwidth and Levine. The 
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comparisons of the results from KE PSE with an optimal bandwidth to the results from the 

chained equipercentile equatings are somewhat confounded with the differences that are caused 

simply by the differences in the basic approaches—chained versus poststratification. 

Table 5 

Root Mean Square Difference (RMSD) for Traditional Method and Kernel Equating (KE) 

Method for Formula Score Values of Zero and Above Only 

Test 

Comparison SAT Mathematics 

Level 2 

SAT U.S. 

History 

Chained linear – KE CE fixed bandwidth  0.0001 0.0003 
Tucker – KE PSE fixed bandwidth 1.0231 0.3744 
Levine – KE PSE fixed bandwidth 3.2801 2.5933 
Chained equipercentile – KE CE optimal bandwidth 2.6111 0.5700 
Chained equipercentile – KE PSE optimal bandwidth 2.7447 1.0101 
Levine — Tucker 2.6050 2.9278 
KE CE optimal bandwidth – KE PSE optimal bandwidth 3.0808 1.4499 

Note. CE = chained equating; PSE = poststratification equating. 

Comparisons of Conditional Standard Errors of Equating (CSEE) 

For both tests, the scaled score CSEEs for all of the KE methods are relatively small for 

new form raw scores where substantial data exist (i.e., for raw scores at and above zero). Also 

for both tests, the CSEEs for the large fixed bandwidth KEs are smaller than the CSEEs for the 

optimal bandwidth KEs for both CE and PSE. Figure 7 shows the CSEEs for all four of the KEs 

for the mathematics test. The CSEEs for the optimal bandwidths, both CE and PSE, are large at 

the lower extreme of the raw score scale and small throughout the rest of the raw score scale, 

while the CSEEs for the equatings using a large fixed bandwidth, both CE and PSE, are small for 

all raw score values. For raw score values at or above a raw score of 6, the differences in CSEE 

values among the various KE methods are very small. For the history test, the scaled score 

CSEEs for the two large fixed bandwidth KEs and the two optimal bandwidth KEs have much 

the same pattern as those for the mathematics test (see Figure 8). 
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Figure 7. Conditional standard errors of equating (CSEE) for all kernel equating (KE) 

methods for the SAT Subject Test in Mathematics Level 2. 

Note. CE = chained equating; PSE = poststratification equating. 
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Figure 8. Conditional standard errors of equating (CSEE) for all kernel equating (KE) 

methods for the SAT Subject Test in U.S. History. 

Note. CE = chained equating; PSE = poststratification equating. 

For both the mathematics test and the history test, the CSEEs for the chained linear and 

KE CE with a large fixed bandwidth are nearly identical, as were the equated scores. For the 

mathematics test (see Figure 9), the plots of the CSEEs are a somewhat wavy U-shape reaching 
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1.9 at the lowest raw score; but for both equating methods, they are below 1.0 for most of the 

raw score scale. The plots of the CSEEs for the history test (see Figure 10) are somewhat U-

shaped with the values for CSEE reaching 1.4 at the lowest raw score. The CSEEs are below 1.0 

for raw scores of zero and above for both equating methods. 

For the mathematics test, the CSEEs for the poststratification linear equatings (i.e., 

Tucker and KE PSE with a large fixed bandwidth) and for the Levine equating, all have wavy U-

shaped plots (see Figure 11). The CSEEs for the mathematics test are higher at the lower end of 

the raw score scale than at the top the raw score scale. The CSEEs for Tucker and the KE PSE 

with a large fixed bandwidth equatings are nearly the same for the whole scale. The CSEEs for 

the Levine equating are slightly higher by less than 0.5 throughout the scale. All of CSEE values 

for these equatings are below 2.0, except for the lowest three values for Levine. 

Figure 12 shows the CSEEs for the poststratification linear equatings (i.e., Tucker and 

KE PSE with a large fixed bandwidth) and for the Levine equating for the history test. All of 

these methods have the typical U-shaped plot with a more pronounced upward tail at the lower 

end of the raw score scale than at the upper end of the raw score scale. The CSEEs for Tucker 

and the KE PSE with a large fixed bandwidth equating are nearly the same for most of the raw 

score scale. However, some separation occurs in the top third of the raw score values. The KE 

PSE with a large fixed bandwidth has lower CSEE values in this area. The CSEEs for Levine are 

slightly higher (i.e., less than 0.2 higher) throughout the raw score scale. All of CSEE values for 

the three equating methods are below 2.0. For the mathematics test, the chained equipercentile 

equating has very large values for CSEEs at the bottom of the scale, but they fall below 2.0 at a 

raw score of 9. The KE CE with an optimal bandwidth CSEE values are greater than 10.0 at the 

bottom, however, the values for the CSEEs are below 1.0 for most of the raw score scale. The 

KE PSE with an optimal bandwidth CSEEs are similar to those for KE CE with an optimal 

bandwidth, with a value greater than 7.0 at lower end of the raw score scale and values of less 

than 1.0 for most of the raw score scale (see Figure 13). 

For the history test, the CSEEs for the chained equipercentile, KE CE with an optimal 

bandwidth, and KE PSE with an optimal bandwidth equatings are much like those seen for the 

mathematics test. While the CSEE values are high at the lower end of the raw score scale, the 

CSEE values for the chained equipercentile equating fall below 2.0 for most of the raw score 
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scale, and the CSEE values for the KE CE with an optimal bandwidth and KE PSE with an 

optimal bandwidth equatings fall below 1.0 for most of the raw score scale (see Figure 14). 
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Figure 9. Comparison of conditional standard errors of equating (CSEE) for chained linear 

equating and kernel equating (KE) chained equating (CE) with a large fixed bandwidth for 

the SAT Subject Test in Mathematics Level 2. 
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Figure 10. Comparison of conditional standard errors of equating (CSEE) for chained 

linear equating and kernel equating (KE) chained equating (CE) with a large fixed 

bandwidth for the SAT Subject Test in U.S. History. 
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Figure 11. Comparison of conditional standard errors of equating (CSEEs) for Tucker 

equating, Levine equating, and kernel equating (KE) poststratification equating (PSE) with 

a large fixed bandwidth for the SAT Subject Test in Mathematics Level 2. 
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Figure 12. Comparison of conditional standard errors of equating (CSEEs) for Tucker 

equating, Levine equating, and kernel (KE) poststratification (PSE) with a large fixed 

bandwidth for the SAT Subject Test in U.S. History. 
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Figure 13. Comparison of conditional standard errors of equating (CSEEs) for chained 

equipercentile equating, kernel (KE) chained equating (CE) with optimal bandwidth, and 

KE PSE (poststratification equating) with optimal bandwidth for the SAT Subject Test in 

Mathematics Level 2.  
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Figure 14. Comparison of conditional standard errors of equating (CSEEs) for chained 

equipercentile equating, kernel equating (KE) chained equating (CE) with optimal 

bandwidth, and KE poststratification (PSE) with optimal bandwidth for the SAT Subject 

Test in U.S. History. 
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Summary and Conclusions 

Clearly the KE method that is most nearly parallel with a classical method is the kernel 

chained equating with a large fixed bandwidth compared to the chained linear equating. Except 

for running a few more examples to confirm this close match, little needs to be done to aid in 

interpreting KE CE with a large fixed bandwidth. 

In this study, the KE PSE with a large fixed bandwidth conversion matched the Tucker 

result more closely than the Levine result, as was found in previous studies (e.g., see von Davier 

et al., 2006). This result was expected since the KE PSE with a large fixed bandwidth equatings 

and Tucker are based on similar assumptions. The difference between KE PSE with a large fixed  

bandwidth from Levine was relatively small because the abilities of the two groups were similar 

with similar standard deviations and the correlation between anchor scores and total scores were 

relatively high. Therefore, the results from Tucker and Levine were not very different from one 

another. In addition, the difference of the difficulties for the new and reference forms were not 

very large. Since the results from the Tucker and Levine equating methods tend to be different 

when group differences are large, the closeness of the KE PSE with a large fixed bandwidth 

result to Levine is not expected to hold in situations where large group differences occur. On the 

other hand, the closeness of the KE PSE with a large bandwidth result to the Tucker result may 

pose a problem if the KE PSE with a large fixed bandwidth demonstrates the same bias that 

Tucker shows when the abilities of the groups are substantially different from one another. 

Further investigation is needed on how KE PSE with a large fixed bandwidth behaves relative to 

Tucker and Levine when the reference and new form groups are different so that 

psychometricians can learn how to interpret and evaluate the KE results. 

The SAT Subject Tests program has only used one nonlinear equating method 

operationally; that method is chained equipercentile. With KE, now two methods, using an 

optimal bandwidth for both CE and PSE, are equally easy to perform in GENASYS (ETS, 2007). 

Both methods yield results that are not very different from the chained equipercentile method 

and, at least in this study, not very different from each other (see Table 5). However, only 

experience with many equatings will educate the psychometrician in evaluating and 

distinguishing between those two nonlinear equating results. 

The KE CE method with an optimal bandwidth and the KE PSE method using a large 

fixed bandwidth produced results similar to the respective traditional equating methods. The 
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kernel chained method using a large fixed bandwidth produced results nearly identical to the 

respective traditional equating method. For both of the tests used in this study, the forms were of 

similar difficulty, and the groups used in the equatings were of similar ability. Further trials need 

to be conducted to determine whether the relationships hold when test forms and/or groups are 

different. 

The CSEEs for the KEs were similar to the CSEEs for the respective traditional 

equatings, with the CSEEs for the KE CE with a large fixed bandwidth being nearly identical to 

those of the chained linear equatings. The CSEEs for the KE equatings were almost always less 

than those for the traditional equatings. However, the difference between them was not large 

except at the bottom of the raw score scale where no data existed. A noticeable advantage for the 

KEs with optimal bandwidth was that the CSEEs did not go to ridiculously high values at the 

bottom of the raw score scale. 

An important aspect of transitioning to KE is a thorough understanding of how to 

interpret and compare the final raw-to-scale conversion lines by the psychometricians. The 

psychometricians need to develop a thorough understanding of how to interpret the KE results 

for all types of testing situations, such as small sample tests with very skewed distributions. Staff 

at all levels need to become familiar with the coding options and output so that when introduced 

operationally to any testing program the KE methods do not delay the processing and therefore 

delay the reporting of scores. In classical equating, this testing program has used Tucker, Levine, 

chained linear, and chained equipercentile equating methods. The requirements for the use of 

each of these methods were thoroughly known so that the equating decisions followed from what 

was observed in the data and equating output. At the time of this study, in KE in GENASYS 

(ETS, 2007), two distinct choices were available for both linear and nonlinear equatings. More 

familiarity with KE results, some of which comes from experience, will be necessary when the 

psychometrician must work with KE in an operational setting. 

KE provides a measure of the accuracy to the estimated difference between two equating 

functions, referred to as SEED. It is used primarily in a plot that shows the limits of ±2 times the 

SEED around one equating function and the difference of the other KE function from that criterion 

line. If the difference line is mostly within the SEED limits, then the function can be considered 

linear; if it is outside of the line, then the function is curvilinear. This additional evaluation tool 

used as an integral part of KE is a primary reason for transitioning to KE operationally. The most 
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disappointing aspect of running KE in GENASYS (ETS, 2007) was the absence of the SEED, 

which has not yet been written into GENASYS. How having the SEED available for interpretation 

would affect the experience of working with KE cannot be attested here. 

A final question that should be addressed before KE is implemented operationally is: 

What does KE offer to the equating process? Instituting KE as an additional procedure will 

increase the information obtained from the equating little, if any, as long as the close 

relationships between the KE equatings and the respective traditional methods hold under all 

circumstances. Simply adding KE to the existing operational methods would be more of a 

redundancy than an addition of information and choice. Therefore, it is as a replacement for 

traditional equating methods that KE seems to have merit. Perhaps the addition of the SEED to 

improve the ability of the psychometrician to evaluate the equating functions produced would 

make KE more appealing. Otherwise, if the results are essentially the same as those that can be 

obtained using the traditional classical methods, then why go to the effort and expense of 

switching to KE? 
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