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Preface

This is a record of the proceedings of the 30" annual conference of the Mathematics
Education Research Group of Australasia (MERGA). The theme of the conference is
Mathematics: Essential research, essential practice. The theme draws attention to the
importance of developing and maintaining links between research and practice and ties in
with the joint day of presentations with the 21% biennial conference of the Australian
Association of Mathematics Teachers (AAMT). This special feature highlights the benefits
of collaboration between researchers, practising classroom teachers, and curriculum
developers.

We are pleased to welcome conference participants who are attending MERGA for the first
time. We hope you will make yourselves known so you can be made welcome and
introduced to others who share your research interests. Authors from nine countries are
represented in these proceedings, as well as from nearly every university in Australia and
New Zealand with education programs. There are also participants from state and private
school systems and government ministries of education. We look forward to the dialog that
will emerge from the varying perspectives brought by participants, especially through the
forums that will take place on the joint day shared with the AAMT.

All research papers and symposia submitted were blind peer-reviewed (without the
author/s being identified), by two experienced mathematics education researchers who
followed strict guideline that have been honed over a number of years. Where the two
reviewers, who did not know the identity of the other reviewer, disagreed about the
acceptability of a paper, another blind review was carried out by a third reviewer. For
consistency, a small panel of highly experienced reviewers undertook the task of reviewing
papers in this category. Only those research papers that were accepted by two reviewers
have been included in these conference proceedings. The abstracts for short
communications and round table discussions were read by two reviewers, who provided
feedback and advice to authors on the MERGA guidelines for these types of presentation.

We would like to thank the University of Tasmania, Faculty of Education, for the financial
support provided to complete the publication of these proceedings, as well as the hardy
team of PhD students and research assistants who helped the academic staff with the
conference program.

Kim Beswick Jane Watson

Chair, Conference Organising Committee Editor
Editor
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Mathematics: Essential Research, Essential Practice — Volume 1

The Beginnings of MERGA

Preamble to the Annual Clements/Foyster Lecture

In the middle of 1976 John Foyster, who was then based at the Australian Council for
Educational Research (ACER), came to see me at Monash University, where I was in charge
of the Mathematics Education program. John talked about how the Australian Science
Education Research Association (ASERA) had recently been established, with Professor
Richard Tisher (then of Monash University) as the prime mover. John wondered whether the
time was ripe for a similar national group interested in mathematics education research to be
established, and asked whether he and I might take steps to establish such a group.

My immediate reaction was yes, we should do it. Then came the doubts and reservations.
How would the Australian Association of Mathematics Teachers (AATM) react to such an
initiative? After all, AAMT already had a “Research Committee.” In any case, would there be
enough mathematics educators in Australia, interested in such a group to make it a viable
proposition? Who would provide the funds likely to be needed for the establishment of such a
group?

It was John’s and my opinion that the AAMT Research Committee had not reached out to
embrace most of the people lecturing in mathematics education in Australia at teachers
colleges or in universities at the time. Intuitively, I thought Australia needed a group like the
one John was proposing. My intuition told me that AAMT was not the organisation to move
towards the establishment of such a group.

John assured me that he would put up any funds needed to get the group going (and,
hopefully, any group that was established would be able to pay him back within a few years).
Hence we decided to proceed with the idea of establishing the group and to strike while the
iron was hot, so to speak, by conducting a national conference at Monash University in the
middle of 1977. I came up with the name “Mathematics Education Research Group of
Australia” which John liked because of the acronym MERGA, which suggested a “merging
together.” We sent out notices of our intention to form MERGA late in 1976. Neither of us
knew many of the people who might be interested in joining such a group, so the notices were
addressed to the “Mathematics Lecturers at...”

Soon after we had decided to go ahead, I heard of the existence of a group, based in New
South Wales, called the Mathematics Education Lecturers’ Association (MELA). John and I
talked about whether MERGA and MELA might become one from the outset, but we decided
that the aims of MELA seemed to be sufficiently different from those that we envisaged for
MERGA, focused far more on research than lecturing, that we should proceed with the
MERGA idea.

And so it came to be that in May 1977, the first of what was to become the annual
conference of MERGA took place. About 100 people attended, with papers frenetically being
read from 9 am to about 10 pm, for three days, in a Rotunda Theatre at Monash University.
Professor Richard Tisher was present at the start of the Conference, and talked of his
experiences in establishing ASERA. Frank Lester, of Indiana University, was among those
present. In the event, two volumes of papers read at the Conference were produced (the first
volume being available on the first day of the Conference, and the second several months
later).

At a post-Conference meeting it was decided that, yes, MERGA should be formed, that
the second meeting would be at Macquarie University in May 1978, and that an annual
conferences should be held each year at a different academic institution. At that second
conference it was decided by those present that MERGA should continue and a constitution
and election of offices would be decided on at the third conference to be held at the then
Brisbane College of Education. And so MERGA was born.

Ken Clements



Mathematics: Essential Research, Essential Practice — Volume 1

Teaching and Learning by Example
The Annual Clements/Foyster Lecture

Helen L. Chick
University of Melbourne
<h.chick@unimelb.edu.au>

The mathematical problems, tasks, demonstrations, and exercises that teachers and students
engage with in classrooms are, in general, specific instantiations of general principles.
Indeed, the usual purpose of such examples is to illustrate those principles and thus
facilitate their learning. With this in mind, it is clearly important for teachers to be able to
choose or design suitable examples, to recognise what is offered (or afforded) by particular
examples, and to know how to adapt an already existing example to better suit an intended
purpose. Although writers of textbooks and other teaching resources also need these skills,
it is ultimately the teacher who puts the examples to work in the classroom. Teachers’
choice and use of examples is indicative of their pedagogical content knowledge (PCK)—
the complex amalgam of mathematical and pedagogical knowledge fundamental to teaching
and learning—and reflects their understanding of the mathematics to be taught and how
students can be helped to learn it. This paper examines some of the issues associated with
example use and how it is informed by and can inform us about PCK.

When a mathematics teacher asks a class to find the solutions of x> —=5x+6=0, an
observer may already have an idea about the point of the exercise. The task appears to be
about solving equations—more specifically, quadratic equations. Beyond this, however,
some contextual information is needed in order to understand fully the teacher’s purpose in
choosing that particular example. What if the next problem assigned is to find the solutions
of x*—2x+5=07? Does this tell us anything? The two problems do not appear very
different structurally, so why assign both? How are the two problems the same and
different? What more does the second example tell us about the teacher’s learning
intentions?

This scenario highlights a number of issues. First, the teacher’s purpose in using the
tasks most likely is not to solve the specific problems but to teach more general principles.
The actual solutions to the specific equations x> —5x+6=0 and x°—2x+5=0 are not
of interest, but the teacher is likely very interested in highlighting conceptual issues such as
equation-solving methods and the nature of solutions. Second, the purpose of an example is
always context dependent. In this case, the presence of the second problem suggests that
the focus of the learning activity might be on the fact that some equations do not have real
solutions. Third, a particular example may be used to exemplify different things. For
instance, the intended purpose for solving the equation x°—5x+6=0 might be
factorising, completing the square, using the quadratic formula, or highlighting the fact that
an equation can have more than one solution. Finally, for an observer to determine (or
hypothesise about) the purpose of the examples requires mathematical knowledge. More
significantly, however, the teacher had to know what mathematical ideas she wanted to
convey and, with this knowledge, needed to be able to design or choose examples to suit
her purpose.

Although this illustration comes from the secondary mathematics curriculum, the
principles apply more broadly, including to primary mathematics teaching, the focus for the
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research reported here. Investigating these issues closely involves a consideration of what
constitutes appropriate teacher knowledge, how to examine opportunities inherent in
classroom activities, what is meant by “example”, and how examples can be used.

Background

Pedagogical Content Knowledge

Before narrowing the focus to that part of teaching that involves example choice and
use it is useful to briefly examine the broader domain of pedagogical content knowledge
(PCK). Shulman’s 1986 introduction of the term highlighted the fact that teacher
knowledge—and resultant teacher effectiveness—depends on more than discipline content
knowledge alone. He identified many of the facets of knowledge that contribute to PCK,
including knowing what models and explanations support learning, understanding typical
student conceptions, and recognising what makes a task complex or easy. These have now
gained the attention of many researchers who have examined the nature of this knowledge
in more detail. Other aspects of PCK include knowledge of connections among and within
topics (e.g., Askew, Brown, Rhodes, Johnson, & Wiliam, 1997), deconstructing knowledge
into key components (e.g., Ball, 2000), content knowledge (e.g., Kahan, Cooper, & Bethea,
2003), knowledge of representations (e.g., Leinhardt, Putnam, Stein, & Baxter, 1991), and
Profound Understanding of Fundamental Mathematics (PUFM) (e.g., Ma, 1999). Lampert
(2001) highlights the complex interplay among aspects of PCK in the classroom milieu.
Drawing on this work, Chick, Baker, Pham, and Cheng (2006) developed a framework for
pedagogical content knowledge (see Appendix 1). The framework attempts to identify the
key components of PCK, how they are evident in teaching, and the degree to which both
pedagogical and content knowledge are intertwined (see also Marks, 1990).

Everything that a teacher does—planning lessons, implementing them, responding to
what arises in the classroom, interacting with students—involves one or more aspects of
PCK. A lesson on the numeration of decimals, for example, might involve the decision to
use a particular model to illustrate the concepts. This requires knowledge of different
models and what they offer, recognising that their strengths and weaknesses depend on
their epistemic fidelity (see Stacey, Helme, Archer, & Condon, 2001), that is, the capacity
of the model to represent the mathematical attributes of the concept effectively. Having
chosen the model, the teacher then has to use it appropriately in the classroom, recognising
the students’ present levels of understanding, developing appropriate explanations, and
finding ways to respond to students’ uncertainties and questions. The tasks that are then set
in order to consolidate understanding or to foster its further development also reflect the
teachers’ PCK, since they should match the lesson’s learning objectives.

Affordances and Didactic Objects

Considering tasks and how useful they might be in the classroom requires an evaluation
of what they have to offer. Gibson (1977) introduced the term affordances to refer to the
uses perceived for an object by a potential user. So, for example, a chair affords uses as a
seat or a bookshelf but, at first, may not seem to afford a use as an umbrella. That said,
however, observing a gorilla holding an upturned chair over its head in the rain reveals
that, in the gorilla’s perception, “rain shelter” is one of the affordances of a chair, and, thus,
becomes an affordance of the chair for the observer now that the observer has perceived it
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too. This emphasis on the “perceived” uses is problematic, especially for some of the issues
considered here, because in teaching there are many opportunities and examples that have
the potential to be applied in pedagogically useful ways, and yet are not because the teacher
does not perceive the opportunity. As a consequence, the term potential affordances is used
to refer to the opportunities that are inherent in a task or lesson. A teacher may well be
aware of some of them—indeed, awareness of these potential affordances is usually
evident in how the task is used—but the teacher may not necessarily be aware of all of
them, or even the “best” of them. Furthermore, in the unscripted world of the classroom,
some of these opportunities may not come to fruition because of other interfering factors;
as Anne Watson writes, learning environments involve “a complex interplay between what
could be possible, what is possible, and what is seen as possible” (Watson, 2003, p.37). A
teacher’s PCK influences the degree to which she identifies the potential affordances in
tasks and activities, makes pedagogical choices that allow her to offer desirable affordances
in the classroom, and then finds ways of making those affordances give rise to effective
learning.

Thomson (2002) talks more specifically about the role of discussion and usage in the
learning process, and uses the phrase didactic object

... to refer to “a thing to talk about” that is designed with the intention of supporting reflective

mathematical discourse. ... [O]bjects cannot be didactic in and of themselves. Rather, they are

didactic because of the conversations that are enabled by someone having conceptualized them as
such. (p.198)

This has relevance to models and representations, and, of course, examples. To illustrate
this for models, note that although multi-base arithmetic blocks (MAB) are conventionally
used to model base 10 numbers—especially units, tens, hundreds, and thousands—they can
also be used to model decimal numbers. To do so, however, requires a reconceptualisation
not only for the teacher, but also for the students. The MAB blocks afford the opportunity
to model decimal fractions, but the reconceptualisation is needed to turn them into a
didactic object. A whole new set of conversations must be evoked by the teacher in order to
use MAB in this way, at the same time taking account of the epistemic fidelity issues
(again, see Stacey et al., 2001). An example has the same capacity, potentially affording
many things but delivering none until conceived as a didactic object. “Find the solutions of
x> —5x+6=0" could illuminate many concepts, but its purpose must be identified by the
user and then utilised in such a way that the desired concepts become apparent.

Examples

The meaning of “example” has, so far, been assumed as understood. It is necessary,
however, to define it. For the purposes of this paper an example is a specific instantiation
of a general principle, chosen in order to illustrate or explore that principle. This covers the
usual sense of “example”, such as a teacher making a point by giving a specific illustration
(e.g., “eight is an even number because it can be written as two times a whole number”) or
demonstrating a solution procedure (e.g., a calculation using the long multiplication
algorithm). It also covers assigned exercises and extended tasks.

Bills, Mason, Watson, and Zaslavsky (2006) give an extensive overview of the history
of example use and the role of examples in learning theories. Ball (2000) highlights how a
particular task needs to be examined by the teacher to determine what it offers students,
and then discusses the issue of deciding how to modify the task to make it easier or
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simpler, or to make it illuminate particular concepts. Watson and Mason (2005, 2006)
highlight the way in which changes to examples can highlight different concepts, and also
show that getting learners to construct examples provides rich learning experiences. In fact,
the situations discussed in the early chapters of their 2005 book show two significant
aspects of examples. Although their primary thesis concerns examples constructed by
students and how these develop mathematical understanding, in most cases these examples
would not be generated without an appropriate task assigned by the teacher. Some of these
tasks are quite open (e.g., “Construct a data set of seven numbers for which the mode is 5,
the median is 6 and the mean is 77, p.2). If the teacher’s intention with the task is to have it
illustrate a general principle, notwithstanding that the students develop the specific
instantiations, then it is argued that this makes the task an example too—perhaps in a
“meta” sense, but an example nevertheless. Indeed a task may reflect more than one level
of example-hood. A teacher may, for instance, select the “pizza” model for fractions—with
the pizza exemplifying a fraction—and then ask students to show that '/, and %/g are the
same—with the choice of '/; and %/g intended to exemplify general issues associated with
equivalent fractions.

For all that a specific example may be an instantiation of a general principle, one of the
key concerns in example use is to ensure that the general is revealed out of the particular.
This requires teachers to identify the important and unimportant components of the
example that illustrate the generality. Bills et al. (2006) cite a case from the work of
Rowland and Zaslavsky illustrating how variation in some digits in the subtraction problem
62-38 still allows regrouping to feature, but that other choices “ruin” the problem for that
purpose. Watson and Mason have adapted an idea of Marton (cited in Watson & Mason,
2005), dimensions of possible variation, to discuss ways in which an example’s scope can
be varied. Skemp (1971, pp. 29-30) talks about the role of noise in examples, and that
identifying the general principle requires the learner to distinguish the salient features from
the extraneous. One key implication of this is that teachers’ example choices must allow
the relevant features to be detected through the noise (although Skemp points out that some
noise is important). Since there are often many variables and features in an example,
choosing the appropriate instantiations is critical, and requires adequate PCK.

Returning to the framework for PCK (Appendix 1), all aspects of PCK can influence
example choice and use. Of particular significance are (i) the underlying content-related
aspects—such as PUFM and knowledge of connections and representations; (ii) knowledge
of student thinking—both current and anticipated, together with knowledge of likely
misconceptions; and (iii) the capacity to assess the cognitive demand of a task.

Bills et al. (2006, p.138) suggest that there is a scarcity of research on teachers’ choice
of examples. Zazkis and Chernoff (2006) describe a situation where a researcher taught a
student about prime numbers through choosing strategic examples, with the teaching
situation such that examples had to be generated spontaneously rather than being planned
in advance. This clearly relied on the researcher’s deep understanding of prime and
composite numbers and the ability to construct examples that were appropriate for the
student’s needs. Zaslavsky, Harel, and Manaster (2006) examined the mathematical
knowledge brought into play by a teacher introducing Pythagoras’ Theorem to students on
two different occasions. On the first occasion the cases chosen were intended to build up to
the general result and reflected the teacher’s understanding of geometrical configurations
that are useful for Pythagoras’ Theorem. On the second occasion the physical constraints of
the way she had set up the examples—needing all sides to be integers—reduced the
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number of examples that could be given and may have affected the students’ capacity to
see the entire generalisation. Little has been done to investigate more specific aspects of
PCK; this is part of the purpose of the present study.

Finally, it should be noted that many researchers have actually used examples to probe
PCK. Hill and colleagues (Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004) have
used multiple-choice questions that require teachers to examine a situation—a specific
instantiation of a general scenario, involving a particular mathematical problem—and
identify appropriate content- or pedagogically-based responses. Watson, Beswick, and
Brown (2006) used a particular fraction/ratio problem to probe teachers’ content
knowledge, with follow-up questions investigating teachers’ knowledge of students’ likely
thinking, including misconceptions, and their possible approaches for teaching the topic or
remediating difficulties. The project from which the present research is drawn also used
teaching situations based on specific examples to probe different aspects of teachers’ PCK
(see Chick & Baker, 2005a; Chick, Baker, et al., 2006; Chick, Pham, & Baker, 2006). In all
cases the examples used were designed carefully in order to reveal general rather than
specific aspects of the levels of PCK held by the teachers.

The Focus of this Paper and the MPCK Project

The current study considers some of the examples used by upper primary teachers. The
intention is to examine the affordances inherent in the examples, and the way in which the
teachers implement them to turn them into didactic objects. This examination provides
insights into the teachers’ PCK, and what needs they may have for developing it,
particularly in regard to example choice. Although the examples are from the primary
curriculum, it is anticipated that there are general principles that apply for teachers of other
age groups.

The data for this study were collected as part of the ARC-funded Mathematical
Pedagogical Content Knowledge project. This project involved fourteen Grade 5 and 6
teachers who volunteered to participate over a one- to two-year period. Part of the project’s
purpose was to examine teachers’ PCK and how it is enacted in the classroom. A
questionnaire and follow-up interview were used to gather initial data, and then pairs of
lessons were observed and video-taped. The two lessons were on the same topic and
conducted consecutively, with the teacher nominating the topic for observation. Up to four
such pairs of lessons were recorded for each teacher. During the lessons the video-camera
focused on the teacher, and the teacher’s words were recorded via a wireless microphone
that was sensitive enough also to record some student utterances. Field notes were also
made. Following each pair of lessons, the teacher was interviewed about the original plans
for the lessons, perceptions of successes and difficulties, changes and adaptations made,
and future follow-up plans.

Several of the pairs of lessons involved fractions, and these lessons were subjected to a
“content analysis” approach (Bryman, 2004), in which individual examples that arose in
the classroom were identified, according to the definition of ‘“example”, and then
categorized according to the way in which the teacher used it. This identified, for instance,
whether the example was used as a teacher demonstration, or as a student task; or whether
the example focussed on conceptual or procedural matters. From this data, and from data
from three other pairs of lessons on other topics (probability, and measurement) several
illustrative cases were selected to allow comparisons among the ways in which tasks were
used, the affordances they offered, and the PCK involved. The purposeful selection of these
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cases makes them what Bryman (2004, p. 51) calls exemplifying cases, which are used for
the purposes of a multiple-case comparative study.

There are, of course, some caveats about what can be learned from such a research
design. Although information about teachers’ intentions was obtained from the post-lesson
interviews, these interviews were wide-ranging and did not always focus on examples per
se. Consequently the teachers’ purposes have, at times, been inferred from their
implementations and classroom actions. Furthermore, it is easy, as an outside observer with
the benefit of repeated video viewings, to see alternative options that teachers might have
utilised to good effect. It is, however, important to acknowledge the complex milieu of the
classroom, the speed with which some decisions must be made, and that, in these cases,
mathematics is not the only area of the curriculum that primary teachers must teach.

Three Sets of Examples

This section describes three sets of examples that highlight important issues associated
with example choice, affordances, and PCK. As explained earlier, the examples were
purposefully selected from the lessons of eight of the MPCK teachers (names are
pseudonyms), from nine of their pairs of lessons. The examples were chosen for what they
illustrate qualitatively rather than to reflect any quantitative assessment about either the
types of examples used in general or by a particular teacher. The scale of the examples
varies, ranging from an assigned computational exercise through to an extended problem
that the teacher utilised to illustrate a wide range of mathematical concepts. The
pedagogical implications—such as the affordances offered by the examples described, and
the PCK evident or missing in the choice and implementation of the examples in the
classroom—are also examined.

Fractions

Six of the teachers presented pairs of lessons on fractions. In some cases their focus
was on the meaning of a fraction, whereas in others they addressed fraction operations. In
the majority of these lessons the teachers used many “small” examples, usually illustrations
of particular fractions or exercises for students to solve. A range of these are presented here
to show what examples were chosen and how the teachers used them, with discussion on
what the examples might have afforded and what PCK was evident.

Cake halving. Meg used a square cake and repeatedly halved it, emphasising that the
cake is the “whole” and remains the same quantity, but that the pieces were getting smaller.
She also clarified the terms numerator and denominator. A student wrote the associated
unit fractions on the board, finishing with '/3,, and Meg emphasised that as the pieces get
smaller the denominator gets bigger.

The idea of “cake cutting” has the potential to model almost any fraction, not just those
with a power of two for a denominator nor just unit fractions. Meg’s repeated halving
allowed students to see some atypical primary school fractions, such as '/;s and '/, but
omitted many other unit fractions. Furthermore, her emphasis on unit fractions allowed a
focus on the relationship of the denominator to the size of the piece, but prevented a deep
examination of the meaning of the numerator. Although there is no evidence that this
caused problems for these students, a well-known misconception is that students will, for
example, regard */s as bigger than /7 because fifths are bigger than sevenths. Meg may not
have been aware of this particular misconception, or, if she was, may not have seen that
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although her emphasis on the relationship between the denominator and the size of the
pieces was important it had the potential to lead to such a problem. Finally, the emphasis
on halving appeared to interfere with later examples involving thirds and fifths.

Aero bar. Trene began her introduction to fractions with a KitKat chocolate bar, which
allowed her to talk about quarters and emphasise the meaning of numerator and
denominator. She also used a piece of paper torn into four pieces to illustrate the
importance of having equal parts. Her next example used an Aero chocolate bar, which has
seven pieces. She broke off three pieces and asked what fraction would represent how
much she had. This example allowed her to illustrate sevenths, a denominator different
from the familiar halves, quarters, and thirds. She also pointed out that sevenths are
difficult to show with the “pizza” model of fractions.

Irene’s choice of chocolate to model fractions suggests knowledge of how to “get and
maintain student focus”. In addition, by beginning with the four-piece KitKat she could
model the familiar quarters, and then use torn paper to emphasise the importance of equal
pieces, which had been implicit rather than explicit in the chocolate bar. The KitKat
example provided an appropriate segue into the Aero bar, which allowed a “real world”
example of sevenths, and Irene also emphasised the role of the numerator. There is a
disadvantage in using the two different chocolate bars in that they are not suitable for
making comparisons of quarters and sevenths; nevertheless, the chocolate bar models were
suitable for the purposes to which Irene put them.

Smarties. After an initial review of fraction terminology and the use of a circle divided
into three unequal pieces to emphasise the importance of equal parts, Jill used discrete
materials rather than continuous materials to reinforce fraction notation. Students counted
the numbers of each colour in small boxes of Smarties, and expressed this as a fraction of
the total number of Smarties in the box. They also had to create a fraction strip on grid
paper to show the fractions obtained, by dividing the strip into equal parts representing the
total number of Smarties and then colouring in the relevant proportions. Unfortunately this
model then caused problems when Jill tried to illustrate addition of fractions with the same
denominators. She used an example of one person having 12 out of 14 orange Smarties and
a second person having three out of 14 orange Smarties and added these as fractions to get
15/ 14 (since there is a “‘common denominator’), before she turned this improper fraction into
a mixed number. The problem here, however, was that the situation implies that there were,
in fact, 28 Smarties involved. Jill acknowledged that there were actually two boxes of
Smarties but told students to treat them as one box.

In theory, at least, the box of Smarties can be used to model fractions, but great care
needs to be taken about identifying the “whole”. Jill did not give this concept enough
emphasis, with the added difficulty that the number of Smarties per box can vary. Jill knew
about the latter problem and attempted to address it, but the former issue made modelling
fraction addition difficult. In this case, the model/example was inadequate or did not have
the level of epistemic fidelity needed to deal successfully with addition of fractions, despite
the fact that it was suitable for simply representing fractions.

Fraction wall. Meg used the well-known “fraction wall” idea, and asked students to
fold equal length strips into different numbers of parts. Obtaining halves, quarters, and
eighths was easy, especially after the earlier cake-halving demonstration. Thirds were a
little harder to fold (and some students anticipated that she would ask for sixteenths next),
and then when Meg asked them what fraction they could find next, many students
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suggested fifths, whereas Meg had been thinking of halving again to get sixths. Fifths
required even more adeptness at folding, and in the end Meg and some of the students
resorted to measuring and calculating the lengths, a task made easier by the fact that the
strip was 20cm long. Students did tenths next, and Meg made a conscious decision not to
tackle sevenths because of the challenge of finding a strategy for folding the paper into
seven. This meant that the students’ fraction walls had all the fractions up to eighths and
tenths, with the exception of sevenths and ninths.

Since the fraction wall model for fractions uses strips of equal width to build up a wall,
the fractional parts are represented both by area and by length. It is a powerful model for
comparing fractions, and can also highlight equivalent fractions. Meg’s chosen sequence of
fractions to make (halves, quarters, then eighths; thirds, then sixths, fifths and finally
tenths) echoed her focus on halving as implemented with the cake-cutting activity earlier in
the same lesson. There was no detailed discussion, however, of how halving the thirds
gives sixths, thus missing an opportunity to strengthen connections between the ideas of
halving and doubling. The omission of sevenths and ninths, which Meg acknowledged as
being a consequence of time constraints and the difficulties of folding, may have reduced
the students’ capacity to generalise the fraction concept from the examples given.

Comparing fractions. Lisa had previously done work on equivalent fractions, which
provided a foundation for her two lessons on comparing fractions. She began with a pizza
comparison, asking students to decide who ate more if one person ate half a pizza and the
second person ate four pieces of a pizza that had been cut into ten pieces. Students then had
to generate fractions using a deck of cards, by selecting pairs of cards to generate the
numerator and denominator of a proper fraction, and then comparing two fractions thus
obtained. This led to some challenging problems, in one case involving twelfths and
sevenths, which caused difficulty for some students. Prior to the second lesson she asked
students to compare 2/5 and 1/3 for homework, and in the second lesson had students show
how they had used equivalent fractions to make the comparison. She also showed how the
equivalent fractions could be modelled on a fraction bar, giving a very careful discussion of
how the fifths on a fraction bar could be turned into fifteenths by dividing each part into
three.

Lisa’s pizza consumption example provided a relatively simple context for looking at
comparison of fractions and equivalent fractions, where one denominator was a multiple of
the other. Her use of a deck of cards for generating fraction comparison problems
introduced a random element to the tasks, and meant that she lost control of what kind of
denominator relationships would arise. It is not clear that this was because she did not
realise that denominator relationships might be important, or that the task, as designed,
would affect them. The consequence was that some students had to grapple with quite
difficult comparisons (such as twelfths and sevenths), which may have been too cognitively
demanding for them. On the other hand, the choice of 2/5 and 1/3 for the homework task was
more manageable, and afforded the opportunity to relate the problem situation to both the
equivalent fraction calculations and to a model used to represent them. The choice of
values is particularly good for this purpose: the two fractions are sufficiently close that
comparing them demands an equivalent fractions strategy, rather than being obvious
through visualisation; the values for the denominators make the calculation and
representation of the equivalent fractions achievable yet still suitably cognitively
demanding for the students; and the conceptual connections can be highlighted.

10
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Exercises with fraction operations. The lessons that focused on fraction operations had
a strongly procedural rather than conceptual orientation. Frank’s lesson was purportedly a
revision lesson, focusing on all four of the fraction operations. He used the example
1/6 + 3/6 to illustrate addition of fractions with the same denominator, without commenting
that * /6 18, 1n fact, 1/2, or that the final answer of 4/6 can be simplified as 2/3. A later exercise
for students was 51/2 _27 12 which Frank expected students to solve by converting the
mixed numbers to improper fractions and then finding common denominators if necessary.
When one student explained that she had subtracted the whole numbers first, found an
appropriate equivalent fraction for the half, and successfully regrouped after realising that
/12 could not be subtracted from 6/12, Frank’s response was to suggest 51/2 — 27 19 as an
example that might be difficult to attempt using such a strategy, implicitly privileging the
“convert to improper fractions” method.

A second teacher, Brian, provided students with some exercises for converting from
mixed numbers to improper fractions. There were four examples written on the board,
14/10, 73/4, 53/6, and 8°/ 12, with three not in their simplest form. His emphasis was on the
procedure for converting to improper fractions. The non-simplified nature of the fractions
was not discussed, either before or after the conversion.

Both Frank and Brian demonstrated sound procedural knowledge. The focus, however,
seemed to be on one concept at a time, ignoring other concepts that were evident in the
example, as evidenced in Frank’s s + /¢ addition problem and three of Brian’s mixed
numbers problems, where the concept of equivalent fractions was overlooked. Here
connections among concepts were not being established or reinforced; each process—
equivalent fractions, operations with fractions, converting among forms—appears to exist
in isolation.

Frank’s impromptu construction of the example 51/2 — 27/12 was intended to illustrate a
situation where it might be difficult to subtract using the fractions in their mixed form
rather than converting to improper fractions. Although it made the denominators harder to
work with, the resulting example was, in fact, easier to solve using mixed numbers, given
that the new choice of numerators actually eliminated the need to regroup. This suggests
that whereas Frank could determine some of the cognitive demand of a problem, he could
not quickly work his way through the consequences for the example in its equivalent form.
In particular, he could not identify which were the salient pieces of the example to vary.

Probability

The next example, first discussed by Chick and Baker (2005b), comes from the topic of
probability. Irene, an experienced teacher, and Greg, who was in only his second year of
teaching, were Grade 5 teachers in the same school. They had chosen to use a spinner game
worksheet activity suggested in a teacher resource book (Feely, 2003). The spinner game
used two spinners divided into nine equal sectors, labelled with the numbers 1-9. The
worksheet instructed students to spin both spinners, and add the resulting two numbers
together. If the sum was odd, player 1 won a point, whereas player 2 won a point if the sum
was even. The first player to 10 points was deemed the winner. Students were further
instructed to play the game a few times to “see what happens”, and then decide if the game
is fair, who has a better chance of winning, and why (Feely, 2003, p. 173). The teacher
instructions (Feely, 2003, p. 116) included a brief suggestion about focusing on how many
combinations of numbers add to make even and odd numbers but did not provide any
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additional direction. The “example” in this case is the spinner game in its particular
configuration.

Before examining what the teachers did in the classroom, it is informative to look at the
affordances of this example. Careful consideration reveals that it affords worthwhile
learning opportunities associated with sample space, fairness, long-term probability,
likelihood, and reasoning about sums of odd and even numbers. The significant issue here,
especially in the absence of explicit guidance from the resource book about how these
issues can be brought out, concerns the choices that teachers make when implementing this
activity; especially in terms of what they allow it to exemplify. To add to the complexity of
what is already a conceptually rich example, the configuration of the spinners generates an
interesting difficulty that could undermine the activity or could be turned to advantage,
depending on how it is addressed. This difficulty arises because the chances of Player 2
(even) winning a point is g1 compared to g1 for Player 1 (odd), as revealed by analysis
of the sample space. This miniscule difference in likelihood implies that the game’s
unfairness is unlikely to be convincingly evident when playing “first to ten points”.

The interest is in how the teachers implemented the activity in the classroom, and in
what they allowed it to exemplify and what students might have learned from it. Irene
preceded her use of the game by getting students to toss a coin 100 times and record the
number of heads and tails, with pairs of students starting to play the spinner game as soon
as they had completed their 100 tosses. This meant that some students had more time to
engage with the game than others, and that some of the important teaching moments
occurred for small groups of students rather than the whole class. Most students had played
the game for a few minutes before Irene interrupted them for a discussion of the coin
tossing results and then the spinner game. Her focus here was really on the coin tossing
results, and time constraints limited the attention given to the spinner game. Nevertheless,
some of its attributes were addressed. She asked the class if they thought it was a fair game.
Discussion ensued, as students posed various ideas without any of them being completely
resolved. For instance, there was a brief discussion about how the “structure” of the game
needed to be fair, implying that fairness means that as long as the two players play by the
rules of the game then they should have an equal chance of winning. Most of the arguments
about fairness were associated with the number of odds and evens, both in terms of the
individual numbers on the spinners (there are more odds than evens on each spinner) and in
terms of the sums. One student neatly articulated the erroneous parity argument, that since
“odd + odd = even and even + even = even but odd + even = odd, therefore Player 2 has
two out of three chances to win”. Irene said she was not convinced about the “two out of
three”, but she agreed the game was unfair. Irene then allowed one of the students to
present his argument. At the start of the whole class discussion this student had indicated
that he had not played the game at all but had “mathsed it” instead, and at that time Irene
made a deliberate decision to delay the details of his contribution until the other students
had had their say. He proceeded to explain that he had counted up all the possibilities, to
get 38 for even and 35 for odd. Although this was actually incorrect Irene seemed to
believe that he was right and continued by pointing out that this meant that “it’s not terribly
weighted but it is slightly weighted to the evens”. Irene then asked the class if their results
bore this out, and highlighted that although the game was biased toward Player 2 this did
not mean that Player 2 would always win.

Greg spent a much longer time on the spinner game. The students played it at the end
of the first of the two observed lessons, and during the course of their exploration of the
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game a few pairs came up with the parity argument, accompanied by the observation that
there are more odd numbers on the spinners. That lesson concluded with an extensive
discussion of whether or not the game was fair. Greg did not indicate whether or not he
thought the students’ suggestions were correct; he seemed to want to hear all the
contributions. He later asked if any of the students had considered all the possible
outcomes, and suggested that this would something they would look in the next lesson. In
the post-lesson interview Greg told the researchers that the decision to explore sample
space was made only during the first lesson while students were already working on the
task. He also acknowledged that when he chose the activity he was not sure of all that it
offered.

Greg then devoted nearly half of his second lesson to an exploration of the sample
space. As reported in Chick and Baker (2005b) he tightly guided the students in recording
all the outcomes and could not deal with alternative approaches. He asked the students to
calculate the probabilities of particular outcomes, which was helpful in highlighting the
value of enumerating the sample space, but detracted from the problem of ascertaining
whether even or odd outcomes were more likely. Students eventually obtained the “40 odds
and 41 evens” conclusion, at which point Greg stated that because the “evens” outcome
was more likely the game was unfair. There was, however, no discussion of the narrowness
of the margin.

It must be noted that in both classes the students did not—could not—play the game
long enough for the unfairness to be genuinely evident in practice, yet most students
claimed that the game was biased towards even. This may have occurred because the
incorrect parity argument made them more aware of the even outcomes than the odd ones.

As suggested earlier, the spinner game provides the opportunity to examine sample
space, likelihood, and fairness. Given the impact of time constraints on Irene’s lesson,
sample space was not covered well, although she believed that the student who had
“mathsed i1t” had considered all the possibilities. This highlights a contrast between her
knowledge of his capabilities and the details of the content with which he was engaged. On
the other hand, her content knowledge was sufficient for her to recognise the significance
of the small difference between the number of odd and even outcomes and its impact on
fairness. Greg was much more thorough in his consideration of sample space, but also very
directive. He seemed constrained by his content knowledge, having only one way to think
of the sample space—via exhaustive enumeration—and was unable to recognise the
possibility of an alternative approach in one of his students’ erroneous suggestions.

Neither teacher seemed aware of all that the game afforded in advance of using it, as
evidenced by the way it was used, although Greg recognised the scope for examining
sample space part way through the first lesson. Both teachers were, however, able to bring
out some of the concepts in their use of the game, with Irene having a good discussion of
the meaning of fairness and the magnitude of the bias, and Greg illustrating sample space
and the probability of certain outcomes.

An important observation needs to be made here. The teacher guide that was the source
of the activity gave too little guidance about what it afforded and how to bring it out. Even
if such guidance had been provided, there is also still the miniscule bias problem inherent
in the game’s structure that affects what the activity can afford. It is very difficult to
convincingly make some of the points about sample space, likelihood, and fairness with the
example as it stands. It can be done, but the activity probably needs to be supplemented
with other examples that make some of the concepts more obvious (see, e.g., Baker &
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Chick, 2007). This highlights the crucial question of how can teachers be helped to
recognise what an example affords and then adapt it, if necessary, so that it better
illustrates the concepts that it is intended to convey.

Area and Perimeter

The final case involves Clare, a Grade 6 teacher with five years’ experience. She
conducted two lessons focussing on area and perimeter simultaneously, having done work
in the past on each separately. Part of her first lesson is presented here in detail, to highlight
the way the actual implementation of an example in the classroom may develop in
unanticipated ways and to indicate how important PCK is in dealing with this.

Clare began by reviewing the concept of area, where she emphasised that “Area
measures the space inside a shape, so what that actually is, is the number of squares inside
the shape”. She then asked students to draw a rectangle with an area of 20cm” on grid paper
and cut it out. Her choice of what might be called an open “reversed” task was appropriate
given that the students had worked with area before, including the area formula for
rectangles. Shortly after this instruction the following exchange took place between Clare
and a student.

S: Can I do a square?

Clare: Is a square a rectangle? [...] What’s a rectangle? [...] How do you get
something to be a rectangle? What’s the definition of a rectangle?

S: Two parallel lines

Clare: Two sets of parallel lines ... and ...

S: Four right angles.

Clare: So is that [points to square] a rectangle?

S: Yes.

Clare: Excellent. [Pause] But has that got an area of 20?

S: [Thinks] Er, no.

Clare: [Nods and winks]

It is not clear whether Clare’s original choice of 20 was made with any awareness of
geometrical implications, but the fluency with which Clare moved from area measurement
to spatial issues—addressed with clear attention to geometrical properties—and back again
required ready access to the PCK of both the measurement and spatial domains. She also
exhibited effective use of questioning to elicit understanding from the student. Shortly after
this she discussed rectangle properties with the class.

Clare then invited a student to bring his 4Xx5 cut-out rectangle to the front of the class,
recorded it on an overhead transparency, and confirmed that its area was 20cm’. She led a
class discussion on how multiplying length X width is the same as counting squares and
hence gives the area. Clare thus used the concrete example to highlight the link between
the conceptual meaning of area and the procedural calculation. She did not stop there,
however; in the following exchange it can be seen that Clare knew that students need to
know that the area formula LXW only applies to certain shapes.

Clare: When [S1] said that’s how you find the area of a shape, is he completely
correct?
S2: That’s what you do with a 2D shape.
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Clare: Yes, for this kind of shape. [...] What kind of shape would it not actually

work for?
S3: Triangles. [...]
S4: A circle.

Clare: [With further questioning, teases out that LXW only applies to rectangles.]

A student then suggested 2x10 as a second example of a rectangle with area 20cm’, at
which point Clare confirmed that all the students had chosen either this one or the 4x5
case. When she asked for other possibilities the students suggested the original examples
but oriented at 90°, together with 1x20, which had not been suggested earlier. With all the
integer-sided rectangles on display Clare asked the students to look for a pattern in the
examples found, which led into a discussion of factors of 20. She continued:

Clare: Are there any other numbers that are going to give an area of 20?7 [She
paused, with an attitude of uncertainty. There was no response from the
students at first.]

Clare: No? How do we know that there’s not?

S: You could put 40 by 0.5.

Clare: Ah! You’ve gone into decimals. If we go into decimals we’re going to have
heaps, aren’t we?

It appeared that she was targeting only whole numbers—and, as a consequence, some
argument about exhausting the factors of 20—but she clearly understood the significance
of the student’s unexpected answer, and to what degree it would apply. The open scope of
her questions allowed this extension to arise, even though it had not been her original
intention; however, she made a decision not to pursue this aspect—even though it would
have been a valuable use of the 20cm’ example—because she wanted to move on to
different examples that would highlight other relationships. Instead she used the 20cm’
example to focus on the search for all factors of 20.

This exploration of the 20cm’ example took the first 15 minutes of the lesson. Clare
then had students repeat the search for rectangles with area 16cm”. She used this example
to highlight the process of systematically searching for factors, and to highlight the set
inclusion property “a square is a rectangle”. She recapped that they had been working on
areas, and then reminded students about perimeter, how to work it out for rectangles, and
that linear rather than square units are involved. She guided the class to work out the
perimeters of the different 16cm? rectangles they had found, and indicated that although
shapes might have the same area they do not have to have the same perimeter. She revisited
the 20cm’ examples they had, and calculated the perimeters to focus again on the variation
in perimeter.

The final example/task for the lesson was for students to work in groups to find as
many shapes—not just rectangles, but constrained by being made of contiguous squares—
with an of area 12 cm? and determine the perimeters. She wrote “What is the relationship
between area and perimeter?” on the board as a learning objective for this activity. She
allowed students to explore the task for about five minutes, then interrupted their work to
help them develop strategies to work systematically and instruct them to record the
perimeters of each shape. About 20 minutes later, she held another class discussion that
acknowledged that there were “heaps” of possible shapes, looked at one group’s systematic
work and discussed some symmetry implications, and then asked students to focus on
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finding a shape with the greatest perimeter and one with the smallest perimeter. The 90-
minute lesson concluded with a ten-minute discussion of the students’ results, which
emphasised the use of linear units for perimeter, that shapes with small perimeters were
more ‘“compact”’, and that moving one of the squares on a shape without changing the
number of joining edges will not change the perimeter.

Clare’s conclusion re-emphasised the points of her lesson: that area and perimeter can
have the same or different numerical values, that two shapes with the same area can have
different perimeters, and that systematic work can help find all the possibilities in a
problem. These learning outcomes were achieved through the use of just three examples
that had been carefully chosen to illustrate these points.

Clare seemed to have a very clear idea about what she wanted her examples to achieve.
They were effective as didactic objects for two reasons: Clare’s careful choice of the
examples themselves and then the way she facilitated conversations about them. It is not
clear that there was a purposeful reason for considering rectangles of area 20cm” first,
followed by those of area 16cm?; in particular, it is uncertain that there was an intention to
allow discussion of “squares are rectangles” in the second case after just focussing on non-
square rectangles. However, whether it was an intended focus or an opportunity that arose
fortuitously, Clare was able to address this geometric concept fluently, demonstrating her
capacity to make connections across topics. The final extension considered shapes of area
12cm?’. If only considering rectangles this would have been no more difficult than what
students had already done—and potentially redundant—but because she wanted students to
consider other shapes as well, it was appropriate to pick this “simpler” number.
Interestingly, given the magnitude of the enumeration task, there is potential to debate
whether 12 is, in fact, simple enough. One of the researchers observing the lesson at the
time wondered if she had chosen wisely. As the lesson progressed, however, it was clear
that although she wanted to address the issue of enumerating all possible shapes
systematically, her main focus was still associated with area and perimeter, and the choice
of 12 allowed enough variety of shapes to make it a non-trivial task to find those with the
greatest and least perimeter.

There was an interesting decision point that arose in the lesson when a student gave the
40x0.5 rectangle example. It seemed that Clare’s focus on factors influenced her decision
to acknowledge this response, briefly recognise its implications, but then continue with
whole number dimensions. It is not clear whether she weighed up (a) what concepts could
have been developed if she had detoured with an exploration of non-integer dimensions,
(b) how such a detour might have interfered with her goals for the lesson, and (c) whether
or not all her students would have been capable of following the detour. Certainly such an
exploration could have given more extreme perimeter values than the students obtained,
but the importance of identifying factors of numbers might have been obscured.

The strength of Clare’s PCK was evident as the lesson progressed, as well as in her
responses to the questionnaire and interviews (see Baker & Chick, 2006). She appeared to
have a deep understanding of concepts, the rich connections among them, and the links
between concepts and procedures. Her conceptual fluency was evident in the ease with
which she responded to unanticipated events in the classroom. In addition to specific
content knowledge she advocated general mathematical principles, such as the need to
work systematically, and to justify and explain results. Her knowledge of student thinking
was evident in her identification of likely misconceptions, and in knowing how to ask
questions and respond to students’ difficulties. Finally, her choice of examples had
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appropriate cognitive demand for her students, led to conceptual understanding, and
afforded exploration of a range of mathematical concepts.

Conclusions

For most of these cases, the teachers selected the example’s structure and specific
values prior to implementing it in the classroom, strongly influenced by their PCK and
what affordances they thought the example offered. At times, though, teachers had to
develop or respond to an example on the spot; but again their capacity to do so was
affected by their PCK and their ability to construct or recognise examples with the
affordances required. It is worth making some observations about the source of the
examples and the PCK for some of these situations, in order to highlight the complexity
associated with this critical issue.

e A teacher’s current level of PCK can allow him/her to recognise a situation that
could be turned into a useful example, as evident in the use of the Aero bar.

e A teacher’s current level of PCK may allow him/her to devise a partly
appropriate example, but deeper PCK would reveal that it has limitations. This
occurred with the Smarties and with Frank’s fraction subtraction example.

¢ Professional development (PD) can enhance PCK and a teacher’s repertoire of
examples. The fraction wall and the paper strip folding activities conducted by
Meg had their origins in PD and reflected, in her paraphrased words, part of a
change in her teaching style from a procedural focus to a conceptual one. That
said, however, a teacher’s implementation of an example demonstrated to
him/her in PD may not always reflect the potential affordances identified by the
PD designers. The omission of the sevenths and ninths was Meg’s choice; most
advocates of the fraction wall would include these examples.

e External sources of examples do not always indicate the affordances of the
example and how to implement them. This was strikingly evident in the case of
the spinner game. It cannot be assumed that teachers do not or should not need
this support.

e A teacher’s current level of PCK and his/her identification of affordances can
develop in the process of implementing an example. This occurred for Greg as
he used the spinner game. Moreover, he recognised this development as such.

¢ A teacher with rich PCK can devise examples that illustrate a range of concepts,
can highlight connections among topics, and identify which are the central ideas
and which are peripheral. This was evident in Clare’s area and perimeter
examples.

The complexity of mathematical concepts, together with the limited opportunities that
teachers have to master all these concepts and their pedagogical implications before
entering the classroom, highlight how difficult it is to ensure that teachers have the depth of
PCK required to identify and draw out the affordances of an example. Recognising the
ways in which “Compare 2/5 and 1/3” is different from “Compare 3/7 and 5/8” and the
consequent implications for what might be learned, for instance, requires attention to a
range of fraction issues followed by a decision about which aspects are regarded as more
important for the day’s teaching objectives.

These observations raise the question of how to prepare future teachers so that they
develop adequate PCK and can successfully choose, use, and modify examples. Clearly
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there must be an endeavour to ensure that teachers have a deep conceptual understanding of
mathematics, and rich PCK for its teaching. Given the centrality of examples to the
teaching and learning process, however, time also needs to be spent applying this
understanding to an investigation of examples and their pedagogical implications. We need
to develop ways to help teachers identify more potential affordances in examples, to
recognise an example’s salient and non-salient features, and to ascertain the implications of
any interrelationships that exist.

This suggests that teacher education and professional development opportunities must
be more explicit about the issues associated with example use. In particular, the
affordances of the examples used in teacher education and professional development
should be identified and discussed, so that teachers learn to realise that an example has
many potential affordances and to discriminate between the productive and the
unproductive. There is a need to identify the dimensions of possible variation for an
example, so that the impact of changes to the particular values and structure can be
considered, and the significant and extraneous components of the example can be
identified. This is essential if teachers are to learn how to change examples to make them
conceptually harder or easier, to produce counterexamples, or to emphasise a different
principle. Indeed, teachers and potential teachers need opportunities to engage with
examples, to trial them, and to learn how to adapt them successfully to meet different
needs. It would be valuable to have teachers contrast examples, attending to affordances
and what varies between the examples (the earlier illustration of examining the ways in
which “Compare */s and '/3” is a different example from “Compare 3/; and */g” is a case in
point). In all of this, there needs to be deeper discussion of the connections among
mathematical topics and how an example illuminates these connections. Finally, there must
be discussion of how to implement the examples in the classroom, so that the examples
become successful didactic objects that illustrate the desired general principle. Without
this, the opportunities for learning afforded by examples may go unfulfilled.
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Appendix 1.

A Framework for Pedagogical Content Knowledge (after Chick, Baker, et al., 2000).

PCK Category

Evident when the teacher ...

Clearly PCK
Teaching Strategies

Student Thinking

Student Thinking - Misconceptions
Cognitive Demands of Task

Appropriate and Detailed
Representations of Concepts

Explanations
Knowledge of Examples
Knowledge of Resources
Curriculum Knowledge

Purpose of Content Knowledge

Discusses or uses general or specific strategies or approaches
for teaching a mathematical concept or skill

Discusses or addresses student ways of thinking about a
concept, or recognises typical levels of understanding

Discusses or addresses student misconceptions about a concept
Identifies aspects of the task that affect its complexity

Describes or demonstrates ways to model or illustrate a
concept (can include materials or diagrams)

Explains a topic, concept or procedure

Uses an example that highlights a concept or procedure
Discusses/uses resources available to support teaching
Discusses how topics fit into the curriculum

Discusses reasons for content being included in the curriculum
or how it might be used

Content Knowledge in a Pedagogical Context

Profound Understanding of Fundamental

Mathematics (PUFM)

Deconstructing Content to Key
Components

Mathematical Structure and Connections

Procedural Knowledge

Methods of Solution

Exhibits deep and thorough conceptual understanding of
identified aspects of mathematics

Identifies critical mathematical components within a concept
that are fundamental for understanding and applying that
concept

Makes connections between concepts and topics, including
interdependence of concepts

Displays skills for solving mathematical problems (conceptual
understanding need not be evident)

Demonstrates a method for solving a mathematical problem

Pedagogical Knowledge in a Content Context

Goals for Learning

Getting and Maintaining Student Focus

Classroom Techniques

Describes a goal for students’ learning
Discusses or uses strategies for engaging students

Discusses or uses generic classroom practices
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Introducing Students to Data Representation and Statistics

Richard Lehrer
Vanderbilt Univeristy
<rich.lehrer@vanderbilt.edu>

I describe the design and iterative implementation of a learning progression for supporting
statistical reasoning as students construct data and model chance. From a disciplinary
perspective, the learning trajectory is informed by the history of statistics, in which concepts
of distribution and variation first arose as accounts of the structure inherent in the variability
of measurements. Hence, students were introduced to variability as they repeatedly
measured an attribute (most often, length), and then developed statistics as ways of
describing “true” measure and precision. The design of the learning progression was guided
by several related principles: (a) posing a series of tasks and situations that students
perceived as problematic, thus creating a need for developing mathematical understanding
as a means of resolving prospective impasses; (b) creating opportunities for developing
representational fluency and meta-representational competence as constituents of conceptual
development; (c) introducing statistics as invented measures of the qualities of distribution;
and (d) adopting an agentive perspective for orienting student activity, according to which
distribution of measures emerged as a result of the collective activity of measurer-agents.
Instructional design and assessment design were developed in tandem, so that what we took
as evidence for the instructional design was subjected to test as a model of assessment,
resulting in revision to each. I conclude with a look at ongoing work to design an
assessment system to measure students’ understandings of data and statistics, and with some
thoughts about prospective synergies between mathematics and science education.

The discipline of statistics originated in problems of modeling variability (Porter, 1986;
Stigler, 1986). History has not changed all that much: Professional practices of statisticians
invariably involve modeling variability (Wild & Pfannkuch, 1999), and as in other sciences
(e.g., Giere, 1992), it is through model contest that statistical concepts become more
widespread and stable (Hall, Wright, & Wieckert, 2007). Another lesson of history is of
particular importance: Reasoning about variability was initially most prominently pursued
in contexts of measurement error. Astronomers, for example, suggested that distances
between stars were fixed, but that measurements varied, just by chance. Mathematical
efforts to characterize the form and structure of chance gave rise to concepts and models
still in use today, such as least squares fit.

Our research program follows in this historic tradition: Contexts of measure afford
children entrée to a series of core conceptual structures or “big ideas” in the discipline and
also, to the core disciplinary practice of inventing and revising models. Accordingly, I
outline a design of instruction that features repeated measure for introducing students to
practices and related concepts of data representation, statistics, chance, and modeling.
These practices and concepts are all developed by students to account for observed
variability in measurements. As I describe components of the design, I characterize some of
the recurrent patterns of student reasoning that we observed during successive iterations of
the design in fifth- and sixth-grade (10, 11 years of age) urban classrooms in the United
States. These collectively establish a sense of “lessons learned”. Our efforts to account for
emerging patterns of student reasoning were accompanied by corresponding efforts to
encapsulate these patterns of reasoning in the form of an assessment system, which is
sketched in the second section of the paper. I conclude with some prospects for integrating
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mathematics and science education via a shared interest in constructing and revising
models of variability.

Designing Instruction to Support a Learning Progression

The instructional design was guided by an image of statistical reasoning as emerging
from and enmeshed within a larger system of activity that we refer to as data modeling
(Lehrer & Romberg, 1996; Lehrer & Schauble, in press). As Figure 1 suggests, data
modeling is composed of two coupled systems of activity. The upper triangular region in
the figure depicts the learning challenges and resources associated with the design of
research. Designers confront challenges such as posing questions and identifying the nature
of variables and their measures.

Posing Generating and
Questions Selecting Attributes

Constructing Measures

Structuring Representing
Data Data

Inference

Figure 1. Schematic of data modelling.

The lower triangular region encompasses analysis, depicted as an interaction among
data structures, representations, and models of inference. Analysts confront challenges of
imposing structure on data, of choosing displays to highlight aspects of structure, and of
making judgments about phenomena in light of variability and uncertainty. Although the
cycle as illustrated invites inference of linear progression, in practice, these components of
data modeling are typically interactive. For example, attempting to develop a measure of an
attribute often profoundly alters one’s conception of that attribute.

To initiate students into practices of data modeling, we designed a hypothetical
learning progression — a sequence of tasks, tools, activities, and forms of argument — aimed
at supporting students’ development of mathematical accounts of the inherent variability of
measure. The learning progression was envisioned to unfold in three coordinated phases in
the classroom. In the first, students all repeatedly measured the same object and designed a
representation intended to communicate trends in the collection of measurements that they
noticed. In the second, students used these displays to invent statistics. One invented
statistic indicated the “best guess” of the measure of the attribute of the object and the
precision of the measurements. Students explored the qualities of their invented statistics
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with new samples of measurements of the same object conducted with a better tool. The
latter resulted in distributions that were less variable but that had approximately the same
centre. The third, modeling phase included investigation by students of the behavior of
chance devices and the subsequent harnessing of these devices to construct models of
measurement error. In the sections that follow, I describe the rationale for each of these
three phases and also suggest recurrent patterns in student reasoning that we observed as
we implemented the design over several iterations in fifth- and sixth-grade classrooms in
an urban school in the United States. Participating students were from under-represented
groups in the United States. Their families were of lower socioeconomic status.

Inventing Representation

Students measured an attribute of a familiar object, such as the arm-span of their
teacher. To measure arm-span, each student first used a 15-cm ruler and then a metre stick.
Each time, students recorded the value of the measure. The aim of this initial activity was
to provide students with a context in which collective properties of the data, especially
distribution, could be viewed as emerging from the actions of individual agents. We
anticipated that students’ prior history with measurement would serve as a resource for
making sense of the variability of the measurements. For example, the 15-cm ruler had to
be iterated more often than did the meter stick to span the same distance. (The former
resulted in greater error and hence greater variability among the measurements.)

We presented students with an unstructured collection of their measurements and
challenged them to create a display (of the more variable measurements) that
communicated what they noticed about the batch of data. After students created their
displays, other students presented the display to the class and described what the display
tended to “show and hide” about the data. This tactic was intended to foster
representational fluency (Greeno & Hall, 1998). With instructor support, students
compared and contrasted their invented displays. We anticipated that comparing and
contrasting different displays would clarify relations between the choices made by
designers and the resulting “shape” of the data. This tactic was also intended to foster
meta-representational capacity (diSessa, 2004) — the capacity to view a data display as
representing a trade-off. Different choices resulted in different perceptions of the shape of
the same data. We were especially interested in helping students understand how displays
that grouped data and counted cases within each group produced a symmetric, bell-shaped
distribution. Students considered possible reasons for the bell-shape of grouped data in
light of the process of measure. We concluded this phase of instruction by soliciting
students’ conjectures about what might happen if “we measured again”.

Recurrent Patterns of Representation

The most striking feature of the displays generated by the students was their variability.
Despite years of education emphasizing conventional graphs, students often found this task
challenging and even daunting.

Highlighting order. The most common solution to the problem of display was to
structure the data by ordering the magnitude of the cases. Some solutions were lists, such
as that displayed in Figure 2.
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Figure 2. Ordering data as a list.

Others relied on space to convey a visual sense of order. The student solution displayed
in Figure 3, a type of array graph (Snecedor & Cochran, 1968), exemplifies the latter. Bars
or lines represented magnitudes of measurements. The designers, but not typically other
members of the class, indicated that plateaus showed modes or clusters of values.

Figure 3. Invented array graph.

Elaborating order. A second class of solutions appeared to elaborate on order by
highlighting relative frequency. Figure 4 illustrates this propensity. Students ordered the
cases and displayed their relative frequency as a square icon. Note that the interval
between case values is not represented. When the teacher asked the students which values
would not be likely to recur if they measured again, students pointed to the lowest value.
The display made the multi-modal nature of these data visible. The statistics represented on
the display are remembrance of past classes — things that one did to batches of data. But
after computing them (some incorrectly), they never referred to the statistics again.
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Modeling Data

Figure 4. Ordered case frequency display.

Grouping and ordering. Solutions that involved grouping similar values into “bins” or
equal-interval groups were relatively infrequent. The designers of the display depicted in
Figure 5 grouped measurements in 10s, and they ordered the bins not by magnitude of the
measurements but instead by relative frequency. Another pair of designers in the same
class rendered their display to coordinate the order of the magnitude of the observed
measurements with the relative frequency of each interval class (Figure 6). The
corresponding difference in the shape of the data is striking.

Figure 5. Bin display ordered by relative frequency.
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Interval displays. The least common form of recurrent display was that of interval.
These were developed by students who wanted to represent both what was missing as well
as what was present in the data, so that holes and clumps could be viewed simultaneously.
For example, in Figure 7, a pair of sixth-grade students listed relative frequencies where
zero indicated missing values in the interval described by the observed measurements.
Hence, 0 = 14 refers to the number of values in the interval between 30 feet and 66 feet for
which there was no missing case. The 1 = 9 refers to the number of values in the interval
for which there was only 1 case missing. Figure 8, a display designed by a pair of fifth-
grade students, illustrates similar attention to interval but in a manner that is more
conventional.

Modeling Data ©

Figure 7. Representing what is missing.
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F iguie 8. Interval display of relative frequencies.

Comparing representations. Discussions about the variations in design helped students
develop an appreciation of different senses of the “shape” of the data. However, students
typically focused on individual displays and did not spontaneously engage in comparative
analysis. When prompted to compare two different kinds of displays, they often referred to
qualities such as icons employed by the designers. For example, students said that they
could see squares in one display (to show number of cases) but these were not used in
another display. Students often mentioned that a certain display was easy to be seen
because it had larger text size. More rarely, a student looked at a display that listed all
possible measurements on a number line and said, “They put numbers in between, so you
can see how far they went.” Hence, I often took a more active role, drawing student
attention to trade-offs among displays by asking them to translate a cluster of cases from
one representational scheme into another. I also asked students to develop and test
conjectures about the relation between the size of a bin (interval) and the resulting shape
of the data. These scaffolds appeared to raise students’ awareness of relations between
design decisions and shape.

Inventing Statistics

Following the invention of a representation of the data, students were challenged to
invent a measure of the “best guess” of the length of the attribute (e.g., the height of the
school’s flag pole). At this point in the learning progression, we anticipated that students
could draw on resources of representation and on their knowledge of how the measures
were produced. By considering how to develop a measure, we aimed to engage students in
deeper consideration of the nature of distribution. What might be worth attending to about
the data? Students could use any of the invented displays to help answer this question. We
later engaged students in a similar process to develop a measure of the precision of
measurements. The definition of precision was intentionally left up to the imagination of
the students, so that we could engage students in the relation between measure and qualities
of attributes noted in the upper triangular region in the data modeling cycle displayed in
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Figure 1. During this period of time, we introduced students to TinkerPlots (Konold &
Miller, 2005), so that TinkerPlots capabilities for dividing and re-organizing the data could
be used to construct a measure of precision.

After inventing measures, other students attempted to make use of them. The
pedagogical intention was to help students consider the communicative uses of algorithm.
Students tried out their methods with other batches of data (to promote generalization),
including the measurements of the same attribute with a better tool. For the latter, students
noted a reduction in the spread of the data, and I asked if their measure corresponded in
meaningful ways to what they could readily perceive in the displays.

Recurrent Patterns of Invented Statistics

Many students struggled with the very idea of inventing of a measure. Some suggested
that the only reasonable approach was to ask an authority — a member of the custodial staff
or the manufacturer — to find the height of a flagpole. Others found the notion of
representing many measurements by a single value implausible. We seized these challenges
as opportunities to conduct conversations about qualities of good measures and of the need
to be explicit about one’s method, so that others could find the same measure.

Measuring centre. Students’ invented solutions to estimate the true measure of the
attribute generally focused either on repeated values or on the location of the centre clump.
Because the data were often multimodal, modal solutions were perceived as less useful,
because the inventors typically failed to justify one choice of mode rather than another.
Most solutions involving the centre clump used a graphical method to identify the centre
clump, and then found the middle value of this centre bin. Many students found this
persuasive, but others pointed out that it left out many of the other measurements. A few
student teams (at least one in every iteration of the design studies) invented the median,
although they did not know this convention at the time of invention. Their reasoning was
guided by a sense of splitting the data “in half” and they used bin displays of the data to
count an equal number of cases from the tails of the distribution toward the centre. In some
data sets, the number of cases was even and the choice for median did not correspond to
any observed value. Classmates objected when the median value was not instantiated by an
actual measurement, but were persuaded by appeal to the measurement process: The
median represented a value that might have easily been someone’s actual measurement. It
was a “possible measurement”. This form of student reasoning signalled a shift away from
considering only cases toward considering the aggregate.

Measuring precision. Students’ efforts to develop measures of precision most often
generated a focus on the “closeness” of the data. More precise measures were those that
were closer. We supported this intuition by asking students to predict the value of the
measurements if the measures were “absolutely” precise. The three most common solutions
to the problem of precision were (a) focus on extreme cases (the range), (b) focus on
closeness as distance between a case and other cases or a common point, such as the
median, and (c) centre clump solutions, motivated by considerations such as “where the
precision was where most people had their numbers”.

The range corresponds to convention and thus requires no further explication. The
activity of a pair of fifth-grade students exemplifies the second class of solution methods.
Their method was spurred by consideration of potentially perfect agreement among the
measures, which they suggested would result in no spread or a measure of 0. I asked how
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they might define their measure so that zero would result. Their response was to consider
differences between each case and the median (which they had invented in the previous
portion of this phase of the design study). On the basis of previous work with integers,
they decided that they would first find the absolute value of each difference. Then, they
proposed finding the sum of these absolute values. Their confidence in this measure was
bolstered by its ability to differentiate between distributions of measurements where
students employed more precise and less precise tools (e.g., 15-cm rulers vs. metre stick for
arm-span). | asked students what they might expect if the number of measurers using the
more precise tool increased to 100 (about 3 times the original sample) and this precision
was compared to the less precise tool used by fewer measurers. The students noticed that
use of their measure would mislead: ‘People will think that the more precise tool is worse
than the less precise tool’ (* denotes paraphrase). To solve this problem, one suggested the
modal difference and the other, the median. They settled on the median but had difficulty
maintaining the relation between the medians for the distribution of measures and of
differences (Figure 9). My suggestion to consider the median of these differences as
representing “typical closeness” appeared to stabilize this distinction (meaning that when
presenting to classmates, they were able to clearly articulate the distinctions).

Collection 1
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Figure 9. TinkerPlots graph of absolute values of differences with indication of median difference.

Student focus on difference often led to unexpected consequences. For example, one
sixth-grader, Robert first focused on the distance between the extreme values of the
distribution and the mean. I asked him how he might characterize the precision of the
group of measurers rather than just two of them. He decided that he would average the
differences, because this would result in a method that would indicate how close the
measurements were, “‘on average”. When he attempted to find the mean of the differences,
he was surprised that the sum was zero. Robert was puzzled, but he reiterated that he
thought his method was good for finding the distances between each score and the mean.
He plotted each difference with TinkerPlots, and wondered what might have gone wrong
(Figure 10).
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Figure 10. TinkerPlots display of Robert’s signed differences.

In light of class discussions about some estimates being over and some under the real
height of the flagpole, I asked if Robert were more concerned about the direction, or the
magnitude, of each difference. Robert mentioned that the direction of the difference was
not that important — some measures must be greater than the mean and others less. Hence,
what mattered was how far each measure was from the mean. I built on Robert’s insight to
introduce the absolute value function. Robert used the absolute value function to generate
the average deviation. He then plotted the absolute values of the differences, and located
their average value — the average deviation (Figure 11), although Robert did not know this
convention.
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Figure 11. Plot of absolute values of differences and average deviation.

In contrast to close attention to difference, some students defined precision by attending
to the relative compaction of the centre clump. Attention to the centre clump typically
resulted in measures of precision that corresponded to the inter-quartile range. This
definition was supported by the TinkerPlots function of “hat plot”, but students often used
this function only after developing a very similar measure. For example, the solution
developed by one sixth-grade student for measuring precision found the lower and upper
bounds of the decade-interval that contained the mean. I capitalized on this intuition to
introduce the hat plot function, to which the student responded by adding the reference
lines to indicate the lower and upper bounds of the mid-50, as displayed in Figure 12.
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Figure 12. A 25-75 percentile hat plot with reference lines.

Modeling Measure

Following invention of representations and statistics to describe observed trends in
variability across different measurement contexts and tools (e.g., arm-span and head
circumference, with lower and higher quality tools), the third phase of the learning
trajectory is designed to introduce students to the pragmatics and epistemology of modeling
chance. We begin with explorations of the conduct of chance devices, starting with hand-
held spinners and graduating to a new version of TinkerPlots that supports this type of
simulation. For example, Figure 13 displays the results of a simulation of a 50-50 spinner
with a sample size of 10. Students conducted investigations such as these with varying
sample sizes, and we asked students to account for observed differences in departure from
expectation as they ran each simulation repeatedly. The line in the Figure 13 was invented
by a sixth grade student who thought that changes in slope were a good indicator of
departure from expectation as she repeatedly ran the simulation.
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Figure 13. Exploring chance with TinkerPlots.

Modelling observed measure. Following investigations of chance, we introduced a
prospective model to students of observed measurement as constituted by two sources.
Both were familiar to the students. The true measure of the attribute was not directly
accessible, but could be reasonably approximated by a centre statistic. The differences
among measurements could not be attributed to change in the attribute. (One fifth grader
thoughtfully noted that her teacher’s head circumference would not change during the
interval of measure but she could not say what might happen in the future!) Hence,
differences in measure were due to errors of measure. Because students were familiar with
processes of measure, we expected that they would be capable of generating conjectures
about sources of error. For each source of error, students constructed spinner models that
used area to represent relative likelihoods. Relative magnitude and direction of error were
also represented as positive and negative values, in the original units of the measure
employed by the students. After students constructed and ran simulations of their models,
they revised them, as needed. During the final portion of the activity,