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Abstract.  Using data from an existing pre-algebra computer-based tutor, we 
analyzed the covariance of item-types with the goal of describing a more 
effective way to assign skill labels to item-types. Analyzing covariance is 
important because it allows us to place the skills in a related network in which 
we can identify the role each skill plays in learning the overall domain. This 
placement allows more effective and automatic assignment of skills to item-
types. To analyze covariance we used POKS (partial order knowledge 
structures) to analyze item-type outcome relationships and Pearson correlation 
to capture item-type duration relationships. Hierarchical agglomerative 
clustering of these item-types was also performed using both outcome and 
duration covariance patterns. These analyses allowed us to propose improved 
skill labeling that removes irrelevant item-types, clusters related types, and 
clarifies the optimal temporal ordering of these clusters during practice. 

1 Carnegie Learning’s Bridge to Algebra Cognitive Tutor 

Our goal was to examine a large dataset (>9 million problems step performances) to 
determine a skill model that we could subsequently use to produce improvements to a 
Cognitive Tutor [1]. While the tutor had a skill model coded by human domain experts, 
we felt that it would be useful to develop alternative methods of coding skills that might 
be less vulnerable to the possibility of human error and bias. The dataset was provided by 
Carnegie Learning Inc. from the Bridge to Algebra Cognitive Tutor for the 2006-2007 
school year [2]. This tutor works by providing a systematic coverage with 44 units of pre-
algebra content each of which has several sections. These sections consist of a problem 
type, which is composed of several steps or “item-types” which repeat over a sequence of 
similar problems.  

Data from this tutor included times of problem step actions and outcomes of step actions. 
Because, the human skill model was coded at this step level, we also choose to examine 
student performances at the step level (henceforth these individual steps in problems in 
sections in units will be called item-types). By using this level of analysis we will be able 
to qualitatively compare the skill model that the tutor uses with the skill model suggested 
in our analyses.  

2 Areas of improvement 

Human coding and selection of skills in a tutor may introduce the following three 
possible problems which our datamining algorithm addresses. As we discuss skills, it 
should be assumed that we are considering skills more generally as latent variables that 
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may represent knowledge components important to a concept, rule application, or other 
learnable proficiency necessary for responding to an item-type. 

2.1 Problem of irrelevant skills 

This issue refers to labeling an item-type as needing a skill despite it having a weak 
relation with other proficiencies that the tutor is focused upon. These weak relationships 
may be due to the fact that the action is either too simple (probability of success near to 
1), too hard (probability of success near 0) or that the task is irrelevant to (independent 
of) the more complex related target proficiencies. In the case of simple tasks, the skill 
should not be labeled because the item-type should not be included in the tutor since 
performance is already at/near the desired level and time is wasted in further repetition. 
In the case of the difficult task we can suppose that some actions should not be included 
in a tutor because they result in poor learning and frustrate students. In both of these 
cases, our method will ignore these skills since a skill lacking variance cannot covary. In 
the case of an independent task it clearly makes little sense to include the item-type in the 
tutor unless the data suggests it is associated with a target skill of the domain. 

2.2 Problem of skill redundancy 

This is the issue of labeling two different item-types with two independent skill labels 
despite strong similarities in the skill involved. When a human decides to label a skill 
there is always the question whether the action is statistically equivalent with another 
action in the tutoring system being analyzed. Of course, this is a very difficult problem to 
judge since it depends on whether variation in the actions is different enough to produce 
difference in performances that are of practical significance. Because if this human 
experts may tend to label skills as different despite strong similarities. This leads to a 
model that tends to have poor intuitions about the how much practice to give a particular 
skill because when similar item-types are treated as independent the model can make no 
conclusions about how much practice to give the second one depending on performance 
with the first one. Thus, a tutor with redundant skills will be forced to give too little or 
too much practice because it is ignorant of the underlying skill overlap. 

2.3 Problem of skill ordering 

It is generally thought that a curriculum has a fixed order in which earlier skills form part 
of later whole skills or target performances, but this order may be difficult to identify. 
The importance of curriculum order may be due to a general benefit for training part 
skills before introducing whole skills. Wightman and Lintern [3] have described two 
ways of splitting a whole task into components tasks: segmentation and fractionation. 
Segmentation splits the whole task into sequential steps, and fractionation splits the 
whole task into time-shared parts. Optimal curriculum ordering may require some part-
training in either case. With segmented skills, part-training may allow more efficient 
targeted training that can avoid already learned parts of the whole task. In the case of 
fractionated skills, part-training may provide the initial skill that enables the learner to 
successfully practice the whole skill. Because our method can identify prerequisites, we 

 



 

can hope that it will help us answer questions about the ordering of skills in a principled 
way. 

3 Analysis methods 

The analysis began with the creation of response correctness contingency tables (see 
Section 3.1) and response duration correlations (see Section 3.2) for all pairwise item-
type combinations within each subject’s data. Following the creation of these relationship 
matrices, simple agglomerative clustering iterated until no item-type (clusters) had a 
relationship correlation product (see Sections 3.2 and 3.3) greater than the clustering 
coefficient. At this point, the POKS tests were computed on the item-type clusters and the 
prerequisite order graph was created (one link was also removed by the requirement for r 
> 0 duration correlation between POKS linked item-type clusters).   

The parameters were as follows: a clustering coefficient of 0.55, a pc value of 0.35 (this 
value needed to be so high because of the strict correction of degrees of freedom 
described in Section 3) and ac values of 0.15. These parameters were selected to limit the 
number of links and restrict the clustering to obtain a graph that would provide us 
examples we could analyze  as discussed by Desmarais [4]. Additionally, before analysis, 
we removed students with less than 250 transactions, and we removed item-types with 
less than 2000 transactions. These filters reduced our dataset to 1073 students with a total 
of 1,099,642 outcomes (the quantity of response durations was slightly lower since we 
only accepted durations for trials with a successful outcome and discarded durations 
greater than 60s). The analysis was restricted to this subset, which included all 
transactions from 3 contiguous units of the 44 in the tutor, to make it manageable to show 
a graphic of the results. Larger numbers of units/item-types could not be made to fit on a 
single page. 

3.1 Partial order knowledge structures (POKS) 

To construct the graph describing the prerequisite relationships in the data, we used the 
POKS method, which is one way to characterize the theory of knowledge spaces. 
Knowledge spaces describe how the learn units (skills or item-types in this paper) in a 
domain are learned in a constrained order [5]. Knowledge spaces have been investigated 
by many researchers using different methods [6, 7].  

To explain the POKS method, first, we introduces the notations following [4]: 

, ,...A B the upper case Roman letters denote two item-types in test 
A B⇒

( | )P B A
( | )P A B¬ ¬

, knowing how to solve item-type A correctly leads to solving item-type B 
correctly (we have reversed this arrow notation in Figure 1.) 

, the probability of getting item-type B right, given A was right 
, the probability of getting item-type A wrong, given B was wrong 

cp , the minimum probability that  and ( | )P B A ( | )P A B¬  need to hold ¬
, the error of the POKS tests, which may be set differently for different tests cα

A BN ∧  , the number of times that students get A right and B right* 

 



 

A BN ∧¬ , the number of times that students get A right and B wrong* 

A BN¬ ∧ , the number of times that students get A wrong and B right* 

A BN¬ ∧¬ , the number of times that students get A wrong and B wrong* 
∗ Because the independence of observations assumption of the statistical tests 

was strained when considering repetitions of the same item-type for the same 
student, these values were normalized by dividing the each by the total so that 
they summed to 1. The statistical tests then assumed a number of degrees of 
freedom equal to the number of subjects in each pairwise comparison. This 
correction is overly conservative, but provides an unbiased correction for the 
sometimes great between-subjects variability in the N of repetitions. 

( , , )CDFBinomial x n p , the cumulative density function of a binomial distribution of n 
trials and p success probability 

The idea of POKS is that if A B⇒

A B⇒

perfectly, we would expect , 
 and that the contingency table shows a lack of independence . In reality, 

due to noise and imperfect , we would expect the above two equalities not to hold 
exactly. Thus we can setup tests such that if and 

( | ) 1P B A =

| )B

( | )P A B¬ ¬ =1

( | )P B A (P A¬ ¬ are above some 
threshold cp , we can have some confidence of A B⇒

c

. Therefore, for there to exist a 
relationship between A and B three tests must succeed. The first two tests check that 

and are above some threshold( | )P B A ( |P A B¬ ¬ ) p , given the allowed test error cα . 
The third test verifies whether the conditional probability and are 
different from and . 

(P B | )A (P A |¬ ¬ )B
( )P B (P )A¬

Test 1 returns true if ( , ,1 )A B A B A B c cCDFBinomial N N N p α∧¬ ∧ ∧¬+ − < . 
Test 2 returns true if ( , ,1 )A B A B A B c cCDFBinomial N N N p α∧¬ ¬ ∧¬ ∧¬+ − < . 
Test 3 returns true if the 2*2 contingency table of A BN ∧ , A BN ∧¬ A BN¬ ∧  and  passes 
a 

A BN¬ ∧¬
2χ test with error rate cα .  

3.2 Clustering based on conditional log odds 

As we can see by examining the tests, they rely on the contingency table that is tabulated 
for each pair-wise item-type comparison. These contingency tables create a covariance 
structure that “places” each item-type in the POKS graph relative to the other item-types. 
By reflecting on this we can see that if we want to cluster the items based on the 
similarity of the required proficiencies, which would imply they require the same skills, 
we need a distance metric for item-types that a) captures that two items co-vary and b) 
can cope with the fact that two items may not be equally difficult despite having the very 
similar covariance structures. Requirement a means we need a distance metric that 
captures the structure of the contingency tables for item-type X1 as compared to the 
contingency tables for item-type X2. Requirement b means that this metric probably 
should not capture the structure of the tables relative to the outcome of performance X1 or 
X2. Rather, we should describe a distance metric that is computed conditionally for those 

 



 

cases where X1 or X2 is a success or failure. Requirement b is important for the purpose 
here because the tutor introduces item-types in a fixed order. This fixed order means 
differences in average performance between item-types may be caused by learning. 
However, this difference in performance between item-types that represent the same skill 
should not greatly alter the contingencies given the response is a success or failure. 

To do this comparison of the covariance structure it helps to consider the data for two 
item-types (X1 and X2) as being organized into two vectors of contingency tables 
describing these item-types relationship with all other possible item-types (Yn). If we 
consider that each contingency table is organized with X frequency results for A item-
type and Y frequency results for B item-type, then for each Xn by Yn contingency table 
we individually computed 2 values: one for when Xn is a success and one for when Xn is 
a failure. In each of these 2 cases, the log odds of B vs. ~B frequencies is used to capture 
the strength of the odds B:~B on a continuous scale. Because these log odds do not 
capture the effect of frequency of A or ~A and only capture the relative frequency of B 
vs. ~B they are not reactive to learning of A that does not affect the patterns of B vs. ~B, 
nor are they reactive to difference in the n of observations of the B:~B results. Using this 
procedure we computed these 2 log odds (one for A and one for ~A) for each 
contingency table for each vector of contingency tables (X1 or X2). 

At this point we can describe vectors of log odds values for each column item-type X1 
and X2 (getting 2 values conditional on A and ~A for each item Xn by Yn pair) and 
compute their Pearson correlation to determine the nearness of the two item-types in the 
knowledge space. To do this clustering we used a simple agglomerative hierarchical 
clustering to cluster item-types into a new grainsize which implies clustered items share 
the same performance requirements (skill). This new method shares similarities with 
correlation clustering methods that have proven useful for graph partitioning [7] and is 
described further in the next section. 

3.3 Integrating duration covariance information 

Previous work to understand the knowledge space has focused exclusively on how 
performance success or failure can be used to determine ordered structures. However, 
besides possessing success data, we also had data on the duration of each item-type 
performance. This data allowed us to compute pairwise duration correlations (r values) of 
the item-types that correspond with the POKS tests for each pairwise item-type 
relationship. While it was perhaps possible to use these correlations in some joint 
function with the strength of the result of the POKS tests for each pair, at this point we 
just used these values as an additional filter on which POKS implications we accepted as 
significant. For this paper we choose to exclude any A B pairs where r < 0. 

More importantly the duration correlation vectors created for each item-type were 
themselves correlated to produce values that represented the degree of similarity in the 
duration relationships between item-types. This statistic for each pair of item-types was 
multiplied by the correlation from the outcome based (log odds vectors) correlation 
above, and the item-type pair with the highest correlation product is clustered in each step 

 



 

of the simple agglomerative clustering. Clustering continues until the correlation of 
pairwise correlation vectors is above the clustering coefficient. 

4 Results 

Figure 1 shows the POKS graph obtained from this analysis and corresponds to the 
groupings in Table 1 which provides additional statistics to help interpret the results. The 
ovals in Figure 1 represent collections (or individual) item-types which were a function 
of the clustering procedure (also grouped in Table1). Item-type Label indicates the 
following information (probability correct_Unit name_section number_Skill ID number). 
The table also provides the average duration and total number of database observations 
(Rps—repetitions in 1000s) for each item-type. Colors indicate the majority unit 
membership for the grouped item-types, where LCM – least common multiple unit, GCF 
– Greatest common factor unit, and FracRep involves a visual and written fraction 
representation unit. Edge labels provide the average pc value and the duration correlation 
r. 

4.1 Irrelevant knowledge components 

The analysis failed to find any covariance relationship for 17 of the item-types in the 3 
units of the tutor. These knowledge components provide an example of how this method 
can be used to suggest proficiencies that do not covary with the other item-types in the 
tutor. These so-called irrelevant skills tend to be knowledge components with higher 
probability correct because in cases with higher probability correct there is less chance to 
get the examples of not A and not B that are needed to pass the 2nd binomial test. This 
means that these items are found to be irrelevant because they are so easy that it is less 
likely to detect how they influence other item-types even where such relationships might 
exist given a similar problem with higher difficulty.  

While further analysis would be necessary to determine if these skills were truly 
irrelevant, the method has provided us with an initial hypothesis about which skills might 
be removed from the tutor so that time saved to spend on item-types with stronger 
relationships with the other tutor content.  

4.2 Redundant knowledge components 

The clustering of item-types indicates that the pattern of success contingency tables and 
the pattern of duration correlations were similar for these item-types such that if item-
types X and Y are in a cluster it indicates they have similar relationships to the other 
item-types. By extension we can suppose that this similar place in the covariance 
structure suggests that performance for these item-types is constrained by the same skill. 
The fact that this clustering occurs suggests that the human coders used statistically 
irrelevant features to code the item-types. For example consider the green ovals in Figure 
1. The right oval includes a variety of item-types that might be described as 
understanding the denominator, while the left oval includes item-types that deal with the 
numerator.  

 



 

Table 1.  Key for graph. 

Item-type Label Rps Duration Unit Sect ID Skill description 
0.97_FracRep_1_43,35 2k 4.8s FracRep 1 43,35 Identify benchmark fraction, Identify Fraction using shape 

0.91_FracRep_1_46 5k 7.3s FracRep 1 46 Identify fraction associated with each piece of a horizontal bar 
0.92_FracRep_1_35,34 22k 6.2s FracRep 1 35,34 Identify Fraction using shape, Identify non-benchmark fraction 

0.87_FracRep_1_40 5k 7.7s FracRep 1 40 Identify fraction associated with each piece of a circle 
0.85_FracRep_1_38 6k 8.1s FracRep 1 38 Identify fraction associated with each piece of a square 
0.91_FracRep_4_55 4k 5.4s FracRep 4 55 Identify number of desired groups—construct 

0.88_FracRep_5_56,34 4k 14.1s FracRep 5 56,34 Identify fraction using number line, Identify non-benchmark 
0.93_FracRep_3_53 7k 6.8s FracRep 3 53 Identify fraction of desired items 
0.96_FracRep_1_47 2k 5.6s FracRep 1 47 Count number of shaded parts in square (discontiguous) 
0.94_FracRep_1_42 2k 5.7s FracRep 1 42 Count number of shaded parts in circle (contiguous) 
0.95_FracRep_1_49 2k 7.0s FracRep 1 49 Count number of shaded parts in circle (discontiguous) 
0.95_FracRep_1_44 2k 5.6s FracRep 1 44 Count number of shaded parts in horizontal bar (contiguous) 
0.87_FracRep_1_37 3k 7.5s FracRep 1 37 Count number of shaded parts in square (contiguous) 

0.9_GCF_2_28 28k 9.5s GCF 2 28 List factor of large number 
0.94_FracRep_2_40 3k 6.7s FracRep 2 40 Identify fraction associated with each piece of a circle 
0.79_FracRep_3_52 4k 8.4s FracRep 3 52 Identify number of total items 

0.76_FracRep_6_61,59 6k 5.8s FracRep 6 61,59 Represent non-benchmark, Represent fraction using num line 
0.89_FracRep_6_58 5k 6.3s FracRep 6 58 Identify fraction associated with each segment of a number line 
0.7_FracRep_1_32 7k 8.8s FracRep 1 32 Identify fraction associated with each piece of a vertical bar 
0.96_FracRep_2_45 3k 24.0s FracRep 2 45 Identify number of equal divisions (horizontal bar) 
0.94_FracRep_2_33 3k 25.8s FracRep 2 33 Identify number of equal divisions (vertical bar) 
0.86_FracRep_2_41 3k 23.3s FracRep 2 41 Identify number of equal divisions (circle) 
0.93_FracRep_2_39 3k 23.6s FracRep 2 39 Identify number of equal divisions (square) 
0.88_FracRep_6_57 5k 18.3s FracRep 6 57 Identify number of equal divisions (number line) 
0.75_FracRep_5_57 7k 22.2s FracRep 5 57 Identify number of equal divisions (number line) 
0.83_FracRep_1_33 6k 23.2s FracRep 1 33 Identify number of equal divisions (vertical bar) 
0.91_FracRep_1_45 6k 23.6s FracRep 1 45 Identify number of equal divisions (horizontal bar) 
0.87_FracRep_1_41 6k 23.0s FracRep 1 41 Identify number of equal divisions (circle) 
0.85_FracRep_4_54 4k 21.0s FracRep 4 54 Identify number of equal groups from fraction 
0.93_FracRep_1_39 6k 22.6s FracRep 1 39 Identify number of equal divisions (square) 

0.93_LCM_1_21 3k 7.3s LCM 1 21 Identify LCM - is product 
0.85_LCM_1_25 5k 9.7s LCM 1 25 Identify LCM 
0.82_LCM_1_26 5k 8.5s LCM 1 26 Identify LCM - one number multiple of other 
0.91_GCF_1_30 8k 6.9s GCF 1 30 Identify GCF 
0.87_GCF_1_29 9k 7.0s GCF 1 29 Identify GCF - one number multiple of other 
0.91_LCM_1_23 145k 5.5s LCM 1 23 List consecutive multiples of a number 
0.77_LCM_2_21 5k 10.6s LCM 2 21 Identify LCM - is product 
0.7_LCM_2_26 7k 9.2s LCM 2 26 Identify LCM - one number multiple of other 
0.68_LCM_2_25 9k 11.4s LCM 2 25 Identify LCM 
0.69_GCF_2_29 10k 15.2s GCF 2 29 Identify GCF - one number multiple of other 
0.66_GCF_2_30 11k 15.2s GCF 2 30 Identify GCF 
0.56_GCF_2_31 48k 10.7s GCF 2 31 Identify number of items in each group from GCF 

 

Much of this clustering may be necessary because the human coders were instructed to 
code in as fine a grain as practical. This instruction led to different skills being coded 
depending on whether  the stimulus was a vertical bar, horizontal bar, circle, square, or 
number line. In contrast, the clustering method lumped these skills together indicating 
they may be actually the same proficiency. By splitting these groups into separate skills 
the human coder delinked these proficiencies relative to the tutor’s automatic scheduling 
mechanisms. So, for example, if a student does very well on these clustered item-types as 
they are introduced, it will not result in less practice for the other items that our analysis 
suggests are in the cluster. Therefore by proposing these clusters we can address learning 
of the concept more efficiently because we can model transfer between item-types that 
are controlled by the same underlying proficiencies. Modeling transfer between item-

 



 

types allows us to know when a particular concept, skill or procedure has been mastered 
despite the fact that we may not have given a student examples of all the item-types in the 
cluster. (Also note that sometimes the human coders did repeat the same skill IDs for 
isomorphic item-types in different sections of the same unit. As we can see in Table 1, 
our clustering method tended to confirm these human skill labels by clustering these 
item-types. E.g. skill id 33 (and others) appear twice in the same cluster indicating that 
the model agrees with human coders decision to label these item-types with the same skill 
despite the fact that they are in different sections of the same unit.) 

 

Figure 1.  Graph structure described in the results section. 

4.3 Ordering of knowledge components 

The data comes from a tutor where the units follow a fixed order, and we can use our 
analysis to question the appropriateness of that order. As discussed in the introduction, 
we assume that introducing a prerequisite before its post-requisite will result in better 
learning, because each new idea will have been more adequately prepared by the 
scaffolding from prerequisite practice. This analysis of the optimal order is more difficult 
(than analysis of clustering or irrelevant skills) because the tutor repeats item-types, and 
learning caused by this repetition might explain why a downstream item-type performs 
better than an earlier item-type. However, while ideally we would include both orders of 
performance of any pair of item-types in our sample, it still seems safe to infer that very 

 



 

strong prerequisite relationships are not determined mostly by learning effects. Take for 
instance the position of the two green clusters (fraction concepts) relative to the GCF 
(greatest common factor unit)_2_31 item-type. Skill ID 31 involves a word problem in 
which students must produce the other factor for each of 2 products when the first factor 
has just been supplied by the student, e.g. “You have groups of 4 apples and 6 pears, 
what is the greatest number of equal sized groups of fruit you can make? (This is an ID 
30 skill.) How many apples in each group? (ID 31) How many pears in each group? – 
(also ID 31)”. This dependence of skill ID 31 in section 2 of the GCF unit on the fraction 
concept clusters seems plausible since this contextualized problem involves the 
denominator concept of understanding that wholes can be divided and also the numerator 
concept that these portions must be composed of a certain count of parts. While this 
reasoning might normally seemed strained, the support from the graph implies that the 
FracRep item-types should be practiced before this contextualized GCF section if we 
want to respect the recommendations of the theory of part-whole training to address the 
prerequisite skill first.  

5 Conclusions 

Future work will focus on integrating this knowledge space analysis with tracking of 
individual skills such as is currently used in the Bridge to Algebra Tutor. By integrating 
the knowledge space analysis it appears that we can get a rich perspective on what 
student actions might deserve to be coded as independent knowledge components. As we 
discussed in the results, this perspective should improve the performance of the model 
that tracks repetition of single skills in the tutor because that model can be modified to 
remove irrelevant skills, made less redundant by clustering skills, and made to better 
conform to the theory that prerequisites should be trained before later skills.   

This integration may proceed as shown in work by Cen on the Learning Factors Analysis 
(LFA) method, which allows improvement in Cognitive Tutor models by searching a 
space of hypothetical skills for the combination that best fits previously collected data 
[8]. LFA starts with an initial cognitive model represented as a binary matrix that maps a 
collection of skills to each item-type (or item) and uses a set of customized item response 
models to evaluate the model fit produced by any given mapping of skills to item-types 
for a particular dataset. These binary matrices are based on the tentative judgments of 
human experts about the effect of the features of the item-types, and LFA can 
systematically incorporate those features into existing cognitive models by generating 
and searching for alternative skill labels as allowed for in the matrix. This method has 
been used by various researchers to evaluate cognitive models in geometry, physics and 
reading [9, 10] . However, the method still requires a domain expert to propose 
alternative labeling of skills along which the algorithm searches. The methods proposed 
in this paper show promising potential to combine the strengths of POKS, item-type 
clustering and LFA to answer various EDM research questions by allowing us to use 
POKS and item-type clustering to generate a starting or alternative binary skill matrix for 
LFA model search. 
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