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Preface

This is a record of the proceedings of the 30th annual conference of the Mathematics

Education Research Group of Australasia (MERGA). The theme of the conference is

Mathematics: Essential research, essential practice. The theme draws attention to the

importance of developing and maintaining links between research and practice and ties in

with the joint day of presentations with the 21st biennial conference of the Australian

Association of Mathematics Teachers (AAMT). This special feature highlights the benefits

of collaboration between researchers, practising classroom teachers, and curriculum

developers.

We are pleased to welcome conference participants who are attending MERGA for the first

time. We hope you will make yourselves known so you can be made welcome and

introduced to others who share your research interests. Authors from nine countries are

represented in these proceedings, as well as from nearly every university in Australia and

New Zealand with education programs. There are also participants from state and private

school systems and government ministries of education. We look forward to the dialog that

will emerge from the varying perspectives brought by participants, especially through the

forums that will take place on the joint day shared with the AAMT.

All research papers and symposia submitted were blind peer-reviewed (without the

author/s being identified), by two experienced mathematics education researchers who

followed strict guideline that have been honed over a number of years. Where the two

reviewers, who did not know the identity of the other reviewer, disagreed about the

acceptability of a paper, another blind review was carried out by a third reviewer. For

consistency, a small panel of highly experienced reviewers undertook the task of reviewing

papers in this category. Only those research papers that were accepted by two reviewers

have been included in these conference proceedings. The abstracts for short

communications and round table discussions were read by two reviewers, who provided

feedback and advice to authors on the MERGA guidelines for these types of presentation.

We would like to thank the University of Tasmania, Faculty of Education, for the financial

support provided to complete the publication of these proceedings, as well as the hardy

team of PhD students and research assistants who helped the academic staff with the

conference program.

Kim Beswick Jane Watson

Chair, Conference Organising Committee Editor

Editor



The Beginnings of MERGA 
 

Preamble to the Annual Clements/Foyster Lecture 
 

In the middle of 1976 John Foyster, who was then based at the Australian Council for 

Educational Research (ACER), came to see me at Monash University, where I was in charge 

of the Mathematics Education program. John talked about how the Australian Science 

Education Research Association (ASERA) had recently been established, with Professor 

Richard Tisher (then of Monash University) as the prime mover. John wondered whether the 

time was ripe for a similar national group interested in mathematics education research to be 

established, and asked whether he and I might take steps to establish such a group. 

My immediate reaction was yes, we should do it. Then came the doubts and reservations. 

How would the Australian Association of Mathematics Teachers (AATM) react to such an 

initiative? After all, AAMT already had a “Research Committee.” In any case, would there be 

enough mathematics educators in Australia, interested in such a group to make it a viable 

proposition? Who would provide the funds likely to be needed for the establishment of such a 

group? 

It was John’s and my opinion that the AAMT Research Committee had not reached out to 

embrace most of the people lecturing in mathematics education in Australia at teachers 

colleges or in universities at the time. Intuitively, I thought Australia needed a group like the 

one John was proposing. My intuition told me that AAMT was not the organisation to move 

towards the establishment of such a group. 

John assured me that he would put up any funds needed to get the group going (and, 

hopefully, any group that was established would be able to pay him back within a few years). 

Hence we decided to proceed with the idea of establishing the group and to strike while the 

iron was hot, so to speak, by conducting a national conference at Monash University in the 

middle of 1977. I came up with the name “Mathematics Education Research Group of 

Australia” which John liked because of the acronym MERGA, which suggested a “merging 

together.” We sent out notices of our intention to form MERGA late in 1976. Neither of us 

knew many of the people who might be interested in joining such a group, so the notices were 

addressed to the “Mathematics Lecturers at…” 

Soon after we had decided to go ahead, I heard of the existence of a group, based in New 

South Wales, called the Mathematics Education Lecturers’ Association (MELA). John and I 

talked about whether MERGA and MELA might become one from the outset, but we decided 

that the aims of MELA seemed to be sufficiently different from those that we envisaged for 

MERGA, focused far more on research than lecturing, that we should proceed with the 

MERGA idea. 

And so it came to be that in May 1977, the first of what was to become the annual 

conference of MERGA took place. About 100 people attended, with papers frenetically being 

read from 9 am to about 10 pm, for three days, in a Rotunda Theatre at Monash University. 

Professor Richard Tisher was present at the start of the Conference, and talked of his 

experiences in establishing ASERA. Frank Lester, of Indiana University, was among those 

present. In the event, two volumes of papers read at the Conference were produced (the first 

volume being available on the first day of the Conference, and the second several months 

later). 

At a post-Conference meeting it was decided that, yes, MERGA should be formed, that 

the second meeting would be at Macquarie University in May 1978, and that an annual 

conferences should be held each year at a different academic institution. At that second 

conference it was decided by those present that MERGA should continue and a constitution 

and election of offices would be decided on at the third conference to be held at the then 

Brisbane College of Education.  And so MERGA was born. 

Ken Clements 
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Teaching and Learning by Example 

The Annual Clements/Foyster Lecture 
 

Helen L. Chick 
University of Melbourne 

<h.chick@unimelb.edu.au> 

The mathematical problems, tasks, demonstrations, and exercises that teachers and students 

engage with in classrooms are, in general, specific instantiations of general principles. 

Indeed, the usual purpose of such examples is to illustrate those principles and thus 

facilitate their learning. With this in mind, it is clearly important for teachers to be able to 

choose or design suitable examples, to recognise what is offered (or afforded) by particular 

examples, and to know how to adapt an already existing example to better suit an intended 

purpose. Although writers of textbooks and other teaching resources also need these skills, 

it is ultimately the teacher who puts the examples to work in the classroom. Teachers’ 

choice and use of examples is indicative of their pedagogical content knowledge (PCK)—

the complex amalgam of mathematical and pedagogical knowledge fundamental to teaching 

and learning—and reflects their understanding of the mathematics to be taught and how 

students can be helped to learn it. This paper examines some of the issues associated with 

example use and how it is informed by and can inform us about PCK. 

When a mathematics teacher asks a class to find the solutions of x
2

− 5x + 6 = 0 , an 

observer may already have an idea about the point of the exercise. The task appears to be 

about solving equations—more specifically, quadratic equations. Beyond this, however, 

some contextual information is needed in order to understand fully the teacher’s purpose in 

choosing that particular example. What if the next problem assigned is to find the solutions 

of x
2

− 2x + 5 = 0 ? Does this tell us anything? The two problems do not appear very 

different structurally, so why assign both? How are the two problems the same and 

different? What more does the second example tell us about the teacher’s learning 

intentions? 

This scenario highlights a number of issues. First, the teacher’s purpose in using the 

tasks most likely is not to solve the specific problems but to teach more general principles. 

The actual solutions to the specific equations x
2

− 5x + 6 = 0  and x
2

− 2x + 5 = 0  are not 

of interest, but the teacher is likely very interested in highlighting conceptual issues such as 

equation-solving methods and the nature of solutions. Second, the purpose of an example is 

always context dependent. In this case, the presence of the second problem suggests that 

the focus of the learning activity might be on the fact that some equations do not have real 

solutions. Third, a particular example may be used to exemplify different things. For 

instance, the intended purpose for solving the equation x
2

− 5x + 6 = 0  might be 

factorising, completing the square, using the quadratic formula, or highlighting the fact that 

an equation can have more than one solution. Finally, for an observer to determine (or 

hypothesise about) the purpose of the examples requires mathematical knowledge. More 

significantly, however, the teacher had to know what mathematical ideas she wanted to 

convey and, with this knowledge, needed to be able to design or choose examples to suit 

her purpose. 

Although this illustration comes from the secondary mathematics curriculum, the 

principles apply more broadly, including to primary mathematics teaching, the focus for the 
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research reported here. Investigating these issues closely involves a consideration of what 

constitutes appropriate teacher knowledge, how to examine opportunities inherent in 

classroom activities, what is meant by “example”, and how examples can be used. 

Background 

Pedagogical Content Knowledge  

Before narrowing the focus to that part of teaching that involves example choice and 

use it is useful to briefly examine the broader domain of pedagogical content knowledge 

(PCK). Shulman’s 1986 introduction of the term highlighted the fact that teacher 

knowledge—and resultant teacher effectiveness—depends on more than discipline content 

knowledge alone. He identified many of the facets of knowledge that contribute to PCK, 

including knowing what models and explanations support learning, understanding typical 

student conceptions, and recognising what makes a task complex or easy. These have now 

gained the attention of many researchers who have examined the nature of this knowledge 

in more detail. Other aspects of PCK include knowledge of connections among and within 

topics (e.g., Askew, Brown, Rhodes, Johnson, & Wiliam, 1997), deconstructing knowledge 

into key components (e.g., Ball, 2000), content knowledge (e.g., Kahan, Cooper, & Bethea, 

2003), knowledge of representations (e.g., Leinhardt, Putnam, Stein, & Baxter, 1991), and 

Profound Understanding of Fundamental Mathematics (PUFM) (e.g., Ma, 1999). Lampert 

(2001) highlights the complex interplay among aspects of PCK in the classroom milieu. 

Drawing on this work, Chick, Baker, Pham, and Cheng (2006) developed a framework for 

pedagogical content knowledge (see Appendix 1). The framework attempts to identify the 

key components of PCK, how they are evident in teaching, and the degree to which both 

pedagogical and content knowledge are intertwined (see also Marks, 1990). 

Everything that a teacher does—planning lessons, implementing them, responding to 

what arises in the classroom, interacting with students—involves one or more aspects of 

PCK. A lesson on the numeration of decimals, for example, might involve the decision to 

use a particular model to illustrate the concepts. This requires knowledge of different 

models and what they offer, recognising that their strengths and weaknesses depend on 

their epistemic fidelity (see Stacey, Helme, Archer, & Condon, 2001), that is, the capacity 

of the model to represent the mathematical attributes of the concept effectively.  Having 

chosen the model, the teacher then has to use it appropriately in the classroom, recognising 

the students’ present levels of understanding, developing appropriate explanations, and 

finding ways to respond to students’ uncertainties and questions. The tasks that are then set 

in order to consolidate understanding or to foster its further development also reflect the 

teachers’ PCK, since they should match the lesson’s learning objectives.  

Affordances and Didactic Objects 

Considering tasks and how useful they might be in the classroom requires an evaluation 

of what they have to offer. Gibson (1977) introduced the term affordances to refer to the 

uses perceived for an object by a potential user. So, for example, a chair affords uses as a 

seat or a bookshelf but, at first, may not seem to afford a use as an umbrella. That said, 

however, observing a gorilla holding an upturned chair over its head in the rain reveals 

that, in the gorilla’s perception, “rain shelter” is one of the affordances of a chair, and, thus, 

becomes an affordance of the chair for the observer now that the observer has perceived it 
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too. This emphasis on the “perceived” uses is problematic, especially for some of the issues 

considered here, because in teaching there are many opportunities and examples that have 

the potential to be applied in pedagogically useful ways, and yet are not because the teacher 

does not perceive the opportunity. As a consequence, the term potential affordances is used 

to refer to the opportunities that are inherent in a task or lesson. A teacher may well be 

aware of some of them—indeed, awareness of these potential affordances is usually 

evident in how the task is used—but the teacher may not necessarily be aware of all of 

them, or even the “best” of them. Furthermore, in the unscripted world of the classroom, 

some of these opportunities may not come to fruition because of other interfering factors; 

as Anne Watson writes, learning environments involve “a complex interplay between what 

could be possible, what is possible, and what is seen as possible” (Watson, 2003, p.37). A 

teacher’s PCK influences the degree to which she identifies the potential affordances in 

tasks and activities, makes pedagogical choices that allow her to offer desirable affordances 

in the classroom, and then finds ways of making those affordances give rise to effective 

learning. 

Thomson (2002) talks more specifically about the role of discussion and usage in the 

learning process, and uses the phrase didactic object  

… to refer to “a thing to talk about” that is designed with the intention of supporting reflective 

mathematical discourse. … [O]bjects cannot be didactic in and of themselves. Rather, they are 

didactic because of the conversations that are enabled by someone having conceptualized them as 

such. (p.198) 

This has relevance to models and representations, and, of course, examples. To illustrate 

this for models, note that although multi-base arithmetic blocks (MAB) are conventionally 

used to model base 10 numbers—especially units, tens, hundreds, and thousands—they can 

also be used to model decimal numbers. To do so, however, requires a reconceptualisation 

not only for the teacher, but also for the students. The MAB blocks afford the opportunity 

to model decimal fractions, but the reconceptualisation is needed to turn them into a 

didactic object. A whole new set of conversations must be evoked by the teacher in order to 

use MAB in this way, at the same time taking account of the epistemic fidelity issues 

(again, see Stacey et al., 2001). An example has the same capacity, potentially affording 

many things but delivering none until conceived as a didactic object. “Find the solutions of 

x
2

− 5x + 6 = 0 ” could illuminate many concepts, but its purpose must be identified by the 

user and then utilised in such a way that the desired concepts become apparent.   

Examples 

The meaning of “example” has, so far, been assumed as understood. It is necessary, 

however, to define it. For the purposes of this paper an example is a specific instantiation 

of a general principle, chosen in order to illustrate or explore that principle. This covers the 

usual sense of “example”, such as a teacher making a point by giving a specific illustration 

(e.g., “eight is an even number because it can be written as two times a whole number”) or 

demonstrating a solution procedure (e.g., a calculation using the long multiplication 

algorithm). It also covers assigned exercises and extended tasks.  

Bills, Mason, Watson, and Zaslavsky (2006) give an extensive overview of the history 

of example use and the role of examples in learning theories. Ball (2000) highlights how a 

particular task needs to be examined by the teacher to determine what it offers students, 

and then discusses the issue of deciding how to modify the task to make it easier or 
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simpler, or to make it illuminate particular concepts. Watson and Mason (2005, 2006) 

highlight the way in which changes to examples can highlight different concepts, and also 

show that getting learners to construct examples provides rich learning experiences. In fact, 

the situations discussed in the early chapters of their 2005 book show two significant 

aspects of examples. Although their primary thesis concerns examples constructed by 

students and how these develop mathematical understanding, in most cases these examples 

would not be generated without an appropriate task assigned by the teacher. Some of these 

tasks are quite open (e.g., “Construct a data set of seven numbers for which the mode is 5, 

the median is 6 and the mean is 7”, p.2). If the teacher’s intention with the task is to have it 

illustrate a general principle, notwithstanding that the students develop the specific 

instantiations, then it is argued that this makes the task an example too—perhaps in a 

“meta” sense, but an example nevertheless. Indeed a task may reflect more than one level 

of example-hood. A teacher may, for instance, select the “pizza” model for fractions—with 

the pizza exemplifying a fraction—and then ask students to show that 
1
/4 and 

2
/8 are the 

same—with the choice of 
1
/4 and 

2
/8 intended to exemplify general issues associated with 

equivalent fractions. 

For all that a specific example may be an instantiation of a general principle, one of the 

key concerns in example use is to ensure that the general is revealed out of the particular. 

This requires teachers to identify the important and unimportant components of the 

example that illustrate the generality. Bills et al. (2006) cite a case from the work of 

Rowland and Zaslavsky illustrating how variation in some digits in the subtraction problem 

62-38 still allows regrouping to feature, but that other choices “ruin” the problem for that 

purpose. Watson and Mason have adapted an idea of Marton (cited in Watson & Mason, 

2005), dimensions of possible variation, to discuss ways in which an example’s scope can 

be varied. Skemp (1971, pp. 29-30) talks about the role of noise in examples, and that 

identifying the general principle requires the learner to distinguish the salient features from 

the extraneous. One key implication of this is that teachers’ example choices must allow 

the relevant features to be detected through the noise (although Skemp points out that some 

noise is important). Since there are often many variables and features in an example, 

choosing the appropriate instantiations is critical, and requires adequate PCK.  

Returning to the framework for PCK (Appendix 1), all aspects of PCK can influence 

example choice and use. Of particular significance are (i) the underlying content-related 

aspects—such as PUFM and knowledge of connections and representations; (ii) knowledge 

of student thinking—both current and anticipated, together with knowledge of likely 

misconceptions; and (iii) the capacity to assess the cognitive demand of a task.  

Bills et al. (2006, p.138) suggest that there is a scarcity of research on teachers’ choice 

of examples. Zazkis and Chernoff (2006) describe a situation where a researcher taught a 

student about prime numbers through choosing strategic examples, with the teaching 

situation such that examples had to be generated spontaneously rather than being planned 

in advance. This clearly relied on the researcher’s deep understanding of prime and 

composite numbers and the ability to construct examples that were appropriate for the 

student’s needs. Zaslavsky, Harel, and Manaster (2006) examined the mathematical 

knowledge brought into play by a teacher introducing Pythagoras’ Theorem to students on 

two different occasions. On the first occasion the cases chosen were intended to build up to 

the general result and reflected the teacher’s understanding of geometrical configurations 

that are useful for Pythagoras’ Theorem. On the second occasion the physical constraints of 

the way she had set up the examples—needing all sides to be integers—reduced the 
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number of examples that could be given and may have affected the students’ capacity to 

see the entire generalisation. Little has been done to investigate more specific aspects of 

PCK; this is part of the purpose of the present study. 

Finally, it should be noted that many researchers have actually used examples to probe 

PCK. Hill and colleagues (Hill, Rowan, & Ball, 2005; Hill, Schilling, & Ball, 2004) have 

used multiple-choice questions that require teachers to examine a situation—a specific 

instantiation of a general scenario, involving a particular mathematical problem—and 

identify appropriate content- or pedagogically-based responses. Watson, Beswick, and 

Brown (2006) used a particular fraction/ratio problem to probe teachers’ content 

knowledge, with follow-up questions investigating teachers’ knowledge of students’ likely 

thinking, including misconceptions, and their possible approaches for teaching the topic or 

remediating difficulties. The project from which the present research is drawn also used 

teaching situations based on specific examples to probe different aspects of teachers’ PCK 

(see Chick & Baker, 2005a; Chick, Baker, et al., 2006; Chick, Pham, & Baker, 2006). In all 

cases the examples used were designed carefully in order to reveal general rather than 

specific aspects of the levels of PCK held by the teachers. 

The Focus of this Paper and the MPCK Project 

The current study considers some of the examples used by upper primary teachers. The 

intention is to examine the affordances inherent in the examples, and the way in which the 

teachers implement them to turn them into didactic objects. This examination provides 

insights into the teachers’ PCK, and what needs they may have for developing it, 

particularly in regard to example choice. Although the examples are from the primary 

curriculum, it is anticipated that there are general principles that apply for teachers of other 

age groups.  

The data for this study were collected as part of the ARC-funded Mathematical 

Pedagogical Content Knowledge project. This project involved fourteen Grade 5 and 6 

teachers who volunteered to participate over a one- to two-year period. Part of the project’s 

purpose was to examine teachers’ PCK and how it is enacted in the classroom. A 

questionnaire and follow-up interview were used to gather initial data, and then pairs of 

lessons were observed and video-taped. The two lessons were on the same topic and 

conducted consecutively, with the teacher nominating the topic for observation. Up to four 

such pairs of lessons were recorded for each teacher. During the lessons the video-camera 

focused on the teacher, and the teacher’s words were recorded via a wireless microphone 

that was sensitive enough also to record some student utterances. Field notes were also 

made. Following each pair of lessons, the teacher was interviewed about the original plans 

for the lessons, perceptions of successes and difficulties, changes and adaptations made, 

and future follow-up plans.  

Several of the pairs of lessons involved fractions, and these lessons were subjected to a 

“content analysis” approach (Bryman, 2004), in which individual examples that arose in 

the classroom were identified, according to the definition of “example”, and then 

categorized according to the way in which the teacher used it. This identified, for instance, 

whether the example was used as a teacher demonstration, or as a student task; or whether 

the example focussed on conceptual or procedural matters. From this data, and from data 

from three other pairs of lessons on other topics (probability, and measurement) several 

illustrative cases were selected to allow comparisons among the ways in which tasks were 

used, the affordances they offered, and the PCK involved. The purposeful selection of these 
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cases makes them what Bryman (2004, p. 51) calls exemplifying cases, which are used for 

the purposes of a multiple-case comparative study. 

There are, of course, some caveats about what can be learned from such a research 

design. Although information about teachers’ intentions was obtained from the post-lesson 

interviews, these interviews were wide-ranging and did not always focus on examples per 

se. Consequently the teachers’ purposes have, at times, been inferred from their 

implementations and classroom actions. Furthermore, it is easy, as an outside observer with 

the benefit of repeated video viewings, to see alternative options that teachers might have 

utilised to good effect. It is, however, important to acknowledge the complex milieu of the 

classroom, the speed with which some decisions must be made, and that, in these cases, 

mathematics is not the only area of the curriculum that primary teachers must teach. 

Three Sets of Examples 

This section describes three sets of examples that highlight important issues associated 

with example choice, affordances, and PCK. As explained earlier, the examples were 

purposefully selected from the lessons of eight of the MPCK teachers (names are 

pseudonyms), from nine of their pairs of lessons. The examples were chosen for what they 

illustrate qualitatively rather than to reflect any quantitative assessment about either the 

types of examples used in general or by a particular teacher. The scale of the examples 

varies, ranging from an assigned computational exercise through to an extended problem 

that the teacher utilised to illustrate a wide range of mathematical concepts. The 

pedagogical implications—such as the affordances offered by the examples described, and 

the PCK evident or missing in the choice and implementation of the examples in the 

classroom—are also examined. 

Fractions 

Six of the teachers presented pairs of lessons on fractions. In some cases their focus 

was on the meaning of a fraction, whereas in others they addressed fraction operations. In 

the majority of these lessons the teachers used many “small” examples, usually illustrations 

of particular fractions or exercises for students to solve. A range of these are presented here 

to show what examples were chosen and how the teachers used them, with discussion on 

what the examples might have afforded and what PCK was evident. 

Cake halving. Meg used a square cake and repeatedly halved it, emphasising that the 

cake is the “whole” and remains the same quantity, but that the pieces were getting smaller. 

She also clarified the terms numerator and denominator. A student wrote the associated 

unit fractions on the board, finishing with 
1
/32, and Meg emphasised that as the pieces get 

smaller the denominator gets bigger. 

The idea of “cake cutting” has the potential to model almost any fraction, not just those 

with a power of two for a denominator nor just unit fractions. Meg’s repeated halving 

allowed students to see some atypical primary school fractions, such as 
1
/16 and 

1
/32, but 

omitted many other unit fractions. Furthermore, her emphasis on unit fractions allowed a 

focus on the relationship of the denominator to the size of the piece, but prevented a deep 

examination of the meaning of the numerator. Although there is no evidence that this 

caused problems for these students, a well-known misconception is that students will, for 

example, regard 
2
/5 as bigger than 

6
/7 because fifths are bigger than sevenths. Meg may not 

have been aware of this particular misconception, or, if she was, may not have seen that 
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although her emphasis on the relationship between the denominator and the size of the 

pieces was important it had the potential to lead to such a problem. Finally, the emphasis 

on halving appeared to interfere with later examples involving thirds and fifths.  

Aero bar. Irene began her introduction to fractions with a KitKat chocolate bar, which 

allowed her to talk about quarters and emphasise the meaning of numerator and 

denominator. She also used a piece of paper torn into four pieces to illustrate the 

importance of having equal parts. Her next example used an Aero chocolate bar, which has 

seven pieces. She broke off three pieces and asked what fraction would represent how 

much she had. This example allowed her to illustrate sevenths, a denominator different 

from the familiar halves, quarters, and thirds. She also pointed out that sevenths are 

difficult to show with the “pizza” model of fractions. 

Irene’s choice of chocolate to model fractions suggests knowledge of how to “get and 

maintain student focus”. In addition, by beginning with the four-piece KitKat she could 

model the familiar quarters, and then use torn paper to emphasise the importance of equal 

pieces, which had been implicit rather than explicit in the chocolate bar. The KitKat 

example provided an appropriate segue into the Aero bar, which allowed a “real world” 

example of sevenths, and Irene also emphasised the role of the numerator. There is a 

disadvantage in using the two different chocolate bars in that they are not suitable for 

making comparisons of quarters and sevenths; nevertheless, the chocolate bar models were 

suitable for the purposes to which Irene put them. 

Smarties. After an initial review of fraction terminology and the use of a circle divided 

into three unequal pieces to emphasise the importance of equal parts, Jill used discrete 

materials rather than continuous materials to reinforce fraction notation. Students counted 

the numbers of each colour in small boxes of Smarties, and expressed this as a fraction of 

the total number of Smarties in the box. They also had to create a fraction strip on grid 

paper to show the fractions obtained, by dividing the strip into equal parts representing the 

total number of Smarties and then colouring in the relevant proportions. Unfortunately this 

model then caused problems when Jill tried to illustrate addition of fractions with the same 

denominators. She used an example of one person having 12 out of 14 orange Smarties and 

a second person having three out of 14 orange Smarties and added these as fractions to get 
15

/14 (since there is a “common denominator”), before she turned this improper fraction into 

a mixed number. The problem here, however, was that the situation implies that there were, 

in fact, 28 Smarties involved. Jill acknowledged that there were actually two boxes of 

Smarties but told students to treat them as one box.  

In theory, at least, the box of Smarties can be used to model fractions, but great care 

needs to be taken about identifying the “whole”. Jill did not give this concept enough 

emphasis, with the added difficulty that the number of Smarties per box can vary. Jill knew 

about the latter problem and attempted to address it, but the former issue made modelling 

fraction addition difficult. In this case, the model/example was inadequate or did not have 

the level of epistemic fidelity needed to deal successfully with addition of fractions, despite 

the fact that it was suitable for simply representing fractions. 

Fraction wall. Meg used the well-known “fraction wall” idea, and asked students to 

fold equal length strips into different numbers of parts. Obtaining halves, quarters, and 

eighths was easy, especially after the earlier cake-halving demonstration. Thirds were a 

little harder to fold (and some students anticipated that she would ask for sixteenths next), 

and then when Meg asked them what fraction they could find next, many students 
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suggested fifths, whereas Meg had been thinking of halving again to get sixths. Fifths 

required even more adeptness at folding, and in the end Meg and some of the students 

resorted to measuring and calculating the lengths, a task made easier by the fact that the 

strip was 20cm long. Students did tenths next, and Meg made a conscious decision not to 

tackle sevenths because of the challenge of finding a strategy for folding the paper into 

seven. This meant that the students’ fraction walls had all the fractions up to eighths and 

tenths, with the exception of sevenths and ninths.  

Since the fraction wall model for fractions uses strips of equal width to build up a wall, 

the fractional parts are represented both by area and by length. It is a powerful model for 

comparing fractions, and can also highlight equivalent fractions. Meg’s chosen sequence of 

fractions to make (halves, quarters, then eighths; thirds, then sixths, fifths and finally 

tenths) echoed her focus on halving as implemented with the cake-cutting activity earlier in 

the same lesson. There was no detailed discussion, however, of how halving the thirds 

gives sixths, thus missing an opportunity to strengthen connections between the ideas of 

halving and doubling. The omission of sevenths and ninths, which Meg acknowledged as 

being a consequence of time constraints and the difficulties of folding, may have reduced 

the students’ capacity to generalise the fraction concept from the examples given. 

Comparing fractions. Lisa had previously done work on equivalent fractions, which 

provided a foundation for her two lessons on comparing fractions. She began with a pizza 

comparison, asking students to decide who ate more if one person ate half a pizza and the 

second person ate four pieces of a pizza that had been cut into ten pieces. Students then had 

to generate fractions using a deck of cards, by selecting pairs of cards to generate the 

numerator and denominator of a proper fraction, and then comparing two fractions thus 

obtained. This led to some challenging problems, in one case involving twelfths and 

sevenths, which caused difficulty for some students. Prior to the second lesson she asked 

students to compare 
2
/5 and 

1
/3 for homework, and in the second lesson had students show 

how they had used equivalent fractions to make the comparison. She also showed how the 

equivalent fractions could be modelled on a fraction bar, giving a very careful discussion of 

how the fifths on a fraction bar could be turned into fifteenths by dividing each part into 

three. 

Lisa’s pizza consumption example provided a relatively simple context for looking at 

comparison of fractions and equivalent fractions, where one denominator was a multiple of 

the other. Her use of a deck of cards for generating fraction comparison problems 

introduced a random element to the tasks, and meant that she lost control of what kind of 

denominator relationships would arise. It is not clear that this was because she did not 

realise that denominator relationships might be important, or that the task, as designed, 

would affect them. The consequence was that some students had to grapple with quite 

difficult comparisons (such as twelfths and sevenths), which may have been too cognitively 

demanding for them. On the other hand, the choice of 
2
/5 and 

1
/3 for the homework task was 

more manageable, and afforded the opportunity to relate the problem situation to both the 

equivalent fraction calculations and to a model used to represent them. The choice of 

values is particularly good for this purpose: the two fractions are sufficiently close that 

comparing them demands an equivalent fractions strategy, rather than being obvious 

through visualisation; the values for the denominators make the calculation and 

representation of the equivalent fractions achievable yet still suitably cognitively 

demanding for the students; and the conceptual connections can be highlighted. 
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Exercises with fraction operations. The lessons that focused on fraction operations had 

a strongly procedural rather than conceptual orientation. Frank’s lesson was purportedly a 

revision lesson, focusing on all four of the fraction operations. He used the example 
1
/6 + 

3
/6 to illustrate addition of fractions with the same denominator, without commenting 

that 
3
/6 is, in fact, 

1
/2, or that the final answer of 

4
/6 can be simplified as 

2
/3. A later exercise 

for students was 5
1
/2 – 2

7
/12 which Frank expected students to solve by converting the 

mixed numbers to improper fractions and then finding common denominators if necessary. 

When one student explained that she had subtracted the whole numbers first, found an 

appropriate equivalent fraction for the half, and successfully regrouped after realising that 
7
/12 could not be subtracted from 

6
/12, Frank’s response was to suggest 5

1
/2 – 2

7
/19 as an 

example that might be difficult to attempt using such a strategy, implicitly privileging the 

“convert to improper fractions” method. 

A second teacher, Brian, provided students with some exercises for converting from 

mixed numbers to improper fractions. There were four examples written on the board, 

1
4
/10, 7

3
/4, 5

3
/6, and 8

9
/12, with three not in their simplest form. His emphasis was on the 

procedure for converting to improper fractions. The non-simplified nature of the fractions 

was not discussed, either before or after the conversion. 

Both Frank and Brian demonstrated sound procedural knowledge. The focus, however, 

seemed to be on one concept at a time, ignoring other concepts that were evident in the 

example, as evidenced in Frank’s 
1
/6 + 

3
/6 addition problem and three of Brian’s mixed 

numbers problems, where the concept of equivalent fractions was overlooked. Here 

connections among concepts were not being established or reinforced; each process—

equivalent fractions, operations with fractions, converting among forms—appears to exist 

in isolation.  

Frank’s impromptu construction of the example 5
1
/2 – 2

7
/12 was intended to illustrate a 

situation where it might be difficult to subtract using the fractions in their mixed form 

rather than converting to improper fractions. Although it made the denominators harder to 

work with, the resulting example was, in fact, easier to solve using mixed numbers, given 

that the new choice of numerators actually eliminated the need to regroup. This suggests 

that whereas Frank could determine some of the cognitive demand of a problem, he could 

not quickly work his way through the consequences for the example in its equivalent form. 

In particular, he could not identify which were the salient pieces of the example to vary. 

Probability 

The next example, first discussed by Chick and Baker (2005b), comes from the topic of 

probability. Irene, an experienced teacher, and Greg, who was in only his second year of 

teaching, were Grade 5 teachers in the same school. They had chosen to use a spinner game 

worksheet activity suggested in a teacher resource book (Feely, 2003). The spinner game 

used two spinners divided into nine equal sectors, labelled with the numbers 1-9. The 

worksheet instructed students to spin both spinners, and add the resulting two numbers 

together. If the sum was odd, player 1 won a point, whereas player 2 won a point if the sum 

was even. The first player to 10 points was deemed the winner. Students were further 

instructed to play the game a few times to “see what happens”, and then decide if the game 

is fair, who has a better chance of winning, and why (Feely, 2003, p. 173). The teacher 

instructions (Feely, 2003, p. 116) included a brief suggestion about focusing on how many 

combinations of numbers add to make even and odd numbers but did not provide any 
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additional direction. The “example” in this case is the spinner game in its particular 

configuration. 

Before examining what the teachers did in the classroom, it is informative to look at the 

affordances of this example. Careful consideration reveals that it affords worthwhile 

learning opportunities associated with sample space, fairness, long-term probability, 

likelihood, and reasoning about sums of odd and even numbers. The significant issue here, 

especially in the absence of explicit guidance from the resource book about how these 

issues can be brought out, concerns the choices that teachers make when implementing this 

activity; especially in terms of what they allow it to exemplify. To add to the complexity of 

what is already a conceptually rich example, the configuration of the spinners generates an 

interesting difficulty that could undermine the activity or could be turned to advantage, 

depending on how it is addressed. This difficulty arises because the chances of Player 2 

(even) winning a point is 
41

/81 compared to 
40

/81 for Player 1 (odd), as revealed by analysis 

of the sample space. This miniscule difference in likelihood implies that the game’s 

unfairness is unlikely to be convincingly evident when playing “first to ten points”.  

The interest is in how the teachers implemented the activity in the classroom, and in 

what they allowed it to exemplify and what students might have learned from it. Irene 

preceded her use of the game by getting students to toss a coin 100 times and record the 

number of heads and tails, with pairs of students starting to play the spinner game as soon 

as they had completed their 100 tosses. This meant that some students had more time to 

engage with the game than others, and that some of the important teaching moments 

occurred for small groups of students rather than the whole class. Most students had played 

the game for a few minutes before Irene interrupted them for a discussion of the coin 

tossing results and then the spinner game. Her focus here was really on the coin tossing 

results, and time constraints limited the attention given to the spinner game. Nevertheless, 

some of its attributes were addressed. She asked the class if they thought it was a fair game. 

Discussion ensued, as students posed various ideas without any of them being completely 

resolved. For instance, there was a brief discussion about how the “structure” of the game 

needed to be fair, implying that fairness means that as long as the two players play by the 

rules of the game then they should have an equal chance of winning. Most of the arguments 

about fairness were associated with the number of odds and evens, both in terms of the 

individual numbers on the spinners (there are more odds than evens on each spinner) and in 

terms of the sums. One student neatly articulated the erroneous parity argument, that since 

“odd + odd = even and even + even = even but odd + even = odd, therefore Player 2 has 

two out of three chances to win”. Irene said she was not convinced about the “two out of 

three”, but she agreed the game was unfair. Irene then allowed one of the students to 

present his argument. At the start of the whole class discussion this student had indicated 

that he had not played the game at all but had “mathsed it” instead, and at that time Irene 

made a deliberate decision to delay the details of his contribution until the other students 

had had their say. He proceeded to explain that he had counted up all the possibilities, to 

get 38 for even and 35 for odd. Although this was actually incorrect Irene seemed to 

believe that he was right and continued by pointing out that this meant that “it’s not terribly 

weighted but it is slightly weighted to the evens”. Irene then asked the class if their results 

bore this out, and highlighted that although the game was biased toward Player 2 this did 

not mean that Player 2 would always win. 

Greg spent a much longer time on the spinner game. The students played it at the end 

of the first of the two observed lessons, and during the course of their exploration of the 
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game a few pairs came up with the parity argument, accompanied by the observation that 

there are more odd numbers on the spinners. That lesson concluded with an extensive 

discussion of whether or not the game was fair. Greg did not indicate whether or not he 

thought the students’ suggestions were correct; he seemed to want to hear all the 

contributions. He later asked if any of the students had considered all the possible 

outcomes, and suggested that this would something they would look in the next lesson. In 

the post-lesson interview Greg told the researchers that the decision to explore sample 

space was made only during the first lesson while students were already working on the 

task. He also acknowledged that when he chose the activity he was not sure of all that it 

offered.  

Greg then devoted nearly half of his second lesson to an exploration of the sample 

space. As reported in Chick and Baker (2005b) he tightly guided the students in recording 

all the outcomes and could not deal with alternative approaches. He asked the students to 

calculate the probabilities of particular outcomes, which was helpful in highlighting the 

value of enumerating the sample space, but detracted from the problem of ascertaining 

whether even or odd outcomes were more likely. Students eventually obtained the “40 odds 

and 41 evens” conclusion, at which point Greg stated that because the “evens” outcome 

was more likely the game was unfair. There was, however, no discussion of the narrowness 

of the margin. 

It must be noted that in both classes the students did not—could not—play the game 

long enough for the unfairness to be genuinely evident in practice, yet most students 

claimed that the game was biased towards even. This may have occurred because the 

incorrect parity argument made them more aware of the even outcomes than the odd ones.  

As suggested earlier, the spinner game provides the opportunity to examine sample 

space, likelihood, and fairness. Given the impact of time constraints on Irene’s lesson, 

sample space was not covered well, although she believed that the student who had 

“mathsed it” had considered all the possibilities. This highlights a contrast between her 

knowledge of his capabilities and the details of the content with which he was engaged. On 

the other hand, her content knowledge was sufficient for her to recognise the significance 

of the small difference between the number of odd and even outcomes and its impact on 

fairness. Greg was much more thorough in his consideration of sample space, but also very 

directive. He seemed constrained by his content knowledge, having only one way to think 

of the sample space—via exhaustive enumeration—and was unable to recognise the 

possibility of an alternative approach in one of his students’ erroneous suggestions.  

Neither teacher seemed aware of all that the game afforded in advance of using it, as 

evidenced by the way it was used, although Greg recognised the scope for examining 

sample space part way through the first lesson. Both teachers were, however, able to bring 

out some of the concepts in their use of the game, with Irene having a good discussion of 

the meaning of fairness and the magnitude of the bias, and Greg illustrating sample space 

and the probability of certain outcomes.  

An important observation needs to be made here. The teacher guide that was the source 

of the activity gave too little guidance about what it afforded and how to bring it out. Even 

if such guidance had been provided, there is also still the miniscule bias problem inherent 

in the game’s structure that affects what the activity can afford. It is very difficult to 

convincingly make some of the points about sample space, likelihood, and fairness with the 

example as it stands. It can be done, but the activity probably needs to be supplemented 

with other examples that make some of the concepts more obvious (see, e.g., Baker & 

Mathematics: Essential Research, Essential Practice — Volume 1

13



Chick, 2007). This highlights the crucial question of how can teachers be helped to 

recognise what an example affords and then adapt it, if necessary, so that it better 

illustrates the concepts that it is intended to convey.  

Area and Perimeter 

The final case involves Clare, a Grade 6 teacher with five years’ experience. She 

conducted two lessons focussing on area and perimeter simultaneously, having done work 

in the past on each separately. Part of her first lesson is presented here in detail, to highlight 

the way the actual implementation of an example in the classroom may develop in 

unanticipated ways and to indicate how important PCK is in dealing with this. 

Clare began by reviewing the concept of area, where she emphasised that “Area 

measures the space inside a shape, so what that actually is, is the number of squares inside 

the shape”. She then asked students to draw a rectangle with an area of 20cm
2
 on grid paper 

and cut it out. Her choice of what might be called an open “reversed” task was appropriate 

given that the students had worked with area before, including the area formula for 

rectangles. Shortly after this instruction the following exchange took place between Clare 

and a student.   

S:  Can I do a square? 

Clare: Is a square a rectangle? […] What’s a rectangle? […] How do you get 

something to be a rectangle? What’s the definition of a rectangle? 

S:  Two parallel lines 

Clare: Two sets of parallel lines … and … 

S:  Four right angles. 

Clare: So is that [points to square] a rectangle? 

S:  Yes. 

Clare: Excellent. [Pause] But has that got an area of 20? 

S:  [Thinks] Er, no. 

Clare: [Nods and winks] 

It is not clear whether Clare’s original choice of 20 was made with any awareness of 

geometrical implications, but the fluency with which Clare moved from area measurement 

to spatial issues—addressed with clear attention to geometrical properties—and back again 

required ready access to the PCK of both the measurement and spatial domains. She also 

exhibited effective use of questioning to elicit understanding from the student. Shortly after 

this she discussed rectangle properties with the class. 

Clare then invited a student to bring his 4×5 cut-out rectangle to the front of the class, 

recorded it on an overhead transparency, and confirmed that its area was 20cm
2
. She led a 

class discussion on how multiplying length × width is the same as counting squares and 

hence gives the area. Clare thus used the concrete example to highlight the link between 

the conceptual meaning of area and the procedural calculation. She did not stop there, 

however; in the following exchange it can be seen that Clare knew that students need to 

know that the area formula L×W only applies to certain shapes. 

Clare:  When [S1] said that’s how you find the area of a shape, is he completely 

correct?  

S2: That’s what you do with a 2D shape. 
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Clare: Yes, for this kind of shape. […] What kind of shape would it not actually 

work for? 

S3: Triangles. […] 

S4: A circle. 

Clare: [With further questioning, teases out that L×W only applies to rectangles.] 

A student then suggested 2×10 as a second example of a rectangle with area 20cm
2
, at 

which point Clare confirmed that all the students had chosen either this one or the 4×5 

case. When she asked for other possibilities the students suggested the original examples 

but oriented at 90°, together with 1×20, which had not been suggested earlier. With all the 

integer-sided rectangles on display Clare asked the students to look for a pattern in the 

examples found, which led into a discussion of factors of 20. She continued: 

Clare: Are there any other numbers that are going to give an area of 20? [She 

paused, with an attitude of uncertainty. There was no response from the 

students at first.] 

Clare: No? How do we know that there’s not? 

S: You could put 40 by 0.5. 

Clare: Ah! You’ve gone into decimals. If we go into decimals we’re going to have 

heaps, aren’t we? 

It appeared that she was targeting only whole numbers—and, as a consequence, some 

argument about exhausting the factors of 20—but she clearly understood the significance 

of the student’s unexpected answer, and to what degree it would apply. The open scope of 

her questions allowed this extension to arise, even though it had not been her original 

intention; however, she made a decision not to pursue this aspect—even though it would 

have been a valuable use of the 20cm
2
 example—because she wanted to move on to 

different examples that would highlight other relationships. Instead she used the 20cm
2
 

example to focus on the search for all factors of 20.  

This exploration of the 20cm
2
 example took the first 15 minutes of the lesson. Clare 

then had students repeat the search for rectangles with area 16cm
2
. She used this example 

to highlight the process of systematically searching for factors, and to highlight the set 

inclusion property “a square is a rectangle”. She recapped that they had been working on 

areas, and then reminded students about perimeter, how to work it out for rectangles, and 

that linear rather than square units are involved. She guided the class to work out the 

perimeters of the different 16cm
2
 rectangles they had found, and indicated that although 

shapes might have the same area they do not have to have the same perimeter. She revisited 

the 20cm
2
 examples they had, and calculated the perimeters to focus again on the variation 

in perimeter.  

The final example/task for the lesson was for students to work in groups to find as 

many shapes—not just rectangles, but constrained by being made of contiguous squares—

with an of area 12 cm
2
 and determine the perimeters. She wrote “What is the relationship 

between area and perimeter?” on the board as a learning objective for this activity. She 

allowed students to explore the task for about five minutes, then interrupted their work to 

help them develop strategies to work systematically and instruct them to record the 

perimeters of each shape. About 20 minutes later, she held another class discussion that 

acknowledged that there were “heaps” of possible shapes, looked at one group’s systematic 

work and discussed some symmetry implications, and then asked students to focus on 
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finding a shape with the greatest perimeter and one with the smallest perimeter. The 90-

minute lesson concluded with a ten-minute discussion of the students’ results, which 

emphasised the use of linear units for perimeter, that shapes with small perimeters were 

more “compact”, and that moving one of the squares on a shape without changing the 

number of joining edges will not change the perimeter.  

Clare’s conclusion re-emphasised the points of her lesson: that area and perimeter can 

have the same or different numerical values, that two shapes with the same area can have 

different perimeters, and that systematic work can help find all the possibilities in a 

problem. These learning outcomes were achieved through the use of just three examples 

that had been carefully chosen to illustrate these points. 

Clare seemed to have a very clear idea about what she wanted her examples to achieve. 

They were effective as didactic objects for two reasons: Clare’s careful choice of the 

examples themselves and then the way she facilitated conversations about them. It is not 

clear that there was a purposeful reason for considering rectangles of area 20cm
2
 first, 

followed by those of area 16cm
2
; in particular, it is uncertain that there was an intention to 

allow discussion of “squares are rectangles” in the second case after just focussing on non-

square rectangles. However, whether it was an intended focus or an opportunity that arose 

fortuitously, Clare was able to address this geometric concept fluently, demonstrating her 

capacity to make connections across topics. The final extension considered shapes of area 

12cm
2
. If only considering rectangles this would have been no more difficult than what 

students had already done—and potentially redundant—but because she wanted students to 

consider other shapes as well, it was appropriate to pick this “simpler” number. 

Interestingly, given the magnitude of the enumeration task, there is potential to debate 

whether 12 is, in fact, simple enough. One of the researchers observing the lesson at the 

time wondered if she had chosen wisely. As the lesson progressed, however, it was clear 

that although she wanted to address the issue of enumerating all possible shapes 

systematically, her main focus was still associated with area and perimeter, and the choice 

of 12 allowed enough variety of shapes to make it a non-trivial task to find those with the 

greatest and least perimeter.    

There was an interesting decision point that arose in the lesson when a student gave the 

40×0.5 rectangle example. It seemed that Clare’s focus on factors influenced her decision 

to acknowledge this response, briefly recognise its implications, but then continue with 

whole number dimensions. It is not clear whether she weighed up (a) what concepts could 

have been developed if she had detoured with an exploration of non-integer dimensions, 

(b) how such a detour might have interfered with her goals for the lesson, and (c) whether 

or not all her students would have been capable of following the detour. Certainly such an 

exploration could have given more extreme perimeter values than the students obtained, 

but the importance of identifying factors of numbers might have been obscured. 

The strength of Clare’s PCK was evident as the lesson progressed, as well as in her 

responses to the questionnaire and interviews (see Baker & Chick, 2006). She appeared to 

have a deep understanding of concepts, the rich connections among them, and the links 

between concepts and procedures. Her conceptual fluency was evident in the ease with 

which she responded to unanticipated events in the classroom. In addition to specific 

content knowledge she advocated general mathematical principles, such as the need to 

work systematically, and to justify and explain results. Her knowledge of student thinking 

was evident in her identification of likely misconceptions, and in knowing how to ask 

questions and respond to students’ difficulties. Finally, her choice of examples had 
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appropriate cognitive demand for her students, led to conceptual understanding, and 

afforded exploration of a range of mathematical concepts. 

Conclusions 

For most of these cases, the teachers selected the example’s structure and specific 

values prior to implementing it in the classroom, strongly influenced by their PCK and 

what affordances they thought the example offered. At times, though, teachers had to 

develop or respond to an example on the spot; but again their capacity to do so was 

affected by their PCK and their ability to construct or recognise examples with the 

affordances required. It is worth making some observations about the source of the 

examples and the PCK for some of these situations, in order to highlight the complexity 

associated with this critical issue. 

• A teacher’s current level of PCK can allow him/her to recognise a situation that 

could be turned into a useful example, as evident in the use of the Aero bar. 

• A teacher’s current level of PCK may allow him/her to devise a partly 

appropriate example, but deeper PCK would reveal that it has limitations. This 

occurred with the Smarties and with Frank’s fraction subtraction example. 

• Professional development (PD) can enhance PCK and a teacher’s repertoire of 

examples. The fraction wall and the paper strip folding activities conducted by 

Meg had their origins in PD and reflected, in her paraphrased words, part of a 

change in her teaching style from a procedural focus to a conceptual one. That 

said, however, a teacher’s implementation of an example demonstrated to 

him/her in PD may not always reflect the potential affordances identified by the 

PD designers. The omission of the sevenths and ninths was Meg’s choice; most 

advocates of the fraction wall would include these examples. 

• External sources of examples do not always indicate the affordances of the 

example and how to implement them. This was strikingly evident in the case of 

the spinner game. It cannot be assumed that teachers do not or should not need 

this support. 

• A teacher’s current level of PCK and his/her identification of affordances can 

develop in the process of implementing an example. This occurred for Greg as 

he used the spinner game. Moreover, he recognised this development as such. 

• A teacher with rich PCK can devise examples that illustrate a range of concepts, 

can highlight connections among topics, and identify which are the central ideas 

and which are peripheral. This was evident in Clare’s area and perimeter 

examples. 

The complexity of mathematical concepts, together with the limited opportunities that 

teachers have to master all these concepts and their pedagogical implications before 

entering the classroom, highlight how difficult it is to ensure that teachers have the depth of 

PCK required to identify and draw out the affordances of an example. Recognising the 

ways in which “Compare 
2
/5 and 

1
/3” is different from “Compare 

3
/7 and 

5
/8” and the 

consequent implications for what might be learned, for instance, requires attention to a 

range of fraction issues followed by a decision about which aspects are regarded as more 

important for the day’s teaching objectives.  

These observations raise the question of how to prepare future teachers so that they 

develop adequate PCK and can successfully choose, use, and modify examples. Clearly 
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there must be an endeavour to ensure that teachers have a deep conceptual understanding of 

mathematics, and rich PCK for its teaching. Given the centrality of examples to the 

teaching and learning process, however, time also needs to be spent applying this 

understanding to an investigation of examples and their pedagogical implications. We need 

to develop ways to help teachers identify more potential affordances in examples, to 

recognise an example’s salient and non-salient features, and to ascertain the implications of 

any interrelationships that exist.  

This suggests that teacher education and professional development opportunities must 

be more explicit about the issues associated with example use. In particular, the 

affordances of the examples used in teacher education and professional development 

should be identified and discussed, so that teachers learn to realise that an example has 

many potential affordances and to discriminate between the productive and the 

unproductive. There is a need to identify the dimensions of possible variation for an 

example, so that the impact of changes to the particular values and structure can be 

considered, and the significant and extraneous components of the example can be 

identified. This is essential if teachers are to learn how to change examples to make them 

conceptually harder or easier, to produce counterexamples, or to emphasise a different 

principle. Indeed, teachers and potential teachers need opportunities to engage with 

examples, to trial them, and to learn how to adapt them successfully to meet different 

needs. It would be valuable to have teachers contrast examples, attending to affordances 

and what varies between the examples (the earlier illustration of examining the ways in 

which “Compare 
2
/5 and 

1
/3” is a different example from “Compare 

3
/7 and 

5
/8” is a case in 

point). In all of this, there needs to be deeper discussion of the connections among 

mathematical topics and how an example illuminates these connections. Finally, there must 

be discussion of how to implement the examples in the classroom, so that the examples 

become successful didactic objects that illustrate the desired general principle. Without 

this, the opportunities for learning afforded by examples may go unfulfilled. 

Acknowledgements: This research was supported by Australian Research Council grant 

DP0344229. My thanks go to Monica Baker and Kiri Harris who were research assistants 

on this project, and to Robyn Pierce and Jane Watson who provided feedback on drafts of 

this paper. I also greatly appreciate the involvement of the teachers in the MPCK project 

who allowed me into their world. I learned much from them and their examples.  

References 

Askew, M., Brown, M., Rhodes, V., Johnson, D., & Wiliam, D. (1997). Effective teachers of numeracy. Final 

report. London: King’s College.  

Baker, M., & Chick, H. L. (2006). Pedagogical content knowledge for teaching primary mathematics: A case 

study of two teachers. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures 

and learning spaces (Proceedings of the 29
th

 annual conference of the Mathematics Education Research 

Group of Australasia, pp. 60-67). Sydney: MERGA. 

Baker, M., & Chick, H. L. (2007). Making the most of chance. Australian Primary Mathematics Classroom, 

12(1), 8-13. 

Ball, D. L. (2000). Bridging practices: Intertwining content and pedagogy in teaching and learning to teach. 

Journal of Teacher Education, 51(3), 241-247. 

Bills, L., Mason, J., Watson, A., & Zaslavsky, O. (2006). RF02: Exemplification: The use of examples in 

teaching and learning mathematics. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), 

Proceedings of the 30
th

 annual conference of the International Group for the Psychology of Mathematics 

Education (Vol. 1, pp. 125-154). Prague: PME. 

Bryman, A. (2004). Social research methods (2
nd

 ed.). Oxford: Oxford University Press. 

Mathematics: Essential Research, Essential Practice — Volume 1

18



  

Chick, H. L., & Baker, M. (2005a). Investigating teachers’ responses to student misconceptions. In H. L. 

Chick & J. L. Vincent (Eds.), Proceedings of the 29
th

 annual conference of the International Group for 

the Psychology of Mathematics Education (Vol. 2, pp. 249-256). Melbourne: PME. 

Chick, H. L., & Baker, M. (2005b). Teaching elementary probability: Not leaving it to chance. In P. C. 

Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building 

connections: Theory, research and practice (Proceedings of the 28
th

 annual conference of the 

Mathematics Education Research Group of Australasia, pp. 233-240). Sydney: MERGA. 

Chick, H. L., Baker, M., Pham, T., & Cheng, H. (2006). Aspects of teachers’ pedagogical content knowledge 

for decimals. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30
th

 

annual conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 

297-304). Prague: PME.  

Chick, H. L., Pham, T., & Baker, M. (2006). Probing teachers’ pedagogical content knowledge: Lessons from 

the case of the subtraction algorithm. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), 

Identities, cultures and learning spaces (Proceedings of the 29
th

 annual conference of the Mathematics 

Education Research Group of Australasia, pp. 139-146). Sydney: MERGA. 

Feely, J. (2003). Nelson maths for Victoria: Teacher’s resource Year 5. Melbourne: Thomson Nelson.  

Gibson, J. J. (1977). The theory of affordances. In R. Shaw & J. Bransford, (Eds.), Perceiving, acting and 

knowing: Toward an ecological psychology (pp. 67-82). Hillsdale, NJ: Lawrence Erlbaum. 

Hill, H. C., Rowan, R., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on 

student achievement. American Educational Research Journal, 42(2), 371-406. 

Hill, H. C., Schilling, S. G., & Ball, D. L. (2004). Developing measures of teachers’ mathematical knowledge 

for teaching. The Elementary School Journal, 105(1), 11-30. 

Kahan, J. A., Cooper, D. A., & Bethea, K. A. (2003). The role of mathematics teachers' content knowledge in 

their teaching: A framework for research applied to a study of student teachers. Journal of Mathematics 

Teacher Education, 6(3), 223-252. 

Lampert, M. (2001). Teaching problems and the problems of teaching. New Haven, CT: Yale University 

Press.  

Leinhardt, G., Putnam, R. T., Stein, M. K., & Baxter, J. (1991). Where subject knowledge matters. In J. 

Brophy (Ed.), Advances in research on teaching: Teachers’ knowledge of subject matter as it relates to 

their teaching practice (Vol. 2, pp. 87-113). Greenwich, CT: Jai Press, Inc. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding of fundamental 

mathematics in China and the United States. Mahwah, NJ: Lawrence Erlbaum Associates. 

Marks, R. (1990). Pedagogical content knowledge: From a mathematical case to a modified conception. 

Journal of Teacher Education, 41(3), 3-11. 

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 

15(2), 4-14. 

Skemp, R. R. (1971). The psychology of learning mathematics. Harmondsworth, UK: Penguin. 

Stacey, K., Helme, S., Archer, S., & Condon, C. (2001). The effect of epistemic fidelity and accessibility on 

teaching with physical materials: A comparison of two models for teaching decimal numeration. 

Educational Studies in Mathematics, 47(2), 199-221. 

Thompson, P. W. (2002). Didactic objects and didactic models in radical constructivism. In K. Gravemeijer, 

R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling, and tool use in mathematics 

education (pp. 191-212). Dordrecht, The Netherlands: Kluwer. 

Watson, A. (2003). Opportunities to learn mathematics. In L. Bragg, C. Campbell, G. Herbert, & J. Mousley 

(Eds.), Mathematics education research: Innovation, networking, opportunity (Proceedings of the 26th 

annual conference of the Mathematics Education Research Group of Australasia, pp. 29-38). Sydney: 

MERGA. 

Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners generating examples. 

Mahwah, NJ: Lawrence Erlbaum Associates. 

Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to 

structure sense-making. Mathematical Thinking and Learning, 8(2), 91-111. 

Watson, J., Beswick, K., & Brown, N. (2006). Teachers’ knowledge of their students as learners and how to 

intervene. In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures and learning 

spaces (Proceedings of the 29
th

 annual conference of the Mathematics Education Research Group of 

Australasia, pp. 551-558). Sydney: MERGA. 

Mathematics: Essential Research, Essential Practice — Volume 1

19



Zaslavsky, O., Harel, G., & Manaster, A. (2006). A teacher’s treatment of examples as a reflection of her 

knowledge-base. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30
th

 

annual conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 

457-464). Prague: PME. 
Zazkis, R., & Chernoff, E. (2006). Cognitive conflict and its resolution via pivotal/bridging example. In J. 

Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30
th

 annual conference of 

the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 465-472). Prague: 

PME. 

Mathematics: Essential Research, Essential Practice — Volume 1

20



  

Appendix 1. 

A Framework for Pedagogical Content Knowledge (after Chick, Baker, et al., 2006). 

PCK Category Evident when the teacher … 

Clearly PCK  

Teaching Strategies Discusses or uses general or specific strategies or approaches 

for teaching a mathematical concept or skill 

Student Thinking Discusses or addresses student ways of thinking about a 

concept, or recognises typical levels of understanding 

Student Thinking - Misconceptions Discusses or addresses student misconceptions about a concept 

Cognitive Demands of Task Identifies aspects of the task that affect its complexity 

Appropriate and Detailed 

Representations of Concepts 

Describes or demonstrates ways to model or illustrate a 

concept (can include materials or diagrams) 

Explanations Explains a topic, concept or procedure 

Knowledge of Examples Uses an example that highlights a concept or procedure 

Knowledge of Resources Discusses/uses resources available to support teaching 

Curriculum Knowledge Discusses how topics fit into the curriculum 

Purpose of Content Knowledge  Discusses reasons for content being included in the curriculum 

or how it might be used 

Content Knowledge in a Pedagogical Context 

Profound Understanding of Fundamental 

Mathematics (PUFM) 

Exhibits deep and thorough conceptual understanding of 

identified aspects of mathematics  

Deconstructing Content to Key 

Components  

Identifies critical mathematical components within a concept 

that are fundamental for understanding and applying that 

concept 

Mathematical Structure and Connections Makes connections between concepts and topics, including 

interdependence of concepts 

Procedural Knowledge Displays skills for solving mathematical problems (conceptual 

understanding need not be evident)  

Methods of Solution Demonstrates a method for solving a mathematical problem 

Pedagogical Knowledge in a Content Context 

Goals for Learning Describes a goal for students’ learning 

Getting and Maintaining Student Focus Discusses or uses strategies for engaging students 

Classroom Techniques Discusses or uses generic classroom practices 
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Introducing Students to Data Representation and Statistics 

Richard Lehrer 
Vanderbilt Univeristy 
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I describe the design and iterative implementation of a learning progression for supporting 

statistical reasoning as students construct data and model chance. From a disciplinary 

perspective, the learning trajectory is informed by the history of statistics, in which concepts 

of distribution and variation first arose as accounts of the structure inherent in the variability 

of measurements. Hence, students were introduced to variability as they repeatedly 

measured an attribute (most often, length), and then developed statistics as ways of 

describing “true” measure and precision. The design of the learning progression was guided 

by several related principles: (a) posing a series of tasks and situations that students 

perceived as problematic, thus creating a need for developing mathematical understanding 

as a means of resolving prospective impasses; (b) creating opportunities for developing 

representational fluency and meta-representational competence as constituents of conceptual 

development; (c) introducing statistics as invented measures of the qualities of distribution; 

and (d) adopting an agentive perspective for orienting student activity, according to which 

distribution of measures emerged as a result of the collective activity of measurer-agents. 

Instructional design and assessment design were developed in tandem, so that what we took 

as evidence for the instructional design was subjected to test as a model of assessment, 

resulting in revision to each. I conclude with a look at ongoing work to design an 

assessment system to measure students’ understandings of data and statistics, and with some 

thoughts about prospective synergies between mathematics and science education. 

The discipline of statistics originated in problems of modeling variability (Porter, 1986; 

Stigler, 1986). History has not changed all that much: Professional practices of statisticians 

invariably involve modeling variability (Wild & Pfannkuch, 1999), and as in other sciences 

(e.g., Giere, 1992), it is through model contest that statistical concepts become more 

widespread and stable (Hall, Wright, & Wieckert, 2007). Another lesson of history is of 

particular importance: Reasoning about variability was initially most prominently pursued 

in contexts of measurement error. Astronomers, for example, suggested that distances 

between stars were fixed, but that measurements varied, just by chance. Mathematical 

efforts to characterize the form and structure of chance gave rise to concepts and models 

still in use today, such as least squares fit.  

Our research program follows in this historic tradition: Contexts of measure afford 

children entrée to a series of core conceptual structures or “big ideas” in the discipline and 

also, to the core disciplinary practice of inventing and revising models.  Accordingly, I 

outline a design of instruction that features repeated measure for introducing students to 

practices and related concepts of data representation, statistics, chance, and modeling. 

These practices and concepts are all developed by students to account for observed 

variability in measurements. As I describe components of the design, I characterize some of 

the recurrent patterns of student reasoning that we observed during successive iterations of 

the design in fifth- and sixth-grade (10, 11 years of age) urban classrooms in the United 

States. These collectively establish a sense of “lessons learned”. Our efforts to account for 

emerging patterns of student reasoning were accompanied by corresponding efforts to 

encapsulate these patterns of reasoning in the form of an assessment system, which is 

sketched in the second section of the paper. I conclude with some prospects for integrating 
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mathematics and science education via a shared interest in constructing and revising 

models of variability. 

Designing Instruction to Support a Learning Progression 

The instructional design was guided by an image of statistical reasoning as emerging 

from and enmeshed within a larger system of activity that we refer to as data modeling 

(Lehrer & Romberg, 1996; Lehrer & Schauble, in press). As Figure 1 suggests, data 

modeling is composed of two coupled systems of activity. The upper triangular region in 

the figure depicts the learning challenges and resources associated with the design of 

research. Designers confront challenges such as posing questions and identifying the nature 

of variables and their measures. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

Figure 1. Schematic of data modelling. 

The lower triangular region encompasses analysis, depicted as an interaction among 

data structures, representations, and models of inference. Analysts confront challenges of 

imposing structure on data, of choosing displays to highlight aspects of structure, and of 

making judgments about phenomena in light of variability and uncertainty. Although the 

cycle as illustrated invites inference of linear progression, in practice, these components of 

data modeling are typically interactive. For example, attempting to develop a measure of an 

attribute often profoundly alters one’s conception of that attribute.  

To initiate students into practices of data modeling, we designed a hypothetical 

learning progression – a sequence of tasks, tools, activities, and forms of argument – aimed 

at supporting students’ development of mathematical accounts of the inherent variability of 

measure. The learning progression was envisioned to unfold in three coordinated phases in 

the classroom. In the first, students all repeatedly measured the same object and designed a 

representation intended to communicate trends in the collection of measurements that they 

noticed. In the second, students used these displays to invent statistics. One invented 

statistic indicated the “best guess” of the measure of the attribute of the object and the 

precision of the measurements. Students explored the qualities of their invented statistics 
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with new samples of measurements of the same object conducted with a better tool. The 

latter resulted in distributions that were less variable but that had approximately the same 

centre. The third, modeling phase included investigation by students of the behavior of 

chance devices and the subsequent harnessing of these devices to construct models of 

measurement error. In the sections that follow, I describe the rationale for each of these 

three phases and also suggest recurrent patterns in student reasoning that we observed as 

we implemented the design over several iterations in fifth- and sixth-grade classrooms in 

an urban school in the United States. Participating students were from under-represented 

groups in the United States. Their families were of lower socioeconomic status. 

Inventing Representation 

Students measured an attribute of a familiar object, such as the arm-span of their 

teacher. To measure arm-span, each student first used a 15-cm ruler and then a metre stick. 

Each time, students recorded the value of the measure. The aim of this initial activity was 

to provide students with a context in which collective properties of the data, especially 

distribution, could be viewed as emerging from the actions of individual agents. We 

anticipated that students’ prior history with measurement would serve as a resource for 

making sense of the variability of the measurements. For example, the 15-cm ruler had to 

be iterated more often than did the meter stick to span the same distance.  (The former 

resulted in greater error and hence greater variability among the measurements.)  

We presented students with an unstructured collection of their measurements and 

challenged them to create a display (of the more variable measurements) that 

communicated what they noticed about the batch of data. After students created their 

displays, other students presented the display to the class and described what the display 

tended to “show and hide” about the data. This tactic was intended to foster 

representational fluency (Greeno & Hall, 1998). With instructor support, students 

compared and contrasted their invented displays. We anticipated that comparing and 

contrasting different displays would clarify relations between the choices made by 

designers and the resulting “shape” of the data.  This tactic was also intended to foster 

meta-representational capacity (diSessa, 2004) – the capacity to view a data display as 

representing a trade-off. Different choices resulted in different perceptions of the shape of 

the same data. We were especially interested in helping students understand how displays 

that grouped data and counted cases within each group produced a symmetric, bell-shaped 

distribution. Students considered possible reasons for the bell-shape of grouped data in 

light of the process of measure. We concluded this phase of instruction by soliciting 

students’ conjectures about what might happen if “we measured again”. 

Recurrent Patterns of Representation 

The most striking feature of the displays generated by the students was their variability. 

Despite years of education emphasizing conventional graphs, students often found this task 

challenging and even daunting.  

Highlighting order. The most common solution to the problem of display was to 

structure the data by ordering the magnitude of the cases. Some solutions were lists, such 

as that displayed in Figure 2.  
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Figure 2. Ordering data as a list. 

 

Others relied on space to convey a visual sense of order. The student solution displayed 

in Figure 3, a type of array graph (Snecedor & Cochran, 1968), exemplifies the latter. Bars 

or lines represented magnitudes of measurements. The designers, but not typically other 

members of the class, indicated that plateaus showed modes or clusters of values. 
 

 
Figure 3. Invented array graph. 

 Elaborating order. A second class of solutions appeared to elaborate on order by 

highlighting relative frequency. Figure 4 illustrates this propensity. Students ordered the 

cases and displayed their relative frequency as a square icon.  Note that the interval 

between case values is not represented. When the teacher asked the students which values 

would not be likely to recur if they measured again, students pointed to the lowest value. 

The display made the multi-modal nature of these data visible. The statistics represented on 

the display are remembrance of past classes – things that one did to batches of data. But 

after computing them (some incorrectly), they never referred to the statistics again.  
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Figure 4. Ordered case frequency display. 

Grouping and ordering.  Solutions that involved grouping similar values into “bins” or 

equal-interval groups were relatively infrequent.  The designers of the display depicted in 

Figure 5 grouped measurements in 10s, and they ordered the bins not by magnitude of the 

measurements but instead by relative frequency. Another pair of designers in the same 

class rendered their display to coordinate the order of the magnitude of the observed 

measurements with the relative frequency of each interval class (Figure 6). The 

corresponding difference in the shape of the data is striking.  
 

 
Figure 5. Bin display ordered by relative frequency. 
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Figure 6. Bin display coordinating case magnitude and frequency. 

Interval displays. The least common form of recurrent display was that of interval. 

These were developed by students who wanted to represent both what was missing as well 

as what was present in the data, so that holes and clumps could be viewed simultaneously. 

For example, in Figure 7, a pair of sixth-grade students listed relative frequencies where 

zero indicated missing values in the interval described by the observed measurements. 

Hence, 0 = 14 refers to the number of values in the interval between 30 feet and 66 feet for 

which there was no missing case. The 1 = 9 refers to the number of values in the interval 

for which there was only 1 case missing. Figure 8, a display designed by a pair of fifth-

grade students, illustrates similar attention to interval but in a manner that is more 

conventional. 

 
Figure 7. Representing what is missing. 
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Figure 8. Interval display of relative frequencies. 

Comparing representations. Discussions about the variations in design helped students 

develop an appreciation of different senses of the “shape” of the data. However, students 

typically focused on individual displays and did not spontaneously engage in comparative 

analysis. When prompted to compare two different kinds of displays, they often referred to 

qualities such as icons employed by the designers. For example, students said that they 

could see squares in one display (to show number of cases) but these were not used in 

another display. Students often mentioned that a certain display was easy to be seen 

because it had larger text size. More rarely, a student looked at a display that listed all 

possible measurements on a number line and said, “They put numbers in between, so you 

can see how far they went.”  Hence, I often took a more active role, drawing student 

attention to trade-offs among displays by asking them to translate a cluster of cases from 

one representational scheme into another. I also asked students to develop and test 

conjectures about the relation between the size of a bin  (interval) and the resulting shape 

of the data. These scaffolds appeared to raise students’ awareness of relations between 

design decisions and shape.  

Inventing Statistics 

Following the invention of a representation of the data, students were challenged to 

invent a measure of the “best guess” of the length of the attribute (e.g., the height of the 

school’s flag pole). At this point in the learning progression, we anticipated that students 

could draw on resources of representation and on their knowledge of how the measures 

were produced. By considering how to develop a measure, we aimed to engage students in 

deeper consideration of the nature of distribution. What might be worth attending to about 

the data? Students could use any of the invented displays to help answer this question. We 

later engaged students in a similar process to develop a measure of the precision of 

measurements. The definition of precision was intentionally left up to the imagination of 

the students, so that we could engage students in the relation between measure and qualities 

of attributes noted in the upper triangular region in the data modeling cycle displayed in 
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Figure 1. During this period of time, we introduced students to TinkerPlots (Konold & 

Miller, 2005), so that TinkerPlots capabilities for dividing and re-organizing the data could 

be used to construct a measure of precision. 

After inventing measures, other students attempted to make use of them. The 

pedagogical intention was to help students consider the communicative uses of algorithm. 

Students tried out their methods with other batches of data (to promote generalization), 

including the measurements of the same attribute with a better tool. For the latter, students 

noted a reduction in the spread of the data, and I asked if their measure corresponded in 

meaningful ways to what they could readily perceive in the displays.  

Recurrent Patterns of Invented Statistics 

Many students struggled with the very idea of inventing of a measure. Some suggested 

that the only reasonable approach was to ask an authority – a member of the custodial staff 

or the manufacturer – to find the height of a flagpole. Others found the notion of 

representing many measurements by a single value implausible. We seized these challenges 

as opportunities to conduct conversations about qualities of good measures and of the need 

to be explicit about one’s method, so that others could find the same measure.  

Measuring centre. Students’ invented solutions to estimate the true measure of the 

attribute generally focused either on repeated values or on the location of the centre clump. 

Because the data were often multimodal, modal solutions were perceived as less useful, 

because the inventors typically failed to justify one choice of mode rather than another. 

Most solutions involving the centre clump used a graphical method to identify the centre 

clump, and then found the middle value of this centre bin. Many students found this 

persuasive, but others pointed out that it left out many of the other measurements. A few 

student teams (at least one in every iteration of the design studies) invented the median, 

although they did not know this convention at the time of invention. Their reasoning was 

guided by a sense of splitting the data “in half” and they used bin displays of the data to 

count an equal number of cases from the tails of the distribution toward the centre. In some 

data sets, the number of cases was even and the choice for median did not correspond to 

any observed value. Classmates objected when the median value was not instantiated by an 

actual measurement, but were persuaded by appeal to the measurement process: The 

median represented a value that might have easily been someone’s actual measurement. It 

was a “possible measurement”. This form of student reasoning signalled a shift away from 

considering only cases toward considering the aggregate.  

Measuring precision. Students’ efforts to develop measures of precision most often 

generated a focus on the “closeness” of the data. More precise measures were those that 

were closer. We supported this intuition by asking students to predict the value of the 

measurements if the measures were “absolutely” precise. The three most common solutions 

to the problem of precision were (a) focus on extreme cases (the range), (b) focus on 

closeness as distance between a case and other cases or a common point, such as the 

median, and (c) centre clump solutions, motivated by considerations such as “where the 

precision was where most people had their numbers”.  

The range corresponds to convention and thus requires no further explication. The 

activity of a pair of fifth-grade students exemplifies the second class of solution methods.  

Their method was spurred by consideration of potentially perfect agreement among the 

measures, which they suggested would result in no spread or a measure of 0. I asked how 
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they might define their measure so that zero would result. Their response was to consider 

differences between each case and the median (which they had invented in the previous 

portion of this phase of the design study).  On the basis of previous work with integers, 

they decided that they would first find the absolute value of each difference. Then, they 

proposed finding the sum of these absolute values. Their confidence in this measure was 

bolstered by its ability to differentiate between distributions of measurements where 

students employed more precise and less precise tools (e.g., 15-cm rulers vs. metre stick for 

arm-span). I asked students what they might expect if the number of measurers using the 

more precise tool increased to 100 (about 3 times the original sample) and this precision 

was compared to the less precise tool used by fewer measurers. The students noticed that 

use of their measure would mislead: ‘People will think that the more precise tool is worse 

than the less precise tool’ (‘ denotes paraphrase). To solve this problem, one suggested the 

modal difference and the other, the median. They settled on the median but had difficulty 

maintaining the relation between the medians for the distribution of measures and of 

differences (Figure 9). My suggestion to consider the median of these differences as 

representing “typical closeness” appeared to stabilize this distinction (meaning that when 

presenting to classmates, they were able to clearly articulate the distinctions).  

 
Figure 9. TinkerPlots graph of absolute values of differences with indication of median difference. 

Student focus on difference often led to unexpected consequences. For example, one 

sixth-grader, Robert first focused on the distance between the extreme values of the 

distribution and the mean. I asked him how he might characterize the precision of the 

group of measurers rather than just two of them. He decided that he would average the 

differences, because this would result in a method that would indicate how close the 

measurements were, “on average”. When he attempted to find the mean of the differences, 

he was surprised that the sum was zero. Robert was puzzled, but he reiterated that he 

thought his method was good for finding the distances between each score and the mean. 

He plotted each difference with TinkerPlots, and wondered what might have gone wrong 

(Figure 10). 
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Figure 10. TinkerPlots display of Robert’s signed differences. 

 

In light of class discussions about some estimates being over and some under the real 

height of the flagpole, I asked if Robert were more concerned about the direction, or the 

magnitude, of each difference. Robert mentioned that the direction of the difference was 

not that important – some measures must be greater than the mean and others less. Hence, 

what mattered was how far each measure was from the mean. I built on Robert’s insight to 

introduce the absolute value function. Robert used the absolute value function to generate 

the average deviation. He then plotted the absolute values of the differences, and located 

their average value – the average deviation (Figure 11), although Robert did not know this 

convention. 
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Figure 11. Plot of absolute values of differences and average deviation. 

In contrast to close attention to difference, some students defined precision by attending 

to the relative compaction of the centre clump. Attention to the centre clump typically 

resulted in measures of precision that corresponded to the inter-quartile range. This 

definition was supported by the TinkerPlots function of “hat plot”, but students often used 

this function only after developing a very similar measure. For example, the solution 

developed by one sixth-grade student for measuring precision found the lower and upper 

bounds of the decade-interval that contained the mean. I capitalized on this intuition to 

introduce the hat plot function, to which the student responded by adding the reference 

lines to indicate the lower and upper bounds of the mid-50, as displayed in Figure 12.  
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Figure 12. A 25-75 percentile hat plot with reference lines. 

Modeling Measure 

Following invention of representations and statistics to describe observed trends in 

variability across different measurement contexts and tools (e.g., arm-span and head 

circumference, with lower and higher quality tools), the third phase of the learning 

trajectory is designed to introduce students to the pragmatics and epistemology of modeling 

chance. We begin with explorations of the conduct of chance devices, starting with hand-

held spinners and graduating to a new version of TinkerPlots that supports this type of 

simulation. For example, Figure 13 displays the results of a simulation of a 50-50 spinner 

with a sample size of 10. Students conducted investigations such as these with varying 

sample sizes, and we asked students to account for observed differences in departure from 

expectation as they ran each simulation repeatedly. The line in the Figure 13 was invented 

by a sixth grade student who thought that changes in slope were a good indicator of 

departure from expectation as she repeatedly ran the simulation. 
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Figure 13. Exploring chance with TinkerPlots. 

Modelling observed measure. Following investigations of chance, we introduced a 

prospective model to students of observed measurement as constituted by two sources. 

Both were familiar to the students. The true measure of the attribute was not directly 

accessible, but could be reasonably approximated by a centre statistic. The differences 

among measurements could not be attributed to change in the attribute. (One fifth grader 

thoughtfully noted that her teacher’s head circumference would not change during the 

interval of measure but she could not say what might happen in the future!) Hence, 

differences in measure were due to errors of measure. Because students were familiar with 

processes of measure, we expected that they would be capable of generating conjectures 

about sources of error. For each source of error, students constructed spinner models that 

used area to represent relative likelihoods. Relative magnitude and direction of error were 

also represented as positive and negative values, in the original units of the measure 

employed by the students. After students constructed and ran simulations of their models, 

they revised them, as needed. During the final portion of the activity, students constructed 

“bad” models – models that were designed to employ the same model structure but produce 
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results that would be judged as poor fits to the observed values. This concluding activity 

provided a window to students’ conceptions of model fit and their skill in using the 

behavior of chance to create the intended structure of outcomes.  

Recurrent Patterns of Modeling 

Our approaches and technologies for modeling have been revised during successive 

iterations, so we are least confident of the stability of results.  However, during three 

iterations of the design studies, students appeared to be capable of readily identifying 

sources of error. For example, when measuring the arm-span of the teacher, students 

noticed that use of the 15-cm ruler produced much larger spreads (and less precision) when 

contrasted to the use of the metre stick. They attributed this difference to needing to iterate 

with the shorter ruler more often. Each iteration provided an opportunity to produce either 

over-estimates of the true length or under-estimates. Students attributed the former to 

“laps”, instances where the beginning of one measure and the end of another overlapped, 

resulting in repeated measure of the same distance. The latter were attributed to “gaps”, 

instances where the end of one iteration and the beginning of another were not aligned, 

resulting in an unmeasured distance.  

To illustrate, I consider the efforts of one pair of fifth-grade students to model the batch 

of measurements of the circumference of their teacher’s head. They designed spinners to 

correspond to three sources of error, which they termed ruler error, slippage error, and 

reading error. The first two sources of error referred to potential difficulties using tools to 

measure the circumference of the teacher’s head. For example, slippage referred to the tape 

slipping or stretching as they wound it around the head. Ruler error referred to the 

difficulty of establishing a common beginning and ending point for the measurements and 

for measuring the circumference in exactly the same imagined path around the head. 

Reading error referred to perceptual difficulties, for example, a measurer might have 

difficulty judging the number of cm. to the nearest whole number. Each observed 

measurement was represented by the sum of random error (the sum of the 3 spinners) and 

the median of the observed measurements, representing an estimate of the true length of the 

circumference. These spinners are displayed in Figure 14. After running this simulation, 

the students noticed that it tended to overestimate the centre of the distribution and to 

produce spreads that were not aligned with the observed values. Hence, they re-designed 

the spinner depicting ruler error (the far left of Figure 14) to eliminate unrealistically large 

magnitudes and likelihoods. The resulting simulation was a better match to the shape and 

centre of the observed values. During the conduct of this simulation, the students noticed 

that net errors were occasionally zero and that unlikely events nonetheless occurred.  
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Figure 14. Simulation of sources of random error. 

 

Bad models were a playful way for students to investigate further relations between 

model design and outcomes. For example, in Figure 15, a fifth-grade student managed to 

invert the shape of the observed distribution and to produce a skew as well. 

 

 
Figure 15. Results of a simulated bad model of normally distributed measures. 
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Designing Assessment to Support Instructional Design 

In most design studies, day-to-day decisions are made in light of evidence about student 

thinking, most often obtained from inferences based on students’ discourse and artifacts 

that they produce. Much of the previous presentation of recurrent patterns of student 

reasoning follows in this tradition.  In design research, assessment is often considered after 

the fact, as summative evidence of more widespread patterns of individual performance. 

However, in our design studies assessment played a central role, both in the conduct of the 

studies and in the interpretation of the results. In fact, one of the anticipated outcomes is 

the creation of an assessment system.  

To create an assessment model, our conjectures about the forms of knowledge and the 

nature of conceptual change underpinning learning about variability were expressed as 

progress variables (Wilson, 2005). Progress variables model trajectories of development. 

They demand that designers of learning progressions make their commitments about 

conceptual growth explicit. We constructed progress variables in seven conceptual strands: 

(a) theory of measure (conceptual landmarks for understanding the nature of units and 

scales of measurement, which are prerequisite understandings for the learning progression), 

(b) modeling measurement, (c) data display, (d) meta-representational competence,  (e) 

concepts of statistics, (f) probability/chance and (g) informal inference. Table 1 illustrates a 

summary of the Data Display progress map, which lays out our conjectures about 

prospective transitions in students’ conceptions, from case-based to aggregate-based ways 

of constructing and interpreting data displays. The full version of each construct contains 

examples of each performance in both text and video formats. 

Although progress maps may appear to have a preordained character, in fact, they are 

negotiated as the design study unfolds, so that progress maps take several design iterations 

to “settle”. Hence, they serve as a visible trace of prospective conceptual landmarks for the 

design team. 

Based on the construct maps, we designed items to support instruction and to index 

student progress over longer periods of time. To support instruction, some items were 

designed as formative tools to diagnose student conceptions. These were administered as 

weekly quizzes, and the results were employed to re-design the learning progression. For 

example, during one design study, the results of a formative assessment indicated that 

many students interpreted their classmates’ invented statistic, the median, to be a half-spit 

of the data located in the “middle” of a string of data. They apparently did not consider the 

order of the data as critical, relying instead on the spatial centre of the data presented by the 

inventors of the statistic. Consequently, we decided to problematize “half” by contrasting 

the distance-based image of the mid-range with the count-based definition of the median.  

Students thought that any estimate of the best guess of the length of the arm-span should be 

located in the centre clump. Their image for mid-range was a paper strip folded into two 

congruent lengths, an image familiar to them from class work earlier in the year finding 

partial-units of length measure. The fold line of this strip located ½; but, what was the 

relation of this distance-based sense of half to the half demarked by the median? If the mid-

range was “halfway”, how could the median also be considered half? How could counting 

result in a location in the centre clump? We constructed several small sets of imagined 

measurements with the lowest or highest values located in the centre. By simply counting, 

the extreme values were considered best guesses of the true measure. Yet, this contradicted 

children’s sense. This contradiction was resolved by re-examining the role of order in 
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determining the median, and by juxtaposing two different senses of “1/2-split” – one based 

in distance and the other in position within an ordered sequence. We also took this 

opportunity to investigate robustness of the statistics proposed – by investigating the effects 

of “one bad measurer” on the estimate of true measure. (The mid-range declined in 

popularity when students considered that just one student-measurer could shift the value of 

the mid-range out of the centre clump.) These modifications were incorporated into 

subsequent iterations of the design. 
 

Table 1  

The Data Display Construct 

 Level Performances 

 
DaD6. Integrate case with aggregate 

perspectives 

DaD6(a)  Discuss how well individual values or regions 

represent the patterns seen in the whole distribution, or 

vice versa. 

 

 DaD5(b) Quantify aggregate property of the display 

using one or more: ratio or proportion or percent.  

 

DaD5. 

Consider the data in aggregate when 

interpreting or creating displays 

 

 

 

DaD5(a) Recognize that a display provides information 

about the data as a whole that goes beyond any of the 

cases by themselves.  

 DaD4(b) Recognize the effects of changing bin size on 

the shape of the distribution 

 
DaD4. Recognize or apply scale properties 

to the data  
DaD4(a) Display data in ways that use its continuous 

scale (when appropriate)  to see holes and clumps in the 

data. 

 DaD3(c) Identify data points that are dissimilar to the 

rest. 

 DaD3(b) Identify grouping of similar values (e.g., high, 

medium, low values).  

 

DaD3. Create categories of cases based on 

relationship among them  

DaD3(a) Note similar values or “clumps” in the data set. 

 DaD2(b) Manipulate data attending only to its ordinal 

properties. 

 

DaD2.  

Concentrate on cases when working with 

data  

DaD2(a) Concentrate on specific data points (minimum, 

maximum, median, mode), without relating these to any 

structure in the data.  

 
DaD1. Treat data as collection of individual 

numbers or attributes 

DaD1(a) Manipulate, notice and explore qualities or 

relations of data values, without relating to the goals of 

the inquiry.  
 

Although this effort is still a work in progress, we are currently working to articulate an 

assessment system that will span both instruction and accountability. From the perspective 

of conducting studies of learning, the formative assessments standardize our commitments 

about what counts as evidence of student reasoning. The summative assessments provide a 

less fine grained but broader spectrum to track conceptual change. This provides an 

opportunity to engage in design experiments, in which the implications for learning of 

different instructional designs can be contrasted in a common metric.  

Discussion 

The links between data analysis, chance, and modeling have often been severed in 

school mathematics. Yet, in a wide variety of professions, data modeling is integral to 

practice. The epistemology in professions is one of model building and competition, not 
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one of “descriptive” statistics, followed by “inferential” statistics, which is the standard 

practice in schools. I propose restoration of the link between data modeling and statistical 

reasoning in schooling, not merely because it is what professionals do, but more 

importantly, because it is a viable and fruitful approach for supporting the growth and 

development of student reasoning about variability. Variability is ubiquitous and it is 

critical for thinking in the 21
st
 century that we equip students with ways to reason about it.  

The learning progression outlined in this paper rests on several general principles of 

learning and on the potential affordances of measurement as a context for investigating 

variability. The first is that of agency. If measure is framed as activity, rather than as a 

product, students can mentally simulate the role of agents and/or they can literally enact 

measurement process. Agency mediates student apprehension of variability by making 

process transparent (e.g., individual measurers can recall qualities of method and measure 

that might lead to “mistakes” in measurement), and it grounds symbolic expression, in that 

students can readily relate presentational qualities (e.g., hills in graphs) and measures 

thereof (e.g., medians as measures of centre) to specific forms of activity. A related virtue 

of agency is that qualities of distribution can be viewed as emerging from the collective 

activity of agent-measurers. Hence, a statistic, such as the median or mean, can be viewed 

readily as a measure of central tendency (Konold & Pollatsek, 2002), and the explanation 

for such a tendency can be attributed to the notion of a true or fixed value. 

Second, developing representational and meta-representational competencies have 

important conceptual consequences. The diversity of representations invented by students 

supports the concept that the shape of the distribution is not a Platonic ideal, but rather, a 

result of a particular set of choices made about what to attend to, and what to obliterate, in 

a system of representation. Not all students fully grasp the idea of representational trade-

off, but supporting comparisons among representations provokes mathematically fruitful 

consideration of different meanings of the “shape” of the data. Seeing hills and valleys is 

one thing, knowing how they are produced and how they might be magnified or even 

eliminated is another. We strive for the latter, and it appears that this is a consistent 

outcome when we deliberately instigate comparisons among representations.  

Third, inventing measures of what students can readily “see” in a set of data invites 

closer inspection of the qualities of the data that contribute to the perception. Students’ 

invention of measures of centre and spread support consideration of just what one might 

mean by each. Thus, there is an intimate relation between conceiving of the “centredness” 

or “spreadness” of the distribution and its measure. What students see after inventing 

measures is often different than what they saw before such invention. Thus, measure is an 

important cornerstone to quantification (Lehrer, Carpenter, Schauble, & Putz, 2000; 

Thompson, 1994). Inventing measures supports a meta-conceptual development: What 

does it mean to measure and what are qualities of good measurements? These 

developments are supported when students employ their inventions to measure the 

attributes of new distributions that were formed when measurers used different methods or 

tools. For example, students’ experience suggests that measuring the arm-span of a person 

with a 15-cm ruler is more error prone than the same measure employing a metre stick 

(fewer iterations lead to less error). Hence, it makes sense that the distributions have 

different precisions and that the measure ought to reflect these differences. Measure allows 

too for a new form of inquiry not as readily sustained by the eyes: How much more (or 

less)? 
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Fourth, the conceptual landscape of modeling is altered by the technologies deployed 

for modeling. When we first began, students used hand-held spinners to construct models, 

and these were certainly adequate tools for engaging in the process of modeling chance. 

However, we cannot help but notice that the introduction of TinkerPlots alters this 

landscape. One form of alteration is in ease of model design and revision. Although we 

wish for more capability from TinkerPlots, and we are confident that we will soon see it, 

the current implementation allows for much more rapid prototyping and running of models. 

We believe that this has a conceptual consequence: Models that are run more often invite 

attention to sample-to-sample variation in outcomes. This embarks students on the road to 

sampling distribution, an unintended consequence from the point of view of our initial 

conception of the learning progression. 

Last, although we often hear that cognitively guided assessment is a virtue, it is 

difficult to find many examples. Of course, virtue is always distributed more like Poisson 

than Gauss, but our work with colleagues at the Berkeley Evaluation and Assessment 

Research Center and the work of Jane Watson and her colleagues (e.g., Watson, 

Callingham, & Kelly, 2007) suggest that linking assessment to models of learning statistics 

is not a trivial pursuit. When we work collaboratively with assessment experts during the 

design of instruction, we find that both of our professional worlds are enriched, and we 

hope, so too are those of the students.   

I conclude with a lamentation. The opportunities for supporting student reasoning 

about variability are often confined to mathematics education. Yet the origins of the 

mathematics of variability arose in contexts of modeling nature, and these contexts are still 

a primary arena for modeling variability. Unfortunately, school science works full time to 

hide this variability from students, especially in pursuit of laboratory exercises with 

gargantuan effect sizes that render inference moot. This is a lost opportunity. A science 

education that encouraged student inquiry and model development would be a natural site 

for grappling with issues of variability.  
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I have long promoted the conjecture that expressing generality lies at the heart of school 

algebra. Indeed, I have gone further to suggest that “a lesson without the opportunity for 

learners to generalise is not a mathematics lesson”. It seems beyond doubt that 

experiencing and expressing generality is natural to human beings. The pedagogic issue is 

why there is so much resistance amongst teachers and learners to using this power in 

mathematics lessons. The notion of generalisation here includes both abstraction from 

context and generalisation within context. Pondering this question has led us to wonder 

why generalisation happens sometimes and not others, what can be done to prompt useful 

mathematical generalisation, and under what sorts of circumstances: in short, what are the 

conditions for and evidence of imminent or proximal generalisation?  

The present paper arises from reflections on lessons involving the expression of 

generality, sometimes by learners and sometimes by teachers. Our reflections led us to try 

to organise and inter-relate a variety of forms of mathematical generalisation: empirical, 

structural, and generic; syntactic and semantic; metonymic and metaphoric; enactive, 

affective, and cognitive. The idea is to prepare the ground for further studies. Our 

reflections also led to the notion of a Zone of Proximal Generalisation as a particular case 

of a Zone of Proximal Awareness, in order to try to describe and distinguish differences in 

the imminence of appreciation and competent expression of generality in and by different 

learners at different times. This in turn opened up a domain of further investigation into 

various proximal zones as projections of Vygotsky’s original intention with the zone of 

proximal development into the three classic dimensions of the psyche. 

Introduction 

Historically, algebra is usually seen as arising through a desire to be able to solve 

problems involving some unknown number or numbers. As Mary Boole (Tahta, 1972) put 

it, by “acknowledging your ignorance” you can denote what you do not know with a letter, 

and then manipulate that letter as if it were a number in order to express relationships and 

constraints arising from the problem. Support for this view can be found in the use in early 

algebra texts of the term cosse (“thing”) as the “as-yet-unknown”. 

At the same time however, there is a pervasive historical thread by authors wanting to 

solve every problem, or trying to indicate that the solution to a particular problem is to be 

seen generically as a method for solving a whole class of similar problems (Gillings, 1972; 

Cardano, 1545; Viete, 1581). Authors used a variety of means for informing the reader of 

the “general rule”, in words, and through the use of examples. Newton (1683) may have 

been one of the first to use letters to denote as-yet-unspecified parameters so as to solve a 

problem “in general”.  

There is however a conceptual commonality between the use of a letter to stand for an 

as-yet-unknown and the use of a letter to stand for an as-yet-unspecified parameter: both 

depend on the person to be stressing the letter as label rather than as the value of the label. 
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This means treating the letter as a slot (we now call it a variable) without attending to its 

contents, trusting that the contents will look after themselves. Flexible movement between 

attending to the label and attending to the content (syntax and semantics of expressions) is 

the essence of working effectively with expressions of generality. 

Every learner who arrives at school walking and talking has displayed the power to 

perceive and express generality and the case has been argued in one form or another by 

many (Whitehead, 1932; Gattegno, 1970). The issue for teachers is therefore not whether 

learners are capable, nor even whether learners will use those powers in lessons, but how 

to foster and support the use of those powers in mathematical ways, not only within 

mathematics but also so as to use mathematics to make sense of the world. 

Expressing Generality 

It is worth mentioning in passing that stressing expressing generality as a root of and 

route to algebra (Mason, Graham, Pimm, & Gowar, 1984; Mason, 1996; Mason, Johnston-

Wilder, & Graham, 2005) does not mean that working on patterns in number sequences 

and matchstick pictures is either necessary, or sufficient. A much more comprehensive 

view is implied, as articulated in the abstract. 

Every mathematics lesson involves generalisation, and the sooner and more frequently 

that learners are invited to try to express those generalities through actions and then words, 

the more likely they are to appreciate what algebra can do for them. This corresponds 

closely with Vygotsky’s notion that teaching converts ability to do something into ability 

to do something knowingly, that is, to “transform an ability ‘in itself’ into an ability ‘for 

himself’” (van der Veer & Valsiner, 1991, p. 334), and to Gattegno’s notion of schooling 

as educating “awareness of awareness” (Gattegno, 1987; see also Mason, 1998).  

Kieran (2004) refers to work with patterned sequences in which learners express 

generalisations as generational aspects of algebra, contrasted with manipulation and use 

(Kieran’s transformational and global/meta). Without the generational there is no purpose 

in the transformational. Furthermore, both the transformational and the global/meta emerge 

directly out of multiple and rich experiences of expressing generality as the range and 

sophistication of expressing generality merges with core ubiquitous mathematical themes 

such as freedom and constraint and doing and undoing (Mason et al., 2005). 

The aim of this paper is to try to discern what might be going on for learners who are 

on the edge of expressing generality in some situation. In particular, what might be the 

effects on different learners of being in the presence of expressed generality, and what can 

be done as a teacher to try to maximise the effectiveness of enculturation into perceiving 

and expressing generality. 

Generality in this paper includes both the usual uses such as recognition of a feature in 

a situation as a parameter that could be varied, the abstraction that takes place when people 

focus attention on their actions rather than on the objects on which they are acting, and 

mathematical abstraction in which context is back-grounded and structural relationships 

are put forward as properties that are treated as axioms. 

For example, adopting the practice of counting-on, when guided, can lead, through the 

natural process of reflective abstraction (in Piagetian terms) to focus on the action, creating 

counting-on as a new awareness (Mitchelmore & White, 2004). This in turn can lead to a 

change of level through interiorisation of a higher psychological practice (in Vygotskian 

terms). 
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Ways of Working 

My way of working starts with recent experience reminding me of past experience. It 

involves identifying phenomena and issues that seem to deserve elucidation so as to inform 

my future action and that of others. I seek accounts (in my own and in other people’s data) 

that highlight or illustrate phenomena and issues, and I test these for resonance with 

colleagues. I also construct tasks through which it is possible to have a taste of what it 

might be like for people in similar situations to those observed. Sometimes the 

mathematical sophistication of the task is appropriate for learners, and sometimes 

appropriate for colleagues with more extensive mathematical experience. Then I try out 

those tasks on others, modifying them and honing them so that most people report not only 

recognition of the phenomena, but recognition of the distinctions that have proved fruitful, 

linked with possible actions to take when working with learners. I do not try to prove that 

specific strategies are guaranteed to produce specified results, either statistically or through 

observational data. I seek educated awareness, not mechanical reproduction. For me what 

matters is awareness in the moment of planning and of teaching. This means what is being 

attended to, how it is being attended to, and what possibilities for action come to mind. I 

am content to offer experiences that might sensitise others to notice opportunities (through 

making pertinent distinctions) to act freshly and effectively in situations. 

Phenomena 

We begin with some characteristic phenomena that highlight a need to clarify and 

precise what is meant by generalisation in the mathematics classroom. Some situations are 

described that are likely to be recognisable in experience and some tasks are offered 

through which you may experience directly some significant aspects of generalisation. 

After each example there are comments which inform and illustrate distinctions. 

Observed Phenomena 

The story begins with a report by the second author of a repeated phenomenon in her 

classroom. 

ΦA: in one lesson, a learner asserted that “anything times zero is zero!”. Her voice tones suggested 

surprise, as if it was a new thought. In actual fact she had uttered this same generality several 

lessons previously, with similar surprise.  

Comment. The activity of the “maths fairy”, which intervenes to wipe learners’ 

memories (Houssart, 2001; 2004), is one way to account for this phenomenon. Does the 

learner really not recognise the same generality again, or is there an element of giving the 

teacher what the learner thinks is valued, namely conjectures and surprised voice tones?  

As Rowland (1995) observes, learners may be very tentative in expressing half-formed 

thoughts and partially formulated ideas. He draws attention to the fragility of self-esteem 

and the use of linguistic hedges, presumably in order to distance the conjecturer from the 

conjecture in case it is seen as silly or wrong. He recommends creating a zone of 

conjectural neutrality, in which what is said is considered independent of the person who 

says it, and treated as something which may need to be modified or augmented. 

Establishing an atmosphere in which people are expected to and are supported in 

expressing half-formed thoughts makes a vital contribution to mathematical development, 

and particularly to expressing and appreciating generality (Mason, 1988, p. 9). The whole 

point of a conjecturing atmosphere is to overcome such sensibilities. 
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Since generalisations are being perceived and expressed, but apparently forgotten, 

expressing generality is not in itself a guarantee of “learning”. It may however be a sign of 

cognitive development, of the use of powers that can be evoked or even called upon 

explicitly in future lessons. 

Often generalisations are appropriate, if some what ambiguously expressed. 

ΦB: Asked what was 3 + 5, and then 5 + 3, and again, 2 + 6 and 6 + 2, Q (aged about 6) sat 

thoughtfully for a few moments and then said “anything plus anything is anything plus anything”.  

Comment. This illustrates a (possible) awareness of a generality, expressed 

spontaneously in response to attention being directed to a few facts. However the 

expression of that generality is highly ambiguous and reminiscent of “alge-babble” 

(Malara & Navarra, 2003) or “emergent algebra” (Ainley, 1999), as an example of 

attempts to express something without a firm grasp of the grammar and syntax used by 

others. It suggests a sensitivity to generalisation through the fact that attention drawn to a 

few “facts” made them exemplary of a more general fact. Because of the ambiguous 

multiple use of “anything”, it is impossible to tell from the account whether the learner’s 

attention was on commutativity, or on the fact that different pairs of numbers can add up to 

the same thing. Although there is a taste of the empirical, the learner’s attention seems to 

be on structure.  

Sometimes learners generalise inappropriately from partial or even incorrect data: 

ΦC: Learners, invited to generalise the following observations     

3 + 4 + 5 = 3 × 4;        6 + 7 + 8 + 9 + 10 = 5 × 8;       7 + 8 + 9 + 10 + 11 + 12 + 13 = 7 × 10 

focus on the first expression and propose that n + n+1 + n+2 = n (n + 1). 

Comment. A task similar to this is mentioned in Rowland (2001), and the same thing 

has happened in other places, with the same results: someone looks only at the first 

statement and tries to generalise. It seems as though the person treats both the 3s the same 

without recognising the structural role of the second 3. Perhaps the statement is read 

simply as a succession of numbers with an equality sign, rather than as a structural 

statement about arithmetic. At the same time, the learner ignores the other proffered 

statements, perhaps because one is in the habit of dealing with one thing at a time, perhaps 

because one single statement occupies the attention fully, or perhaps because it all looks 

too difficult (which it might do if you were not attending to the structural detail of the 

statements but simply seeing them as strings of symbols). The relational thinking 

necessary to make structural sense has been studied in arithmetic by Molina (2007), 

(Molina, Castro, & Mason, 2007) and in equations using algebra by Alexandrou-Leonidou 

and Philippou (2007). It involves a subtle but important transformation of the structure of 

learners’ attention (Mason, 2003).  

ΦD1: Teacher’s account: I am talking to the whole class about the way in which they derived the 

equation of a circle with radius 2 and centre (3, 5). I have written the equations 

x − 3( )
2

+ y − 5( )
2

= 2  and x − 3( )
2

+ y − 5( )
2

= 4  on the board. I ask “where did the 3 the 4 and the 5 

come from in this (the second) equation?”  Trevor replies that the 4 is the diameter of the circle. 

(Bills & Rowland, 1999, p. 110) 

ΦD2: In a lesson on right-angled triangles, the first two examples were a 6–8–10 and a 5–12–13 

triangle. A learner observed that the area and perimeter were (numerically) the same and 

conjectured that “this happens every time”.  (Bills & Rowland, 1999, p. 104) 

Comment. In ΦD1 the learner has discerned a 4 but treated it as a structural 2 times a 

particular 2, rather than as a particular 2 squared. The teacher was attempting to shift 
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students’ attention from the process (of deriving the equation) to surface but structural 

relationships (for example that the term on the right hand side is the radius squared). But it 

seems that Trevor’s attention was already on the surface relationships, and what is more, 

was triggered into seeing 4 as double two rather than as 2 squared.  This has the flavour of 

a mixture of empirical and structural awareness at the mercy of metonymies. 

ΦD2 is typical of what happens when examples have unintended and unanticipated 

features to which a learner attends. From the learner’s perspective, some aspect was 

stressed (and so seen as a dimension of possible variation) while other aspects were 

ignored (and so seen, at least for the moment, as invariant). Fortunately the learner 

expressed the conjecture out loud; often there are relationships that are perceived 

implicitly, below the surface of awareness, but which pervade future thinking. Fischbein 

(1993) coined the term figural concept to describe the way in which unintended features 

inappropriately become part of the concept as constructed by the learner. In a conjecturing 

atmosphere, it is possible to praise the act of conjecturing while at the same time critiquing 

the conjecture itself. Faced with a conjecture that seems implausible, it is natural to seek a 

counter-example, or even to characterise all objects with the stated property. Zaskis and 

Lilejdahl (2002) point to several similar ways in which learners inappropriately generalise. 

By contrast, some generalisations require considerable effort. Rowland (2001) reports 

on learners struggling to see how a process of reasoning used in a particular case in 

number theory could be applied to a general case involving any prime number. The 

indeterminate nature of the general was hard to pin down, because the reasoning seemed to 

require knowledge of the particular numbers. Consequently, some learners stuck with 

particulars. In a more elementary setting, learners unaccustomed to expressing generality 

and then asked to “say how to do it” very often revert to “well if you had …” and use a 

particular. Sometimes it is possible to get a flavour of how they are seeing through the 

particular to the general; sometimes it is difficult to tell whether their “method” is seen as 

particular, but able to be carried out in many different particular cases. In these situations, 

learners seem poised somewhere between experiencing the possibility of a generality, 

experiencing a generality but not being able to articulate it, and expressing a generality. 

Considerations like these raise questions about how generalities expressed publicly in 

lessons contribute to or obstruct the perception and expression of generality by learners. It 

all came to head in the following incident in the second author’s classroom. 

ΦE: In a lesson with 15 yr olds about rationals and irrationals, learners proposed 17 , 5, 18 as 

examples of irrationals. The teacher then asked for a rational “one” and was given 9 , then 16  

and 4  She then said to the class “so all square roots of square numbers are rational”.  

Comment. The overall aim of the teacher was to work on the definitions of rational and 

irrational. It took 25 minutes of example construction to reach the point of formulating a 

definition, and 8 minutes to formulate definitions. There were other opportunities like the 

square-root example, for generalising along the way. The teacher had choices to make as 

each possibility came up: whether to engage the learners in expressing a generality for 

themselves, or whether, judging by the fluency of construction and the flow of examples, 

most learners appreciated the particular generality being exemplified at the moment. The 

teacher could also have chosen to ignore byway generalities altogether, or as an 

intermediate strategy, she could have suggested in passing that there was a generality to 

pursue some other time. 

It is tempting for the teacher to utter “the generality” that she assumes everyone has 

experienced. But what is the effect of her statement on learners who have not yet become 
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consciously aware of the property, or on learners who are vaguely aware but have not yet 

isolated it as a phenomenon and expressed it to themselves, or on learners for whom it is 

an almost unnecessary statement? For these latter, it may act as confirmation of what they 

were already well aware of, an important role for teachers to play. For learners who had 

not yet expressed it for themselves, it could act as a crystallisation, a bringing to the 

surface what they now recognised they had been aware of, albeit not explicitly. However, 

it could also serve to take away that moment of “things falling into place”, when the act of 

generalisation releases just a little bit of energy in the form of pleasure or surprise as 

several particulars are subsumed under one label, as in “aha! that’s what’s going on!”. For 

some learners the statement may simply pass them by because it does not speak to their 

current thinking, does not fit with, amplify, or summarise nascent awareness. 

There is a direct analogy between the states being described here and the forms of 

noticing identified in Mason (2002): not noticing at all (below the surface of awarenesses 

that can be resonated); noticing but not marking (able to be resonated, in the sense that 

when someone else draws attention to it you recognise what is being described but you 

could not have initiated such a description yourself); marking (where you could initiate a 

description yourself); and recording (making some sort of external note about what is 

noticed). 

Before developing the notion of “being poised to generalise”, here are some tasks 

which may provide an explicit taste of the same phenomena. 

Experiential Phenomena 

The following tasks may afford some opportunity to experience freshly some of the 

perceptions, states and issues arising from the previous phenomena. 

Task A: Can You See …? 

While gazing at the following diagram, can you “see”…              

two-fifths of something? three fifths of something? two-thirds of something? one third of 

something? three-halves of something? five thirds of something? two thirds of three-halves of 

something?  What other fraction calculations can you “see” directly? (Thompson, 2002) 

Comment. The prompt to “try to see” signals a shift in how you attend to the figure, 

what you stress and consequently what you ignore, which Gattegno (1987) proposed as the 

mechanism of generalisation. What is available for generalisation is the particular 

fractional parts used, the particular diagram, and the way of working (stressing seeing 

rather than writing down). 
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Task B: Differing Products 

Extend and generalise the following facts 

3×2 – 3 – 2 = 2×1 – 1� � � �

4×3 – 4 – 3 = 3×2 – 1� 4×2 – 4 – 2 = 3×1 – 1� � �

5×4 – 5 – 4 = 4×3 – 1� 5×3 – 5 – 3 = 4×2 – 1� 5×2 – 5 – 2 = 4×1 – 1� �

6×5 – 6 – 5 = 5×4 – 1� 6×4 – 6 – 4 = 5×3 – 1� 6×3 – 6 – 3 = 5×2 – 1� 6×2 – 6 – 2 = 5×1 – 1�

Comment. There are various ways to “see” structure. Watson (2000) used the metaphor 

of splitting wood to capture the natural propensity to recognise and pick up on a flow of 

familiarity, referring to it as “going with the grain”: following or making use of familiar 

structure such as here with the flow of natural numbers. She uses the metaphor as a 

reminder that in order to make sense and to learn from the recognition of such patterns, it 

is necessary to “go across the grain”, exposing the structure of the wood, and by analogy, 

the structure responsible for the perceived patterns. Going with the grain has been called 

recursive, or iterative, because it focuses on how the next term is obtained from previous 

terms. Going across the grain involves structural generalisation.  

Here, going with the grain detects the flow of natural numbers both horizontally and 

vertically. Stressing what is invariant provides a skeleton with which to flesh out 

descriptions of what is changing, and how. Having more than one thing changing at a time 

often causes particular difficulties for people trying to generalise (Mason, 1996). Note that 

the presence of the equals sign emphasises the structural over the empirical, for it is the 

relationship that is being studied, not arrays of numbers from some unknown source.  

Task C: Pólya Crosses Out 

Write out the natural numbers in sequence for at least 10 terms. Now cross out the third, the sixth, 

the ninth, etc. and in a second line, record for each term the “sum so far” of the terms that are left. 

Repeat, but this time crossing out the second, fourth, sixth, … before forming the next line of  

“sums so far”. You might recognise the final sequence. 

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, …       1, 3, 7, 12, 19, 27,  37, …           1, 8, 27, 64, … 

Comment. This task appeared in Mason et al. (1982) but was taken from Pólya (1962). 

Many years later it showed up again in Conway and Guy (1996, pp. 63-65), who revealed 

its origins in Moessner (1952). The phenomenon of interest here is that apart from 

generalising to more rows and hence to bigger gaps in the first crossings-out, I was unable 

to see any other ways it might generalise. However, Conway and Guy displayed a whole 

world of intriguing and fascinatingly complex ways in which it generalises. For me the 

task is a reminder of the phenomenon that there are often dimensions of possible variation 

undiscovered in even the simplest of situations. 

Questions Arising. These and other phenomena raise puzzling questions about why it is 

that, despite having displayed the power to generalise (and to particularise) in many 

different contexts, learners display a range of responses from no recall of previous 

generalisations (as in ΦA), through reticence, to downright refusal to make use of those 

powers in mathematics. What can teachers do to foster and sustain generalisation as a 

regular feature of mathematics lessons? It is sensible to start addressing this by 

distinguishing different forms of generalisation.  
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Forms of Generalisation  

A distinction is often drawn, though mainly implicitly and with considerable variation 

by different authors, between generalisation and abstraction. This is related to a 

distinction between generalising the result of an action on objects as properties of the 

objects, and generalising (abstracting) that action away from the objects themselves. The 

abstracted action is then available to carry out on other (presumably similar) objects in 

other contexts. Then there is a distinction between empirical, also known as generalisation 

from cases, and generic (also sometimes referred to as structural) generalisation. It too is 

rather slippery as a distinction, and is employed differently by different authors. 

Distinctions are sometimes aimed at the mathematics, and sometimes at the activity of 

learners. For example, a distinction can be drawn between syntactic and semantic 

generalisation, and between metonymic and metaphoric generalisation, in an attempt to 

distinguish between the activity of someone satisfied with a surface approach to learning, 

and a deep approach. In a paper of this length there is not space to elaborate fully on all of 

these in detail, but it may be useful to attempt to relate them together as part of a web in 

which to try to catch a variety of generalisation experiences. Most generalisation, 

especially in algebra, is seen as a cognitive process, but sometimes generalisation happens 

without conscious awareness and thus could be considered as an enactive generalisation. 

The second author has observed that there is often an associated affective component of 

generalisation either supporting or inhibiting disposition to generalise mathematically in 

the future. 

Elaboration. Piaget saw reflective abstraction as arising from a shift of attention from 

objects being acted upon, to the action itself. Thus mentally imagining linear 

transformations of the number line and the plane can involve calculating images of 

individual points and sets of points, but when attention shifts to the fact of the 

transformations themselves, then an algebra of transformations emerges. Some authors see 

this as reification of a process (Sfard, 1991), or as proceptual development (Gray & Tall, 

1994).  

Vygotsky stressed the need for ability “in itself” to be transformed into ability “for 

himself” (van der Veer & Valsiner, 1991 p. 331). This means shifting from carrying out an 

action, perhaps with considerable fluency but only when prompted or guided, to 

internalising it as an integral part of behavioural functioning, and so “knowing to” act in 

the moment, to use the ability “for oneself”. In a sense then, abstraction can be seen as a 

change of level, a shift in both the object and the structure of attention (what is attended to, 

and how).  

Starting from an observation of the mathematician MacLane (1986), and Bills and 

Rowland (1999) studied generalisation from cases meaning generalisation that subsumes  

several  particular  cases  such  as  in Task B,  or as in seeing the expansion of (a + b)n as a 

generalisation of (a + b)2, (a + b)3 etc., which involves three parameters (a, b, and n) any 

of which can be seen as a variable. In this example the general rule summarises some 

features of the specific cases. It also asserts the plausibility of the generalisation in cases 

beyond those which have been examined, bridging the “epistemic gap” between known 

and unknown. They go on to quote a number of other mathematicians expressing similar 

sentiments. Generalisation from cases can take different forms:  
 

• one case can be used generically to expose and articulate structural generality;  

• a few cases can be used to reveal dimensions of possible variation; 
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• several cases can be used empirically or inductively/recursively. 
 

ΦB, ΦC, ΦD2, and Task C illustrate aspects of empirical generalisation from cases. 

Sometimes however, it is possible to proceed directly from a single instance to the general 

simply by recognising one or more features that could be generalised (for example, as in 

Task A and ΦD1). Generic generalisation occurs when a single example is seen as generic, 

as illustrating relationships that are perceived as properties holding in a class of similar 

instances or examples. Balacheff (1988, p. 219) puts it clearly and elegantly: 

The generic example involves making explicit the reasons for the truth of an assertion by means of 

operations or transformations on an object that is not there in its own right, but as a characteristic 

representative of the class.  

The mathematician David Hilbert advocated a generic approach to difficult problems 

(Courant 1981, see also Mason & Pimm, 1984), and Krutetskii (1976, pp. 261-262) found 

high-achieving learners generalising through a single generic example. To see something 

generically is to look through the particulars to a generality, that is, to stress certain 

relationships and to treat them as properties common to all examples in the class being 

exemplified (Task A can be experienced this way). Task C is a reminder that seeing 

through a particular to a generality is no trivial matter. Watson and Mason (2005) refer to 

these particulars as dimensions of possible variation based on Marton’s notion of 

dimensions of variation (Marton & Booth, 1997). The word possible was inserted because 

at any moment the teacher and the learners may be aware of different features that could be 

generalised. Furthermore, even when they are aware of the same dimension that could be 

varied, they may not be aware of the same range of permissible change of or by that 

variable. Typically in algebraic contexts it results in a parameter inserted for a constant.  

Empirical generalisation always has some semantic content, in the sense that for the 

learner, surface relationships are the meaning, but they may not contact deep 

(mathematical) structure. ΦB offers an example of this. Task B is typical of tasks that can 

often be carried out with a surface rather than a deep approach, with the learner content to 

“get the answers” rather than to appreciate what is going on. Some intervention may be 

necessary by the teacher in order to provoke or promote a shift to appreciating structural 

relationships. (See later section for strategies.) 

The terms syntactic and semantic generalisation provide another way to try to express 

the difference between what happens when learners use a predominantly surface or 

predominantly deep approach to learning (Marton & Säljö, 1976, 1984). Learners may be 

content with syntactic variation, a version of Watson’s “going with the grain”, which is 

evidenced most clearly when learners undertake a “copy and complete” type of exercise 

from a text by paying attention only to surface features. Again, in language stemming from 

grammar and linguistics, it may be possible to distinguish between metonymic 

generalisation that arises from surface associations triggered by personal and collective 

idiosyncrasies, homonyms, and the like (as in ΦD1), and metaphoric generalisation based 

on resonance with a sense of structure. The more experienced you are, the more structures 

you have encountered, and so the more likely you are to recognise an instance of a 

structure, not through calculated use of analogy, but through metaphoric resonance. Lakoff 

and Nunez (2000) argue that this can always be traced back to bodily sensation of some 

kind. Freudenthal (1983) advanced the case that a structure can be taught by locating a 

phenomenon that requires that structure in order to explain it.  

The term structural generalisation applies to overlapping ground between empirical 

and generic generalisation, for the aim of empirical generalisation is (usually) to reveal 
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structural properties that make the examples exemplary of some generality. Similarly, 

working with a generic example aims to locate structural invariance that is neither 

particular nor peculiar to the “example” being used. However, the real issue is that learners 

can act superficially to engage in empirical generalisation without reference to 

underpinning structure that generates the objects, or even structure within the objects 

themselves. Empirical is sometimes used to refer to “pattern spotting” in numbers without 

reference to what is generating those patterns.  Without making use of the source of the 

“numbers” there can be no justification and hence no contact with underlying structure. 

ΦB, ΦC, and ΦD illustrate attempts and failures to contact structural generalisation. 

Hewitt (1992) highlights the natural tendency for teachers to try to short cut the lengthy 

process of learners using their own powers to generalise, by promoting a strategy of “draw 

up a table and look for a pattern in the numbers”. Once reduced to mechanical behaviour, 

such activity becomes what he called “train spotting”.  

Pólya (1945) distinguished four states during empirical generalisation from cases: 

Observation of that particular case; Generalization; Conjecture formulation based on 

previous particular cases; and Conjecture verification with new particular cases (prior of 

course to justification of the generality). Cañadas and Castro (2007) find it useful to 

discriminate even more finely, inserting a further four: Organization of particular cases; 

Conjecture generalization; Search and prediction of patterns; and Justification of general 

conjecture. When observational data are organized in different ways, different patterns 

emerge, and cases can be organised more or less systematically or intentionally without 

prior detection of pattern. Cañadas and Castro describe “search for patterns” in terms of the 

learner seeking the “next” term in a sequence or in an array, without the pattern being 

thought of as applying to other cases. This is usefully seen as a structured form of attention 

in which the focus is on recognising local relationships in the specific situation, as distinct 

from perceiving properties that might apply in other cases (Mason, 2003; see also Pirie & 

Kieren, 1989; 1994). ΦD provides an illustration, and tasks B and C can be experienced in 

this way. When a relationship between terms is evident, learners may find their attention 

attracted to iterative relationships (often referred to as inductive or recursive) rather than to 

expressing the generality as a function of the position in the sequence or array. Stacey and 

MacGregor (1999) report considerable difficulty in provoking learners to shift from 

iterative/recursive generalisations to direct formulae, but then there may be little evident 

purpose or utility (Ainley, 1997) in making such a shift. A rich seam of mathematics has 

developed around methods of converting iterative/recursive generalisations into formulae 

(e.g., finite differences, formal power series). 

Enactive generalisation is a description of situations in which the body perceives a 

generality before the intellect becomes aware of it, as when a learner shifts from copying 

each term in its entirety and starts repeating the invariant items before inserting the items 

that are changing. Most research has focused on cognitive generalisation, but the second 

author has observed indications that affective generalisation may accompany cognitive and 

enactive generalisation, in the form of altered dispositions either to engage, or not to 

engage in generalisation in the future. 

What Generalisation is Like 

How empirical generalisation comes about is obscured by the fact that even to see 

different objects as (potential) cases runs into the exemplification paradox: to come to see 

something as an example of something more general you already need to have a sense of 

that generality; to come to appreciate a generality you (usually) need to have some 
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examples. One feature of learning to think and act mathematically is learning to cope with 

generality through particularising (in Pólya’s language, specialising) in order to get a sense 

of underlying relationships, which when expressed as properties re-emerge as your own 

version of the original generality or an extension. 

Gattegno suggested that generalisation (he included abstraction) comes about from 

stressing or fore-grounding some features and consequently ignoring or back-grounding 

others. This is manifested in the pedagogic strategy promulgated by Brown and Walter 

(1983) which they call what if not, in which some feature or aspect is interrogated for other 

possibilities. A particular version of this strategy is to read the statement out loud and to 

put special stress on one or another word. It is amazing how the stress attracts attention and 

invites asking why this word rather than some other word, and consideration of the 

possibility of changing it, of treating it as a dimension of possible variation. 

The phrases seeing the general through the particular and seeing the particular in the 

general (Mason et al., 1985; see also Whitehead, 1911, pp. 4-5, 57) were formulated to try 

to capture that moment when a particular aspect is stressed and becomes the fore-ground of 

attention, so that other features fall away, and in that moment of stressing, other 

possibilities arise. It literally becomes a dimension of possible variation, almost as if a new 

world or new dimension opens up, however minor. There is often a corresponding sense of 

freedom, partly to do with subsuming previously different objects or actions under one 

heading, and partly to do with the freedom to choose different examples or instances. The 

person’s example space is enriched (Watson & Mason, 2005). Sometimes the dimension 

was already part of the person’s awareness, but the range of permissible change is 

extended, as in realising that the binomial theorem could apply to fractional as well as 

integer exponents, or more simply, that the a and the b could be not just integers, or 

fractions, or indeed any real number, but also algebraic expressions etc. 

Although, as many have pointed out, generalisation is a power possessed by anyone 

who has learned to speak and to function in the material world, there are subtleties in 

evoking that power appropriately in mathematics classrooms. It is of course very tempting 

to try to do both the specialising and the generalising for learners: constructing tasks and 

suites of exercises that display particulars intended to be seen as instances, cases, or 

examples of a general class of such objects. It is then assumed that if learners “work 

through” the particular cases, they will emerge with a sense of the generalised whole. This 

assumption is contradicted by the observation that “one thing we do not seem to learn from 

experience, is that we rarely learn from experience alone”. Something more is required.  

That “something” is, presumably, what Piaget was trying to get at with his term 

reflective abstraction, what Vygotsky referred to as internalisation of higher psychological 

functioning through being in the presence of a relative expert displaying that functioning, 

and what Gattegno described as integration through subordination. Piaget and Gattegno 

stressed the natural and individual nature of such a transformation, of course supported and 

promoted by careful choices of teaching; Vygotsky stressed the importance of the social, 

including the incorporation of cultural tools and engaging in social interaction. Both 

dimensions are of course vital to a full appreciation.  

Teachers’ Influence 

ΦE introduces the issue of how teacher intervention and articulation might influence 

learners’ appreciation of generality. By uttering a generality herself, the teacher’s utterance 

might be experienced by some learners as 

• a crystallisation of a semi-focused awareness;  
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• a restating of the obvious;  

• bridging or filling in an awareness of which they were not yet aware, and so 

taking away a generative experience; or 

• nothing at all because it passes them by. 
 

For some learners the utterance in ΦE might be part of the wallpaper of the lesson, for 

others it has a transformative action, and for others it confirms an awareness. 

Just because some or several examples have been given by learners, and even when the 

flow of examples accelerates, awareness of the generality itself may not be present. It has 

to do with not just what learners are attending to, but precisely how they are attending.  

These reflections on ΦD led the second author to the question of when it might be 

useful, effective, and appropriate for a teacher to utter a generality that generalises 

examples that learners have encountered or constructed for themselves. It was a short jump 

to the notion of a Zone of Proximal Generality. The idea was to describe and draw 

attention to various states of learner sensitivity to the possibility of generalisations in a 

particular setting, states in which learners are beginning to be aware of their subconscious 

awareness of a mathematical generalisation. For some learners, the generality was already 

present, perhaps explicitly, perhaps ready to be crystallised by someone expressing it in 

terms that linked to learners’ experience. Such affirmation is often important for learners. 

For others however, the expression might displace and even block personal realisation that 

was underway and or imminent. But for some, any expression of that generality might 

have been ignored or even simply not heard: it was not in their current zone of proximal 

generality, perhaps because their attention was absorbed elsewhere.  

The notion of a zone of proximal generality was soon recognised as a particular case of 

a Zone of Proximal Awareness. A generality is just one kind of awareness that can come to 

someone as a result of engaging in activity with cultural tools and using practices 

encouraged and displayed by a relative expert. The idea was to use the term to describe 

awarenesses that are imminent or available to learners, but which might not come to their 

attention or consciousness without specific interactions with mathematical tasks, cultural 

tools, colleagues, teacher, or some combination of these.  

Since Vygotsky’s original conception of the ZPD was as a dynamically emergent 

metaphoric space of possibilities describing potential development of conscious use of 

already familiar but all-engrossing behaviour, we recognised that his oft quoted definition 

has led researchers to a very truncated perception, a projection of the original idea into the 

behavioural aspects of the human psyche. What most people use is really a zone of 

proximal behaviour: what behaviour patterns might learners soon adopt for themselves?  

Coining the term zone of proximal generality does more than provide a useful axis 

around which to accumulate classroom strategies and ways of analysing tasks. It also 

offers an opportunity to explore the implications of a zone of proximal awareness and a 

zone of proximal affect, which includes, for example, the zone of proximal relevance 

proposed by Mason and Watson (2005). It also links with zones of promoted action and 

free movement (Valsiner, 1988; Goos, 2004). Once conceived, the general notion of zones 

gave access to consideration of various zones in relation to the ZPD, which as a language 

might help us to articulate finer distinctions in the states and experiences of learners, 

including ourselves. These ideas require further study in order to elucidate their usefulness 

and interconnections. 
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Methodological Issues 

There are tricky methodological issues however. It is tempting to describe learner 

behaviour in terms of “making a generalisation”, when in fact all you have observed is 

behaviour consistent with making a generalisation.  Learners may be immersed in action 

but only “going through the motions”; they may be immersed in action and reproducing 

behaviour patterns detected in the teacher and in peers, but without any underlying sense of 

meaning or larger story about why they are doing what they are doing. On the other hand, 

they may be immersed in action but generating or re-constructing that behaviour from 

themselves or with the support of peers. They may even be “acting for themselves”, that is, 

“acting because”, in the sense that they are able, when questioned, to articulate an 

appropriate mathematical justification. 

ΦB underlines the teacher’s predicament in seeking evidence that learners have 

appreciated, or integrated a generality into their functioning. When a teacher encounters a 

learner who is “acting as if” they are in possession of or aware of mathematical theorems 

and properties there is a dilemma:  

• is the learner behaving as if he/she knows a theorem (or fact) without having 

explicit awareness of it? 

• is the learner reproducing socially enculturated patterns of behaviour without 

being aware of them consciously, and/or without appreciating a larger picture 

and underlying principles? 

• is the learner producing or reconstructing actions which are not only principled, 

but articulable at some level of sophistication without being prompted? 
 

The first two may sometimes be distinguished by offering learners tasks in which the 

setting or situation is very different from those used to demonstrate or display the expected 

practices. A learner working from awareness, however subconsciously, may be able to use 

that awareness where someone working from socially induced behaviour will not. The 

third can arise spontaneously when one learner asks another for assistance or when there is 

some impetus to bring the reasoning to articulation. 

It is very difficult to distinguish between “acting as if” and “acting because”, or as 

Vygotsky put it, between a learner’s quasi-concepts and true concepts (Confrey, 1994). 

The first situation was referred to by Vergnaud (1981) as theorems-in-action, to capture 

the sense of action that appears principled but which the learner may not be aware of 

explicitly, nor be able to articulate. The second and third are different responses of learners 

to what Brousseau (1984, 1997) called the didactic contract, from which arises the didactic 

tension. Since learners look to the teacher for the behaviour being sought, the more clearly 

the teacher indicates the behaviour being sought, the easier it is for learners to act “as if”, 

to display that behaviour without actually generating it from themselves.  

Distinguishing between the three responses is at best difficult, and at worst, delicate 

because excessive probing may have a negative rather than a positive impact. The act of 

probing for explicit description of the actions, for principles guiding those actions, or for 

justifications for those actions may have the effect of prompting the learner into a new 

level of awareness (and hence justify the use of the term Zone of Proximal Generalisation), 

but it may also have the effect of creating obstacles for the learner who may not recognise 

what is being asked, and so may develop affective, cognitive or even enactive blocks to 

further progress. 
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Pedagogic Strategies 

How might a fistful of distinctions inform a teachers’ future practice and so enhance 

the possibilities for learning? If distinctions remain at the intellectually academic level, so 

that teachers only know about them, then at best some ground may have been prepared. 

Where distinctions have become significant either because they help make sense of past 

experiences, or because they provide a label for sharpening noticing and a vocabulary for 

describing and analysing with colleagues, they begin to function, to inform choices of 

actions whether in planning or in the moment during a lesson. Distinctions become richer 

and more integral to a people’s functioning when they are enriched by relevant personal 

experience. Significant choices involve choosing to act in some way that might not 

otherwise have come to mind, so that teachers find themselves “knowing to” act in the 

moment. Some strategies that have proved helpful in this respect regarding generalising 

include the following. 

Guided Exploration. There are many difficulties with being a “guide on the side”. 

Terms such as scaffolding, introduced by Wood et al. (1976), attempted to describe ways 

in which teachers could act as “consciousness for two” (Bruner, 1986, pp. 75-76) in 

supporting behaviour that would ultimately be taken up and directed by learners 

themselves, a process known as fading (Brown, Collins, & Duguid, 1989), through a 

process of progressively more and more indirect prompts until learners are adopting the 

behaviour spontaneously. The process is highly problematic, because a teacher acts in the 

moment; it is only later that the learners’ behaviour makes it possible to describe the whole 

process as scaffolding and fading. Put another way, “teaching takes place in time; learning 

takes place over time”. 

What if Not (Stress and Ignore). This strategy was described in an earlier section. It 

involves stressing single words in an assertion, or some feature of an expression, and then 

asking what happens if that is allowed to change in some way.  

Directing Attention (Stress and Ignore). More generally, learner attention can be 

directed towards something (as in Task A), with the consequence of back-grounding 

something else, but you cannot intentionally direct people to ignore something. Much of 

what teachers do in classrooms is to direct attention towards pertinent features. By 

directing attention in a structured manner it is possible to provoke awareness of sameness 

and difference, and so promote generalisation. 

Watch What You Do. Encouraging learners not only to work on or construct an 

example but also to pay attention to how their bodies go about it, affords a perception that 

can often be translated into a generality. It can be used to enrich enactive generalisation, 

and to build links with structure (Mason et al., 2005). 

Same and Different. Enculturating learners into the practice of looking for similarities 

and differences between objects under investigation leads quite directly to the perception 

and expression of salient features. Becoming aware of similarities and differences results 

in stressing or fore-grounding and consequently ignoring or back-grounding, which is the 

basis for both generalisation and abstraction. Brown and Coles (2000) report learners 

taking over the strategy and internalised it, integrating it into their everyday functioning in 

the mathematics classroom. 

Say What You See. Getting learners to say something of what they see, and to listen to 

what others say they see often has the effect of re-directing learner attention, with the 
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possibility of, at the very least, extending their awareness of possible interpretations or 

ways of seeing, and sometimes of detecting similarities that can emerge as generalities. 

Predicting What is not Present. When learners are confronted with a possible pattern, it 

can help them express vaguely sensed generalities to try to predict other examples that are 

not present. They can then use Tracking to bring their awareness to expression. 

Tracking Arithmetic. By deciding to forego closure on arithmetic operations 

concerning one number in a calculation, the progress of the value through the various steps 

in a calculation can be tracked. It is then a simple matter to ask what calculation would be 

needed if that tracked number changes: only its value changes, while the rest of the 

calculation remains the same. This is particularly useful in a difficult problem in which it is 

possible to check whether a proposed answer is correct, but hard to see how to find such a 

number. The arithmetic can be tracked on a “guess”, the calculation generalised, and then 

an equation established whose solution(s) provide the desired answer. This is the method 

that Mary Boole called “acknowledging ignorance” (Tahta, 1972). 

Why Does Generalisation Happen Sometimes and Not Others? 

Changes in how people attend to something are not simple transformations. They 

involve a complex of experience, reflection, and perceived effectiveness (according to 

one’s own criteria). To become robust they need integrated contributions from all three 

aspects of the psyche: cognition, enaction, and affect. Models or metaphors of learning that 

imply simple levels or steps to be ascended, or a few obstacles to be overcome, fail to 

account for the wide variation in learner experience and learner dispositions.  

Teaching is not simply a matter of guiding or driving learners into appropriate patterns 

of behaviour, nor is it simply a matter of waiting for learners to display “readiness”. 

Provoking generalisation is more about releasing learners’ natural powers than it is about 

trying to force feed. Because promoting mathematical generalisation lies at the core of all 

mathematics teaching, at all ages, and because it concerns the development of higher 

psychological processes that are most likely to be accessible to learners if they are in the 

presence of someone more expert displaying disposition to and techniques for generalising, 

it is important for teachers to be seen to generalise, to value learners’ attempts at 

generalisation, and to get out of learners’ way so that they can generalise for themselves. 
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This paper examines a practice-based component of a primary teacher education program to 

gain insight into the type of experiences which assist beginning teachers translate theory-

based knowledge to their teaching practices. Eighty-six prospective teachers participated in 

the study. Data were collected from (a) weekly lesson plans; (b) researcher field notes; (c) 

reflective journals; and (d) interviews with four participants. A theoretical rationale for 

various aspects of the practice-based component is provided and the implications for 

teacher education programs are discussed.  

A persistent problem in mathematics teacher education is the general inability of 

beginning teachers to translate theory-based knowledge of the university context into their 

own teaching practice once in the classroom (Korthagen & Kessels, 1999; Moore, 2003; 

Zeichner & Tabachnick, 1981). A major concern for teacher educators has been the need to 

find more effective ways to address this apparent theory/practice gap and better prepare 

our teachers to master the realities of teaching (Bobis & Aldridge, 2002; Tobin & Roth, 

2006).  

The field experience (or “practicum”) is overwhelmingly considered by experienced 

and prospective teachers as one of the most powerful – if not the most powerful – 

component of their teacher education programs (Wilson, Floden, & Ferrini-Mundy, 2002). 

Yet, the nature of this potentially powerful experience can determine whether teacher 

preparation is enhanced or hindered. Study after study confirms that for the majority of 

practice teachers, the focus of field experiences is on procedural and management concerns 

such as behaviour management and whether expected lesson content is covered (Liston, 

Whitcomb, & Borko, 2006; Moore, 2003). Although such procedural matters are 

important, beginning teachers’ preoccupations with them generally means that they are 

unable to consider new, more cognitively demanding, teaching approaches advocated in 

key policy documents (e.g., Australian Education Council, 1990; National Council for 

Teachers of Mathematics (NCTM), 2000) during their teacher preparation programs. A 

challenge facing teacher educators is to design teaching-learning environments that will 

empower beginning teachers to translate theory into their practice more effectively. 

The aim of this inquiry was to gain greater insight into the type of experiences that will 

assist beginning teachers translate the theory-based knowledge of mathematics teacher 

education courses to their teaching practices. This paper examines a particular component 

of a primary mathematics methods course in an attempt to reflect, improve it and share 

what has been learnt. Multiple cohorts of prospective and beginning teachers have 

resoundingly confirmed that a “practice-based” component of this methods course 

provided the most influential experience in their mathematics teacher education 

preparation (Bobis & Aldridge, 2002).  

A Practice-based Model of Teacher Education 

The focus of this study is a 3 to 4 week in-school component of a semester-long 

mathematics methods course for prospective primary teachers. This practised-based 
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component arose from the need to address an apparent gap between their university-based 

knowledge of theory and what they did in the classroom. It has evolved to its current form 

over many years and is based on “what works” best in practice. Through a continuing 

process of design, implementation, evaluation, and refinement, the component and the 

methods course in which it is nested, has taken on three distinct characteristics – 

alternating situated learning contexts, co-teaching, and embedded assessment. Although 

derived from practice, each characteristic has a well-developed theoretical rationale for its 

usefulness in a teacher education program. Taken together, they form a practical and 

theoretical framework for the current study. 

Alternating Situated Learning Contexts 

A situated perspective on learning acknowledges that some types of knowledge are 

best constructed in one context rather than another and that the more authentic the context, 

the more effective the interplay between theory and practice (Brown, Collins, & Duguid, 

1989; Putnam & Borko, 2000). The mathematics education course in question alternated 

between 6 weeks of theory-based lectures and tutorials at university, 3 to 4 weeks of 

practice-based teaching in a local primary school and then 3 more weeks of lectures and 

tutorials at university. Hence, prospective primary teachers were first introduced to 

important knowledge for the teaching of mathematics (e.g., mathematics content 

knowledge, pedagogical content knowledge, and knowledge of curricula) in a traditional 

university-based learning situation. In the school-based context, student teachers spent 

their normal tutorial times working with one or two peers to teach a small group of 

primary-aged children – still under the supervision of their normal mathematics education 

tutor and a classroom teacher. The final three weeks of university-based learning served as 

a “debriefing”. It focused on issues that had arisen during the school-based teaching and 

aimed to further contextualise theory-based knowledge drawing on shared experiences 

from the previous 3 to 4 weeks. Korthagen and Kessels (1999) found that an important 

factor in determining the extent to which beginning teachers could translate their 

knowledge into practice was the degree to which teacher education programs integrated 

and alternated theory and practice in a similar way. Although the focus of this paper is on 

the in-school component, it is important to note that its impact is made more powerful due 

to the overall course structure of alternating learning contexts.  

Co-teaching 

Co-teaching occurs when two or more “persons teach a group of students with a dual 

purpose: providing more opportunities for students to learn and providing opportunities for 

the persons to grow as teachers” (Tobin & Roth, 2006, p. 17). Co-teaching is different 

from “team teaching” in that it involves colleagues working together at all phases of the 

teaching/learning process, from initial planning to implementation to assessment and 

evaluation. Team teaching, on the other hand, normally requires the persons involved to 

divide the work and take on different and clearly defined responsibilities. According to 

Tobin and Roth (2006), co-teaching helps bridge the gap between theory and practice as it 

allows two or more individuals (not necessarily peers) to teach and subsequently to 

discuss, debate, and reflect together about their teaching and their students’ learning. 

The principles of co-teaching have been implemented in the practice-based component 

of the mathematics education course in question long before the term was first coined, 

because, like Tobin and Roth (2006), they have been found to work in practice. Hence, two 
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or three student teachers work together to plan and teach a sequence of lessons based on an 

initial assessment of a small group of students’ mathematical needs. After each lesson, the 

student teachers reflect on the children’s learning and their own teaching. They then use 

this information to plan subsequent lessons. In this particular co-teaching situation, routine 

and procedural management concerns are minimised due to the size of the “class” and the 

fact that the teachers (student teachers, classroom teacher, and mathematics educator) learn 

from each other how to implement them effectively. In this way, student teachers are able 

to focus more attention on their own teaching and on the children’s learning.  

Embedded Assessment 

Black and Wiliam (1998) found that formative assessment feedback can enhance 

student learning when it focuses on what is needed for improvement. Although they 

concluded that such practices are rarely found in schools, it is probably even rarer in 

universities. Shavelson (2006, p. 65) outlines a continuum of formative assessment 

practices for teacher education. He refers to “on-the-fly” formative assessment as that 

which is unplanned, requiring intuition or wisdom of practice, and very difficult to teach 

teachers. Towards the other end of the continuum, he refers to “embedded assessment”, 

which is formally planned formative assessment tasks that are integrated into the learning 

experiences of the students and where feedback on performance and remediation is 

immediately provided.  

Embedded assessment best describes the formative assessment task undertaken by 

prospective teachers as part of the practice-based component of their course. Teachers in 

each group submit their co-constructed lesson plans to their tutor who observes teaching 

“snapshots” and provides immediate written feedback about their plans (e.g., 

appropriateness of content, clarity of goals, etc.) and their teaching. Brief field notes, in the 

form of observation notes and reminders about the aspects each group of teachers are asked 

to attend to, are made by the tutor. It is expected that student teachers take account of the 

tutor’s feedback and their reflective evaluations of their own teaching and the children’s 

learning in subsequent sessions. They are not required to rewrite lesson plans that have 

already been taught. The field notes help the tutor keep track of student teacher progress 

and ensure that feedback is considered as they learn to teach. At the end of the practice-

based component, a mini-program of work consisting of all original lesson plans, formative 

comments from the tutor, student teacher responses to the feedback, and their own 

reflections on their teaching and the students’ learning, is submitted along with a 

summative comment for final assessment. 

Method 

Previous investigations of mathematics’ methods courses that situate prospective 

teachers’ learning in alternating contexts such as those just described, indicate that they 

offer an effective vehicle for the translation of theory-based university knowledge into 

practice (Aldridge & Bobis, 2001; Bobis & Aldridge, 2002). The same body of research 

found that a practice-based component was perceived by multiple cohorts of graduating 

students and beginning teachers to be the most powerful mechanism by which this was 

achieved. To date, reasons for this perception have not been fully explored and evidence to 

support this view has not been sought. Hence, there were two main foci of the current 

investigation. First, it sought evidence to support the hypothesis that the practice-based 

component provided an effective mechanism for the translation of theory into practice. 
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Second, it sought to explore prospective teachers’ perceptions of their own learning and 

teaching during this component in an effort to highlight strengths and weaknesses of the 

methods course.  

Participants and Setting 

Eighty-six prospective primary teachers (78 female and 8 male) enrolled in a 4-year 

Bachelor of Education degree participated in the study. The mathematics education course 

at the centre of the study is nested in the third year of the degree and is the second of three 

mathematics methods courses, each of 12 weeks duration. Prior to this course, student 

teachers had undertaken an introductory 8-day (one day a week for eight weeks) field 

experience and one block field experience of 15 days. Importantly, the practice-based 

component of the mathematics method course is not linked to the normal field experiences 

as it occurs totally within university-based tutorial times with the same mathematics 

educator supervising each of the four tutorial groups.  

Prior to the practice-based component commencing, each participant selected to work 

with one or two other student teachers from the same tutorial group. This resulted in the 

formation of 40 groups of student teachers across the four tutorials. The methods course 

focused on the mathematics content area of measurement so it was negotiated with the four 

cooperating teachers that the weekly practice-based sessions would cover content from the 

volume and capacity sub-strand of the K-6 Mathematics Syllabus (Board of Studies, New 

South Wales, 2002). Each tutorial group was informed of the grade level they would be 

teaching two weeks prior to their first in-school session. They were asked to draw on 

theory and practical experiences of recent lectures to prepare suitable activities that would 

enable them to assess children’s needs in the target content area. This information was 

expected to inform their lesson planning and co-teaching for the next 3 weeks. At the start 

of the first session, each group of student teachers was matched to a group of 

approximately four children of mixed ability.  

Data Collection and Analysis 

Data were collected from the following sources: (a) weekly lesson plans produced by 

each group of student teachers; (b) researcher field notes made while observing groups of 

student teachers co-teaching and during conversations aimed at providing additional 

feedback to that which was recorded on their lesson plans; (c) reflective journal entries 

from student teachers concerning their teaching and learning made after each in-school 

session; and (d) semi-structured interviews with four participants at the end of the methods 

course. 

The field notes acted like an initial analysis of the lesson plans so these two forms of 

data were jointly analysed. Together they gave insight into the types of pedagogy 

prospective teachers sought to employ or did not employ and to changes in pedagogy over 

the three weeks as a result of formative feedback from the supervising mathematics 

educator.  

Reflective journal entries made by prospective teachers gave insight into their abilities 

to use theoretical information to analyse and reflect on their teaching practice. 

Additionally, participants who had indicated their willingness to be interviewed 

individually were invited to a follow-up interview at the conclusion of the methods course. 

Four female students accepted the invitation and participated in a 30-minute semi-

structured interview. Importantly, the interviews were conducted by an interviewer 
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independent of the methods course and were not part of the assessment for the course. The 

purpose of the interviews was twofold: to provide further insight on the findings that 

emerged from other forms of data gathered and to validate these findings via a process of 

triangulation. The interviews were tape-recorded and later transcribed for analysis. The 

focus of the questions was on the effectiveness of the practice-based component and its 

impact on the process of learning to teach. They were also asked to explain their reasoning 

for their comments. Analysis of data from the various sources involved multiple readings 

of lesson plans, transcripts and journal entries to pinpoint emerging themes in the data. 

Results and Discussion 

Field Notes and Lesson Plans 

It is beyond the scope of this paper to explore all aspects of the lesson plans and the 

associated shifts in pedagogy over the three weeks. Hence, the focus of the analysis will be 

on the most salient features to emerge.  

Analysis of the first week of lesson plans and field notes revealed that prospective 

teachers were experiencing difficulties implementing higher-order questioning. Although 

the initial plans showed that 75% or 30 groups of student teachers deliberately planned 

higher-order questions at some point in their lessons, they generally occurred towards the 

end of a lesson and were often “surrounded” by a much larger number of lower-order type 

questions (e.g., requiring recall of knowledge). Although the higher-order questions were 

considered well-designed and appropriate – ranging from open-ended questions to those 

requiring children to explain their reasoning – there was concern that they may have been 

omitted altogether if timing of the lesson became an issue or if allowed to be dominated by 

the lower-order questions. Hence, feedback was given suggesting student teachers integrate 

the questioning throughout the lesson plans and that they experiment initiating activities 

with such questions. Analysis of field notes and lesson plans for the subsequent weeks 

revealed a major shift in the number of higher-order questions integrated into lessons and 

that five groups actually used open-ended problems to initiate extended investigations.  

Analysis of lesson plan tasks indicated a significant change in the nature and focus of 

tasks across the three weeks. Given the nature of the content being treated (volume and 

capacity), the use of tasks requiring children to manipulate materials physically was never 

an issue. However, the preoccupation with providing “busy” or “fun” activities that lacked 

directionality if children’s understandings of difficult concepts were to be enhanced was 

obvious when prospective teachers were questioned about the purpose of such tasks and 

why they were not consistent with the stated outcomes for their lessons. Forty-two percent 

of the lesson plans in the first week did not contain clear statements of purpose for the 

tasks planned. If goals were stated, they generally referred to an action or behaviour 

students were expected to perform. For example, a typically cited “goal” in the first week 

of lesson plans was “measuring and ordering the capacity of containers”. Lesson plans for 

the second and third weeks showed a major shift to tasks that focused on concept or skill 

development with associated goal statements explicitly referring to strategy development 

and conceptual understanding. For example, goal statements included: “Students will 

create a calibrated measuring container to increase their understanding of mL and the need 

to measure more accurately”, “To increase student’s understanding that capacity refers to 

the amount a container will hold”, “To make comparisons through accurate measuring and 

reflecting on the reasons why containers differ in capacity”.  
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Another major change in the nature of the tasks presented over the 3 weeks, was the 

increased occurrence of tasks requiring children to explain their strategies and to 

communicate their reasoning orally or in writing. It was also noted in the third week that 

there was an increased number of tasks and their associated goals that explicitly addressed 

children’s misconceptions of volume and capacity. For instance, six plans referred to tasks 

designed to address confusion surrounding an object’s mass and its displacement. By the 

third lesson plan, analysis revealed that 37 of the 40 plans explicitly planned for the 

enhancement of conceptual understanding and integrated working mathematically 

processes such as applying strategies, communication, and reasoning, as indicated by their 

goals and the nature of the learning experiences presented.  

A final notable shift in lesson plans over the 3 weeks, was the increased occurrence of 

detailed explanations of the concepts prospective teachers considered more difficult to 

relate to children. Although only explicitly occurring in five lesson plans, field notes also 

made reference to conversations with another four groups of students about their need to 

“rehearse” or “script” detailed explanations and complex instructions to assist the flow of 

their lessons. It was perceived that such scripting raised prospective teachers’ confidence 

levels to teach complex mathematical concepts and when considered successful, provided 

powerful memories that became useful sources for reflection during subsequent debriefing 

sessions. 

Reflective Journal Entries and Interviews 

Reflective journal entries and the interviews provided evidence of two main aspects of 

prospective teachers’ knowledge: (1) their ability to use theoretical information to interpret 

and analyse the teaching of mathematics in practice; and (2) perceptions of their own 

learning, strengths, and weaknesses during this component of the methods course. 

Ability to use theoretical information. Although many aspects of the prospective 

teachers’ plans and teaching indirectly provide insight into their abilities to analyse 

theoretical knowledge in terms of their practice and vice versa, some journal entries and 

interview data explicitly referred to theory and practice relationships. For instance, when 

interviewees were questioned about the benefits of the practice-based component, all four 

considered that the “experience enabled us to place our theoretical knowledge into 

practice”. To illustrate how this was achieved, Lauren explained that she and her partner 

built “upon the mind map idea from tutorials, we were able to see how the students’ 

knowledge developed. We will definitely use this strategy in the future” and Rebecca 

referred to the “whole teaching and learning process” because it enabled “us to try out 

ideas rather than just write about them.”  

Three different groups of prospective teachers commented in their journals on the way 

“we structured a sequence of learning activities that reflected the stages of the 

measurement framework”. One group considered that “this allowed us to clarify not only 

the stages of student understanding but also our own understandings of the concepts” learnt 

about in tutorials (Andrew and Lucy, journal entry). Another group reflected on their 

ability to “sequence individual lessons that scaffolded student learning through initial 

engagement, the introduction of new concepts and concluding with a reflection upon both 

prior and new knowledge” as a real “strength” of their teaching. These comments validated 

what was evident in student teachers’ lesson plans as being “deliberate” and “successful” 

translations of their theory-based knowledge to their practice. They also indicated that a 

small number of prospective teachers were not only able to integrate theory and practice, 
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but were able to theorise about their own practice when given the opportunity to critically 

reflect on it. 

Perceptions of their own learning, strengths and weaknesses. The two most commonly 

discussed aspects of their teaching in both journal entries and by interviewees was the use 

of explanations and higher-order questioning. Higher-order questioning was considered a 

shortcoming in more than 60% of journal entries for the first two weeks. Student teachers 

regularly conceded: “in our eagerness to ask the students questions we were consistently 

asking directed questions focused on producing the correct answer”. However, by the final 

week of the practice-based component, journal entries referred to how their questioning 

had “improved” with one prospective teacher indicating that she learnt to ask better 

questions from her co-teacher. “N… showed herself to be an excellent questioner”, asking 

questions that required “a deeper and higher order of understanding. We organised our 

lesson plan with a “questioning” column, and this enabled me to really think about what I 

wanted the students to achieve…”. This comment also illustrates the benefits of co-

teaching, when prospective teachers can not only jointly share and reflect on their 

experiences, but also learn from the strengths of each other.  

Time and behaviour management issues, as found by Moore (2003), remained an 

important consideration for student teachers as they were mentioned in 37% of the 

reflective journals. However, unlike Moore, who found that the comments related to 

unresolved issues, a large number of the reflective journal entries outlined what the student 

teachers had learnt that would help them in the future. For example, a group of three 

prospective teachers wrote about their need to be flexible with their time management: 

We concluded that it is better to spend a little extra time to ensure that students comprehensively 

understand the concepts of one activity, than abide by a time frame at the expense of having 

students with little or no understanding of 2 or 3 activities. (Brian, Kim and Sue, journal entry) 

Another group of prospective teachers discovered that “since the students were always 

engaged in the activities there were only a few behaviour issues. This is definitely 

something to think about when working with a whole class”. Given that the children were 

regularly working with water and were located outdoors or in “wet areas” for their lessons, 

even small groups of children required careful behaviour management skills. Hence, many 

prospective teachers learnt after the first lesson “not to leave any aspect of management to 

chance – we needed to have clearly thought-out instructions for all procedures” (Emma, 

interviewee). 

Over the 3 weeks in which reflective journal entries were made, 75% of the prospective 

teachers considered “catering for different abilities” as one of the most challenging and 

“frustrating” aspects of their teaching. However, as one group confided, it also “proved to 

be a very worthwhile lesson to learn and something which we will be more prepared for in 

the future”. In their interviews, both Emma and Lauren mentioned a need to modify the 

planned activities and to use more open-ended questions after their initial assessment 

because they had not anticipated the “variation in the children’s understandings”. 

In her interview, Rebecca commented that her group “became more explicit in what we 

wanted the students to do … we clearly know the purpose of each activity in the lessons. 

Without this, the activities looked pointless”. Her comments reflect similar sentiments in a 

growing number of journal entries by the third week and indicate an increasing concern for 

directing student learning according to a perceived research-based trajectory. 

The interviewees were asked to comment on aspects of the practice-based component 

that were considered of most and least benefit to prospective teachers and to explain their 
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reasoning. The only suggestions for improvement referred to extending the “time in the 

school”. Reasons for their positive perceptions varied, but Emma and Lauren considered 

the “cumulative assessment” very helpful as it “helped us learn step by step and target the 

areas of our teaching in most need of improvement”. Rebecca emphasised the importance 

of “sharing the experience, and learning from my” co-teacher. This sentiment was echoed 

in a number of reflective journal entries. For instance, one group of three co-teachers wrote 

in the third week that they “found working together as a group of three teachers very 

helpful. We got ideas from each other, and thought it was valuable as well for the students 

as they were presented with similar lesson content through different approaches”. 

Journal entries indicated that the co-teaching arrangement also helped address 

perceived weaknesses in content knowledge and the confidence levels of prospective 

teachers.  

Initially, our main fear was our lack of content knowledge…after a little research it did not take 

long for the ideas to flow between us. In our first session we were quite nervous and our questioning 

fumbled several times … For the next lesson, we made sure we used more open-ended questions. 

(Clare, Anna and Sohpie, journal entry) 

Another aspect of the practice-based component mentioned by a quarter of prospective 

teachers in their journals was the benefit of focusing “on one content area for three 

lessons” as this “enabled me to fine-tune my teaching strategies – particularly questioning 

and explanations and to deepen my own knowledge” (Andrew and Lucy, journal entry). 

The ability to “fine-tune” and “reflect on” strategies, skills and knowledge was repeatedly 

mentioned as a benefit of the practice-based component in journal entries, as was the 

“ability to teach our own way without worrying if we were teaching the way another 

teacher wanted us to”. A sense of “empowerment” was conveyed by many prospective 

teachers as a result of the practice-based component:   

This in-school experience was my most successful practical experience to date in terms of the 

achievement of intended outcomes for my students. I feel really empowered to have such a positive 

feeling about the children’s learning and the activities I designed … (Renee, journal entry) 

Learning to teach is a complex process. To understand that process better we need to 

examine the impact of teacher education programs and courses on prospective and 

beginning teachers. Previous research has shown that alternating theory and practice-based 

contexts in teacher education programs can assist the translation of theory-based 

knowledge into the practice of beginning teachers. This study sought further understanding 

of why and how a practice-based component of a teacher education program might achieve 

this. It also sought to explore prospective teachers’ perceptions of their own learning and 

teaching during this component in an effort to highlight strengths and weaknesses of the 

methods course. Results confirm that prospective teachers were able to use theoretical-

based knowledge to interpret, analyse, reflect on and improve their teaching of 

mathematics in practice. Evidence indicated that particular elements of the component – 

the situated learning context, co-teaching, and embedded formative assessment – 

empowered them to do this. As a result of undertaking the practice-based component, an 

overall shift in teaching towards the use of higher order questions, the increased use of 

“scripting” explanations, the use of tasks explicitly designed to enhance the conceptual 

development of children and to address perceived misconceptions in their mathematical 

understanding were among the most notable shifts in practice. Such teaching strategies are 

consistent with current visions of teaching mathematics (Australian Association of 

Mathematics Teachers (AAMT), 2002; NCTM, 2000; NSWDET, 2003). Importantly, 

“context” plays a major role in the success of this component and the mathematics methods 
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course in which it is nested. As mentioned earlier, the component has evolved over many 

years and is based on what works in this situation for the type of student teachers attracted 

to this institution and primary education program. Although aspects can be adapted, the 

simple transfer of some or all elements to another context may not yield the same 

successes.  

Practical Implications for Teacher Education 

Informed by a growing body of research literature, current views of quality teaching 

reflected in policy documents and key professional literature from around the world 

emphasise the importance of teachers’ professional knowledge and their knowledge of 

practice (AAMT, 2002; NCTM, 2000; NSW Institute of Teachers, 2006). For instance, the 

Standards for Excellence in Teaching Mathematics in Australian Schools (AAMT, 2002) 

recognises the importance of teachers possessing professional knowledge of “current 

theories relevant to the learning of mathematics”, of content, of students and of how 

students learn mathematics best (p. 2). It also states that excellent teachers of mathematics 

possess strong practical knowledge so they can carefully plan learning experiences that 

“enable students to develop new mathematical understandings … engage them actively in 

learning” and allow teachers to plan appropriate future learning (AAMT, 2002, p. 4). 

Besides conforming to research findings of quality teaching, such views also form the basis 

for teacher accreditation criteria (e.g., NSW Institute of Teachers, 2006). Hence, it is 

imperative that teacher preparation programs include such outcomes for their graduate 

teachers, and for the sake of their credibility, should provide research-based evidence to 

verify their effectiveness in achieving them and in the ability of their graduates to translate 

such knowledge to their teaching. Importantly, although these documents suggest or even 

“mandate” outcomes for graduating teacher education students, how they are achieved is 

rightly left to individual teacher education programs to determine.  

The results of this study illustrate how one teacher education program is addressing this 

challenge by providing practical suggestions for reshaping traditionally-structured teacher 

education courses, especially those attached to field experiences. In particular, the 

following elements have greatest implications for assisting the translation of theory to 

practice. 
• Alternating the learning context from university-based tutorials to one situated in a school 

provides prospective teachers with rich opportunities to examine and reflect on their practice in 

terms of the theories behind their pedagogical decisions and vice versa; 

• The situated learning context removes the power of the mentor teacher often noted in 

traditional field experiences and provides a secure environment in which prospective teachers 

can rehearse teaching (pedagogical) strategies and develop heuristics or “scripts” (e.g., 

explanations for complex mathematical concepts) that can be used in whole-class field 

experiences and eventually in their own classrooms; 

• Co-teaching provides prospective teachers opportunities to learn from each other and 

encourages them to “take risks” and experiment with novel teaching strategies;  

• Co-teaching enables prospective teachers explore what to teach, how to teach it and how 

students learn best before being placed in the added stress of a whole class situation; and 

• Embedded formative assessment allows shortcomings in planning and teaching to be addressed 

immediately. Hence, it can refocus prospective teachers’ attentions on more pressing concerns 

of teacher quality such as higher order thinking and conceptual understanding rather than allow 

them to become preoccupied with more overt lower order and procedural concerns.  

In summary, the findings suggest a change in thinking about structure and focus of 

teacher education courses by looking for opportunities for prospective teachers to discuss, 

interpret and reflect on the relationship between theory and practice. Teacher education 
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programs are regularly criticised for the inability of their graduates to cope with the 

realities of the classroom. At times they have been criticised for teaching too much theory 

at the expense of practical experience, for not incorporating effective mechanisms that 

encourage the transfer of theory to practice, and for even teaching the wrong theory 

(Wilson et al., 2006). Perhaps the most important practical implication of this research is 

the need to provide an evidence-base to redress such unsubstantiated criticisms.  
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As a teacher educator, I used narrative inquiry to investigate my professional practice in 

working alongside pre-service primary teachers in mathematics education. One theme that 

emerged from this research was the exploration of narrative as a powerful means with which 

to pursue professional development. In this process I encountered, and subsequently 

changed, previously unknown personal beliefs about learning mathematics. A second theme 

focused on the value of mathematical investigations, for myself as a mathematical learner 

and for supporting pre-service teachers to develop their understandings of what it means to 

learn and teach mathematics. 

Introduction 

Over a period of 20 months I used narrative inquiry to investigate my professional 

practice as a pre-service teacher in mathematics education. Undertaking this inquiry was 

motivated by a desire to more closely examine my professional practice whilst 

simultaneously meeting the requirements for a Master of Education. Reflection, albeit 

informally done, has always been an integral part of my teaching practice. However, 

narrative inquiry provided a more structured vehicle for the ongoing critical reflection of 

my professional role, and resulted in significant personal learning. 

Narrative inquiry, which in essence is a form of story-telling, has become a recognised 

form of educational research, and is regarded as a powerful means with which learners can 

reflect on and develop their own professional practice (Chambers, 2003; McCormack, 

2002; Rushton, 2001; Smith, 2006).  A goal of narrative inquiry is for participants to learn, 

and possibly change their thinking as a result of this learning (Clandinin & Connelly, 

2000). One example of such learning that occurred for me was the discovery of changing 

beliefs about the nature of mathematics. 

The other main theme to emerge during my research centred on the use of 

mathematical investigations to support pre-service primary teachers to consider what the 

learning and teaching of mathematics may entail. As part of this process I personally did 

several mathematical investigations, embedding myself in the position of mathematical 

learner. My conception of a mathematical investigation is of an open-ended problem or 

statement that lends itself to the possibility of multiple mathematical pathways being 

explored, leading to a variety of mathematical ideas and/or solutions. Such investigations 

tend to take more time than usually encountered in more traditional mathematics problems 

frequently used in schools. 

Narrative Inquiry 

Over the past two decades the practice of reflection has been recognised as a legitimate 

aspect of action research in education (Adler, 1993; Francis, 1995; Schön, 1983). More 

recently, narrative inquiry has also become a valued form of research (Chambers, 2003; 

Luwisch, 2001; O’Connell Rust, 1999; Smith, 2006) and can be regarded as a journey 
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during which researchers come to know more deeply about their lives and who they are as 

people. Beattie (1995) makes a particularly strong case for the use of narrative inquiry 

within educational research, writing, “at the heart of meaningful educational reform and 

change, lie the narratives” (p. 66). 

A central tenet of narrative inquiry is that of change (Clandinin & Connelly, 2000). 

Winter (2003), a writer who draws parallels between basic principles of action research 

(and thus narrative inquiry) and some key Buddhist doctrines also refers to the condition of 

impermanence, i.e., change. Although Winter also refers to the human tendency of wishing 

to avoid change, Mason (2002) cautions that we cannot change others, but rather, we can 

work at changing ourselves. 

One might suppose that because there is an inherent focus on change that there is a 

supposition of an initial deficit position. However, this is not necessarily the case. An 

alternative model of emancipatory practitioner research, based on the work of Jacques 

Lacan, is offered by Brown and Jones (2001). These authors suggest that rather than 

seeking resolution or an end-point, the research process can be regarded as the building of a 

narrative layer that supports and grows alongside the writer’s life as it occurs. Thus, 

perfection or an ideal is not sought, but a greater awareness of one’s professional practice 

with the possibility of instituting change if that is deemed worthwhile. 

In narrative “the subject is never given at the beginning, but it unfolds as the story is 

told” (Ricoeur, 1986, as cited in McCormack, 2002, p. 337). McLaughlin writes that this is 

a part of narrative and suggests that one needs to be able to “live with the ambiguity and 

lack of clarity long enough to formulate a specific focus to research” (McLaughlin, 2003, p. 

70). This can be an unsettling process. 

Reflection is an integral part of narrative inquiry and is linked to the gaining of new 

understandings. Reflection can also lead to the discovery of contradictions in one’s writing. 

Winter (2003) suggests that seeking out such contradictions is a part of the process of 

narrative inquiry. A useful model for reflection is offered by Korthagen (2004). His model 

consists of a series of layers which seek to deepen one’s reflection, with the innermost 

layers including an examination of one’s beliefs. 

When writing narrative, different perspectives or interpretations of situations, and the 

writing, are always possible. Chambers (2003, p. 412) writes, “different perspectives 

further open up possibilities for engaging in the process of reflection in that they offer 

specific and sometimes comparable or contrasting points of view”. Wilber (1998) however, 

warns against the extremes of post-modernism whereby all interpretations would be 

considered to be equally valid.  

The results of narrative research are not definitive statements or generalisations about 

an aspect of that which is being researched (Adler, 1993; Beattie, 1995; Brown, 2001; 

Brown & Jones, 2001; Winkler, 2003; Winter, 2002, 2003). McCormack (2002) refers to 

such research as not providing a “map” but allowing “the reader to witness the process of 

the story’s construction and its meaning for the storyteller” (p. 337). The readers of such 

research might then be in a position to tell stories about how the research may connect with 

their own practice. 

The second theme encountered in this research revolves around my story of 

encountering mathematical investigations, both as a learner and as a pre-service teacher. In 

line with the literature, I do not have a definitive statement about how to be an educator of 

pre-service teachers learning mathematics. Rather I share my story and what it means to 
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me, and this may create the opportunity for readers to make connections with their own 

stories and/or practice. 

Procedure 

During the first semester of the 20-month research period, our mathematics education 

team met weekly to look at what and how we taught in our two compulsory mathematics 

education papers. During this process it was decided that we would use mathematical 

investigations with our first year pre-service primary teachers (a cohort of approximately 

200 students) to support them to: 
 

1. explore and learn/re-learn some mathematical ideas; and 

2. provide a means with which they could look at their attitudes and beliefs about 

mathematics learning. 
 

All students were informed at the beginning of the semester that their mathematics 

education lecturers were doing some research that was looking at ways to improve pre-

service teacher education in mathematics. They were invited to participate voluntarily in 

the research, which could involve a number of aspects including: being observed during 

class sessions at university and when working with a young child in a school; making their 

journals (which were an essential requirement for one of their assignments) available to 

form part of the research data; and being informally interviewed. Sixty-one of the 75 pre-

service primary teachers (81%) in my classes agreed to be involved.  

An investigative approach was a new approach for me. I had never previously taught or 

learned mathematics in this manner, so I initially had a lot of questions and some concerns. 

I began teaching three groups with this approach in the following semester. During this 

time I kept a journal in which I recorded my thoughts, feelings and questions. This 

continued a writing process (i.e., a narrative) begun in the previous semester.  

The pre-service teachers also kept journals of their experiences, thoughts and 

mathematical thinking as they completed their investigative work. Audio-tapes of five pairs 

of pre-service teachers’ conversations were collected as they worked on mathematical 

investigations during class time in the second week of the semester at the beginning of 

undertaking a two-hour investigation. An observer organised and instructed each student 

pair in the use of the tape-recorder and then withdrew to a corner of the classroom where 

she observed the student pairs and the class as a whole.  

An informal discussion with a pre-service primary teacher who was struggling with this 

investigative approach to learning mathematics was also audio-taped and transcribed. This 

discussion took place after I had become aware of this student’s discomfort both during 

class and as recorded by the student in a concurrently occurring online-discussion. 

I also participated in collegial observation. One colleague observed my teaching of one 

class during this investigative approach, and I observed two colleagues whilst they were 

teaching. Notes were recorded during each observation and informal discussions took place 

after each observation. Reflections on these observations were recorded in my personal 

journal. 

     The pre-service teachers’ journals, transcripts of pre-service teacher conversations, 

observations and the transcript of my discussion with one student were written and 

collected during the first five teaching weeks of the first year paper. They were analysed 

shortly after this five-week period and this analysis became part of my ongoing narrative. 
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After using this investigative teaching approach I explored several mathematical 

investigations myself. The first of these involved looking at a hypothetical trajectory of a 

billiard ball on different-sized billiard tables. Following this experience, as a learner using 

mathematical investigations, I was keen to re-explore the approach in my role of pre-

service educator, this time with one class of second year pre-service primary teachers. 

To begin I created a number of “stations” where the pre-service teachers were asked to 

engage in an activity and identify questions that they had about geometry and/or 

measurement which were stimulated by the activities. I then selected five different 

investigations that linked to the students’ questions. The pre-service teachers were asked to 

choose one of these investigations to pursue over a period of approximately 6 hours in class 

time. They were free to work on their own or with others. The majority of pre-service 

teachers chose to work with one other person or within a small group. 

At the end of that semester I asked if some individuals would be willing to be 

informally interviewed about their experiences and thoughts regarding participating in 

mathematical investigations. Francis (1995) suggests that the high profile of reflection in 

teacher education (such as my narrative inquiry) is only warranted if it impacts on more 

equitable and just outcomes for pre-service teachers, and ultimately on children’s learning. 

As such, although I had been informally monitoring the pre-service teacher’s progress and 

reactions, I believed it was also necessary to hear, in the pre-service teacher’s own words, 

how they were experiencing this process. This would ultimately also impact on my 

development as a pre-service mathematics educator. Four pre-service teachers, who had 

now experienced an investigative approach twice, volunteered to be interviewed and I 

proceeded to conduct the interviews over the few weeks following our investigative work 

in class. 

 

Results and Discussion 

Re-thinking Mathematics and What it Means to Learn Mathematics 

This narrative journey resulted in significant, multi-faceted learning, including  

reforming my ideas about the nature of mathematics; thinking more deeply about 

mathematics teaching and learning in general; and more specifically, learning about my 

own professional practice as a pre-service mathematics educator with particular reference 

to the use of mathematical investigations. 

As Ricoeur (1986, cited in McCormack, 2002) describes, the process of narrative is an 

unfolding one. As my narrative unfolded I was somewhat surprised to find myself, early in 

the process, deliberating about the nature of mathematics. Even after eighteen months I was 

still thinking and struggling with ideas of “what is mathematics?” and do “mathematical 

truths exist?” I wrote in my journal: 

I still struggle with the notion of ‘mathematical correctness or truth’. How do my newer beliefs that 

mathematics is about “doing” fit with the existence of mathematical rules and proofs? Is it, that a 

rule or proof only exists in the “doing” or “discovering”. That is, it does not exist without or outside 

the mathematician, and thus must only be found in the doing? (13/08/04) 

Following a discussion with a colleague regarding the issue of the validity of multiple 

answers in response to a mathematical problem I wrote: 

My thoughts are that the answers were all correct (referring to a problem in class) given the differing 

sets of assumptions or interpretations that each person/group made. Usually these interpretations 
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have to be the teacher’s and thus teachers (and the children who think in the same way as the 

teacher) have been the ones who hold the power. Thus, mathematics has not been accessible to many 

people. Learners justifying their answers with their own reasoning relocates the power to the learner 

(this does not allow for “shoddy” thinking however). I propose that always defining problems so 

tightly as to create only one correct answer does not lead to useful life or problem-solving skills. Nor 

does it lead to “real” learning, rather the “game” of “let’s guess what the teacher wants us to do/say 

now”, i.e., it is the teacher’s interpretation that matters. Thus accepting multiple interpretations 

supports the learner to “really” learn, and creates an expectation of learners making sense of 

contradictions and a range of perspectives. (13/08/04) 

These excerpts of writing represented considerable changes in my thinking about the 

nature of mathematics. As Clandinin and Connelly (2000) suggest, one’s thinking can be 

changed by narrative inquiry. I later wrote that I believed that there is not an absolute body 

of mathematical truth that exists somewhere as a separate body of knowledge. Rather, that 

one’s interpretation and understanding of the context of a mathematical problem 

determines the “truth” that may or may not exist within any given context. I went on to 

describe mathematics as a sense-making activity (involving discovering and doing) 

involving numbers, pattern, shape and space, rather than existing as a predetermined body 

of knowledge. 

Changes in my Teaching Practice and Beliefs 

There were several other changes that also occurred for me during this research. For 

example, I initially held concerns regarding whether or not mathematical investigations 

would result in mathematical learning. Following my experiences I later embraced the use 

of mathematical investigations as one means with which to hopefully initiate and 

encourage mathematical learning and reflection with pre-service teachers. There also 

appeared to be change in what I “expected” within a mathematics lesson. Whereas I 

previously would have wished for a definitive statement of learning about some 

mathematical idea, there was more room for students to explore, conjecture and think. 

Whilst engaged in the mathematical investigations as a learner, during which time I 

was also continuing my journal writing, I discovered I held several subconscious beliefs, all 

of which were contrary to what I espoused in the classroom. This discovery and examining 

of beliefs illustrates Korthagen’s (2004) suggestion that deepening one’s reflection is a 

worthwhile practice. I found that I believed that “real” mathematicians solve problems 

quickly, do so on their own, do not get stuck and that there is only one correct 

interpretation of a problem. In direct contrast to this, in my teaching I promoted social 

constructivist and enactivist theories of learning (Barker, 2001), both of which propose that 

learning occurs with other people. One of the readings given to our first year pre-service 

teachers stated that it is “honourable” to be stuck (Collier, 1999) and we encouraged the 

acceptance of multiple interpretations. To find that I did not really believe any of these 

things was an eye-opener to say the least! 

Changes in my teaching practice occurred as a result of discovering these unconscious 

assumptions. For example, having personally experienced being “stuck” I now believe that 

this really is a worthwhile part of the learning process. My practice in the classroom, with 

respect to this issue, is now more congruent with what I have espoused for a number of 

years. An example of this occurred whilst working alongside first year pre-service teachers 

working on an algebra investigation. When they became stuck, rather than rushing in to 

“relieve” them I was able to stand back if I judged that to be most helpful, or ask questions 

and/or provide hints. 
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I found the idea, offered by Brown and Jones (2001), that a researcher is not necessarily 

seeking an “ideal” (e.g., becoming the perfect mathematics educator) welcome as I engaged 

in the narrative inquiry. However, the process of letting go of reaching for an “ideal” was 

not a smooth one. Interestingly, when I was first asked to write about “what makes an 

effective mathematics educator?”, I had no problem with setting out what I thought. It was 

certainly evident that I had a fixed notion of what constituted an effective mathematics 

educator, and what was needed to reach such an ideal. If I were asked to write in response 

to the same question now, I am not sure I could. Like Korthagen (2004) who refers to the 

complexities of what makes a good teacher, I am now much more attuned to the variety 

and changing range of influences and factors operating in a classroom at any one moment 

in time. 

In narrative “the subject is never given at the beginning, but it unfolds as the story is 

told” (Ricoeur, 1986, as cited in McCormack, 2002, p. 337). I initially found this aspect of 

narrative research to be very unsettling. I was sure I should have some predetermined goal 

or question to be researching. However, the story did unfold, despite my worst fears and 

enduring resistance that it would not. I now trust the narrative process, and perceive it to be 

a powerful and liberating one. It was certainly in the ongoing reflection and writing that I 

came to understand more fully the journey, with the predicting of an outcome being less 

important – an idea proposed by McCormack (2002). This also links with the writing of 

McLaughlin (2003) who suggests that the practitioner researcher needs to be able to, “live 

with the ambiguity and lack of clarity long enough to formulate a specific focus to 

research” (p. 70). Having done this I relate with McLaughlin’s suggested feelings of 

confusion, anxiety, frustration, doubt, feelings of inadequacy, and a desire for clarity as the 

research process unfolds. 

Pre-service Teachers’ Experiences of Mathematical Investigations 

I used an investigative approach with classes of pre-service teachers twice during the 

research period. On the second occasion I was particularly delighted by most of the 

students’ engagement. Indeed they chose to present what they had learned to the class 

(writing the mathematical ideas they had learned onto an overhead transparency and 

presenting this to the class with demonstrations and models as appropriate) at the end of 

the six hours. Although their teaching/presenting skills in such situations are still 

developing it was evident that they certainly had understood various mathematical ideas. 

This was also apparent when working alongside the pre-service teachers during the 6 hours. 

For some of the pre-service teachers, some of the mathematics ideas had been encountered 

for the first time whilst others found they developed an understanding of a particular 

procedure or idea for the first time. For example, one group of pre-service teachers 

developed an understanding of why π is equal to approximately 3. One student with whom 

I had an informal discussion, showed particular pleasure at coming to understand the 

meaning of π, and appeared to have a greater appreciation of mathematics as a sense-

making experience rather than an arbitrary set of rules. 

Comparable and contrasting points of view provide opportunities for engaging in 

further reflection (Chambers, 2003). With this in mind, at the end of this semester I 

interviewed four pre-service teachers. As Chambers (2003) suggests, having different 

perspectives creates new opportunities for reflection. I found that although some of the pre-

service teachers’ experiences resonated with mine, others were different and, I was able to 
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gain new insights and perspectives about this teaching and learning approach. These 

included: 
 

1. the need for discussing, in more depth, pre-service teacher beliefs about the 

learning and nature of mathematics; 

2. discussing the place of traditional skill teaching that might occur alongside this 

approach; and 

3. continuing to observe carefully the learning (of mathematics) that is hopefully 

occurring. 
 

The pre-service teachers were mostly positive about the investigative approach. 

However it would appear, for two of the four interviewees, that there was an initial period 

where the process of participating in an investigation was an unfamiliar experience, and 

created some feelings of discomfort. This was particularly evident for one pre-service 

teacher who later recognised that he was initially creating “barriers” to the process. This 

finding, of feelings of discomfort, was comparable with feelings that I too had initially 

experienced. I wonder what part I may have played in creating these initial feelings of 

unease, because of my own concerns and discomfort. 

Because I now have more experience with this investigative approach as a learner and 

teacher I believe that I can take this awareness of possible feelings of discomfort into my 

teaching, and as a beginning point, be able to empathise with students who experience this. 

Having also experienced the learning that can result from this approach, I believe it to be 

pertinent to highlight the possibilities of learning that can occur if the student can be 

encouraged to persevere through these initial feelings of discomfort. Pre-service teacher 

beliefs about the learning and/or nature of mathematics could also be openly acknowledged 

and discussed within a supportive environment. It would also appear that using this 

approach more than once is productive and enables the students to make deeper 

connections with the issues that arise. 

One of the four pre-service teachers that I interviewed described how she found 

investigations to be less threatening and experienced them as being less pressured 

compared with her previous experiences in mathematics learning situations. Another 

described how coming to understand why π is equal to “3 and a bit more” was an “a-ha” 

moment. This appeared to be quite a pivotal experience for him in developing a new 

enthusiasm for the investigative process. He said: 
 

… like that activity (referring to a practical activity where the value of π is discovered) , when we 

went outside. My thinking was ‘if you want us to go outside, I’ll enjoy some sunshine and that’s 

about it’. Little did I know that I was going to have an a-ha moment and that was great.  
 

Receiving such positive feedback is certainly encouraging when considering whether or not 

to continue using this approach with future cohorts of pre-service primary teachers. 

All four pre-service teachers stated that they learned some mathematical ideas, or 

understood a previously learned concept for the first time, by participating in the 

investigations. This is congruent with my own personal experience. The four interviewees 

also alluded to a deeper level of learning using this approach. This level of learning could 

be contrasted with a more traditional approach where a teacher might impart some 

knowledge (e.g., telling students a piece of information, finding the value of π, or showing 

a particular procedure) followed by students practicing numerous examples. One pre-

service teacher described her experience of the deeper learning saying: 
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With the traditional method, I can sometimes see there is [sic] good points to it, but then when we 

did that ‘one’, obviously I would’ve been told what π was (referring to her past), but I never 

remembered it. So when we started, I thought ‘really, what is it?’ and when I found out, it’ll be in my 

head for the rest of my life. I found out for myself. 

 

This pre-service teacher seemed to link this deeper learning with “doing it herself” rather 

than being told something. Another described the difference in learning as follows, “it is 

learned today, but it was taught in the old days”. This same pre-service teacher stated that 

the investigations had “reignited the flame” with respect to her enjoyment of mathematics, 

and also referred to the importance of being able to relate previously learned mathematical 

ideas to a context. It would certainly seem that for these four that an investigative 

mathematical approach had been worthwhile.  

One of the pre-service teachers expressed concern about the time taken to learn 

mathematical ideas by using an investigative approach. She stated that for her, “it is more 

time consuming” and asked the question, “have we got more hours in the day to spend on 

maths…?” I too have had that concern. However, based on my experiences both as a 

learner and teacher using this investigative approach, I believe that the learning is deeper 

and more meaningful and thus warrants the required time. Also, when considering my new 

ideas about what the learning of mathematics may entail, I now believe that this approach 

more closely captures the essence of what mathematics is actually about, i.e., a process of 

making sense of situations involving number, patterns, shape and space, rather than the 

finding of a particular answer using a set procedure that someone else has previously 

discovered.  

The pre-service teachers also perceived their mathematical behaviours to have changed, 

For example, they became more thorough in their investigating, and open to the idea that 

perhaps multiple interpretations are valid in the learning of mathematics. Some of the pre-

service teachers’ beliefs and/or ideas about teaching mathematics also appeared to change. 

Three of the interviewees indicated they would try using an investigative approach when 

they begin to teach. One pre-service teacher stated that her thinking: 
  
… has shifted from being formula based mathematics [to] social constructivism … you are interacting 

with others, you are using your previous knowledge and ideas and you are experimenting with it. I had 

never been allowed to do that with maths before and I enjoyed it.  

 

One pre-service teacher indicated she felt “frightened” that she would be unable to deal 

with the possibilities that children might raise within the course of an investigation. She 

stated however, that, “I believe I am now preparing myself to work through whatever their 

ideas are, which I think is really positive”. Once again, I can empathise with this 

experience. I too, found this investigative approach to be initially somewhat unsettling with 

respect to possibly not knowing the mathematics that might be encountered during the 

course of the investigation. Perhaps this is part of a process of moving from viewing 

mathematics as a discipline where it is important to know the answer, to an alternative view 

of seeing mathematics as a process of doing and discovery. In this alternative view not 

knowing the answer would be seen as an exciting and natural part of doing mathematics 

and an opportunity for new learning.  

It gave me a great deal of pleasure when after the second year practicum one pre-

service teacher returned to show me the results of children’s work done during an 
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investigation that she had used whilst on practicum. She spoke of children wanting to do 

mathematics and being disappointed when it was not scheduled for a particular day.  

Although I value the experiences and insights that these interviewees shared, I am also 

aware that there will be other experiences and interpretations of the mathematical 

investigative approach that are not represented by these four pre-service teachers. It was not 

my intention in this research to gather quantitative data that is representative of all students, 

but I believe it is nevertheless important to remain open to the ideas and insights that others 

may hold. This remains a possibility for further research. 

Conclusion 

Narrative research led to a number of changes in both my beliefs and teaching practice. 

Personally working on a mathematical investigation was a pivotal point in the journey that 

led to the discovery, and subsequent change, of previously unrecognised beliefs about 

learning in mathematics and changes in my thinking about the nature of mathematics. I am 

now comfortable with the notion that mathematics learning takes time and can be aided by 

collaboration between students and between teacher and student. I also accept that being 

“stuck” can be an acceptable and helpful part of learning mathematics; and that multiple 

interpretations are a valid part of the learning process. Mathematics is now viewed as a 

sense-making activity, involving discovering and doing. 

I believe this has led to changes in my teaching practice. The changes included using 

this approach knowing that the approach results in mathematical learning, giving students 

“space” to be stuck, and providing more in-depth interactions to support their mathematical 

learning. Earlier uncertainty about whether investigations are a useful approach to support 

the learning of mathematics ideas were at least partially resolved with the positive 

experiences encountered whilst using mathematical investigations, as a teaching approach 

and as a vehicle for personal mathematical learning. It was also evident from talking with 

some pre-service teachers that this approach is a valuable one to engage them to think more 

deeply about the learning and teaching of mathematics. 

Although I have undergone valuable personal learning I do not wish to become a 

crusader advocating that using mathematical investigations will solve all challenges 

involved in supporting our pre-service teachers to become more skilled at teaching and 

learning mathematics. Rather it has been a personal journey that at this point has found 

mathematical investigations to be a useful learning and teaching tool. A next step would be 

to explore in more detail the experiences of a greater number of students and to follow their 

professional progress in an effort to ascertain the value of engaging in mathematical 

investigations during their pre-service teacher education. 
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This paper draws on two studies of mathematics departments in 11-18 comprehensive 

maintained schools in England to compare and contrast the insights provided and questions 

raised by differing theoretical perspectives. In one study a mathematics department was 

viewed as a complex system and analysed accordingly. In the other activity theory was used 

to describe and analyse features of the departments involved. In both cases the departments 

involved were considered to be systems and it was the learning of the system rather than of 

individuals that was of interest. The affordances and limitations of the analytical 

perspectives are discussed. 

In this paper, mathematics departments are seen as identifiable systems, operating with 

a purpose that distinguishes them from other groups of people within their respective 

schools. Although mathematics teachers may have other roles, such as being form tutors, 

teaching other subjects, or undertaking management responsibilities outside the teaching of 

mathematics, they belong to the mathematics department with respect to their work of 

teaching the subject. Departments concerned with teaching different subjects may operate 

in similar ways for many purposes, such as putting school policies into practice, responding 

to timetable designs, preparing reports, reporting assessment information and so on, but 

might also be distinguishable through characteristic epistemic cultures (Knorr-Cetina 

1999), in that the concerns of mathematics departments might have some things in 

common with other groups of people concerned with mathematics just as art departments 

might have some things in common with other groups of people concerned with art. For the 

purposes of the studies reported in this paper, it was assumed that they would be distinctive 

in ways which might be epistemic. We also assume that they would be distinctive in ways 

that relate to current trends in school mathematics teaching in England such as the possible 

shortage of mathematics teachers (so that 25% of classes at this level have to be taught by 

people not qualified in the subject); high turnover of mathematics teachers; pressure for 

results as schools are compared using test results in core subjects; the high political focus 

on mathematics; and the inherent difficulties of teaching and learning the subject. The 

departments on which this paper is based were also distinctive in being subjects of 

research. 

Complexity theory and activity theory offer two different ways of describing and 

analysing systems. In this paper we briefly describe salient features of each, outline their 

respective use in two studies of mathematics departments, and compare what each offers as 

a theoretical perspective through which to analyse school mathematics departments. 

 Davis and Simmt (2003) explained how complexity theory has developed in 

recognition of the fact that some systems cannot be understood using conventional analytic 

tools. That is, the behaviour of some systems cannot be predicted by analysing the actions 

of individual elements of the system. This is not simply a problem related to the difficulty 

of analysing large numbers of such interactions but to qualitative differences between 

systems that are complicated by virtue of the numbers of interactions, and systems that are 
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complex. Complex systems typically comprise living agents who are autonomous, at least 

to some extent, and are characterised by features that are emergent in that they arise from 

the interactions of agents but cannot be directly attributed to particular agents (Davis & 

Simmt, 2003).  

Complex systems are also adaptive in that their response to a given stimulus is 

dependent not only on the stimulus but also on the history of the system. Complex systems 

thus embody their histories as they adapt to their environment and hence can be described 

as learning. Applied to human systems, learning can be seen as an emergent feature of the 

collective, and knowledge as residing with the collective rather than with individuals 

(Davis & Simmt, 2003). This is not to deny the existence of individual learning because 

individuals too can be described as complex systems nested within others. Indeed, Davis 

and Simmt (2003) illustrated the nestedness of complex systems by referring to the 

relationships between cells, organs, individuals, and society, all of which learn in the sense 

of adapting to their environment. 

Davis and colleagues (e.g., Davis, 2004; Davis & Simmt, 2003; Davis & Sumara, 

2005) have described educational settings in terms of complexity theory and have 

described five necessary but not sufficient conditions for emergence to occur. These are: 

Diversity among agents (typically students in a class), which allows for novel responses; 

Redundancy in the sense that agents have sufficient in common to allow meaningful 

interaction and to compensate for each other’s weaknesses; Enabling constraints that 

balance order and focus in the collective’s activity with the expression of its diversity; 

Decentralised control that recognises that outcomes, including the emergence of 

complexity, can not be predicted but instead emerge from the collective activities of agents; 

and Neighbour interactions between ideas rather than simply between agents.  

Although these conditions have proved useful in describing educational settings (e.g., 

Sinclair, 2004) there is necessarily intentionality on the part of a teacher whose conception 

of teaching is essentially one of engineering an environment to include these conditions. 

(Towers & Davis, 2002). Davis (2005) attempts to deal with the dual role of the teacher as 

one of many agents in a classroom in which purpose is an emergent feature, and the 

teacher’s intentionality by likening the teacher to the consciousness of the collective whose 

role is to direct and focus attention and to choose among possible interpretations and 

actions open to the collective. Although helpful, this falls short of recognising the capacity 

for intentionality characteristic of all agents in a collective of human beings. Unlike other 

living agents that comprise complex systems, humans are not obliged to act according to 

rules (although their may be powerful forces that encourage them to do so) and hence any 

agent in a human system has the capacity to disrupt or alter the system through the exercise 

of choice (Kurtz & Snowden, 2003). A skilled teacher is able to notice emerging patterns, 

intervene to stabilise those that are helpful (in terms of his/her intentions) and destabilise 

those that are not, and to structure the environment by seeding it or creating attractors 

around which patterns of interaction emerge, so that desired purposes and outcomes are 

likely to emerge (Kurtz & Snowden, 2003). 

Activity theory focuses analysis on structured features of a department’s work and the 

ways in which they interrelate. Activity consists of a group of people engaged in activity 

(the subject: in this case the teachers, student-teachers and classroom assistants), the 

direction of their work (the object or motive: in this case the mathematical learning of the 

target students), the goal-directed actions that are needed to achieve the object, and the 

operations, or routines, which keep the system working fluently (Leontiev, 1974). These 
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operations can be subcategorised as rules, community characteristics, and division of 

labour. All these features are in balance, so that if one changes, other changes will take 

place to adjust the whole system. The object might change as a result of activity, and the 

activity might change as the object changes. This inherent instability is recognition of the 

nature of human agency within a system, and that the object is dependent on how it is 

understood by the people concerned. Despite this instability, patterns of behaviour within 

the system are often fluent, well-practised, and by-and-large replicate patterns of school 

subject departments in general.  

The role of mediating tools in learning is multi-layered: Teaching and learning in 

classrooms can be seen as a knowledge-creating process of interaction between teacher, 

learner, and mediating artefacts. In mathematics, these include concrete tools such as 

boardpens, textbooks, and computers and also less transparent tools such as language, 

symbols, analogies, and examples.  

Study A 

Study A, Development of a Mathematics Departmental Culture (DMDC), concerned a 

department which had recently undergone significant staff changes. There was a new Head 

of Department, (HoD), a new teacher with responsibility for Key Stage 3 (lower secondary) 

and essentially “third in department”, and two newly qualified teachers. The school had 

specialist mathematics status, and the extra funding which derived from this meant that the 

HoD had been appointed at Assistant Head Teacher level with a brief that included teacher 

development, community engagement, and dissemination of good practice. The existing 

team comprised six teachers, including two other Assistant Head Teachers who taught 50% 

of a full load, and two heads of year. One of the assistant heads and one of the heads of 

year were not mathematics specialists but had trained in physical education and music 

respectively, with the latter dividing her teaching equally between mathematics and music. 

Both had taught mathematics for many years and the other teachers all had strong 

backgrounds in mathematics. Three of the team were studying, or had recently pursued 

academic professional development courses at a nearby university. The study was 

conducted in the first term of the school year and aimed to describe how the department 

developed as an entity. Particular foci were the development of shared beliefs and the ways 

in which individuals adapted to one another and influenced the department as a whole. 

Data comprised: individual interviews with each of the 10 department members at the 

beginning and end of the term; additional interviews with the HoD, the new third in 

department, a newly qualified teacher, and a teacher who had been at the school for a 

number of years; and audio-tapes and observations of departmental meetings. 

Complexity theory was considered an appropriate theoretical tool in this context 

because the new HoD’s brief included change, or learning, at the departmental level. In 

addition, although an established department may have norms of practice and interaction 

that have been implicitly or explicitly agreed to and hence not be complex, the influx of 

new staff would necessarily require the renegotiation of roles, relationships, procedures, 

and patterns of interaction such that the outcomes would be unpredictable. Emergent 

phenomena included: an increasingly shared understanding of the meaning and importance 

of mathematical thinking in improving students’ attainment; consensus around the idea of 

providing access to higher levels of attainment for all students; a long term view of 

improving attainment; and a shared sense that the department was supportive. Although it 

is possible to identify contributions made to each of these by individuals their emergence is 
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not entirely explicable in terms of direct causal links. Rather, they appeared to arise from 

interactions among the teachers in a form that was not precisely represented by any 

individual contribution.  

The particular focus in this paper is the use of complexity theory to analyse 

retrospectively the HoD’s attempts to influence mathematics teaching practices in the 

department. Because emergent phenomena can be perceived but not predicted (Kurtz & 

Snowden, 2003) such retrospectivity would have been necessary even if she had been 

consciously attempting to create the conditions for complexity (Davis & Simmt, 2003), 

The extent to which each of the five conditions for complexity were present in the 

department and the purposeful use and management of attractors by the HoD are described 

below. 

The HoD had clear purposes in mind, which she articulated throughout the term in the 

context of interviews, staff meetings, and in informal contexts. These related to enhancing 

students’ opportunities to achieve, and focussing on students’ thinking and how that could 

be moved forward in such a way that they achieved deep understanding of mathematical 

structures. She saw the two as related in that deep thinking and understanding would 

contribute to long term gains in achievement. She also likened the department’s learning to 

that of students and compared the way she would like the department to operate to the way 

in which she wanted classes to operate, that is, characterised by deep, independent 

thinking, sharing of perspectives, and both individual and collective construction of 

understanding.  

The ingredients for complex emergence (e.g., Davis & Simmt, 2003) appear to have 

been present in the department partly as a result of the HoD’s choices and partly as a result 

of outside influences upon it. The diversity of views and approaches to mathematics 

teaching represented by the ten teachers was mentioned by several teachers when prompted 

to describe the department’s strengths. The HoD also acknowledged the diversity 

represented by the teachers when she described the professional learning needs of the 

department as follows. 

… it’s a question of people really building up their own areas of expertise and following those rather 

than one size fits all. In terms of one size fits all that’s more of our working together rather than 

using people from outside. Take for instance, how to introduce algebra, I think we’ve got the skills 

between us to work together on that, and where it’s a question of people following their own levels 

of expertise and areas of expertise, there are people that they need to work with perhaps on a 

national level … 

Much of the redundancy evident was a consequence of the teachers’ familiarity with 

the English National Curriculum, examination procedures, and usual school organisational 

practices that included setting on the basis of prior attainment. The overriding importance 

of ensuring that the school’s examination results were satisfactory was taken as a given and 

enhanced opportunity was understood in terms of making higher grades accessible to all 

students. The strong mathematics background of eight of the teachers, and extensive 

experience of mathematics teaching of all ten, enabled all to participate in conversations of 

a mathematical nature. Interestingly, the externally imposed constraints of curriculum and 

examinations not only contributed to redundancy but also appeared, by virtue of their 

familiarity, to act as enabling constraints for some teachers. It seemed that the system 

requirements had been internalised by all of the experienced teachers to such an extent that 

they felt some degree of freedom to experiment with teaching approaches. The HoD 
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expressed a similar view of school level policies, explaining that, “We really do have quite 

a lot of freedom, that’s the sort of feeling I have”.  

Enabling constraints were also provided by the HoD as she worked to encourage 

conversations about students’ thinking. These included asking teachers to bring examples 

of students’ books to a departmental meeting so that the ways of providing feedback could 

be discussed. Initially only the HoD herself had examples to share but at a subsequent 

meeting a few other teachers also brought examples. On another occasion teachers were 

asked to bring examples of how they had incorporated the idea of equivalence into their 

mathematics teaching of any topic with any class and the request included a brainstorm of 

opportunities in which the idea might arise. Most teachers did report examples of 

highlighting equivalence in their teaching. The purpose of enabling constraints is to 

balance order and the expression of diversity (Davis & Simmt, 2003) but, since the unit of 

analysis is the system as a whole, complexity theory does not offer an explanation of why 

the same constraints appear to be enabling of some individuals but not others. Other 

perspectives that take account of social relationships might be better able to do this. From 

Kurtz and Snowden’s (2003) perspective, enabling constraints can be thought of as 

attractors that establish a degree of order around them. The unpredictability of the impact 

or effectiveness of attractors, or even whether an influence on a system acts as an attractor 

at all, is inherent in the nature of complex systems (Kurtz & Snowden, 2003). 

Other attractors included the HoD’s enthusiasm for mathematics and for teaching, her 

constant references to students’ thinking and the need to move it forward, and the fact that 

most of the teachers in the department had desk space in a team room. The HoD’s 

references to thinking included an A4 poster she created with the slogan, “Learning to 

Think, Thinking to Learn” that was displayed in several of the mathematics classrooms and 

the team room, and was referred to by several teachers when they were asked about the 

department’s ethos. The energy that the HoD devoted to teaching was evident to her 

colleagues who saw her as having high standards.  

The team room’s function as an attractor was due to its role in facilitating neighbour 

interactions. The HoD, the two newly qualified teachers, the new “second in charge”, and 

two teachers who had been in the school for a number of years all spent most of their non-

teaching time in that space and informally shared their practice. The usefulness of these 

conversations was described by the HoD. 

Sometimes we’re working and talking at the same time, there’s lots of it, and somebody else comes 

in and they join in. People seem to be much more ready for that than if you were to convene another 

formal meeting because they don’t feel they have to be there, they’re drawn in by interest, and then 

they make a contribution and they don’t have to do exclusively that, they might be sorting through a 

few tests while contributing to the conversation … 

Others who did not work in the team room because they had office space elsewhere 

(i.e. the Assistant Heads and one head of year) or who chose to work in their classrooms 

still made regular visits to the room to collect and return resources stored there or to seek 

out advice. The HoD recognised the value of such interaction and, in Kurtz and Snowden’s 

(2003) terms, acted to stabilise this emergent pattern by proactively ensuring that she 

regularly visited the teachers who primarily worked elsewhere. 

The department was necessarily constrained by school and system requirements but in 

other ways the teachers were autonomous and hence control was largely decentralised. The 

HoD was aware of the need to provide a safe environment in which people could take risks 

as they tried to change their practice. To this end she avoided directly observing her 
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colleagues’ teaching but instead monitored practice principally through conversations with 

them and also by listening to classes as she walked through the corridors. In her words:  

I’m not keen on doing things which I think leave the person feeling insecure and on the hop. What I 

want to do is … get somebody to take risks and work outside their comfort zone. They’re much less 

likely to do that if they think you’re about to barge in any second and I think what you need is just 

somebody to say well okay, the students are here, we want them to be here and we need to take risks 

to get them from here to here and if they think that the game is that any second you’re about to walk 

in, I think for most us that’s very risky, … I probably do a bit more from the corridor than people 

realise I do. 

Study B 

Study B is a three-year funded ethnographic study designed to tell the story of three 

mathematics departments as they set about making significant changes to the ways in 

which they teach mathematics to low-attaining students. Two of the schools serve inner-

city areas of social deprivation, one of them highly multicultural, the other predominantly 

white working class. The third school serves a wide rural area. In England it is usual to 

teach students in different groups according to prior attainment, and the study focuses on 

those who would end up in “low” groups under this system. Such groups typically include 

students from the most disadvantaged socio-economic groups, even in comparatively well-

off areas. A range of data has been collected: teacher interviews, lesson observations and 

videos, notes and audio-recordings from department meetings, schemes of work, lesson 

ideas, student interviews, test scripts, national test scores, students’ work, and background 

data about past achievements and school statistical predictions. The units of analysis are: 

(a) a sample of students from one cohort as it passes through the first three years of 

secondary education, and (b) the department as it organises their mathematical experiences. 

The academic task is to connect the departments’ activity to the achievement of the 

students, to identify factors that contribute to success or otherwise; and to tell plausible 

stories about how the departments operated. 

The capacity of activity theory to describe the interplay between stable practices and 

instability in the departments made it a suitable frame for our analysis. For this paper we 

are interested in the structures that enable the department to pursue its purpose, in 

particular the tools, including teaching tools and also department tools such as meeting 

agendas, resource banks, emails, and memos that enable the activity to take place. It seems, 

in our analysis, that there are other features that are not usually described as artefacts but 

which also have this role in departments: individual knowledge is one of these and the 

nature of meetings is another. One of the outcomes of this study is more understanding 

about the nature of “tools” that mediate knowledge within mathematics departments. 

During the analysis we noticed that the object of the system was also the object of 

individual classrooms, and that these too could be seem as activity systems, albeit with 

different subjects and communities, so the third generation activity theory developed by 

Engeström (1998) seemed an appropriate way to continue. In fact, Engström (1998) used 

this to lay out the behaviour of a school mathematics department undergoing deliberate 

change, with the same distinction between departmental activity and classroom activity. 

In this paper, we refer to semi-structured interviews with teachers in the three schools 

who were teaching year 7, the entry cohort to the study. These interviews were undertaken 

at the start of the study, after decisions had been made about how year 7 was to be taught, 

and again towards the end of the first year. Interview data are, of course, highly subjective 
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but are appropriate for this analysis because activity systems depend on human 

consciousness and agency and hence affective self-report is informative. Other data will 

inform us about enacted intentions and learners’ experience, but the analysis of these is 

beyond the scope of this paper. 

Content identification was used to confirm that the categories associated with activity 

theory would enable us to sort and categorise what was said for each separate interview, 

and then enable further comparisons, such as between teachers, between schools, and 

between interviews with individual teachers, to be made. We could thus construct shared 

understandings and contradictions within schools, similarities and differences between the 

three schools, and changes during the first year. 

The process of analysis threw up many interesting observations, before such 

comparisons were carried out. Having decided that activity theory was the most appropriate 

framework, what followed was an exercise in: fitting the data to the structure and seeing 

what did not fit; seeing whether the structure could be interpreted to accommodate the data; 

and questioning the structure and the data. These processes embody the way in which 

structures are used as tools to mediate meanings in data, and can symbiotically imbue data 

with meaning. The analytical questions are: “What can these data tell me if I look at them 

with this perspective?” and “What do I learn about this perspective from these data?” The 

following examples are illustrative. 

Many teachers talked of contributing ideas to the department resource bank in their 

school. This action seems to describe a division of labour. However, by contributing an 

idea to the bank, they were also contributing their ways of seeing the teaching of 

mathematics, either through the bank or through discussions about their suggestions. Thus, 

their knowledge was more than something they did individually, but became available to be 

used by others – a potential pedagogical tool. In this sense, individuals’ knowledge can be 

seen as a mediating tool within department teams to learn more about pedagogy. Further, 

department meetings could be described as a feature of the way the community operates, or 

as part of the rule-structure of the department, but the discussions that take place in them 

can be seen as mediating devices for pedagogical learning. When interviewees mentioned 

department meetings it was always in the latter sense, rather than in the sense of a 

departmental structure or rules of behaviour. This description of individual knowledge 

acting as a tool within a department, to be taken up and used by others, seems more useful 

in this context than to see it as merely part of more generally distributed knowledge. 

There were interesting differences between what people said was supposed to happen 

and what actually happened. The most common was that they were all supposed to 

contribute ideas, but in the schools where this meant “put some lesson plans into the file” 

most claimed not to have done that. Thus “division of labour” was that some did and some 

did not, whereas “rules” included the expectation that all would do so. We expanded 

“rules” to include “expectations” so that “division of labour” could be left to describe what 

people said actually happened. 

For Engeström (1998), the interesting thing about systems is how they learn, where 

learning is understood as the constant flux between internal inconsistencies and their 

resolution. Asked about priorities for year 7, the teachers in one of the schools began the 

year with the shared aim, articulated by all teachers, that students should “enjoy” 

mathematics. By the end of the year many teachers were saying that they were concerned 

about students’ basic knowledge and that “skills” were one of their priorities. This was not 

a stated aim through departmental communication channels but had emerged from the 
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grounded experience of the teachers. The object, in Leontiev’s terms, had been transformed 

through activity. For these teachers, their classroom aim incorporated “basic skills” but the 

department rhetoric was still about “enjoyment” and not about curriculum coverage. This 

could be seen as a rupture between the department and individual classrooms, or could be 

seen as transformation of the object of the department. Resolution had to involve 

restructuring of a tool, the scheme of work, but also negotiation of priorities and 

individuals’ ways of seeing their work. 

A more dramatic finding was in the interpretation different teachers made when they 

imagined they were talking about the same thing. In one school, some teachers talked about 

open-ended tasks and investigating mathematics whereas the HoD talked about learning 

mathematical structures, as if they were all aiming at that. Meanwhile, in formal and 

informal interactions, everyone appeared to believe they were talking about the same thing 

apart from a few teachers who were known to be adhering to a transmission form of 

teaching. The latter difference was overt and seen as a training need; the former was not 

recognised by anyone except the researchers. Here again, there are queries about 

interpretation of the shared object. For some teachers this was shown in the very different 

uses they make of “the same” artefacts, that is the meanings with which they were imbued 

by individual teachers in classrooms were different, and knowledge of pedagogy was not 

unambiguously mediated through the resources. Some teachers did not use the resource 

bank at all: there was no shared object, and no common tools, although the teachers were 

actors in the same system because they taught the target groups, or because they were in 

our research project!  

 

 
Figure 1. The work of the mathematics departments seen from an activity theoretic perspective (after 

Engestrom 1998). 
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The triangle in Figure 1 gives more detail about how the interview contents were 

interpreted and structured in our analysis. In this diagram we have been able to represent all 

aspects of department activity as described by the teachers, except, as we said earlier, 

values, and reasons for individualisation of interpretations, objects, and actions. We were 

able to describe systemic influences on relationships between the points on the triangle. 

There were highly individual differences in dealing with external requirements, such as 

accountability. HoDs in two schools gave guidance that was much less prescriptive than 

several teachers chose to adopt. For this reason “accountability” does not appear under 

“rules” or “community” but edges more towards individual interpretation of the object. 

Activity theory has helped us to make sense of most features of departmental activity, 

with respect to the target students, and has also enabled us to connect classrooms with 

departments as systems which may have common purpose. From these linkages, and 

attempts at linkage, we found some conflicting aspects for which resolution was likely to 

change the system. This analysis did not, however, enable us to make sense of different 

teachers’ interpretations of goals and artefacts in their action, and how these related to the 

department’s work. Nor did it enable us to deal with ruptures that depended on 

interpretations of the object (what it means for the target group to learn more mathematics) 

rather than changes in the stated object itself. Indeed, it did not allow us to structure 

interpretations and value systems into our analysis – but it did reveal them, and showed 

that these differences were conflicting and that there were splits and potential splits, both 

known about and unknown.  

Comparing the Affordances of the Different Theoretical Perspectives 

The overarching question in choosing between complexity theory and activity theory is, 

“Is this department a complex system (characterised by emergence and adaptation) or is it 

more like an activity system, in that it is totally structured?” The choice necessarily 

influences what is looked for and noticed. In the four departments considered in these 

studies, there were aspects of their functions that were known, predictable, and governed 

by agreed procedures and allocated responsibilities. In Study A these aspects included the 

compliance with examination entry procedures and setting, but the aim of improving 

students’ attainment was a shared goal in relation to which each teacher acted 

autonomously albeit influenced by their interactions with one another and particularly by 

the intentional interventions of the HoD. In Study B important aspects of the departments’ 

efforts to achieve their aim of raising attainment for a particular group of students were 

much more structured. This difference can be attributed to the facts that the aim in this case 

is more tightly defined (i.e. it was a condition of involvement in the research and was 

subject to timelines and measurement), and that the aim was not necessarily in tune with 

the aims of each small grouping within the system. For this reason it needed to be managed 

centrally with questions like, “Who will take responsibility for this necessary task or role?” 

(division of labour) and, “What common tools do we need to carry this out?” It thus seems 

that choices made by leaders in relation to bringing about change, particularly whether they 

attempt to facilitate the emergence of the desired aim or seek to devise and impose systems 

that will further the aim, are highly relevant to whether the system is best thought of as 

complex system or as an activity system. 

A further difference between the two approaches is how each perspective deals with 

change. Both claim to show how systems might continually change and learn. Activity 

theory, however, seems to see change as structural disruption, in that systems necessarily 
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contain, within their ways of functioning, relationships that might break down, or might be 

in conflict with other relationships. Thus change is manifested as a crisis that requires 

reorientation of parts of the system, renegotiation of roles and rules; introduction of new 

mediating tools and meanings; and redefinition of objects. Activity theory predicts and 

models the reorganisation that precedes and follows a change in heads of department, and 

also shows up the potential problems arising from a lack of shared objectives, or from 

contradictory interpretations of objectives. Complexity theory embraces change as a 

necessary characteristic of systems, recognises that change to one part of a system triggers 

adjustments throughout, and sees “adjusting” as part of the overall dynamic functioning of 

the system. Complexity theory is therefore better at describing fluid systems in which 

related members take a large number of autonomous decisions (decentralised control); 

members work in parallel and might influence each other through neighbourhood. We also 

found that activity theory allowed us to incorporate some institutional requirements directly 

as rules, which may have been alien to the department, whereas incorporating institutional 

requirements in study A as aspects of complexity did not show whether they had an alien 

and contradictory quality. 

Just as the Study A department included aspects that were highly structured, aspects of 

the Study B departments’ functions, for example the teaching of mathematics in 

classrooms, were less structured and arguably less amenable to analysis using activity 

theory. It was for the specific task of the departments’ teaching of one cohort that activity 

theory, and the attempt to describe the activity as a structure, were useful in showing up 

conflicts, gaps, and differences in interpretation. Complexity theory tells us about diversity 

and unpredictability that are inherent in human systems, whereas activity theory offers a 

tool to analyse activities that at least for a time seem structured and predictable. Neither is 

capable of adequately dealing with the role of individual differences of action and 

interpretation within the system nor claims to be. 
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Three selected student tasks from a 2-week study of the statistical concept of distribution in 

Year 9 class are examined. The tasks considered the exclusion of outliers, analysis of data 

using a semi-formal framework (GICS) developed for this study, and comparing two 

distributions. The pedagogy was modelled on current statistics education research best 

practice, with an emphasis on the cultivation of classroom dialogue where students explain 

and justify their positions. Fathom™ software was used by the students in a computer 

laboratory, and as a teaching aid in the classroom to support learning.  

 Distribution is a statistical concept that considers a data set as entire aggregate, with its 

own characteristics of measures of centre, such as mean and median; of measures of 

spread, such a density; and the shape of the distribution such as that known, for example, as 

a normal distribution. This comprehensive conceptual entity requires simultaneous 

consideration and integration of all aspects of the data set. This is a demanding task for 

students. Sophisticated statistical tools such as standard deviation, taught normally at 

senior high school, might support analysis, but at the expense of developing more intuitive 

notions of the data set. Current education research considers whether the use of semi-

formal analysis in middle school might provide the essential intuitive foundation for formal 

statistical analysis that students will encounter in the senior school years. 

Three tasks from a two-week study program are presented. The “Students’ height” task 

provided an opportunity for a structured discussion of a data set using formal and informal 

measures; the “Weighing a small mass” task examined students’ understanding of data 

outliers; and the “Reaction time” task extended these two tasks to compare two 

distributions. The theoretical background, the results, and the discussion are based on the 

three tasks presented sequentially. The theoretical background begins with a discussion of 

what current statistical education research considers as best practice teaching, as this best 

practice teaching philosophy provides the foundation for the teaching unit used in the 

research. Examples of students’ work are included for discussion. Worksheets were 

evaluated using the SOLO taxonomy.  

Theoretical Background 

Current statistics education “best-practice” teaching differs from traditional approaches 

to teaching statistics. Traditional teaching presents statistics as a collection of rules and 

techniques rather than a process of quantitative reasoning, problem solving, or developing 

intuitions (Garfield & Ben-Zvi, 2004). Mokros and Russell (1995) argued that traditional 

teaching actively interfered with students’ natural intuitive sense of basic statistical 

concepts and Garfield and Ben-Zvi found traditional teaching obscured the “big ideas” of 

statistics. They also observed that students calculated basic statistics, but did not have a 

sound understanding of what was being constructed or how statistical concepts interrelated. 

Traditional teaching also over-emphasised measures of centre, such as mean and median, 
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giving scant regard to variability and, by implication, distribution (Shaughnessy, 2006). 

Mathematics teaching generally encouraged a quick response to a problem rather than a 

reflective and thoughtful analysis (Shaughnessy, 2006). Traditional assessment focused on 

the correct application of formulas, and the accuracy of computations and of graphs, but 

this provided only limited information on the students’ statistical reasoning (Garfield, 

2003).  

Contemporary statistics education research is remarkably consistent in relation to 

recommended pedagogy. Five key features of best teaching practice are identified. 

 

1. Engage students with data and concepts – the “big ideas” of statistics – such as 

variation and distribution (Ben-Zvi, 2000; Franklin & Garfield, 2006).  

2. Provide active learning opportunities (Franklin & Garfield, 2006) and authentic 

data analysis (Groth, 2006) with real or “messy” data sets and meaningful tasks in a 

context that students can understand and value.    

3. Develop a culture and habits of enquiry and statistical process (Franklin & Garfield, 

2006); use whole class discussion where students must construct arguments and 

justify their positions (Groth, 2006). Chance (2002) argued that the mental habits 

and problem solving skills needed to think statistically should be deliberately 

taught as it should not be assumed that students would naturally develop these 

habits through the statistics course. A significant barrier to the enculturation 

process is that students may lack the vocabulary to express statistical opinions 

confidently. Teachers should provide students with a working – not necessarily 

formal – statistical vocabulary. Bakker and Gravemeijer (2004) recommended that 

students be allowed to use statistical terms loosely, or encouraged to use informal 

terms, such as “spread out”, or “clumped”, to describe distributions. Statistical 

terms would be used with greater precision as students’ statistical sense developed.  

4. Utilise technology tools that allow students to visualise and explore data by 

providing different representations of the same data set (Ben-Zvi, 2000; Franklin & 

Garfield, 2006) and to move back-and-forth between the various representations of 

the data (Bakker & Gravemeijer, 2004). Fathom™ offers these, and other features. 

5. Use assessment that genuinely measures student learning and development 

(Chance, delMas, & Garfield, 2004) and that accurately conveys to the student what 

is important (Garfield, 1995). 

 

Students’ interpretation of data sets was supported in the current study by the GICS 

(Global-Individual-measures of Centre-measures of Spread) framework. The GICS 

framework was developed in response to statistics education research that found that 

middle-high school students perceive data as a collection of individual points rather than as 

an aggregate (Chance, delMas, & Garfield, 2004). This framework obliges students to 

examine the information presented from four perspectives − Global, Individual data points, 

measures of Centre, and measures of Spread – as an interpretation step before drawing any 

conclusions. This process offers a three-fold benefit: it encourages reflection about the 

data, it develops a culture of enquiry and statistical habits of mind, and it provides a 

structured multi-faceted foundation for higher level analysis. Classroom discussions are 

reported in the literature but the dialogue is, often quite deliberately, unstructured. The 

template used in this study – a single sheet of paper with the four headings – provides a 
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simple framework that is transferable, and the acronym GICS is easily remembered. The 

iterative nature of this process is designed to reduce the cognitive load on the students.  

Students’ understanding and use of outliers is not well represented in the current 

statistics education research literature. Groth (2006) and Ben-Zvi (2000) consider outliers 

in the relation to context of a statistical problem, and how placing the data set in context 

was a feature that distinguishes statistics from mathematics. Konold and Pollatsek (2002) 

argued that to exclude outliers requires an implicit model of the data aggregate; to develop 

an implicit model implies students must also develop a critical or intuitive sense of the data 

aggregate. This is consistent with research recommendations that students use authentic 

data sets (Watson, 2006). In this study outliers are considered to be questionable, rather 

then extreme, values. 

Students’ understanding and use of measures of centre to compare two distributions has 

been examined in the literature (e.g., Watson & Moritz, 1999). Konold and Pollatsek 

(2002) introduced the concept of average as signal within a “noisy” data set. Gal (cited in 

Watson & Moritz, 1999) demonstrated that students at Year 9 level were familiar with both 

the concept and the algorithmic processes to calculate the mean. All three studies reported 

surprise that the mean was not widely used to compare data sets. Watson and Moritz 

suggested this may have been a direct consequence of traditional statistics teaching’s 

emphasis on the algorithm to calculate mean, rather than on the development of a deep 

understanding of the concept of mean.  

Method 

The sample was a Year 9 class in a metropolitan co-educational high school in Hobart. 

The classroom component of the research study was taught by the first author as a two-

week teaching unit using “best practice” principles identified by statistics education 

research. These principles emphasise the development of statistical habits of mind through 

active learning, whole-class discussion and appropriate technology that allows students to 

explore data sets. The software, Fathom™, a product of Key Curriculum Press (Finzer, 

2005), was introduced and used throughout the program.   

The group was defined as an extended mathematics class, but the colleague teacher 

believed the group was of mixed ability as students had self-selected to enrol in the course. 

Of the 29 students enrolled, 8 were female and 21 were male, and the students averaged 14 

years old. Not all students completed all the tasks presented here. Students were assigned 

an identification code based on their birth-date and their initials. Of the 15 tasks examining 

the statistical concept of distribution assigned to the students, three are presented here.  

Task 1: Students’ Heights – Introduction to the GICS Framework 

The task was students’ first exposure to the use of the GICS framework. The task was 

highly scaffolded and it was conducted in a traditional classroom environment.  Data were 

provided by the students as they had recently measured their height as part of data 

collection for the CensusAtSchool program (Australian Bureau of Statistics, 2006). A graph 

of students’ height was displayed as a Fathom™ graph projected as an image onto the 

whiteboard. Students were provided with a GICS template sheet with a graph of the data 

(Figure 1) and the four headings of Global, Individual data points, Measures of Centre and 

Measures of Spread. An extended teacher-led class discussion examined the graph of the 

data. As students identified an aspect of the distribution e.g., “…most students had a height 
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of 170 cm…” the observation was recorded under the appropriate heading; in this instance, 

as a Measure of Centre. 

( )count  = 26

student_height

155 160 165 170 175 180 185 190 195

student_height Dot Plot

   
Figure 1. Students’ heights. 

Task 2: Weighing a Small Mass – Students’ Understanding of Outliers  

This task was taken from the Statistical Reasoning Assessment (SRA) (Garfield, 2003). 

Students are asked to consider whether to include, or exclude, an outlier when calculating 

the mean. The SRA was designed for undergraduate students, but this item is suitable for 

high school students. The task was given as part of a pre-test and consequently represents 

students’ understanding of outliers before the teaching unit conducted as part of the 

research study.  
 

A small object was weighed on the same scale separately by nine students. The mass (in grams) 

recorded by each student is shown below: 

    3.2,   3.0,   3.0,   8.3,   3.1, 3.3,   3.2,   3.15,   3.2 

The students want to determine as accurately as they can the actual mass of this object. Of the 

following methods what would you recommend they use? 

a. use the most common number, which is 3.2 grams 

b. use 3.15 because it is the most accurate weighing 

c. add up all the numbers and divide by 9 

d. throw out the 8.3 , add up the other  8 numbers and divide by 8 

Task 3: Reaction Times – Comparing Two Distributions 

The third, and culminating, task assessed students’ development in the use of the GICS 

framework (Task 1) and an awareness of outliers (Task 2) to compare two distributions. 

Students compared two distributions to determine whether male or female students had 

faster reaction times. Students’ reaction times were measured by the time taken to respond 

– by clicking a computer mouse – to the sudden appearance of an image on a computer 

screen. The data were obtained from the CensusAtSchool program web-site (Australian 

Bureau of Statistics, 2006). The students were familiar with both the data and the method 

of collection as they had performed the Reaction time test several weeks prior to the 

research study. Scaffolding for the task was provided by a Fathom™ file containing a dot 

plot of the data and a set of prompting questions. The task was conducted under traditional 

examination conditions in a computer laboratory using Fathom™.  

Students needed to complete a sequence of sub-tasks to produce a meaningful analysis 

for Task 3. Firstly, students were asked to set a filter to accommodate outliers, and to 

justify setting the filter; secondly, students chose an appropriate scale to display the data 
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effectively; thirdly, students examined the two distributions using the GICS framework; 

and finally students compared the two distributions using a variety of informal, and formal, 

statistical measures. The use of the GICS framework provided a structure for the analysis. 

Shifting the emphasis from analysis to decision making was designed to demonstrate an 

application beyond the statistics classroom. 

The evaluation of students’ responses was informed by the SOLO taxonomy (Biggs & 

Collis, 1982) and the statistical appropriateness of the response. The SOLO taxonomy has 

been used extensively in the statistics education literature (e.g., Watson & Moritz, 1999) as 

a means of evaluating students’ responses in statistics education by examining how the 

elements of a task are used and integrated. In this study a simplified three-tiered structure – 

unistructural, multistructural and relational – was used to code students’ responses. A 

unistructural response employs only one element in the task and does not identify any 

contradictions; a multistructural response uses at least two elements, often in sequence and 

identifies but does not resolve any contradictions; and a relational response is distinguished 

by the effective integration of many elements and resolution of any contradictions to 

complete the task (Watson, 2006).  

Results 

Task 1: Students’ Heights – Introduction to the GICS Framework 

In the context of this task with a high degree of scaffolding it was expected that 

students would describe several features of the data set as shown in Figure 1. Unistructural 

responses allowed for several specific and unrelated comments to be made. Multistructural 

responses added a sequential aspect, whereas relational responses were considered to 

integrate the information and draw out implications not specifically represented in the 

graph. 

Table 1 

SOLO Evaluation of Students’ Responses to Task 1 

SOLO level No. of students % Criteria 

U 4 20% Provides a limited and incomplete description; does not 

demonstrate a deep understanding of statistical measures used. 

M 10 50% Uses a variety of statistical measures within the GICS framework 

to describe the data, but the description is incomplete or 

repetitive. 

R 6 30% Comprehensively describes the data by selecting and combining 

all relevant statistical measures within the GICS framework.   

Total 20 100%  

 

Student G2203A provided a unistructural response presenting the information as a 

series of disconnected facts, as shown by the description of mean and median. The student 

neglected to provide a global view of the data, and only used the range to describe the 

spread of the distribution. The student recognised the value of graphical representation.  

Statistics are quoted to an inappropriate three decimal places.  

From using fathom a lot of data becomes visible. The tallest person is 189 cm and the shortest 160 

cm. the graph uses centimeter units. The mode height is 170 cm the median height is 172.5 cm and 

the mean height is 172.308. 
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Student K2504B’s multistructural response considers the maximum and minimum 

values, and the range. Two measures of spread are used, but the student does not explicitly 

consider the spread in relation to a measure of centre such as the mean. 

The tallest height in our class is 189 cm and the shortest is 160 cm. this means that the range of 

heights is 29 cm. For the measure of centre there is the median : which is 172.5 cm (and) mean: 

which is 172.308. There is 22 people between 165-180 and there is 12 people between 170-175. 

Student Y2206D provided a relational response. The student clearly grasped the 

essence of the data set by including the student’s own height in relation to the data 

aggregate, gave a global view, considered the extreme values in relation to the main body 

of the data, and used measures of centre and spread appropriately. The standard of written 

expression was also very good.  

This graph shows the height of our Maths class. In our class the range is 160 cm (the shortest 

person) – 189 cm (the tallest). My height is 175 cm and the average height is 172.3 cm. So I am over 

the average height. The mean is 172.5 cm and if we were to go 5 cm either side of that there would 

be 16 students heights, mine included. Therefore 88% of the class is 5cm above or below the mean. 

Only 4 students are shorter than 165 cm or taller than 180 cm.  

Task 2: Weighing a Small Mass – Students’ Understanding of Outliers 

Of the 25 students responding to this task 14 preferred to include the outlier (Task 2, 

response (c)) when calculating the mean. Two students selected the mode (response (a)), 

and 9 selected the preferred solution of excluding the outlier (response (d)). 

The belief that all data should be included in calculation was fiercely defended by 

several students in a lively whole-class discussion reviewing the test question. As one 

student said:  

But if you don’t use all the values you can get the answer you want; it’s a bit like cheating.  

Task 3: Reaction Times – Comparing Two Distributions 

Setting the filter was a critical step in the students’ task in comparing two distributions. 

The actual physical test suggested an appropriate filter setting of approximately one 

second. Students’ responses were categorised into fully confident exclusion of outliers, 

partial exclusion of outliers, or no exclusion of outliers (Table 2). Students who did not set 

the filter or left the filter at the default setting were considered to give a unistructural 

response. None of the students explicitly used their own personal experience of the 

Reaction time test as a method of determining a legitimate reaction time.  

Table 2 

SOLO Evaluation Reaction Times 

SOLO level No. of students % Exemplars or Criteria 

U 6 23 % Does not set filters or leave filter at default setting 

M 16 62 % Sets filter, uses measures of spread and centre,  

aware of spread of distribution 

R 4 15 % Sets filter < 2 seconds, uses measures of centre and 

spread and distribution effectively 

Total 26 100 %  
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Student L2103S provided a unistructural response in Figure 2. The filter was left at the 

default value of 20 seconds “…because there were no (higher) results…” suggesting the 

student did not have either a sense of the data or an understanding of the purpose of using 

the filter. Using the unfiltered data to calculate the mean, the student concluded that 

females were faster. Statistics were quoted to the default, and inappropriate, six decimal 

places. The graph scale was adjusted to a finer scale, but all data were displayed.  

Reaction_time_Right_Hand Gender "male"=,( )mean  = 0.716444

Gender "male"=( )count  = 45

F
e
m
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M
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le

0 2 4 6 8 10 12 14 16

Reaction_time_Right_Hand

CensusAtSchool Dot Plot

Reaction_time_Right_Hand 20<  
Figure 2. Student L2103S reaction times. 

 

Student N2004E provided a multistructural response in Figure 3. The filter and the 

range on the graphs were both set at 3 seconds. The filter was set on the basis that only one 

data point was excluded. The student examined both the mean and the range, and noted 

that the male reaction times were more consistent than the females. Statistics were quoted 

appropriately to two decimal places. 

Reaction_time_Right_Hand Gender "male"=,( )mean  = 0.360682

Gender "male"=( )count  = 44
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Figure 3. Student N2004E reaction times 

 

Student R2808N provided a rich, relational response (Figure 4) and the filter, set 

confidently at 0.7 seconds, showed an awareness of an appropriate figure and need to focus 

on the “…main centres of information…” The student used the GICS framework 

effectively, describing the distribution using the informal terms of “clumps” and “spread 

out” and a variety of formal statistics such as range, median and mode were calculated. The 

student demonstrated a strong sense of the distribution describing the shape as a triangle. 

Of particular interest were the student’s awareness of sample size and the subtle 
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observation that the female distribution had two modes.   The information was used 

appropriately to reach the conclusion “…males are faster, but the times are close…”  

 

Reaction_time_Right_Hand Gender "male"=,( )mean  = 0.343023

Gender "male"=( )count  = 43

reaction_time_right_hand Gender "female"=,( )mean  = 0.35766

gender "female"=( )count  = 47
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Reaction_time_Right_Hand 0.7<  
Figure 4. Student R2808N reaction times. 

Discussion 

The teaching unit that was the foundation of the research study was designed to 

provide, or refresh, the skills required to complete the complex task of comparing the two 

distributions. Two of the 15 preliminary tasks in the teaching unit are presented here. These 

tasks were selected as pre-requites for students to complete the culminating “Reaction 

time” task; and the three tasks presented here collectively allowed researchers to evaluate 

individual students’ understanding and development. Consistent with statistical education 

“best practice” described in the theoretical background, the tasks were not designed to 

evaluate students’ computational skills or procedural competence, but to assess students’ 

understanding of the statistical concepts under examination.  

Use of the GICS Framework 

Students used GICS extensively in the first, highly supported task. Students had little 

difficulty categorising features of the graph as global, individual, measures of centre, or 

measures of spread. As a research instrument the value of this task lay in identifying what 

students selected for inclusion in their written analysis when all the information had been 

discussed, and notes taken, in the classroom.   

Despite prompting, the GICS framework was less well utilised in the final task. There 

was a sense within the student group that the true objective of the task was the final 

conclusion, rather than articulating the process of analysis. This could be addressed by 

providing students with an assessment rubric that emphasised the value of interpretation of 

the data sets. It could also be argued that students’ desire to reach a conclusion is also, to a 

degree, a product of their experiences of traditional teaching with its emphasis on a 

“correct” answer rather than thoughtful analysis. 

Within the GICS framework, designed to assist “telling the story” of the data, an 

important aspect of representing the data was how students, in Task 3, modified the graph 

provided to show appropriate spread (the S in GICS). Many students failed to use scales 
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effectively to display the data; for example, failure to spread out the two sets made visual 

comparison of the two data sets difficult. 

Students’ Understanding of Outliers 

Students’ development of understanding of outliers may be observed by comparing 

students’ responses to the “Weighing a small mass”, conducted as part of the pre-test, and 

responses to the “Reaction times” task, conducted as the final assessment task. Of the 24 

students who completed both Tasks 2 and 3, 38% eliminated the outlier in Task 2, whereas 

68% did so in Task 3. 

Setting the filter, to exclude outliers and include only legitimate data, was a critical step 

in the analysis of the “Reaction time” data set. None of the students explicitly stated the use 

of their own personal experiences of the Reaction time test as a means of identifying a 

legitimate reaction time. Students’ interpretation of outliers lay on a continuum of not 

excluding any data points, excluding only one, or a few, to setting a filter appropriately at a 

time of one second. To a degree this reflected a student’s own confidence. Many students 

considered an outlier as one, or a few data points, rather than considering what data should 

legitimately be included in the analysis. In an earlier classroom discussion students were 

generally reluctant to exclude any data, on the basis that information could be manipulated 

to achieve any desired result. Two students noted eliminating outliers affected the mean. 

Several students confused changing the scale with using a filter to remove outliers. 

“Messy” data with outliers encourage students to examine critically the raw data. This 

should not be seen exclusively as a preliminary step, but as an integral part of the analysis 

process. If students, according to Gal (cited in Watson & Moritz, 1999), must develop an 

intuitive model of the data aggregate before excluding outliers, it could be argued that 

failure to do so may indicate that the student has not cultivated that intuitive sense. 

Comparing Two Distributions 

Students’ use of mean and median to compare two distributions in this study was 

significantly more extensive than that found by Gal (cited in Watson & Moritz, 1999). Two 

significant differences exist between the two studies: Gal worked with Year 7 students – 2 

years junior to this study group – and in this study the mean was provided Fathom™ so 

students did not need to consider both the effort and the value of calculating the statistic.  

The responses conveyed a sense that students felt they were expected to give a 

definitive answer. Students concluded there was a difference in the male and female 

reaction time, but such a conclusion could not be justified by more rigorous statistical 

analysis. Students’ tendency to provide a definitive response may also be a product of 

traditional statistics teaching. 

Students used the difference in the mean of the two distributions as the principal 

method of comparing the distributions, but it was not used effectively. No student 

considered whether the difference in the means was significant; for example, by calculating 

the difference as a percentage of the reaction times. This calculation was well within the 

ability of many students at this level, but the technique had not been introduced in the 

classroom and they did not use this technique independently. The calculations would also 

provide a foundation for the development of standard deviation in more senior years. It 

may also encourage the sense of what is a meaningful difference, a concept arguably more 

important that what is a significant statistical difference. 
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Conclusion 

All three tasks were designed to encourage “sense-making” and the development of 

intuitions. Scenarios – such as the “Students’ height” and “Weighing a small mass” – and 

the use of Fathom™ to assist in the calculation of statistics, potentially encourage “sense-

making” as students are largely freed of the mechanics of data processing. The tasks 

collectively provided opportunities to demonstrate all five recommendations of “best-

practice” identified in the theoretical background. The GICS framework and the 

consideration of whether to include, or exclude, particular values (outliers) may also 

encourage sense-making. When comparing two distributions, calculating the difference as a 

percentage of the means – a task within the ability of Year 9 students – may provide a 

foundation for the development of the concept of standard deviation. 
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Eight teacher researchers examined their own practice to analyse their use of questioning in 

the context of numeracy, in partnership with two researchers. Each teacher researcher 

devised their own question categories, from which the research team then developed 

common categories. Teacher researchers found the most helpful way to categorise questions 

was according to their purposes for asking them, and that only the teacher could reliably 

determine this. Dichotomies such as open/closed questions, or lower/higher order questions, 

did not appear to illuminate the complexity that underpins questioning. The teacher 

researchers discovered that they had asked more questions than they expected, and were 

surprised that they asked more questions of students working at higher strategy stages. The 

importance of context was highlighted as the teacher researchers described the many inter-

related factors they considered as they formulated questions and presented questions to 

students. 

Discourse is an important aspect of mathematics classrooms that encourages student 

inquiry and explanation of solution methods (Cobb, 1994; McClain & Cobb, 2001). 

Fraivillig, Murphy, and Fuson (1999) highlight the importance of the teacher’s role in 

intervening to advance children’s thinking in mathematics. Their framework points to the 

importance of questions in eliciting, supporting and extending thinking. 

Teachers spend much of their time asking questions, reportedly one to two every 

minute (Gall, 1971; Wragg & Brown, 2001). A number of texts and professional 

development programmes for teachers in questioning have presented improvement in 

questioning practices as a technical matter which takes practice: “... good questioning is 

both a methodology and an art; there are certain rules to follow …” (Ornstein & Lasley, 

2000, p. 184). However, it has also been argued that while furnishing teachers with a list of 

possible questions may give them a starting point, the most effective questions cannot be 

pre-planned, and must occur in response to a student’s action or idea (Jacobs & Ambrose, 

2003).  

Many writers have suggested that higher-level questions produce deeper levels of 

learning (Gall, 1984; Marzano, Pickering, & Pollock, 2001; Redfield & Rousseau, 1981). 

A number of studies (Gall, 1984; Perrot, 1982/2002; Perry, VanderStoep, & Yu, 1993; 

Stigler & Hiebert, 1999; Wragg, 1993) have highlighted the low proportion of high-level 

questions to low-level ones when questions are categorised according to taxonomies such 

as those devised by Bloom (1956). However, Kawanaka and Stigler (1999) found that 

higher-order teacher questions did not necessarily promote higher-order responses by 

students.  

Several writers have described how patterns of questioning develop within the 

classroom context (Wood, 1998; van Zee & Minstrell, 1997). Much classroom discourse is 

thought to be characterized by a pattern of Initiate, Respond/Reply, Evaluation/Feedback 

(Cazden, 1988; Mehan, 1979) where the teacher initiates, a student responds, then the 

teacher gives the student evaluative feedback. This pattern places the teacher in a central 

role and acts to test a student’s knowledge, rather than to encourage them to elaborate on 

their ideas or to extend their thinking. International comparative studies, such as The Third 
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International Mathematics and Science Study (TIMSS) (Stigler & Hiebert, 1999) have 

suggested that cultural differences exist in pedagogical practices such as questioning.  

Much of the recent focus in New Zealand education has been on effective pedagogy 

(Alton-Lee, 2003; Anthony & Walshaw, 2007; Hattie, 2003; Ministry of Education, 

2006a). The synthesis of research by Alton-Lee (2003) described questions and prompts as 

elements of “quality teaching”, forming an important aspect of pedagogy which supports 

students’ task engagement (p. 74), and serving to “provide scaffolds to facilitate student 

learning” (p. ix). In professional development programmes such as the New Zealand 

Numeracy Development Projects (NZNDP, Ministry of Education, 2006b), teachers have 

been encouraged to use questioning to support students’ strategic and higher order 

thinking. Within the New Zealand context of mathematics teaching and learning, research 

has explored various components of discourse (Thomas, 1994; Higgins, 2003; Irwin & 

Woodward, 2005).  

Up until now, much of the research undertaken to investigate teachers’ questioning has 

been synthesised from data gathered by researchers observing in classrooms. A review of 

comprehensive research syntheses (Houston, Haberman, & Sikula, 1990; Richardson, 

2001; Sikula, Buttery, & Guyton, 1996; Wittrock, 1986) did not reveal any studies deeply 

grounded in teachers’ perspectives. How teachers view the role and formulation of 

questions within a mathematics lesson, and how questioning might be shaped by contextual 

factors, have not been a major focus. Furthermore, existing categorisations of teachers’ 

questions have predominantly examined only a selection of the questions asked by teachers 

during a lesson (Perry, VanderStoep, and Yu, 1993; Vale, 2003).  

Methodology 

The project had two closely interwoven strands: one strand focused on teachers 

examining their use of questioning, and the second strand focused on building research 

capability of teachers. The key objectives that focused on the teachers’ use of questioning 

were to: 

• identify the various kinds of questions teachers use in mathematics 

• explicate teachers’ thinking about the use of questioning during lessons 

• describe patterns of teachers’ questioning within mathematics lessons 

The teacher researchers (TRs) taught at a variety of year levels, and were drawn from 

urban schools in communities with varied socio-economic backgrounds. Each of them had 

recently participated in a common in-depth professional development programme: the 

NZNDP (Ministry of Education, 2006b). The eight TRs were respected members of their 

teaching communities; several were lead teachers of numeracy in their schools. They had 

also demonstrated a willingness to share and examine their practices. The research was 

conducted over the 2006 school year, in five primary schools in the Wellington area.  

There were two cycles of data gathering for the TRs, each taking 5 days and occurring 

in each of the middle two terms of the four-term school year. TRs were released for two 

days to analyse a transcript of their numeracy lesson, their recollection of which was 

supported by viewing a videotape of the lesson. A key task was for them to identify every 

teacher question included, and to sort these into groups of similar questions for which they 

then devised labels (Miller, Wiley, & Wolfe, 1986). At the end of the second day, they 

discussed their findings with one of the RTLs in a semi-structured, one-to-one interview 
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(Denscombe, 1999). In the second cycle, questions were categorised under commonly 

agreed headings, and TRs also completed a frequency table based on the categories. 

Research team discussions formed a key aspect of the analysis and interpretation of 

findings. Each member of the team brought aspects of their findings to share, and 

similarities and differences were explored and debated. The Cycle 1 team discussion began 

the process of establishing common categories with which to analyse the lesson in Cycle 2. 

The TRs interpreted their findings in light of current research, which they discussed at a 

team meeting. Also at these meetings, TRs responded to summaries of emerging ideas 

presented by the RTLs.  

 

Results 

Development of Question Categories 

The research team devised a working definition of what constitutes a question. For this 

project, a question was “any form of language that is aimed at eliciting a response”. This is 

perhaps a broader definition than that found in The Concise Oxford Dictionary (Allen, 

1990), which defines a question as “… a sentence worded or expressed so as to seek 

information”, or “… a problem requiring an answer or solution” (p.980). Utterances such 

as, “Listen carefully to what Lily is saying” and, “Let’s see if we can understand how the 

mirror, how their hands coming together helped” (Erin, Lesson transcript 2), were counted 

as questions. Although the definition included “any form of language” the methodology of 

the project allowed for a focus only on oral questions.  

In the first cycle of data gathering and analysis, the TRs worked independently to 

devise between six and 17 categories for their questions, with three people each devising 

eight categories. The research team met at the end of this cycle, with the main purpose of 

developing shared question categories from the TRs’ individual ones. This proved to be a 

complex task that could not be completed with sufficient discussion and debate within the 

time available. The seven TRs who were at the meeting had varying degrees of input into 

this process.  

Following this meeting, the RTLs met with three of the TRs to further refine/develop 

the categories. These were subsequently presented at the next team meeting for discussion 

and feedback. At this point, seven categories of question had been developed, based on the 

TRs examining a question in terms of the purpose they had in mind when they asked it. 

The TRs used these seven common category labels when they analysed their second lesson. 

(Question examples are drawn from TRs’ categorised questions.) 

Checking understanding  

• Okay, but say again, you took the 3 away first you said and then you took away…? 

• Do you understand that, David? 

Getting a sharp, clear, anticipated response  

• Good boy, so that equals…?  

• Is there a 3 in the hundreds? 

Guiding and supporting (clarifying, repeating, rephrasing, taking another look)  

• Excellent, so you would take away the 6 and 3 because you know they actually make 9? 

• So you said that you would have 24 and then you would…? 
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Explaining how and why  

• Why is using different colours helpful, do you think?  

• How did that make it easy for you? 

Making connections and links 

• What is the relationship between 4 and 8? 

• Is it a “-ty”? Where are some other “-ty” numbers? 

Management 

• Who is your partner, Victoria? 

• Joseph, do you want to roll the dice? 

Fostering student interaction  

• So what’s the number sentence, give me thumbs up if you agree with Trent.  

• Ana, why are you shaking your head; do you disagree? 

 

At the second post-analysis meeting of the research team, the TRs further condensed 

this list by removing the category, “Getting a sharp, clear, anticipated response”, which had 

been categorised according to the students’ responses, rather than the teachers’ purposes 

for asking the questions. “Management” and “Fostering student interaction” were merged, 

as it was agreed that questions in both categories had a strong connection with classroom 

norms. Consequently, these two categories were combined under the label, “Fostering 

student interaction in a learning community”. By the conclusion of the project, the team 

had therefore reduced the number of categories to five. For one TR the process of 

developing common categories meant that their original 17 categories reduced to just five 

categories by the end of the project.  

In the early stages of the research, the TRs often referred to questions as open or closed 

(25 references in first interviews). Later in the project the TRs reported that their thinking 

about questions had moved beyond this straightforward dichotomous categorisation. Open 

and closed questions were referred to less often (11 references in second interviews), and 

the complexities of these ideas were explored. The TRs suggested that in each of the final 

categories, there would be examples of questions that might be considered to be open and 

closed. 

Context shaped the TRs’ categorisation of their questions. The importance of 

uncovering teachers’ purpose in such research is supported by Erickson (1993): “The 

teacher comes to know teaching from within the action of it, and a fundamentally important 

aspect of that action is the teacher’s own intentionality” (p. viii). The TRs reported that the 

actual purpose of a particular question could not be determined by looking at the question 

in isolation from the context in which it was asked. To identify the purpose of a question, it 

was necessary to know the conversation that happened before and after the question. 

Furthermore, even by referring to the full lesson transcripts and viewing the videotapes of 

lessons, members of the research team felt it was not possible to accurately categorise 

another person’s questions according to purpose. The research team leaders attempted to 

identify questions that would be illustrative of each category, only to find that they had 

insufficient information to do so with any degree of reliability. For example, the RTLs 

thought the question, “How are you going, Jordan, alright?” might have been classified as a 

Management question. The TR in whose transcript the question appeared considered it 

fitted best in the “Checking understanding” category, as this was the purpose she had in 

mind when she posed the question. Similarly, the question, “I have taken away 4. That 
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leaves me with …?” might be perceived by one person to be a “Guiding and supporting” 

question, but the TR classified it as “Checking understanding”. For the questions to be 

categorised in terms of purpose, rather than form or function, the categorising must be done 

by the teacher, as only the teacher had the in-depth knowledge of each student’s learning 

needs necessary to identify the specific purpose for which they had asked each question.  

Making the categorising of questions still more complex is that questions were asked 

with varying purposes in mind; similar questions were asked of different students for 

different purposes, according to the students’ needs. For example, the question “So, what 

do you get if you add three more?” might be asked of one student with the purpose of 

checking their understanding, while for another student it might be asked in order to guide 

and support their learning.  

Teacher Researchers’ Reflections on Questioning 

TRs described how they brought together a complex combination of considerations as 

they formulated questions: 
Purpose –  What is the purpose of my question? Where am I heading? What is the learning intention? 

How will I know when the students have achieved it? What will be the next steps? 

Student needs – What are the needs of the students – their age, language needs (especially where 

English is not the student’s first language), perceived abilities, established 

understandings? What do they already know? What pace will best suit them? How 

attentive are they? 

Scaffolding – What will help scaffold their learning in terms of equipment and student interactions? 

What mathematical language or ideas do I need to include in my question in order to 

support the students’ learning? 

Who to ask – To whom will I direct this question – to the whole class or to an individual student, and 

in this case, which student (for a variety of purposes, e.g., deliberately setting up conflict 

of ideas, uncovering a suspected misconception, to quickly get the correct answer, or to 

re-engage a student)? 

Timing – When should the question be asked? At what point should the teacher intervene when a 

student is struggling, for example? How much wait-time should they allow? Is there 

sufficient time left in the lesson for the discussion this question might elicit? 

Predicted responses – What responses do I expect? How am I, in turn, likely to need to respond? 

What equipment is immediately accessible to support directions in which the discussion 

might head? (Developed from the Final evaluation meeting) 
 

The TRs talked about how the priorities for formulating questions constantly shifted, 

depending, for example, on the teacher’s stress or tiredness level, or whether other adults 

were observing the teacher.  

Questions were formulated according to students’ responses, in the “reflection-in-

action” mode (Schön, 1983/2002). The TRs reported difficulty in devising questions when 

the students did not provide them with responses on which they could readily build: 

…you need the feedback to form your next thought. It’s not just one-way communication…you need 

something to build off, so you need interaction back ... Questions are adapted to the needs of the 

students in context. (Quentin, Interview 2) 

The TRs talked frequently of the need to adapt their questions and be flexible and 

responsive as a lesson progressed. In a social constructivist classroom, the teacher aims to 

interact with the students’ ideas, rather than be a keeper of knowledge that is handed down 

to the students (Askew, Brown, Rhodes, Wiliam, & Johnson, 1997). For teachers to yield 

some of the control to students requires the teacher to have a secure pedagogical content 

knowledge (Alton-Lee, 2003; Anthony & Walshaw, 2007; Shulman, 1986). But although it 
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may not be possible to predict the exact course a lesson will take, the TRs described the 

importance of having an endpoint in mind when formulating questions: 

I like to have clear learning intentions and know where I’m going and how I will know that the 

children have got there, but maybe I’m thinking I need to be a little bit more relaxed about that, so 

they can take the lesson where they want it to go a little more. … And I think to have less control 

you have to be more secure in yourself and you also have to be more secure in yourself to guide – 

not in a pushy way – but to guide as a good teacher. Because it’s much easier for us to work out 

where we want to go and just go our own little way, and do it the way our brains work. (Erin, 

Interview 2) 

Some of the TRs described how the establishing of question categories influenced their 

practice in the second cycle of data gathering and analysis. Reflection on findings 

highlighted some potential issues in the TRs’ practices, for example, whether teachers 

might rely too heavily on questions when, sometimes, it might be more helpful to explain 

something to a student. 

I think I’ve changed my thinking from the initial questions that we did, because this is focused on 

those particular headings. It might’ve been symptomatic of knowing what my headings were, so I 

kind of tailored it towards those types of questions. … Having categories heightens the teacher’s 

awareness of questions and their purposes. I was really aware of asking questions that ‘guided and 

supported’ etc – was able to target particular types of questions. I felt my questioning was more 

focused – avoided trivial questions. (Quentin, Interview 2) 

Patterns of Questioning 

Completed frequency tables were intended to provide the project team leaders with 

quantitative data that could yield valid comparisons. However, it became clear that the unit 

of a question had been interpreted in more than one way. For example, when identifying 

her questions, one TR had separated every individual question in her transcript so that: 

“What’s 3 and 3?” and the next utterance, “3 and 3?” (Erin, sorted questions, Cycle 2) were 

counted as separate questions. Others had counted as one question instances when a 

question was repeated, so that: “You can do 2 plus 5 equals 7. What would you do if you 

had to change that into a take away? How can you do 2 plus 5 equals 7 as a take away 

sentence?” (Ingrid, sorted questions, Cycle 2) were classified as one question.  

Seven of the eight TRs completed a frequency table as part of Cycle 2. The total 

number of questions identified in the second lesson ranged from 171 to 344 (see Figure 1), 

with a mean of 207 questions. There was no apparent pattern to the total questions asked 

that related to the age group taught, or to the associated strategy stages taught. 

A high rate of questioning was evident in the lesson transcripts. Given a maximum 

lesson time of one hour, the rate of questioning was somewhere between two and six 

questions per minute; this is considerably higher than the one to two questions every 

minute reported in the literature (Gall, 1971; Wragg & Brown, 2001). Several TRs 

remarked in the first interview that they had been surprised to find they had asked so many 

questions. While throughout the project the TRs indicated their heightened awareness of 

the number of questions they had asked, none of the TRs commented that this was an issue 

until the latter stages, when several TRs showed growing concern over this.  

 

Mathematics: Essential Research, Essential Practice — Volume 1

138



  

 

Total number of questions in a lesson

0

50

100

150

200

250

300

350

400

Teacher researchers

T
o

ta
l 

n
u

m
b

e
r
 o

f 
q

u
e
s
ti

o
n

s

Total questions 158 164 171 189 194 227 344

N O S I Q T E

 
Figure 1. Total number of questions in a lesson – Cycle 2. 

 
The TRs were asked to indicate which of their groups were working at the lower 

strategy stage and which were at the higher strategy stage. The graph in Figure 2 shows the 

proportion of the different categories of questions within identified strategy groups. 

Although there are minor differences between the proportions within each of the 

categories, the general shape of the graph for each of the groups is very similar. This means 

that although the number of questions differed for each of the groups, the weighting of the 

kinds of questions asked was essentially the same. The TRs expressed surprise at this, 

illustrating the mismatch in teachers’ perceptions of their questioning practices, which are 

often not borne out by research findings (Walsh & Sattes, 2005).  

There was a clear difference in the total number of questions the TRs asked the 

students in their lower strategy stage groups of students compared to those in the higher 

strategy stages (see Figure 2). A total of 298 questions were asked in six TRs’ lessons with 

students in the lower stage groups, compared to 439 questions asked of their higher 

strategy stage students – close to 50% more questions.  

Possible reasons for the differing numbers of questions for the two groups were offered 

by the TRs. It was suggested that students in the lower strategy stage groups were more 

likely to illustrate their strategies with materials, making it unnecessary for the teacher to 

question them about their thinking. Another suggestion was that teachers would see the 

higher groups less frequently, so perhaps their session times were of extended duration. 

Further ideas were: perhaps teachers expected less from this group, expected that “the 

higher group was going somewhere” and teachers were more active in pursuing this; the 

less able group tended to be less verbal, so teachers had less to work with; they took longer 

to work through tasks and wait time needed to be longer. For the higher group, the 

strategies were more complex, so more guidance was required. All of these conjectures 

warrant further investigation. 
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Figure 2. Questions asked of lower and higher strategy stage groups, by number of questions 

 
The TRs were asked to describe any patterns of questioning that they used during a 

mathematics lesson. The frequency tables helped them to identify the numbers of each 

category of questions that they asked during different stages of their lesson, and the TRs 

referred to this data in order to identify patterns in their questioning. However, from the 

variety of descriptions given by the TRs, no obvious single pattern of questioning over a 

lesson emerged.  

Conclusions 

In this project the TRs categorised every question asked in their numeracy lessons. 

Participants discovered the most useful way to categorise their questions was to reflect on 

the purpose for which they were asked. This could only be reliably done with the teacher’s 

contextual knowledge, thus it appears that the observation and classification of questions 

by an outside observer is an unreliable method to uncover the purpose of a teacher’s 

questions. Categorising a question as open or closed, or as lower or higher order, did not 

prove helpful, as these categories were too broad, and disguised the complexity of teacher 

questioning. The refined set of categories gave the TRs a common language for discussing 

the role of questioning in their practice, and for some, helped to sharpen the focus on their 

purposes for questioning.  

Much of the research examining questioning in classrooms has highlighted the high 

number of questions within a lesson as an issue. The TRs in this study identified at least 

158 questions in their hour-long mathematics session and seemed initially to equate the 

high rate of questioning with effective practice. Also of interest was that the TRs asked 

close to 50% more questions of students operating at more advanced strategy stages.  

Further research is needed to establish:  

• the significance – if any – of the number of questions asked;  

• the interrelationships between the types of questions used;  

• patterns of questions within a lesson; 
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• relationships between teachers’ questions and students’ learning.  

The unique perspectives of these TRs about questioning provide a valuable 

contribution to the knowledge base about teaching in this area. The TRs identified many 

diverse factors that can influence teachers as they formulate and present their questions to 

students during a numeracy lesson. Their detailed examination of the thinking that 

underlies the formulation of questions enabled the TRs to examine their metacognitive 

processes, highlighting some of the intricacies of questioning.  

The research team concluded that all question types are important in a lesson; no 

hierarchy of question types was evident. While there were no common patterns of 

questioning over a lesson identified during this research, it was clear that the TRs believed 

it was the combinations of different categories of questions, rather than individual 

questions, that were powerful in shaping students’ learning.
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Research shows that personal experiences have a powerful influence on the views of 

teaching, learning, and mathematics held by prospective teachers. In this study prospective 

primary teachers were invited to describe their ideal mathematics classroom in order to 

explain their views about teaching mathematics. These imagined classrooms provide a 

valuable insight into their emerging identities as primary mathematics teachers. My analysis 

of these descriptions addresses the question: What views of the teacher’s role, learners and 

learning, and mathematics are evident in prospective teachers’ visualisation of their ideal 

primary mathematics classroom? 

Background 

Entering Dispositions 

As school children, prospective teachers have already spent long periods of time 

observing teachers at work. Their beliefs and attitudes about the role of teachers, learning, 

and curriculum are accumulated and assimilated from the earliest school years. These 

initial dispositions are subsequently shaped and refined through a variety of formal and 

informal experiences as prospective teachers prepare to enter the teaching profession 

(Carter, 1994).  

The importance of the relationship between what teachers believe about mathematics 

and the teaching of mathematics, and the way they actually teach has been well established 

(Ernest, 1989; Thompson, 1992). Ernest’s model for conceptualising teachers’ beliefs 

about mathematics illustrates the importance that is now placed on beliefs and the ways in 

which they influence the teaching of mathematics. Mathematical beliefs could be defined 

as “personal judgements about mathematics formulated from experiences in mathematics, 

including beliefs about the nature of mathematics, learning mathematics, teaching 

mathematics” (Raymond, 1997, p.551). Artzt (1999) refers to beliefs as the “teachers’ 

integrated system of personalized assumptions regarding the nature of mathematics, of 

students, and of ways of learning and teaching” (p. 145). 

There is a growing body of literature that investigates how prospective teachers make 

sense of their beliefs (Artzt, 1999; Cooney, Shealy, & Arvold, 1998; Lloyd, 2006a; 

Mewborn, 1999; Pajares, 1992; Skott, 2001). Brown and Borko (1992) argue that at least 

some of the prospective teachers’ beliefs about mathematics and its teaching are in place 

before they commence in teacher education programs, suggesting that “they have lenses 

that dictate, or at least influence, much of what they encounter in teacher education” 

(p.649). Other studies (Brown & Borko, 1992; Cooney et al., 1998; Raymond, 1997) also 

indicate that prospective teachers’ beliefs about mathematics and how to teach mathematics 

are influenced in significant ways by their experiences with mathematics and schooling 

long before they enter the formal world of mathematics education. Although Cooney et al. 
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(1998) and Raymond (1997) both argue that teacher education programs can only have a 

limited influence on changing prospective teachers’ beliefs, other researchers (Artzt, 1999; 

Lloyd, 2006b) have investigated ways to change prospective teachers’ beliefs about 

mathematics teaching and learning. Therefore, it is essential to understand not only what 

prospective teachers believe but also how their beliefs are structured and held for any 

possibility of developing prospective teachers’ beliefs in the teacher education program. 

Previous Experiences and Classroom Memories 

Previous personal experiences, including experiences as a student in mathematics 

classrooms, influence the views of teaching, learning and mathematics held by prospective 

teachers (Brown & Borko, 1992; Carter, 1994; Lloyd, 2006a, 2006b). As prospective 

teachers have extremely limited, if any, personal experience as teachers, their images of 

mathematics teaching are based largely on classroom memories. In this respect, prospective 

teachers have observed and participated in teaching and learning process as students for at 

least twelve years of their life (Artzt, 1999; Lloyd, 2006b; Pajares, 1992). As Mewborn 

(1999) observes, when prospective teachers enter the mathematics teacher education 

courses “they are rich in personal knowledge” (p. 317). However, the stories of previous 

mathematical experiences that Drake, Spillane, and Hufferd-Ackles (2001, p. 7) describe 

are unfortunately “dominated by disappointing and discouraging experiences learning 

mathematics in school. In addition, they all recall losing interest, confidence, or aptitude in 

mathematics at some time during their elementary or early high school years”. It is 

therefore not surprising that many prospective teachers view mathematics as a closed set of 

procedures, teaching as telling, and learning as the accumulation of information (Lloyd, 

2006a). 

Emerging Identities 

As the beliefs, attitudes and conceptions of prospective teachers that have been formed 

by their previous personal experiences as students, and their classroom memories, are 

shaped and refined through a variety of formal and informal approaches during teacher 

education courses (Carter, 1994), an emerging identity as a teacher begins to develop. 

Lloyd (2006b) argues that shifting prospective teachers’ perspectives on classroom events 

from student to teacher is a crucial aspect of teacher education. In addition to developing 

their emerging identities prospective primary teachers must also confront the issues of 

teaching and learning that are unique to the teaching and learning of mathematics. 

However, identity formation is not a matter of free thinking individuals making rational 

choices, nor is it about emulating role models (Whitehead, Rossetto, & Lewis, 2005). 

Rather, identity formation is an ongoing, dynamic process that is open to modification and 

always occurring in a social context (Britzman, 1986). Other researchers (Lloyd, 2006a; 

Raymond, 1997) observe that when prospective teachers enter the classroom context, they 

do not consistently enact their recently developed beliefs about mathematics teaching and 

learning, as they modify their continually emerging identities.  

Storied Identities and Imagined Classrooms 

In an effort to create an opportunity for prospective primary teachers to articulate their 

emerging identities as teachers of mathematics, the prospective teachers in this study were 

invited to provide a descriptive account of their ideal primary mathematics classroom. The 
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use of stories and narratives are not new in research about the experiences of teachers. 

Researchers over the last 20 years (Connelly & Clandinin, 1990; Goodson, 2006; 

Polkinghorne, 1995) have come to appreciate that teachers’ stories offer a wealth of 

information about their individual identities and classroom experiences. Their work builds 

on the understanding that people live storied lives and share their experiences and identities 

through stories (Bruner, 1989; Doyle & Carter, 2003; Drake et al., 2001).  

For prospective teachers, narrative and biography can be used effectively to understand 

how previous experiences can paint the portraits of “teacher” that they bring with them into 

teacher education (Pajares, 1992; Scott, 2005; Sliva & Roddick, 2001, 2002; Wilson & 

Thornton, 2005). The value of embarking on such an endeavour is corroborated by Doyle 

and Carter (2003, p.131): “To understand pre-service teachers’ development, it is necessary 

to capture the stories within which this knowledge and understanding are embedded”. 

Rossetto’s (2006) research likewise commends the value of visualisation and imagination 

in the formation of emerging identities in prospective teachers.  

Research Significance 

 In this study, the writing of a descriptive account allowed the prospective teachers to 

explore classroom situations adopting the identity of a teacher, with the specific intention 

of encouraging the authors to create images of themselves as a teacher. The importance of 

research such as this is emphasised by Lloyd (2006b, p. 81): “Teacher educators … may 

wish to explore ways in which analysis of preservice teachers stories might help to identify 

preservice teachers’ views, to anticipate important aspects of preservice teachers’ future 

development, and to offer opportunities to influence preservice teachers’ development in 

very specific ways”. That this research involves prospective primary teachers has been 

identified by Raymond (1997) and Thompson (1992) as an aspect of particular 

significance, as both note need for further investigations involving prospective primary 

mathematics teachers. 

Research Method 

Participants 

The participants in this study were 22 prospective primary teachers enrolled in an 

undergraduate Bachelor of Education (Junior Primary/Primary) or a graduate entry 

Bachelor of Education (Junior Primary/Primary) at a South Australian university. The 

undergraduate participants were third-year students and the graduate entry participants 

were in the first semester of the two year graduate entry program. All students were 

undertaking the compulsory full year course Curriculum Studies: Mathematics. None of the 

participants had taken part in any teaching practice experience, or school visits, at the time 

of the data collection. 

Data Collection 

At the end of the first 3 weeks of the Semester 1 all students studying this course were 

required, for assessment purposes, to describe their personal philosophy of teaching 

primary mathematics, specifically describing their ideal primary mathematics classroom. 

The written descriptions were between 750 and 1000 words in length. The research 
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participants volunteered to provide their descriptions to the researcher (who was also their 

workshop teacher) after the assessment process was completed.  

The use of assignment work for data collection has advantages from the point of view 

of expediency and efficiency. It could be argued that the descriptions do not represent 

genuine beliefs as they may have been constructed to comply with the workshop teacher’s 

point of view (Carter, 1994). However, the framing of the assignment invited the students 

to construct a personal account that could not be deemed either correct or incorrect thus 

minimising likelihood of this concern. 

Data Analysis 

The guiding question for this study is: What views of the teachers’ role, learners and 

learning, and mathematics are evident in prospective teachers’ visualisation of their ideal 

primary mathematics classroom? The analysis was conducted by firstly coding the accounts 

with regard to the three broad categories that arose from the research question: the views of 

the role of the teacher, the views of learners and learning and the views of mathematics. 

Specific sub-categories then became evident as recurring themes were identified within 

each of these broad categories. The following presentation of the findings of this research, 

the imagined classrooms of prospective primary mathematics teachers, is organised 

according to three key components of the research question. 

Imagined Classrooms 

 “I am excited by the prospect of teaching mathematics”: The Views of the Role of 

the Teacher 

Almost all of the prospective teachers in this study mentioned the importance of the 

role of the teacher in the primary mathematics classroom. This finding is consistent with 

other studies (Lloyd, 2006a; Sliva & Roddick, 2001). In considering the role of the teacher, 

many of the prospective teachers clearly identified that teachers bring to the role past 

experiences that may influence their practice. 
 

A teacher’s own experiences and attitudes can affect the way in which they teach mathematics. 

I am aware that there is a possibility that my past experiences could colour the way I teach 

mathematics. 
 

Some stated they could call upon positive past experiences. 
 

I would teach in my classroom with the approaches that have made the biggest impact on my 

learning. 

I could adopt some of the teaching methods which were helpful during my own mathematics 

education. 
 

However, others were more adamant that their negative experiences of mathematics would 

not be repeated in their imagined classroom. 
 

Hopefully I do not use my own negative experience of mathematics to base my teaching. 

In my own classroom I plan to teach maths far differently that I was [taught]. 
 

Research by Ball (1990) reveals that teachers are inclined to teach just as they were taught. 

Some of the prospective teachers seem innately to be aware of how this tendency may 

impact on the role of the teacher, regardless of their past experiences. 
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Teachers often fall back on the way they learnt and use it as a basis for teaching. 

We tend to teach in the way we were taught. 

Many teachers end up teaching in the same way they were taught when they were young. 
 

The role of the teacher unavoidably includes “teaching”. The prospective teachers 

described a range of orientations to teaching that could be placed on a continuum from 

traditional direct instruction to teacher-as-facilitator (Sliva & Roddick, 2002). None of the 

prospective teachers in this study advocated adopting solely a traditional direct teaching 

approach, although some described how direct teaching may occasionally be part of the 

teachers’ role. 
 

There will be times when it is necessary for me to teach information and provide students with 

answers. 

[Students] need to be provided with direction in their exploration. 
 

Other prospective teachers found the teacher-as-facilitator role more compelling. 
 

I think it is important to guide students through mathematics, not to get caught in the web of simply 

telling them how to do it. 

I see my role mainly as a facilitator in the knowledge acquisition of the students. 
 

However, consistent with Whitehead, Rossetto, and Lewis’s research (2005) many of the 

prospective teachers in this study favoured the understanding that both direct teaching and 

facilitating would comprise the teachers’ role. 
 

I would provide a balance between teacher-based instruction and student, peer related tuition. 

I would like to find a balance between instruction and facilitation. 
 

The prospective teachers also described a range of other functions that they considered 

part of the role of a teacher: knowing the students, having expertise in mathematics, 

motivating students, and making decisions. The importance of knowing the students as part 

of the teachers’ role was evident in many of the accounts. 
 

I must be mindful of individual student’s strengths and weaknesses. 

I must gather a sound awareness of the student’s developmental age level. 

I would need to know the current understandings of each student. 
 

Although the prospective teachers recognised the importance of knowing the students as 

part of teachers’ roles, their conception of that aspect was limited to teachers knowing the 

students purely as learners. Only one prospective teacher considered that teachers might 

need get to know their students more broadly. 
 

I need to gain insight into the backgrounds and other needs, interests and abilities of individuals 

within the class. 
 

Having expertise in mathematics, as an aspect of the teachers’ role, featured in several 

descriptions. 
 

As a teacher I want to be very knowledgeable and have a clear understanding of how mathematics 

works. 

A teacher that is well educated on the topic is more beneficial to students’ learning and 

understanding. 

In order to be able to teach mathematics well [teachers] need to understand it. 
 

There is strong evidence that many prospective primary teachers have mathematical 

anxiety and see themselves as unable to learn mathematics (Haylock, 2001; Hembree, 

1990; Wilson & Thornton, 2005; Wolodko, Willson, & Johnson, 2003). Hence, it may be 

Mathematics: Essential Research, Essential Practice — Volume 1

147



 

surmised that the focus some of the prospective teachers in this study placed on the 

teacher-as-expert component of the teachers’ role may be a reflection of their anxiety 

regarding their ability to fulfil this facet.  

Some functional aspects of the teachers’ role, such as planning and preparing lessons 

and behaviour management, have been disregarded by the prospective teachers in this 

study. The prospective teachers may have overlooked lesson planning and preparation as 

this aspect of the teacher’s role normally occurs “behind the scenes”. None of the 

prospective teachers in this study identified behaviour management as being part of the 

teacher’s role. Yet their classroom memories most certainly would have included observing 

or participating in this aspect of teachers’ work. In the imagined classrooms teachers had a 

far more idealistic relationship with the students. 

“Children learn in different ways and use different strategies”: The Views of 

Learners and Learning 

The views of learning and learners dominate the descriptions of the imagined 

classrooms. Fundamental to the prospective teachers’ view was that all learners are 

individuals. 
 

Children are unique in the way that they absorb, understand and process information and have 

preferred learning styles. 

Children learn in different ways. 
 

Dealing with the diverse needs of individual learners was also paramount for many of the 

prospective teachers in this study. 
 

I would endeavour to create lessons geared toward many styles of learning. 

I must consider the whole class, aiming to cater for all abilities. 

Because every student is different you need varied learning materials. 
 

The prospective teachers also expressed a strong commitment to providing a safe learning 

environment where learners are supported and encouraged. 
 

I want to create a classroom where children feel comfortable and safe. 

I would like the students to feel they are supported and encouraged in mathematics. 

I would like to teach mathematics in a way that children do not feel threatened. 
 

Closely aligned to the view of learners as individual, many of the prospective teachers 

in this study elucidated a view that learning should build upon existing knowledge. This is 

confirms research by Scott (2005) detailing the intention of prospective primary teachers to 

find out and build upon children’s experiences. The prospective teachers in this study had 

been provided with a broad exposure to the term “constructivism” and no doubt the 

principles of constructivism informed this view of learning. However, it is pertinent to note 

that very few of the prospective teachers in this study used the term “constructivism” in 

their descriptions, choosing instead to describe the concept in other ways. 
 

Students should be able to link the new concepts to their existing knowledge. 

Students are building on from what they already understand and it is a good basis for them to learn 

and understand new concepts. 

I would seek to provide strategies that allow the children’s previously acquired knowledge to be 

applied in new and unfamiliar situations. 

Students use the knowledge they have previously learned to interpret new information to devise new 

meaning. 
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The prospective teachers described a broad range of learning strategies to be employed 

in the imagined primary mathematics classrooms. These included the active involvement of 

learners, collaborative learning processes, creating an appropriate physical classroom 

environment, ensuring learning is relevant, transferable and fun, and the cross curricula 

integration of mathematics.  

The active involvement of learners was deemed to be a high priority for the prospective 

teachers. The terms “hands on” and “interactive” abound in the accounts and consistent 

with Scott’s (2005) research the prospective teachers in this study had a strong 

commitment to the use of physical manipulative resources in learning activities. 
 

I will endeavour to make the use of manipulatives available to students wherever possible. 

[I would] incorporate the use of concrete materials into my mathematics lesson. 
 

The physical environment of the imagined primary mathematics classrooms also played a 

part in active learning. 
 

The teacher will need create a physical…environment that is conducive to learning. 

I would like to make my classroom a very visual one…having lots of posters and equipment for 

hand-on learning. 

My classroom would need to be laid out in such a way as to include floor space where children can 

spread out. 
 

Many of prospective teachers embraced a range of less traditional learning activities in 

mathematics such as the use of stories, learning stations, games and technology including 

software packages and the internet in their imagined mathematics classrooms. 

Nevertheless, a few still found a place for more traditional approaches to teaching and 

learning in mathematics. 
 

Some old practices are as useful as new ones. 

I would always set written homework along with arithmetic homework. 

Some aspects of the curriculum such as multiplication will have to be done by rote learning. 

Include learning tables, the ability to manipulate numbers, such as adding, subtracting, multiplying 

and dividing numbers. 
 

Others however, questioned the effectiveness of such approaches. 
 

Many students cannot learn by this method of memorising and repetition. 

Maths can be more about critically thinking, problem solving and logic rather than the more 

traditional memorizing and focus on finding answers. 
 

Since it has been established that the prospective teachers in this study have recognised that 

it is likely their teaching practice will be influenced by their previous experiences in school 

mathematics, these descriptions ought not to be surprising as they quite possibly reflect the 

bearing that past experiences have had on their views of learning in mathematics. 

Both Sliva and Roddick (2002) and Scott (2005) found that cooperative or group 

learning processes were highly favoured by the pre-service teachers. This view of learning 

is shared by the prospective teachers in this study. On the basis of her research, Scott 

(2005) contends that not all prospective teachers share the same understanding of group 

learning. However, in this study, the prospective teachers shared a more common view of 

cooperative group work, emphasising the social aspects of learning. 
 

Students should work together to build understandings and also to learn from each other. 

I would encourage classroom discussion and provide opportunities for the sharing of ideas. 

Students need to learn together cooperatively. 

I would like to incorporate a time for social interaction in mathematics. 
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In general, learners and learning have been somewhat romanticised in the imagined 

primary mathematics classrooms. None of the prospective teachers in this study have 

expressed the view that some students may find learning mathematics a challenge, despite 

the fact that a number have described the personal difficulties in their past experiences. On 

the basis of this study, the emerging identities of prospective teachers appear to be heavily 

influenced by idealism.  

“Mathematics … is something that a person does”: The Views of Mathematics 

There is sound evidence that suggests that a teachers’ view of mathematics can have a 

significant influence on teaching practice (Dossey, 1992; Raymond, 1997). Whilst the 

prospective teachers in this study furnished a range of views of mathematics, their 

articulation of this aspect was less pronounced than their views of the teacher’s role, or 

learners and learning. The reluctance of the prospective teachers to describe more 

expansively their views of mathematics could be directly linked to their limited 

mathematical backgrounds or a lack of confidence in expressing mathematical 

understandings.  

 Ernest (1989) developed three categories the describe teachers’ conceptions of the 

nature of mathematics: the view of mathematics as unified body of knowledge; the view of 

mathematics as an expanding field of human inquiry; and the view of mathematics as a 

useful collection of facts, rules, and skills. In this study none of the prospective teachers 

gave any indication of aligning themselves with Ernest’s first view of mathematics as a 

stable body of knowledge. Some of the prospective teachers approached an association 

with Ernest’s second category, indicating the view that mathematics underpins many 

aspects of human endeavour. 
 

Mathematics is not just a subject to be learnt in isolation, but it is found in the world around us: 

there’s mathematics in language, literature, geography, environment, science, art, music and sports. 

Maths can be found everywhere. 
 

Additionally, a few of the prospective teachers clearly aligned with Ernest’s third view of 

mathematics. 
 

Students need to have a sound understanding of the rules, the ability and skills of using numbers. 
 

More evident in the prospective teachers’ accounts were quite emotive views of 

mathematics. The negative influence of past experiences in mathematics was evident yet 

again in some of the prospective teachers’ views that mathematics is difficult or 

frightening. 
 

Children need to be made aware that sometimes they may find mathematics difficult. 

Mathematics is still seen by some children as a subject to be feared. 

Strike “mathematics” from the key learning areas all together, and replace it with numeracy, a much 

less threatening word. 
 

Positive views of mathematics were far less prevalent, though it was encouraging to note 

that for one prospective teacher.  
 

In my classroom mathematics will be a highly anticipated subject! 
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Conclusion 

 In this study the imagined classrooms that were described by the prospective teachers 

afforded valuable insights into their views of the role of the teacher, learners and learning, 

and mathematics. 

These prospective teachers clearly recognised that their past experiences and classroom 

memories would influence what they might bring to the role as a teacher. Many appreciated 

that an aspect of the teacher’s role is to utilise a range of appropriate teaching strategies. 

However, the lesson planning and preparation and behaviour management were totally 

disregarded by the prospective teachers. It could be anticipated that once they have 

undertaken periods of teaching practice these more utilitarian functions of the teacher’s role 

will be assimilated into their emerging identities as teachers. 

Views of learners and learning dominated the descriptions of the imaginary classroom. 

However, the prospective teachers idealised their views of learners and learning in 

mathematics. Their imagined classrooms were going to be “safe havens” where 

mathematics was “fun and enjoyable” and lessons would be “interactive and relevant”, 

incorporating a broad range of learning activities. In these imagined classrooms learning 

was never going to be difficult or boring, even though for some of the prospective teachers 

their view of mathematics was that is difficult and frightening. 

This study is the first phase of a proposed longitudinal study. The prospective teachers 

in this study have graduated and are now first-year teachers. The researcher plans to re-visit 

these beginning teachers to observe their real primary mathematics classrooms. Of interest 

will be differences between the real and the imaginary classroom, and what has become of 

the idealism that was found in the prospective teachers’ emerging identities. 

References 

Artzt, A. (1999). A structure to enable preservice teachers of mathematics to reflect on their teaching. Journal 

of Mathematics Teacher Education, 2, 143-166. 

Ball, D. (1990). Breaking with experience in learning to teach mathematics: The role of a preservice methods 

course. For the Learning of Mathematics, 10(July), 10-16. 

Britzman, D. (1986). Cultural myths in the making of a teacher: Biography and social structure in teacher 

education. Harvard Educational Review, 56(4), 442-456. 

Brown, C., & Borko, H. (1992). Becoming a Mathematics Teacher. In D. Grouws (Ed.), Handbook of 

Research on Mathematics Learning and Teaching (pp 209-239). New York: MacMillan. 

Bruner, J. (1989). Life as narrative. Social Research, 54(1), 11-32. 

Carter, K. (1994). Preservice teachers’ well-remembered events and the acquisition of event structured 

knowledge. Journal of Curriculum Studies, 26(3), 235-252. 

Connelly, M., & Clandinin, J. (1990). Stories of experience and narrative inquiry. Educational Researcher, 

19(4), 2-14. 

Cooney, T., Shealy, B., & Arvold, B. (1998). Conceptualising belief structures of preservice secondary 

mathematics teachers. Journal of Research in Mathematics, 29(3), 306-334. 

Dossey, J. (1992). The nature of mathematics. In D. Drouws (Ed.), Handbook of research on mathematics 

teaching and learning (pp. 39-48). New York: MacMillan. 

Doyle, W., & Carter, K. (2003). Narrative and Learning to Teach: Implications for Teacher-Education 

Curriculum. Curriculum Studies, 35(2), 129-137. 

Drake, C., Spillane, J., & Hufferd-Ackles, K. (2001). Storied identities: Teacher learning and subject matter 

context. Journal of Curriculum Studies, 33(1), 1-23. 

Ernest, P. (1989). The knowledge, beliefs and attitudes of the mathematics teacher: A model. Journal of 

Education for Teaching, 15(10), 13-33. 

Goodson, I. (2006). The rise of the life narrative. Teacher Education Quarterly, 7-21. 

Haylock, D. (2001). Mathematics explained for primary teachers. London: Paul Chapman. 

Mathematics: Essential Research, Essential Practice — Volume 1

151



 

Hembree, R. (1990). The nature, effects and relief of mathematics anxiety. Journal for Research in 

Mathematics Education, 21, 33-46. 

Lloyd, G. (2006a). Beliefs about the teachers' role in the mathematics classroom: One student teacher's 

explorations in fiction and in practice. Journal of Mathematics Teacher Education, 8, 441-447. 

Lloyd, G. (2006b). Preservice teachers' stories of mathematics classrooms: Explorations of practice through 

fictional accounts. Educational Studies in Mathematics, 63, 57-87. 

Mewborn, D. (1999). Reflective thinking among preservice elementary mathematics teachers. Journal for 

Research in Mathematics Education, 30(3), 316-342. 

Pajares, F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of 

Educational Research, 62(3), 307-332. 

Polkinghorne, D. (1995). Narrative configuration in qualitative analysis. Qualitative Studies in Educatoin, 

8(1), 5-23. 

Raymond, A. (1997). Inconsistency Between a Beginning Elementary School Teacher's Mathematics Beliefs 

and Teaching Practice. Journal for Research in Mathematics Education, 28(5), 550-577. 

Rossetto, M. (2006). Imagined Communities and Communities of Practice: a study of the impact of 

visualisation and belonging on prospective teachers' identities. Paper presented at the AARE 

Conference, Adelaide. 

Scott, A. (2005). Pre-service teachers’ experiences the infuences on their intentions for teaching primary 

school mathematics. Mathematics Education Research Journal, 17(3), 62-90. 

Skott, J. (2001). The emerging practices of a novice teacher: The role of his school mathematics images. 

Journal of Mathematics Teacher Education, 4, 3-28. 

Sliva, J., & Roddick, C. (2001). Mathematics Autobiographies: A Window Into Beliefs, Values, and Past 

Mathematics Experiences of Preservice Teachers. Academic Exchange Quarterly, 5(2), 101-107. 

Sliva, J., & Roddick, C. (2002). Investigating Preservice Elementary Teachers' Attitudes and Beliefs Toward 

Mathematics. Paper presented at the 24
th

 annual meeting of the North American Chapter of the 

International Group for the Psychology of Mathematics Education, Athens, Georgia. 

Thompson, A. (1992). Teachers' Beliefs and Conceptions: A Synthesis of Research. In D. Grouws (Ed.), 

Handbook of Research on Mathematics Teaching and Learning (pp. 127-146). New York: Macmillan 

Publishing Company. 

Whitehead, K., Rossetto, M., & Lewis, F. (2005). Prospective Teachers' Dispositions Towards Teaching and 

Middle Schooling. Paper presented at the Australian Curriculum Studies Association Biennial 

Conference, Sunshine Coast. 

Wilson, S., & Thornton, S. (2005). 'I am really not alone in this anxiety’: Bibliotherapy and pre-service 

primary teachers' self-image as mathematicians. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. 

McDonough, R. Pierce, & A. Roche (Eds.), Building Connections: Theory, Research and Practice. 

(Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of 

Australasia, Melbourne, pp. 791-798). Sydney: MERGA. 

Wolodko, B., Willson, K., & Johnson, R. E. (2003). Metaphors as a vehicle for exploring preservice teachers' 

perceptions of mathematics. Teaching Children Mathematics, 10(4), 224-229. 

 

Mathematics: Essential Research, Essential Practice — Volume 1

152



Early Notions of Functions in a Technology-Rich Teaching and 

Learning Environment (TRTLE) 

Jill Brown 
Australian Catholic University 

<jill.brown@acu.edu.au> 

This paper focuses on notions of function Year 9 students hold as they begin to study 

functions. As these notions may be fragile, the questions, tasks, and ways of interacting 

orchestrated by the teacher to elicit depth of understanding, or allow observation of 

changing notions, are of interest. Extended tasks where students were required to make 

choices about solution paths provided opportunities for students to develop and consolidate 

their concept images. Discussion between small groups provided the best evidence of 

developing and stable conceptions held by students in contrast to written scripts where the 

strength of these understandings was not evident.  

The Function Concept and Student Understanding 

The National Council of Teachers of Mathematics technology principle (2000) states, 

“technology is essential in teaching and learning mathematics; it influences the 

mathematics that is taught and enhances students’ learning” (p. 24) and suggests that all 

students should have access to technology that can allow higher order mathematical 

thinking to occur. The role of the teacher is vital in this as it is the teacher who “must make 

prudent decisions about when and how to use technology and should ensure that the 

technology is enhancing students' mathematical thinking” (p. 24). Opportunities in 

Technology-Rich Teaching and Learning Environments (TRTLE’s) have opened the door 

for easy access to the multiple representations of functions. The study of “multiple 

representations of functions is important in secondary school mathematics curricula, yet 

many leave high school lacking an understanding of the connections among these 

representations” (Knuth, 2000, p. 500). 

Functions have been the focus of much research in recent years (e.g., Yerushalmy & 

Shternberg, 2001). The complex nature of functions has resulted in many student 

difficulties being identified (Knuth, 2000). Janvier (1996, p. 233) argues, “the notion of 

function conceals a wide range of concepts (so much so that one should more correctly 

speak of the notions (plural) of functions).” This view is not unique, Dreyfus (1990) 

suggested that due to its many layers of complexity and related sub-concepts “it may well 

be one of the most difficult concepts to master and teach of all school mathematics”     
(p. 122). Tall (1996) describes one purpose of functions to be “to represent how things 

change” (p. 289). He also notes that in practice the functions students experience are “first 

linear, then quadratic” (p. 298). Many schemas and frameworks have been developed to 

describe and analyse understanding of functions (e.g., Tall, 1996; Vinner & Dreyfus, 1989). 

Some incorporate the idea of representations (e.g., Moschkovich, Schoenfeld, & Arcavi, 

1993) and the impact of technology use (e.g., Confrey & Smith, 1994). Understanding of 

functions has been the object of study both for students (Sfard, 1992) and teachers 

(Chinnappan & Thomas, 2003).  

Sfard developed a schema allowing “different facets of the same thing” (1992, p. 60) to 

be applied to algebraic thinking. When the focus of mathematical thought is the function 

concept, Sfard’s schema describes the dual nature of the function as needing to be 
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understood both as an object, that is, structurally, and as a process, that is, operationally. 

Sfard argues that the operational view invariably precedes the structural view. At the 

structural level the view of a function is of two sets having some relationship or 

correspondence between them. At the process level a function is some method of 

determining one value given another. Moschkovich, Schoenfeld, and Arcavi (1993) refine 

the object-process schema by introducing representations into the schema. They suggest 

that “from a process perspective, a function is perceived of as linking x and y values … 

From the object perspective, a function or relation and any of its representations are 

thought of as entities” (p. 71). Both perspectives are essential to a full understanding of 

functions according to many writers (e.g., Moschkovich, Schoenfeld, & Arcavi, 1993; 

Sfard, 1992). Vinner and Dreyfus (1989) use the constructs of concept definition and 

concept image to distinguish between the formal definition held by a learner about a 

concept and the broader set of images a learner holds about a concept. Vinner and Dreyfus 

(p. 356) define concept image as “the set of all mental pictures associated in the student’s 

mind with the concept name, together with all the properties characterising them”. 

Linear Functions and the Notion of Gradient 

Leinhardt and Steele (2005) investigated what understandings Grade 5 students can 

develop about linear functions and the role of classroom discourse in this. The students in 

this classroom discovered many important ideas including, “that the function rule [2X + 1] 

is a line” (p. 139), “some students discovered that the graph itself could be used to check 

… [and] to predict values” (p. 139). Their research suggests that students developed 

“intuitive ideas of slope and parallel slope” (p. 155) and “recognise[d] patterns in the 

connections between pairs of pairs [all] quite subtle notions for fifth graders, yet these 

students generate[d], them spontaneously and they do so publicly” (p. 155). Another study 

in the primary years, using carefully structured situations, also found that 8 to10 year olds 

can develop important ideas related to functions (Schliemann & Carraher, 2002). Grade 3 

students were able to consider functional relationships; make generalisations, including 

using mapping notation (n → n + 3) and n “to represent any value” (p. 255); and make 

connections between situations and the algebraic, numerical and graphical representations 

of these. With respect to gradient, Schliemann and Carraher report that third-graders “can 

start to understand how straight lines in a graph represent the same ratio” (p. 263).  

Unlike much research in this area, the students who are the focus in this study are in 

Year 9, just beginning their study of functions. Students’ conceptions of gradient within the 

study of linear and non-linear functions is the major focus of this paper. In this situation, 

where knowledge is often, understandably, fragile, the research questions of interest are: 

“What notions related to the function concept do students have?” and “How do we know 

what they know?”  

Methods 

In this paper one Year 9 TRTLE is being considered. Students in this class had their 

own laptops and TI83/83Plus graphing calculators. A qualitative approach was chosen to 

provide a comprehensive picture of what was occurring within the TRTLE. A case study 

using an instrumental approach (Stake, 1995, p. 3) was used. The purpose was to study the 

case to “understand the phenomena or relationships within it” (p. 171) in order to establish 

what understandings of function students demonstrated in their early study of function in a 
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TRTLE. Manifestations of the phenomena being studied, namely student understanding of 

functions, and the conditions that enabled, promoted, or impeded this were identified. Data 

sources for this paper were teacher interviews, observational notes, audio and video 

recording of 3 lessons on a teacher designed task building function notions, and a sequence 

of 14 lessons on linear function, and documentary evidence (student work including 

assessment scripts, handouts of teacher presentations, and student task sheets). 

Teacher Orchestration: Developing Students’ Understanding of Function 

Student understanding of function was developed through two main arenas in this 

TRTLE. First, the teacher, Peter (all names are pseudonyms), developed and implemented 

a 14 50-minute-lesson unit of work focussed on linear functions. Secondly, the students 

were involved in a series of extended teacher designed tasks, building function ideas, over 

the course of the year. In both of these arenas, the teacher integrated technology into his 

teaching program. Two of the extended tasks, Cunning Running and Shot on Goal, were 

implemented prior to the linear functions unit. Both tasks were made accessible to Year 9 

students by the use of technology. Students were able to recognise structure across repeated 

by-hand calculations that were then duplicated using LIST formulae to replicate and extend 

each set of calculations. Subsequent concatenation of these formulae and their 

transformation to an algebraic function enabled students to work with functions 

numerically (LISTS), graphically (plot and function graph) and algebraically (symbolic 

LIST formula and algebraic function) as shown in Figure 1. Both tasks enabled students to 

develop their function concept image, and specifically to consider what information was 

offered by each of the various representations.  

      
Figure 1. Multiple representations of the Shot On Goal function. 

Early Notions of Gradient and Optimum Values of Functions  

During the task Shot on Goal, students were asked to give the positions of the two shot 

spot distances between which the maximum angle for a shot on a hockey goal occurred. 

This was in the context of having completed a table of values of angles subtended by the 

goal mouth at various shot distances from the goal line. Responses to this task allowed 

insight into students’ beginning notion that both discrete functions and continuous 

functions exist. Ben, for example, considering the function from an object perspective, 

showed evidence of a developing concept image of a continuous function related to the 

notion of the maximum value of a function. Ben was searching for where the maximum 

shot on goal angle occurred for a particular run line. 

Ben:  Okay so. 9.18, 9.19. So it is between 19 and 20 metres. [Reading from his table of values]  

Ken:  Why did you say that? 

Ben:  Because that is 9.19 [at 19m shot spot] and that is 9.18 [at 20m shot spot]. 

Ken:  But then it could be between …  

Ben:  Could be between 18 and 20.  

Ken: It is between 18 and 20.  
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Ben:  18 and 20.  

Ken:  18 has a big jump though. [(18, 9.11), (19, 9.19), (20, 9.18)] 

Ben:  See 18 is 9.11, 20 is 9.18. So between, [pause] the biggest opening is between 18 and … 

[pause]. The maximum. [pause] 

Ken:  Ohh, the best angle you can get. 

Ben:  The maximum angle for the shot on goal [pause] is between 18 and 20 metres, between 18 and 

20 metres, two spots—18 and 20. 

Ken:  19 and 20. 

Ben:  It could be there is a higher point between 18 and 19. And it could start dropping again. 

It appears that it was Ken’s questioning that resulted in Ben originally expanding his 

notion of the maximum from being between the two largest calculated angles to a larger set 

of possibilities. Although Ken initiated the expansion of Ben’s concept image, his 

questioning and Ben’s subsequent explanations did not appear to have the same impact for 

Ken himself. From observations of these and other students attempting several optimising 

tasks a framework of developing images of the optimal value of a function has been 

developed (Figure 2). These images are hierarchical however, it is likely that the image 

held by students is initially fragile and hence they may move between images prior to 

moving to a stable concept image. In this TRTLE, students were identified at each stage in 

the framework. 

Image A: Students simply see a set of numerical values where the optimal value is obvious – a range of 

values for the optimum is meaningless if the data are all different as they are discrete values.  

Image B: Students have expanded their concept image here to include the graphical representation in 

addition to the numerical. These students have a mental image of the plot of the function, but 

still see only discrete values and the highest/lowest data point is the absolute optimum.  

Image C: Extending the image of B, students show evidence of considering the situation as represented by 

a function of continuous values and visualising a “curve” passing through their mental image of 

the plot of points, however, this image has the curve reaching a maximum/minimum that is one 

of the data points. 

Image D: Students show evidence of considering the optimal point can be at a point other than their 

discrete values however they consider this to be possible on only one side of the optimal 

discrete value, e.g., between the two highest/lowest values. 

Image E: Students show evidence of recognising that the maximum value of the function could be on 

either side of the maximum/minimum or at this discrete value.  

Figure 2. A Framework of images associated with the optimal values. 

Linear Functions Unit 

Peter changed the way he taught and what he allowed his students opportunities to 

learn, because within a TRTLE in the linear functions unit, Peter was able to begin the unit 

in a non-traditional way through the use of the computer application, GridPic (Visser, 

2004). The use of this software, allowed the students to focus on functions in a new way 

(Figure 3). Peter (2004) explains “we started with the visual, which GridPic allows, [then] 

with the numerical which they then tried to algebracise to that pattern”. He wanted his 

students to make more sense of slope than simply recalling and applying “rise over run”. 

He felt that his approach using photographs of stairs in GridPic developed a deeper 

understanding. Peter continually emphasised slope as the ratio of the “change in the y 

values” and “the change in the x values”. Peter’s belief that previous teaching had not 

resulted in what he considered to be understanding, was demonstrated when one student 

commented, “We learnt it last year as run over rise.” Peter responded with a laugh, “It was 

rise over run, so you didn’t learn it at all!” Research findings by Walter and Gerson (2007) 
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support Peter’s belief that the notion of gradient as a process, rise over run, does not lead to 

a full understanding conceptually enabling application and explanation of the concept in a 

variety of contexts. Observation of Peter’s classroom suggests that he was striving to 

develop in his students, higher order reasoning and understanding that would enable such 

explanation.  

 

Clicking on a point shows the point on the 

graph screen and adds the coordinates of the 

point to an adjacent table.  

 

Selecting a straight line graph and entering 

values for a and b results in the graph of y = ax 

+ b being displayed. Any picture can be used as 

the background, or the picture can be hidden 

with a more standard graphical display 

presented. 

 

Figure 3. Using GridPic: Ned’s three linear functions. 

The first two lessons in the sequence saw students using GridPic for various purposes 

including to consider functions in a non-traditional way. Tasks included identifying points 

and trying to match a line to the stair rails (Figure 3). Conceptions related to function that 

were raised in the first lesson are shown in Figure 4. All these were orchestrated by the 

teacher except one (indicated with [S]) which was raised by Ned who was the student 

operating the computer with the display projected for the class to see. 

Conceptions of Gradient 

The three lessons forming the conclusion of the 14 lesson sequence were spent on a 

linear functions task. Students were presented in pairs with a task involving either the cost 

of installing safe drinking water wells or the cost of running small village health clinics. 

There were five different versions of the task. Introductory information and details of the 

elements of Part 1 and 2 of one version of the task are given in Figure 5. 

The task was implemented as two consecutive lessons totalling 100 minutes on the 

Wednesday and a single period on the Friday in the last week of term 2. Twenty-four 

students were present. Two students were present for lessons 1 and 2 but not the third and a 

final student was present only for lesson 3. Scripts for 19 students were collected with a 

script for Ken, being recreated from his audio recording. One pair of students was video 

recorded with a further two pairs audio recorded. Of particular interest here is students’ 

understanding of gradient as elicited by this task. 

 

Mathematics: Essential Research, Essential Practice — Volume 1

157



 

Figure 4. Webs of meaning: Conceptions related to functions raised during lesson 1. 

 

Figure 5. The Linear Functions Task. 

Determining the gradient. In Part 1, students were required to determine the equation 

of the given function, hence this involved the calculation of the gradient. All students 

demonstrated they were able to calculate the gradient as evidenced by their written 

response to this part of the task. However, two students, Kit and Rani did not identify the 

equation of the line that passed exactly through the two points given. Instead, when 

completing the table of values prior to the determination of an algebraic rule, they used 

estimates for function values from their graph. However, their responses indicated they 

knew how to calculate the gradient. Althought from a purely function point of view, one 

could argue that these students were unable to calculate the gradient correctly, from a 

modelling perspective, one can equally well argue that the student moves were perfectly 

valid. Peter, in fact, encouraged them to determine their equation from their graphical 

representation of the situation.  

Like most of the students, Ben and Ken, for example, considered the gradient as a ratio 

to be calculated. 

Ken:  Well we have two points.  

Ben:  Yeah, so. 

A village Health Clinic in Mali  
The weekly cost of running a small village clinic at Lake Haogoundou in Mali is a function of a 

constant weekly value and varies as the number of patients (n) attended. The cost is $1100 when 50 

patients are treated and $1740 when 90 patients are treated. 

Part 1 of the task required students to: Draw a plot showing a linear relationship for an appropriate 

domain. Identify the relationship decoding from text. Identify the domain, and dependent and 

independent variables. Using a linear rule C(n), find C given n. Write the linear relationship as an 

algebraic rule. Find n, given C. 

Part 2 of the task [Functions for two other clinics are given: Bamako: COST = 390 + 17.50 × number 

of patients, Timbuktu: COST = 115 + 19.75 × number of patients] required students to: Find the 

costs, CB and CT, given n = 50, 60, … 200 recording in table of values. Focusing on one specific 

value of n state which cost is cheapest, CB or CT. Calculate |CB – CT| for this value of n; Determine 

the value of n when CB becomes lower than CT. Construct a table to support this result. Explain how 

the table of values supports these ideas. Graph the 2 functions over an appropriate domain. Identify 

rate for CT. Identify rate for CB.  
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Ken:  1100  minus. 

Ben:  No, 1340 - 1100. [Calculates (1340 – 1100)/(170 – 90) = 240 ÷ 80]. 240. Divided by 80. So 

the gradient is three. 

Use of the schema of Moschovich, Schoenfeld, and Arcavi (1993) showed that all 

students considered the gradient as a process, not an object, and most students operated in 

the numerical representation. For these students a connection was made between the 

numerical and algebraic representations, as a process was undertaken on numerical objects 

to determine the value of the gradient or “a” in the function equation y = ax + b. Kit and 

Rani, however, operated across three representations. Having represented the initial 

numerical information graphically, they were asked to complete a table of values. They 

completed this by reading values from their graph and subsequently used these values to 

determine the gradient. They were the only pair to do this in determining the gradient 

although they and two other students used the graphical representation to determine the y 

intercept. The majority of the students continued to work in the numerical representation to 

determine the value of b in y = ax + b, using a substitution method.  

Opportunities for using the gradient. In Part 2 of the task, students were initially 

required to complete a table of values for two given functions. This could be completed in 

a number of ways using the HomeScreen of the graphing calculator to enter each 

calculation individually as undertaken by Kit and Rani (Figure 6a), or using the LISTs in 

the graphing calculator as undertaken by Kate and Meg as shown in Figure 6b.  

  
(a)       (b) 

Figure 6. Completion the table values using (a) the HomeScreen and (b) LIST formula. 

A third method, used by Ken and Ben, made use of the gradient employing what is 

described by Walter and Gerson (2007) as “slope as an additive structure” (p. 227). Ben 

was quick to see that he could use the gradient to complete the table of values more 

efficiently. Ben recognised that as the number of patients was given in increments of 10, 

the corresponding cost values should increase at a rate of 10 times the gradient, that is 140. 

Having determined the costs for 50, 60, 70, and 80 patients as 855, 995, 1135, and 1275, 

Ben stopped when he noticed the constant increment. 

Ben:  Hang on, hang on. Stop for a second, ha, 995 – 855, 140. So I think it is just going up by 140. 

So 1415 + 140 [Adding 140 to Ken’s last calculation for y(90).]  

Ken:  What? How did you work that out? It is not going up by 140. 

Ben:  Yeah, it is.  

The students then continued using this additive method for further calculations in the task. 

Identifying the gradient. Students were asked to identify the cost for treating each 

additional patient at the two health clinics being considered. The parallel question for the 

Water Well versions of the task required students to identify the cost for each metre of well 

depth drilled. Analysis of student scripts showed that 15 students recorded a correct answer 

to the questions. Only two students recorded a correct method. Another 11 students 
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recorded no method, so unless other evidence is available it is difficult to infer what 

understanding these students have. One did not attempt this part of the task. An incorrect 

solution recorded by Kit and Rani for the first clinic was the result of y(10) ÷ 10, but the 

question for the second clinic was not answered. Kit originally recorded the cost for one 

patient, but this was subsequently crossed out. Di and Ann, working together, both 

recorded the cost for one patient, not appearing to realise that the gradient was required. 

It is important to note here that during the final lesson on the task, each pair of students 

was expected to discuss their work with a second pair who had attempted the same version 

of the task. This provided students with the opportunity to check and discuss their results. 

Recordings of these discussions shows significant differences in student understanding of 

the interpretation of this question. When attempting these questions for the task (Figure 3), 

the transcript of Kate and Meg shows clear evidence of developing understanding of the 

concept of gradient. For Kate and Meg, their first function [CT = 115 + 19.75n] was for the 

cost of treating patients at a clinic in Timbuktu. Initially, the pair was unsure what the 

question was asking. Meg began by finding the cost for one patient. She appeared to have 

some sense that they were finding the gradient but this knowledge was fragile. 

Meg:  What have I got? I think you just, I am going to put in just one [hesitantly]. 

Kate:  Mmm. And then?  

Meg:  Okay, 19.75 × 1 + 115, [pause] whatever.  

Kate:  How come you are doing it times 1? 

Meg: Umm, because when you find each additional patient after, like from, you go up by one. 

Kate:  Oh yeah.  

Meg:  It is hard to explain. Each time it goes up by. Each time it adds on to the 115 [fixed cost]. 

Later, Meg suggested that she was now confident that they are being asked for more than 

the cost for one patient.  

Meg:  Wouldn’t it be 20 [approximate difference between C(2) and C(1)]? 

Kate:  What? 

Meg:  I thought it asked to do one, but to do each additional one. So what if you times it my two and 

then take away what you got for one. Like then it is about 20. It will go up by 20 each time you 

treat somebody. 

Kate:  Why 20? 

Meg:  Because you times. If you treated 2 patients you add, yeah you get, well, [how] much it would 

cost and then you take that away from one [C(1)]. No take 1 away from that. [C(2) – C(1)]. 

Kate:  Wait, what are you saying? You go 19[.75 × 1 + 115] [pause]. Yeah , you do that right? 

Meg:  Yep, yeah.  

Kate:  Then what? 

Meg:  Then there is like one, and then there is like two. And there is like the difference. I think the 

difference there is like 20. Because if this here is 134.5 [C(1) = 134.75], and this one here is 

like 15.5, no 14.5. Wouldn’t you just take them away? [C(2) = 154.50] 

Kate:  [incoherent] It is 154.5. 

Meg:  That is how many if you treat two patients, that is how much it costs. 

Kate showed evidence of understanding what Meg was saying, as she then suggested that 

for a third patient the cost would be an additional $20 compared to the cost for two 

patients. The pair then proceeded to calculate similar values for the clinic at Bamako. An 

error in their subtraction, which was identified as they checked their results, led to their 

recognition that they had found the gradient. 

Meg:  How come is it 19.75? Oh my god! That is the gradient it goes up by each time. So it is 19.75. 

Kate:  That is the gradient? 

Meg:  Yes, the gradient goes up by, each time it goes up by. Oh my god!! 
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Kate:  Yeah, der, because it is ‘ax’. [laughs] Der. [laughs] 

Meg:  Each additional patient costs 19.75. Because that is what the gradient is. Because each, the 

gradient is, whenever you go up by one, no whenever you go across [referring to a visual image 

of a graph]. When you treat one more patient. 

Kate:  Yeah I know, I get it. 

Meg:  So it is 19.75? 

Kate:  For each additional patient. So it is not that? [referring to $134.75 calculated previously]. 

Meg:  No, that is just how much it costs to treat one patient.  

Kate:  So this one [referring to the similar question focussed on the second clinic] would be the same 

thing. This one would just be 17.50, I guess. 

Meg:  Yeah. 

For Kate and Meg in particular this sub-task provided the further opportunity to develop 

understanding of the notion of gradient incorporating this additive structure. Fortunately, 

their discourse was captured via the audio recording, as the fragility of their knowledge was 

not evident on their written scripts.  

In contrast, for two other students who came together during the final lesson, this sub-

task seemed trivial as their notions of gradient were stronger.  

Amy:  [Reads] “What is the cost for treating each additional patient at Malange?” 

Ben:  14.  

Amy:  Yep. 

Ben:  And then 12.50. 

Amy:  Yeah. Gee that is intelligent having to figure that out! 

Ben:  Yeah I know. [Facetiously] That was the hardest question! 

Amy:  Yeah. 

Scripts for the students discussed here, for this particular sub-task, show little evidence 

of either the fragile yet emerging understanding of Kate and Meg, or the stable 

understanding of Ben and Amy. Only through access to their dialogue has this become 

evident. 

Discussion and Conclusions 

The students in the TRTLE that was the focus of this study demonstrated both process 

and object perspectives of various function notions. Both optimisation tasks and the linear 

functions task provided opportunities for, and evidence of, students thinking about and 

making connections between functions in each of the numerical, graphical, and algebraic 

representations. The fragility of these notions was evident at times through the choices of 

representations selected in solving tasks. Both the schema of Moschkovich, Schoenfeld, 

and Arcavi (1993) and the concept image construct of Vinner and Dreyfus (1989) proved 

valuable in exploring students’ developing notions. 

The nature of the tasks presented to the students enabled them to make choices, 

including when to use technology and when to use by-hand methods. Additionally, when 

choosing to use the available technology, students had to make choices as to methods and 

representations in which to operate. These opportunities for choice at times allowed 

students to demonstrate their stable understanding of particular notions related to function. 

At other times, these same opportunities allowed students, in discussion with others to 

develop new understandings or to challenge fragile understandings and consolidate these.  

The extended tasks where students were working relatively independently of their 

teacher and placed in the position where they made choices about solution pathways were 

particularly valuable in providing students with opportunities to develop and consolidate 
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understandings of essential notions related to function. The expanding concept image 

enabled by engagement with the tasks led to broader, deeper, or more stable conceptions of 

the function concept. However, evidence of the strength of student understanding was more 

likely to be detected through attending to classroom discourse, at a private level between 

two or three members of the TRTLE, rather than through written work as little trace of this 

was recorded by students on their task scripts.  

Acknowledgement. Jill was a doctoral student of the University of Melbourne on 

RITEMATHS (an ARC funded Linkage Project – LP0453701) when these data were 

collected. 
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The concept map data from a study of Samoan university students constructing topic 

concept maps and vee diagrams of problems throughout a semester is presented. Students 

found that, initially, concept mapping their topic was difficult. However with independent 

research and multiple critiques, their understanding of the conceptual structure of the topics 

deepened, becoming integrated and differentiated as evident from the concepts selected, 

valid propositions and structural complexity of the maps. Students also improved their 

skills in negotiating meaning, challenging and counter-challenging each others’ 

explanations. Findings imply concept maps can facilitate the effective communication of 

students’ understanding within a social setting. 

Introduction 

Working and communicating mathematically is being encouraged as part of everyday 

mathematical learning in schools. Research shows students’ perceptions of mathematics 

learning reflect the way they have been taught mathematics (Thompson, 1984; Knuth & 

Peressini, 2001; Schell, 2001). In addition, pedagogical decisions teachers make about 

teaching and assessment are influenced by their mathematical beliefs (Ernest, 1999; 

Pfannkuch, 2001). Typically, an authoritative perspective views mathematics as a body of 

knowledge with classroom practices, simply a transmission of information. In contrast, 

cognitive and social perspectives view mathematics learning and understanding “as the 

result of interacting and synthesizing one’s thoughts with those of others” (Schell,  2001,  

p. 2), suggesting mathematics knowledge is a social construction that is validated over 

time, by a community of mathematicians. Hence making sense is both an individual and 

consensual social process (Ball, 1993). Classroom practices should equip students with the 

appropriate language and skills to enable the construction of the mathematics that is taught, 

and critical analysis and justification of the constructions in terms of the structure of 

mathematics (Richards, 1991). Lesh (2000) argues that, “mathematics is not simply about 

doing what you are told” (p. 193) while Balacheff (1990, p. 2) posited that “students need 

to learn mathematics as social knowledge; they are not free to choose the meanings ... these 

meanings must be coherent with those socially recognized”. 

Existing problems with mathematics learning in Samoa are perceived as related to 

students’ perceptions of mathematics, ability to communicate mathematically, and critical 

problem solving. Firstly, the narrow view most undergraduate students have, reflects their 

school mathematics experiences, found to be mostly rote learning, a problem consistently 

raised by national examiners. Even the top 10% of Year 13 (equivalent to Year 12 in 

Australia) students consistently struggle with applications of basic principles to solve 

inequations/equations and/or graph functions (Afamasaga-Fuata’i, 2001, 2002, 2005a,). 

Secondly, students justify methods in terms of sequential steps instead of the conceptual 

structure of mathematics. Thirdly, students may be proficient in solving familiar problems, 

however, the lack of critical analysis and application becomes evident when they are given 

novel problems. Such approaches are symptomatic of authoritative classroom practices in 

which students typically do not question, challenge or influence the teaching of 
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mathematics (Knuth & Peressini, 2001). The examination-driven teaching of secondary 

mathematics in Samoa naturally inculcates a narrow view of mathematics (Afamasaga-

Fuata’i, 2005a; 2002), As a result, problem solving skills students acquire over the many 

years of secondary schooling may not necessarily be situated “within a wider 

understanding of overall concepts” and would probably not be “long-lasting” (Barton, 

2001). Against this general background, this paper reports a study, conducted over a 

semester, to investigate some second year university students’ developing understanding of 

selected topics, as illustrated by individually constructed hierarchical concept maps 

(cmaps). Before the data are presented, the underlying theoretical framework and 

methodology are discussed. 

Theoretical Framework and Relevant Studies 

The difference, between an authoritative perspective of mathematics learning and 

Ausubel’s cognitive theory of meaningful learning, socio-linguistic and social 

constructivistic perspectives, is the extent to which classroom discourse and social 

interactions are supported (Wood, 1999). That is, students learn mathematics in meaningful 

ways, by developing their understanding through the construction of their own patterns of 

meanings and through participation in social interactions and critiques (Novak & Cañas, 

2006; Novak, 2002). In contrast, rote learning tends to accumulate isolated propositions 

rather than developing integrated, interconnected hierarchical frameworks of concepts 

(Novak & Cañas, 2006; Ausubel, 2000; Novak, 2002). Guiding the study were Ausubel’s 

principles of assimilation and integration of new and old knowledge into existing 

knowledge structures through a degree of synthesis (i.e., integrative reconciliation) or 

reorganization of existing knowledge under more inclusive and broadly explanatory 

principles (i.e., progressive differentiation). Both the meaningful learning and social 

constructivist approaches support the metacognitive development of students’ 

understanding and the active construction of mathematical thought whilst publicly 

presenting, for example, cmaps and vee diagrams (schematic diagrams), within a social 

setting. A cmap is a graph consisting of nodes, which correspond to important concepts in 

a domain and arranged hierarchically; connecting lines indicate a relationship between the 

connected concepts (nodes); and linking words describe the interconnections (explanation). 

A proposition is the statement formed by reading the triad(s) “node linking words
 →    node” 

(Novak & Cañas, 2006). For example, the triad 

“Functions  may be described using
 →      

equations” forms the proposition, “Functions may be 

described using equations”. 

Numerous studies investigated the use of cmaps and/or vee diagrams 

(cmaps/vdiagrams) as assessment tools of students’ conceptual understanding over time in 

the sciences (Novak & Canas, 2006; Brown, 2000; Mintzes, Wandersee, & Novak, 2000), 

and mathematics (Afamasaga-Fuata’i, 2005b; Schmittau, 2004; Swarthout, 2001); as 

communication tools (Freeman & Jessup, 2004); and as analytical tools to unpack 

teachers’/participants’ perceptions (Pittman, 2002; Wilcox & Lanier, 1999). Research in 

secondary (Afamasaga-Fuata’i, 2002) and university mathematics (Afamsaga-Fuata’i, 

2004) found students’ conceptual understanding of mapped topics was further enhanced 

after a semester of concept mapping. Research with preservice teachers showed cmaps 

were useful pedagogical planning tools (Afamasaga-Fuata’i, 2006; Brahier, 2005). 

Workshops with science and mathematics specialists and teachers found maps/diagrams 

have potential as teaching, learning, and assessment tools (Afamasaga-Fuata’i, 2002; 
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1999). The research question for this paper is: “How can hierarchical concept maps 

illustrate improvements in students’ understanding of mathematics topics?” 

Methodology 

The study required students to undertake conceptual analyses of topics (identifying 

relevant major concepts, principles, formal definitions, rules, theorems, and formulas) and 

illustrate the theoretical results on cmaps. The methodology was an exploratory teaching 

experiment to investigate students’ developing understanding of particular topics (Steffe & 

D'Ambrosio, 1996), involving meeting twice a week for 50 minutes each time over 14 

weeks with a cohort of students enrolled in a research mathematics course. 

Cmaps/vdiagrams were introduced as means of learning mathematics more meaningfully 

and solving problems more effectively. The content was from students’ recent mathematics 

courses, namely, limits and continuity, indeterminate forms, numerical methods, 

differentiation, integration, motion, multiple integrals, infinite series, normal distributions, 

and complex analysis. The epistemological principles, namely, building upon students’ 

prior knowledge, negotiation of meanings, consensus, and provision of time-in-class for 

student reflections, guided classroom practices. Hence, the study included a familiarization 

phase, which introduced the new socio-cultural classroom practices (socio-mathematical 

norms) of students presenting and justifying their work publicly, addressing critical 

comments, and then later on critiquing peers’ presented work. Time was set aside between 

critiques to revise maps/diagrams. The cyclic process was: presenting (to peers or 

researcher) → critiquing → revising → presenting underpinned the study. Of the 13 

students, 3 chose topics outside of mathematics (computer programming, cell biology, and 

organic chemistry). This paper reports the data from the mathematics cmaps only. 

Concept Map Analysis 

Although the literature documents a variety of assessment/scoring techniques (Novak & 

Gowin, 1984; Ruiz-Primo, 2004; Liyanage & Thomas, 2002), a modified version of the 

Novak scheme was adopted, which used counts of a criterion. The three criteria were the 

structural (complexity of the hierarchical structure of concepts), contents (nature of the 

contents or entries in the concept nodes), and propositions criteria (valid propositions).  

The structural criteria were in terms of integrative cross-links between concept 

hierarchies, progressive differentiation evidenced by nodes with multiple branching (more 

than one outgoing link) (which create main branches and sub-branches), and average 

number of hierarchical levels per sub-branch. The contents criteria indicate students’ 

perceptions of mathematical concepts in terms of suitable labels and illustrative examples. 

Inappropriate entries include those describing procedural steps (more appropriate on vee 

diagrams), redundant entries (indicating the need for a re-organization of concepts), and 

linking words as concept labels (linking-word-type). The definitional-phrase invalid node, 

although conceptual was too lengthy, its presence signals the need for further analysis to 

identify “concepts” as distinct from “linking words”. The propositions criteria define valid 

propositions as those formed by valid triads (i.e., “valid node valid linking words
 →     

valid 

node”).  

Concept Map Data 

The data collected consisted of students’ progressive cmaps (4 versions) and progressive 

vee diagrams of 3 problems (at least 2 versions per problem), and final reports. Only the 
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data from cmaps are presented here. The three criteria were used to assess students’ first 

and final cmaps, to identify any changes. Individual results are presented first before a 

discussion of general themes. The cmap data for Students 1 to 5 are in Table 1 and those 

for Students 6 to 10 are in Table 2. 

Student 1: Pene – Indeterminate Forms. Despite encountering “indeterminate forms” in 

first year mathematics, Pene struggled to begin a cmap. As a result of critiques, revisions 

and independent research, Pene’s final cmap became structurally more integrated 

(increased cross-links from 3 to 10), more differentiated (increased multiple-branching 

nodes from 8 to 10 and increased average hierarchical levels per sub-branch from 6 to 8), 

and more compact (decreased sub-branches from 17 to 14) with main branches remaining 

unchanged (Table 1). However, the percentage of valid nodes (from 77% to 67%) and 

valid propositions (from 52% to 44%) decreased due to increased definitional-phrase 

invalid nodes (from 8% to 30%). An example of a definitional phrase is “g(x)≠ 0 for any x 

in (a, b)”. Despite this, the final cmap was conceptually richer in its choice of concept 

labels with a structurally parsimonious, network of conceptual interconnections.  

Table 1 

Concept Map Data for Students 1 to 5 

Student 

 

1 

Pene 

2 

Loke 

3 

Fia 

4 

Vae 

5 

Heku 

 

Criteria 

First 

Cmap  

Final 

Cmap 

First  

Cmap  

Final 

Cmap  

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final 

Cmap  

First  

Cmap  

Final  

Cmap  

Contents            

Valid Nodes           

- Concepts 35 (67) 30 (65) 17 (44) 32 (56) 73 (99) 83 (83) 40 (59) 66 (99) 44 (86) 50 (74) 

- Examples 5 (10) 1 (2) 19 (49) 16 (28) 0 (0) 6 (6) 10 (15) 0 (0) 0 (0) 0 (0) 

Invalid Nodes           

-Definitional 4 (8) 14 (30) 1 (3) 8 (14) 1 (1) 8 (8) 12 (18) 1 (1) 1 (2) 15 (22) 

-Inappropriate 8 (15) 1 (2) 2 (5) 1 (2) 0 (0) 3 (3) 6 (9) 0 (0) 6 (12) 3 (4) 

Total Nodes 52 46 39 57 74 100 68 67 51 68 

Propositions            

Valid 

Propositions 

27 (52) 26 (44) 25 (69) 29 (49) 77 (96) 106 (88) 32 (51) 85 (97) 35 (66) 54 (67) 

Invalid 

Propositions 

25 (48) 33 (56) 11 (31) 30 (51) 3 (4) 14 (12) 31 (49) 3 (3) 18 (34) 27 (33) 

Total 

Propositions 

52 59 36 59 80 120 63 88 53 81 

Structural            

Cross-links 3 10 0 6 9 10 4 17 6 22 

Sub-branches 17 14 9 19 26 33 22 19 9 32 

Average 

H/Levels per 

Sub-branch 

 

6 

 

8 

 

6 

 

8 

 

10 

 

9 

 

7 

 

8 

 

8 

 

7 

Main Branches 6 6 5 7 5 8 4 5 6 9 

M/Branching 

Nodes  

8  10  5  8  18 19 9 18 9 19 

  Key    H/Levels   Hierarchical Levels       M/Branching   Multiple Branching    Count (% of total number) 
 

Student 2: Loke – Differentiation. Loke’s first cmap had relatively more illustrative 

examples (49%) than conceptual entries (44%). As a result of critiques, revisions and 
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independent research, the final cmap was relatively more conceptual (increased valid 

concept nodes from 44% to 56% and a reduction in examples from 49% to 28%), 

structurally more expanded (addition of 2 more main branches), more integrated (addition 

of 6 new cross-links) and more differentiated (increased multiple-branching nodes from 5 

to 8 and increased sub-branches from 9 to 19).  However, the reduction of valid 

propositions (from 69% to 49%) was due mainly to increased definitional-phrase invalid 

nodes (from 3% to 14%). An example of an incorrect proposition is “Differentiation also 

have a non-differentiable function”. Overall, the final cmap was more differentiated, more 

integrated and more conceptual than the first cmap.  

Student 3: Fia – Numerical Methods. Fia’s first cmap had a high percentage of valid 

propositions (96%) reflecting her careful organization of propositions. As a result of 

critiques, revisions and further research, the final cmap showed increased number of valid 

concept nodes (from 73 to 83) and valid propositions (from 77 to 106) but proportionally 

reduced (valid nodes from 99% to 89% and valid propositions from 96% to 88%) due to 

increased definitional-phrase and inappropriate nodes (from 1% to 11%). Structurally, the 

final cmap expanded (increased main branches from 5 to 8), becoming more integrated 

(increased cross-links from 9 to 10) and more differentiated (increased multiple-branching 

nodes from 18 to 19 and increased sub-branches from 26 to 33) with more compact sub-

branches (reduced average hierarchical levels from 10 to 9).  

Student 4: Vae – Limits and Continuity. Vae’s first cmap showed inclusion of complete 

formal definitions as concept labels, which the first peer critique highlighted as 

problematic. As a result of revisions, and critiques, Vae’s cmap progressively evolved into 

a more conceptual one (increased valid nodes from 74% to 99%) with substantially 

increased valid propositions (from 51% to 97%), structurally expanded (main branches 

increased from 4 to 5), more integrated (cross-links increased from 4 to 17), more 

differentiated (increased multiple branching from 9 to 18 and increased average 

hierarchical levels per sub-branch from 7 to 8), and more compact (reduced sub-branches 

from 22 to 19). Evidently, continuous revisions enhanced the hierarchical interconnections 

such that formal definitions were analysed substantively, with concepts appropriately 

linked and described to illustrate the conceptual structure of the topic. 

Student 5: Heku – Motion. Heku’s final cmap became more conceptual with increased 

number of valid concept nodes (from 44 to 50 but proportionally reduced from 86% to 

74%) and increased valid propositions (from 66% to 67%). Structurally, the final cmap 

was more expanded (increased main branches from 6 to 9), more integrated (increased 

cross-links from 6 to 22), more differentiated (increased multiple branching nodes from 9 

to 19 and increased sub-branches from 9 to 32), but relatively more compact within sub-

branches (reduced average hierarchical levels from 8 to 7). Increased invalid nodes (from 

14% to 26%) resulted mainly from increased definitional phrases (from 2% to 22%). 

Student 6: Santo – Complex Analysis. With repeated cycles of presentations → 

critiques → revisions, Santo’s final cmap (Table 2) still had the same number of main 

branches, average hierarchical levels per sub-branch, and cross-links, a reduction of valid 

nodes (from 93% to 90%) while valid propositions increased (from 74% to 79%), and 

becoming structurally more differentiated (increased multiple branching nodes from 24 to 

34) and more compact (reduced sub-branches from 68 to 66).  
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Table 2 

Concept Map Data for Students 6 to 10 

Student 6 6 7 7 8 8 9 9 10 10 

 Santo Santo Fili Fili Pasi Pasi Toa Toa Salo Salo 

 

Criteria 

First 

Cmap 

Final 

Cmap 

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final  

Cmap  

First  

Cmap  

Final  

Cmap  

Contents            

Valid Nodes           

- Concepts 165 (87) 159 (84) 32 (67) 30 (73) 41 (36) 52 (87) 34 (76) 63 (71) 100 (57) 79 (72) 

- Examples 11 (6) 12 (6) 0 (0) 1 (2) 20 (18) 0 (0) 0 (0) 7 (8) 34 (19) 17 (16) 

Invalid Nodes           

-Definitional 1 (1) 2 (1) 3 (6) 3 (7) 3 (3) 7 (12) 6 (13) 15 (17) 8 (5) 6 (6) 

-Inappropriate 12 (6) 16 (8) 13 (27) 7 (17) 50 (44) 1 (2) 5 (11) 4 (4) 33 (19) 6 (7) 

Total Nodes 189 189 48 41 114 60 45 82 141 92 

Propositions            

Valid 

Propositions 

148 (74) 166 (79) 15 (32) 26 (62) 48 (40) 39 (67) 28 (56) 88 (81) 110 (60) 82 (73) 

Invalid 

Propositions 

51 (26) 45 (21) 32 (68) 16 (38) 71 (60) 19 (33) 22 (44) 20 (19) 73 (40) 30 (27) 

Total 

Propositions 

183 112 47 42 119 58 50 108 183 112 

Structural            

Cross-links 8 8 1 4 11 12 13 21 5 6 

Sub-branches 68 66 16 13 19 16 10 24 44 35 

Average 

H/Levels per 

Sub-branch 

 

6 

 

6 

 

6 

 

6 

 

12 

 

9 

 

11 

 

9 

 

9 

 

7 

Main Branches 19 19 4 6 12 6 3 10 10 10 

M/Branching 

Nodes  

24 34 4 9 13 11 9 17 20 16 

   Key      H/Levels   Hierarchical Levels     M/Branching   Multiple Branching     Count (% of total number)  

Student 7: Fili – Multiple Integrals. Fili’s first cmap illustrated sequential derivations 

of double and triple integrals, with critical comments targeting invalid nodes. As a result of 

critiques, revisions, and further independent research, Fili’s final cmap became more 

parsimonious (reduced sub-branches from 16 to 13 and unchanged average hierarchical 

levels per sub-branch), more integrated (increased cross-links from 1 to 4), more 

differentiated (increased multiple-branching nodes from 4 to 9), more conceptual 

(increased valid nodes from 67% to 75%) and valid propositions almost doubled (from 

32% to 62%). 

Student 8: Pasi – Integration. As a consequence of the cyclic process of presenting → 

critiquing → revising → presenting, Pasi’s final cmap evolved into a substantially more 

conceptual one (increased valid nodes from 54% to 87%) with increased valid propositions 

(from 40% to 67%). For example, a new branch illustrated the numerical limit view of 

integrals from successive approximations of area under a curve and linking it to the limit of 

the Riemann sum as a definition for the definite integral. The absence of illustrative 

examples was noticeable. Structurally, the cmap was more compact (reduced multiple-

branching nodes (from 13 to 11), reduced sub-branches (from 19 to 16), reduced main 

Mathematics: Essential Research, Essential Practice — Volume 1

78



branches (from 12 to 6), and reduced average hierarchical levels per sub-branch (from 12 

to 9). Overall, the final map was predominantly more conceptual with more valid 

propositions and a more parsimonious, compact final structure. 

Student 9: Toa – Normal Distributions (ND). Toa felt challenged to construct a cmap 

that included ND, Poisson distributions (PD) and binomial distributions (BD). He wrote: 

“(it was) hard to think of a concept to start the cmap and then link the others right down to 

the end when it introduces (BD, PD and ND).” The first peer critique commented the cmap 

had “too many useful concepts … missing”, and the “concepts used were paragraphs”. In 

subsequent revisions, he “tried to break down those paragraphs into one or two concept 

names” and “re-organized concept hierarchies”, eventually resulting in a final cmap that 

was more conceptual (increased valid nodes from 76% to 79%) with increased valid 

propositions (from 56% to 81%). Structurally, the final cmap became more expanded 

(increased main branches from 3 to 10), more integrated (increased cross-links from 13 to 

21), more differentiated (substantial increases with multiple branching nodes from 9 to 17 

and sub-branches from 10 to 24) and more compact within sub-branches (reduced average 

hierarchical levels from 11 to 9).  Shown in Figure 1 is part of Toa’s final map (example of 

a good cmap) showing examples of integrative crosslinks between two branches 

(proposition “Normal Distribution can be approximately used for Binomial Distribution → 

Normal Distribution”), multiple branching nodes (bell-shaped curve and parameters) and 

integrative reconciliation of a number of nodes merging into a single node (nodes x, n - x, 

p, n, q = 1 – p, with merging links to Probability Function). 
 

 
Figure 1. Partial final concept map – Toa. 

Student 10: Salo – Infinite Series. The first peer critique targeted the high number of 

inappropriate nodes (33) with subsequent critiques focussing on the need to improve 

linking words and appropriate placement of progressively-differentiated concepts. Salo’s 
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final cmap became more conceptual (increased valid nodes from 76% to 88%) with 

increased valid propositions (from 60% to 73%). Structurally, the final cmap was more 

integrated (increased crosslinks from 5 to 6) and more compact with less differentiation 

(decreased multiple branching nodes from 20 to 16 and decreased sub-branches from 44 to 

35, with a lower average hierarchical levels per sub-branch from 9 to 7) whilst main 

branches remain unchanged. Overall, the final map was more conceptual with a more 

enriched network of interconnections and structurally more integrated and more compact 

than the first cmap. 

Discussion 

Findings suggested that students’ progressive cmaps became integrated and 

differentiated as students continually strove to illustrate valid nodes and meaningful 

propositions, in response to concerns raised in social critiques and in anticipation of future 

critiques. Hence the re-definition of socio-mathematical norms appeared to affect the 

nature of students’ cmaps substantively, particularly as students had to justify their 

displayed connections, negotiate meanings with their peers, and reach a consensus to revise 

or not. For example, half the students showed increases in valid nodes, propositions, and 

structural complexity by the final cmap. There was a marked shift from simply providing 

formulas, procedural steps, excessive illustrative examples, and entire paragraphs, to 

seeking out more integrated and differentiated conceptual interconnections, which reflected 

the impact of the social interactions on an individual’s evolving understanding. Also, 

students necessarily had to reflect more deeply, as individuals, about the conceptual 

structure of topics than they normally did. Because of the need to communicate their 

understanding competently in a social setting, over time and with increased mapping 

proficiency, students became more parsimonious in their selection of concepts and more 

astute in describing the nature of the relationships between connecting concepts more 

correctly to minimize critical comments. From students’ perspectives, they realized that 

mathematics has a conceptual structure, the socially validated body of knowledge, which 

underpins its formal definitions and formulas. By searching for missing relevant concepts 

to make the cmaps more robust and comprehensive, students eventually realized that an in-

depth understanding of topics required much more than re-stating a definition or formula. 

Concept mapping required the identification of main concepts, an integrated understanding 

of connections between relevant concepts, visually organising this understanding as a 

meaningful hierarchy of interconnecting nodes with valid linking words that form valid 

propositions as socially warranted by a community of mathematicians.  

Over the semester, students eventually appreciated the utility of cmaps as a means of 

depicting networks of conceptual interconnections within topics and of highlighting 

connections between concepts, definitions and formulas. However, attaining this greater 

conceptual understanding of mathematics was hard work and required much reflection, 

social negotiation, and individual research on their part. The findings suggested that with 

more time and practice students can become proficient and adept at constructing cmaps 

whilst simultaneously deepening and expanding their theoretical knowledge of the 

structure of mathematics. Challenges faced by the students included the importance of 

getting quality feedback from their peers, sustaining students’ motivation to seek more 

meaningful connections by revising inappropriate nodes and incorrect linking words and 

reorganising concept hierarchies, and developing their self-confidence in presenting 

mathematical justifications and counter-arguments during social critiques. The progressive 

quality of students’ cmaps over the semester confirmed that students’ ways of learning 
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mathematics are very much influenced by the expectations and beliefs of the teacher, the 

prevailing socio-mathematical norms of the classroom setting, and the socially-validated 

structure of mathematics. Findings also extended the literature on the impact of social 

negotiations of meanings, interactions and critiques on the development of students’ 

conceptual understanding of topics, which in this study, was greatly facilitated with the 

visual mapping of students’ progressive conceptions on hierarchical cmaps over time. 

Finally, using the metacognitive tools promoted a higher level of self-reflection and lateral 

thinking that generally motivated students to analyse their perceptions of mathematics 

knowledge critically and specifically encourage deeper, conceptual understandings of 

topics.  

Implications 

Findings from the study imply that the concurrent use of concept mapping and social 

critiques as part of the culture and practices within mathematics classrooms has the 

potential to promote the development of mathematical thinking, reasoning, and effective 

communication, which are most desirable skills to succeed in mathematics learning. Doing 

so as early as the primary level would be an area worthy of further investigation. 
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Data collected from a diagnostics mathematics test taken by some primary student teachers 
are reported. Student responses were analysed using the Dichotomous Rasch Measurement 
Model. Error analyses enabled the identification of main misconceptions. Findings showed 
students performed relatively well with basic computations and visually presented data but 
struggled with word problems. The more complex and abstract the language used, the more 
difficult it became, implying that the critical skills of interpreting mathematical concepts, 
representations, and language and problem solving require explicit remediation. Implications 
for primary teacher education are provided. 

Professional Teaching Standards (NCTM, 2005; AAMT, 2006) prescribe requirements 
such as a deep understanding not only of the teaching and learning processes but also the 
specific discipline content. Shulman’s (1986) teacher knowledge taxonomy included 
subject-matter content knowledge, pedagogical content knowledge and curriculum 

knowledge. Although curriculum knowledge is knowledge of curriculum programs and 
instructional materials (Chick, 2002), Shulman (1986) defines subject-matter knowledge as 
knowledge of both the substantive structure and syntactic structure. Transforming subject-
matter knowledge and curriculum knowledge into pedagogical content knowledge 
conceptualises “the link between knowing something for oneself and being able to enable 
others to know it” (Huckstep, Rowland, & Thwaites, 2003). Ma’s (1999) study illustrated 
the need for primary teachers to have profound understanding of fundamental mathematics 
in order to promote and extend student learning. Ball and Bass (2000) argued teachers 
should be mathematically competent in order to effectively address the diversity of student 
needs. Research (Shulman, 1986; Ma, 1999; Ball, & Bass, 2000; Huckstep et al., 2003) also 
showed teachers’ content knowledge of the curriculum generally influences their selection 
of activities and mediation of meaning in the classroom. This paper focuses on the 
identification of the mathematical competence of a cohort of foundation and primary student 
teachers in their first semester. Mathematical competence is defined as the ability to solve a 
set of items, in a written test, based on the Samoan Ministry of Education, Sports and 
Culture’s (MESC) Primary and Early Secondary Mathematics (PESM) Curricula (MESC, 
2003). Each item is designed to contribute meaningfully to a measure of mathematical 
competence. Ideally, student teachers should be capable of solving these items by critically 
(a) interpreting mathematical concepts, multiple data representations, and language 
describing quantitative relationships, (b) transforming interpretations arithmetically and/or 
algebraically, and (c) synthesising relevant knowledge and procedures to generate plausible 
solutions. The presence of mathematical competence is assessed by the quality of student 

responses and nature of errors. Therefore, the focus questions for this paper are: (1) How 
reliable was the test as a tool to measure students’ mathematical competence? (2) What are 
primary student teachers’ main mathematical misconceptions? 
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 Methodology and Analysis 

The mathematics diagnostic test (MDT1, Appendix A) consisted of thirty items, 
compiled (Mays, 2005) primarily from the TIMSS 1999-R mathematics paper (Mullis, 
Martin, Gonzalez, Gregory, Garden, O’Connor, Chrostowski, & Smith, 2000) (code T in the 
first position) as these have reliability and validity data, and eight items from the 
misconception literature (code M in the first position). These include five mental 
computation items (code MMCT) on products of single digit numbers and decimals, 
percentage of two-digit integers, four-digit substraction, and adding unit fractions (McIntosh 
& Dole, 2000; Callingham & Watson, 2004) and items on ordering fractions (MFNS08), the 
student-professor problem (MALG14), and proportional reasoning (MGE029) (Thompson 
& Saldanha, 2003). The 38 items sampled the content areas of MESC’s PESM Curricula – 
fractions and number sense (FNS), measurement (MSR), algebra (ALG), geometry (GEO) 
and data presentation, analysis (DPA) and probability (PRB) – and five cognitive domains: 
knowing, using routine procedures, investigating and problem solving, and mathematical 

communication (Mullis et al., 2000). To provide access to students’ errors, all 38 items were 
left open-ended. MDT1 was used at an Australian regional university with different cohorts 
of primary student teachers (Mays, 2005). A total of 140 Samoan primary student teachers 
took MDT1. Responses were categorised Correct, Incorrect or Blank and analysed using the 
Dichotomous Rasch Measurement Model and QUEST software (Adams & Khoo, 1996). 
Error analysis counted error types by item and identified up to 3 most common errors. The 
Rasch Model examines only one theoretical construct at a time on a hierarchical “more 
than/less than” logit scale (unidimensionality). Rasch parameters, item difficulty and person 
ability, are estimated from the natural logarithm of the pass-versus-fail proportion 
(calibration of difficulties and abilities) whereas estimation of fit is measured by mean 
square (mean squared differences between observed and expected values) and t, infit and 
outfit values (estimation of fit to the model).  Fit of the data to the model (infit t values (-2, 
2)) and reliability of the test (around 1) are examined. 

Results 

Review and Reliability of the Mathematics Diagnostic Test  

The Rasch Model theoretically sets the mean of item estimates at 0 before item and 
person estimates are calibrated. Infit t values showed all items (except TGEO17) fit the 
model. A 3.70 infit t value indicated erratic behaviour. An item analysis from QUEST 
showed a non-monotonic increase in mean abilities for the 3 response categories, suggesting 
TGEO17 (difficulty -0.26 logits) might be measuring something different. Item TMSR27 
had a zero score, meaning it was too difficult and was not discriminating among students. 
Thus both TGE017 and TMSR27 should be revised in future testing. Using the (-2, 2) infit 
t-criteria on cases confirmed they all fit the model. Candidate 119 had a zero score, which 
meant the case was not contributing to the calibrations. Finally, to improve the data’s fit to 
the model, items TGE017 and TMSR27 and Candidate 119 were excluded from the second 
analysis of 139 cases and 36 items (see Table 1). The person ability mean of -.95 logits 
suggested the test was hard. A standard deviation of 1.15 indicated the cases were more 
clumped around its mean whereas the items were more spread out. An item fit map showed 
all items fit the model hence establishing that the 36 items worked together consistently to 
define a unidimensional scale. The reliability indices for items (0.97) and cases (0.84) were 
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both high (Bond & Fox, 2001) indicating the test produced a reliable measure of student 
teachers’ mathematical competence of MESC’s PESM curriculum. 

Table 1 

Second Analysis - Summary of Item and Person Estimates 

Estimates Mean SD SD 
(adj) 

Reliability Infit  Mean 
Square 

Mean    SD 

Outfit Mean 
Square 

Mean      SD 

Infit t 
Mean   SD 

Outfit t 
Mean    SD 

Item  0.00 1.85 1.82 0.97 0.99    0.10 1.05      0.55  0.00   0.83 0.11    0.90 
Case -0.95 1.25 1.15 0.84 1.00    0.25 1.05      0.95 0.00    1.05 0.17    0.83 

The item-person map (Figure 1) corroborates the high reliability indices with its 
hierarchical distribution of items (represented by item codes) on the right of the vertical line 
from the most difficult to the easiest, and distribution of cases (represented by ‘X’) on the 
left, with both distributions sharing a common logit scale (on the extreme left). The two 
distributions are not aligned, corroborating that the test was hard for this cohort; further 
evident from the presence of more difficult items than cases above 2 logits. The model 
predicts people have a 50% chance of successfully solving items with estimates within their 
ability band (ability ± standard error), better chances of succeeding with items below the 
band and less than average probability with items located above the ability band. Items in 
Figure 1 are spread horizontally along their QUEST-generated logit locations into 6 content 
areas to facilitate discussions. 

Cognitive Developmental Hierarchy of Items  

Figure 1 displays both an overall and content-specific cognitive developmental scale of 
mathematical competence. At the top-end are the most difficult items (>3 logits, TFNS31 
and MALG14), which are complex, non-routine word problems on investigation, multi-step 
problem solving, and algebraically representing multiplicative relationships. At the lower 
end are the easiest items (<-3 logits) involving basic computation (TALG28 and MMCT01). 
Above average items but below the most difficult items, involve increasingly less complex, 
multi-step word problems on likely outcomes, rate, ratio and quantitative descriptions; 
application of students’ fraction understanding and knowledge; interpretation of complex 
diagrams, and mathematical communication. Below average items but above the easiest 
items, involve routine procedures (computing/modelling equivalent fractions); mentally 
computing percentage; algebraically transforming descriptions; mental computation; pattern 
extension (numerical and geometric); solving simple geometric word problems and linear 
equation; substitution; and graph interpretation. In summary, there seems to be distinct 
stages of cognitive development from basic computations with whole numbers at the lower 
end, through to interpretation of visual data representations and explicitly stated 
quantitative relationships around the middle (0 logits), and increasingly implicit and 

abstract quantitative relationships towards the top-end. Success rates and some common 
errors are presented next from the most difficult items and then by content area. 

Common Errors and Misconceptions 

Most difficult items. Item TFNS31 (4.32 logits, 0.7% success) showed 51 different error 
types with 26% of the students multiplying the given quantities, 22% responding “71, 6.5, 

500, 3.25, 32.5, 0.1, 0.05, or 1.2” and 15% “500/6.5” with a 28.8% baulking rate. Item 
MALG14 (3.23 logits, 1.4% success) showed 55 different error types with 14% of the 
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students responding “16, 16:1 or 1:16”, 9% wrote “y=16, n=16 or 16n”, and 6% gave 
“16S=1P, x+y=16, 16/P, 16S/P, 16/x=n or A=16/n” with a high 41.1% baulking rate. These 
errors suggested conceptual and computational difficulties. 

Item Estimates (Thresholds) all on all (N = 139 L = 36 Probability Level= .50)                             

Logits            |  Fractions        Algebra    Probability   Geometry    Measurement  Data Presentation 
                  |& Number Sense                                                          & Analysis 
5.0               |                                                    
                  | 

                  | 
                  | 
                  |TFNS31 

4.0               | 
                  | 
                  | 

                  | 
                  | 
                  |                  MALG14                                  Most Difficult Items 
3.0               | 
                  | 

                  | 
                  |                       TPRB10 
                X |TFNS09            TALG18 
2.0               |TFNS24 
                  |MFNS08 
               XX | 

                X | 
                  | 
               XX |                  TALG38                                                TDPA16      
1.0             X |                  TALG33       TPRB13          TMSR15      
             XXXX |                                TMSR34                  
                X | 
            XXXXX |TFNS30 TFNS35 

           XXXXXX |TFNS06 TFNS26                  TPRB25      
 .0      XXXXXXXX |TFNS32                                                              Item Mean = 0.00  
           XXXXXX | 

        XXXXXXXXX |TFNS22 MMCT02                                     
          XXXXXXX |                  TALG11 
         XXXXXXXX |MMCT05                                                                           
      XXXXXXXXXXX |                                                                Ability Mean = -0.93  
-1.0      XXXXXXX | 
        XXXXXXXXX |MMCT04          TALG07 TALG37       
        XXXXXXXXX |                                   TGEO20 
         XXXXXXXX |                  TALG21 
              XXX |            TALG19                  MGEO29 
-2.0        XXXXX | 
              XXX |MMCT03                                    TGEO23                         TDPA12   
             XXXX |                  TALG36       
            XXXXX | 
            XXXXX |                                                        

                X |                                                                  Easiest Items 
-3.0        XXXXX |                  TALG28                       
                X | 
                  | 
                  |MMCT01 

                X | 
-4.0              | 
                X | 

                  | 
                  | 
                  |                    

-5.0              | 
 

         Each X represents    1 student 

Figure 1. MDT 1 Item-Person Map. 

Fractions and number sense. The hierarchical difficulty order showed the most difficult 
to be a multiplicative relationship word problem (average weight) followed by a cluster of 
items on speed and unit conversion, operation with fractions and ordering fractions. Above 
the item mean is a cluster of items on speed, ratio, ordering decimals, fraction area-model, 
and fraction of an amount. Below item mean are items on equivalent fractions and mental 
computations. The latter, in decreasing difficulty, included computing percentage, 
multiplying decimals, adding unit fractions, 4-digit subtraction and multiplying 1-digit 
integers. 

For item TFNS09 (2.30 logits, 5% success), the three most common errors (from 64 
different error types) were “3x8 =24m/s” from 24% of the students; 3% wrote “3 km=8 
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min” and 1.5% responded “3000/s” with a 25% baulking rate. Item TFNS24 (2.11 logits, 
5.7% success) showed 50 different error types. The three most common errors were “38” 
(15%), “ 1

3
+

1
4

=
7
12

,” “ 1
3

+
1
4

=
2
7
,” “ 1

2
+

1
4

+
1

24
” or “ 1

3
x 1

4
=

1
12

” (14%), and “8” (6%) with a 21.3% 

baulking rate. Item MFNS08 (1.98 logits, 7.9% success), highest error rate of the test 
(87.9%), showed 16 different error types. The three most common errors were arranging 
numerators/denominators in ascending order as “  

2
3

, 3
5

, 5
6

, 7
10

” (50%) or descending order 

“
  

7
1 0

, 5
6

, 3
5

, 2
3

” (19%) and “
  

7
1 0

, 3
5

, 5
6

, 2
3

” (4%) with a 4.3% baulking rate. Errors suggested 

conceptual and computational difficulties. 
Item TFNS30 (0.38 logits, 17.9% success) showed 38 different error types. The three 

most common errors were “330-4.5” (8%), “330x4.5” (8%), and “330/4.5” (3%) with a 
35.7% baulking rate. Item TFNS35 (0.47 logits, 18.6% success) showed 40 different error 
types where the three most common errors were “2:3:6” or “200:300:600” (12%), “2:3” 
(4%) and “200+300+600=1100” (4%) with a high baulking rate of 41.1%. Item TFNS06 
(0.36 logits, 25.7% success) had 39 different error types. The three most common errors 
were “0.5, 0.25, 0.037, 0.125, 0.625” in increasing (21%) or decreasing decimal places 
“0.625, 0.125, 0.037, 0.25, 0.5” (9%), and “0.625, 0.5, 0.25, 0.125, 0.037” (6%) with a 2.9% 
baulking rate. For item TFNS26 (0.26 logits, 25.7% success), the three most common errors 
(from 11 different error types) were “3 squares” (27%), “8 squares” (10%), and “6 squares” 
(6%) with a 14.3% baulking rate. For TFNS32 (0.13 logits, 27.1% success), the three most 
common errors (from 35 different error types) were “$150” (15%), “$182” (13%), and 
“$234.20” (3%) with a 11.4% baulking rate. Item TFNS22 (-0.19 logits, 33% success) 
showed 44 different error types. The three most common errors were an incorrect third 
equivalent fraction (10%), two incorrect fractions (7%) and “ 3

4
, 4

5
, 5

6
” (3%) with a 12.1% 

baulking rate. Errors demonstrated fraction and place value misconceptions and 
computational difficulties.  

Mental computations. Item MMCT02 (-0.20 logits, 35.7% success), one of two items 
everyone attempted, showed 28 different error types. The three most common errors 

were“  15%50of30% = ” (40%), “ 30
50

x100 = 60%” (3%), and “30” (1.4%). Item MMCT05 (-0.66 

logits, 44.3% success) showed 12 different error types. The three most common errors were 
“0.3x0.3=0.9” (41%), “0.3x0.3=9” (2.2%) and “0.3x0.3=0.03” (2.2%) with a 0.7% baulking 
rate.  Item MMCT04 (53.6% success) showed 30 different error types. The three most 
common errors were “ 1

2
+

1
3

=
2
5
” (9.4%) indicating fraction misconceptions, “ 1

2
+

1
3

=
1
5

” (6%) 

suggesting mis-remembered procedures, and “1 1
2

+1 1
3

= 2 5
6
” (4%) reflecting poor listening 

skills with a 0.7% baulking rate. Errors from item MMCT03 (-2.13 logits, 71.4% success) 
showed 23 different error types. The three most common errors were “5113” (4%), “5003” 
(3%), and “4113” (3%) with a baulking rate of 1.1%. Item MMCT01 (-0.63 logits, 89.3% 
success), one of two items everyone attempted, showed 8 different error types. The two 
most common errors were “48” (1.4%) and “8x7” (1.4%) which reflected poor knowledge 
of multiplication facts.  

Algebra and problem solving. The algebra item hierarchy also reflected the cognitively 
more demanding non-routine word problems (multiplicative and additive relationships) at 
the top-end with simple word problems around the middle and routine procedures towards 
the lower-end. Item TALG18’s (2.27 logits, 5.7% success) three most common errors (from 
38 different error types) were “24m” (18%), “15m” or “9m” (16%) and “12m” (7%) with a 
17.1% baulking rate. Item TALG38 (1.26 logits, 9.3% success) showed 39 different error 
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types. The three most common errors were “ 1275x51
50 ” (7%), “1275x51” (6%) and  

“275+51=1320” (2%) with a high 41.4% baulking rate. Item TALG33 (1.09 logits, 14.3% 
success) showed 44 different error types. The three most common errors were “57 females, 

29 males” (16%), “86-14=72” (14%), and “86+14=100” (9%) with a 15% baulking rate. 
Error responses from TALG11 (-0.54 logits, 38.6% success) showed 34 different error 
types. The three most common errors were “12” (12.2%), “3” (3%), and “1/3x48 =16” 
(2.2%) and a 12.9% baulking rate. Item TALG07 (-1.17 logits, 52.9% success) showed 50 
different error types. The three most common errors were “5” (4%), “5x7+6=41” (2%), and 
“n(7+6)=41” (2%) with a 4.3% baulking rate. Item TALG37 (-1.17 logits, 49.3% success) 
showed 25 different error types. The three most common errors were “21 blocks” (4.3%), “5 

blocks” (3%), and “13 blocks” (1.4%) with a 13.6% baulking rate. Item TALG21 (-1.56 
logits, 57.9% success) showed 36 different types, and the three most common errors were 
“x=2” (3%), “x=6” (2%), and “ x =

42
18

” (1.4%) with a 9.3% baulking rate. Item TALG19 (-

1.68 logits, 62.1% success) showed 31 different error types with three most common errors 
being “ 18

15
” (4.3%), “15” (2.2%), and “3” (2.2%) with a 6.4% baulking rate. Item TALG36 (-

2.31 logits, 68.6% success) showed 18 different error types. Three most common errors 
were “9, 12” (6.4%), “10, 12” (2.2%), and “10, 20” (2.2%) with a 9.3% baulking rate. Item 
TALG28 (-3.17 logits, 83.6% success) showed 9 different error types. Three most common 
errors were “3n” (2.2%), “n

2” (1.4%), and “1x1x1” (1.4%) with a 3.6% baulking rate. Errors 
suggested conceptual and computational difficulties.    

Probability. The item hierarchical order reflected the decreasing level of cognitive 
difficulty from likely outcomes and expected number to application. Item TPRB10 (2.54 
logits, 3.6% success) showed 36 different error types. The three most common errors were 
“head” or “tail” (13%), “

  
5

10
” or “

  
1

5
” (12%) and “5/2 or 2.5” (10%) with a 31.4% baulking 

rate. Errors with TPRB13 (1.09 logits, 11.4% success) showed 35 different error types. 

Three most common errors were “ 3000
5

= 600” (10%), “100-5=95” (6%) and “5x100=500” 

(5%) with a 30% baulking rate. Item TPRB25 (0.22 logits, 23.6% success) showed 35 
different error types. The three most common errors were “ 1

11” (11%), “ 3
11” (10%), and 

“ 1
3” (3%) with a 23.6% baulking rate. Errors implied conceptual and computational 

difficulties.  

Geometry. The three items displayed a hierarchy of decreasing cognitive difficulty from 

calculating a missing angle and similar triangles to identification of a 45° angle. Item 
TGEO20 (-1.44 logits, 54.3% success), showed 24 different error types. The three most 
common errors were “115+115+70=290; 360-290=70” (6%), “115-70=45” (3%), and 
“180-115=65” (3%) with a 12.1% baulking rate. Item MGEO29 (-1.75 logits, 62.1% 
success) showed 17 different error types. The three most common errors were “12–6” (9%), 
“10-6=4” (7%), and “ 1

2
x5x6 ” (6%) with a 7.1% baulking rate. Item TGEO23 (-2.20 logits, 

72.1% success) showed 10 different error types. The three most common errors were “R” 

(>90°) (5%), “Q” (90°) (5%), and “P” (90°) (3%) with a 2.1% baulking rate, indicating 
forgotten basic geometric facts.  

Measurement. The two items were basically the same difficulty level on interpreting 
data from nested geometric shapes. Item TMSR15 (0.93 logits, 17.1% success) showed 27 
different types. The three most common errors were “144” (15%), “64” (14%), and “96” 
(11%) with a 6.4% baulking rate. Item TMSR34 (0.87 logits, 17.1%) showed 30 different 
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types. The three most common errors were “16” (19%), “12” (16%), and “15” (2%) with a 
13.6% baulking rate. Errors indicated conceptual and computational difficulties. 

Data presentation and analysis. The hierarchical order of difficulty reflected the level of 
cognitive processing required to determine a pictograph scale and reading histogram data. 
Of the 35 error types counted for item TDPA16 (1.19 logits, 13.6% success), the three most 
common errors were “51” (18%), “8” (18%), and “Orange: 6 and Lime:7 houses” (11%) 
with a 9.3% baulking rate. Item TDPA12 (-2.06 logits, 70% success) showed 14 different 
error types with the three most common errors being “5 pupils” (17%), “14 pupils” (3%), 
and “8 pupils” (1.4%) with a 1.4% baulking rate. Errors indicated conceptual and 
computational difficulties. 

In summary, for the fractions and number sense items, the highest error percentage for a 
single error type was ordering fractions using only the numerators/denominators (50%) 
followed by the product of 1-digit decimals as a 1-digit decimal (41%), the percentage of a 
number as a percentage (40%), and area-model of an equivalent fraction using only the 
numerator (27%). The next two highest error percentages were words problems where 
students simply multiplied given quantities for average weight (26%) and average speed 

(24%). For the probability items, the most common errors (≥10%) indicated misconceptions 
about likely outcomes, expected number and favourable outcomes. The most common 

misconceptions (≥5%) for the geometry items were about similarity and basic geometric 
facts. For the measurement items, the most common errors (15 and 19%) were conceptual 
difficulties extracting relevant information from diagrams while it was incorrect 
interpretation of the language of the problem and visual data (17-18%) with the data 
presentation and analysis items. Finally, if mastery of the mathematics content is set at 80% 
success rate, then mastery level was not achieved for the majority (94% or 34/36) of the 
items. Overall, two-thirds of the items were quite difficult as evident from the number of 
above-item-mean items and less-than-50% success rates. Also high baulking rates (41.1%) 
were noted for three items requiring critical interpretation of multiplicative descriptions and 
critical organization and synthesis of information (i.e., critical problem solving). Error 
analyses provided additional, empirical evidence of the nature and extent of students’ 
content-specific misconceptions and computational difficulties. 

Discussion 

Rasch statistics established that the diagnostic test was a reliable test to produce a 
unidimensional, cognitive developmental scale for students’ mathematical competence. The 
item-person map and success rates showed students found non-routine word problems with 
abstract, multiplicative descriptions the most difficult and basic computations the easiest. 
This general pattern was also reflected within each content-area. Error analyses provided 
further insights to the most common errors for each item. From the item-person map and 
error analyses, it appeared that, in addition to weak content knowledge, students generally 
demonstrated difficulties in three crucial ways, firstly, critically interpreting the meanings of 
mathematical concepts in word problems (average weight, average speed, likely outcomes, 
ratio and perimeter); mathematical representations (pictographs, bar graphs and complex 

diagrams); and mathematical language ( twice as long, 14 more females than males, 16 

students to one professor, and more than 5 minutes). Secondly, student teachers 
demonstrated difficulties critically transforming their interpretations arithmetically to obtain 
numerical values (geometric and numeric pattern extensions, relational description, and 
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operations with fractions); and algebraically to communicate general rules (tabular pattern 
extension and student:professor). Thirdly, students demonstrated difficulties critically 
managing, selecting and organizing relevant information (i.e. problem solving skills) to 
generate plausible solutions. Computational errors were also evident after selecting an 
appropriate procedure (calculating the interior angle and operations with fractions). Finally, 
findings from this study of Samoan primary student teachers contribute to the literature on 
preservice teachers’ mathematics content knowledge (Shulman, 1986; Ma, 1999; Mays, 
2005; Ball, 2000, Chick, 2002) and further confirm findings reported by others on 
misconceptions with mental computations (Callingham & Watson, 2004) and word 
problems involving fractions, and multiplicative reasoning with ratios and proportions 
(Thompson & Saldanha, 2003). 

Conclusions and Implications 

Findings from this paper show student teachers’ content knowledge of the primary and 
early secondary mathematics curriculum appears to be lacking in conceptual depth in some 
content areas. Students’ main misconceptions may be a mutual interaction of weak: (1) 
content knowledge of the curriculum, (2) critical interpretation of mathematical concepts, 
multiple representations, and language of the problem, and (3) critical problem solving 
skills (CPSS). CPSS permeate and underpin (1) and (2).  Student teachers exhibit poorly 
developed fraction and number sense such as in ordering fractions and decimals, modeling 
equivalent fractions, and operating with fractions and applying fractions in ratio and 
proportion (Thompson & Saldanha, 2003). Findings also suggest students have 
underdeveloped conceptual understanding of probability, weak knowledge of basic 
geometric properties (similar triangles, quadrilaterals, rectangles and angle types), and weak 
algebraic skills. Although they mastered mental multiplication of 1-digit whole numbers and 
simplifying basic algebraic expressions, solving word problems was difficult. As 
descriptions of quantitative relationships become increasingly abstract, implicit and 
multiplicative, students struggle to access the mathematics embodied in problem statements 
and visual representations whereas they cope better with simple word problems and basic 
computation. Student errors demonstrate poor critical problem solving skills to interpret and 
analyse given information effectively, represent, and synthesise relevant knowledge and 
appropriate procedures to generate correct responses. Since pedagogical content knowledge 
is dependent on subject-matter knowledge and curriculum knowledge, student teachers need 
to know the mathematics first as learners before they can teach others to know (Huckstep, 
Rowland, & Thwaites, 2003). Aspiring to become effective teachers of primary 
mathematics means being proficient problem solvers who are competent at mastery level 
with the content of the primary and early secondary mathematics curricula. This implies that 
explicit remediation of student teachers’ identified misconceptions needs to form part of 
their teacher education courses to specifically enhance their content knowledge, and critical 
skills in interpreting mathematical concepts, multiple representations, and language used in 
problems. 
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Appendix A 
Text Descriptions of MDT1 items. 

Item Text Descriptions Item Text Descriptions 

MMCT01 
MMCT02 

8 x 7 = ? 
What is 30% of 50? 

TGEO20 Missing angle of a quadrilateral given 

70°, 115° and 115°. 
MMCT03 
MMCT04 

8006 – 2993 = ? 
1

2
+

1

3
= ?

 
TALG21 
 

Find the value of x if 12x – 10 = 6x + 
32. 

MMCT05 
TFNS06 

0.3 x 0.3 = ? 
Write in ascending order 0.625, 0.25, 
0.037, 0.5, 0.125. 

TFNS22 

TGEO23  

Write three fractions equivalent to 2
3
. 

In the diagram, which angle has a 
measure closest to 45°? 

TALG07 
 
 
 
MFNS08 

An unknown number n is multiplied by 7 
and then 6 is added to the result. The final 
answer is 41. Write this as a mathematical 
expression. 
Write in ascending order 5

6
, 2

3
, 7

10
, 3

5
. 

TFNS24 Penny had a bag of marbles. She gave 
one third of them to Rebecca She then 
gave a quarter of the remaining 
marbles to Jack. If Penny ended up 
with 24 marbles, how many did she 
start with? 

TFNS09 An athlete ran 3 kilometres in exactly 8 
minutes. What was her average speed in 
metres/sec? 

TPRB25 Eleven chips are labelled 2, 3, 5, 6, 8, 
10, 11, 12, 14, 18 and 20 respectively. 
The eleven chips are placed in a bag  
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TPRB10 
 
 
 
  

If a fair coin is tossed, the probability that 
it will land heads up is 1/2. A fair coin is 
tossed 4 times and it lands heads up each 
time. What is likely to happen when the 
coin is tossed a fifth time? 

 
 
 
TFNS26 
TMSR27 

and one is drawn out at random. What 
is the probability that the number on 
the chip is a multiple of 3? 
Shade 3/8 in the given (6 x 4) grid. 
The length of the rectangle is twice as 

TALG11 
 

If 4 times a number is 48, what is one 
third of the number? 

  
 

long as it is wide. What is the ratio of 
the width to the perimeter? 

TDPA12 The graph shows the time taken to travel 
to school by a group of students. How 
many pupils travel for more than 10  

TALG28
MGEO29 
 

Write in simplest form n ×  n × n. 
In the diagram (of similar triangles), 
what is the length of the interval BD? 

 
TPRB13 

minutes to reach school? 
A sample of 100  light bulbs is chosen at 
random from a complete batch containing 
3000 voters. When the sample is tested, it  

TFNS30 
 
 
 

Sound travels at approx. 330 m/sec. A 
lighting strike was followed 4.5 
seconds later by a clap of thunder. 
How far away did the lightning strike? 

 
 
 
MALG14 
 

was found to contain 5 faulty light bulbs. 
How many faulty bulbs would you expect 
to find in the complete batch?  
At a particular university, there is an 
average of 16 students to every professor. 
Write this as a mathematical equation.  

TFNS31 
 
 
 
TFNS32 

A pile of salt contains 500 individual 
crystals and has a weight of 6.5kg. 
What is the average weight of a salt 
crystal? 
Laura had $240 but spent five eighths 
of it. How much money did she have 

TMSR15 
 

A rectangular garden bed adjoins a 
building as shown in the diagram.The 
garden bed has a path on 3 sides. What is 
the area of the path? 

 
TALG33 

left? 
A club has 86 members with 14 more 
female members than male members. 
How many males and females are  

TDPA16 
 
 
 
 

Two streets in a town have 30 houses 
(Orange St.) and 21 houses (Lime St.) 
respectively. This is represented in the 
pictogram. How many houses are 
represented by the symbol?  

 
TMSR34 
TFNS35 

members of the club? 
What is the area of shaded rectangle? 
A fertilizer mix contains 200g of 
nitrate, 300g of phosphate and 600 g of 
potash. What is the ratio of the weight 

TGEO17 
 
TALG18 

Which two of the four triangles are 
similar? 
An elevator starts at the first floor of a 
building. It travels up to the fifth floor, 
then down to the third floor and back up to 
the fourth floor. If the floors are 3 metres 
apart, how far did the elevator travel? 

 
 
TALG36 
TALG37 
 
TALG38 

of the nitrate to the total weight of the 
fertilizer? 
Extension of a geometric pattern. 
Extension to 2 terms of a numeric 
tabular pattern based on ALG36. 
If we produced a figure with 50 rows, 
we would require 1275 blocks. Explain 

TALG19 

 

If x = 3, what is the value of  5x +3
4x−3

 ?  how to calculate the number of blocks 
required to construct a figure with 51 
rows. 

Number in the Item Code corresponds to the Item Number in MDT1.   
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An Online Survey to Assess Student Anxiety and Attitude Response 

to Six Different Mathematical Problems 

Vincent Anderson 
Launceston College and University of Tasmania 

<Vincent.anderson@bigpond.com> 

Survey results for anxiety responses and attitude responses to six particular mathematics 

problems are presented for 43 students from grades 4, 5, and 6. These data are analysed for 

a relationship between mathematics anxiety and attitude to mathematics. An online survey 

method is used and is found to be a valuable tool for use in a primary school setting. The six 

mathematics problems vary in type between traditional levelled tasks in the form of basic 

mathematical operations and rich tasks. Basic operations are varied amongst three levels of 

difficulty and rich tasks are varied amongst three degrees of complexity of context. A weak 

relationship is found between mathematics anxiety and attitude to the six mathematics 

problems presented to students. Some differences are observed between boys and girls for 

responses to rich tasks. Also, differences in both attitude and anxiety responses are found 

due to a variation of problem difficulty for traditional basic operations. Further research is 

suggested that promises to inform the pedagogies of practicing teachers. 

Anxiety response to mathematics is a significant concern to educators in terms of the 

perception that high anxiety will relate to avoidance of mathematics. An internet search 

quickly shows the broad interest of many in this subject. This paper presents survey 

responses of a small sample of 43 upper primary school students. The context of the survey 

is an online survey environment, where students are asked to consider six particular 

mathematical problems. After each of the six problems, the students are asked to respond 

to six questions for anxiety response, based on the survey instrument used by Uusimaki and 

Kidman (2004), followed by a question of their familiarity with the question and then six 

questions for an attitude response, based on the survey instrument used by Ma and Kishor 

(1997).  

In this study, anxiety response to mathematics is taken to mean an involuntary 

emotional response to mathematical problems and mathematical language. Attitude to 

mathematics is taken to refer to a qualitatively different phenomenon, where the nature of 

the response is considered and couched in thoughtful, cognitive language. Some 

explanations of attitude to mathematics treat the concept as synonymous with mathematics 

anxiety, such as a teacher of mathematical economics, Dr Alpha C. Chiang (Huenneke, 

2005):  

Unfortunately, studying mathematics is, for many, something akin to taking bitter-tasting medicine, 

necessary and inescapable, but extremely tortuous. Such an attitude, referred to as math anxiety, has 

its roots, I believe, largely in the inauspicious manner in which mathematics is presented to students. 

Unlike the position taken by Chiang, the present study interprets attitude response to 

mathematics as a cognitive response. This differentiation between attitude response as 

cognitive and anxiety as an emotional response is informed by Goleman (1996), 

Schlöglmann (2001), Hannula (2005), and Ritchhart (2001). This differentiation is adopted 

by Kabiri and Kiamanesh (2004). Particularly Goleman (1996) describes the anxiety 

phenomenon of involuntary emotional responses that operate too quickly for cognitive 

processing to filter them. 
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The phenomenon of attitude to mathematics is considered in this study as similar to the 

concepts of Intellectual Character (IC) and Thinking Disposition, as outlined by Ritchhart 

(2001). Ritchhart refers to the limitations of traditional concepts of intelligence, and 

proposes an alternative perspective, where the importance is placed on IC, rather than the 

traditional, fixed measure of IQ. Ritchhart summarises the various interpretations of 

Thinking Dispositions from the literature and relates these to the concept of IC. Ritchhart 

differentiates IC from IQ by claiming that ability is only part of performance, where IC is a 

demonstration of a will or inclination to use these abilities, and a sensitivity to know when 

particular abilities are appropriate. Thinking Dispositions proposed by Ritchhart are: 

openmindedness, a curious nature, metacognition, truth seeking, strategic planning, and a 

sceptical nature. 

Measurement of anxiety response for this study is done through an online survey 

instrument only. Hanula (2005) identifies the difficulty of measuring affective responses, 

such as anxiety, to mathematics accurately outside of a psychology laboratory. Hanula 

favours observations of students to assess emotional response when researching in real life 

situations. The use of such techniques in a classroom environment was not feasible for this 

survey. The design of the survey is intended to allow the students to respond immediately 

to the anxiety survey questions after seeing each mathematics problem, augmented by the 

use of smiley faces and the immediacy of an online survey.  

Unlike the research of Ma and Kishor (1997), as well as Uusimaki and Kidman (2004), 

this study considers student responses to six particular mathematics problems, rather than 

mathematics in general. Ma and Kishor suggest that their focus, and that of many 

researchers, on attitude responses to general mathematics could be too broad to show 

strong relationships that are meaningful and applicable to pedagogy development. They 

suggest the use of particular problems or fields of mathematics. 

Perhaps the best solution, before more advanced attitude measures are developed, is to measure 

specific attitudes toward certain mathematical areas or activities (e.g., arithmetic, problem solving) 

rather than generalized attitude toward mathematics as a whole. (p. 40) 

Due to the use of particular mathematics problems, it is possible to survey the students’ 

familiarity with each problem type. The role of familiarity with the problem type can then 

be considered in relation to students’ anxiety and attitude responses. The use of particular 

mathematics problems also allows the effect of problem difficulty and problem type to be 

considered. The problems selected for this survey were conceived as three basic operations, 

ranging in difficulty from easy to difficult, followed by three rich tasks ranging from a 

familiar and simple context to an unfamiliar and complex context. 

The purpose of this paper is not to elaborate on the difference between rich tasks and 

traditional basic operations. Ritchhart (2001) argues the merits and attributes of rich tasks. 

Anderson (2005) reviews literature on this topic. 

Research Questions 

The research questions posed for this study are: 
 

• What is the typical anxiety versus attitude profile of upper primary school students 

in response to the three basic operations and three rich tasks selected? 

• What effect does the difficulty of the selected basic operations have on student 

responses? 
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• What effect does the complexity of the selected rich tasks have on student 

responses? 

• What trends are apparent between anxiety response and attitude response to each 

mathematics problem? 

• Are there any implications for teaching practice in the results of this research? 

• Does the method of online surveys support efficient and effective research in the 

environment of a primary school? 

Methodology 

The school that participated in this research is a primary school of approximately 300 

students in a central suburb of a city with a population of about 250,000 people. The socio-

economic background of the student population is modestly wealthy and very 

homogeneous. Nineteen girls and 24 boys in grades 4, 5, and 6 completed the survey. 

An online survey is used to measure students’ anxiety response, and then attitude 

response to six particular mathematics problems. Access to the survey is controlled with a 

password and a page that asks the students if they agree to participate in the survey. The 

design of the survey initially requests grade level and gender of the student. The structure 

of the remaining survey shows a sequence of mathematical problems to the student and 

asks them to consider solving each problem, but not to solve them. The online survey 

format reinforces this request by not allowing any area for an answer to be presented by the 

student and by stating repeatedly that students do not need to solve the problems. 

Immediately after the presentation of each problem, an anxiety survey instrument of six 

questions is presented to the students. Smiley face symbols are used to highlight the 

emotional nature of the response, as shown in Figure 1. 

 

Figure 1. Screen capture of the online survey showing the appearance of radio buttons and formatting. 

The anxiety survey instrument is based on that used by Uusimaki and Kidman (2004) 

and consists of graded responses as shown in Figure 1 to the following six statements: 
 

• I would feel comfortable. 

• I would feel nervous. 

• I would feel fine. 

• I would feel worried. 

• I would feel confident. 

• I would feel frustrated. 
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Uusimaki and Kidman (2004) also used an online survey, although with a different format, 

and they surveyed preservice teachers. The construction of this survey is modified to be 

more communicative to grade 4, 5, and 6 students through a selection of language, font 

size, and smiley faces. 

To differentiate the attitude section of the survey, the students are specifically asked to 

respond to what they think about the problem they have seen, marking a deliberate shift to 

less emotive language. Smiley faces are not used for this reason. Immediately before the 

attitude survey statements, a familiarity question is posed as a statement, I have seen 

problems like this before, requesting a graded response. 

The attitude survey statements that follow are based on those used by Ma and Kishor 

(1997) and request a graded response, but without use of smiley faces, to the following six 

statements. As with the survey instrument used for anxiety response, polarity of the 

questions are alternately reversed in an attempt to neutralize erroneous or random 

responses. 
 

• I am not good at maths like this. 

• I like this kind of maths problem. 

• I would not try to answer this maths problem if I didn’t have to. 

• I think answers to problems like this might be useful in my life. 

• I think this problem would not be easy to answer. 

• I think maths like this is important in the world. 
 

The six mathematical problems selected are shown respectively in Figure 2 to Figure 5. 

Problems 1 to 3 are basic operations (Figure 2), or traditional levelled tasks, intended to 

range from easy to difficult for the sample group. Questions 4 to 6, shown in Figures 3 to 5, 

are conceived as rich tasks. They demonstrate a broader use of language to describe context 

and present texts that the students might use in authentic contexts. The screen format in the 

actual survey for the fifth problem in Figure 4 is much larger than shown here. 

Problem 1:   

Problem 2:   

Problem 3:   

Figure 2. Three basic operation problems used in survey. 

 If 6 of your friends are coming to your house to share a pie, what 

shape would you make it so that it would be easy to cut into equal serves?  How would you 

cut it? If one person does not turn up, how could you cut the cake into 5 equal portions? 

Figure 3. Fourth example problem, sharing a pie between 5 or 6 friends. 
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You have $6.30, and your best friend has $6.90. What items could you buy from the 

following advertisement?  

 
Do you think that the food in this ad is healthy? How could you measure this? 

Figure 4. Fifth example problem, shopping with a friend. 

You have 45 friends coming around to your house to eat some French Toast with you. The cook says they 

have run out of eggs and that you need to run to the store and get enough for everyone. It’s up to you to work 

out how many dozen eggs to get for the recipe shown here. 

French Toast 

Details. 
2 eggs  

1/2 cup milk  

Pinch of cinnamon  

3 to 4 bread slices (preferably stale challah or sourdough)  

1 tbsp. butter  

Maple syrup, powdered sugar, or orange/raspberry juice concentrate (optional) 

What you do. 
Crack the eggs into a bowl, add milk, put in pinch of cinnamon.  

Whisk until well blended.  

Pour the mixture into a pie pan, dip both sides of each slice of bread in the mixture until well soaked 

Melt butter in a skillet over medium heat.  

Cook the bread for five minutes or until brown underneath, both sides. 

Transfer the bread to a clean plate and add the topping of your choice. You've made French toast!  

Recipe and illustrations by Mollie Katzen, author of Pretend Soup 

Do you think this food will be healthy for everyone who would be coming to share food? What are some 

reasons that a person might not be able to eat French Toast? How could you include them? 

Figure 5. Sixth example problem, needing eggs for a recipe. 

The use of an online survey allows the data to be transferred via email for collection 

and collation. The security of personal data is addressed by de-identifying all of the data, 

meaning that without the key of the survey, the data cannot be interpreted by third parties. 

Names are not requested for this reason. The survey is conducted within the classroom in 

small groups and interaction between the students is not discouraged. 

The anxiety and attitude data are analysed using descriptive statistics, including box-

and-whisker plots, to compare responses to the six questions for boys and girls. Familiarity 

data are considered in graphical form as positive, neutral, or negative, again for boys and 

girls. The relationship of anxiety and attitude responses is summarised in graphical form 

and the degree of association reported in r-squared values. 
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Results 

Anxiety responses are shown in Figure 6 where the discrete data have been normalised 

between extremes of -1 to +1. The overlap of responses as problems varied was significant. 

As the sample size was only 43 students, apparent trends should be interpreted reservedly. 

The most significant feature is the apparent increase in anxiety response to the three basic 

operations as there level of difficulty increases for both boys and girls. Variation in anxiety 

between the three rich tasks is less apparent for either boys or girls although there is a 

suggestion of a slight increase as the problems become more complex. 

Anxiety survey responses for 19 girls
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Anxiety survey responses for 24 boys

radio button data normalised

-1 = low anxiety, +1 = high anxiety
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Figure 6. Anxiety survey data spread, 19 girls (left) and 24 boys (right). 

The familiarity responses to the six problems are shown in Figure 7, for boys and girls. 

The responses are grouped as positive, neutral, or negative. Figure 7 shows that the girls 

familiarity steadily decreases as the problems progress and shows that boys responses are 

less regular. They show that boys show a potential increase in familiarity with more 

difficult problems, although a larger sample would be needed to support this interpretation. 

For five of the six problems, however, the girls express a higher level of familiarity. 
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Figure 7. Familiarity responses, 19 girls and 24 boys. 
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Attitude responses are shown in Figure 8 for boys and girls. The most significant 

feature is the apparent decrease in attitude response to the three basic operations as the 

level of difficulty increases for both boys and girls. Variation in attitude between the three 

rich tasks is not apparent for either boys or girls. 

 

Attitude survey responses for 19 girls
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Attitude survey responses for 24 boys

radio button data normalised

-1 = lowest attitude, +1 = highest attitude
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Figure 8. Attitude survey data spread, 19 girls and 24 boys. 

An alternative representation of the anxiety and attitude data is shown in Figure 9 with 

average and standard deviation used instead of the quartiles represented by box-and-

whisker plots. Figure 9 supports the apparent sensitivity of anxiety and attitude with 

relation to difficulty of basic operations for both boys and girls. A general trend of higher 

anxiety relating to lower attitude response is indicated by responses to the basic operations. 

Figure 9 shows a potential increase in anxiety for the most complex rich task for girls only. 

There does not appear to be any other discernable sensitivity of attitude and anxiety with 

relation to the three rich tasks selected for this survey, particularly for boys.  

 

Average attiude vs average anxiety

Girls only, 1 standard deviation shown for each data set

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Anxiety response

A
tt

it
u

d
e

 r
e

s
p

o
n

s
e

Pr 1 basic op: Simple subtraction

Pr 2 basic op: Addition with carry over

Pr 3 basic op: Double digit multiplication

Pr 4 rich task: Sharing a pie

Pr 5 rich task: Shopping with a friend

Pr 6 rich task: Eggs needed for a recipe
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Figure 9. Average attitude versus anxiety for different mathematics problems, girls and boys. 
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The general trend of a reduction in attitude with an increase in anxiety response is also 

indicated by Figure 10 where attitude response and anxiety response to all six problems are 

shown together. Each data point represents one student’s response to a particular problem. 

 

Figure 10. Attitude vs Anxiety responses for all six mathematics problems. 

Although not shown in individual graphs here, the squared Pearson’s correlation 

coefficient values for each of the six problems, showing the strength of the association for 

boys and girls is shown below in Table 1. The sign of all correlation coefficients is 

negative. For all problems except the first, the association of anxiety and attitude is 

stronger for girls than for boys. 

Table 1 

Summary of Pearson’s r² Values for Variation of Data from Trendlines for Attitude Versus 

Anxiety 

 Boys Girls 

Problem 1 0.339 0.336 

Problem 2 0.390 0.678 

Problem 3 0.302 0.756 

Problem 4 0.451 0.672 

Problem 5 0.236 0.507 

Problem 6 0.231 0.704 

Discussion 

The role of anxiety response is assumed to be a powerful driver of decision making for 

students in discontinuing with mathematics or avoiding mathematics and further 

entrenching an innumerate self perception for those afflicted. Although this survey asks for 

responses to six particular problems whereas other research asks for responses to 

mathematics in general, if Figure 10 is considered as indicative of students’ responses to 

mathematics in general, the results compare favourably with other research. Bowd and 

Brady (2003) cite Hembree (1990), from a meta-analysis of 151 pre-service teachers: 

Hembree also noted that preservice arithmetic teachers were especially prone to mathematics anxiety 

and that positive attitudes toward mathematics consistently related to lower mathematics anxiety. 

Attitude vs Anxiety responses 
All six mathematics problems 
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Kabiri and Kiamanesh (2004) found a similar relationship with an r
2
 coefficient of 0.4 

from a survey of 366 Iranian eighth graders. 

Answers to Research Questions 

What is the typical anxiety versus attitude profile of upper primary school students in 

response to the three basic operations and three rich tasks selected? Students typically 

show a reduction in attitude to a mathematics problem that they also show an increase in 

anxiety response towards. Student responses range almost the full scale of attitude and 

anxiety with most responses lower than neutral anxiety and higher than neutral attitude. 

There are very few responses that show a high attitude associated with a high anxiety. 

What effect does the difficulty of the selected basic operations have on student 

responses? The range of basic operations selected caused a surprisingly large difference in 

anxiety response and an apparent difference in attitude response. 

What effect does the complexity of the selected rich tasks have on student responses? 

The range of rich tasks selected was not associated with significant variation of attitude or 

anxiety responses. 

What trends are apparent between anxiety response and attitude response to each 

mathematics problem? A weak and negative correlation is found for all problems, where an 

increase in anxiety response is associated with a decrease in attitude. Squared Pearson’s 

correlation coefficients are shown in Table 1. 

Are there any implications for teaching practice in the results of this research? 

Teachers are invited to interpret these data in terms of their own practice. One feature 

worthy of note is the small number of responses showing high attitude and high anxiety 

response. This would indicate that anxiety is not an effective motivator for some students’ 

performances. Knowledge of the potentially stronger association of anxiety and attitude for 

girls may assist teachers in planning classroom activities and the attitudes they themselves 

exhibit. Knowledge of increased anxiety with increasing difficulty of basic operations 

would not be a surprise to teachers but again may assist in planning support for students 

who struggle. 

Does the method of online surveys support efficient and effective research in the 

environment of a primary school? The online survey method was observed to be engaging 

to the students. The value of receiving data in an electronic format made translation and 

analysis of the data easier. This ease of handling data meant that as a researcher in the 

classroom the researcher could focus on managing the flow of students and answering their 

technical questions. The format of the online survey was also well received by the three 

classroom teachers who generously allowed their classes to participate in the survey. There 

were a handful of students who opted not to participate in the survey of their own accord, 

whereas two parents responded with withdrawal of consent. Of three classes, the take up 

rate was very encouraging for the use of web based surveys in the future. 

Limitations of the Study and Suggestions for Further Research 

The sample size of this study is small. A larger sample group would allow stronger 

conclusions and invite more detailed analysis of data. A sample that also included a wider 

range of socioeconomic variation would also allow conclusions to be applicable more 

broadly to teaching practice. 

Mathematics: Essential Research, Essential Practice — Volume 1

101



Anxiety is understood to be an involuntary emotional response, best measured by 

involuntary responses such as perspiration, body language or twitching, as suggested by 

Hanulla (2005). Calibration of the anxiety survey instrument in relation to involuntary 

responses would establish the degree of validity of measuring anxiety response with a 

survey instrument only. 

No deliberate attempt was made explicitly to link the particular skills required to solve 

the relative rich task and basic operation in this survey design although some similarity was 

intended. Future survey designs should align the skills required between relative problems 

of different kinds to allow stronger conclusions when comparing types of problems that 

teachers might set for students. 

This study was not designed to investigate any potential causal relationship between 

attitude response and anxiety response. A longitudinal study to establish cause and effect 

between anxiety and attitude would be valuable in terms of informing teaching strategies 

that might address cause and not effect. 

 

Acknowledgement. This study was conducted as part of the Bachelor of Teaching 

Honours Program at the University of Tasmania under the supervision of Jane Watson. 

References 

Anderson, V. (2005). Investigation of the relationship between anxiety response and attitudinal response to 

six mathematics problems: upper primary students. Unpublished Honours Thesis. Hobart: University of 

Tasmania. 

Bowd, A. D., & Brady, P. H. (2003). Gender differences in mathematics anxiety among preservice teachers 

and perceptions of their elementary and secondary school experience with mathematics. Alberta Journal 

of Educational Research, 49(1). Available at http://proquest.umi.com.ezproxy.utas.edu.au/pqdweb? 

index=2&did=579671371&SrchMode=3&sid=1&Fmt=3&VInst=PROD&VType=PQD&RQT=309&V

Name=PQD&TS=1176534708&clientId=20931&aid=1 

Goleman, D. (1996). Emotional Intelligence: Why it can matter more than IQ. London: Bloomsbury 

Publishing Plc. 

Hannula, M. (2005). Understanding affect towards mathematics in practice. Abstract submitted to the Fourth 

Nordic Conference on Mathematics Education, Relating Practice and Research in Mathematics 

Education, Trondheim, Norway. Retrieved on 15/7/05 from http://norma05.hist.no/Abstracts/Hannula.pdf 

Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in 

Mathematics Education, 21, 33-46. 

Huenneke, S. (2005).  Does Econ Answer Man have a way for us mortals to do better in economics? 

Retrieved 16/9/2005 from: http://warp6.cs.misu.nodak.edu/econ/econanswerman/econans1.html. 

Kabiri, M., & Kiamanesh, R. (2004). The role of self-efficacy, anxiety, attitudes and previous math 

achievement in students' math performance. Unpublished paper. Tehran: Institute for Educational 

Research, Teacher Training University, Tehran, Iran. 

Ma, X., & Kishor, N. (1997). Assessing the relationship between attitude toward mathematics and 

achievement in mathematics: A meta-analysis. Journal for Research in Mathematics Education, 28, 26-

27. 

Ritchhart, R. (2001). From IQ to IC: A dispositional view of intelligence. Roeper Review, 23, 143-150. 

Schlöglmann, W. (2001). Affect and cognition: Two poles of a learning process. Proceedings of the 3rd 

Nordic Conference on Mathematics Education, Kristianstad, Sweden. Retrieved 9/9/05 from 

http://www.education.monash.edu.au/centres/sciencemte/docs/vamp/schloglmann2001.pdf 

Uusimaki, L., & Kidman, G. (2004, November). Reducing maths-anxiety: Results from an online anxiety 

survey. Paper presented at the Australian Association for Education Research Annual Conference, 

Melbourne. Available at http://www.aare.edu.au/04pap/kid04997.pdf 

 

 

Mathematics: Essential Research, Essential Practice — Volume 1

102



Collective Argumentation and Modelling Mathematics Practices 
Outside the Classroom 

Raymond Brown 
Griffith University 

<ray.brown@griffith.edu.au> 

Trevor Redmond 
AB Paterson College 

<trd@abpat.qld.edu.au> 

An important aspect of bringing about change in the mathematics classroom is gauging the 
efficacy of the change in bringing about learning that has application outside the school 
classroom. The research reported in this paper is situated within an on-going study where 
over 20 teachers of mathematics in the middle years of schooling are using the practices of 
Collective Argumentation to bring about change in their classrooms. This paper reports on 
one aspect of the study that sought to explore whether students who use Collective 
Argumentation on a regular basis in their classrooms view mathematics as providing a 
forum where personal understandings can be expressed, re-considered, shared and co-
authored when they go about knowing and doing mathematics in a novel context – an inter-
school mathematics modelling challenge. The results of the exploration are discussed and 
situated within the context of the findings of the on-going study. 

The Mathematics Teacher’s Lament 

“I spent 3 weeks teaching this and the students do not have a clue what I am talking about.” 

In the day-to-day operation of a school, comments such as the one above are common. 
When it comes to mathematics, there is evidence to support the idea that many students are 
disinterested and unwilling to engage in the teaching and learning process (Boaler & 
Greeno, 2000). Often students question what is being taught in class because they do not 
see the relevance of what they are doing (Pajares & Graham, 1999). Students question, 
“Why do we have to know this?”; “Where am I ever going to use this?” Yet it is interesting 
that many mathematics teachers persist with teaching and learning practices that perpetuate 
the view that mathematics understandings are transmitted rather than constructed 
(Schoenfeld, 2004). 

In terms of teaching for understanding, Perkins (1992) has identified shortfalls in 
education. One shortfall that he identifies refers to “inert knowledge” (p. 22), that is, 
knowledge that is only able to be articulated by the student if the right stimulus is provided 
by the teacher. A question is asked and that triggers a response that allows the student to 
give the correct answer. At this level of knowledge acquisition, the teacher may incorrectly 
assume that a student has developed understanding of a concept only to find later that the 
student is unable to apply the knowledge to a novel situation. 

Another shortfall that Perkins (1992) has identified is “ritual knowledge” (p. 25). In 
displaying this type of knowledge, students have learnt to play the school game. They are 
able to use the language of mathematics and they are able to use the correct mathematical 
procedures to manipulate mathematical expressions such as equations, but they have 
difficulty modelling the mathematics, for example, building equations, when they are 
embedded in a novel context. 

If, as Perkins (1992) argues “learning is a consequence of good thinking” (p. 8), 
suitable problem solving routines need to be built in the classroom that allow students to 
develop understanding through the use of good thinking skills. Students need to be 
encouraged to use thinking routines (Richart, 2002, p. 89), that may become part of their 
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repertoires of practice when coming to know and do mathematics. The routine needs to be 
simple, explicit, and provide students with a mechanism to engage with the task, construct 
meaning, build a solution, and communicate that solution to others (Richart, 2002, p. 90). 
One such routine that has been taken up by teachers to privilege student understanding in 
the mathematics classroom is Collective Argumentation (Brown & Renshaw, 2000). 

Collective Argumentation 

Collective Argumentation involves the teacher and students in ways of coming to 
know, do, and value mathematics that reflect the investigative processes and ways of 
interacting employed by the mathematical community. In simple terms, collective 
argumentation involves the teacher and students in small group work (two to five students 
per group) where students are required, initially, to “represent” a problem individually by 
using pictures, diagrams, drawings, graphs, algorithms, numbers, etc. Students are then 
required to “compare” their representations with those of other group members. This phase 
of individual representation and comparison provides the potential for differences in 
understanding of curriculum content to be exposed and examined. Subsequent talk by the 
students regarding the appraisal and systematisation of representations is guided by the 
keywords – “explain”, “justify”, “agree”. Finally, moving from the small group to the 
classroom collective, the thinking within each group is validated for its consistency and 
appropriateness as it is presented to the whole class for discussion and validation. 

The Teacher’s Role in Collective Argumentation 

The teacher has an active role throughout each phase of Collective Argumentation. The 
tasks of the teacher include: (a) allocating management of the problem-solving process to 
the group; (b) facilitating peer co-operation by reminding students of the norms of 
participation; (c) participating in the development of conjectures and refutations; (d) 
modelling particular ways of constructing arguments; (e) facilitating class participation in 
the discussion of the strengths and weaknesses of a group’s co-constructed argument, (f) 
introducing and modelling appropriate mathematical language; and (g) providing strategies 
for dealing with the interpersonal issues that may arise when working with others. 

This paper explores the effects of Collective Argumentation in making visible students’ 
understandings as they go about knowing and doing mathematics in a novel context – an 
inter-school mathematics modelling challenge. Specifically, the paper seeks to explore 
whether a group of students from a Collective Argumentation classroom see mathematics 
as providing a forum where personal understanding is privileged, that is, as providing a 
space where personal understandings can be expressed, re-considered, shared and co-
authored. 

Method 

This paper arises from an on-going study of teachers’ appropriation of the practices of 
Collective Argumentation into their everyday teaching of mathematics and/or science. The 
study is being conducted over a three-year time frame with 20 elementary and middle 
school teachers of mathematics and/or science from six schools located in South-East 
Queensland. The study employs a sociocultural design, based on a “design-experiment” 
(see Schoenfeld, 2006). The “design-experiment” is an extension of Vygotsky’s (1987) 
experimental-developmental method that was designed to capture the determining 
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influence of social and cultural processes on learning and development. From this 
perspective, the activity of the students, the activity of the teacher/researcher, and the co-
constructed activity of the classroom, interrelate at a number of levels to create the “life 
context” of the mathematics classroom. A “design-experiment”, therefore, requires 
multiple sources of data to be collected and involves prolonged, systematic inquiry into 
change through engagement in collaborative cycles of analysis, design, implementation, 
assessment, and reflection. The authoring of this paper is an artifact of this cyclical process. 
 

Participants. The teacher, whose students are the focus of this paper, had been using 
the practices of Collective Argumentation to inform his teaching of mathematics to 
students for one school year. The teacher taught at a P-12 school located in a middle-class 
suburb of a major city. Thirteen students (seven girls and six boys) from this teacher’s Year 
5/6 class and 14 students from other schools had been encouraged by their teachers to 
participate in the Year 6/7 section of an inter-school mathematics modelling challenge. 
Three of these students (two girls and one boy) – Helen, Nicole, and Neil – form the focus 
of this paper. All three students were high-achievers in mathematics. 
 

The Challenge. The challenge was conducted over a 2-day period at the campus of a 
local university during the last week of November and was attended by 220, Year 4 to Year 
11 students from South-East Queensland. Each day of the challenge lasted from 9:00am till 
3:00pm and consisted of three sessions broken by morning tea and lunch. During the 
challenge, students were allocated to a group of four students and invited to work with 
mathematics educators on authentic mathematical modelling tasks appropriate for their 
year level. At the completion of the challenge each member of the group, at each year level, 
judged to have provided the best mathematical model of a solution to a task was awarded a 
plaque and a calculator valued between $50 and $150. 
 

The Task. The students who form the focus of this paper were allocated to the same 
group. The group comprised Helen, Nicole, Neil and Aaron (a student from a local state 
school). Over the two days of the challenge, the students were engaged with the task of 
designing, building to scale, and mathematically modelling a mini-golf course. Each group 
was required to design a mini-golf hole on graph paper – complete with blockers, tunnels 
and other obstacles – and create a theoretical hole-in-one path of the ball such that each 
angle of incidence equalled the corresponding angle of reflection. Each group was required 
also to represent their mini-golf hole design on graph paper, provide a spreadsheet showing 
the segment angles, slopes, and linear equations, and provide a short journal entry of their 
experience with the challenge. Each group received a poster board, a piece of green felt, 
wooden blocks, cardboard tubes, and a marble along with graph paper and a criteria 
checklist. Four computers, connected to the internet were available for the students to use. 
Clarification of task requirements was provided to each group by a mathematics educator, 
however no direct teaching of task content was provided. 
 

Data Collection. The targeted group was video- and audio-taped by research assistants 
at three pre-determined one-hour segments of the mathematics challenge. The first 
recording occurred in the middle-session of the first day of the challenge, recording 
sessions two and three occurred in the morning and middle-sessions of the second day. 
However, the research assistants were present for the entirety of the challenge and video-
recorded the targeted group outside pre-determined times when they thought that 
something of interest to the research was happening. At the conclusion of the challenge, all 
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video- and audio-tapes were transcribed and names were replaced with pseudonyms. 
Consent was sought and gained from the participants for the transcripts to be used for 
research purposes. 

The sections of transcript provided in this paper were taken from the second pre-
determined taping session and from a moment of interest in the challenge when students 
communicated to other students outside their group. These segments of text were chosen 
for analysis because they provide instances of students talking about what they learnt and 
accounts of how they came to know the conceptual elements of the task. 
 

Data Analysis. Bakhtin’s (1986) notion of “voice” was used to analyse the transcripts. 
Bakhtin (1986) formulated a theory of voice that emphasized the active, situated, and 
functional nature of speech as it is employed by various communities within a particular 
society. Taking the notion of “utterance” rather than “word meaning” as a basic unit of 
communication, Bakhtin maintained that in dialogue with others, people align themselves 
within different speaking positions or voice types as they produce or respond to an 
utterance or a chain of utterances. Such voice types reflect the social ways of 
communicating that characterize various group behaviors (eg., professional communities, 
age groups, and socio-political authorities) that a person has had the opportunity and/or 
willingness to access. As such, “voice” as used in this paper, encompasses “what” is being 
said, the “way” in which it is spoken, and the positioning of speakers in relation to the 
authority framework established within the communication. 

Analysis and Discussion 

We enter the mathematics modelling challenge when Helen, Nicole, Neil and Aaron (a 
student from a different school) are preparing a short journal entry of their experience with 
the challenge. The extract is taken from the second targeted data collection session held in 
the morning of the second day of the challenge (see Table 1). 

Table 1 
Maybe our Whole Group Learnt About it 

Turn Speaker Text 

01 Nicole Aaron learnt, what did you learn? 

02 Aaron I learnt lots. 

03 Nicole Well then tell us. 

04 Aaron I learnt about slope. 

05 Neil Maybe our whole group learnt about it. 

06 Helen I didn’t (learn about slope), I had to do it (y = mx + 3). 

07 Neil (I learnt) About the equations. 

08 Helen y = mx + 3 
 

We enter the script where Nicole is recognising Aaron’s “belonging” in the group by 
asking him what he had learnt from engaging with the mini-golf task. Instead of accepting 
Aaron’s general response (turn 2 - I learnt lots) and then moving to record the responses of 
the other members of the group who were from her school, Nicole encourages Aaron to be 
reflective and to consider the specifics of what he had learnt (turn 3 – Well then tell us). 
This action reflects a reason Nicole’s teacher gave for taking up Collective Argumentation 

Mathematics: Essential Research, Essential Practice — Volume 1

166



in the classroom, “We want to encourage our students to be reflective and consider how the 
various concepts (in mathematics) are related”. 

Collective Argumentation privileges this level of understanding by requiring students 
to explain and justify their learning on a regular basis, therefore, making knowledge public. 
Explaining and justifying involves the gathering and sharing of evidence that satisfies 
disciplinary constraints associated with coherence and logic. Explaining and justifying 
allows students to become conscious of others’ ideas and points of view, allowing 
processes of thought as well as products to become visible. 

This privileging of reflecting on understanding continues as the other members of the 
group comment on their personal understandings relating to “slope”. Here we see students 
being reflective, considering what they have learnt (turn 7- About the equations) and what 
they did not learn (turn 6 – I didn’t, I had to do it). However students saying they have 
learnt it does not mean they understand it, as Helen reveals in the next sequence of text (see 
Table 2). 

Table 2 
I Knew Something that you Didn’t Know 

Turn Speaker Text 

09 Nicole Helen, what did you learn today? 

10 Helen y = mx + 3 

11 Nicole Didn’t you already know that? 

12 Helen No, how to do it, like I knew what it (slope) was, I just didn’t know 
how to do it (slope). 

13 Nicole Didn’t you know how to do it (slope)? 

14 Helen You (Nicole) didn’t. 

15 Nicole Yes I did, well I knew how to do it the obvious way, I knew how to 
do it on a graph, but on quadrant things (quadrants of a full grid). 

16 Neil I knew something that you didn’t know. 
 

Here we see Helen and Nicole linking what they know, considering a different strategy 
(using y = mx + 3 [turn 10] or graphing a line on a grid [turn 15]) and recognising they are 
doing the same thing. Through this text, we see Helen and Nicole transferring the 
mathematical tools they had leant in the classroom to this context and recognising that 
there are different ways of applying those tools and different levels of knowing about and 
using mathematical tools. 

Collective Argumentation privileges the recognition of multiple representations of a 
mathematical idea through requiring students to represent a solution or idea about a task 
individually and to compare their representation with others. When students complete a 
brief written response to a text, or a solution to a problem, or an evaluation of the 
effectiveness of an experiment, they are more likely participate in any discussion that 
follows, ask questions of others, share ideas with others, and to self-monitor their 
understanding (Gaskins, Satlow, Hyson, Ostertag, & Six, 1994). Comparing 
representations allows students to see what is the same and what is different about their 
ideas and interpretations. In the process, it can help students learn by making them view 
concepts from different perspectives, and can be affirming as students see congruence 
between ideas and representations (Feltovich, Spiro, Coulson, & Feltovich, 1996). 
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Through recognising that Nicole is using a graphical approach to completing the task 
and that Helen is using an algebraic approach, the students pave the way for relating 
procedural to conceptual understanding, as illustrated in the following sequence (see Table 
3). 

Table 3 
We Used it, but we Didn’t Know How 

Turn Speaker Text 

17 Nicole Neil, what did you learn? 

18 Neil I learnt that, I learnt just that (y = mx + 3). 

19 Nicole What do you mean just that? y = mx + 3? 

20 Neil Just write everybody learnt that (y = mx + 3), because we all did 
learn that, yeah everybody learnt it. 

21 Nicole I need an eraser. 

22 Neil So you don’t have to write just Aaron (learnt y = mx + 3) cause we 
all learnt it.  

23 Nicole Did anyone else learn anything that’s not there (in the journal 
entry)?  

24 Neil Um maybe we … 

25 Nicole How to use slope or anything? 

26 Helen That (slope) is part of the equation. 

27 Neil Yeah, that’s part of the equation. Let’s see, what about how to … 

28 Aaron Did you know that equation (y = mx + 3) before we came (to the 
challenge)? 

29 Nicole We used it (y = mx + 3), but we didn’t know how. 

30 Helen That’s how to find out ‘m’. 
 

Once again (turns 17 & 19) a member of the group, Neil, is asked by Nicole to 
explicate what he learnt from engaging in the mini-golf task. Neil’s admission that he 
learnt about slope (turn 22 - So you don’t have to write just Aaron cause we all learnt it) 
marks a moment in the conversation when this grouping of students from two different 
schools, have become a group who are willing to take ownership of their learning. In so 
doing, links are made between “how to use slope” (turn 25) and the algebraic equation –  
y = mx + 3 (turn 26 – that’s part of the equation) and between the concept of “slope” and 
its algebraic representation “m” (turn 30). 

Collective Argumentation privileges linking conceptual with procedural understanding 
and linking individual with collective understanding by requiring that the group attain 
consensus about a response to a task that they can present to the whole class – a response 
that each member of the group understands. Consensus based on understanding is the end 
product of a process of considering and critiquing. Students negotiating a common 
understanding of a representation or idea take learning from the co-operative to the 
collaborative plane of learning. 

This willingness to collaborate in the sharing of understandings continues in the next 
sequence of text, which was recorded in a moment of interest when the group extended its 
boundaries to include members from other groups undertaking the challenge. We enter the 
script where Helen has just explained to her group how to find the slope “m” in the 
equation y = mx + 3 (see Table 4). During the explanation, students from other groups 
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gather around to listen. The students included Gail (another student from Nicole, Helen, 
and Neil’s school). 

Table 4 
Let me Explain How to do “m” 

Turn Speaker Text 

31 Nicole Yeah, I got that, I got it (y = mx +3). 

32 Neil Yeah I do (understand). 

33 Nicole Because I didn’t really get it (y = mx + 3) before, 
but I understand now. 

34 Gail So you (Helen) just explained how to do ‘m’? 

14 Neil Let me explain how to do ‘m’. 

15 Gail He (points to a boy in her group) needs to figure out 
also how to do ‘b’ (the Y Intercept). 

16 Helen mx + 3, equals ‘b’ equals Y intercept. 

17 Gail He (a boy in her group) doesn’t get (understand) it. 

18 Helen Whatever Y intercept is, is ‘b’. 

19 Gail He (a boy in her group) doesn’t understand. 

20 Helen Y intercept is when the Y, where the point Y is. 
Well then you (Neil) can explain it then. 

 

The interaction of students in the above text is interesting for students engaged in an 
inter-school mathematics challenge. The challenge relating to the mini-golf course can be 
won by one group only. Helen, in demonstrating her understanding of how to find the slope 
of a line between two points provides an explanation that is attended to by students not in 
her group. Not only does Helen share her understanding with Nicole (turn 31) and Neil 
(turn 32), but also she receives a request from Gail (a member of another group) to explain 
again how to find the slope, as a boy in Gail’s group does not understand. Neil requests 
permission to provide the explanation (turn 14). However, Helen simply revoices the main 
point of her explanation (turn 16). Upon receiving a signal from Gail that this revoicing is 
insufficient (turn 19), Helen gives Neil permission to explain. Neil goes on to present an 
explanation to the gathered audience that results in a number of students from different 
groups working together to build a model that they can use to make predictions. 

Collective Argumentation privileges a view of mathematics as being about engagement 
in communal practice by requiring each group to present their agreed approach to the class 
for discussion and validation. Such presentations of group work permit students to engage 
with the conceptual content of a lesson at their level, to employ their own prior 
experiences, preconceptions, and language, and to distribute the nature of their knowing 
across a group rather than in a fashion that focuses on any one individual. 

Conclusion 

This paper set out to explore the effects of Collective Argumentation in making visible 
students’ understandings as they go about knowing and doing mathematics in a novel 
context – an inter-school mathematics modelling challenge. The nature of the learning 
displayed by Helen, Nicole, and Neil as they engaged with the mathematics challenge of 
designing a hole-in-one mini-golf course, suggests that these students view doing the 
mathematics as providing a forum where personal understandings can be expressed, re-
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considered, shared, and co-authored – an unusual stance for students engaged in what 
might be viewed as a mathematics competition. 

The nature of collaboration constructed by Helen, Nicole, and Neil displayed many of 
the characteristics of Collective Argumentation – a way of teaching and learning 
mathematics frequently employed by their classroom teacher. The above analysis of 
student-student interaction suggests that within this group’s way of doing the mathematics 
challenge, understanding emerged around shared practice; that is, a collaborative space 
emerged where a voice of inquiry was enacted that privileged: (a) the relating of conceptual 
understanding to procedural understanding (e.g., determining slope and the Y intercept to 
build the equation, y = mx + b); (b) group ownership of learning over individual 
performance (e.g., designating new learning about slope to the whole group rather than just 
to an individual within the group); and (c) mathematising, that is, knowing not only the 
mathematics, but also how and when to use the mathematics, over “ritual” knowing (e.g., 
as suggested by Nicole’s statement – We used it (y = mx + 3) but we didn’t know how). 

Within this collaborative space, on-going processes for adding meaning to the mini-
golf task such as representing, comparing, and explaining were used by the students in a 
fashion that allowed their individual representations, ideas, and points of view to become 
products of the moment, able to be used by others to progress understanding. Students’ 
interactions, as portrayed in the above transcripts, imply that within the collaborative space 
constructed by the students within the constraints of the mathematics modelling challenge, 
students not only co-constructed knowledge, but also developed an awareness of the “self” 
as operating with tools of mathematics (e.g., y = mx + b), of the self operating as a 
mathematician. 

This paper has provided some evidence that students who experience Collective 
Argumentation on a regular basis in their classrooms do see mathematics as providing a 
forum where personal understandings can be expressed, re-considered, shared, and co-
authored when they go about knowing and doing mathematics in a novel context. The 
interactions between Helen, Nicole, and Neil occurred within a real novel context centred 
around real mathematics challenges. Rather than displaying individual personalities 
engaged in competitive intellectual practice, Helen, Nicole, and Neil were drawn into a 
culture of inquiry that displayed distinct co-operative and collaborative relationships. 
However, this culture of inquiry did not happen by chance but is, we argue, a result of 
regular participation in the collaborative partnerships and relationships of Collective 
Argumentation. 

In terms of the larger study in which these students and their teacher are situated, over 
80% of the 20+ teachers who commenced doing Collective Argumentation in their 
classrooms in 2006, have carried these practices over into 2007. The major reasons 
provided by teachers who ceased participating in the study related to change of school, year 
level, or status within the school system. The teachers who have continued with Collective 
Argumentation in 2007 report an increased desire by their students to learn mathematics in 
the middle school years when doing Collective Argumentation and a corresponding decline 
in student behaviours that disrupt teaching-learning relationships. Teachers also report a 
growing need for professional development in the content domains of mathematics as they 
move away from using textbooks and structured mathematics lessons towards using the 
practices of Collective Argumentation to scaffold the teaching-learning relationship. In 
2007, these teachers will be joined by eight more teachers from their respective schools 
who, after seeing these teachers successfully negotiate two rounds of reporting to parents, 
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have expressed a desire for their students to use Collective Argumentation to come to know 
and do mathematics. 
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Several studies have investigated how the formation of informal conjectures, and the 

dialogue they evoke, might influence young children’s learning trajectories, and enhance 

their mathematical thinking. In a digital environment, the visual output and its distinctive 

qualities can lead to interpretation and response of a particular nature. In this paper the 

notion of visual perturbance is explored, and situated within the data obtained, when ten-

year-old children engaged in number investigations in a spreadsheet environment. 

 When learners engage in mathematical investigation, they interpret the task, their 

responses to it, and the output of their deliberations through the lens of their fore-

conceptions; their emerging mathematical discourse in that perceived area. Social and 

cultural experiences always condition our situation (Gallagher, 1992), and thus the 

perspective from which our interpretations are made. Learners enter such engagement with 

fore-conceptions of the mathematics, and the pedagogical medium through which it is 

encountered. Their understandings are filtered by means of a variety of cultural forms 

(Cole, 1996), with particular pedagogical media seen as cultural forms that model different 

ways of knowing (Povey, 1997). The engagement with the task likewise alters the learner’s 

conceptualisation, which then allows the learner to re-engage with the task from a fresh 

perspective. This cyclical process of interpretation, engagement, reflection, and re-

interpretation continues until some resolution occurs.  

This echoes of Borba and Villareal’s notion of humans-with-media (2005), where they 

see understanding emerging from an iterative process of re-engagements of collectives of 

learners, media and environmental aspects, with the mathematical phenomena. Some 

models of human behaviour likewise incorporate mind, mediating tools and tasks with 

societal and community influences, for example, activity theory (Engestrom, 1999). Other 

researchers emphasise the eminence of mental schemes, which develop in social interaction 

(e.g., Keiren & Drijvers, 2006). In essence the mathematical task, the pedagogical medium, 

the fore-conceptions of the learners, and the dialogue evoked are inextricably linked. It is 

from their relationship with the learner that understanding emerges. This understanding is 

their interpretation of the situation through those various filters. 

When learners investigate in a digital environment, some input, borne of the students’ 

engagement with, or reflection on the task, is entered. The subsequent output is produced 

visually, almost instantaneously (Calder, 2004) and can initiate dialogue and reflection, 

perhaps internally for the student working individually. This will lead to a repositioning of 

their perspective, even if only slight, and they re-engage with the task. They either 

reconcile their interpretation of the task with their present understanding (i.e., find a 

solution) or they engage in an iterative process, oscillating between the task and their 

emerging understanding. This allows for a type of learning trajectory that can occur in 

various media (Gallagher, 1992), but is evident in many learning situations that involve a 

digital pedagogical medium (Borba & Villareal, 2005). 

There are, however, opportunities or constraints associated with the process. This paper 

is concerned with one aspect that might be perceived as a constraint, visual perturbances, 
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but which can offer opportunities for enhanced mathematical understanding. When the 

students’ fore-conceptions suggest an output that is different to that produced, a tension 

arises. There is a gap between the expected and the actual visual output. It is this visual 

perturbation that can either evoke, or alternatively scaffold, further reflection that might 

lead to the reshaping of the learners’ perspectives: their emerging understanding. It shifts 

their conceptual position from the space they occupied prior to that engagement. The 

learner’s reaction, if it emerges as a conceptual tension, is what I am defining as a visual 

perturbance. It is the tension for the learners between what their fore-conceptions indicated 

and the actual visual output the pedagogical medium produced.  

As learners re-engage with the task, informal mathematical conjectures often have their 

speculative beginnings (Calder, Brown, Hanley, & Darby, 2006). Other researchers have 

noted that the development of mathematical conjecture and reasoning can be derived from 

intuitive beginnings (Bergqvist, 2005; Dreyfus, 1999; Jones, 2000). This intuitive, 

emerging mathematical reasoning can be of a visual nature. In both algebraic and geometric 

contexts learners have used visual reasoning to underpin the approach taken to conjecturing 

and generalisation (Calder, 2004; Hershkowitz, 1998). Meanwhile, Lin (2005) claims that 

generating and refuting conjectures is an effective learning strategy, whereas argumentation 

can be used constructively for the emergence of new mathematical conceptualisation 

(Yackel, 2002). Visual perturbances, and the dialogue they evoke, can generate informal 

conjectures and mathematical reasoning as the learners negotiate their interpretation of the 

unexpected situation. Research into students’ learning in a computer algebra system 

environment (CAS), likewise revealed that probably the most valuable learning occurred 

when the CAS techniques provided a conflict with the students’ expectations (Keiran & 

Drijvers, 2006). If the visual perturbance induced by investigating in a digital medium 

meant the learner framed their informal conjectures in a particular way, it is reasonable to 

assume that their understanding will likewise emerge from a different perspective. 

Method 

This paper reports on an aspect emerging from the data of an ongoing study into how 

spreadsheets, as a pedagogical medium, might influence learning trajectories and filter 

understanding in problem solving processes. This part of the study involved a group of ten-

year-old students, attending five primary schools, drawn from a wide range of socio-

economic backgrounds. There were four students from each school, who had been 

identified as being mathematically talented through a combination of problem solving 

assessments and teacher reference: eleven boys and nine girls. Their discussions were audio 

recorded and transcribed, each group was interviewed after they had completed their 

investigation, and their onscreen output was printed out. For this paper, the transcripts and 

printouts, together with informal observation and discussion formed the data that were 

analysed. The data were coded for NVIVO analysis, and then analysed for emerging 

patterns. 

Results and Discussion 

The data in this study illustrated the notion of visual perturbance. We examine some of 

the episodes in the data that illustrate different types of visual perturbance and ways in 

which they influenced the students’ interpretation and learning trajectories. It is interesting 
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to note that they do not necessarily emerge discretely, but that an episode can illustrate 

several types of visual perturbance in an interrelated manner. 

Episode 1 

This relates to an activity set in a scenario that allowed the children to explore different 

ways that they could get a pocket money allowance. This particular dialogue and output 

relates to investigating one possible option: receiving one cent the first week, and then 

doubling each week, that is, two cents the second week and so on. The children initially 

began to enter the counting number sequence into the spreadsheet. 

1 

2 

3 

Mike, using his current understandings in number operation, immediately had a conflict 

between what he saw, and what his more global perspective was telling him it should be. 

This created the visual perturbance, one that prompted re-engagement of an exploratory 

nature. 

 
Mike: Hey, there’s a bit of a twist, look, third week he gets 4 cents.  We’ll have to change it.   

 

His mathematical fore-conceptions and understanding of the situation allowed him to 

predict with confidence the outcome of 4 cents for the third week, yet the screen displays 3. 

Hence he recognised the tension and articulated the need to reconcile this. This facilitated 

the process by which the output is produced. It also suggested a process of re-negotiation of 

what the task was about: their interpretation of the task rather than the engagement in its 

investigation. His partner Jay started to enter input into cell A2. 

 
Mike: No, no, no we’ll have to be in C (column C of the spreadsheet).  

 

This was another visual perturbance, but of a different nature. It seemed to be primarily 

due to his present understandings of the structure and processes of the spreadsheet 

environment, rather than his mathematical fore-conceptions. Thus, they were addressing a 

technical or formatting aspect associated with their investigation. Mike was also perhaps 

looking to show in some way the relationship between the counting sequence, in this case 

illustrating the number of weeks, and the amount of money received each week. The 

pedagogical medium through which he engaged the mathematical phenomena was 

beginning to structure his approach to the task and his thinking. It was this informal 

indication of a relationship, and the possibility of a pattern to the amount of money 

received, that was the beginning of the mathematical thinking, however.  

Jay entered 1 into cell C1 to represent the cent for the first week. He began to enter a 

formula into C2, which he simultaneously verbalised: 

 
Jay: = C1 + 1 + 0 

 

The output in C column was now: 

1 

2 

Mike suggested the next entry: 
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Mike: = C2 + 2 

 

The output was now: 

1 

2 

4 

 
Jay: Goes up by two.  We have to double each week.  

 

He pondered on the input to the next cell (Cell C4).   

 
Jay: = C3 + 

 

He considered which number to add to C3 to continue the doubling pattern. Mike 

meantime, addressed the same output, but his fore-conceptions were different, so his 

thinking was too. His interpretation of the question, the spreadsheet, and his mathematical 

understanding of the processes involved also influenced his thinking. 

 
Mike: According to this it doubles each week. 

Jay: How do you make it double? 

Mike: Times by two, and star is times. 

 

Mike took over the keyboard and entered =C3*2 into cell C4 then filled down in the 

cells below. 

 
Jay: Look at the amount of cash you get on double though. 

Mike: That’s the biggest one. 

Jay: See that huge amount of cash. 

 

The spreadsheet has enabled them to process the large amounts of data quickly with the 

particular medium shaping their investigation in a distinct, structured manner. Their 

surprise with the difference between what they expected from option 2, and the size of the 

actual output is illustrative of a visual perturbance. Throughout the process, the visual 

perturbances, the difference between what their existing understanding suggested and the 

actual output, influenced their decisions, and hence their learning trajectory. Their 

mathematical reflection was a function of their interaction with the task filtered by the 

pedagogical medium through which it was encountered, and their prevailing mathematical 

discourse. As their perspective was also repositioned through each interaction, the 

spreadsheet environment has also influenced this aspect. 

Episode 2 

The next scenario illustrated a different type of visual perturbance. Tension evoked 

from the variance between the expected and actual output was evident, but in this situation 

the visual perturbance arose when the actual output was beyond the scope of the children’s 

current conceptualisation. This involved the scientific form of very large numbers. The 

students sought teacher intervention, for reconciliation of their mathematical fore-

conceptions with the output. 
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This episode related to a traditional Grand Vizier problem with the doubling of grains 

of rice for each consecutive square of a chessboard, and investigating how long this might 

feed the world for. This investigation was initiated after the children had already had some 

experience of using the spreadsheet. They were less tentative regarding the operational 

aspects of using them, for example, they were more comfortable generating formulas, and 

had an expectation of what output they might get based on some accumulated experience. 

  
Ana:  It goes 1,2,4,8,16 … , so its doubling 

Lucy:  =A1 times 2. 

Ana :  Is that fill down. 

Lucy:  Go down to 64. 

Ana:  Right go to fill, then down. 

 

They made an initial interpretation of the problem, and immediately saw a way the 

spreadsheet would help them explore the problem. However, there was some unexpected 

output in a visual form they could not recognise. 

 
Lucy: What the … 

Ana:   Eh… 

Lucy: What you… 

Ana:   9.22337 E+18. 

 

The unexpected outcome produced a significant perturbation as they attempted to 

reconcile it with their existing understanding. This was a visual perturbance that was 

associated with an idea or area they had no previous conceptual cognition of, that is, 

scientific notation. They quickly decided it was beyond their conceptual scope and sought 

the teacher’s input. The teacher gave some explanation about scientific form related to 

place value. They made sense of this within their current conceptualisation. 

 
Lucy: So that would be the decimal space up 18 numbers. 

 

They wrote it out on paper to get a picture of it within their current frame: 

9223370000000000000 

They re-engaged with the activity from their repositioned perspective. 
  

Lucy:  We have to add it all up. 

Ana : Wow it’s big. 

Lucy: = A1+A2+A3 … 

Ana : Takes a long time, because its 64. 

 

Lucy was using a simple adding notation with the spreadsheet, to sum the column of 

spreadsheet cells A1, A2, A3 etc. Ana realised, and articulated, that there were 64 cells 

from A1 to A64, so it would take a long time to enter them individually. They 

acknowledged the scope of this particular task, and intuitively felt the medium offered 

possibilities for a more efficient approach. They reflected on prior knowledge and earlier 

experiences, and negotiated a way to undertake their decided trajectory more easily. 

 
Lucy:  Sum. 

Ana :  = sum (A1:A64). 

Lucy: 1.84467E19. 
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Ana:   How long will that feed?  

Lucy: 1.84467E19 divided by 2000. 

 

The sum of the values in cells A1 to A64 was 1.84467 x 10
19 

that is, 

18446700000000000000. There was no reaction to the scientific form of the output at all 

this time, and they were almost seamlessly moving into the next phase of their 

investigation with the newly reconciled concept. Their prevailing discourse in this area had 

been repositioned through the reconciliation of their fore-conceptions with the unexpected 

output. This reconciliation and subsequent repositioning was initiated by the visual 

perturbance they encountered as a result of investigating in this particular pedagogical 

medium. 

Episode 3 

The next two scenarios related to an activity investigating the pattern formed by the 101 

times table.  

The two students had entered the counting numbers into column A and were exploring 

the pattern formed when multiplying by 101 in column B: 

1  

2 

3 etc. 

 
Awhi: =A2 * 101. Enter.  

Ben:    202. 

 

Contemplating the output produced from their unique conceptual perspective, they 

postulated an informal, rudimentary conjecture through prediction. 

 
Awhi: Now let us try this again with three. Ok, what number do you think that will equal? 302? 

Ben:   No, 3003. They copy the formula down to produce the output below. 

1 101  

2 202 

3 303 etc. 

 

Ben: (continues) 303. 

 

The actual output was different to the output they expected. This created a visual 

perturbance, which in this case was easily reconciled with their present understanding. The 

visual perturbance had caused a reshaping of their prediction that allowed them to 

reposition their conceptualisation. It also initiated the beginnings of a conjecture or 

informal generalisation. 

 
Awhi:  If you go by 3, it goes 3 times 100 and zero and 3 times 1; 303. 

 

They then explored a range of two and three digit numbers, before extending the 

investigation beyond the constraints of the task. 

 
Awhi:  Oh try 1919. 

Ben:     I just have to move that little number there, 1919. 

 

Mathematics: Essential Research, Essential Practice — Volume 1

177



  

The following output was produced: 

193819  

Interestingly, they seemed to disregard this output and form a prediction based on their 

fore-conceptions. 

 
Awhi: Now make that 1818, and see if its 1818 (the output). 

Ben:   Oh look, eighteen 3, 6, eighteen.   

 

There was a visual perturbance, which made them re-engage in the activity, reflect on 

the output, and attempt to reconcile it with their current perspective. It caused them to 

reshape their emerging conjecture.  

 
Awhi:  Before it was 193619-write that number down somewhere (183618) and then we’ll try 1919 

again. 

Ben:  Yeh see nineteen, 3, 8, nineteen. Oh that’s an eight.  

Awhi:  What’s the pattern for two digits?  It puts the number down first then doubles the number. This is 

four digits. It puts the number down first then doubles, and then repeats the number.  

 

The visual perturbance made them reflect on their original conjecture and reposition 

their perspective on the initial, intuitive generalisation. It stimulated their mathematical 

thinking, as they reconciled the difference between what they expected and the actual 

output, and rationalised it as a new generalisation. This new generalisation was couched in 

visual terms. 

Episode 4 

The next episode was part of the same investigation, but with a different pair of 

children, as they began to explore what happens to decimals. Ant predicted that if they 

multiplied 1.4 by 101, they would get 14.14. 

 
Bev:  I get it, cos if you go 14 you’ll get fourteen, fourteen. 

Ant:  We’ll just make sure. 

 

They entered 1.4, expecting to get 14.14 as the output. 

 
Bev:  141.4, it should be 1, 4 (after the decimal point, that is 14.14). 

 

This created a visual perturbance. They began to rationalise this gap between the 

expected output (14.14) and the actual output (141.4). This visual perturbance caused a 

reshaping of their conjecture or informal generalisation. In doing so they drew on their 

current understandings of decimals and multiplication, but also had to amend that position 

to reconcile the visual perturbance the pedagogical medium has evoked. Again they used a 

visual lens to do so. 

 
Ant:   We’re doing decimals so its 141.4. 

Bev:  So it puts down the decimal (point) with the first number then it puts the 1 on, then it puts in the 

point single number whatever. 

Ant:   It takes away the decimal to make the number a teen. Fourteen. 

Bev:  141. 

Ant:  Yeah. It takes away the decimal (14 – my insertions) and then it adds a one to the end (141), and 
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then it puts the decimal in with the four (141.4). 

 

Bev recognised that this as more of a visual description of this particular case rather 

than a generalisation. There was still a tension with her existing understanding. 

 
Bev: No it doesn’t, not always, maybe. It might depend which number it is. 

Ant:  Try 21 or 2.1.  See what that does. 

 

According to Ant’s conjecture from earlier they would be expecting to take away the 

decimal point (21), add a one to the end (211), and then re-insert the decimal point and the 

one (211.1). However the output was 212.1, which created another visual perturbance to be 

reconciled. 

 
Bev: No it doesn’t. 

Ant:  Two, where’s point? One two point one. 

Bev: Oh yeah, so its like, the first number equals… 

 

They tried to formulate a more generalised conjecture. Bev proffered a definition that 

they negotiated the meaning of, then situated within their emerging conjecture. 

 
Ant: Takes away the decimal and puts that number down then puts the first number behind the second 

number. Aw, how are we going to write this? 

Bev: It doubles the first numbers. 

Ant: Takes away the decimal, doubles the first number, then puts the decimal back in. 

Bev: How does it get here? 

 

They then entered 2.4 and made predictions regarding the output in light of their newer 

conjecture. 

 
Ant: Twenty-four, twenty-four with the decimal in here. 

Bev: It will be doubled; twenty-four, twenty-four but the last number has a point in it, a decimal. 

 

Their predictions were confirmed, and they negotiated the final form of their 

generalisation. They were still generalising in visual rather than procedural terms, and Bev 

suggested a name for their theory, double number decimals, that they both had a shared 

sense of understanding of. This mutual comprehension had emerged through the process: 

the investigative trajectory they have negotiated their way through. The investigative 

trajectory was directly influenced by the pedagogical medium through which they engaged 

the mathematical activity. More specifically, the questions evoked, the path they took, and 

the conjectures they formed and tested were fashioned by visual perturbances: the tension 

arising in their prevailing discourse by the difference between the expected and actual 

output. The process should not necessarily stop just there, however. An intervention, 

perhaps in the form of a teacher’s scaffolding question, might initiate the investigation of 

why this visual pattern occurs.  

Conclusions 

Each of the above episodes illustrated how the learning trajectory, was influenced by 

the learners’ encounter with some unexpected visual output as they engaged in tasks in this 

particular domain, through the pedagogical medium of the spreadsheet. The perturbation, 
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and the dialogue that ensued as the learners reconciled their existing perspective with this 

unexpected output, seemed to create opportunities for the re-positioning of their existing 

understanding, as they negotiated possible solutions to the situations. 

The engagement with the task, and with the medium, often evoked dialogue. This was 

an inherent part of the negotiation of understanding. When the students’ fore-conceptions 

suggested an output that differed to that produced, a tension arose. This output, in visual 

form, initiated the learners’ reactions, reflections and subsequent re-engagement with the 

task. The learners posed and tested informal conjectures, and negotiated a common 

interpretation through dialogue. This facilitated mathematical thinking, and they developed 

new understanding. 

The data in this study illustrated the notion of a visual perturbance. Within this notion 

there seemed to be several manifestations or variations.  
 

1. When the visual perturbance led to a change in prediction. It caused an unsettling 

and repositioning of the prevailing discourse, but the re-engagement was of an 

exploratory nature. 

2. When the visual perturbance caused a reshaping of the conjecture or generalisation. 

This was similar to that above, but the re-engagement was more reflective and 

global in nature as compared to a specific example. This was more often 

accompanied by a significant amount of dialogue and negotiation of meaning. 

3. When the visual perturbance made them re-negotiate their sense making of the task 

itself. This was not a distinct process from the investigative trajectory, but 

interwoven, with each influencing the other. 

4. When the visual perturbance was associated with an idea or area they had no 

previous conceptual cognition of. The tension this evoked often led them towards 

seeking further intervention, frequently in the form of teacher led scaffolding. 

5. When the visual perturbance led them to further investigate and reconcile their 

understanding of a technical or formatting aspect associated with their exploration. 

This was often also symbiotically linked to the conceptual exploration, but 

sometimes in unexpected ways. For instance, the rethinking of their approach to 

formatting an actual formula due to a visual perturbance was a structural aspect, but 

they were simultaneously re-engaging with a mathematical process while 

negotiating their understanding of the format, for example, in this case some form 

of algebraic thinking.  
 

These episodes illustrated that the particular pedagogical medium of the spreadsheet, at 

times induced a particular approach to mathematical investigation. This occurred through 

the tension that arose from the learners’ engagements with the task, when the actual output 

differed from that which their fore-conceptions led them to expect. This output being in 

visual form, led to the term visual perturbances, and it appeared this was a particular 

characteristic of the learning trajectory when using spreadsheets. It may be that this is a 

generic characteristic of learning trajectories in digital media. Certainly the literature 

suggested that with CAS software, unexpected outcomes that arose while engaging with 

algebraic tasks through that medium, influenced the learning trajectories and provided rich 

opportunities for learning (Kieren & Drijvers, 2006). It appears to be an area that would 

benefit from further investigation. 
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Wenger (1998) and Lave and Wenger (1991) developed a social theory of cognition in 
which learning takes place as a result of one’s legitimate peripheral participation in a 
community of practice. In this paper, we apply Lave and Wenger’s theory in learning to 
teach secondary mathematics. We report on clinical interview data concerning the practicum 
experiences of eight students enrolled in the Graduate Diploma in Education programs at 
two universities. Factors which influence the pre-service teachers’ classroom practice 
include the pedagogy of the supervising teacher, the academic ability of pupils, and 
concerns about classroom management. 

One of the most significant rites of passage in learning to teach secondary mathematics 
is the period of school-based professional experience known as the practicum. The 
practicum is completed under the supervision of a more experienced teacher who is 
charged with the task of assisting the pre-service teacher develop confidence and expertise 
in the art of teaching. The practicum is also designed, notionally at least, as an opportunity 
for novice teachers to experience first-hand the convergence of the theory discussed in their 
university methods course with the daily practice of the classroom. However, the practicum 
is far more idiosyncratic in nature than that, and the degree to which these goals are 
achieved rests almost exclusively with the individual cooperating teacher, who is more 
likely to see his or her role as one of inculcating the pre-service teacher into the traditional 
norms of the status quo (Jaworski & Gellert, 2003).  

This paper reports on the most recent stage of a project in which we have followed a 
group of Graduate Diploma of Education (Grad Dip) students in two universities and 
investigated the pre-service secondary teachers’ beliefs about mathematics and 
mathematics teaching as they progress through their university studies (see Prescott & 
Cavanagh, 2006 for a report of our earlier work). Here we focus on the pre-service 
teachers’ experience of their practicum and how they intend to teach as they begin their 
first year of employment in a school. 

Learning as Participation in a Community of Practice 

Much of what an individual learns about teaching from his or her practicum experience 
is gained through interactions with others in various communities and so the contexts of 
these communities are crucial in determining the nature and extent of what is learned 
(Cooney, Shealy, & Arvold, 1998). In recent years, the work of Lave and Wenger (1991) 
has proved helpful to researchers in understanding how pre-service teachers come to know 
and learn about the practice of teaching. For Lave and Wenger, learning is a social activity 
that is derived from active engagement in the world in a community of practice. Such 
communities are characterised by mutual engagement in valued enterprises that are defined 
by the participants through a shared repertoire and that hold the community together. Thus 
the community of practice is by no means a homogeneous grouping since it includes both 
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veterans, who are fully absorbed into the culture of the community, and novices, who are 
just beginning to gain greater participation in the community and become more 
knowledgeable about its shared history.  

There are four key components in Lave and Wenger’s social and situated view of 
learning. They are: meaning, which is a way of discussing how we experience the world as 
relevant and meaningful; practice, a way of talking about the shared social, cultural and 
historical perspectives that sustain mutual engagement; community, which is the unit of 
organisation in which the joint enterprise is recognised and defined; and identity, which 
describes the role of learning in changing who we are and how we define ourselves. In 
particular, Wenger (1998) characterises three modes of belonging and sources of identity 
formation: engagement or mutual participation in joint tasks; imagination, a willingness to 
explore and try new things, and then reflect on how these relate with other practices; and 
alignment, which is concerned with the convergence of a common focus, cause, or interest. 

Lave and Wenger (1991) describe the position of neophytes within the community of 
practice as legitimate peripheral participation, by which they explain both the developing 
identity of participants in the community of practice and the very formation of these 
communities in the world. The newcomers’ legitimate peripheral participation provides 
them with more than a vantage point from which to observe the inner activity of the 
community, it also necessarily involves a place from which to move to greater levels of 
participation in the culture of the community. Learning is, therefore, not so much 
concerned with replicating the performance of others or acquiring knowledge transmitted 
during instruction, but rather occurs through becoming part of the community and having 
access to a wider range of ongoing activity in its practice. 

An important aspect of legitimate peripheral participation involves learning the 
language of the community and how to talk to other members, and so Lave and Wenger 
(1991) distinguish between talking within and talking about the practice of a community. 
Talking within the practice of a community is a sign of full participation in its shared 
repertoire and is essential to the task of negotiating new meanings, transforming identity, 
and developing greater levels of participation. Talking about the practice of a community 
from outside of it is usually associated with the formal learning of beginners, since the 
effect of this talk is not full membership of the practice because it necessarily occurs on the 
edges of the community. The nature of the learners’ discourse can therefore serve as a 
useful distinction between theory (talking about) and practice (talking within).  

Participation in the Community of Practice of Mathematics Teacher 
Education 

A growing number of researchers have employed Lave and Wenger’s (1991) theory of 
communities of practice to describe the experience of learning to teach mathematics (see, 
for example, Adler, 1998; Goos & Bennison, 2006; Smith, 2006). In particular, the notion 
of legitimate peripheral participation in a community of practice can provide a rich 
conceptual framework for understanding pre-service teachers’ knowledge acquisition 
during their practicum because the nature of such participation emphasises both the 
personal and social nature of learning. In this sense, learning to teach is concerned not so 
much with developing new skills, but rather with the individual pre-service teacher’s 
socialisation into the ways of thinking and operating of the practicum school, the 
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supervising teacher and the other members of the teaching staff, and how each individual is 
influenced by membership of these communities.   

The role of legitimate peripheral participation also highlights the importance of on-
going activity in the actual practice of teaching as the primary means by which a person 
learns to become a teacher. In Lave and Wenger’s (1991) view, becoming a full participant 
in the community of secondary mathematics teaching involves engaging with the everyday 
discourse of practising teachers and actively building relationships in that community by 
doing things together with practising teachers. Access to and use of the tools and artefacts 
in the community are crucial if pre-service teachers are to legitimise their peripheral 
participation and make visible the meaning of the shared repertoire of mathematics 
teaching, thus enabling the development of more complete and richer forms of participation 
(Graven, 2004). 

Participation in a community of practice is not unidirectional. It involves a good deal of 
give and take on the part of its members because engagement in a community shapes the 
experience of individuals who, in turn, help to negotiate new forms of community by virtue 
of the diversity of their interactions within it. In other words, the community of practice of 
mathematics teaching inevitably grows according to the endeavours of its members, both in 
terms of what they know and how they act within the community. Pre-service teachers also 
make an important contribution to their practicum experience by virtue of their personal 
history and previous experience of schooling, which act as a prism through which they 
view the practicum classroom. However, their lengthy “apprenticeship of observation” 
(Lortie, 1975, p. 61) as pupils can also make it more difficult for pre-service teachers to 
imagine alternative approaches to teaching from those which they received in their own 
education. The likelihood is that the lessons the pre-service teachers observe during their 
practicum placement are not radically different from those they experienced when they 
were in high school and this produces a “familiarity pitfall” (Feiman-Nemser & Buchmann, 
1985, p. 56) that is difficult to overcome. 

The physical and social settings in which pre-service teachers undertake the activity of 
learning to teach are an integral part of the learning that takes place within them (Putnam & 
Borko, 2000). The learning environment is of particular importance when the reform 
approach to mathematics teaching taken in the university methods course is not matched by 
a similarly progressive stance in the practicum school and there is growing evidence that 
the pre-service teachers’ interactions with the supervising teacher and the classroom 
climate of the practicum are powerful influences on pre-service teachers’ own practice 
(Shane, 2002). So, even though pre-service teachers are regularly exposed to progressive 
pedagogical approaches at university, they nevertheless often shift to more traditional 
teaching practices as they move into the practicum and begin their teaching career.  

Most pre-service secondary mathematics teachers excelled at the subject when they 
were in high school. They are likely to have been placed in the top mathematics classes and 
to have responded positively to the traditional teaching that they received, achieving good 
marks on written tests and examinations. Their initial identity formation as mathematics 
teachers was shaped by these experiences and Zeichner and Tabachnick (1981) suggest that 
their traditional views remain latent during the pre-service teachers’ university studies only 
to reappear when they enter the classroom. The prospective teachers are sustained in the 
culture of teaching they first observed as pupils, a process of identity formation that is 
reinforced during the practicum (Frykholm, 1999). However, they are still capable of 
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talking about reform-oriented mathematics teaching or writing university essays that 
espouse the benefits of student-centred learning. 

During the practicum, opportunities to re-imagine other forms of teaching mathematics 
are limited, largely because the pre-service teachers tend to focus almost exclusively on the 
technical aspects of teaching, especially classroom management and organisation. They 
plan lessons that are often tightly structured and predominantly teacher-centred because 
they believe that such an approach is more likely to discourage student misbehaviour. 
During lessons, they are more concerned with monitoring their own actions than attending 
to students, and often fail to notice whether any significant student learning is taking place. 
Thus the chance of alignment between the community of the university methods course and 
that of the practicum school is severely restricted. 

This paper focuses on a small group of pre-service secondary mathematics teachers and 
seeks answers to the following research questions. 

1. Which factors influence the pre-service teachers’ classroom practice during their 
 practicum experience? 

2. Based on their practicum experience, what pedagogical approaches do the pre-
 service teachers intend to use in their first year of teaching?  

Method 

The Grad Dip programs at Macquarie University and the University of Technology, 
Sydney [UTS], are both one-year, full-time equivalent, professional qualifications for 
secondary teaching. They are comprised of units in education, curriculum, methodology, 
and a supervised professional experience practicum of 10 weeks duration. The Grad Dip is 
available to graduates with academic qualifications in mathematics or a related area of 
study and most students are mature-aged and have decided to train as mathematics teachers 
after some previous work experience. At Macquarie, the practicum is completed in a single 
school under the direction of one teacher, sometimes in small blocks of one or two weeks, 
but predominantly on one teaching day per week over the course of an entire school year. 
At UTS, students undertake the practicum in two five-week blocks in separate schools and 
so have a separate supervising teacher in each school.   

All applicants for the Grad Dip at Macquarie and UTS were invited to participate in the 
research project. A random sample of 16 pre-service teachers (eight from each institution) 
was subsequently taken from those applicants who accepted a place in the Grad Dip at their 
chosen institution and returned a signed consent form. The students were interviewed 
immediately prior to commencing the Grad Dip (February), approximately half way 
through the program after they had completed at least twenty days of the practicum [June], 
and at its conclusion (November). Eight participants were involved in the middle and final 
interview rounds, which are reported in this paper.  

The pre-service teachers were interviewed individually for approximately 20 minutes 
on each occasion. The interviews were semi-structured and designed to investigate how the 
pre-service teachers interpreted their practicum experiences. We were particularly 
interested in the factors that the participants identified as playing a major influence on their 
teaching practices. We also wanted to hear about the style of mathematics lessons that the 
participants observed during the practicum and the extent to which the pedagogy of their 
supervising teachers differed from the reform approach taken at the university. In the final 
interview, we also asked the participants to look ahead to their first year of teaching and 
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discuss how they intended to reconcile these apparent differences. All of the interviews 
were recorded and transcribed for later analysis of recurring themes.  

  Results 

The Practicum Experience 

The participants in our study recognised multiple influences on their teaching, both 
while they completed their practicum and when they reflected on the experience after it 
was completed. The pre-service teachers often recalled how the classroom practices of their 
supervising teachers fitted well with memories of their own time as high school 
mathematics students. The student-teachers reported that most of the mathematics lessons 
observed during their practicum followed a familiar pattern: reviewing the work from the 
previous day, some teacher exposition of new material, worked examples on the board, and 
individual seat work for pupils to practise new skills and procedures. The most common 
description reported by the pre-service teachers was one of “chalk and talk” lessons where 
pupils completed many textbook exercises, working predominantly on their own. The 
student-teachers’ own high school experiences bore close resemblance to their practicum 
observations, a fact which served to reinforce this style of teaching as an acceptable and 
workable model of pedagogy. 

The expectations of university lecturers also had some influence on the pre-service 
teachers’ pedagogy during their practicum, but these were often dismissed as unworkable 
in the “real world” of the classroom. For instance, some pre-service teachers believed that 
the reform teaching approaches encouraged by university staff were more useful for high-
achieving students than the predominantly low-ability classes they were usually required to 
teach. 

In contrast to the university lecturers, the practicum supervising teachers were far more 
influential in shaping the participants’ teaching styles. Typically, the participants in our 
study characterised their supervising teachers as “traditional” and claimed that it was 
difficult to experiment with working mathematically tasks in the classroom because the 
supervising teacher was dismissive of such an approach. This was most apparent when the 
student-teacher devised a lesson plan focusing on group work or activity-based learning but 
the supervising teacher insisted that the plan be changed to a more teacher-centred method 
of delivery. The pre-service teachers often reported that their mentor teachers complained 
that the reform approaches encouraged at the university did not allow for the completion of 
a sufficient number of practice exercises during lessons. 

The pressure to conform to the supervising teacher’s style was also seen as a factor in 
determining the kind of final practicum report that each student-teacher would receive. 
Even though the determination of the student’s grade for the practicum rested ultimately 
with the university, the report of the supervising teacher was a high-stakes document in the 
minds of the pre-service teachers because they used it in job interviews as evidence of their 
teaching capabilities. The pre-service teachers concluded that the best way to guarantee a 
good report was to follow closely the supervising teacher’s advice, which usually meant 
teaching in a traditional way.  

Classroom management was an important consideration for most student-teachers and 
although many commented that the textbook-based lessons of their cooperating teachers 
were not very effective in terms of student learning, the pre-service teachers felt that such 
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lessons were easier to teach because “you don’t have to prepare as much” and you can have 
“more control over the class”. The student-teachers wanted to keep a tight rein over their 
classes until they had established themselves in the role of the teacher and sensed that 
students respected their authority. They did not feel comfortable in allowing students too 
much latitude through the use of investigations or open-ended tasks and tended to “write 
things up on the board and get them [the students] to copy into their books” because they 
regarded this approach as more likely to lead to compliance from students. The pre-service 
teachers wanted to concentrate on developing their basic teaching skills and thought this 
would be easier if classroom management concerns were minimised, and the best way to 
guarantee this was to use teacher-centred strategies. 

Often the student-teachers linked the style of teaching they employed to the academic 
ability of the class. As one commented, “If you’re teaching a really good class that you can 
trust to do stuff, then it’s different”. Another noted that “with really weak students … you 
just [say], ‘this is a result you need to learn’”. However, the supervising teacher was often 
reluctant to allow group activities with brighter classes because of the perceived need to 
cover as much content as possible in preparation for examinations and to ensure what the 
supervisor regarded as the best preparation for the senior years.  

Some of the participants in our study did begin to reflect more critically on the teaching 
they had received as pupils themselves and on the supervising teacher’s lessons they 
attended during the practicum. One student-teacher stated that the traditional approach 
“never really fitted with the way I learned” and that it was “a bit of a lazy way to teach”. 
Another compared his own learning in university methods classes and workshops with 
observations of pupils during the practicum and concluded that a student-centred approach 
was a more effective pedagogy. But these student-teachers also reported that they found it 
difficult to depart too far from the style of the supervising teacher because the pupils 
reacted against any change from the traditional classroom routines to which they had 
become accustomed. As one student teacher remarked, “It was their [the supervising 
teacher’s] school and their classroom, their students”. 

The student-teachers were naturally inexperienced and lacked some basic skills in 
promoting class discussion through questioning and motivating students, so their first, 
tentative steps in using alternative teaching strategies were usually not very successful and 
often resulted in minimal student participation or learning. One student-teacher 
commented, “I said [to the class], ‘Alright, go and start discussing things for yourself’, but 
they just talked and carried on”. She then concluded that “student-centred [teaching] is a 
harder way to teach”. Another pre-service teacher recognised that one more likely source of 
these difficulties was that the pupils, too, lacked experience in this type of classroom 
interaction. 

The kids are not used to learning that way [group activities] and they don’t really know what to do 
… They have not yet learned to learn that way, I believe. 

Since the student-teachers’ initial attempts at reform approaches fell so short of their 
expectations, they were reluctant to try them again, particularly when they perceived 
that the supervising teacher, who would later write their final practicum report, was 
also unimpressed by these lessons. 
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Looking Ahead 

As part of the interviews, we asked the student-teachers to look ahead to their first year 
of employment in schools and discuss how they intended to teach, and the factors that they 
imagined might influence their classroom practice at that time. All of the participants in 
our study expressed the desire to “eventually” conduct lessons that conformed to the 
reform practices they had been exposed to at university. However, they expected to find 
themselves in mathematics faculties much like those they experienced during their 
practicum: ones where traditional teaching approaches were the norm. 

A common theme among the pre-service teachers was that when they started teaching 
in the subsequent year, they did not believe they would have much support from other 
mathematics staff members because most of their colleagues would not be accustomed to a 
reform style of teaching and therefore could not offer practical advice on how to implement 
it in the classroom. As one pre-service teacher noted, “it means you don’t have as many 
people to ask for help” and, as a result, there would not be the resources and ideas available 
that could be shared with a new teacher who intended to adopt a student-centred approach. 

The student-teachers’ practicum experiences convinced them that the workload of a 
new teacher would be very demanding, especially in terms of lesson preparation. They felt 
that the additional requirement of imagining activities and organising materials for more 
creative lessons that were designed for a student-centred approach would be excessive. 
Therefore, it would be necessary for the beginning teachers to “resort” to a style of teaching 
they believed to be ineffective in order to survive the early years of teaching while they 
gathered resources for themselves. As one student-teacher stated “it won’t be practical for 
me to be spending hours doing research for an hour lesson”. 

Another student-teacher in our sample was concerned that that his colleagues would be 
unimpressed if he attempted to use activities and investigations with students because they 
would not regard this as an acceptable form of teaching, especially if there was a lot of 
noise and commotion coming from his room. He felt that the other staff members would 

see my classroom as messy, as noisy, as not good teaching because for them good teaching is a 
completely quiet classroom … with their heads down doing their exercises.  

To avoid any perceived conflict with other teachers, this student-teacher concluded that he 
would be a “textbook teacher” (i.e., teach predominantly from the textbook) for a while and 
then gradually introduce other activities for his students when he thought he could maintain 
better control over the class. Others noted that students, too, had certain expectations about 
the kind of lessons they would receive when they arrived for class and that they “expect a 
certain style of teaching in mathematics”, which typically meant a traditional approach. 
Thus, the pre-service teachers thought that it might be difficult to overcome their students’ 
demand for instrumental rules and procedures and teach for relational understanding using 
an investigative or discovery style. 

As a result of these factors, most of the student-teachers planned to use a mix of 
approaches as they started their first year of teaching; some believed that they would 
introduce group work very gradually, whereas others wanted to start relatively early so that 
they could begin to train their students according to their reform pedagogy. As one 
participant remarked: 

As the year goes on I think is when you give kids more and more responsibility for themselves … 
but not let them go too far until you know that when you say “Ok class, now sit back and listen to 
me”, you know they’re going to listen to you. 
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All of the student-teachers in our study commented favourably on the fact that they 
would no longer have to contend with the difficulties associated with teaching classes that 
essentially belonged to another teacher. There would not be the conflict and confusion of 
classes being taught in more traditional methods for most of their lessons by the 
supervising teacher, and then occasionally using more student-centred approaches by the 
pre-service teachers, when they were permitted to do so. In a sense, the student-teachers 
recognised that, from now on, they would be master or mistress of their own destiny. 

Discussion 

One of the consistent themes to emerge from our interviews is the fact that pre-service 
teachers struggle with a number of competing (and perhaps conflicting) demands in their 
professional preparation. This is especially so during the practicum where student-teachers 
are in a period of significant identity transformation as they begin to participate in the 
community of practice of secondary mathematics teaching. The process is made more 
difficult because although the student-teachers have some responsibility for the classes they 
teach, the ultimate authority still rests with the supervisor. And although the pre-service 
teachers have some freedom to develop their individual teaching persona, they often feel 
constrained by the style of their supervisor. Moreover, even though student-teachers can 
plan lessons according to their own ideas, they must nonetheless present them to the 
supervising teacher for final approval. 

So there is an unavoidable tension between one’s past experiences as a student and the 
brief intermediate period as a student-teacher, when one is beginning to engage in the work 
of a teacher, and is still not fully regarded as a member of the teaching community. The 
high school mathematics lessons when the participants in our study observed the work of 
their own teachers were formative encounters and clearly influential, both in imagining a 
life as a teacher and in deciding to embark on a teaching career. To some extent at least, the 
student-teachers have to overcome the limitations of these experiences in order to develop 
new ways of imagining themselves as teachers. Like many intending secondary 
mathematics teachers, they enjoyed the subject at school and responded favourably to the 
traditional forms of teaching in their own education. Moreover, they tend to believe that 
their own students will react just as positively to a similar direct instruction model and so 
they find it difficult to imagine a need to teach in any other way (Ball, 1988).  

Notions of what constitutes “good teaching” are thus formed early on and can prove 
difficult to shake, particularly because they are often based on the personalities of 
individual teachers rather than on pedagogical principles (Lortie, 1975). Such initial 
observations are necessarily from the students’ perspective, so the meanings that are 
attached to them lack any real appreciation for the subtleties of the craft of teaching, which 
might explain why the pre-service teachers in our study interpreted their practicum 
experience in fairly simplistic or idealistic terms that conceived teaching primarily as 
technical competence, particularly in terms of classroom management, rather than as a 
process of on-going decision-making focused on student learning. 

Our interview data suggest a clear division between the social constructivist approaches 
discussed at university and the more traditional practices of many supervising teachers. 
Ebby (2000) notes that although practicum classrooms do not necessarily need to be 
models of constructivist pedagogy, they must provide a place in which student-teachers can 
at least imagine possibilities beyond traditional norms and experiment with new ways of 
teaching. However, our research indicates that not only do pre-service teachers have very 
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limited opportunities to observe reform teaching during their practicum, but also they are 
also unlikely to receive much encouragement to try it for themselves. Pre-service teachers’ 
identity formation is therefore compromised by the disjointed nature of their university and 
school-based programs, and the tasks of engagement, imagination, and alignment (Wenger, 
1998) become more complex and problematic. As a result, student-teachers sometimes 
struggle to engage meaningfully in what appear to be two separate communities of practice 
that are, in many respects, at odds with each other. 

Conclusion and Further Research 

It is commonly quite difficult to place student-teachers in schools for their practicum 
and the shortage of those who are willing to act as supervisors often means that there is 
only a rudimentary screening of supervising-teacher applicants. The comments from 
participants in our study indicate that supervising teachers appear to see their role 
predominantly as one of giving advice about the practical concerns of classroom routines 
and organisation rather than in developing the student-teachers’ reflective pedadgogy. We 
plan to investigate the supervising teachers’ perceptions of their responsibilities more fully 
and test this assertion in a follow-up study.      

The trainee-teachers we spoke with often used the language of reform teaching but 
there are doubts about whether they really understood what they were discussing, since, as 
Lave and Wenger (1991) point out, it is difficult to talk within a community and imagine 
teaching in a particular style if you have never done so in practice. Indeed, like Zeichner 
and Tabachnick (1981), we sometimes had the distinct impression that the participants 
were telling us what they thought we wanted to hear rather than what they really believed. 
It therefore remains to be seen whether the participants latently hold traditional views that 
will eventually re-emerge when they are on their own, or if these pre-service teachers really 
do begin to implement the reform teaching approaches they have indicated that they want 
to try in their first year of teaching. We will investigate the classroom practices of these 
student-teachers in our future research. 
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As part of a larger study exploring teacher behaviours that challenge children to probe their 

mathematical understandings, children were interviewed about their mathematical thinking 

and asked to reflect on their learning. Fifty-three interviews were conducted in four schools 

with 5- to 7-year-old children. The subjects were involved in close conversation with their 

teachers during the mathematics lesson. Video-stimulated recall was used with a 

conversational interview to prompt children’s recollections and reflections. Findings 

indicate that young children in the first years of schooling are able to recall events in their 

mathematics lessons to reconstruct their thinking and reflect on their mathematical learning. 

Background 

The theory of social constructivism underpins this research. Cobb, Wood, Yackel, and 

McNeal (1992) and Sfard, Nescher, Streefland, Cobb, and Mason (1998) argued that the 

construction of knowledge occurs within a social and cultural context where discourse is a 

vital component in establishing an effective learning context. The focus of this research is 

the meaning constructed between the teachers and children in classrooms. 

There has been a long history of interviewing young children to describe their 

mathematical thinking (e.g., Donaldson, 1978; Gelman & Gallistel, 1978; Hughes, 1986; 

Irwin,1996). These interviews often involved children performing mathematical tasks to 

demonstrate their thinking or development. Task-based interviews have also been used to 

assess and plot the growth of the mathematical thinking of children over time (e.g., Clarke 

& Cheeseman, 2000). However there appears to be little research that reports young 

children’s reflections on their thinking in post-lesson interviews. 

Franke and Carey (1997) conducted interviews to research first-grade children’s views 

about what it means to do mathematics in problem solving classrooms. They found that 

young children were in fact able to reflect on classroom events. 

McDonough (2002) reported procedures that prompted 8- to 9-year-old children to 

articulate their beliefs about mathematics. Children found it a difficult to talk abstractly 

about learning, however, they “held beliefs about mathematics, learning and helping factors 

and could articulate beliefs when prompted” (p. 270). Although acknowledging the scarcity 

of research in the area, McDonough expressed little surprise that children even younger 

than those in her study could describe their mathematical thinking and learning after lesson 

of the day (McDonough, 2007, private communication). 

Method 

To capture some of the complexities of classrooms settings and to collect rich data, the 

approach termed complementary accounts methodology was used for this study (Clarke, 

2001). Although the methodology used for the large study differed from that of Clarke, 

similar fundamental techniques were used. These include videotaping the whole 

mathematics lesson, audio taping participants’ reconstructions of classroom events, and an 

analysis of the multiple data sets. 
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In total, 53 children were interviewed on the day their mathematics lesson was 

conducted. The children were aged 5 to 7 years from four classes, each in a different 

school. The four schools were different from each other in geographic, socio-economic and 

cultural background and the only common characteristic was that each of the teachers was 

female. The selection of students was based on classroom observation notes of the 

researcher and where possible, the recommendation of the teacher. In some cases it was not 

possible to have a conversation with the teacher before children’s interviews began. 

The interviews were audio taped for transcription and analysis. A video of the lesson 

was used as a stimulus to recall sections of the lesson directly involving each child. 

Children were asked to recount events where they were in conversation with the teacher, to 

say what they were thinking at the time, and to reflect on what they had learned in the 

mathematics lesson. The interview was conversational in style. Although there was an 

interview script, it was adapted in order to elicit responses from each child. The scripted 

questions were: 
 

1. I am interested in the times when teachers talk to kids in maths lessons—you know 

when they are really just talking to one child. I noticed that your teacher had a talk 

with you / stopped to work with you / asked you about your work in that maths 

lesson. Can you remember that? Can you tell me what happened? 

2. I think that we got that on video. Would you like to see it?  

3. What were you thinking about? (Maybe just watch it at first.) 

4. Can you say what was happening? 

5. What did you learn in maths today? Was there anything else? 
 

These questions are modelled on those used by Clarke (2001, pp. 13-32). The original 

research was with secondary students, and so the language used in the questions has been 

simplified for young children. In fact it was not known whether children as young as 5 

years old could give an account of classroom events where they were challenged to think 

mathematically. Hence the research question: to what extent can young children give a 

subsequent account of a classroom mathematical event from their perspective? 

Video-Stimulus Recall 

There appears to be scant literature describing the use of stimulated recall using video 

with young children. There are reports of Year 8 children, using video-stimulated 

interviews to reconstruct the learner’s perspective (e.g., Williams, 2003) and reports of 

teachers video-stimulated recall of the events in their classrooms (e.g., Ainley & Luntley, 

2005) but there seems to be no use of this methodology in mathematics education with 

young children. 

Because little was known about how young children would respond to video-stimulated 

interviews, some piloting occurred. In the pilot stage, young children responded to the 

video of the mathematics lesson in a very different way from that of their teachers. When 

teachers were shown excerpts of the lesson they were able to jump into the moment and to 

talk about what was going on and even reconstruct their thinking at the time. Young 

children though, would watch the video as a passive observer and if asked at the end of the 

event to talk about what was happening there, they would give a look as if to say “What do 

you mean? You just watched what was happening!” They seemed to feel that the video 

required no explanation or interpretation. After a while it became clear that the best way to 

prompt recall was to play a little of the beginning of an incident of interest to set the scene 
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for the child then to pause the video and to ask, “Do you remember that bit, what was 

happening there?” 

If a child had no recollection of the event, the entire video episode involving them in 

conversation with the teacher was played and used as a stimulus to help them describe their 

thinking or reflect on their learning. In general, the video was used as a starting point and it 

was paused as soon as the child had remembered the event. 

Children of 5 to 7 years old are often asked to talk about a piece of work in class, 

especially when reporting back to the class at the end of the lesson. So, during piloting each 

child was interviewed with their work sample as well as the video. However having the 

work in their hands tended to focus their reflection on the output of the lesson and the 

details of what was on the paper rather than what they were thinking so the technique of 

having work samples available to the child was discontinued. If a child asked for the work 

sample to help them to explain it was provided to them. 

Data Coding and Analysis 

Interviews were digitally recorded. Seventeen interviews were transcribed in full. An 

analysis of the transcripts resulted in the data being considered in terms of the children’s 

recall of an incident or task, description of events, explanation of their thinking, and 

description of their learning. Categories of response emerged as nodes in the data (see 

Table 1). Descriptors of response were listed in increasing levels of sophistication, with 0 

being the least and 3, 4, or 5 as the most sophisticated responses. The category “missing” 

was used where the question was not asked. This happened because a feature of semi-

structured interviews is that the interviewer tries to follow the child’s previous response. 

The remaining 36 interviews were coded directly from the audio files. In general, the 

highest level of the particular category was coded when evidenced anywhere in the 

interview. Codes were then entered into a statistical analysis program (SPSS) to produce 

descriptive statistics. 

Reliability of Coding 

To improve internal reliability, interviews were re-coded. This was done to examine 

whether there was consistency between researchers and whether similar conclusions could 

be reached about children’s behaviour (Goldin, 2000, p. 531). An independent person 

coded a 20% sample of the audio data. This person was skilled at listening to young 

children describe their ideas as she came from a primary teaching background and 

mathematics education research. All points of difference were discussed and an agreed 

understanding of the data was reached. The following matters were raised: 
 

• transcripts would have helped the coder; 

• the broad categories that emerged from the data seemed appropriate; 

• some descriptors required clarification to better define distinctions in levels of 

response; 

• examples would help the coder/listener/reader;  

• the distinction between evidence of description of thinking and correct thinking 

was reiterated; and 

• evidence of a higher level of code was taken as the default. 
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Based on the combined critical analysis, further interviews were transcribed in full (17 

in total) and category descriptions were refined. The entire data set was coded again 

applying the new protocols without any reference to the previous coding. The results of this 

second coding form the data reported here. 

Table 1 

Categories of Response to Aspects of the Interview 

Aspects of interview Categories of response 

Recall of the incident/task no recall 

could talk about the event only after of the entire video 

excerpt was replayed 

recall with the video paused just before the event of 

interest or with the video playing in the background with 

no audible sound 

recall spontaneously with little or no assistance of the 

video extract 

Description of events no description of interaction with teacher 

describe actions 

describe outcomes only, e.g., a work sample, “I stuck the 

cats onto the paper.” 

describe the event from their perspective 

describe their reasoning and/or justify their thinking 

Explanation of their thinking no explanation 

“account for” the videotape e.g., make up a “story” of the 

event 

explicit description of thinking 

explain/reconstruct thinking, reasoning, justifying, 

evaluating thinking 

Description of their learning 

 

 

 

 

 

 

 

 

 

unable to specify learning 

learned nothing 

learned a behaviour not mathematics e.g., “to share” 

remembered factual information e.g., number facts 

learned how to do something e.g., “to count by 6s” 

described learning at a conceptual level, expressed as a 

mathematical principle or an insight, e.g., “I can count by 

1s, 2s, 3s, 4s, 5s, 6s, 7s, 10s, and 100s and 1000s …once I 

can count by ten I can count by all the rest. Like 10, 20, 

30, 40, 50, and it always has a zero on the end.” 
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Results and Discussion 

Recall of Events 

Using videotape of events involving each child in the mathematics lesson of the day to 

stimulate the recall and an account of the episode from the view of the child was largely 

successful. This is evident from Table 2, which summarises the categories of responses of 

children’s recall of events, where only 2% of children were unable to recall the events of 

the lesson. Some children needed to watch the entire replay of the videotape where they 

were in conversation with the teacher in order to talk about it (23%). Many children, 

having watched the video of the lesson leading up to the event, could recount their version 

of what had unfolded after the videotape was paused (30%). In addition almost half of 

those interviewed could recall a conversation with the teacher before the video was 

replayed. 

Table 2 

Categories of Response of Children’s Recall of an Event 

Category of response Frequency as a percent (n = 53) 

No recall   2  (1) 

Recall with video replay of the event 23 (12) 

Recall with video paused or with no audible sound 30 (16) 

Recall spontaneously 45 (24) 

Description of Event 

An analysis of the children’s descriptions of events revealed an interesting three-way 

split of responses (see Table 3). Some children described only what they did (23%). The 

following example illustrates this category of response. James could be seen on the video 

interlocking blocks but saying nothing: 

Interviewer: So what was happening here?  

James: My brain was counting and I wasn’t. [James, J2.3:25] 

Other children offered a description from their point of view (36%). For example, Ali 

explained his counting of five groups of five teddies saying, “It goes 10, 20, 30, 40, 50. 

You have to count the ears” [Ali, G1, 7:30]. It is hardly surprising that 36% of children 

who could remember the event described it from their point of view. In fact what was 

interesting was that such a large proportion described the event with some reconstruction of 

their reasoning at the time (28%). This was perhaps the most interesting group of 

responses. For example, Jessica was explaining how to weigh a dog, Joey, who would not 

stand on bathroom scales: 

Interviewer: Can you tell me about your good idea for maths today please? 

Jessica: I thought of holding Joey on the scales. I would know how much Joey weighed. So I 

hopped on the scales with him and I holded him. And then we took away 19 [from 28] because I was 

19 and he was 9 and so that was 9 kilograms and that’s what he weighed [Jessica, J3, 0:35]. 
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Table 3 

Children’s Descriptions of Events 

Category of response Frequency as a percent (n = 53) 

No description of interaction with teacher   4  (2) 

Describe actions 23 (12) 

Describe outcomes only, e.g., a work sample   8  (4) 

Describe the event from their perspective 36 (19) 

Describe their reasoning and/or justify their thinking 28 (15) 

Missing   2  (1) 

Explaining Thinking 

Table 4 shows the number of children who could explicitly describe their mathematical 

thinking was high (85%).  

Expecting children to be able to communicate their thinking has been an element of 

mathematics curriculum definition for years (Australian Education Council, 1991; Board of 

Studies, 2000). Certainly based on classroom observational data from the classrooms of the 

children interviewed here it is a clear expectation of their teachers that they explain their 

reasoning. The teachers frequently ask; “How did you work that out?”, “What do you 

think?”, “Why are you doing that?”, and “How do you know?” 

It should be said that these children had been learning mathematics in the classrooms of 

“highly effective” teachers of mathematics (McDonough & Clarke, 2003) for 8 months. 

Perhaps this would account for their readiness to describe their mathematical thinking. 

Whether children in other classrooms can explain their thinking with this frequency is a 

question that might be explored by further research.  

An example of the type of response that shows a child reconstructing and evaluating his 

thinking is when Tom offered a thinking strategy for his classmates who could not count by 

four. His idea was to use a count by two. 

Interviewer:  Now Mrs A says that’s a really complicated way to work it out I can’t really hear what 

you were saying. She was looking at a page that had 8 legs and 4 things on each leg. How were you 

trying to work that one out? 

Tom: Oh a different way. You know, when there’s 8 legs and I was thinking if people didn’t know 

how to count by 4, I was splitting 4 in half to make two on each side. Then I did 2 X 8 equals 16 

then I have to count by 2s up to 32 what it equals. I have to count by 2s 16 times [Tom, G1, 1:00]. 

A few children could not explain their thinking and another few gave an explanation of 

their thinking as if telling a story. In examining the knowledge that experienced 

mathematics teachers access to operate effectively, Ainley and Luntley (2005, p. 78) made 

a distinction that may be pertinent here. Teachers were shown episodes of videotapes of 

their classrooms and in these interviews some teachers gave an “account for” rather than an 

“account of” their actions. The children who made up a story to suit the occasion may be 

doing the same thing or perhaps there is a different mechanism at work. No definitive 

statements could be made based on the evidence collected here. All that can be said is that 

3 (6%) children made up a fiction to match the video. 
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Table 4 

Children’s Explanation of Their Thinking 

Category of response Frequency as a percent (n = 53) 

None   6  (3) 

“Account for” or gave an invented story   6  (3) 

Explicit description of thinking 43 (23) 

Reconstructs thinking, justifies, reasons, evaluates 42 (22) 

Missing   4  (2) 

Specify Learning 

Only 15% of children did not know what they learned in the mathematics lesson (see 

Table 5). The category of “nothing” proved unreliable because it became clear that young 

children translated “What did you learn today?” into “What new things did you learn 

today?” and these two questions are quite different. Therefore this category is not 

discussed. Some children talked about behavioural learning, for example, “to share.” Or 

they referred to non-mathematical things, for example the learning context, “talking about 

tools and building” [Michael, Jk2]. Totalling the first 3 categories of Table 5 shows that 

30% of the children did not specify mathematical learning. 

The three categories of most interest were those that made distinctions between 

learning factual information (15%), learning how to do something (23%), and learning at a 

conceptual level (21%). 

About one third of the children who remembered facts talked in terms of numbers. For 

example, Annie who had been talking about measuring with a piece of string when asked 

what she learned said, “I learned that 9 + 11= 20.” Although it is not possible to be certain 

from these data, it raises a question as to what these young children think constitutes 

mathematics learning. Is learning mathematics equated to remembering numbers? 

Lindenskov (1993) found that students’ learning can be influenced by their everyday 

knowledge of what mathematics is. She was also struck by “the students” perceptions of 

details, even small ones, both in the teaching and in her/his own learning” (1993, p. 153). 

Certainly the children interviewed for this research described their learning in detail. For 

example, Tom talked about his learning in the following exchange. 

Tom: I think I might have leant some new times tables. 

Interviewer: Oh so you sort of had to figure some out? 

Tom: Yes. 

Interviewer: In which times table? 

Tom: I think some were in the, I think some were like 9 X 6. I didn’t know that but then I 

knew it because I just counted by 6 nine times [G1: 6:36]. 
 

Some children learned how to do something, for example Jordan, who “learned how to 

count by nines.” Another substantial proportion of the children (21%) reflected on their 

learning at a conceptual level. For example, Tahani reflected on a lesson where the teacher 

intended to introduce multiplicative thinking, saying she learned “about groups, to make 

groups and to count them altogether and I learned to count by 6s.” Another example was 
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Lucas who said he learned “how long things were and how short they were … by counting 

the blocks.” 

Table 5  

Children’s Learning 

Category of response Frequency as a percent (n = 53) 

Unable to specify learning 15  (8) 

Nothing “new”   9  (5) 

Learned behaviour/ not mathematics   6  (3) 

Remembered factual information 15  (8) 

Learned how to do something 23 (12) 

Specified a conceptual level of understanding 21 (11) 

Missing 11  (6) 

Conclusion and Implications 

It can be concluded that young children could give an account of mathematical events 

from their perspective. Children could recall at least part of their conversations with the 

teacher during the day’s mathematics lesson. These interactions appear to have some 

lasting effects. If, as we assert, interactions that challenge children to think about their 

mathematical understandings are a critical factor in their learning, then knowing that many 

young children spontaneously remember these conversations and can reconstruct their 

thinking is an important finding. 

The sophistication of their descriptions of events in the classroom was fairly evenly 

split between recounts of actions, descriptions of the event from the child’s perspective, 

and a description that involved some recount of their reasoning. It was impressive to find 

that such a large proportion of five- to seven-year-old children (42%) could reconstruct 

their thinking and justify it. 

It is assumed that the experiences offered to children in mathematics classrooms 

contribute to their learning. These data indicate that 59% of children could talk about their 

learning as a result of the lesson – some at a factual level, some at a procedural level, and 

some at a conceptual level. Further research might investigate factors that influence 

different levels of understanding reported by young children. 

It is also important for researchers to know that video-stimulated recall can be 

successfully used with 5- to 7-year-old children. 
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This paper presents a case study of the journey a teacher/facilitator took to increase her 

mathematical content knowledge in order to implement reform-oriented teaching 

approaches in her mathematics classroom, and subsequently supported other teachers to do 

the same. In the past decade mathematic education reform has been introduced to teachers 

in curriculum documents and related in-service professional development programmes 

promoting an inquiry-based approach to the teaching and learning of mathematics to 

increase student achievement. Recent research findings suggest that the complex 

mathematical knowledge embedded in these reforms makes it difficult for many teachers to 

accommodate the reforms in their entirety. This was indeed the case for the teacher in this 

study. 

Introduction 

The case study reported here is part of a wider study that investigated the professional 

development perspectives of eight teachers and one teacher/facilitator who had participated 

in the long-term, school-based mathematics programme, the New Zealand Numeracy 

Development Projects (NDP). The teachers in this wider study found the complex nature of 

the reforms, for example coming to terms with understanding multiple strategies and 

moving away from procedural-based algorithms, led to significant shifts in their 

pedagogical content knowledge. Even so they struggled to accommodate the full extent of 

these reform teaching approaches without ongoing support (Cheeseman, 2006). Similar 

struggles were identified by teachers in the nation-wide government evaluations of the 

NDP (Young-Loveridge, 2004). In this case study the teacher/facilitator talks about her 

lengthy professional development journey and the types of content knowledge she gained 

along the way. 

 

Background 

Research over the past two decades has identified the teacher and the teaching 

methodology as the crucial factor for students’ ability to learn mathematical concepts with 

understanding (Skemp, 1986; Wilson & Ball, 1996). Skemp (1986) argued that teachers as 

poor communicators of mathematics accounted for many students’ negative attitude and 

anxiety towards mathematics and their resulting underachievement in the subject. Studies 

have confirmed that many teachers lack the content knowledge required to deliver effective 

teaching programmes in mathematics (e.g. Carpenter, Fennema, Fuson, Heibert, Human, 

Murray, Oliver, & Wearne, 1999; Hill & Ball, 2004; Shulman, 1986). The results of studies 

such as these led to mathematical reforms focusing on teacher knowledge and the way that 

knowledge is delivered so that students became fully engaged in mathematical thinking. 

The reform-oriented teaching approaches promoted were inquiry-based, “a process in 

which students reorganise their conceptual activity to resolve situations that they find 
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problematic” rather than procedural “a process of internalising carefully packaged 

knowledge” (Cobb, Wood, Yackel, Nicholls, Wheatley, Trigatti, & Perlwitz, 1991, p. 5).  

These reforms required most teachers to make a major shift in pedagogy from teaching 

approaches that focused on a procedural approach (standard algorithms and rules) to a 

conceptual approach focusing on student thinking and reasoning (Stein & Strutchens, 2000; 

Anderson & Bobis, 2005). To make this pedagogical shift necessitated teachers extending 

their knowledge of mathematics to include what Shulman (1986) described as pedagogical 

content knowledge (PCK). Shulman (1986) sees PCK as going beyond knowledge of 

subject matter per se to the subject matter of teaching that includes knowledge of: how to 

teach mathematics, mathematics curriculum and resources, and importantly how students 

learn mathematics. In regard to the latter, Hill and Ball (2004) elaborated that teachers’ 

knowledge of how students learn results from the “interplay between teachers’ knowledge 

of students, their learning, and strategies for improving that learning”. This includes the 

teachers’ ability to understand and assess the problem solving strategies used by their 

students and when a new strategy is used to “determine whether such strategies would be 

generalizable to other problems” (p. 332). Embedded within PCK is the development of 

teachers’ awareness of sociocultural norms whereby students feel confident to share their 

mathematical thinking in a non-threatening learning environment (Fraivillig, Murphy, & 

Fuson, 1999; Yackel & Cobb, 1996). 

In New Zealand the Ministry of Education undertook a series of initiatives to provide 

professional development programmes to assist teachers to accommodate the reform-

orientated approaches in mathematics. A small initiative began in the late 1990s with the 

introduction of a tertiary course (Helping Children Succeed in Maths) at the Auckland 

College of Education. Those teachers attending the course were introduced to the theory of 

relational understanding based on Skemp’s (1986) research, the notion of students using 

their own strategies to solve number problems, and the developmental stages of children’s 

mathematical thinking. Nation wide long-term, school-based initiatives followed, 

commencing with the New South Wales programme Count Me In Too [CMIT] (Wright, 

1998), which was later replaced by a New Zealand numeracy project focusing on the junior 

school, the Early Numeracy Programme (ENP). The professional development programme 

was then extended to teachers of older students (8 – 10 year olds) with the introduction of 

the Advanced Numeracy Project (ANP). Both ENP and ANP were designed to up-skill 

teachers in their ability to teach numeracy by providing The Number Framework, a 

breakdown of the development stages of students’ mathematical knowledge and thinking, 

and a strategy-teaching model. The Number Framework was the NDP’s key tool in 

developing teachers’ knowledge of number concepts and the processes by which these 

number concepts are best developed. It was intended that teachers’ awareness of student 

mathematical mental strategies be increased and their pedagogy changed (guided by the 

teaching model) in order to improve student achievement (Thomas & Ward, 2002).  

Teacher change as a result of accommodating the reform-orientated approaches was 

extensive and difficult to achieve for many teachers (Cheeseman, 2006; Young-Loveridge, 

2004).  This parallels the reports in recent international studies (Anderson & Bobis, 2005; 

Cady, Meier, & Lubinski, 2006; Stigler & Heibert, 1997). Stigler and Heibert (1997) 

observed the challenges American teachers encountered while attempting to make changes 

to their deep-seated beliefs when faced with reforms and as a result only changed some 

practices. Anderson and Bobis (2005) investigated Australian teacher responses to the 

reform-oriented approaches recommended by the NSW curriculum and found that overall 
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teachers’ agreed with the reforms but many had difficulty fully embracing them. Similarly, 

a longitudinal study undertaken by Cady, Meier, and Lubinski (2006) observed the 

development of pre-service teachers to experienced teachers and found variance in the 

teachers’ abilities to implement reform practices in their classrooms as novice teachers. 

This paper examines the complexities of one teacher’s journey in her attempt to incorporate 

and consolidate the mathematical reforms promoted by the numeracy initiatives in New 

Zealand into her teaching practice. 

Methodology 

The study used an interpretive approach to investigate the perceptions of a 

teacher/facilitator who participated in Ministry of Education numeracy professional 

development initiatives over an extended period of four years. The mode of enquiry was in 

the form of a 45-minute to 60-minute face-to-face interview and shorter follow-up 

telephone interviews. The semi-structured, open-ended interview questions were 

formulated as a guide for the researcher to follow. The main intention of the researcher was 

to listen actively so that the interview was shaped by the participant’s voice (Denzin & 

Lincoln, 2003).  
This case study was part of a wider interpretive study that explored the experiences of 

eight teachers who were involved in the NDP professional development programme. 

Mathematical Journey 

 In her first year of professional development Jayne was teaching in the junior area of 

the school (5 – 7 year olds). She participated in the tertiary mathematics paper, “Helping 

Children Succeed in Maths”, which introduced her to the idea of student strategies for 

counting, and theory about conceptual or relational thinking. 

The first year I took the paper “Helping Children Succeed in Maths” at ACE [Auckland College of 

Education]. I was the only teacher attending from my school which was a shame because after each 

session I would come to school and talk enthusiastically about all these new mathematical ideas. I 

suspect that most people taught like I’ve always done and have those same values, and the ideas I 

was now advocating were quite radical so my colleagues were not keen to listen. The idea that the 

children could think of their own strategies to solve addition problems seemed alien and their 

reaction was “but that means there would be more than one answer!”  

Jayne took ownership of the new pedagogical ideas and practised the implementation of 

them with her class. The following year her junior syndicate participated in CMIT. CMIT 

was a long-term professional development programme (a duration of three school terms) 

that further consolidated the new pedagogical content knowledge she had gained from the 

tertiary course. An example of this knowledge consolidation was her increasing familiarity 

with the number framework outlining the stages of student mathematical thinking. 

Before starting the PD, I remember asking a Year three child to add 8 + 3 and she went 12345678, 

123 and then counted up to 11. I thought what is she doing? Why is she doing that? Now I know that 

[counting all - one to one] is a developmental progression … and now you have to go from this step 

to teach them [children] to go further.  

Her enthusiasm and success in accommodating to and implementing the PCK led to her 

being asked to become a part-time facilitator for ENP, which allowed her to continue to 

teach mathematics in her year 4 class as well as introduce other teachers of junior classes in 

other schools to the reform-oriented teaching practices.   
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When I became a facilitator in terms of maths [knowledge] it deepened what I knew rather than 

changed it so much because by then I'd already changed the way I taught and the way I thought about 

maths. As a facilitator I became aware of the importance of the numeracy framework in focussing 

teachers’ attention on stages of children’s thinking so that you can see which stage each child is at 

and where to push them to next. … I used to look at my Year four children [8 yr olds] and they 

would all be using their fingers to count on for a problem like 8 + 5, but now we are teaching them to 

count smarter by rearranging the groups of numbers [making tens or using doubles strategies]. I think 

that knowing there is a next step was a big change in my thinking about mathematics and how 

children learn to add and subtract.  

The following year Jayne was asked to become a full-time facilitator, this time working 

with teachers in both the ENP and ANP professional development courses. She talked 

about the increase in content knowledge in relation to strategies used by junior school 

students to those used by students in the senior school (8-9 year olds). She initially 

struggled to understand some of the more complex strategies, in particular those that 

involved multiplicative thinking. 

This year the development has been huge because [as a facilitator of ANP] it’s been multiplication 

and division … it is understanding the actual strategies e.g. for a problem like 5 x 18 – can take a 

long time to actually understand that you are just halving that group and rearranging it [10 x 9]. 

Initially you just have to see it and do it [using materials]. That knowledge is then extended, to 

fractions and decimals, which I knew very little about and which is so abysmal in NZ anyway. Both 

my knowledge and strategies have increased and that would be common with most of the facilitators 

and a lot of the professional development had been based around that for facilitators.  

Jayne’s struggle to understand the more complex mathematical strategies parallels the 

findings of the research that reported on how teachers had coped with the increasingly 

sophisticated part-whole strategies introduced as part of the ANP professional 

development. She, as for most teachers in the research project, felt challenged but like the 

other teachers increased her own mathematical knowledge (Irwin, 2003; Young-Loveridge, 

2004). It is crucial that teachers understand the strategies their students are using and 

provide guidance to extend their students’ thinking. Jayne discussed the aspect of teaching 

strategy as another significant aspect of her increasing PCK and accommodation of the 

range of strategies to be taught. 

At the ANP level I had to learn firstly, what is the range of strategies children might use and 

secondly, how do we teach them. I can empathise with the teachers’ feeling of “information 

overload” when learning about strategy because I often felt this too when attending the ANP 

facilitator professional development days. Sometimes at those PD days I would think if they say 

another thing I’m going to burst because I don’t want to hear any more. It is a lot to take in and it’s 

not just taking it in, it is processing it and then telling and showing that to teachers.  

The nature of the NDP required a major shift in pedagogy from teaching approaches 

that focused on a transmission approach to a teacher facilitation approach focusing on 

student thinking and reasoning (Stein & Strutchens, 2001). Jayne became more conscious 

of the importance of listening attentively to students explain their thinking at the ANP level 

where the strategies were more complex. She was aware both as a teacher and a facilitator 

of the necessity to elicit, support, and extend students mathematical thinking (Fraivillig et 

al., 1999) and to model this for teachers. 

Listening to children’s thinking – was a huge shift. No longer just wanting answers – asking how did 

you get that answer or a range of answers. Yes, I accept all the children’s solutions without value 

judging but some ways of getting the answers are more efficient than other ways so that’s the way we 

want to guide then depending on what the numbers are in the problem. The most efficient strategies 

will vary depending on the nature of the problem. For example, using an algorithm to solve a 
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problem with large four to five digit numbers is fine but for a problem like 1003 – 998 you can solve 

it in your head. However, children do now always see that there is a quicker way to solve it and need 

guidance to move away from the standard algorithm to see the easier method. 

Jayne found that the shift away from teaching algorithms was highly significant in her 

growth of PCK. This significant aspect was highlighted in the literature where it was noted 

that the NDP strategy-teaching model required most teachers to change their ways of 

thinking and learning about mathematics. This entailed a shift away from teaching rules, 

procedures, and algorithms to guiding students to use multiple strategies to solve a problem 

(Young-Loveridge, 2004). Very early on in her professional journey Jayne could see the 

tension caused by teaching algorithms whereby the children were just following a process 

and not seeing the wholeness of the numbers or looking at them contextually.  

As teachers we would get to that step where the children could count on and then we would teach the 

algorithm which is not so much to do with mathematical thinking but is more to do with following 

rules. For example, with a problem like 605 – 308, the children would not see 605 as a whole number 

but would concentrate on the 5 and 8 ones, each little bit of it and not have a sense of the wholeness 

– number sense! 

Jayne had changed her practice to teach multiple strategies and delay the teaching of 

algorithms to students until they had a deep conceptual knowledge about operating on 

number. She then had to convince other teachers to move away from the standard 

procedures. 

As a facilitator of ANP my biggest challenge was convincing teachers to move away from teaching 

algorithms [standard procedures to solve all four operations]. And trying to get through that students 

won’t be penalised because they will know so much more about number and they will have a much 

richer base [strategies] in their heads. And they won't understand an algorithm anyway if you teach it 

too early. We’ve been teaching procedures for years and that’s fine for the basic facts, counting and 

number identification, and reading fractions and decimals, but operating on them involves other 

mathematical thinking.  

The journey Jayne took enabled her to increase her mathematical content knowledge 

and implement reform oriented teaching approaches in her mathematics teaching practice. 

Conclusion 

Her dual role beginning as a self-motivated teacher and becoming a facilitator gave 

Jayne multiple opportunities to take advantage of the professional development associated 

with NDP. Her personal journey took four years and involved the challenges of working 

with colleagues as well as with students. It seemed for her 4 years laid a solid foundation 

that may be an optimum result for the numeracy teaching development programmes to be 

consolidated effectively. The case study outlining Jayne’s accommodation of the reform-

oriented teaching approaches demonstrates the difficulties faced by teachers embarking on 

this mathematical self-improvement journey. Recent research findings state “that teachers 

who are more successful than others at developing effective reform-based practices appear 

to be self-sustaining, generative learners (Anthony & Walshaw, 2007). This would indeed 

appear to be the case for Jayne. 
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A range of assessment tasks was developed for use in one-to-one interviews in 

December 2005 with 323 Grade 6 students in Victoria. In this paper, we summarise 

briefly the research literature on fractions, describe the process of development of 

assessment tasks, share data on student achievement on these tasks, and suggest 

implications for curriculum and classroom practice. Particular emphasis in the 

discussion is given to students’ judgements and strategies in comparing fractions. A 

particular feature of this report is that one-to-one interview assessment data were 

collected from a larger number of students than is typically the case in these kinds of 

studies. Recommendations arising from these data include the importance of teachers 

understanding and presenting a wider range of sub-constructs of fractions to students 

in both teaching and assessment than is currently the case, using a greater variety of 

models, and taking available opportunities to use the interview tasks with their own 

students. 

Theoretical Background 

Fractions are widely agreed to form an important part of middle years 

mathematics curriculum (Lamon, 1999; Litwiller & Bright, 2002), underpinning the 

development of proportional reasoning, and important for later topics in mathematics, 

including algebra and probability. However, it is clear that it is a topic which many 

teachers find difficult to understand and teach (Post, Cramer, Behr, Lesh, & Harel, 

1993), and many students find difficult to learn (Behr, Lesh, Post, & Silver, 1983; 

Kieren, 1976; Streefland, 1991). Among the factors that make rational numbers in 

general, and fractions in particular difficult to understand are their many 

representations and interpretations (Kilpatrick, Swafford, & Findell, 2001). 

There is considerable evidence that the difficulties with fractions are greatly 

reduced if instructional practices involve providing students with the opportunity to 

build concepts as they are engaged in mathematical activities that promote 

understanding (Bulgar, Schorr, & Maher, 2002; Olive, 2001). 

In the Early Numeracy Research Project (Clarke, et al., 2002), a task-based, 

interactive, one-to-one assessment interview was developed, for use with students in 

the early years of schooling. This interview was used with over 11 000 students, aged 

4 to 8, in 70 Victorian schools at the beginning and end of the school year, thus 

providing high quality data on what students knew and could do in these early grades, 

across the mathematical domains of Number, Measurement, and Geometry. There 

was equal emphasis in the teachers’ record of interview on answers and the strategies 

that led to these answers.  

The use of a student assessment interview, embedded within an extensive and 

appropriate inservice or preservice program, can be a powerful tool for teacher 

professional learning, enhancing teachers’ knowledge of how mathematics learning 

develops and knowledge of individual mathematical understanding, as well as content 

knowledge and pedagogical content knowledge (Clarke, Mitchell, & Roche, 2005; 

Schorr, 2001). 
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The success of the interview and comments from middle years’ teachers prompted 

the authors to consider extending the use of the assessment interview to the middle 

years of schooling (Grades 5 to 8). As a first, major step in this process, it was 

decided to focus the interview on the important mathematical topics of fractions and 

decimals. This paper reports the process and findings from this work, with particular 

emphasis on fractions. 

Fractions: Constructs and Models 

Much of the confusion in teaching and learning fractions appears to arise from the 

many different interpretations (constructs) and representations (models). Also, 

generalisations that have occurred during instruction on whole numbers have been 

misapplied to fractions (Streefland, 1991). Finally, there appears to be a void between 

student conceptual and procedural understanding of fractions and being able to link 

intuitive knowledge (or familiar contexts) with symbols (or formal classroom 

instruction) (Hasemann, 1981; Mack, 2002). The dilemma for both teachers and 

students is how to make all the appropriate connections so that a mature, holistic, and 

flexible understanding of fractions and the wider domain of rational numbers can be 

obtained. 

Kieren (1976) was able to identify several different interpretations (or constructs) 

of rational numbers and these are often summarised as part-whole, measure, quotient 

(division), operator, ratio, and decimals. For the purpose of this review these 

interpretations are explained in the context of fractions.  

The part-whole interpretation depends on the ability to partition either a 

continuous quantity (including area, length, and volume models) or a set of discrete 

objects into equal sized subparts or sets. The part-whole construct is the most 

common interpretation of fractions and likely to be the first interpretation that 

students meet at school. Lamon (2001) suggested that “mathematically and 

psychologically, the part-whole interpretation of fraction is not sufficient as a 

foundation for the system of rational numbers” (p. 150).  

A fraction can represent a measure of a quantity relative to one unit of that 

quantity. Lamon (1999) explained that the measure interpretation is different from the 

other constructs in that the number of equal parts in a unit can vary depending on how 

many times you partition. This successive partitioning allows you to “measure” with 

precision. We speak of these measurements as “points” and the number line provides 

a model to demonstrate this.  

A fraction (a/b) may also represent the operation of division or the result of a 

division such that 3÷5 = 3/5. The division interpretation may be understood through 

partitioning and equal sharing. These two activities have been the focus of much 

research (Empson, 2003).  

A  fraction  can  be  used  as  an  operator  to  shrink  and  stretch  a  number  such 

as 3/4 x 12 = 9 and 5/4 x 8 = 10. The misconception that multiplication always makes 

bigger and division always makes smaller is common (Bell, Fischbein, & Greer, 

1984). It could also be suggested that student lack of experience with using fractions 

as operators may also contribute to this misconception. 

Fractions can be used as a method of comparing the sizes of two sets or two 

measurements such as “the number of girls in the class is 3/5 the number of boys”, 

i.e., a ratio. Post et al. (1993) claim “ratio, measure and operator constructs are not 

given nearly enough emphasis in the school curriculum” (p. 328).  

Although these constructs can be considered separately they have some unifying 

elements or “big ideas”. Carpenter, Fennema, and Romberg (1993) identified three 
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unifying elements to these interpretations and they are: identification of the unit, 

partitioning, and the notion of quantity.  

Method 

Focusing on the rational number constructs of part-whole, measure, division, and 

operator, and the “big ideas” of the unit, using discrete and continuous models, 

partitioning, and the relative size of fractions, a range of around 50 assessment tasks 

was established, drawing upon tasks that had been reported in the literature, and 

supplemented with tasks that the research team developed. These tasks were piloted 

with around 30 students in Grades 4 to 9, refined, and piloted again (Mitchell & 

Clarke, 2004).  

Using a selection of the set of tasks, 323 Grade 6 students were interviewed at the 

end of the school year. The schools and students were chosen to be broadly 

representative of Victorian students, on variables such as school size, location, 

proportion of students from non-English speaking backgrounds, and socio-economic 

status. A team of ten interviewers, all experienced primary teachers, with at least 4 

years’ experience in one-to-one assessment interviews of this kind, participated in a 

day’s training on the use of the interview tasks, including viewing sample interviews 

on video.  

The tasks were administered individually over a 30- to 40-minute period in the 

students’ own schools, with interviews following a strict script for consistency, and 

using a standard record sheet to record students’ answers, methods and any written 

calculations or sketches. Each actual response to a question was given a code by the 

authors, and a trained team of coders took the data from the record sheets, coded each 

response, and entered it into SPSS. Key findings are provided in the following 

section. 

Results 

In this section, data from the 323 Grade 6 students are provided on eight of the 

tasks, organised around relevant sub-constructs of fractions (Kieren, 1976). In each 

case, the task is outlined, the mathematical idea it was designed to address is stated, 

the percentage student success rate is given, and common strategies and solutions, 

including misconceptions, are outlined. 

Part-whole 

 Three tasks focused on part-whole thinking.  

1. Fraction Pie task (adapted from Cramer, Behr, Post, & Lesh, 1997). Students 

were shown the pie model (Figure 1), and asked:  

a) What fraction of the circle is part B?  

b) What fraction of the circle is part D? 

 

 

 

 

 
Figure 1.  Fraction Pie task. 
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Part (a) was relatively straightforward, with 83.0% of students answering 1/4. Of 

the total group, 3.3% offered a correct equivalent fraction, decimal, or percentage 

answer, whereas 5.6% and 1.9% answered “1/5” and “1/2”, respectively. Part (b) was 

more difficult, with only 42.7% giving a correct answer, with 13.6% answering 1/5 

(presumably based on “five parts”). The same percentage answered 1/3, probably 

focusing only on the left-hand side. 

2. Dots Array task. Students were shown the array in Figure 2, and asked, “what 

fraction of the dots is black?” They were then asked to state “another name for that 

fraction”; 76.9% gave a correct answer, with the three most common answers being 

2/3 (35.6%), 12/18 (30.7%), and 4/6 (8.7%). The most common error was 3/4. Only 

53.5% of students were able to offer another correct name for the fraction, with 4/6 

being the most common response (17.0%). These data indicate that students generally 

showed a flexible approach to unitising (Lamon, 1999). 

 

 

 

 

 

 
Figure 2.  Dots Array task. 

3. Draw me a whole task (part a). In assessing students’ capacity to move from 

the part to the whole, acknowledged by Lamon (1999) and others as an important 

skill, students were shown a rectangle (shaded grey in Figure 3), and asked, “if this is 

two-thirds of a shape, please draw the whole shape,” while explaining their thinking. 

64.1% were able to do so successfully, with 28.5% of them dividing the original 

shape into two equal parts first, and 35.6% showing no visible divisions. 

 

 

 

 

 
Figure 3. A student’s correct solution for Draw me a whole (part a). 

Draw me a whole task (part b). Students were presented with a different rectangle 

(shaded part in Figure 4), told that it was “four thirds,” and asked to show the whole. 

In this case, 40.5% drew a correct shape, with just under half of these breaking the 

original rectangle into four parts, indicating three of these as the whole. 

 

 

 

Figure 4. A student’s correct solution for Draw me a whole (part b). 

Fraction as an Operator 

4. Simple operators. Students were posed four questions, with no visual prompt, 

which required students to work out the answer in their heads. They were as follows: 

“… one-half of six?” (97.2% success); “… one-fifth of ten?” (73.4%); “… two-thirds 

of nine? (69.7%); and “… one third of a half?” (17.6%). The data on the last item, by 
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far the most difficult of this set, are interesting in light of the relative difficulty with 

the related pie task. 

Fractions as Measure 

5. Number line (parts a, b & c). Students were asked to “please draw a number 

line and put two thirds on it”. If students did not choose to indicate where 0 and 1 

should be in their drawing, they were asked by the interviewer, “where does zero go? 

… where does 1 go?” Only 51.1% of students were successful in correctly locating 

2/3 on the number line. A common error was placing 2/3 after 1 (see Figure 5), or 

two-thirds along some line, e.g., at 4 on a number line from 0 to 6, or two-thirds of the 

way from 0 to 100 (see Figure 6). 

Figure 5. A student’s incorrect solution for placing 2/3 on a number line (part a). 

 
Figure 6. Another student’s incorrect solution for placing 2/3 on a number line (part a). 

Given a number line as shown in Figure 7, students were then asked to mark, in 

turn, six thirds (part b) and eleven sixths (part c) (Baturo & Cooper, 1999). Only 

32.8% and 25.4% were successful, respectively. Many placed 6/3 on 6 or 3. Several 

students located 11/6 well to the right of 6. 

 

 

 
Figure 7.  Number line task (part b & c). 

6. Construct a Sum. In a task designed to get at students’ understanding of the 

“size” of fractions, we used the Construct a Sum task (Behr, Wachsmuth, & Post, 

1985). The student is directed to place number cards in the boxes to make fractions so 

that when you add them the answer is as close to one as possible, but not equal to one. 

The number cards included 1, 3, 4, 5, 6, and 7 (Figure 8). Each card could be used 

only once. The capacity for students to move cards around as they consider 

possibilities is a strong feature of this task. Only 25.4% of students produced a 

solution within 0.1 of 1, the most common response being 1/5 + 3/4 (5.3% of the total 

group). 24.5% of students chose fractions at least 0.5 away from 1, and most of these 

included an improper fraction. The answer closest to one (1/7 + 5/6) was chosen by 

only four students.  
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Figure 8. Construct a Sum task. 

7. Fraction pairs task. Another task that we used to assess the important notion of 

fraction as a quantity is the fraction pairs task. Eight fraction pairs were shown to 

students, one pair at a time (see Figure 9). Each pair, typed on a card, was placed in 

front of the student, and the student was asked to point to the larger fraction of the 

pair and explain their reasoning.  No opportunity was given for the students to write 

or draw anything. Our interest was in mental strategies. 

a) 3/8  7/8  e) 2/4  4/2 

b) 1/2  5/8  f) 3/7  5/8 

c) 4/7  4/5  g) 5/6  7/8 

d) 2/4  4/8  h) 3/4 7/9 

Figure 9. The eight fraction pairs used in the study. 

The intention was that, based on previous piloting, the tasks were presented in 

order of increasing difficulty. This proved not always to be the case. 

For each task, the interviewer circled the student’s chosen fraction on the 

interview record sheet, and recorded the student’s reasons, choosing from a list of 

common explanations. For example, the choices given for the pair 3/4 and 7/9 were:  

• Residual with equivalent (2/8 > 2/9) 

• Residual thinking (1/4 > 2/9) with proof 

• Converts to decimals 

• Common denominator 

• Higher or larger numbers 

• Other …………………………. 

If the method offered by the student did not correspond to any of the listed 

strategies, the interviewer noted the method used under “Other”, making every effort 

to record all the words used by the student in the explanation.  

Data analysis involved determining the percentage of students who gave the 

correct answer, and then for both correct and incorrect choices, the percentage of 

students who used each particular strategy. The list of strategies was expanded during 

data analysis to incorporate any strategies which were common, from the “Other” 

category. 

Table 1 shows the percentage of students who selected the appropriate fraction 

from the pair (or indicated both were equal in the case of 2/4 and 4/8) and gave a 

reason for their choice that was judged to be reasonable. The fraction pairs are 

presented in decreasing order of success. 

The most straightforward pair (3/8, 7/8) and the most difficult pair (3/4, 7/9) were 

easily predicted in advance. Having said that, the percentage success on the easiest 

pair (77.1%), with success being defined as a correct choice coupled with an 

appropriate explanation, was not high. Given that students were interviewed at the end 

of their Grade 6 year, after probably some years of introductory work on fractions, 

nearly one-quarter of students do not seem to have a basic, part-whole understanding 

of fractions. 

The vast majority (94.8% of successful students) noted that the denominator was 

the same (and hence the size of the parts), and therefore compared the numerators. 

However, 5.2% benchmarked to 1/2 and 1. Also 38.5% of all incorrect solutions (for 
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which 3/8 was chosen as the larger) gave an explanation to the effect that “smaller 

numbers mean bigger fractions”. 

Table 1 
 

The Percentage of Grade 6 Students Choosing Appropriately from Fraction Pairs 

With Appropriate Explanation (n = 323) 
 

Fraction pair % correct 

3/8 7/8 77.1% 

2/4 4/8 64.4% 

1/2 5/8 59.4% 

2/4 4/2 50.5% 

4/7 4/5 37.2% 

3/7 5/8 20.4% 

5/6 7/8 14.9% 

3/4 7/9 10.8% 

 

The most difficult pair (3/4 & 7/9) proved to be very difficult for various groups 

of primary and junior secondary teachers with whom we have worked in professional 

development settings. Many teachers have been unable to offer an explanation beyond 

the use of common denominators, and so the 10.8% success rate for students is 

probably not surprising. In fact, 54.3% of successful students used common 

denominators and a total of 40% used some form of residual strategy (either 2/8 > 2/9 

or 1/4 > 2/9 with some other explanation), whereas 5.7% (two students) converted the 

fractions to decimals in their heads.  

The relative difficulty of the pair (4/7, 4/5) was a surprise to us, with only a 37.2% 

success rate, indicating that it was more difficult than (1/2, 5/8) and (2/4, 4/2). We did 

note however that 60.0% of all successful students provided an explanation similar to 

“there are four pieces in each, but as sevenths are smaller than fifths, so 4/5 will be 

larger”, indicating the most common correct response was a strategy involving 

number sense rather than procedure. It was of some concern that 20.0% felt the need 

to convert to common denominators; 9.1% of successful students used benchmarking 

and 10.8% used residual thinking. This was a task in which gap thinking (Pearn & 

Stephens, 2004) was common, with 21.4% of students who chose 4/5 as larger 

providing inappropriate gap thinking reasoning (focusing on the difference between 4 

and 7 and between 4 and 5). For all students who chose 4/7 as larger, 73.5% of 

reasons were to do with “larger numbers”. 

Benchmarking and residual strategies are a couple of the strategies that appear to 

be used by students displaying a more conceptual understanding of the size of 

fractions, yet they are not in widespread use by students or teachers in our schools. 

These strategies would have been most appropriate for the pairs (3/7, 5/8) and (5/6, 

7/8) respectively, but the success rates were 20.4% and 14.9%. Of the successful 

students, 28.8% and 45.8% of students chose to use common denominators for these 

pairs respectively, thereby choosing a procedure rather than a strategy based more 

clearly on number sense. Also, 21.2% of all students used gap thinking for (3/7, 5/8) 

and 29.4% of all students claimed 5/6 and 7/8 were the same, often using gap thinking 

as their justification.  

Student understanding of simple equivalences, appears to contribute to the relative 

success rate for the pairs (1/2 and 5/8, and 2/4 and 4/8) as most could identify ½ and 

4/8 as the same, however, it must be said that 59.4% and 64.4% respectively are still 

lower than we predicted for students at the end of Grade 6.  
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The lack of emphasis on improper fractions in primary grades may account for the 

difficulty in explaining the relative size of 2/4 and 4/2 (42.7%). Also, the language 

some students use to label fractions may hinder their understanding. For example, 

some students were noted to read these as “two out of four” and “four out of two”, 

which is not helpful when considering their respective size. “Two-quarters” and 

“four-halves”, on the other hand, may help to create an image about the size of the 

parts that is more likely to lead to a correct solution.  

Fractions as Division 

8. Pizza task. Children were shown a picture (Figure 10), and told, “three pizzas 

were shared equally between five girls. … How much does each girl get?” Students 

were invited to use pen-and-paper if they appeared to require it. 

Although 30.3% of Grade 6 students responded with a correct answer, it was 

apparent that most either drew a picture or mentally divided the pizzas to calculate the 

equal share. A concerning result was that 11.8% of students were unable to make a 

start. Greater exposure to division problems and explicit discussion connecting 

division with their fractional answers, for example, 3 ÷ 5 = 3/5 may help lead students 

to the generalisation that a ÷ b = a/b.  

 

 

 

 

Figure 10. Pizza task. 

Discussion 

Despite the strong recommendations from researchers that school mathematics 

should provide students experiences with all key sub-constructs of fractions and the 

many useful models that illustrate these sub-constructs (Lamon, 1999; Post et al., 

1993), it is clear that a large, representative group of Victorian Grade 6 students do 

not generally have a confident understanding of these and their use. 

Generally, performance on part-whole tasks was reasonable, although when the 

object of consideration was not in a standard form and not broken into equal parts 

(e.g., the Fraction Pie task), less than half of the students could give a correct fraction 

name to the part. The teaching implications here are clear. Students need more 

opportunities to solve problems where not all parts are of the same area and shape. On 

the other hand, the dots array task showed that students handled this discrete situation 

well, unitising appropriately, and usually had access to fractions that were equivalent 

to a given fraction. 

Although simple fraction as an operator tasks were straightforward for most 

students, it seems that only around one-sixth of students being able to find one-third 

of a half indicates that students may need more encouragement to form mental 

pictures when doing such calculations. The second part of the Fraction Pie task was 

closely related, and it is interesting that of the 138 students who solved the pie task 

correctly, only 47 could give an answer to “one-third of a half”. On the other hand, of 

the 59 students who were successful with the mental task, 47 could solve the related 

pie task. Once again, the importance of visual images in solving such problems is 

clear. 
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The experience of the authors is that Australian students spend relatively little 

time working with number lines in comparison to countries such as The Netherlands. 

Given that only around half of the students could draw an appropriate number line 

that showed 2/3, it is clear that fraction as a measure requires greater emphasis in 

curriculum documents and professional development programs, as many students are 

clearly not viewing fractions as numbers in their own right. In light of these data, the 

performance on locating six thirds and eleven sixths was relatively high. The 

Construct a Sum and fraction comparison tasks revealed similar difficulties with 

understanding the size of fractions, particularly improper fractions, and a lack of use 

of benchmarks in student thinking. Emphasising these aspects instead of fraction 

algorithms may be wise. 

From our experience, few Australian primary school and middle school teachers 

and even fewer students at these levels are aware of the notion of fraction as division. 

Most students who concluded that 3 pizzas shared between 5 people would result in 

3/5 of a pizza each, either drew a picture or mentally divided the pizzas to calculate 

the equal share. A very small percentage knew the relationship automatically. This 

supports the data of Thomas (2002) that 47% of 14 year-olds thought 6÷7 and 6/7 

were not equivalent. 

In summary, our data indicate clearly that Victorian students (and probably their 

teachers through appropriate professional development) need greater exposure to the 

sub-constructs of fractions and the related models, as noted by Post et al. (1993) and 

other scholars. We would also encourage teachers to use some of the tasks we have 

discussed in one-to-one interviews with their students, as our experience is that the 

use of the interview provides teachers with considerable insights into student 

understanding and common misconceptions, and forms a basis for discussing the “big 

ideas” of mathematics and curriculum implications of what they have observed. 
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Recent mathematics education reform calls for pedagogical practice that is responsive to 
students’ personal articulations of mathematics ideas. In such initiatives, listening to 
students is fundamental to advancing students’ thinking. Our study explored the 
relationship between teachers’ orientation towards listening and teachers’ content 
knowledge. We investigated how four teachers listened to and made sense of students’ 
ideas, and the influence of content knowledge on their capacity to listen. The study 
revealed that the depth of teachers’ content knowledge – both subject matter knowledge 
and pedagogical content knowledge – mediated their enactment of effective listening 
practices. 

Content knowledge plays a key role in teacher effectiveness (Ball & Bass, 2000). 
What teachers do in classrooms is very much influenced by what they know about 
mathematics (Hill, Rowan, & Ball, 2005; Shulman, 1986). The effective teacher has a 
sound grasp of mathematical ideas (Askew, Brown, Rhodes, Johnston, & Wiliam, 1997), 
and from that understanding is able to choose appropriate ways to represent subject 
matter, to ask questions, to plan activities, and to facilitate discussions. Importantly, a high 
level of content knowledge provides teachers with the cognitive resources that enable 
them to move students’ thinking forward. Teachers do this by negotiating their 
understanding of subject matter with their knowledge of the learning of the students in the 
classrooms (Sherin, 2002). We were interested to see if teachers’ subject matter 
knowledge and knowledge of pedagogical content also influenced the ways in which 
teachers listened to students.  

Careful listening to what students have to say has been shown to be an important 
aspect of practice (Carpenter & Fennema, 1992; Crespo, 2000; Davis, 1997). Unlike 
traditional classrooms, in which there is little opportunity for students to engage in 
extended dialogue about mathematics (Tanner, Jones, Kennewell, & Beauchamp, 2005), 
teachers in classrooms implementing new initiatives hold the view that talking about 
mathematics is an essential feature of a quality mathematical experience. Muir (2006) 
suggests that “encouragement of purposeful discussion” allows teachers to “probe and 
challenge children’s thinking and reasoning” (p. 369). Purposeful mathematical 
discussion, however, demands focused listening. Effective teachers who listen carefully to 
students’ responses to questions are able to draw out students’ understandings (Yackel, 
Cobb, & Wood, 1990). Franke and Kazemi (2001) have shown from their research that, 
not only is listening important but also it is fundamental to advancing students’ thinking. 
It is, according to Sherin (2002), one of the key focus areas for initiating more effective 
mathematics teaching. Indeed, for teachers in research undertaken by Carpenter and 
Fennema (1992), “listening to their students was the crucial factor” (p. 463) that 
contributed to more effective mathematics instruction.  

Teachers listen to their students through their own mathematical, personal, and social 
resources (Wallach & Even, 2005). Teachers who do not listen or do not understand their 
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students’ thinking, tend to minimise or dismiss it, by imposing their own understandings 
(Cobb, 1988). Ball (1997) has argued that a teacher’s understanding of the subject matter, 
along with the commitment to the students in the classroom, will significantly influence 
what the teacher hears. Hill, Rowan, and Ball (2005) go so far as saying that 
knowledgeable teachers are able to hear their students’ methods better because they have a 
clearer understanding of the structures and connections of mathematics. Teachers with 
sound content knowledge are able to access the conceptual understandings that students 
are articulating. They are able to make informed decisions about how those 
understandings might have arisen and where they might be heading (Shulman & Shulman, 
2004). Such teachers listen by drawing on their content knowledge in order to create 
“more powerful forms of classroom teaching” (Doerr & Lesh, 2002, p. 130).   

Conceptual Framework 

In our exploration of the relationship between listening and content knowledge we 
have found the work on communities, developed by social practice theorists, extremely 
helpful. Lave and Wenger (1991), amongst others, propose that people develop 
knowledge when they are engaged in immediate, concrete, specific, and meaning-rich 
activities.  What their proposals are able to explain is how learning occurs in the context 
of shared events and interests. We draw on these ideas about communities of practice to 
explain an aspect of classroom teaching. We plan to show that the way in which students’ 
understandings of mathematics are advanced within the classroom community is very 
much influenced by what the teacher hears. In turn, what the teacher hears is informed by 
his/her content knowledge.  

Our analytic strategy is guided by the categories set out by Davis (1997). Davis’ three 
categories of teachers’ orientation to listening have proved to be an effective means of 
understanding classroom phenomena. The conceptual categories are namely, evaluative, 
interpretive, and hermeneutic. Davis suggests that not all forms of listening are conducive 
and respectful of students’ thinking. For example, teachers with an evaluative orientation 
tend to listen to students’ ideas in order to diagnose and correct their mathematical 
understandings. A correct answer is already in place in the teacher’s mind (Crespo, 2000). 
Typically, if the expected response is not given by the students then often the gaps would 
be filled by the teacher’s response. Thus the teacher strives for unambiguous explanations 
and to maintain a well-structured lesson that does not deviate.  

Teachers with an interpretative orientation listen to a student’s ideas with the primary 
purpose of assessing. In relation to the evaluative orientation, there is an increased 
opportunity for interaction, both between teacher and student, and among students. 
However, the teacher is accessing rather than assessing the student’s understanding 
(Crespo, 2000). There is an awareness of active participation. However, what is learned is 
manageable for the teacher within a set of precise steps in order to achieve particular pre-
specified understanding. Teachers with a hermeneutic orientation continually and 
interactively listen to a student’s ideas. They tend to adopt a more flexible approach to the 
ever-changing circumstances within the learning process by engaging with them in the 
“messy process of negotiation of meaning and understanding” (Crespo, 2000, p. 156).  

Our interest in these categories of teachers’ orientations to listening was to explore the 
influence of teachers’ content knowledge on each. We wanted to investigate the teachers’ 
approach to listening within the classroom as an enactment of their content knowledge. 
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Attending to teachers’ orientations to listening will help us understand effective practice 
(Davis, 1997).  

Description of the Study 

We report on the second year of our study on “Teacher Knowledge”. The study is one 
of four research “nests” situated within a larger project, Numeracy Practices and Change. 
The New Zealand Numeracy Development Project (Ministry of Education, 2001) 
acknowledges that: 

 

teachers’ understanding of subject matter and of pedagogy are critical factors in mathematics 
teaching. The effective teacher has a thorough understanding of the subject matter to be taught, 
comprehends how students are likely to learn, and knows difficulties and misunderstandings they 
are likely to encounter. (p. 2) 
 

The Numeracy Development Project provided the context for our focus on teacher 
knowledge. In our first year of study we reported on teachers “learning to notice” critical 
mathematical instances during classroom interactions (Davies & Walker, 2005). The focus 
of our second year was to move from the supportive community of learners to a closer 
investigation of the teachers in their classrooms. In order to characterise how content 
knowledge is enacted we further investigated teachers on the process of noticing 
significant mathematical moments. This paper reports on one central aspect of teachers 
noticing, namely, their orientation towards listening. The questions guiding the 
exploration were as follows: 
 

• Was there evidence of different orientations to listening? 

• Did the orientation to listening affect the lesson pathway? 

• Was there a link between teachers’ content knowledge development and their 
listening? 

 

To address those questions we used a design research experiment working 
collaboratively with four teachers from two primary schools. The nature and design 
experiment methodology allowed us to investigate further classroom incidences of 
“listening” and the teachers reflection on these incidences. We report here on two 
teachers, whom we name Mike and Joe, from the same school, both of whom focussed on 
the topic of fractions for their year 5/6 classes. Initially the teachers were released from 
their classrooms for a brainstorming/planning session with the researchers. This session 
focussed on possible teaching points, key fraction understanding, as well as problems and 
equipment. Within this session teachers’ own content knowledge was discussed.  

Extensive use was made of video footage recorded by the researcher in each class on 
five occasions over a two-week period. Following each recording, the teacher was 
released to view video footage and participate in reflective discussion with the researcher. 
Teachers were asked to stop the video at significant mathematical moments and discuss.  
Initially this discussion was to focus on simple questions, such as: What did you notice? 
What does this mean? However, it soon became apparent that teachers were not noticing 
key mathematical moments themselves when watching the video footage. As researchers 
we drew out significant mathematical incidences and refocused our attention on instances 
of teachers’ “listening”.  

Audiotapes were used to record each reflective session with the teacher, during the 
time that the video footage of their teaching was reviewed. The video footage of teaching 
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and the resulting audiotapes of discussion, together with researcher’s field notes, formed 
the dataset. At the end of the research period individual interviews recorded on audiotape 
were transcribed and collated. Relevant excerpts from these were analysed for anecdotes 
of listening and comments regarding mathematical incidences.  Video footage was 
replayed to transcribe exact instances of listening and resulting teaching and learning 
pathways.  

Results and Discussion 

The discussion is developed around two teaching episodes that are drawn from Joe 
and Mike. Each is intended to highlight moments from a teaching episode characterised 
by a particular orientation to listening. The purpose of the selection and discussion is to 
identify, describe and contrast some classroom episodes during which significant 
mathematical incidences occurred. These classroom episodes illustrate how “listening 
orientations” can be useful analytic tools for interpreting classroom phenomena and as a 
starting place for transforming mathematics teaching practice.  

Through the extensive use of video in the first year of research teachers “noticed” 
aspects of their teaching. After viewing his teaching, Joe commented on the types of 
questions he asked. Joe clarified his need for “better questions”. 

Because in a lot of ways, my questioning was directly leading the student to the right answer, I was 
in some ways influencing their answer and it wasn’t giving them a chance to think about the answer 
and get the right answer, rather than giving it to them. … Asking better questions and more open-
ended questions. So why did you think that?  

He was aware of the need to follow the student’s response and, if needed, to make 
significant changes in the direction of the lesson. Making changes involves both in-depth 
subject knowledge and pedagogical content knowledge. In the second year of research Joe 
again spoke about using questioning to “get inside” the children’s heads. This pointed to 
an effort, on his part, to use a more interpretive approach to listening. In the following 
problem that Joe gave his class, we track how this happened. 

Amy earns $24 a week. She saves 1/3. She keeps ¼ for clothes, ¼ for hobbies and movies and 1/6 
for junk food. How much does she spend on each? 

Joe moved around working with small groups of children.  

Joe:  Saves 1/3, how much is that? 
Child:  8 dollars  
Joe:  Great, how did you work that out? 
Child: 3 times 8 is 24 
Joe:  And you took that away? Good girl. 
Joe:  She keeps ¼ of this for clothes. So she keeps ¼ of 16 for clothes 
Child:  4 dollars  
Joe:  Good, we’ve got 4, we take 4 away from 16 
Child:  12 
Joe:  Put the 12 dollars down, once again we’ve got a ¼ for hobbies … [continues
 subtracting from total] …  
Joe:  We have 9 dollars and she spends 1/6 on junk food …[ pauses… rechecks
 question] … I’ll check I have the question right. Wait there. 
Comments to researcher:      That’s quite hard aye? 

Later the class came together to share their solutions and Joe selected Jordan to share 
his solution. 
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Joe: Some people have done it quite differently than how I did it, which is fine. Tell us
 what you did Jordan. 
Jordan:  Well 1/3 of 24 is 8 cause 8 times 3 is 24 
Joe:  Yes, did everyone else get that? 
Jordan:  Then ¼ for clothes is 6, and so ¼ for hobbies is the same 6, and 1/6 for junk food
 is 4. [Looks to teacher for support, teacher nods to carry on] 
Jordan:  So then 6 plus 6 plus 4 is 16. 
 

Jordan sits down and Joe looked slightly puzzled; not actually convinced of Jordan’s thinking.  
 

Joe:  Who got the same answer as Jordan? Who had a different answer? I know I did. 
 But we were doing the same stuff though. As we went through each step I took that
 money away from the total. Just goes to show that the way you interpret the
 question can affect your answer.  

Joe seemed not to consider the solution suggested by Jordan. He was not attending to the 
answer given in a way that would help develop understanding. Davis (1994) warns that 
the listener must be “vigilant to the fallibility of interpretation” (p. 279). Initially Joe 
worked out the problem and when it proved difficult to solve he thought perhaps he had 
written it incorrectly. Jordan managed to solve the problem as presented; however, his 
thinking did not match Joe’s. In the discussion that followed the video Joe described his 
thinking.  

Joe: I was comfortable with that. The group that came to the board had a 1/3 of 24 and
 then ¼ of 24. They were not using takeaway and decreasing amounts. 
Researcher:  Why do you say takeaway? 
Joe:  Because that is what she spent, its obvious, she is spending the money so you take it
 away. [long pause] 
Joe:  Now I look back on it, they answered the way it was meant to be. The question
 wasn’t well written though was it? When you think of money you take some away
 for savings and then you deal with what you have left! 

Joe was listening through his own mathematical, personal, and social resources 
(Wallach & Even, 2005). His subject matter knowledge influenced what he heard as he 
was unable to access the conceptual understanding that Jordan was articulating (Hill et al., 
2005). As an evaluative listener, Joe was seeking a particular response; even though the 
child’s response provided a solution to the problem he did not change his thinking. His 
own content knowledge let him down.   

Two days later Joe gave two similar problems to a group and worked alongside the 
children as they solved them. In the first problem there were 32 children choosing their 
favourite sport: ¼ rugby, 1/8 tee ball, etc. The problem solution was discussed and solved 
satisfactorily. The second problem involved 60 vegetables for an “umu”: ¼ were taro, ¼ 
kumara, 1/3 yams, and 1/6 breadfruit. Joe worked with the children individually 
questioning their workings and requiring explanations. He confirmed Sam’s solution of 
15, 15, 20 and 10. When sharing his strategy Sam explained he found a quarter through 
halving the 60 and halving again. Sam then drew 6 dots to represent the 60 vegetables and 
proceeded to use the dots to simplify finding a third, by circling two dots, and then a sixth 
by circling one dot. However Joe took over Sam’s explanation using his subtraction 
method to the obvious confusion of Sam. During the reviewing of the video Joe 
explained,  

Yeah I saw on his paper he had done it all right but he lost me a bit [when explaining on the board], 
so I wanted to come back to the point where I knew where he was and that’s where I went wrong 
… I was trying to make Sam think how I was thinking and not getting inside his head. 
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Although similar problems had been fully explored with both the researcher and 
through the explanations of some children, Joe continued with his misconception. Joe was 
listening for the response he wanted. Joe needed to take the child to where Joe could 
understand and move the solution on the expected pathway. In an effort to “get inside the 
child’s head” and to diagnose and correct the child’s understanding he used an evaluative 
orientation to listening seeking a common understanding. Joe was limited by his content 
knowledge unaware of the fallibility of his own method.  

We now move to our second teacher Mike. On the final day videoed, Mike provided a 
group with a variety of circular fraction pieces to investigate and to make five statements 
about them. Mike’s expectation was that they would come back with equivalent fractions 
although he did not communicate this to the group.  

Statements from this group shared with the rest of the class included: 
1/3 and 1/6 makes a ½ 
2 ¼’s makes ½ 
4 of 1/8’s makes a ½ 
1/6 and 1/8 makes ¼. 

During the review of the teaching episode Mike explained that although his plan was 
to focus on equivalent fractions due to the “novel student responses” involving addition he 
decided to follow the children’s lead. A noticeable difference was the increased 
opportunity for interaction within the group. Mike opened up opportunities for 
representation and revision of ideas (Davis, 1997). He was surprised that the children 
were capable of working things out for themselves even though it was not quite what he 
expected. He said that for them, it was valuable learning. Mike’s listening orientation 
moved to a more interpretative stand.  

The teaching continued as he decided to open the discussion to the rest of the class. 
Once again he deviated from his initial plan indicating a more interpretative approach.  
After further statements about the circular regions he asked if anyone could make any 
statements about adding fractions. Within this discussion Mike moved from interpretive 
listening back to evaluative listening.  

George made the statement 1/3 + 1/6 + 1/3 + 1/6 = 1 whole [Mike wrote this on the board]. 
Mike asked could anyone make it a shorter equation. 
Teane wrote ½ + ½ = 1 
When asked to explain this Teane said 1/3+1/6=1/2 [Mike did not seek further explanation]. 
Bridget wrote 2/6 + 2/12 = 1 and explained it pointing the 2 1/3’s were the 2/6 and the 2 1/6 were 
the 2/12. 

At this stage we see Mike constructing with the learners as they construct their 
mathematics (Davis, 1997). He was accessing the children’s understanding in an 
interactive way. His purpose of accessing rather than assessing the children’s thinking 
demonstrated an interpretative orientation to listening (Crespo, 2000). He continued, 

Mike asked what the “rectangles group” had learnt when discussing adding fractions in their 
group? 
  

Child:     Not allowed to change the denominators [i.e. not adding them together] 
Mike to Teane:   You’re not even in that group well done [acknowledges Teane’s earlier response]. 
Mike to Bridget: I am banning you changing the denominator but if you can change the numerator 
   what would it look like now? 
 

Bridget rubbed out the 6 [in 2/6] and changed it to a 3 [looked for reassurance] then changed the 
12 [in 2/12] to 6 and quickly sat down. [She now had 2/3 + 2/6 = 1] 
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Mike:   OK who agrees with the equation Bridget has made? [quick show of hands].Can 
  you explain Bridget why it’s true?  
Bridget:  Cause I didn’t change the denominators. 
Mike:  OK gonna stop there guys cause the bell is going to go but it’s certainly something 
 to discuss for next time. 
George [quickly said]: That it was the same as 2/3 + 1/3 = 1. 

Mike’s reliance on procedural mathematics understanding influenced his teaching and 
his listening orientation. Bridget gave the wrong answer so he gave her a way to fix it and 
then moved on. Mike was comfortable with George’s equation as it demonstrated 
procedural understanding, which is how Mike operates. George was also one of the 
children he considered to be good at mathematics. Davis (1994) suggests teachers’ 
orientation to listening is enabled by “who” the teachers are listening to and constrained 
by “what” they are listening for. During discussions whilst viewing the video Mike 
commented that he asks George to explain further because he expects a correct response. 
But he did not ask Teane because Mike thought that he would not be able to explain 
satisfactorily. Mike began to question his view on Teane’s ability after watching the 
video.  

Mike demonstrated a shift from a strong evaluative orientation to listening to the 
beginnings of an interpretive orientation. However his own procedural understanding and 
his expectations of children’s ability greatly influenced what he heard the children say 
(Crespo, 2000). It also influenced how he reacted to it drawing him back to a more 
evaluative orientation.  

Conclusions 

To teach effectively it is crucial that teachers notice the significant mathematical 
moments and respond appropriately. If teachers are going to provide students with 
appropriate mathematical challenges and assist the students to gain meaning, they need to 
be able to access their own content knowledge whilst engaged in the act of teaching. We 
expected that a novel student idea would prompt the teachers to reflect on and rethink 
their instruction (Schifter, 1996). The teachers did initiate questioning and probing in 
order to assess the students’ understanding. To do this they needed to listen to the 
students’ ideas and access their own content knowledge complexes to decide how best to 
proceed. However the teachers, more often than not, return to their planned lesson rather 
than exploring the students’ ideas. Attention was given to the students’ responses with 
little impact on the development of the lesson as the teacher was only seeking a particular 
response. Davis (1997) calls this evaluative listening.  

It was apparent throughout the 2 years of our research that teachers’ orientations to 
listening varied greatly between individuals and also within lessons. The orientation to 
listening influenced their ability to negotiate the lesson fully. Their listening orientation 
was dependent upon the level of their own content knowledge (Ball, 1997). We suggest 
that the teachers did not have the knowledge of the subject to be able to make connections 
for the children and for themselves. Teachers’ orientation to listening was also influenced 
by their expectations of the children’s mathematical ability. These expectations influenced 
their decisions concerning which child to call upon, whether to require further explanation 
of their thinking, or whether they just filled in the gaps (Crespo, 2000). Perhaps we also 
need to examine the teachers’ beliefs about mathematics. If teachers believe that learning 
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mathematics involves only the “acquisition of knowledge” then their orientation to 
listening takes on quite a different relevance (Davis, 1994, p. 279).  

Noticeably absent from this study was Davis’ (1997) third category of hermeneutic 
listening. We are left to wonder whether this orientation to listening is accessible to 
teachers without further support and what kinds of experiences might bring about a 
transformation in their practices. For teachers to realise the need for change and to 
transform their practice they need a strong community of support (Davis, 1997). Due to 
the complexities of teaching it is difficult to isolate “quick remedies” in developing more 
effective listeners. Time needed for change is a constraint. In our first year we saw 
changes in the teachers “learning to notice” after ongoing intensive planning/content 
knowledge workshops within a supportive community of learners. The more condensed 
time frame in the second year did not allow opportunities for ongoing and sustained 
change (Doerr & Lesh, 2003). 

The teachers’ content knowledge became a central organiser for the lessons and a 
defining feature of effective teaching. The depth of teachers’ content knowledge – both 
subject matter knowledge and pedagogical content knowledge – mediated their enactment 
of effective listening practices. 
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This study compared the thinking of five high performing and five low performing primary 

students on a set of graphically-oriented numeracy items. Generally, their thinking differed 

in four ways. First, high performers drew on existing knowledge and skills, which low 

performers appeared to lack. Second, high performers used multiple cues to complete tasks, 

whereas low performers worked from a single cue or overlooked cues. Third, high 

performers used simple solution procedures correctly; in contrast, low performers used 

more mentally demanding procedures with limited success. Finally, high performers were 

more knowledgeable about everyday graphics than low performers.  

Introduction 

Worldwide there has been a strong and ongoing emphasis on the development of a 

numerate populace who can use mathematics effectively in everyday life at home, at work 

and in the community. Traditionally, numeracy has been characterised by arithmetical 

competence. However, in the digital age, numeracy also involves proficiency with the 

various graphics that are commonly used in mathematics (Department for Education and 

Employment, 1998): “numeracy also demands practical understandings of the ways in 

which information is gathered by counting and measuring, and is presented in graphs, 

diagrams, charts and tables (emphasis added)” (p. 110). Thus, the achievement of a 

numerate populace requires that all citizens use graphics effectively in mathematical 

situations. The students who are most at risk of being innumerate are those who struggle 

with mathematics. Hence, the achievement of the numeracy goal depends on our ability to 

educate those students who have difficulty with essential mathematics. These students are 

of two types. First, there are those students who have special needs due to a problem that 

impacts on their ability to think or to learn. These difficulties include memory problems, 

processing or perceptual deficits (Diezmann, Thornton, & Watters, 2003). Second, there 

are those students who do not have specific learning problems but nevertheless are low 

performers. Notwithstanding the importance of understanding how to educate students with 

special needs, this paper focuses on ways to support students who are low performers on 

numeracy items that incorporate graphics. This support will be informed by the 

performance of students who consistently demonstrate proficiency with these items 

because such students can provide an insight into the knowledge and skills that are required 

to be successful. Thus, this study will contribute towards addressing the paucity of 

literature on high and low performing Australasian students (Diezmann, Lowrie, Bicknell, 

Farragher, & Putt, 2004). 
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Background  

To provide a background to the thinking and solution strategies of high and low 

performers on numeracy tasks, we first provide an overview on graphics in mathematics 

and high and low performers’ use of representations in mathematics.  

Graphics in Mathematics  

In recent decades, there has been enormous growth in the field of information graphics 

for the management, communication, and analysis of information (Harris, 1996). Although 

there are many thousands of graphics in use, they can be categorized into six broad 

categories that Mackinlay (1999) refers to as “graphical languages” (Table 1). These 

languages are distinguished by the information that is encoded in the graphic and the 

relationships among the graphical elements. Knowledge of graphics is fundamental to 

success on many numeracy items. However, although graphics are visual-spatial rather than 

linguistic or symbolic representations, many primary students have difficulty interpreting 

graphics, such as number lines (Diezmann & Lowrie, 2006).  

Table 1 

An Overview of the Six Graphical Languages (adapted from Mackinlay, 1999)  

Graphical Languages Encoding Technique 

Axis Languages (e.g., number line) A single-position encodes information by the 

placement of a mark on an axis.   

Opposed Position Languages (e.g., 

bar chart) 

Information is encoded by a marked set that is 

positioned between two axes. 

Retinal List Languages (e.g., 

saturation on population graphs) 

Retinal properties are used to encode information. 

These marks are not dependent on position. 

Map Languages (e.g., road map) Information is encoded through the spatial location 

of the marks.  

Connection Languages (e.g., 

network) 

Information is encoded by a set of node objects with 

a set of link objects. 

Miscellaneous Languages (e.g., pie 

chart) 

Information is encoded with a variety of additional 

graphical techniques (e.g., angle, containment).  

High and Low Performers’ Use of Representations in Mathematics 

Mathematical proficiency is influenced by students’ understanding of a variety of 

representations including graphics. According to von Glasersfeld (1987), the individual 

plays an important role as the interpreter or decoder of a representation: “A representation 

does not represent by itself – it needs interpreting and, to be interpreted, it needs an 

interpreter” (p. 216). Students’ proficiency with representations impacts on whether they 

will be high or low performers. For example, students who are successful on number line 

items recognise that it is a measurement model and explain their solutions with reference to 

distance, proximity, or reference points (Diezmann & Lowrie, 2006). In contrast, some 

students who are unsuccessful on number line items interpret the number line as a counting 

model and overlook the proportional distances between marks on the line. Students’ 

capability with linguistic representation also distinguishes high performers from low 

performers. For example, whereas novices (typically low performers) interpret keywords 
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literally and make links to a limited knowledge base, experts (typically high performers) 

use keywords as cues to an appropriate knowledge schema (Chi, Feltovich, & Glaser, 

1981): “Experts perceive more in a problem statement than novices do. They have a great 

deal of tacit knowledge that can be used to make inferences and derivations from the 

situation to the problem statement” (p. 149). The differences between high and low 

performers in their interpretations of various representations extend to reasoning from the 

representations. An individual’s reasoning must take into account the mathematical 

conventions that are associated with particular representations. Hence, representations are 

systems of organised data with inbuilt sets of rules of use. For example, reasoning about 

distance on a map requires attention to the scale of the map. Galotti (1989) proposes that 

knowledge includes an appreciation of the various rule-based systems in use in 

mathematics:  “Experts, by virtue of their richer knowledge base and extensive experience 

with problems within a given domain, have a larger and more differentiated set of rules 

with which to reason” (p. 347). Thus, being mathematically proficient requires an extensive 

knowledge of various representations including graphics and the associated reasoning that 

is used with different types of representations. 

Research Design and Methods 

This study had two purposes. The educational purpose was to gain insights into the 

differences between high and low performers with a view to identifying specific ways to 

support the thinking of low performers. The methodological purpose was to establish 

whether a comparison between high and low performers was a fruitful avenue for gaining 

insights into students’ thinking about graphically-oriented numeracy items, and hence, 

would be worthwhile implementing with a more extensive data set. 

The Participants 

Ten participants were identified for this study from 67 Queensland students who 

participated in a series of annual interviews about graphically-oriented numeracy items. 

These participants comprised five of the most high performing students (one boy, four 

girls) over two annual interviews and five of the most low performing students (two boys, 

three girls) for the same period. These two groups of students are henceforth referred to as 

“high performers” and “low performers”. The students were aged between 10 and 11 years 

when they commenced in the study. All students attended one of two similar schools in a 

moderate socio-economic area of a capital city. 

The Interviews 

The participants were interviewed on a set of 12 items in each of two annual 

interviews. These tasks were drawn from the 36-item Graphical Languages in Mathematics 

[GLIM] test which comprises six sets of numeracy items for each of the six graphical 

languages (see Lowrie and Diezmann, 2005 for a discussion of the test). Examples from 

this test are presented in the Appendix. The two easiest items from each of the six language 

groups were presented to the students in the first annual interview and six pairs of items of 

moderate difficulty were presented in the second annual interview. (The six pairs of the 

most difficult items will be presented to students in a third annual interview, which has yet 

to be conducted.)  
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Data Collection and Analysis  

Interview data comprised students’ selections on a multiple choice task and the reasons 

they gave for their responses. The students attempted each pair of tasks independently, and 

were then asked to explain their solutions. They were probed about any difficulties that 

they experienced but no scaffolding was provided to avoid the possibility that support on 

one item might influence understanding on another item. The interviews were video-taped 

to facilitate analysis. These data were analysed within an inductive theory-building 

framework with a focus on description and explanation (Krathwohl, 1993). The tactics for 

generating meaning were noting patterns and themes, imputing plausibility, and building a 

logical chain of evidence (Miles & Huberman, 1994).  

Results and Discussion  

Four themes emerged from a comparison of high and low performers’ responses to the 

24 GLIM items.  

Theme 1: The Use of Mathematical Knowledge and Skills 

In interpreting items, high performers were more likely to bring existing mathematical 

knowledge and skills to bear on the task. Low performers were less mathematically 

proficient, and worked out their solutions in a more laborious fashion that typically 

involved counting. Though the strategies low performers selected were appropriate, their 

strategies were more prone to error. Differences in the use of existing knowledge and skills 

by high and low performers are illustrated by the following example.  

On The Pie Chart item, students were asked to determine how many hours were spent 

on homework based on the information presented (see Appendix). The high performers and 

low performers used different strategies. The five high performers used a fractional 

strategy successfully. In contrast, four low performers used an estimate and add strategy 

with mixed success and the final low performer misunderstood the question.  

The fractional strategy required an understanding of quarters as shown in Chloe’s (a 

high performer) response. 

Chloe: About a quarter of it (the time) was Mathematics and that was two hours so there was four 

quarters … two times four is eight.  

By identifying the Mathematics portion of the pie chart as a quarter, Chloe reduced the 

question to a simple multiplication calculation, which she easily accomplished mentally. 

That is, two hours of Mathematics multiplied by four (for a quarter of the pie chart) is eight 

hours of homework in total. Thus, as typical of the other high performers, Chloe’s success 

was due to her ability to use existing knowledge and skills to achieve the correct answer. 

None of the low performers recognised the opportunity to use a simple fractional strategy 

or mentioned that Mathematics was a represented by a quarter of the pie chart. 

The estimate and add strategy was used by four of the five low performers. Two were 

successful and two were unsuccessful. Although this strategy had the potential to be 

successful, it required students to estimate the number of hours in each segment of the pie 

chart accurately and to sum these values to determine the total hours shown on the chart.  

An inherent pitfall in applying this strategy was to accurately estimate the value of each 

portion of the chart, as shown in Bree’s (a low performer) explanation. 
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Bree: Whenever I count, I get to nine … Mathematics is two hours ... each half of Science (is) two, 

Reading and History … an hour each, and I counted that (Art) as an hour. That’s why I (got 

nine). 

Bree used only whole number values when estimating sections of the pie chart. She 

incorrectly identified Science as 4 hours (actually 3½ hours) and Art as 1 hour (actually ½ 

an hour). Bree added these incorrect estimates for Science and Art to her correct estimates 

of two hours for Mathematics and one hour each for Reading and History to reach a total of 

nine hours instead of eight hours. Similarly, Mike (a low performer) also overestimated the 

value of some sections of the pie chart. However, two other low performers, Nellie and 

Helen, correctly estimated values and were successful in their use of the estimate and 

counting strategy.  

Thus, a key difference between these high performers and low performers on The Pie 

Chart was the high performers’ selection of an effective but simple strategy incorporating 

their existing mathematical knowledge of fractions and their multiplication skills. Pie 

charts are Miscellaneous graphics that encode information through the use of angles 

(Mackinlay, 1999). In the fractional strategy, high performers showed their ability to 

recognise the value of a key portion of the chart as a quarter of the total time and to use this 

knowledge efficiently in solution. In contrast, in the estimate and add strategy, low 

performers typically estimated the values of all of the portions, sometimes erroneously, and 

added these times. This approach was more mentally demanding because half hours needed 

to be recognised and the addition involved multiple addends including fractions.  

Theme 2: The Use of Cues  

A further difference between high performers and low performers was their use of cues 

within the task. High performers were aware of and used multiple cues to solve problems, 

whereas most low performers were not. The importance of using more than one cue is 

illustrated by students’ responses on the following item.  

The Scale item required students to find the mass of an apple by referring to a graphic 

depicting a traditional set of kitchen scales (see Appendix). On the face of the scales there 

were three cues in the form of values marked in grams: zero at the top, 100 in the middle, 

and 200 at the bottom. Between the labelled numbers were unlabelled marks that each 

represented 10 grams. Use of at least two of the number values was needed to appreciate 

that the vertical scale was arranged in ascending order.  

The five high performers and one of the low performers successfully identified that the 

scale indicator was at the 170 gram mark. Four of the five high performers noted that the 

unlabelled mark halfway between 100 and 200 was 150, and proceeded to count in tens to 

170. Cody was one of these high performers who used this midpoint strategy to 

successfully find the mass of the apple.  

Cody:  What I did then is like, do 150, and then went 160, 170. 

One low performer, Mike, used exactly the same process as four high performers and found 

the halfway mark and counted on. Recall that low performers were selected as students 

who were consistently low performers over 24 interview items. As in Mike’s case, this did 

not preclude them from being successful on a few items. Elise, the fifth high performer, 

was also successful but her count all tens strategy was less efficient. She counted on in tens 

from 100 grams to 170 grams making no reference to the halfway point between 100 and 

200 grams.  
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In contrast to the successful students (five high performers, one low performer), the 

unsuccessful students (four low performers) did not detect the ascending order of the scale. 

These unsuccessful students used a single number value as a cue and then attempted to 

identify the mass of the apple. Nellie’s response was typical of other unsuccessful students 

in that she focused on the “200” value, which was close to the mass indicator, and 

incorrectly assumed that the scale was in descending order. 

Nellie: I put 230 grams because the arrow was near 200 and then I just counted steps up. 

Nellie was efficient in counting by tens from the 200 mark to reach 230 grams, but because 

she did not account for the directionality of the scale, she counted forwards rather than 

backwards. Thus, the key difference between all high performers and most low performers 

was the ability to identify the directionality of the scale. Detecting that the scale was 

ascending required attention to at least two number values, which acted as cues for 

directionality.  

The Scale item used an Axis graphic to encode information by the placement of a mark 

on some form of number line (Mackinlay, 1999). Although number lines are commonly 

used in primary texts and tests, they are difficult for some students. On the (US) National 

Assessment of Educational Progress, many fourth graders’ success using a scale was no 

better than chance accuracy on a multiple choice item (1 out of 4, 25%) (National Center 

for Education Statistics, 2003). Here, we have identified directionality as problematic but 

students also have difficulty with Axis graphics because they interpret the number line as a 

counting model rather than a measurement model (Diezmann & Lowrie, 2006). 

Theme 3: The Solution Approach 

A further difference between high performers and low performers was their solution 

approach. When approaching a task, more high performers than low performers were 

methodical. They typically broke tasks into components and dealt with these components 

systematically. In contrast, low performers tended to attempt items more holistically. These 

differing approaches are illustrated in the following example. 

In The Puzzle item, students were asked to select which of four puzzle pieces would 

complete the picture of three triangles (see Appendix). The solution piece needed a portion 

of each triangle to match the partly shown triangles in the picture. Every high performer 

was successful on this item whereas only two of the five low performers were successful.  

Four out of five high performers selected the correct response by using a component 

strategy involving pieces of the puzzle. Rita’s response was typical. 

Rita: That bit there can fit into this one, that bit can fit into this one, and that can fit into there. 

Rita’s response suggests that she examined the sections of the triangles and decided which 

piece would fit into the larger puzzle. All high performers who chose this strategy were 

successful but only one of two low performers using the same strategy was successful.  

The other approach used by students was a perceptual strategy. This strategy was used 

successfully by one high performer and one of three low performers. Jacob (low performer) 

used this strategy successfully and like his high performing counterpart made his choice 

based on what “looked” right.  

Jacob: They all looked in place.  

On this item, there was overlap in strategy use by high performers and low performers. 

Students’ success using these strategies revealed two points of interest. First, some 
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strategies are more likely to lead to success than others. Overall, the success rates were 

83.3% for the component strategy (5 out of 6 students) and 50% for the perceptual strategy 

(2 out of 4 students). The component strategy was selected by 60% of students (40% high 

performers; 20% low performers) and the perceptual strategy by the remaining 40% of 

students (10% high performers; 30% low performers). Thus, high performers more than 

low performers selected strategies that were more likely to lead to success. Second, 

irrespective of which strategy the high performers selected they were more successful than 

low performers. All high performers who employed the component strategy were 

successful compared with 50% of low performers. Additionally, the one high performer 

who used the perceptual strategy was successful compared to only 33% of low performers. 

Thus, high and low performers differed in both their selection of a strategy and in its 

execution. 

The Puzzle item used a Retinal list graphic, which encodes information in various ways 

including shape, size, and orientation (Mackinlay, 1999). The component strategy 

accommodates each of these visual-spatial characteristics when puzzle pieces are tested 

systematically to check their fit in the large puzzle. In contrast, the perceptual strategy 

relies more on an overall impression of the goodness of fit of a particular piece rather than 

whether the shape, size, and orientation of the piece is correct for the puzzle.   

Theme 4: Knowledge of Everyday Graphics 

Everyday graphics add authenticity to numeracy tasks. However, it cannot be assumed 

that students are familiar with these graphics or can use them effectively as shown in the 

following example.  

In The Calendar item, students were asked to find a certain date on the supplied 

calendar (see Appendix). Unlike the other items discussed in this paper, there was limited 

difference in the success rates for high (100%) and low performers (80%). However, high 

and low performers differed in two ways in their use of the calendar.  

First, more high performers (80%) than low performers (40%) used an efficient 

graphically-oriented strategy. Four high performers and two low performers successfully 

used a count back by weeks strategy in which they read off the numbers in the Thursday 

column, thereby capitalising on the spatial organisation of the calendar. Anna’s (high 

performer) response is typical of these students.  

Anna: One week was 22, and two weeks would have been 15, and three weeks would have been the 

eighth. 

A less efficient strategy – count back by days strategy – was used by two low performers. 

Although this strategy was used successfully, it was inefficient because the students failed 

to capitalise on the spatial organisation of the calendar when they counted by days instead 

of by weeks. The final high performer successfully used a subtraction strategy to calculate 

21 days earlier. No low performers attempted this strategy.  

Second, one low performer demonstrated a lack of understanding of the basic structure 

of a calendar. Helen appropriately chose the count back by weeks strategy. She started 

counting at 29 but the three “weeks” she counted were the Thursday, Friday, and Saturday 

columns. Helen selected her answer, the third of May, from the top of the Saturday column.  
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Helen:        I worked it out because… it’s one week (indicating the Thursday column), I counted 

the weeks until the 29
th

 May…  

Interviewer:  So tell me why you think it’s the third (of May)? 

Helen:       I went back from the 29
th

 and I counted three weeks and it ended up there (3 May).  

During the solution process, Helen made four errors in calendar use. Her first error was to 

treat the columns incorrectly as weeks rather than the rows. Her second error was to count 

forwards rather than backwards starting at the Thursday column and finish at the Saturday 

column. Her third error was to count the commencement column as the first week before 

the 29th May. This meant that she only counted two “weeks” before the initial date instead 

of three “weeks”. Recall her concept of the representation of a “week” as a column on the 

calendar was incorrect. Helen’s identification of the commencing location as one week is 

another example of primary students’ lack of understanding of how to interpret the 

measures on a graphic. Diezmann (2000) reported that many similarly-aged students 

incorrectly identified the ground height on a diagram of a tree as one metre. Helen’s final 

error was to select the answer from the top of the Saturday column rather than its base. This 

step violated her own reasoning that the columns were weeks when she moved up the rows. 

However, this anomaly might have occurred because the only multiple choice answer 

option in the Saturday column was “3 May”, which was at the top of the Saturday column.  

The Calendar is a Miscellaneous graphic that uses a variety of graphical techniques to 

communicate information. The conventions for using a calendar typically include 

representing the weeks of a month in seven labelled columns – one for each day of the 

week – and showing blank cells in the first and last weeks of the month before and after the 

first and last days of the month if necessary. The four high performers and two low 

performers who used the count back by weeks strategy capitalised on the spatial 

organisation of the calendar in their solution. In contrast, the spatial structure of the 

calendar was not recognised by the two low performing students who used the count back 

by days strategy. Though they were successful, these students’ strategy is inappropriate 

because it fails to take into account the structure of a calendar. Similar to using the 

columns on a hundred board to count forward and backward in tens, students should use 

the columns on a typical calendar to count forward and backward in weeks. Because a 

calendar is an everyday graphic, both the low performers who used the count back by days 

strategy and Helen, who made multiple errors in calendar use, need to learn how to use a 

calendar efficiently.  

Conclusion and Implications 

Educationally, the comparison of these high and low performers’ thinking about the use 

of graphics in mathematics was instructive in three ways. First, low performers need to 

develop adequate mathematical and graphical knowledge to be successful on numeracy 

tasks. Hence, teachers should support low performers to identify any related mathematics 

that could be used in the solution and to check on their interpretation of the graphics. 

Second, low performers should be encouraged to draw on implicit information embedded 

in the graphic to generate further information – which high performers seem to do 

intuitively. Thus, low performers need to capitalise on the multiple cues within a graphic 

and reason from this visual-spatial information. Visual reasoning differs substantively from 

sequential reasoning (Barwise & Etchmendy, 1991). Hence, explicit instruction may be 
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required, such as teaching students how to interpret and reason from a family tree. Third, 

because some strategies are more likely to lead to success than other strategies, it would be 

helpful in discussions with students to compare the range of strategies used in terms of the 

efficiency of strategies and the likely errors using particular strategies. Overall, the 

comparison of these high and low performers indicated that to become more successful on 

graphically-oriented numeracy tasks, it is essential that low performers develop and use 

mathematical and graphical knowledge, generate information from graphics, build 

repertoires of strategies, and select and use these strategies judiciously.   

Methodologically, the comparison of high and low performers’ thinking has been 

fruitful because it provides a means to explore how different approaches to thinking 

contribute to success. Thus, conceptually high performer-low performer comparison acts as 

a thought-revealing tool for researchers in a similar way to model-eliciting tasks acting as a 

thought-revealing tool for teachers and students (see Lesh, Hoover, Hole, Kelly, & Post, 

2000 for a discussion of thought-revealing activities). 
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The Pie Chart (National Centre for 

Educational Statistics, 2003, Year 4, Q. 3) 

The Scale (Queensland School Curriculum 

Council, 2001, p. 31). 

 

The Puzzle (Educational Testing Centre, 

2002, p. 8). 

The Calendar (Queensland School 

Curriculum Council, 2002, p. 9) 
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This paper reports how high school students from two different schools used patterns and 

generalisations while working on some selected problems. The results show that the initial 

identification of a pattern was crucial in determining the type of symbolic generalisation, 

which for successful students’ seemed to proceed through four sequential stages.  

Generalisation is an important aspect in mathematics that permeates all branches of the 

subject and is a feature highlighted in the teaching of the subject at practically all levels. 

For example, in Arithmetic a child may generalise that multiplication of a whole number 

by 5 gives a product ending in 0 or 5. As a statement that is true for all members of some 

set of elements, theorems in geometry can be considered as generalisations (Mason, 1996). 

On the other hand, in algebra, we commonly use variables, which Schoenfeld and Arcavi 

(1988) described as general tools in the service of generalisation. So, what do we mean by 

generalisation? 

Several attempts have been made to explain the term generalisation. Kaput (1999) 

claimed that generalisation involves deliberately extending the range of reasoning or 

communication beyond the case or cases considered by explicitly identifying and exposing 

commonality across the case or the cases. He added that this resulted in lifting the 

reasoning or communication to a level where the focus is no longer on the cases or 

situations themselves but rather on the patterns, procedures, structures, and relations across 

and among them, which in turn become new, higher-level objects of reasoning or 

communication. This hierarchical aspect is similar to what Sfard (1991) proposed in her 

theory of reification, in which processes at one level become the new objects at another 

level. The idea of creating new objects for subsequent actions was also used by Davidov 

(1972/1990) who described generalisation as “inseparably linked to the operation of 

abstracting” (p. 13). The link between generalisation and abstraction was also highlighted 

by Dreyfus (1991). However, Dreyfus used the term generalisation as the recognition of 

some general characteristics in a set of mental objects and claimed that generalisation 

involves the expansion of an individual’s knowledge structure. Regarding cognitive 

activities involved in generalising, Harel and Tall (1991) made a distinction between three 

types of generalisations, (a) expansive generalisation – one that extends the students’ 

existing structure without requiring changes in current ideas; (b) reconstructive 

generalisation – one that requires the reconstruction of the existing cognitive structure; and 

(c) disjunctive generalisation – one which adjoins the new particular as an extra case or 

generates a new structure distinct from the others.  

On the other hand, Radford (1996) claimed that a goal in generalising geometric-

numeric patterns is to obtain a new result. This new result depends on the observer’s 

conceptualisation of the mathematical objects and the relations involved. Radford added 

that accordingly, generalisation is not a concept but rather a procedure and that a 

generalisation procedure g arrives at a conclusion α, starting from a sequence of “observed 

facts”,  a1, a2,…, an, which can be written as:  a1, a2, ..., an → α (α is derived from a1, a2, 

..., an). The most significant aspect of the generalisation is its logical nature that makes 

possible the conclusion α.  
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It should be noted that inductive reasoning, which is commonly used in generalising 

from patterns, does not necessarily lead to valid conclusions. If there are flaws in the logic 

then certainly the generalisation would not be valid, and so generalisation as a didactic 

strategy cannot avoid the question of validity. Burton (1984) claimed that to become robust 

a generalisation must be tested until it is convincing so that it moves from being personal 

to public. Burton also mentioned that both inductive learning and deductive learning 

involve generalising activities. Her view is that inductive learning involves specialising, 

conjecturing, and generalising in that order, which is the reverse order for deductive 

learning.  

Although generalisation may seem to be omnipresent in school mathematics, there are 

pedagogical issues that cannot be ignored. In her research, Lee (1996) found that 

generalising activities led to three types of conceptual obstacles. First, there were obstacles 

at the perceptual level, which concerned with seeing the actual pattern. Second, there were 

obstacles at the verbalising level, which involved expressing the pattern clearly. Third, 

there were obstacles at the symbolisation level, for example using a variable n in a general 

expression. Thus, generalisation in school mathematics is a very important aspect that 

needs to be carefully investigated. Accordingly, this study focused on how secondary 

students used patterns to help them generalise and what were some of their related 

conceptual difficulties? 

Methodology 

The study reported in this paper is part of a larger study investigating students’ use of 

algebraic thinking in geometrical contexts. The study took place in two large Midwestern 

high schools in the United States. One geometry class was selected from each of the two 

high schools: School X and School Y. There were 21 students in the class from School X 

and 18 students in the class from School Y. The two classes were observed for three 

months and twelve lessons from each class were videotaped. Three students were selected 

from each of the two classes based on the results of an algebra test, which was developed 

in conjunction with the classroom teachers of these two classes and three other experts in 

the field. Andy, Betty, and Melanie were the focus students from School X whereas Pete, 

Kristina, and Abby were from School Y (all names are pseudonyms). Andy and Kristina 

were more able students whereas Betty and Melanie were weaker students from the 

sample. Each of the six students was interviewed four times for about 40 minutes each 

time. The interviews were audiotape recorded and then transcribed. The students were 

asked to solve some problems involving certain aspects of patterns and generalisations. 

The problems were asked sequentially, in the different interview sessions, as given in the 

Results section below. The questions were read out to the students and additionally a 

written version was provided to them. Seven problems that involved some aspect of 

generalisation in a geometrical context were used with the students. The problems were 

selected based on the topic coverage in the selected classrooms. Problem 1 has been 

adapted from the one by Swafford and Langrall (2000) and Problem 7 from the one used 

by Krutetskii (1976).  

Results 

In this section, the focus students’ generalisation approach in the context of the seven 

problems is discussed sequentially. The results for the students’ performance show some 

interesting features. 
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Problem 1 
 

How many small squares are there in the border of this 5×5 square (square drawn on a rectangular 

grid)? How many are there in a 6×6 square? How many are there in a 10×10 square? How many would 

there be in a square of side n×n? If there are 76 border squares in square grid, what is the size of the 

grid? 

     

     
     

     
     

 

In this problem the square grid provides a geometrical context for an algebraic 

generalisation. The three students from school X used different strategies to find the 

number of border squares for the 5×5 square grid. Andy did it mentally and later explained 

that he added 3 + 3 + 5 + 5 to get 16. Betty counted the squares one by one and then wrote 

5, 3, 5, and 3 along the border of the grid. This showed that her strategy of using 5 + 3 + 5 + 3 

was somewhat similar to Andy’s. Melanie responded very quickly that the answer was 20, 

which was incorrect. When asked to check the answer by actual counting, she was puzzled 

that it was 16. She did not show any strategy for getting the answer other than by counting. 

For a 6×6 grid, Andy did not follow his strategy from the previous part. He said the 

answer was 25 and added that for a 10×10 it was 81. For an n×n grid he said it was (n-1)². 

This clearly showed that Andy was not using his previous strategy. He did not mention 

why he chose (n-1)², but it seems that he was mislead by the number of border squares in 

the 5×5 grid as also being (5-1) 2 . On prompting, he changed his answer and was able to 

come up with the correct generalisation of 4(n-1). He was able to use this formula for the 

inverse problem to find the size of the grid for which the number of border squares was 76. 

Betty stuck with her strategy and had no problem getting the answer for a 6×6 or 10×10 

grid. She was eventually able to write down the answer for an n×n grid. She wrote N + N + 

(N-2 + N-2) = 4N-4. Betty was not concerned about the use of N instead of n in the 

expression. She needed some prompts to be able to set up an equation and solve it to get 

the size of the grid for which the number of border squares was 76. Melanie could not 

follow through to get the answer for a 6×6 grid. She thought that it might be 16 + 6 = 22. 

That is, she thought of adding one additional row of 6 squares to the previous answer of 16 

for a 5×5 grid. She could not get to a 7×7 or 10×10 grid. She said she could not do it 

without a diagram. After several prompts, she was able to finally generalise to 4n-4 for an 

n×n grid. However, for the inverse problem, she could not get the size of the grid for 

which the number of border squares was 76.  

 From school Y, Pete started this problem by actually counting the number of squares 

in the 5×5 grid. Since no diagram was given for a 6×6 grid, he knew that he had to be 

more systematic. His revised strategy was to add 5 + 5 + 6 for the 5×5 grid, thinking of the 

6 as 3 + 3. He used the same strategy for a 6×6, 10×10, and also for the general case n×n. 

For this latter case, he wrote 2n + (n-2)×2, which he simplified to 4n-4. For getting the 

size of the grid for 76 border squares, he wrote 76 + 4 = 80, then he wrote 80/4 = 20, to say 

that the size of the grid was 20×20. Kristina and Abby were able to get all of the answers 

and they had very similar strategies for getting the generalised value of 4n-4 for the n×n 

grid. However, for finding the size of grid with 76 border squares, Kristina just substituted 

20 for n to get the answer. This suggested a more trial and error strategy, whereas Abby 

actually set up an equation and solved for n. 

Mathematics: Essential Research, Essential Practice — Volume 1

238



  

 

Problem 2 
 

What is the sum of the interior angles in a triangle? From any vertex, we can divide a quadrilateral into 

two triangles. What is the sum of the interior angles in a quadrilateral? What is it for a pentagon, 

hexagon, and a decagon? What would it be for a polygon with n sides? 

In this problem, the students had to know the angle sum of a triangle and the names of 

the polygons up to ten sides. The algebraic skills included the identification of a pattern 

and subsequently writing down the generalisation from the pattern. All of the focus 

students except Melanie were able to find the sum of the interior angles in a quadrilateral, 

pentagon, and hexagon by actually drawing such a figure and then counting the number of 

triangles they could get by drawing diagonals from one vertex. They had no problem 

generalising to a polygon with ten sides, even though a diagram was not used. Eventually 

all of them, except Melanie, were able to get the result that for a polygon with n sides the 

sum of the interior angles is (n-2)×180°. Melanie needed some help with the pentagon and 

hexagon before writing down the angle sum. For a decagon she did not do any calculation 

but used an additive strategy and counted on from a hexagon, which implied that she had 

noted a pattern in her responses, but was not quite able to formalise it.  To get the result  n-

2) ×  180 for a polygon of n sides, a table of values for number of sides and the 

corresponding angle sum was drawn for her. It was only when this scaffolding was done 

that she was able to follow the pattern and come up with the generalisation. It seemed that 

the organisation of the results in a tabular form was important for Melanie in triggering the 

identification of the pattern.  

 

Problem 3 

What is the relationship between an interior and an exterior angle of a triangle? How many pairs of 

interior and exterior angles do you have in a triangle? What is the sum of all of the interior and exterior 

angles of a triangle? What is the sum of the exterior angles of a triangle? What is the sum of all of the 

exterior angles in a quadrilateral? A pentagon? A hexagon? A polygon with n sides? 

The main geometrical concepts in this problem are that of interior and exterior angles. 

The students had to understand that the sum of an interior and the corresponding exterior 

angles in a polygon is 180°; and that if they knew the sum of all of the interior angles in a 

polygon then the sum of the exterior angles could be found by subtracting the sum of the 

interior angles from the sum of all of the interior plus exterior pairs. The students should 

then have been able to generalise from this result. 

Andy was able to follow the argument and he got the sum of the exterior angles of a 

triangle, a quadrilateral, and a pentagon easily. He was even able to do it for a decagon and 

although he guessed that the answer had to be 360° for any polygon, he actually did the 

calculation for a polygon with n sides to confirm his guess. Betty was able to do it for a 

triangle, quadrilateral, and for a decagon as well. Although she guessed that the result 

should be 360° for any polygon, she was not actually able to do the calculations to justify 

the result for a polygon with n sides. Melanie, on the other hand, had some difficulties 

following the argument even for a triangle. After some prompting, she was able to do it for 

a quadrilateral and a pentagon but not for a decagon. However, she guessed that the sum of 

the exterior angles might always be 360° for any polygon. She was not able to do the actual 

calculation to justify the answer.  

All of the three students from school Y were able to follow the arguments and were 

able to get the exterior angle sum for a triangle, quadrilateral, pentagon, and the decagon 
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easily. They guessed early that the sum of the exterior angles in any polygon would be 

360°. They all were able to do the calculation for a polygon of n sides to show that the sum 

of the exterior angles did not depend on the number of sides of the polygon and that it was 

always 360°. While checking for understanding, it was noted that the students had 

difficulty in applying their knowledge about the sum of the exterior angles to find the 

number of sides of a regular polygon if the size of one exterior angle was known. Although 

the students knew what a regular polygon was, none of them was able to solve such a 

problem.  

 

Problem 4 

The equation of a line is y = 3x + 5. Write down the equation of another line having the same slope as the 

given line. What would be the general form of the equation of a line having the same slope as the given 

line? 

This problem refers to the equation of a line in the slope-intercept form. The students 

were expected to know that in coordinate geometry, the equations of lines having the same 

slope varied only in the value of the intercepts. All of the six focus students were able to 

identify the slope of the line as 3. More specifically, Andy, Betty, and Abby wrote 3/1 for 

the slope. This seemed to be a common practice for writing down the slope of a line from 

its equation in the slope-intercept form. However, for the general form of a line having the 

same slope, different answers were obtained.  Andy wrote y = 3x + anything, then wrote   

y = 3x + z, where z is a number. Betty wrote y = 3x + number on y-intercept, and Melanie 

wrote y = 3x + anything. From school Y, Pete wrote y = 3x + n, where n is a number. 

Kristina wrote y = 3x + something, whereas Abby was not able to come up with a general 

form for such a line. In this context where the symbol for the parameter was not provided, 

students found it difficult to generalise using their own symbols. 

 

Problem 5 

All points on a circle are equidistant from its center. If P(x, y) is a point on a circle having center at the 

origin and radius 5, what relation can you write connecting x and y? What would be the relation if the 

radius was 10? What would it be if the radius was r? 

To solve this problem, the students were provided with a diagram and the formula to 

find the distance when the coordinates of two points were given. The students also needed 

some algebraic skills in the manipulation of the relation that they had to write connecting x 

and y. All of the focus students were able to write down the relation connecting x and y 

using the distance formula and even the relation for the general case when the radius was 

given as r. All of them wrote 5 = √ [(x-0)² + (y-0)²], except Melanie who reversed the order 

in which she used the points in the formula, which was, of course, correct. Melanie wrote 

5 = √ [(0-x)² + (0-y)²] and then she was not sure how to simplify 5 = √ [(-x)² + (-y)²]. She 

even thought that (–x)² ≠ x² and (-y)² ≠ y². However, she was later convinced that this could 

be written as x² + y² = 25. It was interesting to note that four of the focus students Andy, 

Pete, Kristina, and Abby made the same algebraic mistake when trying to simplify the 

expression 5 = √ [(x-0)² + (y-0)²]. They wrote 5 = √ [(x² + y²], but then they went on to 

write 5 = x + y and eventually wrote x² + y² = 25. There seemed to exist some underlying 

misconceptions about algebraic simplifications.  
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Problem 6 

Two parallel lines are labeled l and m. On line l one point A is marked and on line m three points B, C, 

and D are marked. How many different triangles can be formed by joining three of the given four points? 

If the point on line l is kept fixed but one more point is added on line m, how many triangles can be 

formed in the same way? Can you find out the number of triangles that can be formed under the same 

conditions if there were 6 points, 10 points, n points on line m? 

 

No. of points on line m   3   4   5   6  10   n 

No. of triangles       

 

A diagram showing the parallel lines l and m and the points A, B, C, and D was given. 

In this problem the students had to count the number of triangles systematically as the 

number of points on line m was increased and then they had to come up with some rule for 

finding the number of triangles in the general case when there were n points on line m.  

Andy and the three students from school Y, Pete, Kristina, and Abby, had no difficulty 

in counting the number of triangles up to n = 6. They had a systematic strategy and were 

then able to extend the result to n = 10, without doing any actual calculation, by just 

following the pattern of numbers they had obtained in the table. However, they could not 

come up with a general formula for the case when there were n points on line m. Only 

Andy came up with a recursive formula. He wrote X + n-1 for the number of triangles 

when there were n points on line m, where X for him represented the previous number of 

triangles. Both Betty and Melanie were not systematic in their counting of the triangles and 

so had difficulties in completing the table. Melanie had even more difficulties than Betty. 

However, once they were able to get the values in the table up to n = 6 after some very 

careful counting and some help, they were both able to identify the pattern and were able 

to write down the number of triangles for n = 7 and n = 8 without using a diagram. 

 

Problem 7 

Two of the sides of an isosceles triangle have measures 4 inches and 10 inches. What would be its 

perimeter? Why? A triangle has sides of lengths a, b, and c. What relation(s) can you write connecting a, 

b, and c? 

This problem required knowledge about an isosceles triangle and about the geometrical 

fact that in any triangle the sum of any two sides is always greater than the third side. The 

students had to identify this geometrical fact in the first part of the problem and then to 

generalise it in the second part. The three students from school Y initially thought that 

there were two answers for the first part namely, 24 and 18. However, they soon realised 

that 18 was not a possibility and so gave the correct answer as 24. They were able to 

generalise to any triangle and wrote the relations a + b > c, b + c > a, a + c > b. The only 

difference in their answers was the inconsistent use of capital and small letters for the 

length of the sides. Abby used all small letters a, b, and c, but Pete used only capital letters 

A, B, and C whereas Kristina used a combination of both small and capital letters. 

The students from school X had different responses. Andy initially thought the answer 

was 24 for the first part but then thought that 18 was also possible. It was only after some 

prompts that he finally realised the impossibility of having 18 as a perimeter. He could not 

give a general rule for a triangle with sides a, b, and c. However, he did mention that at 

least one of a or b had to be greater than half of c. This was obviously incorrect, but it 
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seemed that his belief was that “half of a plus half of b” had to be greater than c, rather 

than “a plus b” was greater than c. Betty was not able to follow the first part of the 

problem. It was only after some help that she could do so. She wrote A + B > C, for the 

second part and with some further prompts was able to write c + a > b and b + c > a. 

Melanie initially wrote 24 and 18 as an answer for the first part. She thought that both of 

these answers were possible. After a triangle was drawn for her to illustrate the situation, 

she understood that 18 was not possible. She knew that a triangle with sides of lengths 2, 3, 

and 7 units was not possible but she could not generalise this result to a triangle with sides 

a, b, and c. When the relation a + b > c was written down, she was able to write out b + c > a 

and a + c > b. 

Discussion 

In Problems 1 to 7 the focus students had to identify a general pattern starting from few 

specific cases. It was expected that reasoning inductively from a few cases the focus 

students would be able to generate a general rule or formula. Successful strategies seemed 

to proceed through the following sequence of stages: a direct modelling stage, the stage of 

identification of a pattern, the stage of proof testing of the pattern, and the final stage for 

finding a rule for the general case. 

The direct modelling stage involved the focus students actually using strategies such as 

counting, drawing, or writing down the first few cases systematically. For example, in 

Problem 1 most of the students counted the number of squares in the 5×5 grid and some of 

them drew a 6×6 grid and again counted the number of squares before identifying any 

pattern. In Problem 2, at this stage, the students used the drawing of a quadrilateral, a 

pentagon, and a hexagon to find the angle sum by drawing inside those figures a certain 

number of triangles from a given vertex. In Problem 3, the students used the drawing for a 

quadrilateral, a pentagon, and a hexagon to arrive at a pattern of results for the sum of the 

exterior angles. In Problem 6, the students counted the number of triangles when there 

were 3, 4, 5, and 6 points on line m. Thus, in most of the problems the students were doing 

some direct modelling at this stage. 

The second stage was the stage during which the students were actually able to identify 

some useful pattern. Which pattern one chooses depends on the particular aspect of the 

pattern that one wishes to observe (Phillips, 1993), and this depended considerably on the 

students’ systematic counting, drawing, or writing/recording from the first stage. For 

example, in Problem 1 for the 5×5 grid, some students identified the pattern as 5 + 5 + 3 + 3, 

and some as 5 + 5 + 6. Although the two representations do not look very different, they 

led to slightly different ways of writing the general expression.  The generalisation was   
n + n + n-2 + n-2 for the first pattern and n + n + 2× (n-2) for the second one, which was 

later simplified to 4n-4. Thus a systematic way of counting the number of squares helped 

the students to generalise. The generalisation was fairly easy when there were sufficient 

examples to make the pattern quite evident. In Problems 2 and 3, the successful students 

were able to identify a connection between the number of sides in a polygon and the sum 

of the interior/exterior angles in the polygon. The systematic way of recording the number 

of triangles in Problem 6 in a table helped the successful students to identify a pattern in 

the results. In problems where this was not the case, the students had more difficulties in 

coming up with a useful pattern. For example, in Problem 7 the students had to come up 

with a generalisation based on only one initial case. This proved to be hard for the students. 

Lee (1996) has pointed out that the problem for many students is not the inability to see a 

pattern but the inability to see an algebraically useful pattern.  
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In the third stage, the successful focus students tested their conjectures about the 

patterns by using a particular case beyond the range for them to model directly. For 

example, in Problem 1 the students were asked to find the number of border squares in a 

10×10 grid. They knew that it was not worthwhile to draw a 10×10 grid and then to count 

the squares one by one. Generally, the students who were able to attain this stage were able 

to get to the algebraic generalisation later. “Counting on” was a common strategy for some 

of the focus students to reach a solution for the 10×10 grid, but this was not very helpful as 

an overall strategy. It was when these students were asked about larger grids such as 

100×100 where counting on strategies were not very practical that these students looked 

for alternative strategies. So, they used their earlier patterns such as 3 + 3 + 5 + 5 or 5 + 5 + 6 

from the earlier parts to get the answer. In problems 2 and 3, the students were asked to 

find the sum of the interior/exterior angles in a polygon with ten sides. The students knew 

that it was not necessary to draw the decagon and had to rely on their previous sequence of 

results. Similarly, in Problem 6 the students did not put 10 points on line m to come up 

with the number of triangles for this case. They used the patterns they had identified to do 

so.  

In the final stage, the students had to come up with a generalisation. Swafford and 

Langrall (2000) had claimed that the generalisation of a problem situation might be 

presented verbally or symbolically. In the problems that were used in this study, the focus 

students avoided a verbal generalisation and all of them tried to give symbolic 

generalisations. For the symbolic, this involved constructing an algebraic relation for the 

pattern they had noticed. Their success in the first three stages of the solution process 

helped them to come to the right conclusion. The students used the pattern that they had 

identified earlier to come up with the generalisation. For example, Betty from school X 

wrote N + N + (N-2) + (N-2) which was similar to her 5 + 5 + 3 + 3 strategy for the 5×5 

grid. She overlooked the fact that the grid was n×n and not N×N, but this minor detail did 

not seem to bother her.  In very much the same way, the students from school Y wrote  
2n + 2× (n-2), following their pattern 5 + 5 + 2×3 for the 5×5 grid. In Problem 2, the 

successful students had no difficulty in coming up with the generalisation (n-2) ×180° for 

the interior angle sum of a polygon of n sides. The pattern of results noted from the 

triangle, quadrilateral, pentagon, and hexagon was essential. By the time they had to find 

the sum of the interior angles of a 10-sided figure, they already had the pattern for the 

general case. It was a similar situation in Problem 3, except that the weaker students could 

only guess that the exterior angle sum would be 360°, but they were not able to justify it. 

The more successful students were able to show by subtraction of the sum of the interior 

angles of a polygon of n sides from the sum of all the interior and exterior angle pairs of 

the polygon that the result came out to be 360°.  

Some of the difficulties encountered by the students, such as producing variables on 

their own, and writing down the relations algebraically, hampered the students’ progress. 

For instance, the students found it very difficult to come up with a symbolic generalisation 

for Problem 6. Generally, the students were able to fill up the table, but their search was for 

a linear symbolic relationship. Most of them were able to identify a recursive relationship 

in the table but only Andy, from school X, gave an explicit recursive formula. His formula 

was X + n-1, where X stood for the number of triangles from the previous value of n, the 

number of points on line m. However, he was unable to give an explicit symbolic 

representation of the non-linear generalisation in Problem 6. Some authors caution that, in 

their attempt to write symbolic representations, students often focus on inappropriate 

aspects of a number pattern – particularly the recursive relationship between successive 
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terms in a sequence (MacGregor & Stacey, 1993; Orton & Orton, 1994). Thus, in Problem 6, 

it might be possible that the students’ focus on the recursive relationship was responsible 

for their inability to produce an explicit generalisation. Even Problem 4 was problematic 

for some of the students. In Problem 7, the students had difficulties in coming up with the 

generalisation about the sides of the triangle mainly because a single case illustrated the 

problem. It seemed that a limited number of initial cases might not be enough for the 

students to find a pattern and hence a generalisation from the pattern, although Dreyfus 

(1991) had claimed that sometimes it is better to abstract from a single case. 

The three types of conceptual obstacles in generalising activities that Lee (1996) found 

in her research were also noticed in this study. First, there were obstacles at the perceptual 

level. For example, Melanie had this obstacle in Problems 1, 2, and 3. She was unable to 

identify the pattern and this led to her not being able to proceed further on her own. At the 

perceptual level, the focus students found it easy to identify patterns that showed constant 

differences between successive terms but not when the pattern was different. The symbolic 

expressions for the generalisation was obtained easily when constant differences were 

involved but not in problems where this was not the case as in Problem 6. Second, there 

were obstacles at the verbalising level. For example, Melanie in Problem 1 was not able to 

verbalise a useful pattern and this probably led to her incorrect generalisation. Third, there 

were obstacles at the symbolisation level. For example, in Problem 6 most of the focus 

students could not come up with a generalisation using appropriate symbols, even when 

they had identified a pattern. As noted by Lee in her research, the major problem for 

students was not in seeing a pattern, but in perceiving an algebraically useful pattern. It is 

important to note that some of the focus students did not verify whether the formula they 

had generated worked in the simplest of cases. They were generally confident that they had 

the right symbolic form of the generalisation. Also it is worth noting that when the students 

were not systematic in their recording of the results then they were unable to identify any 

patterns and this led them to inappropriate conclusions.  

To check for understanding, the students were asked to solve the inverse problems in 

Problems 1 and 3. In Problem 1 students were asked to find the size of a grid for which the 

number of border squares was 76. Solving an equation was the most common strategy. 

Some of the focus students needed prompts to be able to do so. Kristina used a trial and 

error strategy. In Problem 3, the students were asked to find the number of sides of a 

regular polygon with a given exterior angle. None of the focus students were able to solve 

such a problem. Thus, the students seemed to have a loose understanding of the 

generalisations that they had come up with in the problems.  

To conclude, the study shows that the identification of a useful pattern by the students 

was a significant factor in their successful symbolic generalisation, which seemed to 

proceed in four sequential stages. However, the students had difficulties with non-linear 

symbolic generalisations. The students generally avoided verbalising their generalisations. 

Students with a weaker background in algebra, such as Melanie and Betty, had more 

difficulties generalising compared to the other students. Even the students with a stronger 

background in algebra displayed some misconceptions in handling algebraic expressions. 

In this study, all of the problems had some connections to geometry, which may have 

added to the students’ difficulties. In future studies, a broader range of problems with 

similar generalising activities may provide a more complete picture. 
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This paper reports on part of a larger study and examines the changing nature of 
mathematics teaching and tasks. Two Year 4 classes were compared after mathematical-
modelling tasks were undertaken with and without top-level structuring. The results indicate 
that mathematical-modelling and top-level structuring tasks can advance mathematical 
literacy. Where students are guided through information organisation and mathematising 
through quality teaching, they can make sense of the mathematical world. Also evident was 
the vital role of the teacher in creating a positive learning environment through facilitating 
discourse and literacy development in mathematics students. Recommendations for teaching 
are given. Indications evidenced here warrant further investigation. 

The nature of mathematics teaching and classroom activities is changing in an 
endeavour to meet the needs of today’s students. The role of the teacher is changing from 
that of main instructor, teaching rules and correcting related exercises, to that of facilitator 
of mathematical activities that promote understanding of mathematics, mathematical 
thinking and reasoning abilities. In other words, educators today are aiming to provide 
students with expertise in mathematics, so that students will be equipped to use advanced 
thinking skills to acquire mathematical knowledge (Kulikowich & DeFranco, 2003). As a 
result, mathematics, as well as mathematical solutions and representations become 
powerful tools by which to understand the world. This paper explores two components of 
mathematics teaching and how they contribute to mathematical literacy and expertise: 
firstly, the nature of mathematical-modelling combined with top-level structuring (TLS) 
activities, and secondly, the role of the classroom teacher as a creator of, facilitator of, and 
participant in the classroom discourse community. 
 

The Evolution of Mathematical Literacy 

Mathematics has been described as an empowering tool, by which people can learn to 
reason and make sense of the world around them (Schoenfeld, 2002). In order to do this, 
Schoenfeld maintains, students must be active participants in “mathematical sense-making” 
activities (2002, p. 155). International educational authorities such as, The National 
Council of Teachers of Mathematics (2000), the United Kingdom National Curriculum 
(2000), and Queensland Studies Authority (2004) concur that a variety of problem-solving 
experiences contributes to students’ empowerment and ability to function effectively in 
society.  

The key to mathematical empowerment is mathematical literacy because it is the means 
by which one can actively participate in the process of problem solving, make sense of the 
problem, and ultimately unlock a solution. Mathematical literacy has been described by 
Romberg (2001) as having knowledge of the intricacies of mathematical language in order 
to gather and understand information on concepts and procedures. This information can 
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then be used efficiently to mathematise various non-routine problems, for example, 
mathematical modelling problems.  

Mathematical modelling is one problem-solving process that aims to provide 
conditions that facilitate growth in mathematical knowledge. Through participating in a 
discourse community with peers, students interpret, analyse, reason, seek relationships and 
patterns between elements, then explain, justify, and predict situations (Lesh & Doerr, 
2003a). Through these real-world, open-ended, problem-solving experiences students’ 
develop conceptual systems “to construct, describe or explain mathematically significant 
systems they encounter” (Lesh & Doerr, 2003a, p. 9). Mathematical-modelling problems 
involve attaining, managing, and presenting pertinent information through factual and 
graphic texts, as well as aurally and orally. Therefore, students require a sound level of 
language literacy in order to construct mathematical literacy. One means of enhancing 
language literacy is to employ a literacy strategy as a sense-making tool to use in 
conjunction with mathematical-modelling activities. TLS aids comprehension of oral, 
textual, or graphic information. It is described by Bartlett, Liyange, Jones, Penridge, and 
McKay (2001) as a procedure: 

which allows the strategic reader, listener or reviewer to form an opinion on what a writer, speaker 
or performer considers as essential content and if necessary, then to move on to critical or inferential 
analysis.  Conversely, it allows a strategist as writer, speaker or performer to produce coherent text 
and to signal what he/she wants to be seen as essential content. (p. 67) 

Harel and Sowder (2005) argue that educators must construct meaningful, rational 
instruction that aims to produce advanced mathematical thinking. They differentiate 
between mathematical thinking and mathematical understanding, but acknowledge these 
two as essential modes of knowledge. Meanings gained and given, justifications and 
assertions constitute understanding. However, generated theories and the expression of 
reasoning, which is specific to not just one situation, but, “a multitude of situations” (p. 31) 
portray thinking. These skills equate to those disseminated through mathematical 
modelling. 

Theories of mathematics as described in Kulikowich and DeFranco (2003) provide a 
framework for the teaching of mathematics. Theorists, such as, Barab, Hay, and Yamagata-
Lynch (2001) have argued that situated cognition, that is, “the interaction of individuals 
and their environments” (p. 149) shapes the setting for the attainment of knowledge, 
whereas others (Anderson, Reder, & Simon, 1996) have claimed that one processes, stores 
and organises information in one’s head (the information-processing theory). Furthermore, 
critical theorists like Lambert and Blunk (1998) have focussed on authentic, social activity 
to provide valuable learning experiences. Small “classroom societies” mirror real-life 
social practices where professionals gather to discuss/debate and realise solutions to 
problems. Anderson, Greeno, Reder, and Simon (2000) have acknowledged the importance 
of both cognitive and social practices perspectives. They have identified the fact that there 
are simply different foci for learning activities. Learning can occur through both solitary 
and group activities. Anderson et al. (2000) distinguish two aspects of mathematics 
teaching: (a) the cognitive perspective where students learn structures, concepts, and 
procedures individually, and (b) the social, situated learning tasks whereby students can 
learn the intricacies of mathematical discourse, and how to participate in supportive 
learning practices.  

Theories are many and varied. The theories cited here are only a few examples. 
Nevertheless, as Kulikowich and DeFranco (2003, p. 149) contend, “no one theory should 
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dictate how to practice … educators should draw from a variety of perspectives in teaching 
and designing materials for the classroom”. 

Mathematical-modelling tasks are indicative of activities that draw on a variety of 
theoretical perspectives. For example, the tasks are individually and environmentally 
interactive: situated cognition. When coupled with TLS, mathematical modelling’s 
alignment with the information-processing theory is enhanced. Because of their emphasis 
on storing and organising information, TLS provides a tool which fosters thinking skills as 
students organise their information in a logical and systematic manner (Bartlett, 2003). 
Finally, modelling tasks are social, reflecting real-world practices, whereby problem 
solving takes place via a process of interpreting, discussing, explaining, analysing, 
justifying, revising, and refining ideas (Lesh & Doerr, 2003a). 

Modelling activities are a prime example of a current practice that demonstrates the 
changing role of the teacher. However, it needs to be emphasised that, to be worthwhile, an 
activity must be constructed with a true perspective on why the activity will benefit 
learning (Kulikowich & DeFranco, 2003), and how the activity will benefit learning. This 
perspective constitutes quality teaching. Furthermore, quality teachers carefully monitor 
students, and act on cues that indicate when and how activities can be directed to gain most 
benefit. Significantly, teachers need to be active facilitators of classroom discourse, 
supporting students’ focus on meaningful content as well as their reflections on 
understandings about the content (Schoenfeld, 2002). In this way, teachers are leaders of 
functional discourse communities that promote mathematical literacy in students. 

Teachers must be proactive, and at the same time modify their views to correspond 
with student needs (McClain, Cobb, & Bowers, 1998). A mathematics classroom should be 
a community “of disciplined inquiry” (Schoenfeld, 2002, p. 132). A teacher’s role is to 
create an environment where students are supported to participate actively in 
“mathematical sense-making” through engaging “collaboratively in reasoned discourse” 
(Schoenfeld, 2002; p. 151). Therefore, students can become independent thinkers. This is 
what it means to become mathematically literate. 

To demonstrate the issues raised in this literature review, episodes taken from a larger 
study on mathematical modelling and TLS are presented. These episodes provide a context 
in which to examine the changing face of mathematics teaching and the changing role of 
the mathematics teacher. 

Design and Method 

The section of the study reported here is part of a larger study that was designed to 
investigate the effects of applying TLS to mathematical-modelling tasks. The study used a 
design-research approach, also known as a design experiment (Bannan-Ritland, 2003). 
Data were sourced from video/audio taped evidence, student work samples, and teacher 
observations and reflections. As well, information was gathered from students’ Year 3 
Queensland 2004 numeracy and literacy test results. This provided an historical record, 
which added further credence to the final reporting. Employing multiple-method data 
collection validated claims and assertions from the research (Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003), which used an interpretational, data analysis approach (Tobin, 
2000). 
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The Participants 

The participants consisted of 57 Year 4 students. These students were divided into two 
classes that formed the study’s TLS group (n = 28) and the non-TLS group (n = 29). The 
students attended a Catholic school on the outskirts of a major Australian capital city. The 
school is situated in a lower to middle socio-economic area. The school principal and 
teachers very enthusiastically supported the study. The Year 4 teachers actively participated 
in monitoring the students’ group work, in partnership with the researcher. 

The Procedure for the Original Study 

Firstly, the TLS group received instruction on and practised the application of TLS 
over a series of ten lessons. Both the TLS and non-TLS groups participated in a 
mathematical-modelling task where they had to investigate the best light conditions in 
which to grow beans. Using a table of data illustrating growth rates of beans growing in 
shade and sunlight, students analysed and compared data to lead them to a decision. Their 
decision had to be explained with reasons in a letter to a “farmer”. Subsequently, the data 
collected from the students as they progressed through the modelling process was 
compared and contrasted. 

Secondly, the non-TLS group received instruction on and practised the application of 
TLS over a series of ten lessons. The two groups then participated in a further modelling 
task. In this experience, students viewed data on distance, time, and number of attempts 
made by paper planes in a contest. The students were asked to write a letter to judges to 
explain the best way to decide on a winner. Data collected from this episode was compared 
and contrasted, any changes in the non-TLS group’s capacity to engage fully in the 
modelling task was noted, taking into account that this was the second modelling 
experience for the students. 

Mathematical Modelling: Teaching and the Role of the Teacher 

When the data from this research were analysed, some unexpected findings became 
evident. These were particularly of interest because of their potential impact on 
mathematics teaching and outcomes. Of specific interest, were the effects of the 
interactions of individual teachers with students as the students participated in their group 
tasks. As a result, this paper reports on these findings in the light of mathematical 
modelling and TLS as interactive, sense-making, social components of a discourse 
community that should positively contribute to mathematical literacy for students. Equally, 
the findings are discussed with special attention to the teacher role and the effects teacher 
interaction had in enhancing or diminishing students’ mathematical literacy. 

Results and Discussion 

There are results on the impact of TLS on mathematical modelling reported elsewhere, 
such as Doyle (2006). Two major assertions can be drawn from the data analysis here. 
Firstly, with reference to mathematical-modelling tasks coupled with TLS, the analysis 
indicated that students participated in an active discourse community. Students were able to 
mathematise as they investigated and analysed data, made connections, explained, and 
justified their ideas, an indication of students’ acquisition of mathematical literacy. 
Secondly, emerging from these data, was the fact that the teacher plays a vital role as 

Mathematics: Essential Research, Essential Practice — Volume 1

249



  

creator, facilitator, and participant in the discourse community. Of major significance were 
(a) the role of the teacher as listener, and (b) the role of the teacher as questioner. Listening 
to student discourse proved to be crucial in the teachers’ ability to impact positively or 
negatively on the classroom discourse community. As well, the way in which questions 
were directed to students influenced the discourse community. When focused, sharp 
questioning occurred, the result was positive in that the students remained on task and their 
mathematising was enhanced. When questioning were unclear and prolonged, the students 
became confused, which detracted from their mathematising. 

In the following text example, the students demonstrated that they were comparing and 
measuring as they participated in the modelling task. They were using the organised 
language of TLS to explain that they were “comparing” the weights of the beans. The 
teacher’s role here was to focus the students on their mathematising. The students 
explained their perceptions. The teacher’s questioning had a positive impact supporting the 
students’ sense-making of the situation. 

Megan: We need to write down Weeks 6, 8 and 10 and rows 1, 2, 3, and, 4 for sunlight and 
then we’ll move on to shade. 

Teacher: What is happening here? 

Jeff: We’re comparing the weights. 

Teacher: So what is happening when you compare the weights? 

Jeff: We’re mainly measuring the weights of butter beans after they’re in sun and shade. 

Teacher: What are you comparing – weeks or rows?? 

Jeff: We’re comparing like in row 1, week 1 they have 9 kilos in the sun.  They’re not 
  growing too well but in the shade they are growing heavier.   

Teacher: That’s row 1 but is that the same for everywhere else? 

Jeff: No, not really. 

(Students continue to work out and write their results under two headings: The results of the weights 
of the butter beans in the shade/and in the sunlight.) 

Jeff: We are comparing the results of the butter bean plants.  After 10 weeks we have  some 
results. 

 

Other examples of the teachers’ positive role occurred throughout the modelling 
investigations, such as, the teacher in the following text encouraged mathematical thinking 
and the need for justification. 

Ben: So, sunlight has more kilos compared to the shade. 

Teacher: And is that true for all of it?  You have to make a decision and you have to check 

  that information really carefully. 

 
The teacher’s intervention in the next excerpt was necessary to counteract the students’ 

over reliance on their prior knowledge. Where prior knowledge often plays an important 
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part in the construction of new knowledge, in this instance the student was relying on it 
whilst ignoring the mathematical data and evidence. The teacher had listened to the 
students as they discussed and was correctly cued to this situation. As a result, the teacher 
was able to redirect the students’ attention to focus on the data to provide mathematical 
evidence for their explanations. 

 

Kiesha: Well, a plant needs sunlight and shade. If a plant gets too much shade it will die or if a 
  plant gets too much sunlight, it will die. 

Teacher: What is this (the table) telling you? This is going to prove your discussion. Why is 

  it saying sunlight is best? 

Matt: Its got more kilos than in the shade. 

Teacher: Oh! OK, so it has more kilos compared to? 

Matt. The shade.  So, sunlight has more kilos compared to the shade. 

 

On the other hand, there were examples of instances where teacher intervention 
detracted from the students’mathematising during the investigation. This was most likely 
due to the teacher not having listened into the students’ discussions accurately. In this next 
excerpt, the students were reasoning with time, distance, and also realising from the table 
that “scratching” needed to be taken into account when deciding on a winner.  
 

Isobella: I chose E because it goes for a long distance. It goes for longer seconds and it has no 
  scratches. 

Eden: I chose Team E because its scores were higher than the others and it didn’t get  
  scratched and it hoes for the longest time.” Both girls reasoned with time, distance and 
  took scratches into account.  

 

However, the teacher interrupted and asked to be shown the proof for their claims. 
Also, a number of questions were asked in a row. 

 

Teacher: How do you know? Where did you work it out? Show me how you   

  worked that out. Show me the numbers. 

Students: The numbers? 

Teacher: Show me the best number from the others. Make sure you can prove it. 

 

Although the intention to ensure the students had evidence for their claims was good, 
the timing was unfortunate and only succeeded in misdirecting and confusing the students. 
It took them away from their sense-making, mathematising, and empowerment. Isobella’s 
final comment ratifies this. She moved from a confident participant to believing that they 
were all “wrong in their answer”. As well as being interrupted, the students were also faced 
with four directions in a row. This appeared to baffle the students even more. This is 
demonstrated in the subsequent conversation. 

Kristy: I don’t get it though. 

Eden; What are we meant to do? 
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Kristy: I don’t get what he said. 

Isobella: Well, we’re not doing it right because he told me to pick the number of each  
  that would be the best one so I circled 13 because it was the biggest out  of all  
  of  them so that’s why I chose E. 

 

Following is an illustration of what teachers can unwittingly cause in the classroom. 
The students were confidently examining and interpreting the data, analysing, and 
justifying their ideas. Firstly, the students appeared confident and empowered. This 
conversation was indicative of the type of discussion that the researcher had witnessed 
occurring in the classroom.  
 

Eryn: What about Team D? 

Kristy: Yeah, but it has scratches. 

Eden: E doesn’t have any scratches. 

Kristy:  Neither did C and neither did B. 

Isobella; I chose E because it has 13, the highest number out of ll of them and that’s  
  why I chose E. 

Kristy: What about C?  It goes 9, 11, 11 

Isobella: Eden, why did you choose E? 

Eden: Because there were no scratches.  It had the highest number in metres and  

  because its seconds were more and so… 

 

Students were examining the data, accounting for variables, looking for patterns, 
considering length and time, and generally finding mathematical justifications for their 
explanations. However, despite an urging from the researcher not to interrupt the students 
as they were actively participating, and were on task, the teacher stopped all groups. This 
teacher thought it would be better for the students to think individually about their 
decisions and then share with the rest of their group. The justification for this was that 
there would be better outcomes for the research because after personal reflection, the 
students would have more ideas to discuss. As a result, the students’ behaviour diminished. 
When they returned to discussion, they were not on task. They read out their written ideas. 
It appeared that fellow group members did not listen to these readings. 

Conclusion and Implications 

Mathematical-modelling tasks coupled with TLS demonstrate how activities can be 
successful in promoting mathematical literacy. These tasks go beyond traditional views to 
provide students with opportunities to acquire advanced-thinking skills that are 
interpretive, organisational, and communicative as students encounter a variety of 
narrative, graphic, and factual texts (English, 2004; Lesh & Doerr, 2003b; Lesh & Yoon, 
2004). The overall study not only clarified this claim, but also opened other windows of 
opportunity to investigate such issues as the role teachers have in impacting positively or 
negatively on students’ acquisition of mathematical literacy. 
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The research reported here informs mathematics educators in two specific ways. The 
first way is to reiterate the view of Harel and Sowder (2005), that mathematical thinking 
will be best produced if meaningful and rational tasks are constructed. Students must be 
guided to think mathematically through the activities provided for them, and by the 
expertise of the teacher. These vital roles of the classroom teacher were demonstrated in 
the results reported here. Students were given tasks that encouraged mathematical thinking, 
but the teacher, in certain instances needed to guide the students to mathematical 
understanding (Harel & Sowder, 2005).  

The second way is to impress upon educators the essential role of the teacher to (a) 
construct quality activities that benefit learning, and (b) act appropriately on indicative cues 
to benefit learning (Kulikowich & DeFranco, 2003). The episode where the teacher 
interrupted the whole class was an example of where this teacher could have modified 
personal views (McClain et al., 1998) to benefit the learning community. This, as well as 
the other example cited, demonstrates that perhaps we, as educators, all have lessons to 
learn on how our decisions impact upon our students. Further research investigating teacher 
impact on students learning could benefit mathematics teaching.  

Mathematical modelling with TLS has given a prime example of how tasks can be 
constructed to reflect a diverse theoretical basis. These interactive tasks are established in 
situated cognition (Barab et al., 2001). As students are required to store and organise 
information, the tasks build upon information-processing theory (Anderson et al., 1996). 
They are social activities (Lambert & Blunk, 1998). They reflect both cognitive and social 
practices (Anderson et al., 2000).  

An environment for mathematical sense-making (Schoenfeld, 2002) must be created. A 
quality teacher provides the means by which to do so. Mathematical modelling with TLS 
provides a task by which to do so. Such an environment encourages students to make sense 
of situations as they participate in a supportive discourse community to advance their 
mathematical literacy.  

 

References 

Anderson, J., Greeno, J. G., Reder, L. M., & Simon, H. A. (2000). Perspectives on learning, thinking, and 
activity. Educational Researcher, 29(4), 11-13. 

Anderson, J., Reder, L. M., & Simon, H. A. (1996). Coming to terms: How researchers in learning and 
literacy talk about knowledge. Educational Researcher, 24(4), 5-11. 

Bannan-Ritland, B. (2003). The role of design in research: The integrative learning design framework. 
Educational Researcher, 32(1), 21-24. 

Barab, S. A., Hay, K. E., & Yamagata-Lynch, L. C. (2001). Constructing networks of action-relevant 
episodes: An in situ research methodology. The Journal of the Learning Sciences, 10, 63-112. 

Bartlett, B. J. (2003). Valuing the situation: a referential outcome for top-level structurers. In B.J. Bartlett, F. 
Bryer & D. Roebuck. (Eds.), Reimaging Practice: Researching Change (pp. 16-37). Griffith University, 
Brisbane: Proceedings of the 1st International Conference on Cognition, Language and Special 
Education. School of Cognition, Language and Special Education. 

Bartlett, B. J., Liyange, I., Jones, S., Penridge, J., and McKay, K. (2001). Science Education through Literacy 
and Language. In F. Bevan, C. Kanes & D. Roebuck (Eds.) Knowledge Demands for the New Economies 

Volume 1. Brisbane: Academic Australian Press, pp. 64-70 
Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational 

research. Educational Researcher, 32(1), 9-13. 

Mathematics: Essential Research, Essential Practice — Volume 1

253



  

Doyle, K. (2006). Organisational structure for mathematical modelling. In P. Grootenboer, R. Zevenbergen & 
M. Chinnappan (Eds.), Identities, Cultures and Learning Spaces: (Proceedings of the 29th annual 
conference of the Mathematics Education Research group of Australasia, Vol. 1, pp. 187-195). Sydney: 
MERGA. 

English, L. D. (2004). Mathematical modelling in the primary school. (Proceedings of the 27th annual 
conference of the Mathematics Education Research Group of Australasia, Vol 1, pp. 207-214). Sydney: 
MERGA. 

Harel, G., & Sowder, L. (2005). Advanced mathematical-thinking at any age: Its nature and its development. 
Mathematical Thinking and Learning, 7(1), 27-50. 

Kulikowich, J. M., & DeFranco, T. C. (2003). Philosophy's role in characterizing the nature of educational 
psychology and mathematics. Educational Psychologist, 38(3), 147-156. 

Lambert, M., & Blunk, M. L. (Eds.). (1998). Talking mathematics in school: Studies of teaching and 

learning. Cambridge: Cambridge University Press. 
Lesh, R., & Doerr, H. M. (2003a). Foundations of a models and modelling perspective on mathematics 

teaching, learning and problem solving. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism:  

Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3-33). 
Mahwah, NJ: Lawrence Erlbaum Associates. 

Lesh, R., & Doerr, H. M. (2003b). In what ways does a models and modelling perspective move beyond 
constructivism. In R. Lesh & H. M. Doerr (Eds.), Beyond constructivism: Models and modelling 

perspectives on mathematics problem solving, learning, and teaching (pp. 519-556). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Lesh, R., & Yoon, C. (2004). What is distinctive in (our view about) models and  modeling perspectives on 
mathematics problem solving, learning and teaching? In H. W. Henn & W. Blum (Eds.). ICMI Study 14: 

Applications and Modeling in Mathematics Education (pp. 151-159): Dortmund, Germany: University of 
Dortmund. 

McClain, K., Cobb, P., & Bowers, J. (1998). A contextual investigation of three-digit addition and 
subtraction. In L. J. Morrow & M. J. Kenney (Eds.), The teaching and learning of algorithms in school 

mathematic., 1998 yearbook. Reston, VA: National Council of Teachers of Mathematics. 
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. 

Reston, VA: National Council of Teachers of Mathematics. 
Queensland Studies Authority. (2004). Mathematics: Years 1 to 10 Syllabus. Retrieved 24/05/05, from 

http://www.qsa.qld.edu.aqu/yrsato10/kla/mathematics/index.html 
Romberg, T. A. (2001). Mathematical literacy: What does it mean for school mathematics? Retrieved 

15/03/07, from http://www.wcer.wisc.edu/ncisla/publications/articles/OctMathWASB.pdf 
Schoenfeld, A. H. (2002). A highly interactive discourse structure. Social Constructivist Teaching, 9, 131-

169. 
Tobin, K. (2000). Interpretive research in science education. In A. E. Kelly & R. Lesh (Eds.), Handbook of 

research design in mathematics and science education (pp. 487-512). Mahwah, NJ: Lawrence Erlbaum 
Associates. 

U. K. National Curriculum. (2000) Mathematics: The National Curriculum for England. Retrieved 18/03/07, 
from www.nc.uk.net 

 

Mathematics: Essential Research, Essential Practice — Volume 1

254



Informal Knowledge and Prior Learning:  

Student Strategies for Identifying and Locating Numbers on Scales 

Michael Drake 
Victoria University of Wellington 

<michael.drake@vuw.ac.nz> 

This paper reports on one aspect of a larger study into student understanding of scale. 

Thirteen students from Years 7 and 8 were interviewed, using a diagnostic assessment 

designed for the purpose, to identify how they went about locating numbers on, and reading 

numbers from scales. A range of student strategies were identified, most of which can be 

classed as informal knowledge. These strategies can be sorted into a progression that relates 

to the level of number thinking involved. 

While learning mathematics in New Zealand, by Years 7 and 8 students are expected to 

develop the ability to work successfully with scales in a wide variety of contexts, including 

measurement, algebra, and statistics. Scales themselves, however, are not explicitly 

identified as something that needs teaching (Ministry of Education, 1992). Scales are also 

widely met in other curriculum areas (e.g., Ministry of Education, 1993, 1997), where the 

focus is on using them to facilitate other learning. In all of these documents, it is important 

to note that learning is expressed as statements of the outcomes that students should be able 

to achieve, and that in taking this approach they omit the how.  

Commonly used resources that are designed to assist teachers in the delivery of the 

mathematics curriculum document follow this lead (e.g., Ministry of Education, 2000a, 

2000b; Tipler & Catley, 1998; Wilkinson, 2002a, 2002b). They provide exposure to the 

sort of activity that students are expected to be able to master. Students get to read kitchen 

scales, draw graphs to display data they have collected, use number lines showing fractions 

or decimals, and interpret graphs drawn by others. In many of these activities the focus is 

not on the scales themselves, but the information transmitted through understanding the 

scales. This leaves teachers the task of realising what the potential stumbling blocks are 

and providing scaffolding instruction.  

Unfortunately for teachers, this may not be an easy task. Research from a number of 

fields has shown that there are significant issues that need to be addressed as students learn 

about scale. In relation to linear measurement: the role of zero, the iteration of the unit, 

whether to count marks or spaces, and the difference between number and measurement, 

are all significant (see Nunes & Bryant, 1998; Outhred & McPhail, 2000; Bragg & 

Outhred, 2000a, 2000b; and Irwin & Ell, 2002). For the measure construct of fractions, 

some of these issues are also identified, as well as where fractions reside in relation to the 

whole numbers, the nature of the unit, how the scale is marked, and the meaning of fraction 

symbols (see Behr, Lesh, Post, & Silver, 1983; Lesh, Post, & Behr, 1987; Bright, Behr, 

Post, & Wachsmuth, 1988; Baturo & Cooper, 1999). In relation to statistical graphs, 

treating the horizontal axis of a histogram as a scale, scaling, and working between the 

gridlines have been identified as issues (see Kerslake, 1981; McGatha, Cobb, & McClain, 

1998; Friel, Curcio, & Bright, 2001). Research into algebraic graphing, decimals, integers, 

and the use of the number line to show addition or subtraction problems, also identify 

issues, though space limitations preclude further development of these ideas.  
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Given the inherent problems in learning to use scales, and the lack of direction from 

curriculum documents and commonly used resources, this study aims to identify what 

understandings students have actually developed.  

Methodology 

This report focuses on the student interviews undertaken as part of a wider research 

project on student understanding of scale, and teaching strategies to improve that 

understanding. In total 13 students from three classes at an urban Wellington intermediate 

school were interviewed over 3 days. Although a larger sample had been planned, student 

absence and other school activities restricted the number of students available. The 

students were chosen by their teachers to provide a range of abilities, and a mix of gender 

from both Years 7 and 8.  

For the research, a diagnostic assessment was developed. This included number line 

items as well as similar or parallel items from “familiar” mathematical contexts, as 

identified by the curriculum and text analyses. Questions addressed issues commonly 

identified in the research literature and involved whole numbers, multiples of whole 

numbers, fractions, decimals, and integers. The questions in the diagnostic assessment were 

then used in the form of a cognitive interview (Presser et al., 2004). This provided feedback 

on the assessment and the questions as well as data on how students went about answering 

scale related questions. These interviews were audiotaped.  

Each question was provided individually in written form to the student. Once a 

question was answered, the student was asked “how did you work that out?” Responses 

were clarified and recorded by hand. Visual strategies observed by the interviewer as well 

as the explained strategy were recorded. Where a verbal response was not clear, the 

observed strategy was sometimes voiced as a clarifying question. Such an approach 

provided a richer record than the audiotape alone, as it allowed some access to students’ 

initial strategies that were later rejected. However, it is acknowledged this approach is still 

prone to identify the method that a student considers they used to answer the question 

successfully, and can explain, rather than provide a record of all the thought processes 

attempted by the student. In a few cases students were also at a loss to explain their 

reasoning, and no visual cues were provided, so no strategy could be deduced. 

After the interviews, the audiotapes were transcribed, with the transcript compared to 

the written notes. From this, the solution methods used for the different questions were 

identified, and categories of response created. This process necessarily required the coder 

to interpret the responses and draw inferences about the logic used to create them. Here the 

form of thinking used by the student provided a tool for classification, as some responses 

clearly relied on counting, whereas others relied on adding or multiplying.  

Results and Discussion 

Mental Strategies 

In conducting the interviews, it quickly became clear that students had a range of 

mental strategies that they used when working with scale. As these strategies had been 

nowhere identified in the document analysis (described above) as forming part of scale-

related instruction, an alternative explanation as to their existence needed to be found. 

Mack (1995) identifies the body of skills and understandings students have developed for 
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themselves while working on real tasks outside the classroom as informal knowledge. This 

knowledge may or may not be correct, and can be context related. In this case, it seems that 

students may have developed these strategies for themselves while working with scales in 

classroom situations. Alternatively, they may have resulted from informal instruction while 

focusing on a learning task that happens to involve scales. In either case, the label informal 

knowledge seems appropriate as the knowledge is probably gained in an incidental fashion.  

Mental Strategies as a Window into Student Thinking 

In working with scale, a student’s written response was not always an accurate 

indication of how a student obtained the answer. This was particularly true if the answer 

was correct. Figure 1 shows a number line on which students were first asked to write the 

missing numbers in the boxes, then to locate the number 11. In follow-up questioning, 

Student 5 was asked to identify how he worked out that the second box should have the 

number 42 in it. He responded that “(i)ts going up in sixes and then there’s 12 so you have 

to put another six in there and then that’s another six to make 36, and then another six to 

42”.  Meanwhile Student 2 responded “I just counted in sixes and what I did was, there was 

one, two and three and so I did three times six is 18 and then for 42 I said seven times six is 

42”. When locating 11, Student 4 explained their strategy as “probably just before the 12, 

right here”, whereas Student 5 explained that “you’ve got to get it in an even space”. This 

student was dividing the interval into six equal spaces, then counting along five of them.  

 

 

 

 

 
Figure 1. A number line question from the interview. 

 

Both of these pairs of responses illustrate significant features of the identified student 

strategies. The first is that not all students use the same strategy on the same question, 

rather the strategy chosen seems to relate to their different understandings of number. For 

example, in the first quote Student 5 is using a skip count approach, which has links to 

additive thought. Meanwhile Student 2 is clearly relying on an understanding of 

multiplication. This provided a way to differentiate student strategies according to a level 

of sophistication.  

The second feature relates to how students located numbers in intervals. In locating 11, 

Student 4 seems to be using an estimation strategy, whereas Student 2 is using partitioning. 

A closer look at all of the responses indicated that somewhere in the interview all 13 

students used a strategy similar to that of Student 4, finding “a little bit more or a little bit 

less”. For some problems, this strategy was used in conjunction with partitioning strategies. 

This suggests that finding “a little bit more” is a simple strategy accessible to all. The 

analysis also identified that “success” with the strategy was varied, as if the size of the “bit” 

chosen was arbitrary. For example, Student 7 described using both a partitioning strategy 

(halving) and “a little bit less” when locating 0.4cm on a ruler. His explanation for the 

placement being “(c)ause like zero point five would be about there [indicates where 0.8 

would be], so the one before”. Figure 2 below shows his response.  

0 6   12  24   30   
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Figure 2. Work from Student 7. 

 

In this question Student 7 did not manage to divide the interval into two equal pieces 

when halving, so in considering the possibility that students were estimating when using “a 

little bit more/a little bit less”, this perspective was explored. For estimation to be used 

successfully, it needs to be relational with the “bit” being in proportion to the size of the 

interval. Given that Student 7 did not halve an interval accurately, it seems to be very bold 

to suggest that he can work with space proportionally. For this example, better explanations 

are either that this student is used to working with rulers and “knows” how big a millimetre 

is, and uses this knowledge, or the piece chosen was arbitrary, with a small partition “close 

to” being taken.  

Other questions in the test seemed to access a student’s informal knowledge 

specifically – or rather their assumed understanding of a situation. Figure 3 shows a 

response from Student 9, who, when asked how she got that answer, did not seem to 

imagine that a thermometer could have anything other than a unit scale: “ ’cause there’s 

ten, that would be twelve”. However, on a similar item involving a number line she 

correctly identified that the scale went up in twos, suggesting her response to the 

thermometer question was prompted by the context. In other questions, Student 9 showed 

she had access to a number of different strategies, though not to any that involved the use 

of multiplication, suggesting she did not have access to multiplicative thinking.  

 
 

Figure 3. Unit scale thinking. 

Error Patterns as a Window to Student Understanding 

In explaining her reasoning for her answers to the questions in Figure 4, Student 9 

indicated that she was unclear about whether or not she had them correct. For question 3a 

her logic was “ ’cause the one’s on zero so it might be like zero point”, for 3b “point 

nought two, or one”. To interpret this error pattern, research into measurement 

understanding seems to offer a better insight into the thinking that Student 9 is applying 

than fraction based research. For example, Nunes and Bryant (1998) suggest that several 

problems exist for students when learning to use rulers. One is the issue of counting and 

measuring, where counting never starts at zero. Another is whether or not to count the gaps 
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or the lines. A third is that “children can conceivably be taught to follow a procedure for 

reading measurements on a ruler and still have little understanding of the logic of 

measurement” (p. 86). Student 9 seems to be clearly counting the marks, but uses one as 

her start point, a counting-measurement confusion. She also seems to be “counting in 

points”, that is counting each mark between the whole numbers as a tenth, regardless of 

how many there are. Thus this question has opened a valuable window into the 

understanding that Student 9 has of scales, and suggests several avenues for new teaching.  

 

 
Figure 4. Other examples of thinking from Student 9. 

 

Question 3c adds another perspective to Student 9’s understanding. Her logic for 

placement is “ ’cause like, the three then mark quarters, like a little bit away from four”. 

Here fraction knowledge seems to be accessed, though there is confusion as to the meaning 

of the symbol ¾, apparently confusing ¾ with 3¾. Baturo and Cooper (1999) also found 

such confusion. One possible explanation is that this could be tied to a developed 

understanding of fractions like ¾ as “three pizzas, each cut into four slices” in which the 

three is the number of wholes. This interpretation can be used successfully when sharing 

(e.g., dividing three pizzas between four people) or when answering questions involving 

the quotient sub-construct of fractions, but suggests a limited understanding of fraction 

symbols, and a poor knowledge of the continuity of fractions – that is, where they can be 

found in relation to the whole numbers.  

In the follow-up interview Student 9 indicated that she had met these sorts of problem 

before, and did not find them difficult. However, her observed strategies indicate 

significant misconceptions that need to be addressed. How did these arise? Some strategies 

appear to be the result of specific instruction, and appear to be strategies that have been 

developed uncritically and have been overgeneralised. (We can almost hear a teacher say to 

the class learning about the ruler that “each of these little marks between the numbers is a 

tenth, so its point one, point two, point three…”). Such strategies can be described as prior 

learning. Others appear self-developed and are better described as informal knowledge. For 

example, ¾ as “three pizzas each cut into four pieces” was not a common approach to the 

teaching of fraction symbols found in the reviewed texts.  

Mathematics: Essential Research, Essential Practice — Volume 1

259



Table 1 

Typical Student Strategies for Partitioning Unmarked Intervals 

Thinking type. Strategy name. Example of strategy. Useful with… 

Counting based. A little bit 

more, a little 

bit less. 

Make a mark “a bit” to the left or 

right. 

Locating numbers “just next 

to” other numbers. 

 

 Halving. “Eying up” exactly where the 

middle of an interval is using the 

point of the pen as a marker.  

Can be used repeatedly (to 

find quarters etc).  

Addition based. n equal spaces Draw in marks for each unit, 

counting along in ones “to fill in 

the gap”.  

Scales involving whole 

number multiples. Can be 

successfully transferred to 

decimals or fractions. 

 Mixed 

methods. 

Repeated halving or combining the 

use of halving and “a little bit 

more, a little bit less” or “counting 

in ones”. 

 

Multiplication 

based. 

2, 3, 5 method. Students know how to accurately 

partition an interval into 2, 3, and 5 

pieces. 

 

 Mixed 

methods. 

Locating 11 on a scale using 

multiples of 6 by finding ½ way, 

and cutting the remaining interval 

into 3 equal pieces… 

Subdividing most intervals 

into the commonly used 

number of pieces. 

 

Student 9’s answers were typical of the pattern of responses found in the interviews. 

Students had a range of strategies that they used selectively to answer questions. Overall a 

finite set of solution strategies was identified and student success with these was influenced 

not only by the appropriateness of the strategy to the situation, but also by a series of other 

understandings, for example, whether or not to count the marks or the spaces (and how to 

do this), whether to start the count at zero or one, and the ability to create intervals of equal 

size. Table 1 summarises and names the strategies identified as being used by students 

when answering problems involving partitioning unmarked intervals on scales. In some 

cases where the type of thought was not obvious, these strategies have been allocated to a 

stage based on the frequency of their use. For example, halving was used by 12 of the 13 

students, though not by one who answered all questions correctly, so has been placed in the 

counting category. Hart (1981) also talks of one half as an honorary whole number 

suggesting that students find working with one half easy.  

The set of strategies identified allows a “multiplicative” student to partition intervals 

into the most commonly used number of subdivisions. Strategies used to partition intervals 

into sevenths, elevenths, thirteenths and the like were not investigated. 

Student Responses to Items Involving a Scale where some Marks are not Numbered 

The thermometer in Figure 3 and the scales from questions 3a and 3b in Figure 4 are all 

examples of scales where not all marks are numbered. Students used a different set of 

mental strategies to those in Table 1 when working with this sort of scale. These are shown 

in Table 2. As examples of these strategies, when dealing with the fractional question A5 

(Figure 5), Student 1 used a “counting in tenths” strategy, referencing the nearest whole 

number rather than “counting up from the number on the left”: “’(C)ause it’s zero there 

[points to zero] and zero point nine, one is after zero point nine … and one point one is 
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after one.” Student 5 on the other hand converted the problem to whole numbers, then 

reconverted to answer the question, a strategy that relies on an understanding of 

multiplication: “Well, you can’t get 4 into 10 so I worked to 100 and stuff.” Student 7 

meanwhile ignored some of the scaffolding on the problem (the zero at the start of the 

scale) to turn the problem into one he could understand and solve: “I knew that one before 

zero is zero and one after one is two.”  

Table 2 

Typical Student Strategies for Numbering a Marked Scale 

Thinking type. Strategy 

name. 

Example of strategy.  Useful with… 

Counting based. Thinking in 

ones. 

Each mark shows one more, as all 

scales go up in ones… 

Unit scales. 

 Trial and 

error. 

Students count along in ones and if that 

doesn’t work try twos… 

Scales marked in 

multiples of a number. 

Can be adapted for 

decimals. 

 Counting in 

tenths. 

If there are marks between the 

(counting) numbers, count 0.1, 0.2, 0.3, 

… . Some students also count back in 

points from the nearest whole number.  

Scales marked in tenths. 

Addition based. Skip counting. A development of the trial and error 

strategy – using skip counts. For 

example – “that’s a big gap/number to 

fit on, lets try tens…” 

 

For interpolating and 

creating a scale. 

For extrapolating, this 

just requires a 

continuation of the 

scale with the correct 

“skip”. 

 Fitting tenths For example, a scale marked in quarters 

“that would be 0.3, that o.5 then o.6 0r 

o.7 then 1” 

Scales marked in tenths. 

 Bits and “ths”. There are 5 bits (spaces), so each is a 

fifth. 

Fractional and decimal 

scales. 

 Whole 

number 

conversion 

For example, treating the entire number 

line as the whole ‘¼ is 1, ½ is 2, ¾ is 3 

and 1 is 4’ or reunitising tenths as 

whole numbers. 

Not useful for fractional 

scales. Decimal version 

works on scales in 

tenths.  

Multiplication 

based. 

Marks and 

interval 

method. 

There are 5 marks, the interval is 10, so 

each mark is 2.  

Any non-unit scale. 

Also useful for 

decimals. 

 Whole 

number 

conversion. 

A development of the “marks and 

interval” method. For example, 4 

pieces, ¼ of 100 is 25 so ¾ is 75, so its 

0.75. 

Decimal and fractional 

scales. 

 Treating the 

fraction as an 

operator  

Treating the entire number line as the 

unit.  For example, 6 is ¾ of 8 

Not particularly useful. 

 

With some of these strategies, it is possible that they are simply reconceptualisations of 

an earlier strategy with a higher level of number understanding. For example, it seems 

likely that unit counting (thinking in ones) precedes all other strategies, and that “trial and 

error” relies on the development of the ability to skip count – and the realisation that not all 

scales go up in ones. “Counting in tenths” likewise appears to be linked to learning that 
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there are numbers between the whole numbers. All of this may well be the case, but is 

likely to need a study of student understanding over Years 1 to 6 to determine a thorough 

developmental progression.  

 

 

 

 

 
Figure 5. Number line item mathematically similar to questions 3a and b from Figure 4. 

Consistency in Student Response Strategies 

In designing the diagnostic assessment, one consideration was whether or not students 

found number lines easier or harder to work with than scales found in “familiar” situations. 

One measure of this was created by considering the strategies used by a student in the pairs 

of supposedly similar questions. Students’ responses were analysed to see whether or not 

they had used their strategies for answering the number line question on the contextual 

question. A “mark” was given if they did. This analysis thus gave a consistency rating for a 

question. Questions with a consistency rating of 13/13 were questions where every student 

transferred the strategy they used on the number line item to the contextual item. Table 3 

shows the results of this analysis.  

 

Table 3  

Consistency in Strategy use when Dealing with a Number Line Problem and a Similar Item 

Presented in a Familiar Context. 
 

Item type Consistency rating Percentage 

Scales involving multiples of whole numbers 13/13 100 

 10/13 77 

 10/13 77 

Decimal scales 11/13 85 

Fractional scales 9/13 69 

 3/13 23 

Conventions of scales 3/13 23 
 

Most students answered similar questions involving whole numbers and decimals by 

using the same mental strategy, and gave similar explanations when asked to explain their 

reasoning. Only in two situations were there significant inconsistencies, in that most of the 

students changed their mental strategy when answering the “contextual” item. In one case 

this involved showing understanding of the conventions of a number line, and creating a 

horizontal axis for a bar graph. Here the issue identified by McGatha et al. (1998) relating 

to students treating the numbers on the horizontal axis of a bar graph as individual data 

points or categories can be identified in the students’ responses to the question.  

The other case involved fractional number lines with marks. The two contextual items 

involved are shown in Figure 4 (Questions 3a and 3b), whereas Figure 5 shows the similar 

number line items. Note that although the questions required students to find the similar 

numbers, the visual cues were different in that the number line item did not go up to four. 

This may have caused some students to respond differently.  

Several patterns were of note when considering student responses to these items. 

Firstly, in answering the number line question in Figure 5, only three of the 13 students 

0 1   
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answered correctly and these students were successful with both the number line and the 

contextual items. Secondly, each of these students identified the missing numbers as 0.75 

and 1.25, using a “whole number conversion” approach (see Table 2). Fractional strategies 

were not found to be used by any of the 13 students for these four fraction questions.  

Overall, analysis identified that of the students who answered any contextual question 

incorrectly, in 30 out of 40 instances (75%), the students had changed their response 

strategies from the equivalent number line question. This suggests that strategy use is 

unstable in situations where a student is unsure of the mathematics in the situation. 

Conclusions and Implications 

In the absence of formal guidance from curriculum documents and commonly used 

resources, these New Zealand students seem to have developed their own understanding of 

scale. This consists of informal knowledge and prior learning of varying levels of 

sophistication that students apply to situations in an attempt to make sense of them. In 

many cases, this understanding was used consistently, in that mathematically similar items 

utilising a number line and a “familiar” context evoked the same solution strategy. 

However, this was not always found to be the case. Fraction questions caused students to 

change their strategy. Also, with the bar graph, most students did not treat the horizontal 

axis as a scale, instead bringing to the question a particular understanding of the context. 

Here it can be said that using such a graph as a context for developing an understanding of 

scale has introduced an element of contextual pollution; that is it has introduced context 

situated knowledge that interferes with the intended learning about another topic. In this 

particular case the contextual pollution was the common misconception that the horizontal 

axis of a bar graph is not a scale so, for example, ordinal data recorded on this axis do not 

need to be placed in order of size. In another situation quoted, a thermometer invoked a 

unit scale response from a student who could use appropriate mathematics on the similar 

number line item. The concept of contextual pollution suggests that teachers need to be 

aware that contexts may not always be helpful and that they need to be alert for signs that 

students are operating from a different conceptual base to them. In terms of scale, the 

consistency analysis has suggested that number lines invoked similar strategies from 

students, so may be a better initial tool for developing students’ understanding. 

In conclusion, scale is one of the big ideas in mathematics. It underpins significant 

learning in number, measurement, algebra, and statistics. Scales are met not only in 

mathematics but also in other curriculum areas. It comes as a surprise that even by Years 7 

and 8, not all these students have learned that there are numbers between the whole 

numbers, and that some students cannot recognise when an interval on a number line (or a 

weighing scale) has been divided into quarters. This small study has shown that many of 

these New Zealand students have a lot to learn if they are to become successful users of 

scale, that an understanding of scale cannot be assumed by teachers, and that more research 

into this area would be of value. It also suggests that it may be time to reconsider how 

students are expected to develop their understanding of scale, as current approaches seem 

to be leaving a great deal to chance.  
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Aspects of students’ arithmetic knowledge are described via two case studies of responses 

to tasks during a videotaped assessment interview. Tasks include reading numerals, locating 

numbers, saying number word sequences by ones and tens, number word after or before a 

given number, incrementing and decrementing by ten, addition in the context of dot strips of 

tens and ones, and addition and subtraction involving bare numbers. On many tasks the 

students had significant difficulties and responded differently from each other. The paper 

demonstrates the idiosyncratic nature of arithmetical knowledge, and the significance of 

context in students’ multidigit thinking. 

The paper reports on aspects of a current 3-year project that has the goal of developing 

pedagogical tools for intervention in the number learning of low-attaining third- and 

fourth-graders (8- to 10-year-olds). These tools include schedules of diagnostic assessment 

tasks, and a learning framework for profiling students’ number knowledge. A particular 

focus of study has been assessment of student knowledge of multidigit addition and 

subtraction. Most research on multidigit knowledge is with younger students’ initial 

learning of multidigit arithmetic. For low-attaining older students, who may already have 

been expected to master 2-digit column algorithms, we wish to establish a profile of their 

multidigit knowledge. The paper describes two case study profiles. 

Literature Review 

In the last 15 years, research and curriculum reforms in a range of countries highlight a 

renewed emphasis on mental computation with multidigit numbers (Beishuizen & 

Anghileri, 1998; Cooper, Heirdsfield, & Irons, 1995; McIntosh, Reys, & Reys, 1992; 

Thompson & Smith, 1999). An emphasis on mental strategies may (a) support conceptual 

understanding of multidigit numbers (Fuson et al., 1997; Heirdsfield, 2005; Hiebert & 

Wearne, 1996); (b) support development of number sense and important connections to 

related knowledge (Askew, Brown, Rhodes, Wiliam, & Johnson, 1997; McIntosh et al., 

1992; Sowder, 1992); and (c) stimulate the development of numerical reasoning, and 

flexible, efficient computation (Beishuizen & Anghileri, 1998; Yackel, 2001). Following 

the principle of beginning instruction with students’ informal strategies, researchers now 

put initial instructional emphasis on strong mental strategies (Beishuizen & Anghileri, 

1998; Carpenter, Franke, Jacobs, Fennema, & Empson, 1998). 
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Place Value and Base-ten Structures 

Multidigit knowledge includes knowledge of the numeration system and place value 

(e.g., Hiebert & Wearne, 1996). However, researchers argue that students may not operate 

with numbers in symbolic terms, observing that place value tasks become tasks of verbal 

patterns and symbolic manipulation, without connection to the students’ sense of numbers 

(Cobb & Wheatley, 1988; Treffers, 1991). Thompson and Bramald (2002) make a 

distinction between quantity value, for example, partitioning 47 into forty and seven, and 

column value, for example, 47 represents 4 units of ten and 7 units of one. They argue 

students’ mental strategies only depend on quantity value. In this paper we focus on base-

ten structures that include aspects of place value knowledge, such as quantity value, which 

do not involve manipulating written symbols. 

Of central interest in students’ mental multidigit computation is the developing 

sophistication of their use of base-ten structures. Researchers have charted learning 

trajectories from using counting-by-ones strategies, through increasingly powerful uses of 

units of ten and other base-ten structures. In a synthesis from four research projects, Fuson 

et al. (1997) proposed a developmental sequence of children’s two-digit conceptual 

structures. The structures incorporate students’ relations among written numerals, number 

words, and quantities: unitary (53 as one, two, … fifty-three); decade and ones (one, two 

… fifty; and fifty-one, fifty-two, fifty-three); sequence-tens and ones (ten, twenty, … fifty; 

and fifty-one, fifty-two, fifty-three); separate-tens and ones (five tens and three ones); and 

integrated-sequence-separate. A sixth, incorrect conceptual structure was labelled 

concatenated single digit (53 as five and three). Developing the work of Steffe and 

colleagues, Cobb and Wheatley (1988) distinguished three levels in children’s construction 

of ten as a unit. The levels were evident in children’s thinking in additive tasks. Children 

operating at level 1 manipulate ten units and one units separately, and can not coordinate 

them. The level 1 construction of ten as an abstract singleton is comparable to the 

concatenated single digit structure from Fuson and colleagues. At level 2, children can 

coordinate counts or collections of tens and of ones, in the context of representations of the 

quantities, but they cannot “simultaneously construct a numerical whole and the units of 

ten and one that compose it” (p. 7). Students at level 3 can anticipate, without 

representations, that a numerical whole consists of tens and ones units, and coordinate 

operations with these. Significant in these analyses is the consideration of students’ 

thinking in two settings: structured materials and bare numbers. The present study 

investigates students’ use of base-ten structures and units when solving additive tasks in 

three settings: structured materials, bare numbers, and verbal number words. 

Sequence-based Structure and Strategies 

When students begin to use base-ten structures in arithmetic, they develop a variety of 

multidigit addition and subtraction strategies (Beishuizen & Anghileri, 1998; Cooper et al., 

1995; Foxman & Beishuizen, 2002; Thompson & Smith, 1999). Sequence-based or jump 

strategies involve keeping the first number whole and adding (or subtracting) via a series of 

jumps, for example, 57 + 26 as 57 + 10, 67 + 10, 77 + 3, and 80 + 3. Collections-based or 

split strategies involve partitioning both numbers into tens and ones, and adding (or 

subtracting) separately with tens and ones, for example, 50 + 20, 7 + 6, and 70 + 13. 

A broad knowledge of number relationships and numeration is important for mental 

computation (Heirdsfield, 2001). This includes knowledge of sequential structure 
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(Ellemor-Collins & Wright, in press): jumping by ten off the decade, locating numbers, 

number word sequences across decades, and making small hops (Fuson et al., 1997; 

Menne, 2001; Yackel, 2001). 

Beishuizen and Anghileri (1998) argued that jump strategies can develop as 

curtailments of students’ informal counting strategies. Beishuizen, Van Putten, and Van 

Mulken (1997) compared students’ use of jump and split strategies and found that jump 

resulted in fewer errors and enabled making efficient computation choices. In contrast, split 

strategies led to difficulty in developing independence from concrete materials 

(Beishuizen, 1993); procedural and conceptual confusion (Klein, Beishuizen, & Treffers, 

1998); and slow response times, suggesting a heavier load on working memory (Wolters, 

Beishuizen, Broers, & Knoppert, 1990). As well, Klein, Beishuizen, and Treffers (1998) 

found that, among low-attainers, jump strategies were much more successful. 

Low-attaining students seem to use jump strategies less frequently and many do not 

develop knowledge of jumping in tens (Beishuizen, 1993; Foxman & Beishuizen, 2002; 

Menne, 2001). In Australia in many instances, instruction does not focus on counting by 

tens off the decade nor on developing sequential structure. Yet, sequence-based strategies 

can be more successful, and are necessary for integrating sequence-based and collections-

based constructions (Fuson et al., 1997). Hence, the focus of this study is on low-attaining 

students’ development of sequential structure and jump strategies. 

Low-attaining Students 

Students’ arithmetic knowledge is componential (Dowker, 2005) and for students of 

similar ability levels, there can be significant differences in arithmetic knowledge profiles 

(Gervasoni, 2005). Understanding more about such profiles is one important response to 

calls for intervention in early number learning (Louden et al, 2000; Department of 

Education, Training and Youth Affairs, 2000). Further, assessment of students’ multidigit 

knowledge should include a focus on multidigit numerals, number sequence knowledge, 

ten as a unit, mental computation, in verbal, structured, and bare number settings, and 

attention to students’ strategies, as well as their answers. This paper presents two case 

studies that (a) describe in detail, low-attaining students’ multidigit knowledge; (b) 

illustrate the idiosyncratic nature of this knowledge; and (c) illustrate the significance of 

context in students’ multidigit thinking. 

Method 

Study 

A screening test of arithmetical knowledge was administered to all third- and fourth-

grade students in 17 schools. On the basis of the screening test, 191 students were 

classified as low-attaining. During their year in the project – 2004 or 2005 – these students 

were assessed twice, that is, in the second term and in the fourth term. The assessment 

consisted of an individual interview, videotaped for subsequent analysis. The analysis 

documents in detail each student’s responses and strategies.  
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Task Groups 

The interview used a schedule of task groups. A task group consists of tasks very 

similar to each other used to document students’ knowledge of a specific topic. Some of 

these tasks are adapted from Cobb and Wheatley (1988) and have been widely used 

elsewhere (e.g., New South Wales Department of Education and Training, 2003). This 

paper focuses on eight of 20 task groups in the schedule: 
 

1. Numerals task group. These tasks involved identifying and writing numerals. This 

included numerals with up to 5 digits and 3- and 4-digit numerals with a zero (e.g., 

12, 21; 101, 730, 306; 1000, 1006, 3406, 6032, 3010; 10 235). 

2. Locating numbers task group. Given a piece of paper showing a line with ends 

labelled as 0 and 100, the task was to mark in turn, 50, 25, 98, and 62. 

3. Number word sequences (NWS) by ones. These tasks involved (a) saying a forward 

(FNWS) or backward (BNWS) sequence and included bridging decades, 100s, and 

1000; and (b) saying the number before or after a given number. 

4. Number word sequences by tens. Saying sequences by tens, forward or backward, 

in the range 1 to 1000, on and off the decade. 

5.  Incrementing and decrementing using numerals. Given a numeral, say the number 

that is ten more, using: 20, 90, 79, 356, 306, 195, and 999. Similarly, ten less than: 

30, 79, 356, 306, 1005; one hundred more than: 50, 306, 973; one hundred less than 

108. 

6. Incrementing and decrementing using ten-strips. A strip with seven dots is placed 

out, then strips with ten dots are used one by one. The student’s task is to state the 

total number after each successive strip is placed out – 7, 17, 27 etc. 

7. Incrementing using tens and ones. Strips with the following numbers of dots are 

progressively uncovered: 4, one 10, two 10s, one 10 and 4, two 10s and 5. The 

student’s task is to state the total number of dots at each successive uncovering. 

Finally, the 73 dots are covered and the student is asked how many more dots are 

needed to make 100. 

8. Bare number tasks. The following are presented in horizontal format for the student 

to solve without materials or paper for writing: 43 + 21, 37 + 19, 86 – 24, 50 – 27. 

Results 

The case studies in this paper are based on the first interviews of two students. Of 

particular interest in the case of Bel are (a) his inability to jump by ten off the decade, in 

the absence of materials; and (b) his difficulties with addition and subtraction tasks 

requiring regrouping. Of particular interest in the case of Robyn are (a) her facility with 

jumping by ten off the decade, and (b) her difficulties with addition and subtraction tasks in 

bare number settings. 

The Case of Bel  

Bel was 9 years and 4 months old at the time of his interview, 15 weeks into the third 

grade (fourth year of school). 

Numerals and locating numbers. Bel wrote correctly, all 3- and 4-digit numerals asked 

(270, 306, 1000, 1005, 2020), and identified all 3-digit numerals (101, 400, 275, 730, 306) 

and all but one of the 4-digit numerals (1000, 8245, 1006, 3406, 6032, 1300). His error was 
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to identify 3010 as “three hundred and ten”. Bel’s location for 50 on the number line from 

0 to 100 was quite accurate. His locations for 25, 62, and 98 were correctly ordered but 

inaccurate. 

Number word sequences. Bel recited four FNWSs and BNWSs in the range 1 to 120. 

This included two self-corrections. He recited the BNWS from 303 but could not continue 

beyond 298. As well, he was partially successful with sequences bridging 1000. He recited 

the sequence from 1010 to 995, but made errors as follows: “1003, 1002, 1001, 999, 998” 

and “993, 992, 991, 990, 899, 888”. He was successful on nine number word after tasks 

and ten number word before tasks in the range one to 2000. He made one error only on this 

kind of task, that is, he stated “seven hundred and sixty-nine” as the number before 170. 

Number word sequences by ten and incrementing by ten. Bel recited the sequence of 

decuples from 10 to 120 forward and backward, and other sequences of decuples up to 

1090 but he could not count by tens from 24. As well, he could increment and decrement 

by 10 on the decade but not off the decade. His errors were to answer “81” as 10 more than 

79, “315” as 10 more than 356, “61” as 10 less than 79, and “259” as 10 less than 356. By 

contrast, he correctly stated 100 more than 306, 100 more than 973, and 100 less than 108. 

In the context of ten-strips, Bel incremented by 10 off the decade – “27, 37, 47…”, but 

appeared to count by ones from seven, to figure out 7 dots plus 10 dots. 

Incrementing using tens and ones. Bel was partially successful on the task involving 

strips and incrementing using tens and ones. He incremented 34 by 14, and in doing so, 

appeared to use a split-jump strategy, that is, 30 + 10, 40 + 4 and 44 + 4, counting by ones 

to figure out 44 + 4. In attempting to increment 48 by 25, he answered “33” after 43 

seconds. When asked to explain, he pointed to each of the two ten-strips in turn, in 

coordination with saying “58, 68”. He then counted by ones as follows: “69, 30, 31, 32, 

33”. He apparently used a jump strategy but could not correctly keep track when counting 

by ones from 68. Note that (a) Bel used a relatively low-level strategy, that is counting on 

by ones, to figure out 44 and 4, and 68 and 5. In both cases the items to count were 

perceptually available. (b) In the context of ten-strips, he incremented 48 by two tens, but 

(as described earlier), on a verbal task he could not count by tens from 24 and could not 

state 10 more than 79. 

Bare number tasks. Bel used a split strategy to solve each of 43 + 21 and 86 – 24. For 

37 + 19 he answered “68”. According to his explanation, he first added 3 and 1. These 

solutions contrasted with his jump strategy in the context of ten-strips, for incrementing 48 

by 25 (as described earlier). For 50 – 27 he answered “28”. According to his explanation, “I 

took away 2 off that”, indicating the 5 of 50, “then when I got down to 30, I took away 7”.  

The Case of Robyn 

Robyn was 9 years and 5 months old at the time of her interview, 15 weeks into the 

fourth-grade (fifth year of school). 

Numerals and locating number. Robyn showed fluency with 3-digit numerals, and 

made three errors with 4-digit numerals. She correctly wrote 270, 306, 1000, 1005, and 

4320. When asked to write “one thousand nine-hundred” she wrote “1009”. She correctly 

identified 101, 400, 275, 730, 306, 1000, 8245, 1006, 3406, 3010; she identified 6032 as 

“six hundred and thirty-two”, and then corrected herself, and identified 1300 as “thirteen 
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thousand”. In the locating numbers task, Robyn placed 50 correctly but, like Bel, her marks 

to locate 25, 62, and 98 were correctly ordered but inaccurate. 

Number word sequences. In the range 1 to 1000, Robyn recited eight number word 

sequences, and stated the number word before or after for twenty-five given numbers. She 

made five errors across these tasks, each of which she promptly, spontaneously corrected. 

Sequences across 1000 and beyond were problematic for Robyn, which we detail further 

below.  

Number word sequences by ten and incrementing by ten. Robyn counted by tens on and 

off the decade, up to 120. With sequences beyond 120, she had difficulties bridging 

hundreds saying “170, 180, 190, 800, 810 …”, and “177, 187, 197” (pause), “207” pause, 

“227, 237”. Robyn successfully incremented and decremented by ten from on and off the 

decade in the range to 1000. She was fluent with eight such tasks, but she had significant 

difficulty with the task of incrementing 195 by ten and her response was indiscernible. 

Robyn was more successful on these tasks than many of the other low-attaining students. 

By contrast, Robyn could not increment by one hundred off the hundred: For 100 more 

than 50 she answered, “five hundred”, and for 100 more than 306 she answered, “4006 … 

406 … 4006”. 

Sequences across 1000. Robyn was unsuccessful with tasks that involved bridging 

1000, apart from correctly stating the number word before 1000 and after 1000. She stated 

the forward sequence by ones as, “997, 998, 999, ten hundred, ten thousand (pause), ten 

hundred and one, ten hundred and two”, and the backward sequence by ones as, “1002, 

1001, 1000, nine-, 999, 989, 998 (as a correction for 989), 997, 996”. For the forward 

sequence by tens she said, “970, 980, 990, 10 000, 10 010, 10 020”, and for the forward 

sequence by hundreds she said, “800, 900 (six-second pause), 1000, 2000, 300, 3000 (as a 

correction for 300)”. For the task of incrementing 999 by 10, she said “10 009”, and for the 

task of decrementing 1005 by 10, she said “905”. 

Incrementing using tens and ones. On the task with 48 covered, and two ten-strips and 

five dots uncovered, Robyn counted subvocally, “48, 58, 68, 69 (pause), 70, 71, 72, 73”, 

that is, she used a jump strategy that involved jumping two tens and counting by ones. 

Robyn was then asked how many more dots (from 73) would be needed to make 100. She 

made four attempts to solve this task and all of her attempts were unsuccessful. On the first 

three attempts her strategy was to count by ones from 73, and keep track of her counts on 

her fingers, but she seemed to lose track after about ten counts. Her fourth attempt 

appeared to involve a different strategy. She thought for 30 seconds in conjunction with 

some finger movements, and then answered “906”. Thus Robyn was able to count in tens 

on the task involving addition with strips but not on the missing addend task. 

Bare number tasks. Robyn did not solve successfully the three bare number tasks that 

were presented to her. For 43 + 21, she answered “604”, and for part of her solution she 

counted by ones using her fingers to keep track. For 37 + 19, she answered “406” and for 

86 – 24, she answered “994”. On all three problems, Robyn appeared to use a split strategy 

and to recombine the tens and ones unsuccessfully. She apparently did not assess the 

appropriateness of her answers. 
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Discussion 

Table 1 sets out descriptions of Bel’s and Robyn’s responses to numeral identification 

tasks, sequential structure tasks, and additive tasks. On the sequential structure tasks Bel’s 

and Robyn’s responses were significantly different from each other. This suggests that 

students’ learning of topics related to sequential structure such as incrementing by ten or 

100 on and off the decade and extending this to beyond 1000 can progress in different 

ways. Robyn’s proficiency with jumping by ten off the decade contrasted significantly with 

Bel’s lack of proficiency. However, Robyn did not use jumping by ten on the bare number 

tasks. Rather, she used split strategies. As well, on the addition task with ten-strips, Robyn 

was not more proficient than Bel. 

Table 1 

Summary Descriptions of Bel’s and Robyn’s Responses to Assessment Tasks 

Task Bel’s response Robyn’s response 

Numerals Successful on all but one 4-digit task Successful for 3-digit numerals 

Sequential structure tasks 

Locating numbers Correct order but not accurate Correct order but not accurate 

NWS Five errors No errors, four self-corrections 

NWS by ten: on decade Successful to 1000 Successful to 120 

NWS by ten: off decade Unsuccessful Successful to 120 

Increment by ten Unsuccessful off the decade Successful to 1000 

Increment by 100 Successful to 1000 Unsuccessful 

Sequences across 1000 All four correct Unsuccessful 

Additive tasks 

Ten-strips: 48+25 Jump strategy, could not keep track Jump strategy 

Ten-strips: 73+�=100 Not assessed Unsuccessful 

Written: 43+21, 86 – 24 Split strategy Split strategy, unsuccessful 

Written: 37+19, 50 – 27 Different strategies, unsuccessful Split strategy, unsuccessful 

Bel’s and Robyn’s solutions to additive tasks indicate, in different ways, knowledge of 

the base-ten structure of numbers. On tasks involving ten-strips they used jump strategies 

and were partially successful. Their coordination of tens and ones suggests a sequence-tens 

and ones conception (Fuson et al., 1997), and a construction of at least a level 2 unit of ten 

(Cobb & Wheatley, 1988). Robyn’s inability to construct a solution to the subsequent 

missing addend task suggests she had not yet constructed a level 3 unit of ten. On bare 

number tasks Bel and Robyn used split-based strategies and were less successful. Bel’s 

different approaches to 37 + 19 and 50 – 27 suggest an integrated-sequence-separate 

conception. Robyn’s responses suggest a concatenated single-digit conception of the 

written numbers, using only a level 1 unit of ten. Cobb and Wheatley (1988) also observed 

differences in students’ responses to bare number tasks compared with tasks involving ten-

strips. 

On the additive task of 48 and 25 involving ten-strips, both Bel and Robyn counted by 

ones to add 68 and 5, and these solutions seemed to require significant effort. Bel counted 

by ones to add 44 and 4 involving ten-strips, even though elsewhere in the interview he 

solved 4 + 4 immediately (without counting by ones). Also, in the bare number tasks, Bel 

made errors adding 7 to 9 for 37 + 19, and subtracting 7 from 30 for 50 – 27. Further, in 

solving addition and subtraction problems in the range 1 to 20 (not described in the above 

Mathematics: Essential Research, Essential Practice — Volume 1

271



case studies), both students used counting by ones and had difficulties. Thus Bel and 

Robyn lacked facility with addition and subtraction in the range 1 to 20 and, when doing 

addition and subtraction in the range 1 to 100, were not able to apply facts in the range 1 to 

20 that they had habituated. 

Some researchers have linked low-attainers’ difficulties such as those described above, 

with broader aspects of their thinking. Drawing on Gray and Tall (1994), we observe that 

Robyn and Bel tended to use procedural thinking, which involves counting by ones and 

splitting, rather than proceptual thinking which involves for example, using 4 + 4 to work 

out 44 + 4, and coordinating units. Nevertheless, the students’ use of jump strategies on the 

tens-strips tasks seemed to be more appropriate than their use of split strategies on the bare 

number tasks. Because of this, we contend that their difficulties can be attributed in part to 

confronting numbers in settings that do not yet make sense to them (Cobb & Wheatley, 

1988). Drawing on analyses of mathematical development (Thomas, Mulligan, & Goldin, 

2002), we contend that Robyn’s and Bel’s weak sense of locating numbers indicate low 

levels of knowledge of mathematical structure, which is linked with low-attainment. 

Conclusions 

As shown in the two case studies, the process of documenting a student’s current 

arithmetical knowledge in terms of the eight aspects addressed in this study, highlights the 

complexities of that knowledge and its idiosyncratic nature (Gervasoni, 2005). Students’ 

knowledge of the sequential structure of multi-digit numbers can be regarded as somewhat 

distinct from their place value knowledge. This refers to place value knowledge in a 

collections-based sense (Yackel, 2001). We contend that developing in students a rich 

knowledge of sequential structure is important and can provide an important basis for the 

development of mental computation. 

The case studies confirm that facility with addition and subtraction involving a 1-digit 

number is a significant aspect of facility with 2-digit calculation (Heirdsfield, 2001). We 

contend that low-attainers need to develop their facility with 1-digit numbers in order to 

develop efficient strategies for multidigit calculations. Also confirmed in the case studies, 

is that students can learn to read and write numerals well in advance of learning place value 

in a collections-based sense (Wright, 1998). For this reason, we advocate that assessment 

frameworks should treat numeral identification (reading numerals) and place value 

(interpreting numerals) as separate domains of knowledge. 

As well, the case studies illustrate that a student’s mental strategies and number sense 

can differ from, on one hand, a context involving base-ten materials to, on the other hand, 

tasks based on bare numbers. This accords with the finding by Cobb and Wheatley (1988) 

that “the horizontal sentences and tens tasks were separate contexts for the children. The 

meanings that they gave to two-digit numerals or number words in the two situations were 

unrelated” (p.18). Related to this, students’ strategies for addition and subtraction in bare 

number contexts can be relatively unsophisticated. Therefore low-attaining students are 

likely to need explicit instruction in order to extend their multi-digit number sense from 

contexts involving materials to contexts involving written arithmetic (Beishuizen & 

Anghileri, 1998; Heirdsfield, 2005; Treffers & Buys, 2001). Finally, the case studies 

demonstrate the use of assessment tasks to document students’ knowledge and that the 

assessment should include (a) tasks involving base-ten materials, (b) verbally-based tasks, 

and (c) bare number tasks. 
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This paper examines one approach to promoting creative and flexible use of mathematical 

ideas within an interdisciplinary context in the primary curriculum, namely, through 

modelling. Three classes of fifth-grade children worked on a modelling problem 

(Australia’s settlement) situated within the curriculum domains of science and studies of 

society and environment. Reported here are the cycles of development displayed by one 

group of children as they worked the problem, together with the range of models created 

across the classes. Children developed mathematisation processes that extended beyond 

their regular curriculum, including identifying and prioritising key problem elements, 

exploring relationships among elements, quantifying qualitative data, ranking and 

aggregating data, and creating and working with weighted scores.  

 

Numerous researchers and employer groups have expressed concerns that schools are 

not giving adequate attention to the understandings and abilities that are needed for success 

beyond school. Research suggests that although professionals in mathematics-related fields 

draw upon their school learning, they do so in a flexible and creative manner, unlike the 

way in which they experienced mathematics in their school days (Gainsburg, 2006; Hall, 

1999; Hamilton, in press; Noss, Hoyles, & Pozzi, 2002; Zawojewski & McCarthy, 2007). 

Furthermore, this research has indicated that such professionals draw upon interdisciplinary 

knowledge in solving problems and communicating their findings. 

The challenge then is how to promote creative and flexible use of mathematical ideas 

within an interdisciplinary context where students solve substantive, authentic problems 

that address multiple core learnings. One approach is through mathematical modelling 

involving cycles of model construction, evaluation, and revision, which is fundamental to 

mathematical and scientific understanding and to the professional practice of 

mathematicians and scientists (Lesh & Zawojewski, 2007; Romberg, Carpenter, & Kwako, 

2005). Modelling is not just confined to mathematics and science, however. Other 

disciplines including economics, information systems, social and environmental science, 

and the arts have also contributed in large part to the powerful mathematical models we 

have in place for dealing with a range of complex problems (Lesh & Sriraman, 2005; 

Sriraman & Dahl, in press). Unfortunately, our mathematics curricula do not capitalize on 

the contributions of other disciplines. A more interdisciplinary and unifying model-based 

approach to students’ mathematics learning could go some way towards alleviating the 

well-known “one inch deep and one mile wide” problem in many of our curricula (Sabelli, 

2006, p. 7; Sriraman & Dahl, in press; Sriraman & Steinthorsdottir, in press). There is 

limited research, however, on ways in which we might incorporate other disciplines within 

the mathematics curriculum. 

The study reported here represents one attempt to link children's mathematical learning 

with their learning in other curriculum areas; in the present instance, the focus is on fifth-

grade children's developments in solving a modelling problem situated within the 

curriculum domains of science and studies of society and environment (SOSE). The 

problem was created in collaboration with the classroom teachers to tie in with the 
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children's learning of Australia’s settlement. The problem differed from the children's 

modelling experiences in the previous year of the study in that it comprised mostly 

qualitative, rather than quantitative, data (see Appendix). Hence one of the research goals 

was to explore how the children dealt with data of this nature, for example, whether they 

quantified and/or transformed the data in some way to solve the problem. Another goal was 

to document the developments in the children's mathematical thinking and learning as they 

interacted with the problem and with each other in small-group situations. Given that 

previous research has highlighted the multiple cycles of interpretation that children display 

in solving such problems (Doerr & English, 2003; English, 2006), it was anticipated that 

the children would display a diversity of approaches in solving the problem. Finally of 

interest, were variations in the models the children created with respect to the mathematical 

ideas constructed and the mathematisation processes applied. 

Mathematical Modelling for the Primary School 

Modelling is increasingly recognized as a powerful vehicle not only for promoting 

students’ understanding of a wide range of key mathematical and scientific concepts, but 

also for helping them appreciate the potential of mathematics as a critical tool for analyzing 

important issues in their lives, communities, and society in general (Greer, Verschaffel, & 

Mukhopadhyay, in press; Romberg et al., 2005). Students’ development of powerful 

models should be regarded as among the most significant goals of mathematics education 

(Lesh & Sriraman, 2005). Importantly, modelling needs to be integrated within the primary 

school curriculum and not reserved for the secondary school years and beyond as it has 

been traditionally. Recent research has shown that primary school children are indeed 

capable of developing their own models and sense-making systems for dealing with 

complex problem situations (e.g., English, 2006; English & Watters, 2005). 

The terms, models and modelling, have been used variously in the literature, including 

in reference to solving word problems, conducting mathematical simulations, creating 

representations of problem situations (including constructing explanations of natural 

phenomena), and creating internal, psychological representations while solving a particular 

problem (e.g., Doerr & Tripp, 1999; English & Halford, 1995; Gravemeijer, 1999; Greer, 

1997; Lesh & Doerr, 2003; Romberg et al., 2005). As used in the present study, models are 

“systems of elements, operations, relationships, and rules that can be used to describe, 

explain, or predict the behavior of some other familiar system” (Doerr  &  English, 2003,  

p. 112). From this perspective, modelling problems are realistically complex situations 

where the problem solver engages in mathematical thinking beyond the usual school 

experience and where the products to be generated often include complex artifacts or 

conceptual tools that are needed for some purpose, or to accomplish some goal (Lesh & 

Zawojewski, 2007).   

Mathematical modelling in the primary school presents children with a future-oriented 

approach to learning. The mathematics they experience differs from what is taught 

traditionally in the curriculum for their grade level, because different types of quantities 

and operations are needed to mathematise realistic situations. The types of quantities 

needed in these situations include accumulations, probabilities, frequencies, ranks, and 

vectors, whereas the operations needed include sorting, organizing, selecting, quantifying, 

weighting, and transforming large data sets (Doerr & English, 2003; English, 2006; Lesh, 

Zawojewski, & Carmona, 2003). Modelling problems thus offer richer learning 

experiences than the standard classroom word problems (“concept-then-word problem”, 
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Hamilton, in press). In solving such word problems, children generally engage in a one- or 

two-step process of mapping problem information onto arithmetic quantities and 

operations. In most cases, the problem information has already been carefully 

mathematised for the children. Their goal is to unmask the mathematics by mapping the 

problem information in such a way as to produce an answer using familiar quantities and 

basic operations. These traditional word problems restrict problem-solving contexts to 

those that often artificially house and highlight the relevant concept (Hamilton, in press). 

They thus preclude children from creating their own mathematical constructs.  

In contrast, modelling provides opportunities for children to elicit their own 

mathematics as they work the problem. That is, the problems require children to make 

sense of the situation so that they can mathematize it themselves in ways that are 

meaningful to them. This involves a cyclic process of interpreting the problem information, 

selecting relevant quantities, identifying operations that may lead to new quantities, and 

creating meaningful representations (Lesh & Doerr, 2003). Because children's final 

products embody the factors, relationships, and operations that they considered important 

in creating their model, powerful insights can be gained into the growth of their 

mathematical thinking.  

As previously noted, mathematical modelling provides an ideal vehicle for 

interdisciplinary learning as the problems draw on contexts and data from other domains 

(English, in press). The problem addressed in this paper, The First Fleet, complemented 

the children's study of Australia’s settlement and incorporated ideas from science and the 

SOSE curriculum. Dealing with “experientially real” contexts such as the nature of 

community living, the ecology of the local creek, and the selection of national swimming 

teams provides a platform for the growth of children’s mathematisation skills, thus 

enabling them to use mathematics as a “generative resource” in life beyond the classroom 

(Freudenthal, 1973).  

Finally, modelling problems support recent studies of peer-directed group work (e.g., 

Web, Nemer, & Ing, 2006), which have demonstrated the importance of implementing 

activities that inherently develop students’ discourse in cooperative groups. The problems 

are designed for small-group collaborative work where children are motivated to challenge 

one another’s thinking, and to explain and justify their ideas and actions. 

Design and Methodology 

This study adopted a multilevel collaborative design (English, 2003), which employs 

the structure of the multitiered teaching experiments of Lesh and Kelly (2000). Such a 

design focuses on the developing knowledge of participants at different levels of learning, 

including the classroom teachers whose participation is an essential factor. At the first level 

of collaboration (the focus of this paper), children work in small groups to solve the 

modelling problems. At the second level, their teachers work collaboratively with the 

researchers in preparing and implementing the activities. At the third level, the researchers 

observe, interpret, and document the growth of all participants.  

Participants and Procedures 

Three classes of fourth-grade children (8-9 years) and their teachers took part in the 

first year of this 3-year study; the children participated again in the second year, along with 
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their new classroom teachers. The classes represented the entire cohorts of fourth and fifth 

graders from a private K-12 college situated in a regional Queensland suburb.   

At the beginning of each year, the teachers participated in half-day workshops on 

mathematical modelling and its implementation in the classroom. Meetings during the first 

term of each year were held to plan the three modelling problems to be implemented in the 

year, and, in the case of the first year of the study, some preliminary modelling activities 

(e.g., interpreting and using visual representations; conventionalising representations; 

explaining and justifying mathematical ideas). Each modelling problem was implemented 

in four 50-minute sessions per remaining term. Where possible, the four sessions were 

conducted in the same week so that the children did not lose track of their ideas. Planning 

and debriefing meetings were held with the teachers prior to and following the 

implementation of each problem.  

The present modelling problem, the First Fleet, was implemented at the beginning of 

the second year of the study and comprised several components. First, the children were 

presented with background information on the problem context, namely, the British 

government’s commissioning of 11 ships in May, 1787 to sail to “the land beyond the 

seas”. The children answered a number of “readiness questions” to ensure they had 

understood this background information. After responding to these questions, the children 

were presented with the problem itself, together with a table of data listing 13 key 

environmental elements to be considered in determining the suitability of each of five 

given sites (see Appendix). The children were also provided with a comprehensive list of 

the tools and equipment, plants and seeds, and livestock that were on board the First Fleet. 

The problem text explained that, on his return from Australia to the United Kingdom in 

1770, Captain James Cook reported that Botany Bay had lush pastures and well watered 

and fertile ground suitable for crops and for the grazing of cattle. But when Captain Phillip 

arrived in Botany Bay in January 1788 he thought it was unsuitable for the new settlement. 

Captain Phillip headed north in search of a better place for settlement. The children’s task 

was as follows. 

Where to locate the first settlement was a difficult decision to make for Captain Phillip as there were 

so many factors to consider. If you could turn a time machine back to 1788, how would you advise 

Captain Phillip? Was Botany Bay a poor choice or not? Early settlements occurred in Sydney Cove 

Port Jackson, at Rose Hill along the Parramatta River, on Norfolk Island, Port Hacking, and in 

Botany Bay. Which of these five sites would have been Captain Phillip’s best choice? Your job is to 

create a system or model that could be used to help decide where it was best to anchor their boats 

and settle. Use the data given in the table and the list of provisions on board to determine which 

location was best for settlement. Whilst Captain Phillip was the first commander to settle in 

Australia many more ships were planning to make the journey and settle on the shores of Australia. 

Your system or model should be able to assist future settlers make informed decisions about where 

to locate their townships. 

The children worked the problem in groups of three to four with no direct teaching 

from the teachers or researchers. In the final session, the children presented group reports 

on their models to their peers, who, in turn, asked questions about the models and gave 

constructive feedback.  

 Data Collection and Analysis 

In each classroom, one group of children was video-taped and audio-taped and another 

group was audio-taped in each session, with all data subsequently transcribed. All of the 

children’s group reports to the class and their responses to their peers’ comments were also 
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video-taped and transcribed. Other data sources included classroom field notes and all of 

the children’s artefacts. All of the data were reviewed several times for evidence of: (a) 

children’s initial interpretation and re-interpretations of the problem components; (b) 

cycles of mathematical development as the children created their models, including how 

the children operationalised the given data and ways in which they documented their 

actions; and (c) diversity in their approaches and model creation. This paper addresses the 

cycles of mathematical development displayed by one group of children (Mac’s group) in 

working the problem and then summarises the range of models developed across the three 

classes.  

Results 

 Cycles of Development Displayed by one Group of Children  

Cycle 1: Prioritising and assessing elements. Mac’s group commenced the problem 

with Mac stating, “So, to find out, OK, if we’re going to find the best place I think the most 

important thing would be that people need to stay alive.” The group then proceeded to 

make a prioritised list of the elements that would be most needed. There was substantial 

debate over which elements to select, with fresh water, food (fishing and animals), 

protective bays, and soil and land being chosen. However, the group did not remain with 

this selection and switched to a focus on all 13 elements listed in the table of data. 

The children began to assess the elements for the first couple of sites by placing a tick 

if they considered a site featured the element adequately and a cross otherwise. The group 

then began to aggregrate the number of ticks for each site but subsequently reverted to their 

initial decision to focus just on the most essential elements (“the best living conditions to 

keep the people alive”). Still unable to reach a consensus on this issue, the group continued 

to consider all of the elements for the remaining sites and rated them as “good” and “not so 

good”. The children explained that they were looking for the site that had “the most good 

things and the least bad things”.  

 Cycle 2: Ranking elements across sites. Next, the group attempted a new method: they 

switched to ranking each element, from 1 (“best”) to 5, across the five sites, questioning 

the meaning of some of the terminology in doing so. The children also questioned the 

number of floods listed for each site, querying whether it represented the number of floods 

per year or over several years. As the children were ranking the first few elements, they 

examined the additional sheet of equipment etc. on board the First Fleet to determine if a 

given site could accommodate all of the provisions and whether anything else would be 

needed for the settlement. The group did not proceed with this particular ranking system, 

however, beyond the first few elements. 

Cycle 3: Proposing conditions for settlement and attempting to operationalise data. 

The children next turned to making some tentative recommendations for the best sites, with 

Mac suggesting they create conditions for settlement. 

…like if you had not much food and not as many people you should go to Norfolk Island; if you had 

a lot of people and a lot of food you should go to Sydney Cove or um Rosehill, Parramatta. 

Mathematics: Essential Research, Essential Practice — Volume 1

279



The group then reverted to their initial assessment of the elements for each site, 

totalling the number of ticks (“good”) and crosses (“bad”) for each site. In doing so, the 

children again proposed suggested conditions for settlement. 

And this one with the zero floods (Norfolk Island), if you don’t have many people that’s a good one 

cause that’s small but because there’s no floods it’s also a very protected area. Obviously, so maybe 

you should just make it (Norfolk Island) the best area. 

The group devoted considerable time to debating conditions for settlement and then 

made tentative suggestions as to how to operationalise the “good” and the “bad”. One child 

suggested finding an average of “good” and “bad” for each site but his thinking here was 

not entirely clear and the group did not take up his suggestion. 

We could find the average, I mean as in like, combine what’s bad, we add them together; we can 

combine how good we think it might be out of 10. Then we um, could divide it by how many good 

things there is [sic] and we could divide it by how many bad things there is [sic]. 

Finding themselves bogged down here, the group turned to a new approach. 

Cycle 4: Weighting elements and aggregating scores. This new cycle saw the 

introduction of a weighting system, with the children assigning 2 points to those elements 

they considered important and 1 point to those elements of lesser importance (“We’ve 

valued them into points of 1 and 2 depending on how important they are”). Each site was 

then awarded the relevant points for each element if the group considered the site displayed 

the element; if the site did not display the element, the relevant number of points was 

subtracted. As the group explained, 

The ones (elements) that are more important are worth 2 points and the ones that aren’t are 1. So if 

they (a given site) have it you add 2 or 1, depending on how important it is, or you subtract 2 or 1, if 

they don’t have it.  

The children totalled the scores mentally and documented their results as follows (1 

refers to Botany Bay, 2 to Port Jackson, and so on): 
1   -12 + 10 = -2 

2   - 9 + 13 = 4 

3   - 5 + 17 = 12 

4   - 7 + 15 = 8 

5   - 9 + 13 = 4 

Cycle 5: Reviewing methods and finalising site selection. The group commenced the 

third session the next morning by reflecting on the two main methods they had employed to 

determine the best site, namely, the use of ticks (“good”) and crosses (“bad”) in assessing 

elements for each site and trying to operationalise these data, and the weighting of elements 

and aggregating of scores. Mac commenced by reminding his group of what they had found 

to date. 

Yesterday we, um, OK, the first thing we did yesterday showed us that the fifth one (Norfolk Island) 

was the best place, second one (weighting of elements) we did told us … showed us that number 

three (Rosehill, Parramatta) was the best. So it’s a tie between number three and number five. So it’s 

limited down to them, work it out. Hey guys, are you even listening?  

After bringing the group back on task, Mac stated, “OK, we’re doing a tie-breaker for 

number three and number five.” The group proceeded to revisit their first method, 

assigning each tick one point and ignoring the crosses. However, on totalling the points, 

Mac claimed that Rosehill, Parramatta, was the winning site. Bill expressed concern over 

the site’s record of 40 floods and this resulted in subsequent discussion as to whether 
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Parramatta should be the favoured site. The children finally decided on Norfolk Island 

because it was flood-free and because it was their choice using their first main method. 

Diversity of Models Created Across all Groups 

The children's models varied in mathematical sophistication, from limited use of 

mathematisation processes through to various scoring and ranking systems that included 

the use of weighted scores as above. Other models across the classes included the 

following. 

Model 1. This was the most common model that was generated across the classes. It 

entailed taking each site in turn and assessing whether it adequately displayed all or a 

selection of the elements. Children used ticks, crosses, and highlighting on the given table 

of data and took a subsequent tally of each site. The site with the highest tally was selected 

as the place for settlement. As one group explained, “We’re just highlighting the best and 

then we’re going to see how many highlighted ones there are (for each site).” Another 

group explained, “The least bad and the highest good is the best.”  

Model 2. Here, children selected and prioritized elements to consider for each site (“We 

chose six things that we thought were important and made a graph”). The children in one 

group ranked “accessible by sea” as no. 1, “fresh water” as no. 2, “soil quality” as no. 3, 

“bush tucker” as no. 4, “land available” as no. 5, and “land suitable for livestock” as no. 6. 

Each site was then assessed in terms of these elements. The site that displayed the most 

favoured of these elements was chosen (the site that had the “best out of these categories”). 

Model 3. The third model was an advance on the previous models. Children rated 

selected elements (accessible by sea, fresh water, soil quality, trees and plants, and local 

bush tucker) for each site as “very good”, “good”, “OK”, and “bad”. The number of times 

each category appeared for each site was tallied and the site that had the highest tally for 

the “very good” category was chosen. 

Model 4. This model extended model 3. Each of the 13 elements was ranked in turn 

from 1 to 5 across the five sites (1 = best). The site with the highest number of ranks of one 

was chosen as the most suitable site. 

Model 5. The fifth model extended the previous two models by awarding 3 ticks for 

“very good”, 2 ticks for “good”, 1 tick for “average”, and a cross for “bad”. The site with 

the highest number of ticks was the chosen site. On totalling the number of ticks, one group 

claimed the score was “out of 13”.   

Model 6. This model incorporated a scoring system where each element for each site 

was assessed and given a score out of 10 or out of 13. The group that used the 10-point 

system reported to the class as follows. 

Our strategy was using a point score. We did a rating out of 10 for the data headlines, in the 

importance of, like 10 out of 10. And down the scale we went. We then rated the answers, like 

accessible by sea, we rated like, accessible by sea, we rated 9 out of 10 for importance. The answer 

going down the column would only go up to the highest of 9, because it was 9 out of 10. We did this 

for the whole graph (table), then for the 5 places here we added up the total scores. We ended up 

with 39 for Botany Bay, 62 for Sydney Cove, Port Jackson, 77 for Rosehill, Parramatta, 66 for Port 

Hacking and 70 for Norfolk Island. We chose the highest rating; it was Rosehill.  
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Discussion and Concluding Points 

This study represents one approach to introducing interdisciplinary modelling problems 

into the primary mathematics curriculum. Mathematical modelling has traditionally been 

confined to the secondary school and beyond, yet this study and other research have shown 

that such problems contribute effectively to primary school children’s learning in several 

domains. Such problems allow for a diversity of solution approaches and enable children of 

all achievement levels to participate in, and benefit from, these experiences. In contrast to 

traditional classroom problem solving, these modelling problems facilitate different 

trajectories of learning, with children's mathematical understandings developing along 

multiple pathways. Importantly, children direct their own mathematical learning. That is, 

they elicit key ideas and processes from the problem as they work towards model 

construction. In the present case, the children identified and prioritized key problem 

elements, explored relationships between elements, quantified qualitative data, ranked and 

aggregated data, and created and worked with weighted scores—before being formally 

introduced to mathematisation processes of this nature.  

Modelling problems engage children in multiple cycles of interpretations and 

approaches, suggesting that real-world, complex problem solving goes beyond a single 

mapping from givens to goals. Rather, such problem solving involves multiple cycles of 

interpretation and re-interpretation where conceptual tools evolve to become increasingly 

powerful in describing, explaining, and making decisions about the phenomena in question 

(Doerr & English, 2003). Furthermore, these phenomena can be drawn from a wide range 

of disciplines.  

The interdisciplinary nature of mathematical modelling means that we can create 

problems that can help unify some of the myriad core ideas within the primary curriculum. 

For example, problems that incorporate key concepts from science (English, in press) and 

SOSE can help children appreciate the dynamic nature of environments and how living and 

non-living components interact, the ways in which living organisms depend on others and 

the environment for survival, and how the activities of people can change the balance of 

nature. The First Fleet problem can also lead nicely into a more in-depth study of the 

interrelationship between ecological systems and economies, and a consideration of ways 

to promote and attain ecologically sustainable development. 

Finally, the inherent requirement that children communicate and share their 

mathematical ideas and understandings, both within a small-group setting and in a whole-

class context, further promotes the development of interdisciplinary learning. The problems 

engage children in describing, explaining, debating, justifying, predicting, listening 

critically, and questioning constructively—which are essential to all discipline areas.  
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Students’ Tendency to Conjoin Terms: An Inhibition to their 
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When students’ responses to a test of introductory algebra items were Rasch modelled, 

three distinct “ability” clusters occurred. The question then arose as to the mathematical 

thinking that could characterise each of these groups. Data from the test revealed that the 

tendency to conjoin terms inappropriately occurred with different frequencies in each of 

the three groups. Interview data and error analyses provided further insight into the 

students’ thinking that resulted in these types of errors. Implications for classroom 

practice are considered. 

Many students find the demands of shifting their thinking from arithmetic to algebra 

challenging and, perhaps, frustrating in its strangeness. This is evident from the errors 

made by students, and the underlying misconceptions held by the students. Many of these 

misconceptions arise from students’ arithmetic experiences that they (with a certain logic) 

generalise to their new experiences of algebra (MacGregor & Stacey, 1997). These errors 

seem to persist across the grades, despite increased exposure to algebra. If these errors can 

be understood as resulting from students’ incorrect generalisation from previous 

(arithmetic) learning rather than as being symptomatic of cognitive immaturity 

(MacGregor & Stacey, 1994), then they may be addressed, once identified, by appropriate 

teaching methods (Tirosh, Even, & Robinson, 1998; Hall, n.d.; Tall, 1994).  

One type of error made by students beginning algebra is that which arises from 

students’ tendency to conjoin terms inappropriately (i.e., 5x + 3 is written as 8x). The 

tendency can be attributed to various causes, such as: students wanting to “close” or 

“finish” an algebraic expression (Booth, 1984, 1988; Tirosh et al., 1998; Hall, n.d.); 

students making false generalisations from an arithmetic context (e.g., 30 + 4 becomes 34, 

or, 3 + 1/4 becomes 31/4 (Matz, 1982)); or students interpreting brackets in an expression 

as indicating that the expression inside the brackets is to “be done first” (e.g., when 2(x + 

5) becomes 10x) (Linchevski & Herscovics, 1994). The tendency for students to conjoin 

terms inappropriately appears when they first encounter algebra. If this remains 

unremarked, and uncorrected, and possibly masked as students deal with more complex 

algebraic expressions, further development of their algebraic understanding must be 

inhibited.  

The question addressed in this paper is whether students’ ability, as measured by their 

success on a test of algebraic techniques is associated with their tendency to conjoin terms. 

The discussion draws on data from items in a test given to students as part of a study of 

their thinking as they carried out simple algebraic techniques. Only the data from students’ 

responses to particular items in the test are discussed in this paper. The items under 

consideration are those in the test that required students to simplify expressions by 

collecting like terms or first expanding brackets and collecting like terms, as well as “semi-

literal” items that required students to rewrite an algebraic statement
1
. The data discussed 

                                                 
1
 The term “semi-literal” is used to describe items that ask for an algebraic form of a statement, that still uses 

some numbers. These items are those used, or similar to those used, by Küchemann (in Hart, 1981). 
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in this paper are a small part of the data collected during the main study, which is described 

in the methodology.  

Methodology 

Data Collection 

The main study involved participants from three private secondary schools in a 

regional town (n = 222). The participants were students from Years 8 and 9 when the study 

began. These students were in the second and third years of secondary school, and so had 

been studying algebra for two or three years. The study aimed to find associations between 

language structures used by students to describe their thinking as they carried out various 

types of algebraic processes and their mathematical ability. The study consisted of two 

phases. The first phase was a test consisting of forty items based on the beginning algebra 

techniques outlined in the Mathematics 7 – 10 Syllabus (Stage 4, Board of Studies NSW, 

2002) and associated textbooks used by the participating schools. Also included, to provide 

a well-documented basis for comparison, were items from Küchemann’s study (1981), or 

adaptations of those items. The tests were administered in Term 4 of the school year by the 

class teachers and collected and marked by the researcher. The results were Rasch 

modelled using QUEST software (Adams & Khoo, 1994). 

The second phase of the study consisted of interviews with students from each of the 

schools. Because of organisational constraints, this phase occurred in the first term of the 

year following the test. Students were selected for interview on the basis of their test 

performance so that a range of abilities would be represented at the interviews. The 

students who were finally interviewed were those for whom the relevant permission and 

consent had been obtained, and who were available at times suitable to the school, the 

teachers, and the researcher. These students were representative of the range of abilities as 

described by the Rasch model.  

The interviews were structured using the test items grouped according to syllabus topic 

areas (Stage 4, Board of Studies NSW, 2002). Students were interviewed individually 

using a prepared protocol of questions supplemented by further probes or prompts or 

requests for clarification by the interviewer, depending on the response given to the initial 

question. The students were presented with each group of items, one group at a time, and 

asked the initial stimulus question, “What goes on in your head when you see questions 

like these?” Responses were audio-taped, and transcribed for later analysis. 

Results from the interviews were used to complement the test responses. A particular 

aspect of those responses, namely the conjoining of terms and the language used by 

students during the interviews, is discussed in this paper. 

Data Analysis  
Test Items 

The test items were marked and the results analysed using Rasch modelling, and later, 

an analysis of errors. The test responses were coded as either correct (1) or incorrect (0). 

Test items were marked by the researcher. Only algebraically “complete” answers were 

marked as correct. Responses where intermediate steps only were written were also 

counted as “incorrect”, as were those instances where students left a blank (baulk). 

The Rasch model uses dichotomous data (e.g., correct/incorrect) from a set of items 

that test a single construct (unidimensional). Item difficulty and participant ability scores 

are based on a probabilistic scale of successful response to each item by each participant. 
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Rank order of item difficulty and participant ability are then mapped on the same equal 

interval scale in logits (scale units) (Bond & Fox, 2001). The software used to model the 

data (QUEST, Adams & Khoo, 1994) enables the reliability of the data, and the extent to 

which each item fits the construct, to be calculated. These statistics are summarised in 

Figure 1. Reliability of the item difficulty estimates was calculated at 0.99, and of student 

ability estimates at 0.93.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Summary statistics for item difficulty and case ability estimates (QUEST, Adams & Khoo, 1994). 

The scale of item difficulty and student ability ranged from –5 logits to +5 logits with 

the mean set at 0. A student with an ability estimate that is the same as the difficulty level 

of a particular item has a 50% chance of correctly answering that item. Students with an 

ability estimate greater than the difficulty level of an item have a better than 50% chance of 

answering that item, in proportion to the linear scale difference.  

The software also produces a map of student ability (case estimates) and item difficulty 

(item estimates). The map, in Figure 2, is a modified version of that produced by the 

QUEST software. It illustrates a developmental hierarchy of student understanding (ability 

estimates, designated by an “x” to the left of the vertical line) and concept difficulty (item 

difficulty estimates, represented by item numbers to the right of the vertical line) within the 

construct being tested. The construct in this instance is that of algebra. 

Distinct clusters of item difficulty and student ability are apparent. There are three main 

clusters of items (numbers corresponding to items in the test to the right of the centre line 

in Figure 2). Cluster 1, consisting of 7 items, has a mean difficulty estimate of -2.7 logits; 

Cluster 2, containing 21 items, has a mean difficulty estimate of -0.32 logits, and Cluster 3, 

containing 12 items, has a mean difficulty estimate of 2.09 logits. The differences in the 

means of difficulty estimates for each cluster are significant at the p<0.05 level. There are 

also three distinct clusters of student ability (shaded “x” clusters to the left of the centre 

line in Figure 2). These clusters are labelled Ability Groups. The mean for Ability Group 1 

is -2.34 logits; for Ability Group 2, -0.15 logits; and, for Ability Group 3, 2 logits. These 

means are significantly different at the p < 0.05 level, and closely align with those of the 

Summary of Item Difficulty Estimates and Fit Statistics

Item Difficulty Estimates Item Fit Statistics

Mean 0.00 Infit Mean Square Outfit Mean Square

SD 1.75     Mean 1.00 Mean

SD (adjusted) 1.74     SD 

Reliability of estimate 0 .99 Infit t Outfit t

    Mean -0.05 Mean -0.05

    SD

0 items with zero scores            0 items with perfect scores

Summary of Case Ability Estimates and Fit Statistics

Case Ability Estimates Case Fit Statistics

Mean -0.64 Infit Mean Square Outfit Mean Square

SD 1.89 Mean 0.99 Mean 0.99

SD (adjusted) 1.83 SD 0.22 SD 0.77

Reliability of estimate 0.93 Infit t Outfit t

Mean 0.02 Mean 0.17

SD 0.94 SD 0.73

0 cases with zero scores          0 cases with perfect scores
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item difficulty means for each of the clusters of items (no significant difference). These 

data are summarised in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Map of Rasch modelling of algebra test items, showing clusters of items and clusters of student 

ability estimates (modified from QUEST print out). 
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Figure 3: Summary of student ability group means, item difficulty cluster means and t-test significance at 

p<0.05. 

Responses from the Test Scripts 

The test responses were also analysed for the types of incorrect responses and the 

frequency of occurrence of those errors. Blank responses (baulks) were counted separately 

from other, written, incorrect responses. These data are described only for those responses 

pertinent to the discussion in this paper. Errors resulting from misreading or misapplication 

of signs were not considered. Nor were errors resulting from an inability to distribute the 

multiplier correctly over the brackets and then collect like terms considered. Responses by 

students are described firstly with respect to the interview sets, and then with respect to the 

student ability groups. 
 

Responses with respect to the interview sets. The items from the forty-item test that are 

here discussed were included in interview Sets 1, 3 and 8. These sets are listed in Figure 4, 

where the particular items are identified, together with their Rasch difficulty estimates. 

Figure 4: Items where students conjoined terms arranged in the sets used in interviews, with Rasch difficulty 

estimates. 

For items in Set 1, the number of baulks was very low – from one only for Item 2 [5p - 

p +1], to nine for Item 6 [5a – 2b + 3a + 3b]. For Set 3 the number of baulks was greater, 

on average, 36 per item. In both sets 1 and 3, the number of Year 8 students who gave no 

response, was almost the same as the number of Year 9 students who also baulked. For Set 

8 baulk numbers varied from 46 on Item 26 [If p + q = 5, then p + q + r =?] to more than 

20 for Items 21 [Add 4 on to x + 5], 22 [Add 3 on to 4n], and 25 [Take n away from 3n + 

1]. Baulk numbers were higher for items requiring some multiplicative reasoning that also 

Set 1: Simplify Set 3: Simplify

Item No Item Difficulty Item No Item Difficulty

1 3m + 8 + 2m - 5 - 2.53 7 (a – b) + b   1.38

2 5p – p + 1 - 2.6 11 8p – 2(p + 5)   2.28

5 2ab + 3b + ab -1.98 18 2(x + 4) + 3(x – 1)   0.13

6 5a – 2b + 3a + 3b   0.33 19 2(x + 5) - 8 - 0.27

Set 8: Read aloud and tell me how the following could be rewritten?

Item No Item Difficulty

20 Multiply x + 5 by 4 0.46

21 Add 4 on to n + 5 -0.58

22 Add 3 on to 4n -0.34

25 Take n away from 3n + 1 0.2

26 If p + q = 5, then p + q + r = ? 0.07

Ability Group 1 2 3 t-test: group ability means

Ability Range (Logits) -1.28 to – 4.89 0.93 to -1.1 4.93 to 1.1 Group 1-2 21.75

Number in Group 102 69 52 Group 2-3 24.28

Mean ability -2.34 -0.1472 1.995

Item Cluster 1 2 3 & 4 t-test: item difficulty means

Difficulty Range (Logits) -3.27 to –1.98 -1.17 to 0.46 1.18 to 3.56 Cluster 1 - 2 20.49

Mean Difficulty -2.7 -0.302 2.09 Cluster 2 – 3&4 18.76

t-test: group ability

means/item difficulty means

1.8 1.72 0.664
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involved the use of brackets, such as Item 20 [Multiply x + 5 by 4], or for those requiring 

logical, but arithmetic, deduction, such as Item 26. In this set, more Year 8 students gave 

no response than Year 9 students. (e.g., there were 40 baulks for Item 20, 30 of which were 

Year 8 students, 10 Year 9.) 

Some of the most common errors in Set 1 were those in which students conjoined 

terms inappropriately. For Item 1, 17 responses (out of the 50 errors) were given as 8m; in 

the case of Item 2, 38 of the 49 errors involved responses such a 6, 5p or 6p. Item 5 elicited 

a greater variety of errors than other items in the set; there were 65 incorrect responses, and 

33 different responses. The most common error however, involved the conjoining of terms, 

although there were many different representations. The conjoining of terms was not a 

common erroneous response to Item 6, and only students in Ability Group 1 gave such 

responses. 

In Set 3, the most common errors were not those that involved the conjoining of terms 

in Items 7 and 11. However, the conjoining of terms as responses to Items 18 and 19 was 

common. Item 18 elicited a considerable variety of errors (60 different versions out of 103 

incorrect responses), many of which involved conjoined terms either within the brackets, 

or as a final answer. Item 19 elicited 86 errors, with 17 of those being the response 15x. 

Other individual answers also involved the conjoining of terms. 

In Set 8, the conjoining of terms was a common error, particularly for students in 

Ability Groups 1 and 2.  

Responses to test items with respect to ability groups. The patterns arising from the 

error analysis are reflected in the patterns of student responses when considered by the 

ability groupings of the Rasch model (see Figure 3 and Figure 2). These data are 

summarised in Figure 5. All errors that are considered the result of terms being 

inappropriately conjoined are included in the raw numbers. The Rasch difficulty estimates, 

in logits, are those calculated using QUEST Software (Adams & Khoo, 1994). 

 

Figure 5: Numbers of students who incorrectly conjoined terms in response to items, by ability group and 

item number [The items are arranged in groups as presented in interviews (see Figure 4). The “groups” are 

ability groups (see Figure 3).] 

Numbers % Numbers % Numbers %

1 -2.53 24 24 1 1 0 0

2 -2.6 29 28 2 3 0 0

5 -1.98 24 24 4 6 3 6

6 0.33 19 19 0 0 0 0

7 1.38 14 14 5 7 0 0

11 2.28 31 30 14 20 2 4

18 0.13 34 33 4 6 0 0

19 -0.27 34 33 5 7 0 0

20 0.46 42 41 20 29 3 6

21 -0.58 47 46 15 22 0 0

22 -0.34 69 68 20 29 1 2

25 0.2 57 56 20 29 4 8

26 0.07 23 23 5 7 1 2

n = 102 n = 69 n = 52

Group 2 Group 3Rasch 

difficulty

Students in each group

Item

Group 1 
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Given items in Set 1, students in the Ability Group 1 (mean ability: -2.34 logits) tended 

to conjoin terms in this set of some of the least difficult items (mean difficulty estimate:  -

1.7 logits), which required terms to be added and subtracted. No student in the Ability 

Group 3 (mean ability estimate: 2 logits) did so; with the exception of Item 5 [2ab+3b+ab] 

Ability Group 2 did so (mean ability estimate: -0.15 logits). Item 5 also elicited the greatest 

number of errors and the greatest variety of incorrect responses that indicated 

misconceptions and confusions other than that of the appropriateness of conjoining terms.  

When required to expand brackets, as in Set 2 (mean difficulty estimate: 0.88 logits), 

students in Ability Group 2 also tended to conjoin terms, particularly with Item 11 [8p–

2(p+5)], but not to the extent evident for those in Group 1. Few students in Ability Group 3 

did so. The greatest number of conjoining errors occurred with Item 11, although these 

were of such a varied nature that no particular response could be counted as occurring with 

great frequency.  

The third set of items discussed here were those in Set 8 (mean difficulty estimate: -

0.38 logits) of the interview. These items were adapted, or used unchanged, from those in 

the study by Küchemann (1981). It was in response to these items that the greatest number 

of conjoining errors occurred in each of the three groups. The absolute numbers remained 

small in the case of students in Ability Group 3, but greatly increased in the other two 

ability groups.  

Analysis of Interviews: Items in Sets 1, 3, and 8 (Figure 4) 

Examination of the transcripts of students in each of the ability groups revealed 

differences in the verbal responses to the main interview question when the students were 

directed to the groups of items in Sets 1, 3, and 8 by the instruction to describe their 

thinking as they dealt with the items in the sets. These responses are described set by set. 
 

Set 1 (Items 1, 2, 5, and 6). Students in each group typically replied: “It’s like terms”, 

“You put the same/like terms together”; “You add like terms”, etc. Students in Ability 

Group 1 (mean ability estimate: –2.34 logits) used informal strategies or language such as 

“Circle the like terms”, “ I use the ones with letters first”, “You put the letters/numbers 

together”. Only rarely did a student in this group use terms such as “add or “subtract” to 

describe what they did with the terms. None verbally offered the finished answer to any 

item. Students in Ability Group 2 (mean ability estimate: -0.14 logits) and those towards 

the lower end of Ability Group 3 (mean ability estimate: 2) tended to use a mix of both 

formal language and informal language. Students in Ability Group 2 tended to describe just 

the sequence of steps involved, although some gave the completed response. Students at 

the top end of Ability Group 3 (ability estimate >2 logits) tended to use language of a high 

modality only, describing the steps in the simplification using mathematical terms for the 

operations, and completing the item. 
 

Set 3 (Items 7, 11, 18 and 19). When presented with expressions containing brackets to 

be expanded, students, regardless of ability level, responded, “You do them first”. Of the 

32 students interviewed, three only directly stated that brackets indicated some form of 

grouping. All three students had ability estimates greater than 0.75 logits. Most students 

also described the process of expanding brackets as “getting rid of the brackets”, an 

informally phrased instruction which implied that the brackets were “unnecessary”, or 

“you times the outside by the inside”. Most students described the steps in multiplying out 

the brackets, but did not verbally describe the end result. Only one student (ability 3.8 

logits) described what would be done in general, and gave examples, with justifications of 
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the procedural steps. Two out of the seven students interviewed from Ability Group 1 

explicitly conjoined terms as they explained their thinking, as did one student in Ability 

Group 2. Another student in this group seemed unsure of the difference between 5x and x + 

5. 
 

Set 8 (Items 20, 21, 21, 25 and 26). When students were asked to express orally how 

expressions such as those in Set 8 could be rewritten, many simply repeated the expression, 

reading it from left to right. This did lead to a “correct” version, although little or no 

mathematical change occurred, particularly with items such as “Add 4 to n + 5”, where 

many students responded with “ Four plus n plus five”. Only students in Ability Groups 2 

and 3 completed the items verbally. Some supplied the answer only without describing the 

steps in their thinking. Students in Ability Group 1 tended to read aloud the items only, 

from left to right, and make no mathematical changes. Those in Group 2 tended to make 

some changes and also were uncertain as how to express, for example, the answer to Item 

26 as “five plus r” or “5r”.  

Discussion of Results 

In many cases, when explaining how they dealt with examples such as those in Set 1 

and Set 3, the students spoke about “putting together like terms”. However, students in 

Ability Group 1 tended to “put terms together” by conjoining all the terms. Having 

identified and isolated “like terms” in Items 1, 2, 5, and 6 circling them, or by rearranging 

the expression, or simply acting sequentially on each, students in Ability Group 1 “put 

them together” in a different way to those students in Groups 2 and 3. Students in these 

two Ability Groups did not tend to conjoin terms in these items. Students in Ability Group 

2 tended to do so when dealing with items in Set 3 [those with brackets, Items 18, 19, and 

7 and Item 11] and particularly those in Set 8 [Items 21, 22, 25, 26, and Item 20].  

Item 11 also prompted some students in Group 2 and Group 3 to conjoin terms. This 

may be because they failed to take account of the fact that the item indicated a difference 

between 8p and 2(p + 5) rather than a multiplicative relationship between the terms, and so 

multiplied throughout – a case of a stimulus causing an automatic response: when there are 

brackets in an expression the procedure is to “multiply what is inside by what is outside”. 

This procedural thinking also caused students to have problems with Item 7 [(a – b) + b]. 

Some students simply multiplied (a – b) by b, because the b was outside the brackets. This 

procedure resulted in the errors such as ab – b
2
, or ab

2
.  

The conjoining of terms by students in Ability Group 2 became much more frequent 

when they were required to answer Items 20, 21, 22, 25, and 26, the “semi-literal” items. 

These items required students to translate from words to mathematical symbols on their 

test scripts, showing an awareness of appropriate mathematical syntax and possible 

ambiguity in the written statement. Students in Group 3 did not tend to make this type of 

error. In the case of students in Groups 1 and 2, there was a marked increase in the 

numbers of conjoined-term errors as they responded to these items, compared with that for 

items in Sets 1 and 3 (Figure 5).  

One possible explanation for this is that items in Sets 1 and 3 were typical textbook 

examples and students could respond to them by carrying out a well-rehearsed procedure, 

where they had been trained not to “put together” all the terms. Faced with an unfamiliar 

context, students with little understanding of the mathematical relationships conveyed by 

arithmetic operators in an algebraic context provided a closed response. The tendency to 

conjoin terms may help to explain why the group of “semi-literal” items had a higher 
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average degree of difficulty than the group of addition and subtraction items, but which 

was lower than that for the items with brackets (Set 3) and why the successful response 

rate for students in Ability Group 2 dropped.  

These data suggest that students in the middle and lower ability groups, according to 

the model of the test responses, have a limited procedural understanding of the algebra 

presented to them. They have learnt a particular procedure that can be applied to particular 

examples that have a surface similarity. Tall (1994) suggested that the role of the visual 

structure of an expression is important in learning algebra, but cautions that the image 

cannot provide the entire concept. Where students, “search their memories for something 

previously learnt”, as one student explained in the interview, they are often seeking an 

image that matches the appearance of the expression in front of them. The image need not 

encapsulate mathematical meaning, but acts as a visual cue to prompt a series of 

mathematical manipulative steps whereby the student changes the form of an expression. 

No meaning need be attached to the steps, or to the expression itself. Responses to Item 11, 

Item 7 and Item 19, other than those where terms were conjoined, indicate many students 

see expressions such as these with brackets and react in one way regardless of the structure 

and the meaning of the expression. This is also evident when students described their 

procedures in visual terms such as “circling” the like terms, or when they explained their 

thinking by simply pointing to parts of the expression when being interviewed. 

Questions such as those in Set 8 (Kuchemann, 1981) probe the conceptual 

understanding of the various forms of algebraic expressions without the visual clues 

provided by more usual examples encountered by students. Such questions are rare in texts 

and often only appear in the introductory (Year 7, NSW) phases of algebra teaching. 

Conclusions: Implications for Teaching 

Rasch modelling of algebra test responses resulted in three clusters of student ability 

estimates. One of the characteristics of the students in these groups is the diminishing 

tendency for students to conjoin terms as their ability to deal with conceptually more 

difficult items develops. In other words, in order for students to be able to deal successfully 

with more complex algebra they need to learn when it is appropriate to conjoin terms (as in 

algebraic multiplication) and when not. If the tendency to conjoin terms results from 

students’ understanding arithmetic as much of the literature suggests, then teachers need to 

become aware of this persistent difficulty and use appropriate teaching strategies, such as 

those suggested by MacGregor and Stacey (1996) and Tirosh et al. (1998). In particular, 

students need to encounter arithmetic expressions in different equivalent and unclosed 

(“unfinished”) forms (Linchevski & Herscovics, 1994 ).  

The data discussed in this paper suggest that students of lower “ability” tend to conjoin 

terms more often than other students. However, a great number of reasonably successful 

students have a limited procedural understanding of algebraic techniques. Provided that 

they have only to deal with standard or familiar examples, they can do so. When 

challenged by examples requiring an understanding of ways in which mathematical 

meaning and mathematical structure are connected, they expose their reliance on visual 

cues (or oversimplified schemata) that prompt the exercise of a particular procedure. In 

order to provide students with a more comprehensive schema, students need to encounter a 

variety of forms of expression and to experience being able to write them in several ways 

without the meaning being altered. Perhaps the use of the instruction “to simplify” is too 

limiting. Asking students to rewrite expressions in many ways and discussing the 
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mathematical usefulness of their responses may help students to attend to the structure and 

meaning of expressions and so develop their conceptual understanding.  

The data from interviews also suggest that the use of informal language in the 

classroom may serve to obscure the mathematical ideas. Statements such as “Get rid of 

brackets”, “Do the brackets first” or “Put the like terms together” may not always be 

correctly interpreted by students, and may contribute to their tendency to conjoin terms 

because these statements do not convey an exact mathematical message.  

The students in Ability Group 3 did not tend to display any marked tendency to conjoin 

terms in any of the sets of items presented to them. This implies that they have a 

conceptual understanding of these types of algebraic expression. However, their 

descriptions of their thinking, although high in modality when they described procedures, 

lacked depth of explanation or justification. Thus, it could be inferred that their 

understanding remains largely tacit and, hence, can be articulated only with difficulty. It 

might also have been that the situation of having to explain their thinking was unfamiliar to 

the students. This would suggest that class discussion of the various ways in which 

expressions can be written is a necessary part of developing deeper mathematical 

understanding. Just as students need to develop a rich vocabulary in their everyday 

language, so too they also need to experience, and use, a variety of mathematical language 

and symbols in order to explore and express mathematical meanings. Without this, their 

algebraic development must be inhibited.  
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The purpose of this study was to explore the mathematics teaching practices of graduates of 

a pre-service primary education program designed to develop teachers’ capacities to 

implement non-traditional mathematics curricula. As a complementary component of a large 

survey study of graduate teachers, eight graduates were interviewed to examine their 

mathematics teaching practices and influences upon their practices. The teachers were 

implementing personally developed, constructivist-oriented curricula, while also acting as 

curriculum leaders. They indicated awareness of how aspects of their pre-service education 

provided them with the knowledge, skills, and confidence to enact their beliefs about 

effective mathematics teaching. 

A problem facing pre-service mathematics teacher education is the challenge of 

preparing teachers to “break the cycle of tradition” of mathematics teaching and learning 

practices that centre on memorisation of facts, and practice of pre-set meaningless 

procedures, which promote a view of mathematics as lacking creativity, imagination, or 

critical thought. Research over recent decades indicates that “teachers continue to teach 

much like their forbears did” (Hiebert, 2003, p. 11), with an emphasis on teaching 

procedures rather than conceptual understandings. An alternative, non-traditional 

perspective for mathematics, often referred to as “constructivist”, is one in which 

classrooms are envisioned as places rich in: discourse about important mathematical ideas, 

the development of mathematical meanings and understandings, and exploration of 

problems grounded in meaningful contexts (Clements & Battista, 1990; Sparrow & Frid, 

2002). 

Curriculum renewal and change efforts in mathematics in Australia and elsewhere (e.g., 

Australian Education Council, 1994; National Council of Teachers of Mathematics 

(NCTM), 2000) set ambitious goals for schools, teachers, and students by entailing a re-

conceptualisation of the nature of mathematics and effective mathematics teaching and 

learning (Hiebert, 2003; Sparrow & Frid, 2002). To move forward in mathematics 

education therefore requires substantial learning by teachers and pre-service teachers with 

regard to their mathematics content knowledge, and their capacities and confidence to plan 

for and implement “non-traditional” mathematics teaching practices. Thus, there is an 

ongoing need for research into how to support teachers to develop as professionals who 

have capacities to break the cycle of tradition. 

Background to this Study 

The larger research program from which this study arose was designed to tackle the 

problem of breaking the cycle of tradition in a holistic, ongoing way beginning in pre-

service education. Three components of mathematics education – content knowledge, 

mathematics pedagogical competence, and mathematics professional confidence – formed 

a foundation for a longitudinal action research cycle of curriculum implementation and 

evaluation in mathematics pre-service teacher education that was implemented over five 
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years (and is still in progress). The curriculum initiatives and innovations, along with 

evaluations of their impact upon pre-service primary and early childhood teachers, are 

documented in earlier papers (e.g., Frid & Sparrow, 2003, 2004, 2005). However, although 

there has been evidence of substantial professional learning by the pre-service teachers that 

indicates they have the content knowledge, pedagogical competence, and professional 

confidence to begin to break the cycle of tradition upon graduation, the research did not 

examine the impact of this professional learning subsequent to graduation. In fact, there is 

little in the research literature regarding the impact of pre-service education subsequent to 

graduation. 

Breaking the cycle of tradition will not occur unless graduate teachers are able to put 

into practice the non-traditional mathematics curriculum and pedagogical beliefs, ideas, 

and skills they developed in their pre-service programs. Thus, to begin to address the 

problem of breaking the cycle of tradition more comprehensively, a graduate survey and 

small-scale interview study were conducted to examine the questions: 

• What are the mathematics teaching practices of graduates from a pre-service 

program designed to support teachers to break the cycle of tradition in 

mathematics education? 

• What influences these practices? 

This paper reports on the findings from the exploratory graduate interview study, while 

the survey findings are reported elsewhere (Frid, McCrory, Sparrow, & Trinidad, 2007). 

The significance of this research, as already indicated, is in its potential to inform 

mathematics educators of mechanisms and outcomes related to the development of 

beginning teachers as professionals who have the capacities to implement innovative non-

traditional mathematics teaching and learning practices. 

Theoretical Framework 

Within the overall action research program, teacher professional development was 

viewed as a “process of growth in which a teacher gradually acquires confidence, gains 

new perspectives, increases knowledge, discovers new methods, and takes on new roles” 

(Jaworski, 1993, pp. 10-11). The curriculum development and implementation of the 

research program was built upon two main aspects of the literature related to teacher 

professional development, adult learning theory and professional empowerment, which are 

summarised below. The framework subsequently developed for the 4-year pre-service 

primary mathematics education program was named the Three C’s Mathematics Education 

Framework. It also is outlined here, to indicate how the 4-year program was designed 

through analysis and synthesis of the relevant research literature. 

Adult Learning Theory 

Designing appropriate support for pre-service teachers’ learning as mathematics 

educators requires consideration of how adults learn. Adult learning theory, as proposed by 

Knowles (1984), emphasises that adults are self-directed learners whose need to learn 

arises from the interests and challenges of their everyday lives. Further, since adults bring a 

broad range of experiences, beliefs, values, and ways of functioning to any learning 

situation, teaching processes that emphasise reflection, self-direction, articulation, 

scaffolding, and collaboration need to be explicitly recognised and attended to when 

planning curricula for adults. Learning must be embedded in “contexts that reflect the way 
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knowledge will be useful in real life” (Collins, 1988, p. 2), and key features of related 

learning environments must include: coaching and scaffolding that provides skills, 

strategies, and cognitive links; collaboration to support personal as well as social 

construction of knowledge; reflection to enable meaningful and purposeful learning; 

articulation to consolidate knowledge and foster communication skills; and integration of 

learning and assessment tasks (Herrington & Oliver, 1995). 

Teacher Professional Empowerment 

Mechanisms for growth and change must ask teachers to act as their own change 

agents, while gently challenging ideas and fostering critical reflection upon ideas and 

experiences. Thus, “coming to know” as a professional is based upon ownership of ideas 

and related teaching practices, a form of professional empowerment. From an 

empowerment perspective professional development is an educative process in which 

teachers make meaningful and thoughtful choices about their practices rather than having 

change imposed externally (Robinson, 1989). What is key is that teachers act as their own 

change agents for immediate and long-term goals (Richardson, 1994). 

The Three C’s Mathematics Education Framework 

The literature concerning adult learning theory and teacher empowerment guided 

development of the Three C’s Mathematics Education Framework (Table 1). 

Table 1 

Overview of the Three C’s Mathematics Framework 

Year Mathematics Content 

(content rich learning 

activities and exploration of 

curriculum documents) 

Pedagogical Competence 

(examination of learning theories, 

teaching resources, technologies, 

and the literature) 

Professional Confidence 

(reflection, articulation of ideas, 

and authentic application of 

learning) 

1
st
-

Year 
• focus on the Space 

strand; overview of other 

strands 

• Maths Basic Skills Test 

 

• social constructivist 

perspectives on learning and 

related practical implications for 

teaching mathematics 

 

• develop and implement single 

and short sequences of 

mathematics lessons for children 

3
rd

-

Year 
• Number & Working 

Mathematically 

• number sense and mental 

computation 

• numeracy 

 

• examination of children’s 

mathematical thinking and 

meaning-making 

 

• plan for and assess children’s 

learning (implementation with 

small numbers of children) 

• incorporate a wide array of 

resources and technologies into 

learning activities 

 

4
th

-

Year 
• Measurement, Chance & 

Data, & Working 

Mathematically 

• further examination of broad 

range of factors that impact on 

maths learning, including open-

ended tasks, inquiry models of 

learning, games, textbooks, 

assessment practices, and 

catering for diversity 

• articulate a philosophy of 

mathematics teaching 

• develop a mathematics 

professional teaching portfolio 

• participate in authentic 

professional interviews 

• prepare/implement program for 

a 10-week school practicum 
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Method 

Purpose of the Interview Study 

One of the purposes of the interview study was to explore beyond the quantitative and 

descriptive data of the larger graduate survey, through the gathering of more elaborated, 

explanatory data concerning teaching practices. Since the survey design and descriptive 

findings are reported elsewhere (Frid, McCrory, Sparrow, Trinidad, & Treagust, 2007), this 

paper aims to go beyond the description of practices to consider possible reasons for their 

nature. This focus allows for scope in the consideration of specific examples from teaching 

or other professional experiences, and possible links between graduate teachers’ current 

practices and previous pre-service learning. 

Research Sample 

The interview research sample consisted of eight graduates selected from over 20 who 

volunteered when they returned their written survey in the mail. This sample was 

purposeful in that it was chosen to include graduates from all four years of the graduate 

survey (2002-2005) and graduates teaching in a range of locations (Table 2). It is 

acknowledged that this sample is not fully representative of the population of over 300 

graduates from 2002-2005, and that their views and practices cannot be generalised to the 

larger group. However, since the interview component of the study was intended to identify 

avenues for further research into links between pre-service education and subsequent 

teaching practices, the diversity of teaching experiences represented by the graduates was 

considered sufficient as an initial exploration. 

Table 2 

Teachers Interviewed, Graduation Year, and School Employment History 

Teacher 

(pseudonyms) 

Graduation year School employment history 

Amanda 

Elaine 

Lisa 

Nicola 

Nancy 

Alice 

Yvonne 

Wendy 

2002 

2002 

2003 

2003 

2003 

2004 

2004 

2005 

Metropolitan school 

Rural and remote schools 

Metropolitan school 

Rural school 

Remote school 

Rural school, then metropolitan school 

Rural school 

Metropolitan school 

Data Collection and Analysis 

Interviews were semi-structured in nature, with interviewees’ initial responses 

examined further through requests for explanations and specific examples. The interview 

questions focused on the teachers’ experiences related to: how prepared they were in 

mathematics education for the reality of their first job; factors that helped or limited their 

mathematics teaching; how they have used their mathematics teaching portfolio; and in 

what ways they were making an impact on mathematics learning in their classroom or 

school. These four foci were intentionally broad and contextual in nature, rather than 

asking an interviewee specifically to outline her teaching practices and related influences. 

In this way the interview data complemented in a holistic way the survey data that had been 
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obtained from specific, directed questions. The contextual nature of each of the four foci 

provided opportunity for data to be obtained concurrently for both research questions 

(practices and influences). 

The interviews were conducted in the July 2006 school term break, by telephone or at 

the university campus. They were conducted by an independent research assistant who was 

a qualified teacher, did not know the teachers, and had not been involved in their pre-

service education program. Interviews lasted 30-45 minutes; they were audio recorded and 

later transcribed. Data analysis initially involved summarising across all eight teachers the 

responses for each of the four foci, and then proceeded inductively through a grounded 

approach (Powney & Watts, 1987). Initial emergence of key themes related to practices and 

influences upon practices were derived from the summaries and then examined further via 

re-visiting the transcripts for supporting as well as contrary evidence from the specific 

examples given by the teachers. 

Findings 

This section is structured around the two research foci (practices and influences), with 

the emergent themes each summarised briefly and explicated with examples from the 

interview data. 

Classroom Teaching and Related Professional Practices 

Three key aspects of classroom teaching practices emerged: (i) non-traditional 

teaching; (ii) “fun” mathematics; and (iii) classroom-specific curriculum development. An 

additional factor emerged as a key aspect of the teachers’ broader professional practices 

related to mathematics: (iv) acting as a curriculum leader. 

Non-traditional teaching. All the teachers spoke of teaching in what could be 

considered a constructivist perspective because it involved students in developing 

meanings and understandings through active engagement in learning activities (Clements & 

Battista, 1990). In this regard they also frequently mentioned using “hands-on” materials as 

a regular and essential feature of supporting students’ mathematical thinking and meaning-

making. For example, Elaine stated: 

… engaging the children in maths and really getting them to do stuff and working it out in their 

brains. … Getting the basic concepts across to them [indigenous students at a small school] was a 

challenge. So to have hands-on, talking about fractions and things, I’d get a cake and we’d cut it in 

half, … and give them the knife and cut it into quarters, and we’d sort of work our way down and 

they really got to visualise what it was to have a whole and then a half and then a quarter, and that 

sort of thing because fractions is a really tricky thing to get across to kids who really don’t know 

much about numbers. (Elaine) 

Other aspects of constructivist-oriented rather than more traditional teaching were 

evident in the teachers’ references to how they used open-ended tasks, calculators, or other 

technology, while also avoiding prescribed textbook or worksheet exercises.  

I do try to think of more open ended activities because I’ve got such a range of kids. So then I can 

help the ones that are having problems and give more, and give extra to the ones who can do it all 

with their hands tied behind their backs. (Wendy) 

I did calculators [in my portfolio] and I try to use those with the kids. … We do lots of fun things 

and all those sorts of calculator games and stuff like that. (Lisa) 
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And so I was really determined to use the influence Len Sparrow had on me. … I didn’t use the 

books in the classroom because they’re all those old textbook, workbook things. (Nicola) 

“Fun” mathematics. Most of the teachers mentioned attempting to make mathematics 

experiences “fun”, so that students would develop positive attitudes towards mathematics 

and be motivated to do mathematics. What they meant by “fun” was in fact more than 

enjoyment. It was learning oriented, involving motivation and enthusiasm, challenge and 

persistence, success, and a sense that mathematics can be relevant and useful. 

Well I know I’m making a difference because they are meeting the criteria of the outcomes. But the 

thing, the biggest thing I think is that they actually are enjoying it and are asking to do more. They 

like the challenge of mental maths and things like that, and “Can we do more?” and “When are we 

going to do that?” It’s the enthusiasm for learning that’s been the main thing, and the fact they enjoy 

maths is great. (Nancy) 

… a lot of the time the kids can be, “Oh, I can’t do maths. I just can’t do it”. And therefore they 

don’t try. But if you do it in an interesting context and in a way that encourages them to think about 

what they’re doing it makes them realise that they can do it and it’s not such a big scary thing at all. 

From the children I have taught I can see their change in attitude. … they can get through it if they 

are empowered to get through it. (Elaine) 

Classroom-specific curriculum development. The teachers spoke of developing their 

mathematics curriculum locally and flexibly, in the context of their classroom and their 

students’ learning needs. Some had taught in schools in which “you had to follow the 

textbook”, yet even then they made efforts to “be creative” by incorporating hands-on 

activities and having students use their “brains a bit” (Elaine). In this regard they expressed 

strong beliefs that a mathematics curriculum cannot be based largely on prescribed 

textbook or worksheet activities if it is to support effective mathematics learning for the 

diversity of students in a classroom. Inherent in these beliefs are non-traditional views of 

mathematics learning and teaching; specifically, the same exercises at the same time are 

not appropriate for catering for students’ developmental and achievement levels. Thus, 

many of the teachers indicated they preferred to use their professional knowledge and 

knowledge of their students to make mathematics curriculum decisions. 

We did try to program together for the first term and it just didn’t work. It felt like I was banging my 

head against a brick wall, because her kids do worksheets, lots and lots of worksheets, and they’re 

just five [years old]. (Wendy) 

You can pick and choose the parts that suit you and the different … like using the hands-on stuff, 

like using calculators. … We make our own lessons up because we said you can’t have a textbook in 

Years 1 and 2. It’s a guideline. … there’s still room for extending the kids ... if they can do what’s in 

the book you can still go over and above it if you feel they need to, or go back and re-teach a few 

things if they’ve missed something. (Lisa) 

Acting as a mathematics curriculum leader. There was evidence that some of the 

teachers, even though they were “novice” teachers, were taking on mathematics leadership 

roles in their schools. In some cases these roles arose from personal initiatives to do new 

things in a school related to enhancing mathematics learning, indicating a degree of 

confidence and professional knowledge on the part of the teachers. Other forms of 

leadership involved encouraging and supporting other teachers to try new things, by 

sharing ideas, expertise, or resources. Yet another form of leadership that was mentioned 

by one teacher was that of acting as a role model, simply by doing different things that later 

proved to be effective in supporting students’ mathematics learning.  
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They gave me the opportunity to do the role [maths specialist], which I thought was quite strange 

because I was very frightened of maths. I thought, “Why me?” … So I go in and I actually give 

teachers ideas on how they can use the technology with their maths. We’ve got all these interactive 

whiteboards, so I train teachers on using the interactive whiteboards in their maths. (Amanda) 

Every time I come back from a conference I report at the following teachers’ meeting on what I’ve 

learned and show them some stuff. … Last year one of the teachers was particularly receptive to the 

calculator program I brought back for him … so I had a win there. (Nancy) 

I started, in the newsletter I have a maths corner where I put a maths strategy in for the parents to 

help their kids. And a maths competition. (Nicola) 

That’s actually been really amazing, the difference. ... They have done so much better … from 

someone who doesn’t use the [text]books. … The other year 6/7 teachers, when it’s maths they 

opened up to a certain page in the book and they all did that in the book. Now I never did that, and I 

was worried about whether they [the students] would be okay with everything. But from the results 

from different maths tests that they have to do for year 8, it’s really shown me I’ve improved their 

maths. … I’ve had some teachers who have said to me, “I’ve never thought of doing it that way”. 

(Nicola) 

Influences on Practices 

Two factors emerged as key influences upon mathematics teaching practices: (i) 

university learning; and (ii) school support or restrictions. 

University learning. Since mathematics teaching portfolios (university learning), were 

specifically asked about in the interviews, their prominence was at least partially a product 

of the data collection instrument. However, of relevance here is what other aspects of 

university learning emerged as relevant, and which aspects of mathematics portfolios had 

an ongoing influence. 

With regard to portfolios, specific teaching ideas such as the use of calculators, other 

technology, games, or mental computation were cited as useful in subsequent teaching. To 

a lesser extent there was mention of underlying principles for teaching particular 

mathematics concepts. What received the most mention, however, was the mathematics 

teaching philosophy developed in the portfolio.  

I’ve definitely used my maths portfolio, because I looked at maths through technology. So the whole 

thing was based on how technology can be integrated into our maths. (Amanda) 

I have used my general mathematics philosophy which sort of guides my maths teaching in that I still 

have the same values I did when I did the portfolio, and I still want to achieve the same things with 

my children. (Alice) 

The main thing is my philosophy, my beliefs. … I don’t think I’ll ever stop believing kids need to 

have fun in their maths, and they need to think and do and play around with stuff, and talk about it. 

Those are my core beliefs and I don’t think they’ll change. They might adapt slightly. (Lisa) 

Beyond the learning attained at university from development of a mathematics teaching 

portfolio, what emerged as highly influential were the mathematics education lecturers and 

how they served as role models. 

My first year out I had year 6/7’s and I was determined that if I didn’t use the stuff I’d learnt from 

uni in my first year I never would. And so I was really determined to use the influence Len Sparrow 

had on me. (Nicola) 

I still think back and think, “What did I do in maths class? How can I teach this concept to my 

kids?” And I was chatting to some other Curtin graduates at the Beginning Teachers’ Seminar and 

they were saying that they too have Len and Sandra moments. “Oh, what did Len do, what did 

Sandra do for that to help?” (Wendy) 
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School support or restrictions. A key feature of this theme was that personal beliefs 

and values related to mathematics teaching and learning, along with their resonance or 

incongruence with the beliefs of others at a school, could lead to dissatisfaction with 

teaching. 

The standard at that school was that you had a textbook and you had to follow the textbook, so I 

really didn’t have a whole lot of room to be creative with those kids. ... I felt restricted because at 

uni everything was so exciting and energetic and so hands-on. (Elaine) 

However, at the same time, some of the teachers noted specifically how their 

convictions to follow their beliefs, regardless of restrictions or the practices of other 

teachers in the school, were a guiding source for daring to be different and enacting non-

traditional teaching practices.  

Things that have limited it? Simply old ways of thinking. You know you get really good teachers 

you can collaborate with, that have other experience, but you get other teachers that say, “No 

calculators in this classroom”, or … “My kids aren’t using counters for things like that”. It’s my 

classroom and if I want them to use counters, well they’re going to use counters basically. And that’s 

what my maths beliefs are and it’s going to work. And you know what? Sometimes you have to say, 

“Stuff it”. ... You just have to take a bit of a risk sometimes. (Lisa) 

Conclusions and Implications 

The findings from this study indicate that it is possible to “break the cycle of tradition” 

in primary mathematics education. More specifically, it is possible to prepare pre-service 

primary teachers who, subsequent to graduation, have the content knowledge, pedagogical 

competence, and professional confidence to put into practice non-traditional mathematics 

curricula. They can develop classroom-specific mathematics curricula that cater for diverse 

learning needs, use constructivist-oriented teaching strategies, and foster a view of 

mathematics as a challenging, relevant, enjoyable, and achievable endeavour. Further, they 

can act as change agents through a variety of forms of curriculum leadership, including 

serving as a specialist or coordinator, being a role model, fostering collaboration and 

sharing of ideas, or initiating new ideas and activities at a school. 

However, the small scale nature of this study necessitates that these conclusions be 

made with some qualifications, because the findings cannot be generalised to all graduates. 

They cannot in fact be claimed for all eight of the teacher interviewees. For seven of the 

eight teachers the evidence was convincing with regard to the conclusions. The eighth 

teacher, Yvonne (2004 graduate), was somewhat different from the others in that she spoke 

of struggling with her mathematics teaching and not knowing what to do with the diversity 

of achievement levels in her classroom, and she could say very little about what she had 

learned in her pre-service program or her mathematics teaching portfolio. 

The findings do, nonetheless, show what is possible and what is promising. It is in this 

context that the following discussion of practical implications examines aspects of the 

teachers’ pre-service experiences and current practices that appear to be prominent in their 

capacities to begin to break the cycle of tradition: (i) development of a mathematics 

teaching philosophy; (ii) breadth and depth in mathematics pedagogical knowledge; and 

(iii) professional confidence. 

Mathematics: Essential Research, Essential Practice — Volume 1

302



  

Development of a Mathematics Teaching Philosophy 

The fact that most of the teachers, even up to 4 years later, could outline how their 

mathematics teaching philosophy impacted upon their practices implies the development of 

a philosophy as a requirement of their pre-service program supported their later teaching 

endeavours. They spoke of their beliefs and values, but more importantly, of how these 

guided their practices. This latter point must be noted explicitly in that the development of 

a mathematics teaching philosophy entails more than outlining beliefs about mathematics 

teaching. It necessitates translating beliefs into practice, that is, articulating how classroom 

environments, learning and assessment activities, and teaching strategies can be 

constructed to attain the goals of one’s beliefs. A philosophy is more complex than an 

outline of beliefs, and thus, this research goes beyond prior research related to the nature 

and role of beliefs in mathematics teaching. Much previous research has neglected the 

practical components of an examination of beliefs, by not addressing how to put beliefs 

into practice in practical ways in the context of actual classroom teaching. A mathematics 

teaching philosophy and related teaching portfolio require this articulation and application, 

and hence a practical implication of this research study is that the development of a 

mathematics philosophy and portfolio can support beginning to break the cycle of tradition. 

Breadth and Depth in Pedagogical Knowledge 

The teachers showed breadth in their pedagogical knowledge in that they displayed 

awareness of a wide range of mathematics resources, teaching strategies, and learning 

activities that can motivate and support meaningful mathematics learning. They showed 

depth in their pedagogical knowledge in that they could articulate why they used particular 

methods in relation to how they facilitate mathematics learning. That is, the teachers 

displayed understandings of the research on how children learn mathematics, and 

importantly, how to apply those learning theories to the development of mathematics 

curricula. The implications here are that teachers who have understandings of mathematics 

pedagogy, along with capacities to translate those understandings into classroom learning 

experiences, will begin to be able to break the cycle of tradition. What is not as clear here, 

in comparison the role of the teachers’ philosophies, is the degree to which the teachers’ 

pre-service program had direct impact upon their later breadth and depth in pedagogical 

knowledge. It is however reasonable to note that a key aspect of the pre-service teachers’ 

development of a mathematics teaching portfolio was that they had to justify the content 

their portfolios. Specifically, they had to use a framework of “what-why-how” (Frid & 

Sparrow, 2003, 2004) to prepare portfolio items, and then to justify them within authentic 

interviews with school principals and other educators. 

Professional Confidence 

Several of the teachers were acting in leadership roles, and some clearly were “daring 

to be different”, even in the face of restrictions and adversity. It takes professional 

confidence to take the risks needed to enact teaching practices that differ to those of 

colleagues in a school. The fact that these actions were being taken by “novice” teachers 

needs further examination. In this study there was evidence that the teachers’ professional 

confidence arose from awareness of their beliefs, values, and philosophy, along with 

convictions to act in congruence with them. The additional factor in evidence was that they 

had well-developed pedagogical knowledge of how to translate their beliefs and philosophy 
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into practice. Their professional confidence was not independent of their teaching 

philosophy and pedagogical competence; they were not separate. Thus, a practical 

implication here is that pedagogical competence along with related professional confidence 

can lead to teachers to begin to break the cycle of tradition. 

 

In conclusion, a final statement of what is promising in addressing the problem of 

breaking the cycle of tradition is that this study implies: it is possible to prepare pre-service 

teachers to be thinking-acting-leading mathematics teachers – teachers who think critically 

about their professional practices while also serving as educational leaders who take action 

and implement changes to enhance mathematics teaching and learning. 
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This paper explores the number learning in 2006 of over 7000 children in the Ballarat 

Diocese for the purpose of identifying any issues that may inform the development of a 

Diocesan professional learning plan. The data for each grade level were examined to find if 

there were any apparent learning, teaching, or curriculum issues. The study found that there 

was a spread of knowledge within each grade level, and that there were groups of students 

who may be vulnerable. In particular, it was found that notable numbers of students 

beginning Grade 6 were not yet able to read, write, order, and interpret four-digit numbers 

nor use reasoning-based strategies for calculations in addition and subtraction, and 

multiplication and division. These findings need to inform the professional learning plan. 

In 2001, the Ballarat Diocese Catholic Education Office implemented a 5-year 

Diocesan Literacy and Numeracy Plan with the aim of building the capacity of 

communities (Howard, Perry, & Butcher, 2006) to improve learning for all students. 

Indeed, school systems throughout Australia and New Zealand have had a similar focus 

during the past decade. This emphasis on improving learning has been driven in Australia 

by the 1997 national literacy and numeracy goal that asserts that “every child leaving 

primary school should be numerate and able to read, write and spell at an appropriate level” 

(Department of Education Science and Training, 2001, p. 1). However, it is the sub-goal 

that “every child commencing school from 1998 will achieve a minimum acceptable 

literacy and numeracy standard within four years” (Department of Education Science and 

Training, 2001, p. 1) that focused the attention of school systems in Australia on literacy 

and numeracy learning in the early years of schooling. This prompted several large research 

projects (e.g., Gould, 2000; Clarke et al., 2002) that identified strategies for improving 

mathematics learning and teaching (Bobis et al., 2005).  

A common feature of these research projects and also of the Numeracy Development 

Project in New Zealand (Higgins, Parsons, & Hyland, 2003) was the use of clinical 

interviews so that teachers could identify the current knowledge of each student and plan 

and customise learning opportunities accordingly. Data obtained and aggregated for a class 

or school were used to identify particular issues associated with enabling effective 

teaching, learning, and curriculum development (Clarke et al., 2002) and formed the basis 

of professional learning for teachers. A similar approach was adopted in the Ballarat 

Diocese. 

This paper examines aggregated data describing number knowledge of over 7000 

children attending school in the Ballarat Diocese of Western Victoria for the purpose of 

identifying issues associated with effective teaching, learning, and curriculum 

development. It is anticipated that the findings will have implications for the identification 
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of curriculum and professional learning needs. Of particular interest ultimately is how we 

may improve the capacity of communities to provide more effective learning opportunities 

for all. 

Using Frameworks and Interviews to Identify Children’s Number Knowledge 

Clinical interviews are now widely used by teachers in Australia and New Zealand as a 

means of assessing children’s mathematical knowledge. This is due to the experience of 

three large scale projects that informed assessment and curriculum policy formation in 

Victoria, NSW, and New Zealand: Count Me In Too (Gould, 2000) in NSW, the Victorian 

Early Numeracy Research Project (Clarke et al., 2002) and the Numeracy Development 

Project (Higgins, Parsons, & Hyland, 2003) in New Zealand.  

A common feature of each of these projects was the use of a one-to-one assessment 

interview and an associated research-based framework to describe progressions in 

mathematics learning (Bobis et al., 2005). Teachers participating in each project indicated 

that the benefits of the assessment interview, though time-consuming and expensive, were 

considerable in terms of creating an understanding of what children know and can do, and 

for subsequently informing planning. Indeed, an important feature of clinical interviews is 

that they enable the teacher to observe children as they solve problems to determine the 

strategies they used and any misconceptions (Gervasoni & Sullivan, 2007). They also 

enable teachers to probe children’s mathematical understanding through thoughtful 

questioning (Wright, Martland, & Stafford, 2000). The insights gained through this type of 

assessment inform teachers about the particular instructional needs of each student more 

powerfully than scores from traditional pencil and paper tests, the disadvantages of which 

are well established (Clements & Ellerton, 1995). Bobis et al. (2005) concluded that one-

to-one assessment interviews and associated frameworks assisted to move the focus of 

professional development in mathematics from the notion of children carefully reproducing 

taught procedures to an emphasis on children’s thinking. This is an important outcome at a 

time when it is broadly accepted that the traditional focus on taught procedures for 

calculating can negatively impact on children’s number sense (Clarke, Clarke, & Horne, 

2006) and may impede children’s development of powerful mental reasoning strategies for 

calculating (Narode, Board, & Davenport, 1993). It is important to consider, therefore, 

when examining the data presented in this paper, whether students in the Ballarat Diocese 

use reasoning-based strategies for calculating or not. The evidence may highlight issues to 

consider when formulating the new Diocesan Professional Learning Plan and identify 

whether teachers may benefit from opportunities to explore methods that lead to children’s 

development of number sense and reasoning-based strategies for calculating. 

The Early Numeracy Interview and Framework of Growth Points 

The Early Years Interview (Department of Education Employment and Training, 

2001), developed as part of the Early Numeracy Research Project (ENRP) (Clarke et al., 

2002), is one example of a clinical interview and a research-based framework of growth 

points that describe key stages in the learning of various aspects of mathematics. This 

interview and the associated growth points were used in the Ballarat Diocese to gather data 

explored in this paper, so an understanding of them is important. The principles underlying 

the construction of the growth points were that they would: 
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1. describe the development of mathematical knowledge and understanding in the first 

three years of school, through highlighting important ideas in early mathematics 

understanding in a form and language that was useful for teachers; 

2. reflect the findings of relevant international and local research in mathematics (e.g., 

Steffe, von Glasersfeld, Richards, & Cobb, 1983; Steffe, Cobb, & von Glasersfeld, 

1988; Fuson, 1992; Boulton-Lewis, 1996; Mulligan & Mitchelmore, 1996; 

Mulligan, 1998; Wright, Martland, & Stafford, 2000; Gould, 2000); 

3. reflect, where possible, the structure of mathematics; 

4. allow the mathematical knowledge of individuals and groups to be described; and 

5. enable a consideration of students who may benefit from additional assistance. 

The growth points formed a framework for describing children’s development in 

Counting, Place value, Addition and Subtraction, Multiplication and Division, Length, 

Mass and Time, Properties of Shape, and Visualisation and Orientation. The processes for 

validating the growth points, the interview items and the comparative achievement of 

students in project and reference schools are described in full in Clarke et al. (2002). 

To illustrate the nature of the growth points, the following are the points for Addition 

and Subtraction. These emphasise the strategies children use to solve problems. 

1. Counts all to find the total of two collections. 

2. Counts on from one number to find the total of two collections. 

3. Given subtraction situations, chooses appropriately from strategies including count 

back, count down to & count up from. 

4. Uses basic strategies for solving addition and subtraction problems (doubles, 

commutativity, adding 10, tens facts, other known facts). 

5. Uses derived strategies for solving addition and subtraction problems (near 

doubles, adding 9, build to next ten, fact families, intuitive strategies). 

6. Extending and applying. Given a range of tasks (including multi-digit 

numbers), can use basic, derived and intuitive strategies as appropriate. 

Each growth point represents substantial expansion in knowledge, or key “stepping 

stones” along paths to mathematical understanding (Clarke, 2001). It is not claimed that 

every student passes all growth points along the way, nor should the growth points be 

regarded as discrete. However, the order of the growth points provides a guide to the 

possible trajectory (Cobb & McClain, 1999) of children’s learning. In a similar way to that 

described by Owens and Gould (1999) in the Count Me In Too project: “the order is more 

or less the order in which strategies are likely to emerge and be used by children” (p. 4).  

In summary, the framework of growth points can help teachers to understand a possible 

trajectory for describing children’s learning,  identify where any child is currently 

positioned, identify any children who may be vulnerable in a given domain, identify the 

zone of proximal development for each child in each domain so as to customise planning 

and instruction, and identify the diversity of mathematical knowledge in a class. 

Professional learning programs for teachers who use such frameworks may need to build 

teachers’ capacities to use this information to more effectively teach each child. 

The interview takes between 30-40 minutes per student and is conducted by the regular 

classroom teacher. The full text involves around 60 tasks, although no child is presented 

with all of these. Given success with a task, the interviewer continues with the next tasks in 

the given mathematical domain (e.g., Place Value) for as long as the child is successful.  
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The Early Numeracy Interview provided teachers participating in the ENRP with 

insights about children’s mathematical knowledge that they reported might otherwise not 

have been forthcoming (Clarke, 2001). Further, the project found that teachers were able to 

use this information to plan instruction that would provide students with the best possible 

opportunities to extend their mathematical understanding. This is important to consider 

when developing a professional learning plan for the Ballarat Diocese. 

Focus on Place Value Knowledge and Reasoning-Based Strategies 

A factor in providing effective mathematics learning opportunities for children is the 

teacher being able to anticipate the difficulties that some children may encounter in order to 

assist them. Many studies have provided insight about such difficulties. Important to 

consider in regard to the data presented in this paper are issues associated with children’s 

understanding of Place Value ideas and use of reasoning strategies for calculating.   

One important finding is that children who have not constructed grouping and place 

value concepts often have difficulty working with multi-digit numbers (Baroody, 2004). 

This is an important idea to explore when examining the data presented in this paper. Also, 

being able to interpret numerals to order them from smallest to largest is another Place 

Value challenge for some children. Griffin, Case, and Siegler (1994) observed that this 

involves integrating the ability to (1) generate number tags for collections, and (2) make 

numerical judgments of quantity based on the construction of a mental number line (Griffin 

& Case, 1997; Griffin et al., 1994). This becomes more complex as children encounter 

two-digit numbers. 

Other studies have found that successful problem solving with two-digit numbers 

depends on children’s ability to construct a concept of ten that is both a collection of ones 

and a single unit of ten that can be counted, decomposed, traded, and exchanged for units 

of different value (e.g., Cobb & Wheatley, 1988; Fuson et al., 1997; Ross, 1989; Steffe et 

al., 1988; Young-Loveridge, 2000). Cobb and Wheatley (1988) found that some children 

develop a concept of ten that is a single unit that cannot be decomposed, and proposed that 

this type of concept is constructed when children learn by rote to recognise the number of 

tens and ones in a numeral, but do not recognise that the face value of a numeral represents 

the cardinal value of a group. 

The counting and reasoning strategies children use to solve addition and subtraction 

problems have also been the focus of many studies (e.g., Clarke et al., 2002; Fuson, 1992; 

Griffin et al., 1994; Steffe et al., 1988). Counting strategies identified include count-all 

(including perceptual counting and counting by representing), count-on (from largest and 

smallest addend), count-back-all, count-down-to, and count-down-from. Reasoning 

strategies include doubles, near doubles, adding ten, adding nine, commutativity, 

combinations for ten, part-whole strategies, and retrieving answers from memory (e.g., 

Clarke, 2001; Fuson, 1992; Griffin et al., 1994; Steffe et al., 1988). Once children have 

developed a range of strategies, it becomes important to choose wisely among these 

strategies to fit the characteristics of a strategy to the demands of a task (Griffin et al., 

1994). However, not all children choose wisely or have each strategy available.  

In order to think multiplicatively, children need to shift from viewing groups as being 

composed of single items, to viewing the group itself as a countable unit (Clarke et al., 

2002; Mulligan, 1998). This is difficult for some. Sullivan, Clarke, Cheeseman, and 

Mulligan (2001) found that constructing knowledge for abstracting multiplication and 

division problem solutions provides a significant barrier for many children, and Clarke et 
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al. (2006) found that 16% of children at the end of Grade 4 did not use reasoning strategies 

in multiplication. These difficulties provide a lens for examining the data presented later. 

Improving Mathematics Learning in the Ballarat Diocese 

In 2001, the CEO Ballarat implemented the Ballarat Diocese Numeracy Strategy (2001-

2005) to improve mathematics learning for primary school students within the Diocese. 

The strategy was informed by the findings of the ENRP (Clarke et al., 2002) and in a 

similar way to the ENRP, adopted the Hill and Crévola Key Design Elements (Hill & 

Crévola, 1999) as a means of building the capacity of school communities to provide more 

effective learning opportunities for all students. These were beliefs and understandings, 

leadership and coordination, standards and targets, monitoring and assessment, classroom 

teaching programs, professional learning teams, school and class organisation, intervention 

and special assistance, and home, school, and community partnerships.  

From 2002, schools began to use the Early Numeracy Interview to assess all students’ 

number knowledge. All schools were using this interview for all children by 2006. 

Teachers were encouraged to analyse the data to determine any school-based issues and to 

identify and assist those students who were at risk of poor learning outcomes. To facilitate 

this, teachers were invited to train as specialist intervention teachers, so that they could 

introduce the Extending Mathematical Understanding (EMU) intervention program 

(Gervasoni, 2004) in Grade 1, and provide specialist advice for teachers and parents..  

From 2004 onwards, all schools developed a numeracy action plan that addressed each 

of the nine Key Design Elements. Schools were also funded to enable the appointment of a 

Numeracy Co-ordinator to guide the implementation and evaluation of the school plan. 

From 2002, the Diocese provided a professional learning program for all teachers (P-6) and 

Numeracy Co-ordinators. This included a mix of regionally-based whole-day programs, 

school cluster workshops, and school-based professional learning team meetings.  

The Diocese is now evaluating the effectiveness of the Strategy and considering key 

issues to focus on to inform a new professional learning program for teachers to build 

community capacity further to provide effective mathematics learning for all. 

Analysing Children’s Number Knowledge in the Ballarat Diocese 

The data presented in this paper were collected in 2006 from over 7000 children from 

all 52 Catholic Primary Schools within the Ballarat Diocese. This enabled a rich picture of 

these children’s number knowledge to be formed. The practice in this region is for teachers 

to assess each student in the first week of school using the Early Years Interview for the 

purpose of gaining insight about each child’s current mathematical knowledge. The 

interview was developed during the ENRP (Clarke et al., 2002). Its development and the 

associated framework of growth points are reported in detail elsewhere (e.g., Bobis et al., 

2005; and Clarke, 2001). However, it is important to note that the growth points describe 

major learning along a hypothesised learning trajectory (e.g., Cobb & McClain, 1999) and 

formed the basis for the development of interview assessment items.  

Children’s responses to assessment items were analysed by the teacher to determine the 

growth points children reached. To increase the validity and reliability of the data, each 

teacher followed a detailed interview script, recorded children’s answers and strategies on a 

detailed record sheet, and used clearly defined rules for assigning growth points. Children’s 

growth points were entered into an excel spreadsheet and each school’s data were 
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aggregated to form the data set reported on here. The region’s Numeracy Advisors and 

each school’s Numeracy Co-ordinator managed this process. 

Issues Arising from Examining Children’s Number Knowledge 

The purpose of the examination of data collected in 2006 within the Ballarat Diocese is 

to identify any important issues related to learning, teaching and curriculum that need to be 

addressed to improve learning opportunities for children and that might inform the 

Diocesan Mathematics Professional Learning Plan. This paper will focus on issues related 

to the Place Value, Addition and Subtraction, and Multiplication and Division domains.  

The percentage of children in each grade reaching each Place Value growth point (GP) 

is shown in Figure 1. Of particular interest is children’s knowledge of multi-digit numbers. 
 

Figure 1. Percentage of children in each grade reaching each growth point at the beginning of 2006 

An issue highlighted in Figure 1 is the spread of growth points at each level. This 

finding has been noted elsewhere (e.g., Gervasoni & Sullivan, in press; Bobis et al., 2005) 

but highlights the complexity of the teaching process and the importance of teachers 

identifying each child’s current knowledge and knowing ways to customise learning 

opportunities that meet each child’s needs. This has important curriculum and instruction 

implications for any plan to strategically improve learning outcomes for students. 

Another interesting point is that almost half the children beginning Prep, the first year 

of school in Victoria, can already read, write, order, and interpret one-digit numbers. These 

children already need opportunities to explore two and three digit numbers, an issue that 

needs to be addressed in curriculum development and planning. The remaining students 

require the more traditional Prep experiences that firstly emphasise exploring and 

constructing knowledge about one-digit numbers. However, right from the beginning of 

schooling, the data highlight differences in children’s knowledge to which the community 

needs to respond to optimise learning. It is also important to acknowledge that some 

teachers may not have been able to identify the extent of some children’s knowledge 

because this is sometimes culturally specific, and may not be obvious to the teacher 

(Gervasoni, 2003). This issue may be another focus for professional development. 

Figure 1 also shows that nearly half the Grade 2s and three-quarters of the Grade 3s 

were already able to interpret three-digit numbers and needed opportunities to explore and 

construct understandings about four-digit numbers and greater. School communities need 

to consider how this can be best achieved.  
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Another feature of the data is the number of students in Grades 4 to 6 within the 

Diocese who have not yet reached GP 4 and GP 5 (52%, 32%, and 18% respectively). 

Further examination of these students assessment responses shows that many were able to 

read and write four-digit numbers, but were not able to either order four-digit numbers 

and/or answer the questions, “What is 10 more than 2791?” and “What is 100 less than 

3027?” As highlighted by Baroody (2004), these tasks require children to appreciate the 

quantity associated with number names and numerals and either to use their mental number 

line (Griffin & Case, 1997) to find 10 more or 100 less, or to use a reasoning-based 

strategy that draws upon their number sense. Difficulty with this type of task typifies the 

children who experience difficulty in Place Value. Certainly, a curriculum emphasis on 

understanding these numbers as quantities and numbers with positions on the number line 

is important. A Diocesan professional learning plan may need to address this issue. 

A further implication of this finding is that some children in Grades 4 to 6 may be 

required to solve problems requiring calculations with four-digit numbers and greater (a 

prominent feature of the curriculum at this level), without an understanding of these 

numbers as quantities and their position on the number line. It seems fair to assume that 

many of these children may be reliant on learning procedures for performing calculations 

without constructing the conceptual underpinnings, and perhaps before they have 

developed reasoning based strategies for calculating. To explore this conjecture, we first 

examined the highest growth point reached by students in the Addition and Subtraction 

Strategies domain (see Figure 2). 

Figure 2. Percentage of children in each grade reaching each growth point at the beginning of 2006 in 

addition and subtraction (N=7651). 

The data show that 51% of children beginning Grades 4 and 30% of children beginning 

Grade 5 were not yet using derived strategies (GP 5). This is consistent with the findings of 

a longitudinal study of 323 children who participated in the ENRP (Clarke et al., 2006). 

Their study found that when children reached Grade 4 and 5, respectively 53% and 37% 

had not reached GP 5. However, note that in the longitudinal study, data refer to 

assessment at the end of Grades 3 and 4, so comparisons are indicative only. Figure 2 also 

highlights that 16% of Grade 6s were not yet using derived strategies. This suggests that 

these children may rely on rote procedures for performing calculations. 

To explore this issue further, we determined the number of Grade 6 students who had 

not yet reached GP 4 in Place Value, nor used reasoning-based strategies in Addition and 

Subtraction (GP 5) and Multiplication and Division (GP 4).  
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Figure 3 shows the number of children who had not reached these growth points and 

the combinations of domains for which this was the case (N=1195, n=371). It is important 

to note that 69% of children beginning Grade 6 had meet these minimum targets. 

Conversely, 31% were vulnerable in at least one of these domains, and these children are 

the focus of Figure 3. In summary, Figure 3 shows that of the 31% of Grade 6s who were 

vulnerable in at least one of these domains, 18% were vulnerable in all three domains, and 

nearly half (45%) were vulnerable in at least 2 domains. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The number and combinations of domains for which Grade 6 children had not yet reached targets in 

Place value, addition and subtraction, and multiplication and division, (N=1195, n=371). 

In relation to the question about whether children who had not yet reached GP 4 in 

Place Value used reasoning-based strategies in Addition and Subtraction and 

Multiplication and Division contexts, Figure 3 shows that of the 211 Grade 6 children who 

had not yet reached GP 4 in Place Value, 61% had also not yet reached the growth points 

associated with using derived strategies in Addition and Subtraction and reasoning 

strategies in Multiplication contexts. A focus for increasing the capacity of communities to 

provide effective learning opportunities for these students will include professional 

learning opportunities that enable Grades 4 to 6 teachers to identify and develop 

instructional approaches to identify and assist these students. This may also include 

intervention-style programs aimed at accelerating children’s number learning in these 

aspects.  

Conclusion 

Examination of the current number knowledge of over 7000 children in the Ballarat 

Diocese highlights some important issues to consider for developing a professional 

learning plan to improve mathematics learning outcomes for students. Key issues are the 

need for communities to provide more effective learning opportunities to assist children 

interpret four-digit numbers, and reasoning based strategies in Addition and Subtraction 

and Multiplication and Division. However, it is acknowledged that in formulating a 

professional learning plan for teachers throughout the Ballarat Diocese, it will be important 

to explore the views of those living and working in the various communities, and to 

identify the characteristics of communities that already make a difference.  

Discussions with School Numeracy Co-ordinators within the Diocese suggest that 

although considerable change has occurred in the curriculum and teaching approaches of 

those involved in the early years of schooling (P-2), and for many teachers working in the 
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later years, some Grades 3 to 6 teachers continue to adopt a more traditional approach to 

number learning that is based on the rote learning of calculation procedures and number 

facts. Another point raised was the need for ongoing monitoring and assessment of 

children’s knowledge. Numeracy Co-ordinators suggested that whereas all teachers use the 

one-to-one assessment interview and framework of growth points at the beginning of the 

year to inform their curriculum planning, some teachers do not continue to use the 

framework to monitor children’s knowledge and differentiate curriculum and instruction 

throughout the year. This is another possible focus for the Diocesan professional learning 

plan. 

Overall, it seems that building the capacity of communities to provide more effective 

learning environments for Grades 3 to 6 children will be an important factor in addressing 

the learning, teaching, and curriculum issues highlighted by the examination of children’s 

number knowledge, and will be an essential focus for a new professional learning plan. 
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This paper reports on the initial phase of a research study that is investigating how and why 

secondary school mathematics teachers use digital technologies to help their students learn. 

Case studies of a beginning teacher and an experienced teacher, both of whom are regarded 

as effective users of technology, aim to identify critical factors that support or hinder 

innovative teaching and learning. The findings are analysed with the aid of Valsiner’s 

(1997) zone theory to study interactions between teachers’ knowledge and beliefs, their 

professional contexts, and their formal and informal professional development experiences. 

For some time, education researchers have been interested in exploring the potential for 

digital technologies to transform mathematics learning and teaching. It is now widely 

accepted that effective use of technologies such as mathematical software, spreadsheets, 

graphics and CAS calculators, and data logging equipment offers students new 

opportunities for fast, accurate computation, collection, and analysis of real or simulated 

data, and investigation of links among numerical, symbolic, and graphical representations 

of mathematical concepts (see Forster, Flynn, Frid, & Sparrow, 2004; Goos & Cretchley, 

2004). Support for technology use in secondary school mathematics is also found in most 

Australian state and territory curriculum documents. 

A significant body of research has examined the effects of technology use on students’ 

mathematical achievement and attitudes and their understanding of mathematical concepts, 

but less attention has been given to how teachers use technology in the classroom and how 

this use is related to their knowledge, beliefs, and professional contexts. Internationally 

there is research evidence that simply improving teachers’ access to technology has not, in 

general, led to increased use or to movement towards more learner-centred teaching 

practices (Burrill, Allison, Breaux, Kastberg, Leathem, & Sanchez, 2003; Cuban, 

Kirkpatrick, & Peck, 2001; Wallace, 2004). Windschitl and Sahl (2002) identified two 

factors that appear to be crucial to the ways in which teachers adopt (or resist) technology. 

First, teachers’ use of technology is mediated by their beliefs about learners, about what 

counts as good teaching in their institutional culture, and about the role of technology in 

learning. Secondly, school structures – especially those related to the organisation of time 

and resources – often make it difficult for teachers to take up technology-related 

innovations. These are some of the issues that we are investigating in a 3-year study of 

technology-enriched teaching in secondary school mathematics. The overarching aim of the 

study is to generate models of successful innovation in integrating technology into 

secondary school mathematics teaching. This paper presents findings from the first year of 

the study, focusing on factors influencing teachers’ use of technology. 

Theorising Technology-Enriched Mathematics Teaching 

The present study builds on a research program informed by sociocultural theories of 

learning involving teachers and students in secondary school mathematics classrooms (see 

Galbraith & Goos, 2003; Goos, 2005). Sociocultural theories view learning as the product 
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of interactions with other people and with material and representational tools offered by the 

learning environment. Because it acknowledges the complex, dynamic, and contextualised 

nature of learning in social situations, this perspective can offer rich insights into 

conditions affecting innovative use of technology in school mathematics. The theoretical 

framework for the study is based on an adaptation of Valsiner’s (1997) zone theory to 

apply to interactions between teachers, students, technology, and the teaching-learning 

environment.  

The zone framework extends Vygotsky’s concept of the Zone of Proximal 

Development (ZPD) to incorporate the social setting and the goals and actions of 

participants. Valsiner (1997) describes two additional zones: the Zone of Free Movement 

(ZFM) and Zone of Promoted Action (ZPA). The ZFM represents constraints that structure 

the ways in which an individual accesses and interacts with elements of the environment. 

The ZPA comprises activities, objects, or areas in the environment in respect of which the 

individual’s actions are promoted. For learning to be possible the ZPA must be consistent 

with the individual’s possibilities for development (ZPD) and must promote actions that 

are feasible within a given ZFM. When we consider teachers’ professional learning 

involving technology, the ZPD represents teachers’ knowledge and beliefs about 

mathematics, mathematics teaching and learning, and the role of technology in 

mathematics education. The ZFM can be interpreted as constraints within the school 

environment, such as students (their behaviour, motivation, perceived abilities), access to 

resources and teaching materials, curriculum and assessment requirements, and 

organisational structures and cultures, whereas the ZPA represents formal and informal 

opportunities to learn, for example, from pre-service teacher education, professional 

development, and colleagues at school. 

Previous research on technology use by mathematics teachers has identified a range of 

factors influencing uptake and implementation. These include: skill and previous 

experience in using technology; time and opportunities to learn; access to hardware and 

software; availability of appropriate teaching materials; technical support; organisational 

culture; knowledge of how to integrate technology into mathematics teaching; and beliefs 

about mathematics and how it is learned (Fine & Fleener, 1994; Manoucherhri, 1999; 

Simonsen & Dick, 1997). In terms of the theoretical framework outlined above, these 

different types of knowledge and experience represent elements of a teacher’s ZPD, ZFM 

and ZPA, as shown in Table 1. However, in simply listing these factors, previous research 

has not necessarily considered possible relationships between the teacher’s setting, actions, 

and beliefs, and how these might influence the extent to which teachers adopt innovative 

practices involving technology. In the present study, zone theory provides a framework for 

analysing these dynamic relationships. 
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Table 1 

Factors Affecting Teachers’ use of Technology 

Valsiner’s Zones Elements of the Zones 

Zone of Proximal Development Mathematical knowledge 

Pedagogical content knowledge 

Skill/experience in working with technology 

General pedagogical beliefs 

Zone of Free Movement Students (perceived abilities, motivation, behaviour) 

Access to hardware, software, teaching materials 

Technical support 

Curriculum & assessment requirements 

Organisational structures & cultures 

Zone of Promoted Action Pre-service teacher education 

Professional development  

Informal interaction with teaching colleagues 

Research Design and Methods 

Participants in the first phase of the study are four secondary mathematics teachers who 

are acknowledged by their peers as effective and innovative users of technology. They 

include two beginning teachers who experienced a technology-rich pre-service program 

and two experienced teachers who have developed their technology-related expertise solely 

through professional development experiences or self-directed learning. The beginning 

teacher participants were recruited from a pool of recent Bachelor of Education 

(Secondary) graduates from The University of Queensland, whereas the experienced 

teacher participants were identified via professional networks, including mathematics 

teacher associations and contacts with schools participating in other university-based 

research projects. The teachers were selected to represent contrasting combinations of 

factors known to influence technology integration (as summarised in Table 1). 

In the first year of the study the focus was on carrying out highly contextualised 

investigations of how and under what conditions the participating teachers integrate 

technology into their practice. There were three main sources of data. First, a semi-

structured scoping interview invited the teachers to talk about their knowledge, beliefs, 

contexts, and professional learning experiences in relation to technology. A diagrammatic 

representation of the zone theory of teacher learning outlined in the previous section of the 

paper was used to structure the interviews. Each zone was represented by a circle, with its 

elements listed as shown in Table 1, and this information was printed on separate overhead 

transparencies for the three zones. As the zones themselves are abstractions, teachers 

“filled in” the details that were relevant to their own professional histories and contexts. 

They were also asked to superimpose the three transparencies to show the degree of 

overlap between the circles that matched their own circumstances and hence the 

relationships between their personal zones of influence. The abstract theoretical language 

for naming the Zones of Proximal Development, Free Movement, and Promoted Action 

was not used in these interviews. Instead the zones were labelled as Teacher Knowledge 

and Beliefs, Professional Contexts, and Sources of Assistance respectively. 

Additional information about the teachers’ general pedagogical beliefs was obtained 

via a Mathematical Beliefs Questionnaire (described in more detail in Goos & Bennison, 
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2002). The questionnaire consisted of 40 statements to which teachers responded using a 

Likert-type scale based on scores from 1 (Strongly Disagree) to 5 (Strongly Agree). The 

third source of data was lesson cycles comprising observation and video recording of at 

least three consecutive lessons in which technology was used to teach specific subject 

matter, together with teacher interviews at the beginning, middle, and end of each cycle. 

These interviews sought information about teachers’ plans and rationales for the lessons 

and their reflections on the factors that influenced their teaching goals and methods. 

The next section draws on the sources of data outlined above to present the contrasting 

profiles of two participating teachers, Susie (a beginning teacher) and Brian (an 

experienced teacher). 

Teacher Profiles 

Susie: A Beginning Teacher 

Susie graduated from the university pre-service program at the end of 2003. She was in 

her third year of teaching at a co-educational independent school with an enrolment of 

around 600 students in Years 8 to 12. The student population is fairly homogeneous with 

respect to cultural and socio-economic background, with most students coming from white, 

Anglo-Australian, middle class families. 

Sally’s responses to the Mathematical Beliefs Questionnaire suggest that her beliefs 

were non-rule-based and student-centred (Tharp, Fitzsimons, & Ayers, 1997). For example, 

she expressed strong agreement with statements such as “In mathematics there are often 

several different ways to interpret something”, and she disagreed that “Solving a 

mathematics problem usually involves finding a rule or formula that applies”. Her beliefs 

about mathematics teaching and learning, as revealed through the questionnaire, were 

strongly supportive of cooperative group work, class discussions, and use of calculators, 

manipulatives and real life examples. Teachers who hold such inquiry-based views about 

mathematics are more likely to use calculators as a means of developing students’ 

conceptual understanding than simply as tools for checking calculations or graphs done by 

hand (Simmt, 1997). 

Susie’s own experience of learning mathematics at school was very structured and 

content-based, but this is different from the approaches she tries to implement as a 

mathematics teacher. When interviewed she explained that in her classroom “we spend 

more time on discussing things as opposed to just teaching and practising it”, and that for 

students “experiencing it is a whole lot more effective than being told it is so”. Aged in her 

mid-20s, Susie feels she was born into the computer age and this contributes to her comfort 

with using technology in her teaching. Although her first real experience with graphics 

calculators was in her university pre-service course, she indicated that “the amount I 

learned about it [graphics calculators] during that year would be about 2% of what I know 

now”. 

Our observations of Susie’s Year 10 mathematics class provide evidence of how she 

enacted her pedagogical beliefs. In one lesson cycle we observed, Susie introduced 

quadratic functions via a graphical approach involving real life situations and followed this 

with algebraic methods to assist in developing students’ understanding. Lessons typically 

engaged students in one or two extended problems rather than a large number of practice 

exercises. For example, students worked on a task that asked them to investigate projectile 
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motion as a practical application of quadratic functions. They viewed a computer 

simulation in which the Sesame Street character Gonzo was shot from a cannon towards a 

bucket of water some distance away (http://www.funny-games.biz/flying-gonzo.html; see 

Figure 1). The simulation allowed students to vary the angle of projection and the cannon 

“voltage” (i.e., muzzle velocity) and observe the effects on the distance Gonzo travelled as 

they “aimed” him at the bucket of water. They were to use their graphics calculators to 

tabulate and plot data that would allow them to find a mathematical model for the 

relationship between this distance and the muzzle velocity. Algebraic methods were then to 

be used to determine the best cannon settings for Gonzo to hit a target at a given distance. 

 

Figure 1. Flying Gonzo simulation. 

The questionnaire, interview, and observation data “fill in” Susie’s Zone of Proximal 

Development with knowledge and beliefs about using technology to help students develop 

mathematical understanding by investigating real life situations and linking different 

representations of concepts. Elements of her Zone of Free Movement, or professional 

context, are also supportive of technology integration. Until recently the school’s 

mathematics department was led by a teacher well known for his expertise with 

technology, and his influence created a culture of technology innovation backed up by 

substantial resources. Students in Years 9-12 have their own graphics calculators (obtained 

through the school’s hire scheme), there are additional class sets of CAS calculators for 

senior classes, and data logging equipment compatible with the calculators is freely 

available. Computer software is also used for mathematics teaching; however, as is 

common in many secondary schools, computer laboratories have to be booked well in 

advance. Susie prefers to use graphics calculators so that students can access technology in 

class whenever they need it. The data projector installed in her classroom also makes it 

easy for her to display the calculator screen for viewing by the whole class. 

Susie spoke enthusiastically of the support she had received from the school’s 

administration and her colleagues since joining the staff: “Anything I think of that I would 

really like to do [in using technology] is really strongly supported”. Nevertheless, as 

coordinator of the school’s junior secondary mathematics programs she has noticed that 

some of the recently appointed teaching staff are neutral and passive in their attitudes 

towards technology. Although they are willing to use technology in their teaching if shown 

how to, they rarely ask questions or engage in discussions about improving existing tasks 
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and technology-based teaching practices. These attitudes do not seem to be related to the 

number of years they have been teaching or to their previous experience in using 

technology. 

The evidence outlined above suggests that there is a good fit between Susie’s Zone of 

Proximal Development and her Zone of Free Movement, in that her professional 

environment affords teaching actions consistent with her pedagogical knowledge and 

beliefs about technology. Susie uses this ZPD/ZFM relationship as a filter for evaluating 

formal professional development experiences and deciding what to take from these 

experiences and use in her classroom. For example, she had first seen the Gonzo simulation 

at a mathematics teachers’ conference and realised this was an application of quadratic 

functions she could exploit with her Year 10 class. Susie had attended many conferences 

and workshops in the 3 years since beginning her teaching career, but found that most of 

them were not helpful “for where I am”. She explained: “because we use it [technology] so 

much already, to introduce something else we’d have to have a really strong basis for 

changing what’s already here”. Although Susie’s exposure to technology in her 

mathematics pre-service course may have oriented her towards using technology in her 

teaching, the most useful professional learning experiences have involved working 

collaboratively with her mathematics teaching colleagues at school. The only real obstacle 

she faces is lack of time to develop more teaching resources and to become familiar with 

all of the technologies available to her. For Susie, the most helpful Zone of Promoted 

Action (sources of assistance) lies largely within her own school, and is thus almost 

indistinguishable from her Zone of Free Movement (professional context). 

Brian: An Experienced Teacher 

Brian has been teaching mathematics in government high schools for more than 20 

years. For much of this time he was Head of the Mathematics Department in an outer 

suburban school serving a socio-economically disadvantaged community. In the late 1990s 

he recognised that the traditional classroom settings and teaching approaches the students 

were experiencing did not help them learn mathematics. He pioneered a change in 

philosophy that led to the adoption of a social constructivist pedagogy in all mathematics 

classes at the school. This new philosophy, expressed through problem solving situations 

and the use of technology, concrete materials and real life contexts, produced significant 

improvement in mathematics learning outcomes across all year levels. At the start of 2006 

Brian moved to a new position as Head of Department in a different school, also situated in 

a low socio-economic area. Here he faces many challenges in introducing the mathematics 

staff to his teaching philosophy and obtaining sufficient technology resources to put his 

philosophy into practice. 

Brian’s espoused beliefs, as indicated in his responses to the Mathematics Beliefs 

Questionnaire, are consistent with the constructivist principles that guide his practice. For 

example, he expressed disagreement with statements such as “Doing lots of problems is the 

best way for students to learn mathematics”, and he strongly agreed that “The role of the 

mathematics teacher is to provide students with activities that encourage them to wonder 

about and explore mathematics”. When interviewed, he often emphasised that his reason 

for learning to use technology stemmed from his changed beliefs about how students learn 

mathematics. 

When my philosophy changed, it became a question of – what can I put in front of my kids to allow 

them to access the concepts? So then it didn’t really matter what it was, the outcome that I was after 
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was them accessing the concept. So it became obvious over time that technology was a way that 

many students do access concepts that they couldn’t, wouldn’t normally access. 

Some of the lessons we observed dealt with solving trigonometric equations. Brian’s 

method for teaching this topic exemplified his general philosophy in that he initially used a 

graphical approach to help students develop understanding of the central concepts so they 

might then see the need for analytical methods involving algebra. He justified this by 

saying:  

The options are to give them heaps of algebra and watch them fail or try to get them to understand 

the concepts. If they’re confident about what they’re doing then I find the algebra’s not such a task 

for them because there’s a lot more meaning or reasoning behind it. 

A vignette from a Year 11 lesson illustrates this approach. Brian used graphing 

technologies and probing questions to help students develop a general method for solving 

trigonometric equations, starting with a straightforward example, 2sin x + 3 = 0 for 

π20 ≤≤ x . He emphasised the critical importance of attending to the domain, as this tells 

us how many solutions there are. Using his laptop computer and portable data projector, 

Brian launched the Autograph program and displayed the graph of y = 2sin x + 3  shown 

in Figure 2. 

 

Figure 2. Graph of y = 2sin x + 3 . 

The students also drew the graph using their graphics calculators, and observed that there 

are two roots. Brian then announced that they needed to “go into the algebra world”, and 

through careful questioning he led the class through the algebraic process of “unwrapping” 

the equation. Upon reaching the conclusion that sin x = −
3

2
, the students were reminded 

that they needed instantly to recognise the exact trigonometric ratios for certain angles, in 

this case �60  or 
π

3
 radians. Brian explained that “the negative sign tells us a story too”, and 

he guided the students through sketching the unit circle and locating the relevant angles in 

the third and fourth quadrants as 
4π

3
 and 

5π

3
 respectively. The students then used the 

graphics calculator TRACE function to give meaning to the solutions by entering them as 

x-values and observing that the corresponding y-values were zero in both cases: in other 

words, they had found the points where the curve cut the x-axis. 

Brian’s knowledge and beliefs – his Zone of Proximal Development – were the driving 

force that led him to integrate technology into his inquiry-based approach to teaching 
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mathematics. When graphics calculators became available in the mid-1990s he attended 

several professional development workshops presented by teachers in other schools who 

had already developed some expertise in this area. More recently he won a state 

government scholarship to travel overseas and participate in conferences that introduced 

him to other types of technology resources. Apart from these instances Brian has rarely 

sought out formal professional development, preferring instead to “sit down and just work 

through it myself”. His Zone of Promoted Action, representing sources of assistance for his 

own learning about technology, is thus highly selective and focused on finding coherence 

with his personal knowledge and beliefs. 

In the 17 years that Brian spent at his previous school he was able to fashion a Zone of 

Free Movement, or professional context, that gave him the human and physical resources 

he needed to teach innovatively with technology. However, when he arrived at his current 

school at the start of 2006 he found little in the way of mathematics teaching resources – 

“there was a lot of stuff here but it was just in cupboards and broken and not used, and not 

coherent, not in some coherent program”. Mathematics students in this school were not 

accustomed to technology, even though the use of computers or graphics calculators is 

mandated by the senior secondary mathematics syllabuses. At the start of the year there 

were no class sets of graphics calculators and only a few students could afford to buy their 

own. Because of timetabling and room allocation issues it was also difficult for 

mathematics classes to gain access to the school’s computer laboratories. Exacerbating the 

problems of limited access to technology resources was an organisational culture that Brian 

diplomatically described as “old fashioned”. Almost none of the mathematics teachers 

appeared interested in learning to use technology, and it appeared that an atmosphere of 

lethargy had pervaded the mathematics department for many years. Students demonstrated 

a similarly passive approach to learning mathematics, expecting that the teacher would “put 

the rule up and example up and set them up and away they go”. Brian responded to these 

challenges in several ways. First, he lobbied the newly appointed Principal for funds to buy 

software for the computer laboratories and a data projector for installation in his 

mathematics classroom. Secondly, he took advantage of the loan schemes operated by 

graphics calculator companies to borrow some class sets of calculators. He also used his 

influence as Head of Department to secure a limited number of timetable slots for senior 

mathematics classes to use the computer laboratories. Brian knows that the Principal is 

strongly supportive of his teaching philosophy and his plans for expanding the range of 

technology resources in the school. 

Brian evaluates the adequacy of his present Zone of Free Movement, or professional 

context, by looking through the inquiry-based, technology-rich lens created by the 

relationship between his ZPD (knowledge and beliefs) and ZPA (previous professional 

learning). By the end of this first year at his new school, Brian identified his priorities for 

re-shaping the ZFM as continuing to advocate for the purchase of more technology 

resources and helping his staff become comfortable and confident in using these resources. 

He acknowledges that the main obstacles are lack of funds and a teaching culture that 

resists change.  

Conclusion 

The research reported in this paper is beginning to examine relationships between 

factors known to influence the ways in which teachers use technology to enrich secondary 

school mathematics learning. Our findings so far are consistent with results of other studies 
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of educational uses of technology in highlighting the significance of teachers’ beliefs, their 

institutional cultures, and the organisation of time and resources in their schools (e.g., 

Windschitl & Sahl, 2002). Although access to technology is an important enabling factor, 

the profiles of Susie and Brian demonstrate that teachers in well resourced schools do not 

necessarily embrace technology (compared with Cuban, Kirkpatrick, & Peck, 2001), 

whereas teachers in poorly resourced schools can be very inventive in exploiting available 

resources to improve students’ understanding of mathematical concepts. 

The opportunities that teachers provide for technology-enriched student learning are 

affected by ways in which they interpret and analyse problems of practice. How do teachers 

justify and enact decisions about using technology in their classrooms? How do they 

negotiate potential contradictions between their own knowledge and beliefs about the role 

of technology in mathematics education and the knowledge and beliefs of their colleagues? 

How do they interpret aspects of their teaching environments that support or inhibit their 

use of technology? These questions, when framed within a sociocultural perspective, allow 

us to investigate systematically conditions affecting teachers’ use of technology in 

mathematics classrooms through the application of Valsiner’s (1997) zone theory – where 

the Zone of Proximal Development represents the possibilities for teacher learning shaped 

by their knowledge and beliefs, the Zone of Free Movement environmental constraints, and 

the Zone of Promoted Action the nature of specific activities that promote new pedagogical 

skills and understanding. 

Both Susie and Brian held productive beliefs about mathematics and the role of 

technology in mathematics learning (ZPDs); however, they differed in the degree of fit 

between their respective ZPDs and ZFMs. For Susie, the Zone of Free Movement offered 

by her school was most important in allowing her to explore technology-enriched teaching 

approaches consistent with her knowledge and beliefs. It may be that the extent of overlap 

between the ZFM and the ZPD is critical in supporting beginning teachers in further 

developing the innovative practices they typically encounter in pre-service programs. On 

the other hand, Brian, as an experienced teacher and Head of Department, relied on his 

knowledge and beliefs about learning with technology to envision the kind of professional 

environment, or ZFM, he wanted to create in his new school. For him, the ZPD/ZFM 

mismatch was a powerful incentive to pursue his goal of technology-enriched mathematics 

teaching and learning. These tentative proposals will be tested as we continue to work with 

Susie and Brian, and the other participating teachers, throughout the remainder of the 

research study. 
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This paper describes a project that supported a group of secondary mathematics teachers in 

implementing the new Queensland Mathematics Years 1-10 Syllabus. The purpose of this 

paper is to evaluate the effectiveness of the professional development model that was used 

to assist teachers move towards an investigative approach to “working mathematically”. The 

model integrates a zone-theoretical approach to understanding teacher learning into a 

framework for designing professional development of mathematics teachers. The 

effectiveness of the model is evaluated via case studies of teachers’ professional learning 

throughout the project and examination of the impacts on their teaching and assessment 

practices. 

Background  

Like all other key learning area syllabuses in Queensland, the recently published 

Mathematics Years 1-10 Syllabus (Queensland Studies Authority, 2004) has an outcomes 

focus that gives it a different structure from syllabuses previously developed in this state. 

Instead of specifying what should be learned in particular years or grades of school, the 

mathematics syllabus is organised around (a) overall learning outcomes that collectively 

describe attributes of lifelong learners, (b) key learning area outcomes that describe how 

students think, reason, and work mathematically, and (c) core learning outcomes that 

describe what students should know and do with what they know in the strands of Number, 

Patterns and Algebra, Measurement, Chance and Data, and Space. The challenge for 

teachers implementing the new syllabus lies not only in using the new structure for 

curriculum planning, but also in designing learning experiences and assessment tasks that 

take an investigative approach to “working mathematically”.  

An investigative approach to the teaching and learning of mathematics aligns with 

curriculum reform movements in mathematics education (e.g., National Council of 

Teachers of Mathematics (NCTM), 2000; Australian Education Council, 1991). 

Contrasting a traditional rule-based, skill mastery approach to teaching of mathematics, 

reformist goals include promoting students’ communication skills and problem solving 

capacities, and enabling students to experience the actual processes through which 

mathematics develops (e.g., conjecture, generalisation, proof, refutation) (Australian 

Education Council, 1991). These goals resonate with the key learning area outcomes of the 

Queensland Mathematics Years 1-10 Syllabus, which emphasise reasoning, problem 

solving, communication, and investigation. The importance of an investigative approach to 

teaching of mathematics has been highlighted in recent classroom based research. For 

example, the TIMSS Video Study (Hollingsworth, Lokan, & McCrea, 2003) revealed that 

in Australian classrooms there was little emphasis on developing deep understanding of 
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mathematical concepts or the connections between them. Stacey (2003) described this 

cluster of features as constituting a syndrome of shallow teaching, where students 

experience a diet of excessive repetition and problems of low complexity, with very few 

opportunities for mathematical reasoning. Similar findings were reported by the 

Queensland School Reform Longitudinal Study (Lingard et al., 2001), a large scale 

research project involving observations of nearly 1000 lessons across all secondary year 

levels and subject areas. Mathematics lessons were often found to offer low levels of 

intellectual quality and connectedness, suggesting that students were given few 

opportunities to develop higher order thinking and deep understanding, and to appreciate 

connections between mathematics and the real world. The QSRLS also found that teachers 

often set assessment tasks that were low in intellectual demand and unconnected to the 

world outside school. 

Implementation of the Queensland Mathematics Years 1-10 Syllabus asks teachers to 

expand their pedagogical and assessment repertoires to include more investigative 

approaches to “working mathematically”; yet research has revealed how difficult it is for 

teachers to change their practices to enact curriculum reform (Remillard & Bryans, 2004). 

This paper reports on a research and development project that supported secondary school 

teachers in planning and implementing mathematical investigations, consistent with the 

intent of the new Queensland syllabus. The purpose of this paper is to evaluate the 

effectiveness of the professional development model that was used to support an 

investigative approach to mathematics teaching and assessment. 

Designing the Professional Development Model 

Previous research by Goos (2005a, 2005b) investigated how teachers learn from 

experience in complex environments, using a theoretical model that re-interprets and 

extends Vygotsky’s concept of the Zone of Proximal Development (ZPD) to incorporate 

the social setting (Zone of Free Movement, ZFM) and the goals and actions of participants 

(Zone of Promoted Action, ZPA). In this model, the ZPD represents teacher knowledge 

and beliefs, and includes teachers’ disciplinary knowledge, pedagogical content 

knowledge, and beliefs about their discipline and how it is best taught and learned. The 

ZFM represents constraints within the professional context. These may include teacher 

perceptions of student background, ability and motivation, curriculum and assessment 

requirements, access to resources, organisational structures and cultures, and parental and 

community attitudes to curriculum and pedagogical change. The ZPA represents the 

sources of assistance available to teachers that define which teaching actions are 

specifically promoted. This assistance is typically provided by colleagues and mentors in a 

school or by formal professional development activities. To understand teacher learning, it 

is necessary to investigate relationships between these three zones of influence. 

Much is known about designing effective professional development to bring about 

changes in the way that mathematics is taught in schools (Mewborn, 2003). Change is a 

long term, evolutionary process that can be supported by giving teachers opportunities to 

engage with mathematical concepts and focus on their own students’ thinking as they 

struggle to understand these concepts. Professional development is most effective when it 

occurs in school-based contexts so teachers can try out and validate ideas in their own 

classrooms. Teachers also need time and opportunities to discuss pedagogical and 

curricular issues with supportive colleagues as they attempt to implement new practices. 
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Loucks-Horsley, Love, Stiles, Mundry, and Hewson (2003) created a framework for 

designing professional development that incorporates the research findings outlined above, 

and captures the decision making processes that are ideally involved in planning and 

implementing programs (shaded boxes and “bubbles” in Figure 1). 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Design framework for professional development. 

The planning sequence begins with teachers making a commitment to enhance teaching 

and learning, thus acknowledging that a tension exists between the current reality and the 

vision of mathematics teaching offered by new curriculum documents. In practice, it is not 

always feasible to delay the start of the professional development program until a whole 

school or group of teachers has established a shared commitment; instead the process of 

developing this commitment and vision can continue throughout the program and is 

iterative with other phases of the design. Teacher knowledge and beliefs are an important 

input into this phase (cf the ZPD discussed above). Analysis of student learning data 

sharpens the focus on setting targets for improvement and establishing goals for teacher 

learning and development. It is important here to study the context in order to know who 

the students are and what teachers know and believe, to identify significant features of the 

learning environment, and to understand the school’s organisational structures and cultures, 

the local curriculum context, and the views of parents and the community members (cf the 

ZFM discussed above). The framework suggests anticipating critical issues at the goal 

setting phase because each of these issues can influence the effectiveness of the program at 

some point. Planning for professional development can then draw on a wide range of 

strategies to achieve desired goals (cf the ZPA discussed above). 

For this project, we took the Loucks-Horsley et al. (2003) design framework for 

professional development and considered other literature on effective professional 

development to plan an overall strategy that is best described as action research. The five 

key elements of action research (as identified by Loucks-Horsley et al., 2003) guided 

implementation of the professional development model. The key elements emphasise the 

need for teachers to own the research project in order for real change to be actualised. They 

include: (1) teachers devising their own research questions; (2) teachers engaging in the 

action research cycle; (3) teachers linking with external support mechanisms; (4) teachers 

working collaboratively; and (5) teachers sharing and disseminating their project with 

peers. Table 1 summarises how our approach in this project attended to these five key 

elements.  

We envisioned the project as a series of iterative cycles, with teachers coming together 

to discuss their school-based plans and meet other project teachers, then return to their 
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schools to implement investigative units of work in mathematics, then meet together with 

project teachers to share their experiences and plan further units of work, as well as an on-

site visit to all teachers’ classrooms to gain insight into their classroom and school context.  

Table 1 

Relationship Between Action Research Elements and Project Design 

Elements of action research Project design 

Teachers contribute to or formulate their 

own questions, and collect the data to 

answer these questions. 

Teachers would be encouraged to identify goals relevant to their 

learning needs and professional context. 

Teachers use an action research cycle (set 

goals, plan, implement, evaluate). 

The action research cycle integrates our zone-theoretical model 

of teacher learning with the Loucks-Horsley et al. (2003) 

framework for designing professional development. 

Teachers are linked with sources of 

knowledge and stimulation from outside 

their schools. 

The research team would act as a resource for teachers, 

providing literature on mathematics teaching and assessment as 

well as exemplary tasks, and advice on collection and analysis 

of student data. 

Teachers work collaboratively. A pair of teachers would be invited to volunteer from each 

school so each participant would have continuous collegial 

support. Pairs would be brought together for professional 

development meetings with the researchers. 

Learning from research is documented and 

shared. 

Teachers would present their work at conferences organised by 

Education Queensland and attended by key personnel involved 

in supporting syllabus implementation. 

Sources of data to analyse the effectiveness of the project would need to include 

information about the contexts of the teachers. An audio-taped whole-group interview, 

where teachers described their teaching situation as well as their personal mathematics 

teaching history, was planned for the first meeting with the teachers. They would also be 

asked to complete a Mathematical Beliefs Questionnaire (Frid, 2000) comprising 40 Likert 

style items about the nature of mathematics, mathematics teaching and mathematics 

learning. Other planned data sources included the teachers’ units of work and student work 

samples, as well video-taped footage of their classrooms.  

Implementing the Professional Development Model 

Schools in the region in which the study took place were invited to participate in the 

project. Schools were specifically requested to nominate pairs of teachers so that they could 

support each other throughout the project. It was also requested that teachers voluntarily 

come to this project. The four pairs of teachers who volunteered to participate in the project 

were from four schools in or near a regional Queensland city. Two schools were in this 

regional city (Cunningham and Churchill State High Schools), one was in a small rural 

town nearby (Sugartown State High School), whereas the fourth school was located in a 

coastal resort approximately 125 km from the regional centre (Seaside State High School). 

We made three visits to this city to work with the whole group of teachers, in the period 

from October 2005 to February 2006, each time for two consecutive days. The venue for 

these meetings was a well equipped computer laboratory in one of the participating 

schools. 

On our first visit to work with the teachers (October 2005) we gathered information 

about their knowledge and beliefs and their professional contexts via the Mathematical 
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Beliefs Questionnaire and the structured audio-recorded whole group interview. This 

enabled us to map their respective Zones of Proximal Development and Free Movement. 

The first meeting was also aimed at helping the teachers to identify their personal goals for 

the project, to demonstrate ways to collect data on their students’ beliefs and attitudes 

towards mathematics, and to provide time and support for them to begin planning units of 

work to implement in their classrooms. We also wanted to engage these teachers as 

learners in mathematical investigations on these meeting days. As a source of assistance 

that was deliberately promoting new teaching approaches (Zone of Promoted Action), the 

professional development model recognized the importance of providing teachers with 

authentic, practice-based learning opportunities that included examples of mathematical 

investigations, opportunities to experience these investigations as learners themselves 

before planning their own investigations and trying them out with their students, and 

opportunities to share their ideas and experiences with colleagues, including the challenges 

encountered and their insights into the process. On each of the meeting days, the teachers 

were provided with some ideas for investigative approaches in particular topics in 

mathematics. Teachers were also encouraged to share their own ideas of investigative units 

that they used with their own classes.  

In the second visit (November 2005), we facilitated a debriefing discussion of 

successes and problems each teacher had experienced in implementing their new 

investigative units. We also modelled the development of assessment criteria for 

mathematical investigations, and assisted teachers with planning units of work for the start 

of the 2006 school year. By the third visit (February 2006), sufficient familiarity and trust 

had been established for us to visit the pairs of teachers in their schools to observe and 

discuss implementation of the investigative units. The first author visited Sugartown State 

High School, the second author Churchill and Cunningham, and the third author Seaside. 

We observed and videotaped at least one lesson during each school visit, and the researcher 

and teachers then discussed the lesson while watching the video together. This discussion 

was audio-recorded for later review and analysis. On the second day of this visit we 

conducted a whole group discussion to evaluate the project and identify implications for 

extending similar professional development opportunities to teachers in other schools. 

Data collected during the project, which comprised interview records, completed 

questionnaires, videotapes and field notes of lessons, student work samples, and teacher 

planning documents, were analysed by interpreting the particular circumstances under 

which elements of the professional development model (Figure 1) were “filled in” with 

specific people, actions, places, and meanings. 

Effectiveness of the Professional Development Model 

We evaluated the effectiveness of the professional development model by examining 

how the teachers negotiated opportunities and hindrances in pursuing investigative 

approaches to mathematics teaching and assessment. Relevant information is summarised 

in Figure 2.  

From Figure 2, it can be seen that the four pairs of teachers came from quite contrasting 

school contexts, with three pairs of teachers being rated as having student-centred beliefs 

and one pair having teacher-centred beliefs. Three of the schools had quite structured and 

traditional approaches to teaching of mathematics, with one school having a very flexible 

approach.  
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Schools and Teachers 
Element of 

PD Model Sugartown 

Skye & Chris 

Seaside 

Val & Shanti 

Cunningham 

Peter & Ron 

Churchill 

Tony & Ralph 

Knowledge 

& beliefs 

(ZPD) 

Qualified in maths & 

maths ed. 

Student-centred 

beliefs 

Mixed quals in maths 

& maths ed. 

Student-centred 

beliefs 

Qualified in maths & 

maths ed. 

Student-centred 

beliefs 

Mixed quals in 

maths & maths ed. 

Teacher-centred 

beliefs 

Professional 

context 

(ZFM) 

Low achieving Ss 

Poorly resourced 

Classes streamed 

HOD supportive of 

change 

Low SES 

Little parental 

support for school 

Test & textbook 

dominated practices 

Poorly resourced 

Classes streamed via 

frequent tests 

Organisational 

culture resistant to 

reform approaches 

High achieving Ss 

take Project Maths 

extension  

Other subjects use 

traditional methods 

Well resourced 

Flexible timetable 

Ts plan & teach 

together 

School has strong 

academic reputation 

Lecture approach + 

streamed classes  

Other Ts resistant to 

change 

Tony as HOD of 

Middle Years seeks 

curriculum reform 

Goals Engaging learners in 

meaningful 

mathematics 

Making assessment 

more authentic and 

practical 

Making Project 

Mathematics 

mainstream 

Integrating maths 

with other KLAs 

Figure 2. Teacher characteristics, contexts, goals, and longer term impact. 

Beyond the information presented in Figure 2, the following summary describes the 

context and beliefs of the four pairs of teachers when they first started in the project. 

Skye and Chris: student-centred beliefs, teaching in a school that has little parental 

support and low achieving students. However, at this school, a new Year 8 class of students 

who demonstrated low mathematics outcomes had been created, and the project felt 

supported at their school to try new approaches with this class. 

Val and Shanti: student-centred beliefs, teaching at a school where traditional 

approaches to mathematics teaching were expected. These two teachers felt that there was a 

better way to teach mathematics than what was expected at their school. They felt 

comfortable trying new ways of teaching in their own classrooms, but felt their fellow 

mathematics teachers disapproved of such approaches. 

Peter and Ron: student-centred beliefs, were already implementing a mathematics 

program which took an investigative approach with extension classes. The goal for these 

two teachers was to try to make their investigative maths classes integrate into the 

mainstream classes. 

Tony and Ralph: teacher-centred beliefs, high academic student outcomes. Although 

these two teachers came from the same school, they had quite different reasons for 

volunteering for the project. One was a science teacher who had just been made middle 

years coordinator. This teacher wanted to support fellow teachers in the middle years to 

take a more integrated approach to teaching. The second teacher was teaching a low 

achieving Year 9 mathematics class and he was hoping to develop new approaches for 

engaging these learners.  

Information in Figure 2 highlights the diversity of professional contexts featuring 

potentially helpful and unhelpful influences on the teachers participating in the project, 

however, it does not show how these influences interacted to either support or hinder 
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teacher learning. Therefore, an example of such interactions is provided in the abbreviated 

case study that follows.  

Case Study of Teacher Learning: Skye and Chris  

Skye wanted to take a more investigative approach to teaching her new Year 8 Practical 

Mathematics class of students who were not achieving success in regular mathematics 

classrooms. Chris was mainly teaching senior classes and wanted help in planning new 

programs and devising new forms of assessment. Questionnaire responses revealed that 

they both held similar beliefs about the nature of mathematics, and mathematics teaching 

and learning. For example, they agreed that there are many ways of interpreting and solving 

a problem, and that it is important to encourage students to build their own mathematical 

ideas. However, other responses showed they were uncertain about the benefits of more 

traditional approaches such as memorisation and practice. This suggests that Skye and 

Chris were interested in moving towards more student-centred, investigative teaching 

practices, but that they needed to try out these practices with their own classes to find out 

whether this would lead to improved learning. 

Skye and Chris stated that the most frustrating obstacle in their professional context 

was the students themselves, and their apparent lack of interest in learning. This was 

evident in the students’ disruptive and uncooperative behaviour, and their frequently stated 

belief that they were “dumb” and simply could not do mathematics. The experience of 

teaching unmotivated students led these teachers to formulate a goal of engaging learners, 

or, as Skye explained, “for them to learn maths without being terrified of it”. Both saw 

investigations as a way of presenting mathematics differently that would allow them to 

make mathematics more interesting for students by engaging them in purposeful tasks with 

real world relevance. 

With full support of their Head of Department, Skye and Chris decided to team-teach 

the Practical Mathematics class and their teaching timetable was altered to enable this to 

occur. Skye and Chris’s first unit of work asked students to investigate whether it is more 

economical to buy groceries in Sugartown or drive to the larger regional centre nearby. 

After reflecting on the mixed outcomes of their first unit, they then planned a unit that they 

hoped would more closely connected to students’ lives. Their “School Rage” investigation 

asked students to create a Top 20 song list for the school radio station, based on a survey of 

students attending the school. To make the task more realistic, a letter from the “radio 

station manager” (one of the mathematics teachers) was given to the students asking for 

assistance in designing a new radio program similar to the Rage Top 20. The group 

submitting the best quality report would have their Top 20 songs played on the radio 

station during a designated lunchtime. Thus the task had an authentic purpose and a real 

audience comprising the entire school community. Core learning outcomes embedded in 

this task related to designing and carrying out data collections, using data record templates, 

organising data and creating suitable displays, making comparisons about data, and 

working with whole numbers, fractions and percentages. 

Classroom observations confirmed the teachers’ judgment that students were deeply 

engaged in the investigation. Overheard comments suggested that the students welcomed 

this new approach. In their own evaluation of the units, Skye and Chris not only identified 

the benefits for the students (engagement, confidence, alternative opportunities to 

demonstrate their learning) but also the challenges the new approach presented to them. 

They were now spending more class time responding to unanticipated ways students 
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tackled investigations, often by asking questions to scaffold students’ thinking, such as 

“What does it mean if you include the same person twice in your survey?” and “What if 

this person votes for two different songs?” Skye pointed out that she welcomed such 

unexpected responses as she regarded it as a sign of growth of sophistication in students’ 

thinking. 

Skye and Chris identified several reasons why they had been successful in 

implementing an investigative approach. They often emphasised the importance of taking 

into account the students’ prior experience and interests, and the local context of the school 

and community. Access to sample investigations was critical, as was access to human 

resources in the form of a supportive school administration team, a network of like minded 

mathematics teachers across the schools participating in the project, and their teaching 

partner. Planning and teaching as a team, rather than individuals, was a significant benefit 

for both teachers because they recognised that this reduced their workload, expanded their 

repertoire of teaching strategies, and provided opportunities for mutual observation and 

feedback. Skye and Chris’s professional learning experience is summarised by the 

relationships between their knowledge and beliefs (ZPD), professional context (ZFM), and 

sources of assistance (ZPA), shown in Figure 3. Although they experienced hindrances 

within their professional context, productive tensions between aspects of the context and 

their pedagogical beliefs led them to formulate and pursue the goal of engaging learners. 

Discussion 

Our evaluation of the professional development model was guided by the zone-

theoretical model of teacher learning outlined earlier in the paper. For each of the four case 

studies of pairs of teachers, we were able to identify a different configuration of teacher 

knowledge and beliefs (Zone of Proximal Development), professional contexts (Zone of 

Free Movement), and sources of assistance (Zone of Promoted Action), and how these 

factors came together to shape opportunities for teacher learning. A sample case study 

illustrated one such configuration. Although there were some differences in the teachers’ 

espoused beliefs about mathematics and how it is best learned and taught, all of them came 

to the project looking for inspiration and ideas about taking a more investigative approach 

to their classroom practice, and some were already experimenting with investigative 

approaches to mathematics teaching. Nevertheless the teachers commented that it was 

unlikely significant change would have occurred without the impetus provided by this 

project, because the opportunity to participate validated the changes in teaching and 

assessment practices that they wanted to achieve. The credibility and authority they gained 

from participation were vital for helping them deal with relatively inflexible organisational 

structures and resistance from more traditionally minded mathematics teachers in their 

schools. Several of the teachers also commented that working with university researchers 

had enhanced their status as professionals in the eyes of their colleagues. Although these 

teachers worked in diverse professional contexts that offered both opportunities for, and 

hindrances to, innovation, all were able to draw on their knowledge and beliefs and the 

sources of assistance available to them to plan and implement teaching approaches 

consistent with the intent of the new syllabus. 
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Figure 3. Relationships between professional learning factors for Skye and Chris. 

With regard to the professional development model, three clusters of features seemed 

to contribute to the overall outcomes of the project. The first cluster centres on professional 

development processes involving formulation of realistic goals, provision of long term 

experiences rather than one-off workshops, and opportunities for teachers to teach and 

assess student learning during the units implemented. A second cluster of features 

acknowledges the resources required, such as curriculum materials that align with the 

syllabus, time for planning and reflection with colleagues, and administrative support and 

commitment. The third set of features focuses on roles and relationships, such as the 

voluntary nature of teachers’ participation, acknowledgement of the equal but different 

contributions made by teachers and researchers, and the importance of broadening 

participants’ perspectives beyond the scope of classroom or school. 

Conclusion 

Loucks-Horsley et al. (2003) identify several critical issues that must be taken into account 

when planning a professional development program, preferably in the goal setting phase 

(see Figure 1). Although we were conscious of these issues throughout the project, their 

influence is best analysed by looking to the future and asking how might we improve on 

the conduct of this project in the light of our experiences and what are the implications for 

extending similar professional development opportunities to secondary mathematics 

teachers in other schools. One critical issue concerns the need for building a professional 

culture characterised by a strong vision of learning and collegial interactions between 

teachers. A second issue involves developing leadership in teachers who have the capacity 

to improve the quality of teaching and learning in their schools. Often the most powerful 

leadership exercised by teachers is simply in modelling new practices for colleagues to 

demonstrate that they actually work with students. Building capacity for sustainability is 

necessary to ensure that any changes achieved within the life of a professional development 

Teacher knowledge & beliefs (ZPD): 

• Well qualified in mathematics and 

mathematics education 

• Mathematical beliefs are student-

centred and non-rule based 

Sources of assistance (ZPA): 

• Project offered immersion in 

mathematical investigations, support for 

curriculum implementation in school, 

collaborative professional partnerships 

Professional context (ZFM): 

• Low achieving students, lacking confidence, 

streamed into Practical Mathematics in Year 8 

• Limited access to material resources 

• Yrs 1-10 mathematics syllabus supports 

investigative approach  

• HOD arranged timetables to allow teachers to 

plan together and team teach 

• Little parental support for children’s learning 

Support for development of new teaching approaches was 

consistent with teacher knowledge & beliefs 

Productive tensions 

between beliefs, 

student characteristics, 

and syllabus led to 

formulation of goals 

Investigative approach was 

feasible in context because of 

“nothing to lose” approach 

to student learning & HOD’s 

organisational support for 

team teaching 
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project are sustained after it ends. Similarly, scaling up is a vital concern for education 

systems as teachers and school districts implement new teaching and learning approaches. 

Finally, gaining public support for mathematics education is necessary for building 

consensus around curriculum and pedagogical reform, thus leading to a more informed 

public understanding of effective methods for teaching mathematics and of the role of 

mathematics in preparing young people for productive work, leisure, and citizenship. 
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In writing this paper we draw considerably on the work of Jo Boaler and Leone Burton. 

Boaler’s studies of Railside have been particularly poignant in alerting the mathematics 

education community to a number of key features of successful classrooms, and how such 

features can turn around the successes for students who traditionally perform poorly in 

school mathematics. This is supplemented by the more recent work of Leone Burton who 

worked extensively with research mathematicians in order to understand their communities 

and ways of working. Collectively these two seminal works provide valuable insights into 

potential ways to move the field of school mathematics forward. In times where there is 

international recognition of the plight of school mathematics, there is a need for new 

teaching practices that overcome the hiatus of contemporary school mathematics.  

For a long time now we have known that there have been serious problems with 

mathematics participation and engagement. The desperate situation facing mathematics has 

been highlighted recently in Australia by two significant reviews into the mathematical 

sciences: 

1. Statistics at Australian Universities (Statistical Society of Australia, 2005) 

2. Mathematics and Statistics: Critical Skills for Australia’s Future (Australian 

Academy of Science, 2006). 

Although these reviews were conducted in Australia, a similar story has emerged around 

the world and it is now approaching a crisis situation. In theses reviews, particular attention 

has rightly been given to school mathematics and the problems of non-engagement with an 

increasing number of students in higher level courses of mathematical study. That said, we 

have known for a long time that mathematics has been unpopular and disliked through the 

many descriptive studies that have been undertaken since the 1970’s, and yet the problems 

appear to grow unabated and little progress has been made to arrest the decline. At this 

critical point we want to suggest that it is time to move on from studies that repetitively 

show that mathematics is suffering from a “poor image” and a “lack of friends”, and to try 

and look forward by offering some positive directions to arrest the decline. To advance this 

agenda we need more than good ideas that seemed to have worked in a particular context; 

we need to begin developing a theoretical, robust framework that will address these 

concerns in a coherent and holistic fashion. In this paper we have drawn on the seminal 

works of Burton and Boaler to consider mathematical learning from both the discipline 

knowledge and the mathematical activity perspectives. After reviewing Burton’s findings 

from her study with research mathematicians we briefly highlight some relevant points 

from Boaler’s study of Railside. After presenting an example from teacher education we 

finish by employing the metaphor of a “dance of agency” (Pickering, 1995) to discuss 

mathematics learning, particularly in the light of the current crisis. 
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The Practice of Mathematicians 

The two recent reviews of mathematical sciences in Australia mentioned earlier both 

made significant comment and recommendations for school mathematics education. 

Interestingly, the authors of these reports were mathematical scientists and there appeared 

to be little input from mathematics educators and mathematics teachers. Although this is 

problematic, it does perhaps highlight the gap that seems exist between mathematicians 

and statisticians, and teachers and educators. This is unhealthy and if the current decline in 

participation and interest in mathematics is to be arrested then these groups need to engage 

in dialogue and mutual projects. To this end, the work of Burton (1999, 2001, 2002) is 

helpful because her research explored the practices of research mathematicians and their 

implications for the learning of mathematics. 

In 1997, Burton studied the practices of 70 research mathematicians in Great Britain 

and one of the key features she identified was the collaborative nature of their practice. The 

benefits for collaborating included practical (e.g., sharing the work), quality (e.g., greater 

range of ideas on problems), educational (e.g., learning from one another) and emotional 

(e.g., feeling less isolated) reasons. Clearly working together with other mathematicians 

was seen as important, but there appeared to be a distinction between the public perception 

of mathematics as a lonely enterprise and the reality of mathematicians’ practice where 

collaboration is highly valued. 

Perhaps another anomaly from public perception was Burton’s finding that 

mathematicians have emotional, aesthetic, and personal responses to mathematics. 

… although knowing when you know is extremely important, you have to live with uncertainty. You 

gain pleasure and satisfaction from the feelings that are associated with knowing. These feelings are 

exceptionally important since, often despite being unsure about the best path to take to reach your 

objective, because of your feelings you remain convinced that a path is there. … This is particularly 

poignant in the light of the picture painted of mathematics as being emotion-free … (Burton, 1999, 

p. 134) 

The mathematicians in her study highlighted the power of the “aha!” moment and the joy 

of mathematical discovery, revealing the clear link between mathematics and those who 

produce it. Allied to their emotional responses to their mathematical practice were aesthetic 

reactions. They described mathematics in terms such as “wonder”, “beauty”, and “delight” 

and these personal responses provided motivation for continued engagement and fuelled a 

passion for the discipline of mathematics. Davis and Hersh (1998, p. 169) lamented that 

“blindness to the aesthetic element in mathematics is widespread and can account for the 

feeling that mathematics is dry as dust, as exciting as a telephone book …”. 

Another feature of research mathematicians practice was the importance of intuition or 

insight. Although the mathematicians were less than clear in describing what intuition 

and/or insight were, they were unambiguous in highlighting their importance in their 

mathematical practice. The suggestion was that intuition can be developed through the 

application of knowledge and experience in mathematical discovery and reflection upon 

such investigations. 

Burton highlighted other features of the practice of mathematicians including the desire 

to seek and see rich connections between the various branches of mathematics and between 

mathematics and other disciplines, but her other main agenda was to highlight the 

pedagogical implications of her findings. Throughout her reports Burton highlights the 

distinction that is evident between the work and learning practices of research 

mathematicians, and the learning experiences of mathematics students at almost all other 
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levels from preschool to undergraduate degrees. This led her to assert that “we have a 

responsibility to make the learning of mathematics more akin to ho” in the absence of any 

student’s need to know” (Burton, 2001, p. 598). Even at a very general level, this would 

require mathematical pedagogy to be characterised by collaboration and group work with 

attention paid to the emotional, aesthetic, and intuitive dimensions of the discipline. This 

encompasses the “doing” of mathematics that has been under-emphasised in education as it 

has focussed on the “knowing” of mathematics. Indeed, perhaps an issue with the 

educational recommendations in the Australian review of mathematical sciences was the 

emphasis on mathematical content knowledge that can be taught largely through a 

transmission model. On this point Boaler (2003) commented: 

There is a widespread public perception that good teachers simply need to know a lot. But teaching 

is not a knowledge base, it is an action, and teacher knowledge is only useful to the extent that it 

interacts productively with all the different variables in teaching. Knowledge of subject, curriculum, 

or even teaching methods, need to combine with teachers’ own thoughts and ideas as they too 

engage in something of a conceptual dance. (p. 12) 

In her seminal work in England, Boaler (1997) explored the mathematical practices of 

teachers and students in two different sorts of mathematics classrooms. In one group of 

classes, the mathematical pedagogy was “traditional” and the students learned standard 

algorithms through worked examples and textbook exercises. The other classrooms were 

characterised by open-ended projects, group work and discussion. Not surprisingly, she 

found that the students by and large learned a form of mathematics that was consistent with 

the mathematical epistemology and pedagogy of their classroom experiences. However, in 

general the students in the “non-traditional” classes performed better in a range of 

assessment tasks and overall they developed more positive attitudes towards the subject 

and a stronger sense of their own mathematical identity. Although the detail is light here, it 

seemed in short that the experiences of the students in the non-traditional classrooms were 

akin to the mathematical practices of research mathematicians outlined above.  

The Dance of Agency 

The claims of Burton and the classroom evidence of Boaler (2003) together seem to 

make a strong case for considering the learning of mathematics to be like “working as a 

mathematician”.  Conceptually, this requires engaging in what Pickering (1995) calls a 

“dance of agency”. In studying the practices of research scientist and mathematicians he 

noted that they choreographed a complex routine where at times they drew on their own 

agency as scientists or mathematicians, and yet at other times they would concede authority 

to the agency of their discipline and associated community of practice. This is like the 

interplay between the activity of mathematics and the content knowledge of mathematics 

that was highlighted earlier and rather than seeing the practice or knowledge-base being 

supreme, it reveals dialectic interdependence where the mathematician (at any level) 

requires both to meaningfully and to successfully engage in the mathematical enterprise. 

Likewise, teachers too need to engage in a dance of agency where they appraise and decide 

when to encourage and support the students’ own agency as mathematicians and when to 

defer to the authority of the disciple (e.g., the requirement to follow a standard procedure or 

form of presentation). It worth noting that mathematicians do defer to the agency of the 

discipline in their practice and it is this authority that is credible in a mathematics 

classroom. However, in traditional mathematics classrooms the authority usually resides 

Mathematics: Essential Research, Essential Practice — Volume 1

337



with the textbook and the teacher, both of which are temporary aspects of students’ 

mathematical development and they do not endure as the discipline itself does. 

Boaler’s use of the dance of agency in her recent work (Boaler, 2003) illustrates the 

importance of learning having a robust and empowering identity in relation to mathematics. 

Knowing how and when to draw on mathematical ideas to solve problems is a critical part 

of the dance of agency. Boaler used examples of learners who could not solve tasks but 

drew on a range of skills, knowledge, and collective wisdom in order to solve such 

problems.  This process is akin to that identified in Burton’s work with research 

mathematicians. The practices offered by Boaler and Burton may offer a way forward and 

out of the quagmire of contemporary school mathematics that is being identified by many  

both inside and outside of education. 

In the remainder of this paper, we draw on an example taken from a professional 

development that one of us undertook with a group of primary school teachers.  We argue 

that the level of the learners is not the feature of the analysis as we contend this example 

can be used across all sectors of learning – primary, secondary, and preservice/inservice 

education. Rather, the analysis focuses on the ways of working that are the significant 

aspects of the example.  These provide an illustration of how learners, in this case teachers, 

can draw on previous knowledge to work collectively to achieve a common goal.  

Collectively the goal is attained but not without considerable input from the learners. The 

input varies in form and timing, and helps to illustrate the powerful learning made possible 

when working in ways similar to mathematicians but also having a sense of agency that 

allows for the legitimate use of learners’ understandings that enable the building of deeper 

understandings. However, as Boaler’s work has highlighted, such success is dependent on 

the learners’ sense of identity with mathematics and their sense of agency through which 

they can “dance” between the known and the unknown in order to build deeper 

understandings. It is for this reason we have used this example. After describing and 

illustrating the mathematical practices of these teachers, we draw on their example to 

discuss the features of mathematical classrooms that promote the development of robust 

mathematical identities through an authentic “dance of agency”. We use this illustrative 

example to show how the mathematical identity of learners may be constituted through 

particular practices of mathematics. 

The data provided in the following example are drawn from field notes from the 

professional development activity. The quotes and drawings are those written by the 

observer and are representative of the discussion made by the participants as no formal 

recording tools (tape recorders) were used.  The data were triangulated with participants so 

that they are an accurate summation of the interactions in the workshop. 

Sum of the Interior Angles of an Octagon: A Working Example 

A group of primary school teachers have been working on problems as part of a 

professional development activity. A standard geometry task is provided where they have 

to work out the sum of the interior angles of an octagon. There is some discussion as to 

what an octagon was, and how many sides it had. Once this is clarified, the teachers work 

in small groups.  

 

 

Mathematics: Essential Research, Essential Practice — Volume 1

338



  

I have no idea on how to work this out. 

Well if you look at it you can divide it into triangles. See, there are 

8 triangles. Each triangle has got 180
o
 so to work out what the 

angles are on the bottom of the triangle, you have to work out how 

many degrees are in the top angle there [draws an arrow to the 

centre, see Figure 1]. 

Ah, so that is 360
o
 divided by 8. 

Huh?  

Well you know that there are 360
o
 in a circle [draws a circle 

around the centre] and you can see there are 8 triangles making up 

that circle. 

Figure 1. Octagon and 

eight triangles. 

So, 360 ÷  8 is  [some talk on how to work this out, two teachers use pencil and paper for the 

division] … 45. 

OK now what we have to do is work out how big the other angles are. They are the same size so you 

take 45 from 180 and then divide by 2. 

Why? 

Well there are two angles [points to the two angles at the bottom of one triangle] and we need to see 

how big one is. 

 

The discussion continues so that the group identify the size of one of the interior angles of 

the constructed triangles as being 67.5  

 There is some discussion that it cannot be right as the leader would not have given 

them an angle with a half in it.  Calculations are checked and the answer is seen to the 

correct.  Some then suggests that they have to multiply it by 8 so it would not be a “half 

number” any more. Someone else in the group comments that it can not be right as the 

number they have calculated is less than 90
o
 which would make for a less than “straight 

angle” [assumed to mean a “right angle”].  There is some discussion and movement of the 

shape and then agreement that they have done something wrong.   

I know what it is… that is only half of the angle. See look, we have worked out half of the angle, the 

other part is in the triangle next door. 

You’re right, so the size of one angle is really double what we found so that makes it 135. And that 

is bigger than 90 so we must be right now. 

Ok, then we multiply by 8 and find out what the total size is. 

Someone in the group then multiplies 135 by 8 using a pencil-and-paper method to come to 

an answer of 1080. 

 Once the group has finished, the leader then asks them to find out what it might be 

for a hexagon and some other shapes. The group goes through a similar process, this time 

drawing the hexagon, finding the magnitude of the central angle and then the size of each 

interior base angle.  This is then doubled and multiplied by 6.  At this point, a woman who 

has not contributed to much of the discussion interrupts and poses the following: 
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You know what we are doing… making more work for ourselves. Look at this.  You divided the 120 

by 2 and got the size of the angle inside the triangle and then you doubled it.  We halved and then 

doubled so we have just done the same thing twice.   

The teachers then go on to do two more shapes of their own choosing. The leader then 

poses the problem to see if they can make a prediction for any shape and how would they 

do it. The response is that this means they need to make a formula for the problem. 

 Group one made a table for their results.  

(Figure 2.) Aside from the triangle which they knew 

had 180, they had only made shapes with even 

numbers of sides so that it looked like: 

Hey, look at that you can see a pattern there. Each 

time we go up by 2 sides, it gets bigger by 360. That 

is a square so if we only increased by one side it 

would be getter bigger by 180
o
 – that is a triangle. 

However, this group was unable to move beyond 

this observation to make a more generalisable 

statement. 

 Group two used a similar method and when 

it came to the discussion at the end of the session 

where groups shared their findings, this group 

explained that they found that the pattern was 

“increasing by 180
o
 each time a side was added to a 

shape” but you could not go below 1 triangle as this 

was  the  lowest  point.    One  teacher explained  the            Figure 2. Table of sides,  

generalisation as follows:                                                 angles, and number of triangles. 

We found that what the pattern is that each shape is the number of sides takeaway 2 and then you 

multiply by 180
o
. So if you use a hexagon as the example, you can see that it has 6 sides but if you 

takeaway 2, you have 4 and then if you multiply it by 180 you get the sum of the interior angles. We 

thought you could say it like (number of sides minus 2) and then multiply by 180 so that is (n-2) x 

180.  We checked it out with the others and it worked. So if you use the triangle. It has 3 sides, so 

that is 3-1 and then times 180 so that is 180 and that is right. 

Coming to Understand “Working as a Mathematician” 

In drawing on Burton’s and Boaler’s work, we propose that there are three elements to 

developing a sense of working as a mathematician (see Figure 3). There are the cognitive 

aspects of knowing mathematics and thinking like a mathematician. Burton draws 

considerably on the cognitive features of working mathematically. Both Boaler and Burton 

recognise the importance of the social context within which learning occurs. Railside’s 

community has been strongly influenced by Complex Instruction (Cohen & Lotan, 1997; 

Cohen, Lotan, Scarloss, & Arellano, 1999) in terms of organising the learning 

environment.  Burton draws more closely on the communities of practice literature 

(Wenger, 1998) to theorise her position and where she sees that “knowledge and the 

knower are mutually constituted within these dialogic communities”  (1999, p. 132). 

Collectively the two positions provide a more comprehensive picture of the potential for 

classroom practice. Finally, the focus of both authors, and this paper, is that of 

mathematics.   
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Figure 3. Aspects of working as a mathematician. 

What can be seen in this example are a number of features about working as a 

mathematician. We take from the example used to illustrate aspects of these three 

constructs related to the notion of working as a mathematician and the importance of 

agency in this process.   

Socially 

For us, we define the context within which learning and working is occurring as the 

social dimension. This includes the ways in which the learning environment is organised 

along with the social and cultural dispositions that learners bring to that environment.  

From this example, we can see a number of features that enable learners to work as 

mathematicians.  

Group work.  Being part of a group and working as a collective enabled the teachers to 

share their knowledge, which is often tacit and not well understood. Drawing on this 

example, the teachers did not know the formula and so relied on bringing their collective 

wisdom enabled them to fill in gaps in each other’s knowledge. 

Collaborative talk. The interactions between the participants were focused on the task 

and enabled them to talk through observations.  Having some participants working on the 

task and other observing enabled the observers to gain insights into the actions. In this case, 

one of the teachers was able to “see” that her colleagues were halving and then doubling. 

Being able to provide this input in a non-threatening way to colleagues enabled the group 

to move forward. 

Ethos. The environment established in this session was non-threatening and supportive 

so that learners could actively engage in the active at levels that met their current needs and 

understandings. This ethos has been documented in Boaler’s studies (Boaler, 2002a, 

2002b) as being one that enables learners to participate without threat and hence open up 

opportunities for participation and learning. 

Agency. Participants were able to draw on their own understandings to the situation and 

use these to develop richer understandings that are strongly mathematical. Being able to 

draw on existing knowledge to solve the problem in non-traditional ways, enabled the task 

to be completed but also to allow the participants to gain a strong sense of achievement.  

Task. The design of the task may be seen as quite traditional but the leader deviated 

from those practices often found in classrooms where rote procedures are applied to a range 

of questions and little opportunity is provided to develop richer understandings. 

Cognitively/ 

Affectively 

 

Socially/ 

Culturally 

 

Mathematically 
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Extrapolating the task to find the generalisation enabled the teachers to develop ways of 

thinking mathematically and to construct their own formula/generalisation. 

Working as a mathematician. This aspect of the learning environment is very different 

from the traditional classroom where the format is often as a “consumer” or user of 

mathematics so that mathematics is the end product rather than the product. 

Mathematically 

This aspect of working as a mathematician draws on features that can be considered as 

part of the mathematical content knowledge or the pedagogical content knowledge 

identified by Shulman (1986). These features are often distinctly mathematical and are 

what can be seen to differentiate mathematics from other curriculum areas. Unlike 

traditional classrooms where there is feature of rote-and-drill learning, textbook-based 

exercises and strong teacher direction, mathematicians employ practices that are quite 

different from school mathematics practices.  Some of these are identified in this example.   

Identifying patterns. Creating the table enabled the participants to observe a pattern.  

For some participants, they were only able to describe the pattern but not the 

generalisation.   

Constructing generalisations. Part of working as a mathematician is about making the 

generalisable statement. In this case, the development of a formula for the interior angles of 

a 2-dimensional geometric shape was part of the task.  Unlike traditional mathematics 

classrooms where the generalisation (i.e. the rule) is often the starting point and learners are 

encouraged to practice on examples, this learning enabled the participants to generate their 

own generalisation. 

Using a simple example to test the hypothesis. Once a potential generalisation had been 

developed, the participants applied this to a simple example (the triangle) to check its 

validity. In this case, it worked so it appeared to the participants that the generalisation was 

valid. They also applied the generalisation to the examples that they had worked out (and 

recorded in the table) to check that the generalisation was valid in other examples. 

Identifying Limits. As noted by one group, the limit in this activity was that the shape 

had to have more than three or more sides if the generalisation were to work.   

Cognitively 

Drawing from Burton’s work are aspects of cognition and other features of the internal 

features of working as a mathematician. We have identified particular features of cognition 

and dispositions that are part of the learners’ ways of approaching the tasks. 

Thinking styles. Drawing on a range of thinking styles identified by Burton (2001) – 

visual, analytic and conceptual – we can see how most of the learners used a composite of 

these styles. From the example used, we can see that the learners engaged using a range of 

thinking styles which include verbalisation, drawing illustrations, and the use of tables to 

arrive at insights about the problem, the mathematics, and ways to solve the problem. 

Insight/Intuition. Burton’s (2001) mathematicians referred to the “light being switched 

on”, which enabled them to see what works and what does not work without being overtly 

aware of how they gained such insights.  

Making connections. What can be seen from this example is that various elements of 

mathematics have been linked together to form a coherent whole. Burton argues that it is 

akin to fitting the pieces of the jigsaw together (Burton, 2001). What can be seen in this 
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example is how the teachers have drawn on various aspects of mathematical knowledge, in 

particular their knowledge of triangles, to pool this knowledge in order to come up with a 

deeper appreciation of mathematical understanding. 

Identity and the Dance of Agency 

What becomes possible to see through this example is that the learning situation draws 

considerably on those aspects of working as a mathematician as identified by Burton’s 

work and on the aspects of classrooms and teaching identified by Boaler’s work. Boaler’s 

work has been particularly powerful in illustrating the importance of agency and identity. 

When we consider the activity identified in this paper, we recognise that the three features 

– social, mathematical, and cognitive – are critical variables in the provision of quality 

learning opportunities. If we are to emerge from the current demise in mathematics 

education as identified at the start of this paper, then reforms are needed to enable change 

from the current, traditional practices to ones that are more empowering for learners. This 

requires not only a shift in pedagogy and curriculum but also in the dispositions of 

learners.- As noted by Zevenbergen (2005) many of the current practices in school 

mathematics create particular mathematical habitus which are far from empowering for 

learners and indeed encourage disengagement with the discipline. This example and our 

analysis of that practice highlight some of the features that foster the characteristics of 

working as a mathematician that have been identified through the combined work of 

Burton and Boaler. However, in this final section, we want draw more constructively on 

Boaler’s notion of dance of agency. For her, this construct is critical as it enables the 

learners to draw on their mathematical understandings, to build on what they know, to 

construct deeper understandings. This is one of the fundamental premises of much 

mathematical learning but which is not that possible in many of mainstream classrooms 

due to the pedagogies being implemented. As shown in the Queensland School 

Longitudinal Reform Study (Education Queensland, 2001), the teaching of mathematics in 

schools is one of the most poorly taught areas of school curriculum and dominated by 

shallow teaching approaches with little scope for students to engage substantially with 

ideas and deep learning. The example here provides some insights into the ways in which a 

commonly used activity can be adjusted to allow for depth of learning. However, as 

Boaler’s work highlights, learners must feel some sense of agency to be confident to draw 

on other forms of knowing in order to solve problems.   

We contend that traditional classrooms would have fostered learning activities around 

the application of a formula for calculating the sum of interior angles. In this example, the 

participants could not remember this formula (and it was not provided) so they need to rely 

on their existing knowledge, the collective wisdom of the group and a sense that they could 

solve the problem. This sense of agency – where they could rely not only on their own 

knowledge in a legitimate sense, but also on the collective knowledge across the group – 

enabled them to gain a sense of learning and achievement through the completion of the 

task. We contend that such practice is far more enabling and develops a strong sense of 

agency and identity with mathematics.  
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Mental strategies are a desired focus for computational instruction in schools and have been 

the focus of many syllabus documents and research papers. Teachers though, have been 

slow to adopt such changes in their classroom planning. A possible block to adoption of this 

approach is their lack of knowledge about possible computation strategies and a lack of a 

clear organisation of a school program for this end. This paper discusses a framework for 

the categorisation of mental computation strategies that can support teachers to make the 

pedagogical shift to use of mental strategies by providing a framework for the development 

of school and classroom programs and provide a common language for teachers and 

students to discuss strategies in use. 

Mental computation has been the focus of a major shift in mathematics education in 

many parts of the world. Recent curriculum documents in Australia and overseas the 

United States Principles and Standards for School Mathematics (National Council of 

Teachers of Mathematics, 2000), the new United Kingdom Primary Framework for 

Literacy and Mathematics (DfES, 2007), the Dutch Specimen of a National Program for 

Primary Mathematics (Treffers & DeMoor, 1990), and the Australian National Statement 

on Mathematics for Australian Schools (Australian Education Council, 1991) have 

indicated that mathematics education needs to change emphasis to match the developments 

in the world today. 

Syllabus documents in all states of Australia advise teachers to take an approach 

focusing more on mental computation as part of a range of strategies and less on traditional 

written algorithms. For example, the Level 2 Addition and Subtraction outcome in the 

Queensland Studies Authority Years 1-10 Mathematics syllabus (2004) states: “Students 

identify and solve addition and subtraction problems involving whole numbers, selecting 

from a range of computation methods, strategies and known number facts” (p. 19). The 

benefits of a focus on mental computation have been widely reported and include the need 

for school mathematics to be useful and to reflect computational techniques used in 

everyday life (Australian Education Council, 1991; Clarke, 2003; Irons, 2000; Willis, 

1990; Zevenbergen, 2000).  

Mental computation strategies are different from written algorithms in that they require 

more than the application of a remembered procedure. The key difference is the need for 

some application of a deeper knowledge of how numbers work. Callingham (2005) 

discussed research in mental computation as focussing on “identifying and describing 

students’ strategies for addressing particular kinds of calculations, often within a 

framework of number sense” (p. 193). Number sense has been defined as having a “general 

understanding of number and operations along with an ability and inclination to use this 

understanding in flexible ways” (McIntosh, Reys, Reys, Bana, & Farrell, 1997, p. 3). Using 

mental computation strategies flexibly requires sound number sense and by using a 

strategies approach to computation, rather than a focus on procedural algorithms, students 

have opportunities to work with numbers in flexible ways, which in turn, provide 
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opportunities for them to improve their number sense. Needing number sense for efficient 

use of computation strategies, and the development of number sense by using such 

strategies, are very closely interrelated.  

Mental Computation Strategies 

There has been discussion in the literature of what constitutes a mental computation 

strategy. Earlier definitions of mental computation focussed on the lack of written 

recordings. Trafton (1978) described the use of non standard algorithms for the 

computation of exact answers without the use of pencil and paper. Sowder (1988) defined 

mental computation as “the process of carrying out arithmetic calculations without the aid 

of external devices” (p. 182). Threlfall (2002) described strategies, as “where students can 

be correct by constructing a sequence of transformations of a number problem to arrive at a 

solution as opposed to just knowing, simply counting or making a mental representation of 

a ‘paper and pencil’ method” (p. 30). The Queensland Years 1-10 Mathematics syllabus 

(Queensland Studies Authority, 2004) provides examples of mental computation strategies 

in early levels such as, “count on and back, doubles, make to ten” (p. 45) and in later levels 

“making numbers manageable” (p. 46). Some of these “strategies”, for example, 

“turnarounds (commutativity)” are not strategies as thought process as discussed above, but 

are skills more related to having sound number sense. These understandings would be used 

as part of a strategy (i.e., a sequence of transformations of a number problem) to solve a 

problem but are difficult to consider as strategies themselves. 

Strategy Categorisation 

In research literature there have been many attempts to describe lists of possible mental 

computation strategies. A well documented strategy categorisation by Beishuizen (1985) 

described two main strategies for mental addition and subtraction. The strategy 1010 

referred to splitting numbers into tens and ones and dealing with the parts separately, left to 

right. N10 referred to a strategy where one number is split into tens and ones and the tens 

of the second number are added to the first number followed by the ones. Many authors 

refer to these as the two main strategies for addition and subtraction of numbers to 100 

(Cobb, 1995; Cooper, Heirdsfield, & Irons, 1996; Fuson, 1992; Reys, Reys, Nohda, & 

Emori, 1995; Thompson, 1994). Beishuizen, Van Putten, and Van Mulken (1997) extended 

this list to include a strategy they referred to as A10, where the second number is split to 

facilitate a bridge to a multiple of ten and then the remainder is added to the first number. 

This dealt with problems that required bridging of a ten in either addition or subtraction. A 

further paper by Klein, Beishuizen, and Treffers (1998) discussed another strategy that they 

called N10C, where the second number is rounded up to a multiple of ten and this number 

is added to the first number followed by an adjustment or compensation for the rounding. 

Yackel (2001) described “collections-based” solutions where both numbers are broken into 

parts, usually tens and ones (compare to 1010), and “counting or sequence based” solutions 

starting with one number and dealing with the others progressively, part by part (compare 

to N10). 

Cooper, Heirdsfield, and Irons (1996) developed a strategy schema based on work of 

Beishuizen (1993) to analyse strategies used in a study of young children’s mental addition 

and subtraction accuracy and strategy usage. Their schema consisted of four strategy 

categories: i) Counting, ii) Separation (1010) which they further categorised to be right to 
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left, left to right or cumulative, iii) Aggregation (N10), again categorised further as right to 

left or left to right, and iv) Wholistic, which described strategies involving adjustment of 

one number by compensation (N10C) or by levelling where both numbers were adjusted to 

create a new equivalent question. They also included a separate category for students who 

reported using a mental image of the pen-and-paper algorithm.  

Often lists of strategies have been derived from studies where computation problems 

were presented to students and the strategies that the students actually exhibited were 

analysed and categories emerged.  For example, Reys, Reys, Nohda, and Emori (1995), 

used a mental computation test in their study of the performance and strategy use of 

students in Japan. Prior to administering the test the researchers formulated a detailed 

categorisation of anticipated strategies. Their categorisation reflected similar major 

grouping as described above and used letters to identify the major strategies and then 

variations of these strategies were numbered e.g. A1, A2, B1, etc. The categories labelled 

A involved grouping of tens and ones separately (compare to 1010), those labelled B had 

one number held constant (compare to N10), and those labelled C involved rounding of 

one or both numbers to multiples of ten (compare to N10C).  

Wigley (1996) described strategies for addition and subtraction where numbers were 

split and recombined in different ways using knowledge of place value and 

complementation, which he described as an ability to generate relationships associated with 

complements in numbers to ten or hundred. He advocated teaching strategies for 

multiplication that used doubling and halving, including repeated doubling and halving, 

and the trial and use of multiplication and subtraction to achieve progressively smaller 

remainders as a strategy for division. 

Teaching Mental Computation Strategies 

In the literature two different approaches to the teaching of mental computation 

strategies are described. One focuses on students inventing or using their own intuitive 

strategies to solve given computation problems (e.g. Buzeika, 1999; Heirdsfield, 2004, 

2006) and others describe where particular strategies were the focus of teaching (e.g., 

Beishuizen, 1999). In all of these studies and others (Buys, 2001; Beishuizen, 2001) 

students were encouraged to discuss strategies used.  

Threlfall (2002) argued that a teaching approach that is intended to foster choice and 

flexibility by teaching wholistic strategies needs to be underpinned by a coherent way of 

thinking about the possible choices, “so that they can be taught in an organised and 

systematic way. In other words, there has to be a categorisation system that makes sense to 

the teacher” (p. 32). He was concerned that an incomplete set of strategies may lead to 

efficient strategies not being available for use because they had not been taught. Mental 

arithmetic needs to be taught using methods quite different from traditional pencil-and-

paper methods. Offering only one method is too rigid. Leaving pupils to find their own 

methods will deprive many of more advanced strategies (Wigley, 1996). 

Many teachers in classrooms today were students themselves in a period when 

mathematics teaching focussed on rote learning of basic facts and on the development of 

procedures for “successful” completion of traditional written algorithms. These teachers 

consciously know of very few if any computation strategies other than the use of vertical 

algorithms in the mind. Although these teachers can see benefits for including mental 

computation strategies in their teaching programs their lack of knowledge leads to a lack of 

confidence and lack of teaching ideas to take the idea forward into their practice. If a 
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comprehensive but easy to understand list of possible strategies were organised based on 

the research in this area a useful tool to change classroom pedagogy and therefore 

improvement of student learning outcomes could be achieved. 

The Mental Computation Strategy Framework 

The author of this paper has attempted to create a categorisation framework for the 

purpose of informing and providing structure for the teaching of computation strategies. 

The intention of the strategy categorisation was to create a small number of general 

categories with intuitive labels using simple language that would make sense to teachers 

and also to students. Then a list of sub-categories would make clearer the variations that 

could be a focus in each category. In all, five major categories and twenty-one sub-

categories were identified. It was also an intention that these categories would be applied 

across the range of the primary school year levels at least, and across the four operations 

with whole numbers, common and decimal fractions, negative numbers, as appropriate. 

This way a school could utilise the framework for a whole school program or approach to 

the teaching of mental computation strategies. With the labels for the categories kept in 

simple intuitive language it was intended that these names would be used in the classroom 

as an aid the discussion of strategies used by students and as part of lessons on particular 

strategies. It is a coherent way of thinking about the possible mental computation strategies 

that the researcher is interested in providing to meet an identified need from teachers and 

schools. 

A description of the categories and links to other categorisations in the literature are 

outlined in Table 1. The intention was not to find a single description for each possible 

strategy but to provide a framework for teachers to base their development of programs of 

lessons on and for teachers and students to use as a common language to describe ways of 

working through computation examples.  
 

Method 

The focus class consisted of 27 Year 3 students who were approximately 8 years of age 

in a suburban school in Brisbane, Queensland. There was a wide range of abilities within 

this class and the teacher was experienced and had taught this year level for many years. 

Year 3 was chosen for the study as traditionally addition and subtraction algorithms were 

introduced in this year of schooling. The teacher was interested in the inclusion of mental 

strategies into the class number program. She perceived there would be benefits for the 

class by shifting the focus away from the algorithm to the development of mental 

computation strategies and she was prepared to put teaching of algorithms aside for the 

whole year. 

The class number program was planned to introduce and focus teach one major strategy 

category from the framework each school term. “Counting On and Back” was the focus in 

first term, followed by “Breaking Up numbers” in term 2, “Adjusting and Compensating” 

(also called change and fix especially when working with the students) in term 3 leaving 

“Doubling and Halving” for fourth term, which linked to other planned focus work on 

multiplication and division.  The “Use Place Value” category was not a particular focus for 
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Table 1 

 Categorisation of Mental Computation Strategies and Links to Literature 

 

 Related categorisations and References 

Count On and Back: 

Count on to add Counting (Cooper et al., 1996) 

Count on or back (McIntosh & Dole, 2005) 

Count back to subtract      Counting (Cooper et al., 1996) 

Count on to subtract                   Aggregation (additive) (Cooper et al., 1996) 

A10 (Beishuizen et al., 1993, 1997) 

Count on to multiply  

Adjust and Compensate: (Change and Fix) 

Adjust one number and compensate   N10C (Beishuizen et al., 1993, 1997) 

C1, C2 (Reys et al., 1995) 

Wholistic compensation (Cooper et al., 1996) 

Over jump method (Thompson, 1999) 

Adjust two numbers and compensate  C3, D1 (Reys et al., 1995) 

Adjust two numbers Wholistic levelling (Cooper et al., (1996) 

Double and /or Halve:  

Use a double or near double to add or subtract Doubles / near doubles (McIntosh & Dole, 2005) 

Double to multiply by 2 

Double, double to multiply by 4 

Double, double, double to multiply by 8 

Half to divide by 2 

Half, half to divide by 4 

Half, half, half to divide by 8 

Double and halve  

 

 

Repeated doubling (Wigley, 1996)  

 

 

Repeated halving (Wigley, 1996) 

Break Up Numbers:  

Break up two numbers using place value  1010 (Beishuizen et al., 1993, 1997) 

A1, A3 (Reys et al., 1995) 

Separation (Cooper et al., (1996) 

Split method (Thompson, 1999) 

Split tens method (McIntosh & Dole, 2005) 

Break up two numbers using compatible nos.  Split jump method (Thompson, 1999) 

Break up one number using place value  N10 (Beishuizen et al., 1993, 1997) 

B1, B2 (Reys et al., 1995) 

Aggregation (Cooper et al., 1996) 

Jump method (Thompson, 1999) 

Sequential method (McIntosh & Dole, 2005) 

Break up one number using compatible nos.  A10 (Beishuizen, Van Putten, & Van Mulken, 1997) 

Use Place Value: 

Think in multiples of ten   

Focus on relevant places   
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any term as it is limited to particular problems and was simply introduced where 

appropriate.  

Throughout all instruction and practise activities students were encouraged to show 

their thinking using any written methods they felt comfortable with. The classroom climate 

also encouraged discussion and flexibility of choice of strategy. The students completed 

practise activities for each strategy but when given open computation problems to solve 

were free to use any strategy they liked. A range of models to support the learning were 

used throughout the year which included ten frames, numbered lines, open number lines, 

and number boards.  

The students were given a pre-test, mid year test, and post test in which they were 

asked to complete the computations and show what they were thinking and how they 

worked out each question. The items were chosen to present addition or subtraction 

situations that could be solved using some of the strategies they would be taught 

throughout the year. The items were presented as single computations presented 

horizontally without context. The intention was to keep the questions as clear and free of 

distractions as possible. The students were not interviewed, as previous studies, including 

one quoted in Threlfall (2002), found that written responses attained when students were 

asked to “work out each answer mentally and write down how they had done it” (p. 33) 

took the same form as the protocol responses. An aim of the study was to look for evidence 

of strategy categories in the written responses of the students across the year.  

Results and Discussion 

The use of the four main strategy categories from the framework as the basic focus of 

instruction for each of the four terms of the year made sense to the teacher and the students 

and was an effective program organiser. The teacher was interviewed and stated that this 

organisation was easy to follow and gave her confidence to teach the strategies. The teacher 

saw it as clarifying and observed that the students were generally comfortable with the 

strategies by the end of each term of learning. The students exhibited a growing repertoire 

of strategies as the year progressed and showed an early ability to use a variety of 

strategies, evidenced by growth in the number of strategies used for the pre to post tests 

(See Table 2). The lack of obvious use of strategies did not mean the students did not use 

strategies but just that they chose not to or, more likely, lacked confidence or methods to 

record these. 
 

Table 2 

 Number of Students who used a Variety of Different Strategies  

 Pre test Post test 

0 strategies evident 21 0 

1 strategy 5 3 

2 strategies 3 6 

3 strategies 0 4 

4 strategies 0 4 

5 strategies 0 4 

> 5 strategies 0 7 
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In the mid year and post tests particularly, evidence of the students’ use of the strategies 

in the working and descriptions of the way they solved the problems showed strategies 

named specifically using the framework. Figure 1 shows four examples of such responses. 

 

 

 

 

 

 

 

 

 
Figure 1: Student work samples showing use of the strategy categorisation framework. 

There was also a variation between strategies used by the same students on different 

instruments. One instrument inadvertently was given to the students by the researcher and 

again by the class teacher one week apart. There was a large number of students who used a 

completely different strategy on the same item on each test.  

Conclusion 

This study was only for one year and was in a year early in primary school. For the 

framework to be evaluated, a longer period of sustained use for teaching and learning is 

required. Further monitoring is required on using this framework to plan a whole school 

program across all year levels, all types of numbers (ie., including decimals, common 

fractions, etc) and across all operations. The focus school is currently using this framework 

to do just this with the assistance of the researcher. 
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This paper examines student experiences in VCE Further Mathematics.  In a survey 

conducted in 2006, 866 year 12 graduates who had studied Further Mathematics the 

previous year were asked about their experiences of Further Mathematics classes and their 

views on the subject and the teacher.  The students who did Further Mathematics as their 

only mathematics subject were less confident about doing well, had a less positive view of 

the classroom as a learning environment and more negative attitudes towards their 

mathematics teachers, compared to students who studied both Further Mathematics and 

Mathematical Methods.  The practice of allowing Mathematical Methods students also to 

study Further Mathematics may contribute to higher results in Further Mathematics for these 

students, but it may inhibit the capacity for teachers and schools to cater properly to the 

needs of those for whom the subject was initially designed. 

This paper comes from a broader ARC-funded project examining the extent to which 

young people from different family backgrounds access different “locations” within the 

Victorian Certificate of Education (VCE) curriculum. It explores the quality of their 

instructional experiences, their academic outcomes, and the post-school destinations 

connected with the places they occupied in the curriculum. The broad objective of the 

project is to make the curriculum more transparent with respect to underlying social 

patterns and processes.  

The formal role of the VCE is to prepare young people for a successful transition to 

further study and work.  In this context, the VCE needs to be both equitable in the range of 

learning opportunities it provides, and effective in the range of valued destinations to 

which it leads. 

Some subject areas in the VCE are organised to accommodate a broad range of student 

skills and abilities.  Mathematics is designed to do this through provision of a hierarchical 

set of subjects designed around different skill levels.  The mathematics subject Further 

Mathematics was designed to, 
 

provide access to worthwhile and challenging mathematical learning in a way which takes into 

account the needs and aspirations of a wide range of students. It is also designed to promote students’ 

awareness of the importance of mathematics in everyday life in a technological society, and 

confidence in making effective use of mathematical ideas, techniques and processes. (Victorian 

Curriculum and Assessment Authority (VCAA), 2005, p. 1) 
 

It is meant to be widely accessible, providing general preparation for employment or 

further study, in particular where data analysis is important.  According to the Victorian 

Parliamentary Enquiry into the Promotion of Mathematics and Science Education (2006), 

 
it is suited to students who require some mathematical literacy in their further study or work but not 

high level applications of pure mathematics or high level conceptual mathematics… it is the easiest 

of the VCE Unit 3 and 4 mathematics subjects (p. 54). 

 

Further Mathematics has consistently been the most popular Unit 3 and 4 mathematics 

subject, and is gaining in popularity. According to the Victorian Parliamentary Enquiry 

(2006) enrolments in Further Mathematics have increased from 37% of the Year 12 cohort 
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in 2000 to 47% in 2004.  This is in contrast to enrolments in Mathematical Methods (stable 

at about 37%) and Specialist Mathematics (13%). The number of students who sat for the 

Further Mathematics examinations was 21,815 in 2005, a slight increase over 2004 

(21,216) (VCAA, 2006).  

Participation rates in Further Mathematics are much the same for males and females 

(see Table 1, which shows participation rates in 2005). This is in contrast to Mathematical 

Methods, where there is a large gender gap in participation favouring boys, particularly in 

lower SES bands.  The social composition of Further Mathematics is also much more 

democratic.  In contrast to Mathematical Methods, enrolment levels in Further 

Mathematics are high amongst all groups, but peak in the middle social bands.  They are 

lowest amongst students in the highest quintile of SES.  The high overall levels of 

enrolment in Further Mathematics reflect a range of different orientations to the subject, 

and contribute to a flattening of the social trend, since students from a wide range of social 

backgrounds take the subject, either as their only mathematics subject or in conjunction 

with Mathematical Methods. 

 

Table 1 

Participation in VCE Mathematics, by SES and Gender: Year 12 Students, 2005  

 Further Mathematics 

Mathematical 

Methods Specialist Mathematics 

SES quintile Males Females Males Females Males Females 

Lowest 44.4 44.9 34.2 23.5 11.7 6.0 

Lower middle 45.2 46.1 35.7 23.9 12.7 5.8 

Middle 47.1 46.9 36.5 26.3 12.5 5.7 

Upper middle 46.0 45.1 41.6 32.0 16.7 8.7 

Highest 40.7 39.0 52.1 44.5 21.0 13.8 

Total 44.6 44.5 40.3 29.7 15.1 7.9 

Source: Unpublished VCAA data 

 

Lamb and Helme (2007) have reported a pattern in some schools of high rates of 

enrolment in Further Mathematics associated with high rates of enrolment in Mathematical 

Methods.  In about a fifth of secondary schools in Victoria, 21% or more Further 

Mathematics students were enrolled in Mathematical Methods.  The authors also found that 

schools in which many Further Mathematics students also studied Mathematical Methods 

tended to have higher than predicted achievement for Further Mathematics.  The strategy of 

combining Further Mathematics and Mathematical Methods leads to significantly higher 

achievement levels in Further Mathematics. The results show that the strategy of 

combining Mathematical Methods and Further Mathematics gives some schools a 

competitive advantage in VCE scores (and also possibly in terms of ENTER scores).  The 

practice may have benefits for the students in the schools that employ the strategy, 

however, it may make it more difficult for students in schools where the practice does not 

occur to achieve the same levels of success.  

Further Mathematics is designed for a diverse range of abilities, and particularly for 

students who do not want to be exposed to the rigorous and challenging intellectual 

demands of Mathematical Methods or Specialist Mathematics.  The growing tendency for 

students to combine Further Mathematics and Mathematical Methods suggest that Further 
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Mathematics has been open to use by able and high achieving mathematics students 

seeking a competitive advantage in the race for VCE results, a situation that may further 

depress the opportunity for success of students genuinely wanting to continue to learn 

mathematics at an appropriate level. 

This paper examines the impact of these practices on students’ classroom experience of 

mathematics, and investigates a number of questions.  
 

• Do Further Mathematics students who also do Mathematical Methods experience 

their Further Mathematics classroom in a different way to students who just do 

Further Mathematics?  

• Do Further Mathematics students who also do Mathematical Methods experience 

their Further Mathematics teacher in a different way to students who just do 

Further Mathematics? 

• Do any differences in student experiences of Further Mathematics classes help 

explain the performance differences discussed above?  

Methodology 

The data for this study were derived from a sample of students surveyed as part of a 

larger study of the VCE curriculum in a group of selected Victorian secondary schools.  

The aim of the larger study is to look at student experiences in schools that vary in terms of 

effectiveness, measured on the basis of VCE results.  Schools that were selected were those 

where VCE results (measured as an aggregate as well as across eight key learning areas) 

were either (a) well above what could be predicted based on SES intake, General 

Achievement Test (GAT) scores, location, size, resource levels, and sector, (b) about the 

level that would be expected given those characteristics, and (c) well below expected 

performance levels based on student intake characteristics.  The schools represent a range 

of SES, GAT achievement, and regional characteristics.  For the present paper, 23 of the 

original schools are represented. 

Year 12 VCE graduates from these schools were surveyed in April 2006, the year after 

they completed VCE.  The survey included questions on their experiences of mathematics 

in VCE.  It was done in conjunction with the annual On Track data collection.  On Track is 

an annual telephone survey of Year 12 completers conducted in March-April in the 

following year.  

Data were obtained from 1368 Year 12 students who confirmed in the survey that they 

had studied Further Mathematics and/or Mathematical Methods during VCE.  A sample of 

866 of the respondents indicated that they had studied Further Mathematics and 659 

confirmed that they had studied Mathematical Methods, whereas 157 reported that they had 

enrolled in both subjects.  It was possible, on this basis, to distinguish between Further 

Mathematics only students (FMO) and those who had completed both Further Mathematics 

and Mathematical Methods (FMM).  The samples represented 65.7% and 66.8% 

respectively of the total enrolments in these subjects across the schools.  The response rates 

compare favourably with the overall response rate for On Track, which in 2006 was 66.5% 

of all Year 12 or equivalent completers (Teese, Nicholas, Polesel, & Mason, 2007).  

Two sorts of analyses are presented.  The first is a set of descriptive results presenting 

information on student views on Further Mathematics including on classroom climate, 

attitudes towards the subject, and enjoyment, and views on their Further Mathematics 

teacher and his or her qualities and methods.  The second is a set of results from a 
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regression analysis using Hierarchical Linear Modelling (HLM) to model both student-

level and school-level influences on student experiences of Further Mathematics.  Student-

level factors included gender, GAT scores, and mathematics subject combination (Further 

Maths Only or Further Mathematics and Methods).  School-level factors included mean 

SES of the student body at the school, school size (measured as the number of Year 12 

enrolments in 2005), and the percentage of Further Mathematics students also studying 

Mathematical Methods in each school. 

Student Views of the Mathematics Classroom 

Student responses to a range of items on their experiences of mathematics are shown in 

Figure 1.  It compares the perceptions of students who did Further Mathematics as their 

only mathematics subject (FMO) with the perceptions of those who also did Mathematical 

Methods (FMM). 
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Figure 1. Student views of mathematics and mathematics classrooms. 

Figure 1 reports significant differences in the perceptions of the two groups of students. 

The most striking aspect of the results is the difference between the two groups in their 

perceptions of how well they expected to do.  Students who combined Further Mathematics 

with Methods were significantly more likely to report that they knew that they could do 

well in Further Mathematics (70% strongly agreed, compared with only 25% of FMO 

students). Indeed, almost all of the FMM students (97%) agreed or strongly agreed that it 

was a subject they expected to do well in.  These findings confirm the strategic value to 

these students of combining the study of Mathematical Methods and Further Mathematics. 

In addition to their perceived advantages over their peers in terms of preparation and 

confidence the FMM students were significantly more likely to report that they really 

enjoyed the work.  
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The other item for which there was a significant difference between the two groups was 

in relation to student perceptions of classroom behaviour. FMO students were significantly 

more likely to report that there was too much disruptive behaviour in their classes. 

Although statistically significant differences were not evident for the remaining two 

items, the trend in responses was consistent with the results reported above, that is, FMM 

students appeared to experience the mathematics classroom in a more positive way than 

FMO students.   

Student Views of their Further Mathematics Teacher 

Figure 2 examines student views of their Further Mathematics teacher, in relation to 

several dimensions of perceived teacher expertise. Similarly to Figure 1, it compares the 

responses of FMO students with the responses of FMM students.  
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Figure 2.  Student views of their Further Mathematics Teacher. 

There were some strong and significant differences between the two types of students 

with regard to their perceptions of their mathematics teacher. Students who did both 

subjects were significantly more likely to report that their maths teacher made the subject 

interesting. They were also more likely to report that their teacher gave them individual 

attention when they needed it and was good at motivating them to do their best. Their 

teacher was also significantly more likely to be reported as good at explaining things 

clearly, and to be well respected.  Results for the remaining two items – “gave you good 

feedback on your work during the year” and “was your idea of a good teacher” – although 

not statistically significant using Chi-square, were consistent with the trends for the other 

items. 

Clearly, students who did both subjects had a much more favourable view of their 

Further Mathematics teacher, compared to those who did Further Mathematics only.  
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The results indicate that the FMM students experience Further Mathematics differently 

from the FMO students.  They have a more positive experience of their Further 

Mathematics classroom and perceive their Further Mathematics teacher as responding more 

to their needs.  

A Closer Examination of the Differences 

There are a number of student-level and school-level factors that could account for the 

differences in perceptions, separately from whether or not students were enrolled for both 

Further Mathematics and Mathematical Methods. At the student level, these include 

academic aptitude (as measured by GAT), gender, and SES.  For example, differences in 

confidence between FMO students and FMM students may simply be due to FMM students 

being more academically able, or comprising a higher proportion of male students.  

Similarly, school level factors such as size, average socioeconomic status or the 

proportion of Further Mathematics Students also doing Mathematical Methods may 

influence student perceptions.   

Regression analysis using Hierarchical Linear Modelling was conducted to model both 

student-level and school-level factors that may influence student experiences and 

dispositions.  The results of the analysis are shown in Table 2. 

Student-level Effects 

1. GAT. The higher students’ GAT scores, the more likely they were to express 

confidence in their ability to do well in Further Mathematics. Moreover, after controlling 

for other factors, the higher the GAT the more likely students were to perceive their teacher 

as good at explaining maths (p<0.01). 

2. Mathematics Subject Combination. In this analysis, the control group was the FMM 

students. There were two significant differences between the FMO group and the FMM 

group, independent of other factors. First, FMO students were significantly less likely to 

express confidence in their ability to do well (p<0.001) and, second, to report that their 

teacher made mathematics interesting (p<0.001), all else equal. 

3. Gender. Gender was a significant factor on two items only. Female students were 

significantly more likely to perceive their Further Mathematics teacher as well respected 

(p<0.01) and as good at motivating them (p<0.1). Interestingly, there were no significant 

differences between male and female students in their confidence in doing well and their 

enjoyment of the subject.  

School-level Effects 

1. Socioeconomic status. The mean SES level of a school tends to have a negative 

relationship with student perceptions, independent of all other factors.  That is, the higher 

the SES of the school, the less that students report enjoying the work.  The patterns may 

reflect a higher propensity for weaker mathematics students in middle class settings to 

continue in a subject area that they do not enjoy, responding to school policies to include a 

mathematics subject in Year 12, parental pressure to do mathematics, and/or the desire to 

keep their options open for further study. 
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2. School size. The smaller the size of the VCE cohort, the more likely are students to 

report negative views of Further Mathematics and their Further Mathematics teachers, 

independent of all other factors. These findings may reflect the differences between smaller 

and larger schools in the size of their mathematics department, in that larger schools have 

greater numbers of qualified and experienced teachers from which to draw in staffing their 

VCE mathematics classes. These results parallel the relationship between school size and 

achievement in mathematics, whereby the smaller the school, the lower the performance in 

mathematics (Lamb & Helme, 2007).  

3. Proportion of FMM students. Independent of all else, the strongest effects on 

students’ views of mathematics and mathematics teachers is the proportion of students in 

Further Mathematics classes who are also doing Mathematical Methods. As this proportion 

increases, there is a significant increase in the proportions of Further Mathematics students 

who view the subject as one they could do well in, a significant decrease in the proportion 

of students who view classrooms as one in which there is too much disruptive behaviour, a 

significant increase in the proportion who consider their classroom to have a good working 

atmosphere, and a significant decrease in the proportion who claim that many students are 

not interested. Thus in the schools where there are larger numbers of Mathematical 

Methods students also doing Further Mathematics, students are more confident about doing 

well, feel they are learning in a good working atmosphere, and sense that other students are 

well motivated.  These findings extend to their views of teachers, who are more likely to be 

perceived as making mathematics interesting, providing the individual attention they need, 

motivating them to do well, and conforming to their idea of a good teacher.  

4. School effects. The data in the last two columns of Table 2 indicate that school level 

factors can account for much of the variation in students’ views of Further Mathematics 

and Further Mathematics teachers. The second last column presents the amount of variance 

in the student view that can be explained by between-school differences, before taking 

account of the school-level factors.  The final column presents the amount of between-

school variance after controlling for the school-level factors.  On certain items, there is a 

substantial reduction in the amount of school level variation after controlling for school-

level factors. For example, between-school differences accounted for about 13.3% of the 

variation in responses to the item that Further Mathematics is “a subject you knew you 

could do well in”.  The school-level factors accounted for almost 50% of the between-

school effects, reducing the unexplained variance to 7.1%.  The school-level factors 

identified in this study (SES, size and proportion of FMM students) account for a large 

proportion of the school effect and can reduce the amount of school-level variance by up to 

half. This is the case for several items, including students’ confidence in doing well, their 

claims of a good working atmosphere, and their reports of receiving the individual 

attention they needed. 

Conclusions 

This paper demonstrates that the students who do Further Mathematics as their only 

mathematics subject have a different experience of Further Mathematics than do students 

who combine Further Mathematics and Mathematical Methods.  Further Mathematics-only 

students are less confident about their ability to do well, have a poorer experience of the 

mathematics classroom, and have more negative views of their mathematics teachers.  
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Further Mathematics was originally designed to cater to less-skilled mathematics students.  

The practice of allowing Mathematical Methods students to also study Further 

Mathematics may contribute to higher results in Further Mathematics for these students, 

but this may inhibit the capacity for teachers and schools to cater properly to the needs of 

those for whom the subject was initially designed. 

Those in the mathematics education community with an interest in equity need to 

question the strategies that are being used to provide some students with an unfair 

advantage both within schools and across the school system, at the expense of the 

“traditional” Further Mathematics student. The recent decision to allow students to 

undertake all three mathematics subjects in the VCE without penalty will only exacerbate 

this problem, further expanding the gap between the “winners” and the “losers”.  
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This paper reports on insights into students’ understanding of the concept of rate of 

change, provided by examining the gestures made, by 25 Year 10 students, in video-

recorded interviews. Detailed analysis, of both the sound and images, illuminates the 

meaning of rate-related gestures. Findings indicate that students often use the 

symbols and metaphors of gesture to complement, supplement, or even contradict 

verbal descriptions. Many students demonstrated, by the combination of their words 

and gestures, a sound qualitative understanding of constant rate, with a few 

attempting to quantify rate. The interpretation of gestures may provide teachers with a 

better understanding of the progress in their students’ thinking.  

Introduction 

Rate of change, with its many everyday applications, is an important concept 

throughout the mathematics curriculum. However it is fundamental to the 

understanding of early calculus: without a conceptual understanding of rate of change 

differentiation becomes an exercise in applying rules and executing routines. This 

paper reports on data, from a larger study, collected to explore the variation in pre-

calculus students’ understandings of rate of change. Experience (e.g., Kelly, Singer, 

Hicks, & Goldin-Meadow, 2002) has shown that analysing students’ gestures as well 

as their utterances will provide greater insight into their thinking. In this paper, five 

gesture episodes are considered in detail. The aim of the exercise was to identify 

complementary, supplementary, or conflicting information conveyed by the students’ 

gestures that was not conveyed by the oral text. 

The section of the interviews that forms the focus of this paper provides data 

relating to students’ understanding of rate of change in a non-motion context. The 

scenario was classified as “non-motion” because, for this example, the students were 

not asked to discuss change in position over time. Detailed analysis, of both the sound 

and images, of video-recorded interviews with individual students as they explained 

their reasoning about a computer-based simulation, provides insights into their 

thinking. Dynamic geometry (Geometers’ SketchPad) was used to simulate a blind 

blocking sunlight coming in a window. This scenario provided a focus for each 

student’s explanations as they grappled with the words needed to describe rate of 

change in the area of window exposed as the blind is raised, allowing sunlight to 

enter.  

In the following sections, the conceptual framework is described; details of the 

interviews and the computer-based simulation are provided; and the manner in which 

the results can be analysed, by attending to gesture, is discussed.  

Rate of Change  

In this section we draw attention to students’ likely school mathematics 

background related to rate of change; its importance as a pre-calculus concept; and the 

rationale for choosing to ask the students to discuss a “non-motion” scenario. 
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According to the curriculum advisory documents (Victorian Curriculum and 

Assessment Authority (VCAA), 2005) and text books (Bull, Howes, Kimber, Nolan, 

& Noonan, 2003) the students, in this study, would have studied rate of change in 

conjunction with ratio, proportion, and percentage, usually, in Year 8. The topic is 

included in texts for that level. Typical of these is Bull et al. (2003) who describe rate 

as a measure of how one quantity changes with respect to another. This relationship 

between two changing quantities may be described qualitatively, such as increasing 

quickly, or quantitatively with units, such as dollars per year. 

Researchers, writing about calculus students’ understanding of rate of change, 

commonly provide more formal or more abstract definitions. For example, Hauger 

(1997) stresses the importance of the unit change in the independent variable resulting 

in a change in dependent variable. They consider this to be a very important 

foundational concept for a sound understanding of derivative.  

The traditional approach (Thomas, 1969; 2008) to the introduction of derivative 

presents students with a formal, abstract definition and rule 

( hxfhxf
h

/))()((lim

0 −+
→

), then requires students to manipulate the symbolic 

representations of functions. Some students become quite competent in this 

manipulation and can accurately produce the symbolic representation of the 

derivative, but may not appreciate its meaning and connection to other mathematical 

concepts studied in earlier years. Indeed, Tall (1991) asserts that although calculus is 

broken up into small chunks and presented in a sequential, logical (at least to the 

teacher who can see the whole picture) series of lessons, “students may see the pieces 

as they are presented in isolation, like separate pieces of a jigsaw puzzle for which no 

total picture is available” (p. 17). Students may not even be aware that there is a big 

picture.  

It was evident in Pierce and Atkinson’s (2003) study in which a number of 

students, who, when asked to prepare a worksheet for novice calculus students, based 

on a graphical computer simulation for the tangent to a trigonometric function, 

ignored rate of change and focused on a rule for differentiating polynomials! Making 

students aware of the big picture involves linking the new concept to their previous 

understandings (Hiebert & Carpenter, 1992), which, in the case of differentiation, 

means being aware of pre-calculus students’ understandings about rate of change. 

A typical abstract introduction is often then followed later by a motion (change in 

position over time) example where velocity is aligned with derivative. It appears to be 

assumed that speed is a well-understood, familiar concept on which to build an 

understanding of derivative. However, rate may also appear in non-motion contexts, 

such as the rate of change of area of a circle with change in radius.  

This study explores pre-calculus students’ thinking about rate of change, in a non-

motion context, by analysing video evidence. The next section discusses the reasons 

for choosing video as a data collection method.  

Data Collection Methods 

Data may be collected from a variety of sources such as: written tests or students’ 

worksheets; teachers’ reports; classroom observation; audio recording of interviews 

with teachers, individual students, pairs of students or small focus groups; and video. 

Each method has strengths and limitations. Even though video-recording interviews 

may be more time-intensive and problematic, for example, some students or their 

parents are less likely to give consent, the decision was made to use this method 

because video provides a comprehensive record for later detailed analysis. 
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Video enables the researcher to formulate interpretations of the gaps in the audio 

record. Data captured by video may provide a more comprehensive understanding of 

the learning demonstrated by students (Pea, 2006). Such data may include sound and 

images containing facial expressions, tone of voice and gestures, together giving 

insights into emotions and depth of understanding of concepts. Fine-grained analysis 

discloses insights into students’ understanding not otherwise available (Alibali & 

Goldin-Meadow, 1993).  

The next section explores how we may analyse the non-verbal data privileged by 

the videos. 

Gesture  

One of the advantages of using video for data collection is that it captures non-

verbal communications. The importance of gestures, in conveying information 

regarding students’ understanding of mathematical concepts, has become the focus of 

much research in recent years. Goldin-Meadow, Kim, and Singer (1999) assert the 

importance of teachers’ gestures in the learning of mathematics in their study of eight 

teachers, teaching mathematical equivalence to students of age eight to ten years. 

Noble (2003) reports on the use of gestures in the development of the new 

mathematical knowledge of connecting graphs of motion with the student’s own 

motion, for one student over three teaching episodes.  Sabena (2004), who studied of 

secondary students understanding of the integral function, reports that gesture was 

instrumental to the development of this concept. Similarly, Arzarello, Robutti, and 

Bazzini (2005) suggest “students’ cognitive activity is strongly marked by rich 

language and gesture production” (p. 64), as the 11- and 12-year-olds, in their study, 

construct “meanings related to the concept of function” (p. 55). They advocate that 

teachers should encourage the use of language, body-related motion, and gestures and 

include these in the planning of their lessons. Edwards (2005a), in her study of pre-

service teachers, reports that gestures played an important role in their recall of 

procedures related to fractions. Williams (2005) refers to “gesture as part of an 

integrated communication system with language and … mathematics” (p. 146). When 

interactions between students are videoed and the visual images are examined, these 

images may record instances where one student facilitates the learning of another, and 

possibly their own learning, by drawing their attention to a particular aspect of a task 

(Rasmussen, Stephen, & Allen, 2004).  

Other researchers, such as Goldin-Meadow (2004) and Arzarello and Robutti 

(2004), also support the claim that the use of gesture aids an individual’s learning of 

mathematics, perhaps by replacing some of the cognitive load of problem-solving or 

explanation with gesture (Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001). This 

suggests that gesture may not necessarily be used to convey information to another 

people, but also performs the function of assisting gesturers to clarify their own 

thoughts. 

Of particular interest is that gestures may convey information that differs from the 

information provided by speech. Gestures may provide additional, complementary 

information, but may also contradict speech (Alibali & Goldin-Meadow, 1993). The 

gesture-speech mismatch may afford teachers an opportunity to guide students 

towards a more correct and complete understanding of a mathematical concept 

(Alibali, Flevares, & Goldin-Meadow, 1997). Hence, it is important for researchers 

and teachers to learn more about the hidden meanings of students’ gestures (Kelly et 

al., 2002). However, the interpretation of gesture is often difficult as the gestures may 

be ambiguous (Williams & Wake, 2004). Interpretation may be facilitated by the 
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classification of gestures. McNeill (1992) defines four gesture categories: beat giving 

emphasis; deitic or pointing; iconic imitating physical phenomena; and metaphoric, 

which represent meaning of some kind, but are less easy to interpret. Edwards (2005b) 

refers to the need for additional categories to enable clearer interpretation of students’ 

gestures. She suggests that the iconic classification may be divided into iconic-

physical, for iconic gestures matching physical phenomena, and iconic-symbolic, for 

iconic gestures referring to “a remembered written inscription for an algorithm or 

mathematical symbol” (p. 136). Further, she proposes “the nature of mathematics as a 

discipline may require an even more refined categorization of gestures” (p. 138). 

Indeed, Arzarello and Robutti (2004) define iconic-representational gestures, as 

gestures that refer “to a graphical representation of a phenomenon” (p. 307).  

The next section describes the methodological considerations of this study.  

Method 

The seven students whose data are reported in detail this paper were selected from 

the 25 Year 10 students from five different secondary schools interviewed for the full 

study. These students were selected because the videos of their interviews 

demonstrate clear examples of gestures that were commonly used by many of the 

students in the study. A Geometers’ Sketchpad (GSP) file simulating two windows 

with blinds (Figure 1) was prepared.  

  
Figure 1. GSP simulation of windows.  

The simulation shows two windows, one rectangular, one arched, both with 

blinds, which could be raised or lowered by dragging. This had the effect of changing 

the variables: area of sunlight and height of blind above the bottom of the window. 

Possible constant rate variation associated with the simulation was illustrated using 

multiple mathematical representations: numeric, graphic, and symbolic. 

This simulation and a photograph of an arched window were used as catalysts to 

explore students’ understanding of the constant rate of change. Similarly, the non-

rectangular window was used to probe students’ understanding of the differences 

between constant and variable rate. In this way, GSP facilitated exploration of 

constant and variable rate in multiple representations. These simulations, which were 
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first trialled by a pilot group of students, provided visual material for students to point 

to, in order to clarify their explanations of their understanding of rate.  

Students were videoed as they responded to the interviewer (first author) who 

prompted them to discuss the rate of change in the area of sunlight exposed as the 

height of the blind was changed. Students were encouraged to explain their reasoning 

and think aloud as they were presented with different representational forms of rate of 

change: the simulation, table of values, graph, and symbolic rule.  

The videos were each viewed several times and the students’ use of gesture was 

coded and checked. Coding, as is detailed below, combined McNeill’s (1992) deitic 

and metaphoric categories with the refinements of the iconic classification of iconic-

representational (Arzarello & Robutti, 2004) and iconic-physical and iconic-symbolic 

(Edwards, 2005a). The five episodes described below (pseudonyms used) illustrate 

the complex use of gesture students called upon to supplement their utterances in 

order to explain their thinking about rate. 

Findings and Discussion 

In the twenty-five video-interviews recorded, one student gestured frequently, two 

students only used deitic gestures to indicate locations on the screen, and the 

remaining twenty-three students used deitic, iconic, and metaphoric gestures 

especially when struggling for words to describe their understanding. The simple 

deitic gestures add to the audio record by clarifying exactly what the students are 

referring to and emphasising the feature they see as important in their explanation of 

rate of change. 

 
Straight-sided arch shape for 

small distances 

Two hands for larger distances Deitic gestures indicating parts of 

the screen 

Figure 2. Rate-related gestures. 
 

Many students used one hand to form a straight sided arch to represent small 

distances and two hands held apart for larger distances (Figure 2). These are examples 

of iconic-physical gestures (Edwards, 2005a). Many students employed what 

Rasmussen et al. (2004) chose to call a “slope hand gesture” (Figure 6) representing 

the shape of the linear graph. Rasmussen et al. (2004) found that this was commonly 

used by students to infer constant rate.  

In addition to noting specific static forms of rate-related gestures seen in Figure 2, 

five gesture episodes were examined in greater detail. “Moving slope gesture” (Figure 

3), where a hand was held straight and rigid with the arm pivoted at the elbow, when 

Annie was describing what the graph would look like if the window were narrower, 

indicated a change in constant rate in the same manner as Rasmussen et al. (2004) 

describe.  

Mathematics: Essential Research, Essential Practice — Volume 1

366



Figure 3. Moving slope gesture. 
 

The next example demonstrates this student’s thinking about the variables involved 

in this constant rate context. 
Researcher: what does the table tell you about the rate that the height is changing? 

Jason: it goes up three point two meters [pause]  every half a meter 

 

It seems that Jason is using 

the same straight-sided 

arch shape others used to 

indicate a small distance, 

but in a different way.  

He seems to demonstrate a 

unit measurement by 

making a straight-sided 

arch shape with his right 

hand and matching that 

with three movements of 

the same-sized, straight-

sided arch shape with his 

left hand. 

Figure 4. Speech-gesture mismatch. 
 

In this episode (Figure 4), Jason’s gestures and words do not match. He indicates the 

0.5 m, from the table, with his right hand as he says “it goes up three point two meters” 

and makes just three movements with his right hand whilst saying the words “every half 

a meter”. This may suggest that Jason is uncertain about which variable, area or height, 

is involved in the unit change. These arch gestures could be classified as iconic-

symbolic, in this case, as they appear to represent a unit of measurement. However, this 

episode also suggests that he has some notion that rate involves a change in one variable 

related to the unit change of another variable. Such a gesture-speech mismatch may 

provide an opportunity for guidance by a teacher (Alibali & Goldin-Meadow, 1993) to 

clarify the variables.  

Interestingly John, in Figure 5, when he was looking at the simulation of the non-

rectangular window and describing the rate in the rectangular section of the window, 

also uses the same movement of the straight-sided arch gesture as Jason, as he talks 

about constant rate when referring to the rectangular section of the window. 
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Changing at a constant pace                     …the rates will be going up by the same amount 

Figure 5. Constant rate gesture. 
 

The next example demonstrates the manner in which gesture can be used to 

supplement words. There were many instances, in the data, of gesture being used in this 

way, as shown in Figure 6. 

Researcher: what do you think 

the graph [of the arched window 

in this photo] might look like? 

Sue: I don’t think it would be a 

straight line because [pause] 

Researcher: What makes you 

think that?  

Sue: because this window’s not 

square hmm I dunno because its 

up the top umm curved there  

Sue: [ pause] umm a straight line 

means its always the same 

Figure 6. Gesture supplements words. 
 

It appears Sue is grappling with the difference between graphs for constant and 

variable rate but does not have the words to express her understanding. She is using her 

hands to indicate what she is thinking. The iconic-representational gesture in the first 

frame (Figure 6) appears to represent the shape of the graph of constant rate. In the 

middle of Figure 6, her gesture is iconic-physical as she is showing the physical shape of 

the top of the window. Finally, in the right frame of Figure 6, the “slope hand gesture” is 

repeated, indicating her understanding that constant rate will result in a linear graph. Sue 

has identified the key difference in the two scenarios presented by a rectangular window 

and an arch window. Her gestures communicate her understanding, demonstrating her 

awareness that the graph for the curved section of the window would not be the same as 

the rectangular section. The distinction between the iconic-representational gesture and 

the iconic-physical gesture indicates that her thinking had not yet progressed to 

transferring her understanding of the physical situation into a graphic, mathematical 

representation. Her gestures provided additional information not available in her words. 

This presents an ideal opportunity for a teacher (Alibali & Goldin-Meadow, 1993) to 

assist by supplying suitable words to describe her correct thinking and extend her 

understanding of variable rate to include the graphical representation.  

The final example demonstrates a student’s thinking about the shape of the graph for 

variable rate, as she is considering the graph for the rectangular window. The deitic 

gestures have been used to supplement words rather than just indicating an aspect of 

interest on the screen. 
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Claire: It’s going at a average 

pace. It’s equal um even pace 

equals yeah its even. 

Researcher: The rate’s even? 

Claire: yeah like if it was like 

uneven like it would be like say 

like pull up this much of it this 

much light showing 

Claire: like it would probably go 

like that 

Figure 7. Gesture for variable rate.  
 

In this episode (Figure 7), Claire also uses the pointed fingers of both hands to 

indicate a larger distance, similar in meaning to the manner in which other students 

have used two straight hands. In Figure 7, the diagram illustrates the up and down 

motion of the index finger of her right hand. It appears that Claire is contrasting 

“even” rate by trying to demonstrate “uneven” rate with these deitic gestures. She 

seems to be associating variable rate with this collection of linear segments, varying 

the slope from positive to negative in an upward trend.  

The gesture episodes observed, offer insights into students’ understanding of rate 

of change, which were absent from their words alone. The images in Figure 2 show 

some commonly used rate-related gestures. In Figure 3, Annie used the “moving slope 

gesture” to indicate change in constant rate. Jason’s gestures, in Figure 4, suggested 

confusion between the variables, involved in the rate, which was not evident in the 

written transcript. John (Figure 5) uses the same shaped gesture as Jason, but matches 

his words to the gesture. In Figure 6, Sue was unable to verbalise why the graph 

would not be straight for variable rate, but demonstrated by the repeated use of the 

“slope gesture” that constant rate would result in a linear graph. Claire’s statement, in 

Figure 7, “like it would probably go like that” could not have been interpreted, 

whereas her deitic gestures suggest she does not fully understand either constant or 

variable rate. Gestures augmented the verbal descriptions to give greater depth to the 

researcher’s understanding of the meaning of the students’ utterances. 

Implications 

The concept of rate involves an understanding of quantities and their 

measurement. The episodes, described in this paper, demonstrate examples of gesture 

related to constant rate; gesture related to variable rate; gesture supplementing 

utterances; gesture contradicting utterances; and gesture consistent with the 

classification of other researchers. For the students in this study, gestures provided an 

intermediary stage. They were able to articulate qualitative, but not completely correct 

quantitative, descriptions of rate; gesture enabled them to communicate their 

understanding by using non-standard units (e.g., Figure 4). 

Analysis of the video evidence showed that these students had a sound conceptual 

understanding of constant rate of change but some students had difficulty in 

verbalising this. The use of gesture enabled many students to communicate ideas 

related to the less abstract graphic and numeric representations but most students, 

although able to describe operations with the symbolic representation, could not link 

this to rate of change. Some students were able to use gesture to supplement their 

utterances relating to variable rate, but none could describe their thinking with words 
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alone. Indeed, many students demonstrated little conceptual understanding of variable 

rate in this non-motion context.  

Students’ gestures provided a rich source of evidence from which to evaluate their 

understanding of rate of change. Such evidence is not always available in written tests 

where only the words are valued. Attention to gestures may enable teachers to 

comprehend better the depth and accuracy of students’ understanding of mathematical 

concepts and allow teachers to target interventions appropriate for individual students. 

For example, when students’ words and gestures match it is likely that they have a 

clear understanding of the concept. Such students are ready to explore more advanced 

concepts. When students cannot find words to express themselves, but can 

demonstrate concepts through gesture, there is an opportunity for the teacher to build 

on their understanding by targeting vocabulary and symbolic representations. In the 

case where students use gestures that contradict their utterances, there is an indication 

that the students do not, as yet, fully understand the concept. Such a mismatch may 

alert the teacher to the need, both, to further probe the students’ understandings, and 

also to provide suitable tasks to help the students clarify their understandings. 

Attending to gesture as well as words helps the teacher more accurately chart their 

students’ growth in understanding of rate of change. The examples included in this 

paper highlight the advantages of including analysis of gesture in the repertoire of 

both teachers and educational researchers. 
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This paper presents case study data from an exploratory study investigating six 

preschoolers’ patterning skills using three learning modes: concrete materials, screen-based 

technological tools, and combined modes. Children using dynamic interactive software and 

virtual manipulatives to solve pattern-eliciting tasks engaged in more “experimental” 

representations and created more patterns and transformations than children using concrete 

materials. However, there were no qualitative differences observed between children's 

understanding of simple repetition. This research highlights new ways of mathematics 

learning that can be enhanced through explicit techniques afforded by technology. 

The importance of early patterning and pre-algebraic skills have been articulated in 

several recent research projects (Dougherty & Slovin, 2004; English, 2004; Fox, 2005; 

Mulligan, Prescott, Papic, & Mitchelmore, 2006; Papic & Mulligan, 2005). These studies 

have highlighted children’s potential to develop simple repetition, growing patterns and 

functional thinking (Blanton & Kaput, 2004; Warren, 2005).  Patterning skills have also 

been found critical to the development of other mathematical processes, such as analogical 

reasoning and transformation (Lehrer, Jenkins, & Osana, 1998). 

In preschool settings, patterning is readily observed in children’s play (Ginsburg, Lin, 

Ness, & Seo, 2003) however few teachers harness, or mathematise, these moments 

(Clements & Sarama, 2007; Fox, 2005). Patterning forms an integral part of the school 

mathematics curriculum and young children are required to engage in simple through to 

complex patterning (Board of Studies NSW, 2002). Generally these patterning experiences 

involve the use of concrete materials and representations of patterns through drawing and 

traditional media. Young children, particularly preschoolers, are rarely given the 

opportunity to create a range of patterns on-screen, yet they are capable of producing 

powerful mathematical ideas (Perry, Dockett, Harley, & Hentschke, 2006).  

New technologies, such as virtual manipulatives and dynamic interactive software may 

allow young children to create mathematical representations that have increased potential 

mathematically (Clements & Sarama, 2007). For example, the development of simple 

repetition, and transformation skills such as reflection, rotation and scaling are enhanced 

through on-screen manipulations. Virtual Pattern Blocks and dynamic interactive software 

can provide representations of concrete manipulatives that allow children to experiment 

with a broader range of patterns with ease and flexibility.  

Background to the Research 

A number of researchers have highlighted the importance of linking concrete 

mathematical experiences with symbolic representations, a transition that may be assisted 

by using computer-based manipulatives (Clements, 1999; Clements & Sarama, 2007; 

Kaput, 1992; Moyer, Niezgoda, & Stanley, 2005). Virtual manipulatives are particular 

forms of mathematical software that can be defined as “interactive, Web-based visual 

representation of a dynamic object” (Moyer, Bolyard, & Spikell, 2001, p. 373). For 
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example, Pattern Blocks (see Table 4, following) have considerable mathematical potential 

because they can be easily transformed and recorded, simulating the manipulations that 

children make with concrete materials. Other programs utilising dynamic drawing tools, 

such as Kidpix (Brøderbund, 2004) have the added advantage of changing properties of 

objects.  

It appears that dynamic processes afforded by these tools can enable children’s spatial 

visualisation skills and experimentation with size, shape, orientation and simple repetition. 

Although there is little research on the use of technological tools with preschool-aged 

children, some key research has been conducted with elementary students (Moyer, Bolyard, 

& Spikell, 2001). Clements (1999) and Moyer et al. (2001; 2005) highlight benefits of 

virtual manipulatives for classroom use. For example, virtual Pattern Blocks have colours 

that can be changed, they can be “snapped” into position, unlike concrete material and they 

“stay where they’re put” (Clements, 1999, p. 51). Although virtual manipulatives may 

seem advantageous there is little research explicating how young children make 

connections between concrete and dynamic representations. Reimer and Moyer’s work 

with third graders highlights some possible benefits of virtual manipulatives as a “dynamic 

visual model” (2005, p. 22) with potential for multiple representations of concepts. 

In a study of Kindergarten children’s patterning, Moyer et al. (2005) found that 

children’s patterns were more creative, complex and prolific using virtual manipulatives 

compared with patterns formed with concrete materials. It is not known whether these 

findings would be supported in studies of preschoolers, who are likely to have less 

developed computer skills and limited mathematical patterning abilities. There is also scant 

research on young children’s use of dynamic interactive software in early mathematical 

development. The work of Hong and Trepanier-Street (2004), although not specific to 

mathematics education, does show that young children’s representations employing 

dynamic interactive software, such as Kidpix are more detailed than representations 

produced off-screen.  

This raises a broad research question: In what ways can the use of dynamic interactive 

software and virtual manipulatives advantage the development of mathematical patterning 

skills in preschool children? This study focuses on the potential advantages of using such 

technologies in developing early patterning and transformation skills.  

Method 

This project took the form of a constructivist teaching experiment, integrating elements 

of a developmental design approach, using six collective case studies (three dyads) of 

preschool children, aged between four and five years (Hunting, Davis, & Pearn, 1996). 

This mixed-method approach allowed for teaching episodes to be constructed and 

scaffolded systematically, based on the continual reassessment of each child's progress. 

Prior to commencing the teaching episodes each child was assessed for numeracy using 

I can do maths (Doig & de Lemos, 2000) and patterning skills using an Early Patterning 

Assessment (EPA), (Papic & Mulligan, 2005). Three key tasks were administered in the 

EPA – “imagine and draw a pattern”, “make a pattern” with materials and “repeating 

pattern tasks” (tower tasks). Following the initial assessment children were paired into one 

of three dyads, balanced for gender. Each dyad then participated in six, 40-minute teaching 

episodes, conducted by the researcher over a 4-week period at a participating preschool. 

Each dyad was assigned to one of three learning modalities using:  
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1. concrete materials (such as blocks, counters, animal pictures, stamps, paint, 

pencils); 

2. a combination of concrete materials, dynamic interactive software (Kidpix) and 

virtual manipulatives (virtual Pattern Blocks), and  

3. dynamic interactive software (Kidpix) and virtual manipulatives (Pattern Blocks). 
 

The aim of the teaching episodes was to engage the children in pattern-eliciting tasks, 

based, in part, on recent studies of mathematical modelling (English, 2006) and early 

patterning (Papic & Mulligan, 2005). Three pattern-eliciting tasks: making “wrapping 

paper”, creating “wall paper borders” and “threading beads” required the construction of 

simple repetition in different forms, with opportunity for multiple, alternate 

representations. Where possible the tasks directly related to the children’s context, such as 

creating a new wallpaper border to replace an existing border.  These tasks allowed 

children to play with mathematical patterns but were structured sufficiently to promote 

mathematical thinking. Tasks were matched across each of the three modalities with 

concrete materials replicating on-screen resources and tools (and visa versa). Teaching 

procedures and the order of tasks remained consistent, although it was anticipated that the 

solution strategies used by each child would differ. The researcher encouraged multiple 

responses and encouraged children to create and discuss their own representations 

regardless of the learning mode. Following the six teaching episodes, the children were re-

assessed, using the same assessment instruments. Multiple data sources (audio and digital 

media, work samples, and “researcher as participant observer” records) were compiled 

throughout the teaching experiment. All data were collated to enable a descriptive analysis 

for each child, and in turn, each dyad’s progress. Children’s responses to the tasks in each 

teaching episode were coded for the type and sophistication of patterning and 

transformational skills, supported by transcriptions of discourse between dyad and 

researcher.  

Results  

Some initial findings are drawn from pre- and post-assessment data and the analysis of 

patterning strategies developed throughout the teaching episodes. The discussion provided 

here focuses primarily on differences between children's patterning and transformational 

processes afforded by the use of technological tools.  

Pre- and Post-Assessment Responses 

Pre- and post-assessment data from the EPA indicated that all six children’s responses 

progressed from idiosyncratic to more formalised representations containing a unit of 

repeat. This development appeared independent of the learning mode employed in each 

dyad. Using the descriptors developed by Papic (Papic & Mulligan, 2005), the children’s 

images of pattern (“imagine and draw a pattern”, and “make a pattern with blocks”) were 

initially analysed and coded. Table 1 provides an example of a typical pre- and post- 

assessment response for the task, “imagine and draw a pattern” using this coding.  
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Table 1 

Sample Pre- and Post-Assessment for “Imagine and Draw a Pattern” 
 

Child ID Pre-assessment – 

imagine and draw 

Pre-assessment 

Category and Image 

Description 

Post-assessment – 

imagine and draw 

Post-assessment 

Category and Image 

Description 

Nicholas  

Code 1: Inanimate 

objects and things. 
 

An image of a yellow 

star. No pattern is 

evident  

Code 3: Informal 

notations showing 

evidence of symmetry.  
 

Code 4: Icons/ 

Symbols, A simple AB 

repetition using shape.  

 

The most important finding that emerged at this stage of the analysis was that no child 

represented pattern depicting a unit of repeat at the pre-assessment. Although some 

diagrams showed evidence of symmetry and regularity, the children were seemingly 

unaware of any pattern features. The pre-assessment representations contrast with the post-

assessment data where children depicted pattern as simple repetitions using a unit of repeat.  

Although it is clear that significant changes were made between assessments, it is not 

possible to infer whether the children’s initial idiosyncratic images of pattern remained or 

whether they had been reconstructed through new representational processes. Moreover it 

is feasible that the children learned, through the teaching episodes, to present simple linear 

repetitions in the way the researcher had scaffolded the learning. 

Responses to pre- and post-assessment for the “make a pattern with blocks” task 

showed similar patterns of response to the first task. Examples of two typical pre- and post-

assessment responses are provided in Table 2.  

 

Table 2 

Pre- and Post- Assessment Responses for “Make a Pattern with Blocks” 
 

Child ID Pre-assessment  Pre-assessment 

Category and Image 

Description 

Post-assessment  Post-assessment 

Category and Image 

Description 

 

 

 

 
Joshua 

 

Code 5: Spatial 

structure. This image of 

“shapes” shows both 

tessellation and 

symmetry, using 

multiple shapes. 
 

Code 3: Simple 

single variable 

repetition 

This is an example 

of a complete ABAB 

pattern. 

 

Isabelle 
 

Code 1: Random 

arrangement. This is a 

picture, of “butterflies 

and flowers”, and does 

not show repetition or 

regularity. 
 

Code 3: Simple 

single variable 

repetition. This is an 

example of an 

incomplete ABAB 

pattern. 

 

Table 2 provides a pre-assessment response by Joshua depicting a pattern with 

transformation symmetry. Similar pre-assessment responses were produced by two other 

children. Although some structure is evident in Joshua’s work, no child produced a pattern 

with a unit of repeat central to its design, such as ABCABC. This was in sharp contrast 

with post-assessment responses, where the children made patterns containing a unit of 
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repeat or an incomplete unit of repeat. Table 2 also provides an example of pre- and post-

assessment responses for Isabelle, where an incomplete unit of repeat is shown at post-

assessment. However, it was not possible to determine whether these children were aware 

of using symmetry or a unit of repeat in their designs. 

In four repeating patterns tasks (tower tasks), the children used multilink cubes to 

extend, make and draw simple and complex repetitions, identify hidden elements, break the 

tower into elements, and record from memory (six modes of response). Table 3 indicates 

the number correct responses (six responses are possible) for the four tasks at pre- and 

post-assessment. At pre-assessment all children could continue simple AB repetitions but 

found most other tasks difficult. Matthew was an exception to this, as he was able to 

respond correctly to most tasks except for the “breaking into elements” strategy.  

 

Table 3 

Children’s Performance of Tower Tasks at Pre- and Post-Assessment 
 

  Pre-assessment  Post-assessment  

 

 

A
B

 

A
B

C
 

A
A

B
  

A
B

B
C

C
C

  

A
B

  

A
B

C
A

B
C

  

A
A

B
A

A
B

  

A
B

B
C

C
C

  

Tina 1 0 0 0 4 4 0 0 Dyad 1 

Materials  Joshua 3 2 0 0 6 5 0 0 

Nicholas 3 0 0 0 6 4 0 0 Dyad 2 

Combined  Yvette 2 0 0 0 4 0 0 0 

Isabelle 4 0 0 0 6 4 0 0 Dyad 3 

Technology Matthew 5 5 5 3 5 5 5 4 

 

Table 3 indicates that all of the children progressed in their understanding of simple 

repetition (ABAB) with four of these children also constructing complex repetitions 

(ABCABC). By the post-assessment all children had progressed significantly in both 

complexity and awareness of pattern. 

The overall progress shown for individuals between pre- and post-assessments across 

all three EPA tasks was evident but the differences in responses between dyads was too 

small, or not consistent, to be noteworthy. Further reporting of the individual patterns of 

response is required to describe individual progress within learning modalities. 

Teaching Episodes 

Increased representations using technology. Technological tools allowed ease of 

representation, with children in dyads 2 and 3 consistently engaged in increased 

experimental patterning. Children working on-screen produced a broader range of patterns, 

and edited or deleted them before completion. In part, this could be attributed to the “delete 

tools” that held “novelty value”, with the children enjoying “rubbing out” and “chucking” 

things in the “bin”. The figures provided in Table 4 provide examples from each dyad, of 

children's experimentations from the third teaching episode, where they re-visited a 

“beading” task, seeking alternate patterns. In this teaching episode, as in all teaching 

episodes, the more permanent nature of the concrete materials meant that children using 

traditional representational tools were less likely to experiment with their representations. 

In contrast, children using technological tools were motivated to experiment with, and 
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produce more patterns. For example, in dyads 2 and 3, Yvette and Isabelle cloned pattern 

elements following demonstration by the researcher. 

 

Table 4 

Three Children’s Work Samples for Beading Task “Mum’s Beads” 
 

 Teaching Episode 3: Sample 1 Teaching Episode 3: Sample 2 Teaching Episode 3: Sample 3 

 

Neither child in this dyad would 

produce further patterns. 

 

D
y

ad
 1

: 
M

at
er

ia
ls

  

Joshua created  a complex 

repetition (ABC) compared 

with previous pattern.  

  

   

D
y

ad
 2

: 
C

o
m

b
in

ed
 

Yvette reconstructed previous 

pattern (AB) with shapes. 

Yvette constructed an ABC 

repetition created with assistance 

using 'cloning' technique. 

Yvette produced an AB 

repetition created 

independently using cloning 

technique. 

   

D
y

ad
 3

: 
te

ch
n

o
lo

g
y

 

Isabelle produced a sequence 

of hexagons, carefully aligned, 

using three colours without use 

of unit of repeat.  

Isabelle produced a 'pendant' 

using a different arrangement of 

hexagons, without use of unit of 

repeat  or cloning.  

Isabelle constructed two AB 

patterns including a unit of 

repeat using a cloning 

procedure.  

Transformation skills.  Both dyads using technological tools engaged in more explicit 

transformative actions, such as reflections, translations and rotations, and shearing or 

scaling of images (see Figures 1 to 3). Although children using concrete materials did 

engage in transformations such as sliding, rotating and flipping of materials, these actions 

were not as defined as those actions performed with technology. As well, these children did 

not engage in shearing or scaling of images, as this was not easily performed off-screen. 

Children using technology also engaged in rich mathematical discussions about their 

transformations (see excerpt accompanying Figure 3). Discussion of mathematical actions 

was not forthcoming from dyad 1. The prevalence of transformative actions on-screen had 

not been anticipated by the researcher and subsequently this was explored further in 

response to the children’s experimentation. Transformations, such as rotation and 

translation were identified in representations and discussions of the dyads working on-
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screen across all teaching episodes. The transformations produced by the children working 

with traditional materials were not explicit, nor were these discussed spontaneously by the 

children. Transformative actions for off-screen dyads only occurred in one teaching 

episode, after the researcher modelled reflections and rotations. 
 

  

Figure 1. Yvette's repetition, with rotational 

transformation of parallelograms. 

 
Figure 2. An image created by Isabelle, showing 

transformations of shapes. 

 

   

Nicholas:  Oh he’s really big now.  He’s really, really 

big.  Wee … Oh … Big … Fat  (as he 

scaled the lion, enlarging it) 

Yvette:  Make him long (pointing to the seals). 

Nicholas:   Flat (after shearing the seal). 

Yvette:     They’re both flat (pointing to the seals). 

Figure 3. Screen shots of shearing and scaling lion and seal icons, with accompanying transcript. 

Accuracy of representations afforded by technology. Both dyads using technological 

tools produced more mathematically accurate representations on-screen. Use of shape icons 

and stamps ensured that all representations using virtual Pattern Blocks contained 

geometrically accurate features, compared with those drawn by the children.  

 
Figure 4.  Isabelle’s triangles, created using “sticky straight string”. 

 

Other tools, such as the “sticky straight string” (Figure 4) available in Kidpix, allowed 

children to present geometric shapes more accurately and with structure. This may not have 

been permitted with some children’s limited fine motor skills. 

Discussion 

The findings of this study indicate some potential advantages and disadvantages of 

using technological tools in early patterning. Dyads working on-screen were enabled by the 

technological tools to pursue alternate learning trajectories. Children restricted to concrete 

materials still produced patterns using a unit of repeat. However, without the dynamic 

appeal of on-screen tools they were not motivated to investigate other mathematical 

processes such as cloning a unit of repeat, or transformations such as shearing and scaling. 
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Potential Advantages of Screen-Based Tools  

The observation that technological tools motivated children to experiment more readily 

and practice patterning skills is an important insight gained from this study. An increase in 

on-screen patterns was also described by Moyer, Niezgoda, and Stanley (2005) in their 

study of Kindergarten children’s patterning with virtual manipulatives.  

Dynamic interactive software and virtual manipulatives provide tools whereby the 

children can easily link units and clone or copy units of repeat which can promote 

mathematical processes such as unitising and multiplicative reasoning. Some of these 

technological functions have been partially investigated with older children (Clements, 

1999; Moyer et al., 2005). In this small-scale study there were few spontaneous examples 

of cloning units of repeat observed but with teacher guidance and further experience the 

children may have been able to develop this process independently. 

 Transformative actions exhibited by the children working on-screen provided a 

powerful example of the potential of technological tools to enhance geometric concepts 

and related mathematical processes. The use of technology also exposed children to novel 

techniques for exploring concepts such as scaling and shearing, fundamental to the 

development of proportional reasoning. 

Representational Detail and Accuracy 

The children’s on-screen representations elicited more detailed and more 

mathematically accurate images. Similar results were presented by Moyer, Niezgoda, and 

Stanley (2005) and Clements (1999), who found that virtual manipulatives offer 

opportunities for explicit representations that were previously unavailable to young 

children. Although the children’s use of pre-formed, readily available images on-screen 

allow representations to be more detailed, there is also a risk that exclusive use of these 

images may limit the development of off-screen representations. It was not possible in this 

study to ascertain whether a child who exclusively used pre-drawn shapes on-screen had 

developed the drawing skills to produce these shapes off-screen. On the other hand, it is 

possible that some drawing tools, such as the “sticky straight string”, allowed 

representations to be scaffolded until the child’s fine motor skills were sufficiently 

developed to enable similar representations off-screen.  

Potential Disadvantages of Technological Tools  

Despite the advantages, there were two main features of virtual manipulatives and 

dynamic interactive software that may impede children’s patterning skills. The first of these 

relates to the computer skills that children need to use these tools. In this study, the 

children initially found the mouse control and the skills needed to manipulate objects on-

screen challenging. The importance of modelling and demonstration of processes in early 

childhood settings is described by Plowman and Stephen as “guided interaction” (2005, p. 

152). Without teacher support, scaffolding and practice this impediment could limit 

learning.  Limited mouse control also leads to unexpected actions, such as accidentally 

spinning shapes with virtual Pattern Blocks. 

The second feature that may impede children’s learning while using these tools is the 

distracting nature of some features. This was particularly evident with Kidpix, where the 

tools had the potential to distract children’s attention from the learning, and limit dialogue. 

Again, guided interaction and adequate experience would allow the children to become 
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familiar with these features, thus reducing a novelty effect. Teacher scaffolding of learning 

also enables children to re-focus attention on mathematical concepts and skills. 

Limitations of Study  

Pattern-eliciting tasks were designed to encourage repetitions and transformation skills. 

To some extent the children may have perceived the tasks as somewhat contrived. Thus, 

the patterns they produced may not have represented their intuitive and emergent patterning 

concepts that were reflected in the pre-assessment phase. This was further constrained by 

the limited number of teaching episodes, and the time frame for each episode that may have 

inhibited further experimentation. The learning may have also been constrained because the 

children had no access to the materials or a computer in the preschool until the researcher’s 

next visit. Further, it was not possible to ascertain the explicit connections that children 

made between representations of their patterning and other learning experiences.  

Implications and Conclusions  

This exploratory study highlights the need for further research investigating the 

complex representational processes that children engage in when learning mathematical 

concepts with dynamic technological tools. The preschoolers in this project engaged in 

mathematical processes usually placed in the K-6 school curriculum. However, it was 

observed that these children were capable of constructing and representing complex 

patterns in a variety of ways. It was apparent from discussions with preschool staff that this 

potential learning had not been harnessed. Staff were intrigued by the dyads’ use of 

technological tools but were apprehensive about continuing such activities because of their 

lack of pedagogical knowledge and technological skills. Professional development 

programs in both preschool and formal schooling may assist in promoting the appropriate 

use of technology in early learning. 

 This study supports current research advocating that virtual manipulatives and 

dynamic interactive software have the potential, when used with appropriate teacher 

support, to be powerful mathematical tools (Moyer et al., 2005). A longitudinal study 

would provide the opportunity to investigate whether the child's ability to manipulate 

virtual materials has a significant influence on their conceptual development of patterning 

and transformation skills. New research might also draw attention the need for integrated, 

multidisciplinary approaches to investigating the role of technological tools in the early 

development of mathematical concepts.  
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During initial attempts at filmmaking by my Year 7 class my focus was on the technology. 

However, I observed many positive learner behaviours inherent in the filmmaking process. 

Could these positive learner behaviours be harnessed, through filmmaking, to improve 

learner outcomes in mathematics? Two trials were conducted comparing a mathematical 

mini-documentary making revision strategy with pen-and-paper revision. It was concluded 

that mini-documentary makers retained information at least as effectively as, if not better 

than, students who used pen-and-paper strategies. This implies that mathematics educators 

can be confident of positive effects on students’ knowledge retention through student 

filmmaking in mathematics.  

As a teacher of Year 7 students I was attempting to incorporate digital filmmaking 

technologies into my classroom. Initially my aim was to develop students’ familiarity with 

the technology. The first production attempts were not aligned to mathematics. Production 

was slow and we encountered many difficulties, which were overcome, and from which, 

we learnt a great deal. For me, at this stage, the focus had remained on the mechanics of the 

filmmaking, but my attention was drawn from these processes to the discussions of the 

students.  

Filmmaking required the students to make many decisions about their learning and how 

it would be portrayed. Discussions occurred about relevance of details, the priorities and 

sequences of information, the best ways of portraying ideas, and how to link segments. 

Disagreements among students required them to defend their point of view, rationalise 

choices, and think deeply about what they had learnt. Critical thinking and higher order 

thinking were occurring without any prompting from me. I had reached the stage identified 

by Wiberg (1995-1996) where the focus moved away from the technology to how it could 

be used to enhance critical thinking. I became interested in the possibility of linking 

filmmaking to mathematics thereby harnessing the many positive learner behaviours 

inherent in the filmmaking process for the benefit of the students’ mathematical learning. I 

realised that the making of mini-documentaries about specific mathematical topics would 

offer my students much more than simple exposure to a new technology. My students could 

use filmmaking as a vehicle for enhancing their learning through collaboration, 

investigation, communication, expression, performance, understanding, manipulation of 

information, and the making of a product. This research was to investigate how these 

filmmaking technologies could be used as a revision strategy in mathematics and to 

determine if the strategy resulted in a positive impact on student learning. 

Background 

Current Information and Communication Technologies Research Agenda  

The nature of constant technological change has many authors calling for more and 

more research to keep pace with how the technologies can be used to enhance student-
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learning outcomes. Roblyer and Knezek (2003), for example, discussed the research 

agenda for education and technology and emphasised the importance of showing why 

teachers should use particular information and communication technologies (ICT) 

advancements as a means of finding solutions to educational problems. There is a strong 

belief that pervades the literature that when used correctly ICT have a positive influence; it 

seems that it has been very difficult to find the evidence to prove it. Slavin (2004) believed 

that research, such as this mathematical filmmaking study, comparing alternative 

approaches with traditional has a valid function to serve. This is in line with Robler and 

Knezek who promoted research that showed the relative advantage of a technology-based 

teaching method over another because, before teachers accept a new method they must be 

convinced of its relative advantage. The practicalities of educational technology research 

are such that most researchers will continue to work in their local environments, solving 

problems pertinent to their situations. 

Meta-Analyses Involving ICT in the Classroom  

A meta-analysis by Waxman, Lin, and Michko (2003) suggested that there were few 

reviews of research on the effects of classroom use of technologies on student outcomes. 

They deemed this to be a significant gap in available research as they believed that the use 

of technologies often changed the teaching practices in a classroom from teacher-centred to 

more student-centred with subsequent improvement in student outcomes. They believed 

that the dramatic, present day improvement in quantity and quality of technologies 

available in classrooms would at least provide the opportunity for improved learning 

outcomes from teaching and learning with those technologies. Through this research 

project I investigated these opportunities in the mathematics classroom.  

Kozma (2003) completed a meta-analysis of worldwide case studies showing how ICT 

were incorporated in innovative pedagogical practices. Some similarities became apparent. 

ICT were able to provide frameworks to support and improve student learning by 

developing the skills deemed to be of particular importance in the 21
st
 century, such as 

handling information, problem-solving, communication, and collaboration. Filmmaking in 

mathematics is an excellent medium for eliciting these skills acknowledging Kozma’s 

emphasis that it is how teachers effectively incorporate a technology that will lead to 

improved learner outcomes.   

Processes Associated with Filmmaking 

Primary students can now incorporate words and pictures (still and moving) in 

representations of their knowledge. Recognising this, Bull and Thompson (2004) called for 

investigations into academic strategies that utilised this combination of words and pictures 

into today’s instructional objectives. 

Strategies do not emerge from the new technology as much as from how it can be 

applied (Ross, Yerrick, & Molebash, 2003). This observation fits the model of Reeves 

(1998) who divided ICT in classroom use into learning from computers and learning with 

computers. In the context of this research, this analogy can be taken to the broader realm of 

ICT, in that it aims to discover how students can work with film in mathematics to improve 

learning outcomes.  

It was while students were working with the video cameras and editing equipment that I 

noticed a great deal of communication and collaboration. McGrath (2004) believed that 
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learners needed skills such as tracking and communicating, reflecting on ideas and 

understandings, and designing to make understandings visible to others. These are 

definitive skills required by young mathematicians and filmmaking seems purpose-built to 

avail their development.  

Other authors have completed studies that hint at further advantages to be gained by 

filmmaking in mathematics. Yerrick, Ross, and Molebash (2003) noted through their 

observations of the use of digital video in science, that collaboration and communication 

were present in the learning process via multiple student voices and ideas. They went on to 

say that it was possible to improve content understanding using desktop digital video 

editing when the students were authentically engaged in the production process. This 

increased authenticity of learning through the use of digital cameras was also highlighted 

by Sharp, Garofalo, and Thompson (2004). Using a post-test only design Hopson, Simms, 

and Knezek (2001) found that an enriched technology environment could develop students’ 

higher order thinking skills. 

Application of Filmmaking Technologies and Practices to Classrooms 

Currently, most research examples of filmmaking in specific subject areas are from 

tertiary institutions or from high schools. For example, Mills, Kelley, and Jones (2001) 

showed how digital cameras could be used to capture images in a micro-biology class. The 

cameras allowed students who previously suffered from the inaccuracies of hand drawing 

what they saw to now being able to have an accurate image of what they were studying. 

The advantages of using digital cameras were listed and included rapid collection of 

images, archiving, class discussion and comprehension, better use of class time, and 

student empowerment. 

For students to produce a film effectively to represent their mathematical knowledge 

they need to produce a storyboard. This allows the articulation of content, concepts, and 

sequence prior to the actual filmmaking process. Storyboarding is the planning stage. It 

requires the makers of the film to visualise what is to be filmed. It is during this stage that a 

number of educational benefits pertinent to the learning of mathematics have been noted by 

several authors. Reeder (2005) described storyboarding in the broader sense of preparation 

for the design of products, not just film, and spoke of its value of communicating intention, 

sequence, and needs. Storyboarding requires effective communication and requires 

students’ traditional oral and written communication skills before the use of the digital 

communication begins. In science class applications of digital video and editing, Ross et al. 

(2003) stated that in preparation for filming, communication of ideas for script, settings, 

camera angles, examples, and data were required through storyboarding. They added that in 

an educational context, an accurate storyboard was important as it allowed the teacher to 

check for accuracy of concepts to be portrayed by the students before the film was started. 

Storyboarding, they believed, added greatly to the learning process of the students as it was 

where connections were made between the content of the lesson and the creative aspects of 

communication of ideas.  

A study by Pearson (2005) drew attention to the urgent need to understand the 

educational implications of classroom digital video and editing, to enable filmmaking to be 

used with maximum benefit in teaching and learning. One of the implications of Pearson’s 

study was that ways to embed the use of video making across the curriculum needed to be 

encouraged. 
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Method 

Overview 

The project involved two trials, the second replicating the procedures of the first but 

swapping the tasks of groups, thereby allowing all students to complete a mathematical 

mini-documentary. The two trials used different mathematics topics. 

Mathematics Topics 

In trial one the topic was transformation of shapes. As a class we investigated 

reflection, translation, and rotation of two dimensional and irregular shapes, initially 

through links to an animated web page and then through practical constructions. Students 

investigated how to use these transformation functions to create three dimensional shapes 

from two dimensional, which included instructions such as degrees of turn for a rotation, 

and movement to new coordinates for a translation. As an extension activity, the works of 

M.C. Escher were examined and replicated using some of the skills learned. Assessment 

for this topic focussed on construction using transformation and demonstration of 

understanding of the mathematical terminology. 

The topic for trial two was measures of central tendency. Students had an 

understanding of average but were introduced to the terms mean, median, and mode. 

Scenarios were discussed to determine which measure would give the most accurate 

portrayal of the specified circumstances. Practice was given for the methods of calculation 

for each measure of central tendency. Assessment focussed on the students’ ability to 

choose the appropriate measure for a particular situation and also their ability to calculate 

and manipulate the measures. 

Participants 

Participants were the members of a Year 7 class at a Queensland State Primary School.  

Students were between 11 and 12 years of age. There were 13 girls and 14 boys in the 

class. Following school policy the class was assigned students with a balanced range of 

ability levels. The total number of participants giving their consent to be involved in the 

project was 27. In the both trials there were 25 students involved and 2 students absent at 

some point.  

Instruments 

The instruments used to assess learning were teacher generated class tests, based on 

information taught in class as per the Queensland mathematics syllabus. These tests were 

pencil and paper completion items. Scoring of responses was by a right-or-wrong marking 

scheme. The test given at the end of the week of instruction served as the pre-test. The test 

without notice, administered two weeks later was the post-test. The raw scores from these 

tests were used in the data analysis. 

Apparatus 

Cameras used in these trials were Sony Digital Still Cameras (3.1 mega pixels) that had 

limited but adequate capacity to take digital video with audio. Sony 128mb memory sticks 

were used to store data.  
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A combination of classroom computers and laptops was available with Windows XP. 

The movie editing software was Movie maker 2. To transfer movies to a central location 

for review purposes, they were burned to CDs.  

Design 

These trials were intended to determine the effect of making mathematical mini-

documentaries as a revision strategy compared to a more traditional pen-and-paper revision 

approach. A variation of a pre-test/post-test control group design was used to determine the 

students’ retention of the mathematics topics.  

Procedure 

For each trial the Year 7 class was instructed in the chosen mathematics topic. At the 

end of the week in which instruction took place, students completed a teacher-generated 

test on the topic that served as the pre-test. The following week the students were randomly 

assigned to one of two groups. These groups undertook a revision lesson on the 

mathematics topic. Group 1 revised their work by making mini-documentaries and group 2 

completed their revision by the more traditional method of pen-and-paper work sheets. 

Two weeks later, without notice, students were administered the post-test.  

These mini-documentary making teams of three or four students were organised just 

prior to the start of the revision period. Their instructions included a recommended break 

up of the working time, which was ten minutes for storyboarding and resource collection, 

twenty minutes filming, and half an hour film editing. The mini-documentaries were to 

outline the major concepts of relevant mathematics topic. Filming was allowed in and 

around the classroom. The students’ brief was to make a mini-documentary, which could 

be viewed by other students for future revision purposes or as a teaching and learning tool 

in future years. Time efficiencies were achieved by encouraging students to not be 

overambitious with acting or camera shot selection. Groups were asked to do all speaking 

parts live and not to use voice over recordings during the editing phase as it was not time 

efficient. Finally, during the editing process students were asked to address the basics first. 

Only after clips were dragged onto the film timeline and correct sequence achieved were 

additional tasks of title slides, on screen wording, transitions, and credits to be completed. 

The pen-and-paper group was instructed to complete the revision of the maths lesson 

on the worksheets given to them. On completion, these students could continue with 

related activities. They were allowed to work by themselves or with others.  

The revision period was of one hour’s duration. Most of the pen-and-paper revision 

group completed the set tasks and moved on to related activities. 

All mini-documentary teams completed the film within the allocated time. These films 

were generally less than 90 seconds duration because the time constraints of one hour 

would not allow for more extensive productions. Also, the editing software had a tendency 

to freeze with films longer than the proposed duration (Microsoft Corporation, 2003).  

Students were given the post-test without notice two weeks after the revision lesson. 

Results 

A univariate analysis of variance (ANOVA) was conducted to determine the 

significance of changes in mean (see Table 1) from the pre-test to the post-test for each 

revision strategy trialled. The analysis of the data was to determine the variation in learner 
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outcomes from the mini-documentary making group to the pen-and-paper revision group. 

Levine’s test showed that the scores had homogenous variance from pre-test to post-test. 

In trial one the mini-documentary group’s means showed no significant effect from pre-

test to post-test F(1, 24) = 0.300, p > 0.05. As the post-test was administered without 

notice two weeks after the revision lesson, the results indicate that the mini-documentary 

makers’ retention of the maths concepts, although not improved, were not significantly 

diminished in the interim.  

 

Table 1 

Means of the Two Revision Groups from Pre-test and Post-test in Trial One 

Pre-test Post-test  

M SD M SD 

Mini-

documentary 
18.7 2.3 18.1 2.7 

Pen-and-paper 19.6 2 17.3 3.3 

 

The pen-and-paper revision group means showed a significant effect from pre-test to 

post-test: F(1, 22) = 4.450, p < 0.05. The students in this group had a significantly lower 

post-test mean than pre-test mean. In the interval between completing the revision 

worksheets and the post-test these students showed some lack of retention of the 

mathematics topic of transformations. 

In trial two, data were analysed as per trial one (see Table 2). Levine’s test showed that 

the scores of both revision groups had homogenous variance from pre-test to post-test. 

Table 2 

Means of the Two Revision Groups in the Pre-test and Post-test in Trial Two 

Pre-test Post-test  

M SD M SD 

Mini-

documentary 
21.5 3.3 22.2 2.6 

Pen-and-paper 20.7 2.7 20.3 2.9 

 

The mini-documentary group means showed no significant effect from pre-test to post-

test F(1, 24) = 0.351, p > 0.05. As for the previous trial the post-test was administered 

without notice two weeks after the revision lesson and the results indicate that the mini-

documentary makers’ retention of the mathematics concepts had improved slightly but not 

significantly. The pen-and-paper revision group means showed no significant effect from 
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pre-test to post-test F(1, 22) = 0.106, p > 0.05. Contrary to the earlier result, the pen-and- 

paper revision group’s retention of the mathematics concepts was not significantly 

diminished in the interim.  

Discussion 

 

The results of these two trials indicated that the use of mini-documentary making as a 

revision strategy in mathematics provides a valuable alternative to traditional approaches. 

Knowledge retention of mini-documentary makers was as good as, if not slightly better 

than, that of students who completed traditional pen-and-paper revision worksheets. This 

gives a positive starting point for the incorporation of filmmaking into primary schools as a 

legitimate form of expression in the teaching and learning process in mathematics. As this 

technology improves and becomes more available, as teachers and students become more 

adept at its uses, and as more varied applications are attempted, it seems reasonable to 

expect that learning outcomes will improve.  

A Storyboard Example 

As only ten minutes were allocated to storyboarding, the focus had to remain on the 

concepts to be portrayed and what techniques would best achieve them. As decisions were 

made, the students recorded them on their storyboards, quickly developing a plan for their 

films. Students used their mathematics exercise books and graph books to focus their 

thoughts on what concepts needed to be covered. Decisions were made as to how to portray 

the concepts through film. Some of these were filming of manipulatives and diagrams, 

students pretending to be teachers, comedic role play, and coloured chalk examples on the 

concrete playground.  

A  Mini-documentary Example 

   A review of a mini-documentary will give a brief insight into the production 

processes and the final product. From a teacher’s perspective, I was keen to see that the 

focus of the one-hour period remained on the portrayal of the mathematical concepts. It 

was important that students did not lose sight of the mathematical goals while engaged in 

the technological process. The success of the mini-documentary revision strategy as a 

viable alternative to traditional pen-and-paper methods depended on students maintaining 

this focus. As the films were to be viewed by peers, and possibly future year seven classes, 

the students were keen to ensure that information portrayed was correct. They felt that they 

were producing an authentic product. The following review is an example of the overall 

process.  

This was a film on transformations produced by a team of three girls. The students used 

a demonstration format where the viewer only sees the hands that manipulate materials. 

The demonstrations of transformations were effective as this team used a white L shape on 

a black background that gave visual clarity. Also included was an example of how a three-

dimensional shape can be drawn by sliding a two dimensional shape and joining 

corresponding points. The film concluded with a summary of the concepts using interplay 

between two of the team members that was to the point and effective. The mathematical 

concepts were well explained and the film was visually appealing. The team’s effort to 
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convey the concepts showed an understanding of the needs of the intended audience. The 

film was completed within the allocated time. 

Observations of the Mini-documentary Making Process 

The mini-documentaries produced in these trials varied in approach and technical skill 

but accurate content was generally present in all. The effectiveness of these films varied 

owing to the different film techniques and presentation methods used by the teams. 

Although the filmmaking process as a revision strategy for the film-makers has proved 

effective in these trials, the reasons for this effectiveness have not been determined.   

The process of film-making entailed a number of observable behaviours that may have 

contributed, in varying degrees, to the effectiveness of this revision strategy, and could be 

the focus of further research. These observations were of students who: 

• Were motivated and engaged, staying on task throughout the activity. 

• Collaborated with team members through discussions, decision making, 

sequencing, role sharing, and task allocation. 

• Were active rather than passive in their leaning. 

• Used a common mathematical language in their discussions. 

• Needed to think about their thinking (metacognition) to portray concepts 

correctly. 

• Showed pride and were creative in scripting, acting, filming, and editing. 

Students’ comments and interactions during the production process also give an insight 

into the value of the filmmaking strategy especially from a meta-cognitive perspective.  

• A great deal of peer correction occurred when determining the portrayal of the 

mathematical concepts, sometimes requiring clarification from me if the team 

had reached an impasse.  

• A common challenge expressed by the students was that they understood the 

concepts but found it difficult to explain them. The filmmaking process forced 

them to clarify their thoughts. 

• A comment from one student was, “We had to talk maths.” 

Practical Implications 

Mathematics Syllabus and Filmmaking 

The Queensland mathematics syllabus articulated the contribution of this key learning 

area to lifelong learning. The following selected phrases from the Queensland Studies 

Authority (2004) describe these lifelong learner attributes; these attributes can be 

considered in terms of how filmmaking in mathematics could contribute to their 

development. 

. 
• Knowledgeable person with deep understanding 

o Learners’ understandings are enhanced through active engagement in mathematical 

investigations and in communicating their thinking and reasoning in ways that make 

sense to themselves and others. 

• Complex thinker 

o Learners … analyse and synthesise information …. 

• Responsive creator 
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o [Learners] use a range of representations to communicate mathematical understandings 

and to transfer knowledge from one situation to another. 

• Active investigator 

o  [Learners] manipulate concrete materials and make a variety of representations and 

displays … to assist their mathematical thinking and reasoning. 

• Effective communicator 

o [Learners] understand and use the concise language of mathematics, both verbal and 

symbolic. 

o [Learners] select appropriate mathematical language to convey, logically and clearly, 

their mathematical understandings, thinking, and reasoning. 

• Participant in an independent world 

o Learners cooperate, collaborate, and negotiate in groups to plan, think, reason, and 

resolve mathematical investigations…. 

• Reflective and self-directed learner 

o Learners reflect on their learning as they become metacognitively aware and self-

regulating. (pp. 2-4) 

 

From analysis of students’ mathematical filmmaking processes and products it is 

clearly apparent that there is alignment with these descriptions of life long learning 

attributes. 

Practical Relevance of Study 

This research targeted a revision strategy using filmmaking technologies. It has shown 

how students can effectively work with rather than from these technologies.  

For teachers to use mini-documentary making confidently in their classrooms within a 

reasonable time limit, students must be familiar with the filmmaking process and they must 

be encouraged to use simple techniques. My class had been taught the basic filmmaking 

process earlier in the year as a part of our Arts program. For the purposes of this research, 

time parity between revision strategies was very important but, for general classroom use, 

the strict time limit concerns for making mini-documentaries could be relaxed. This would 

be especially important if younger grades were involved. The process could be broken into 

shorter periods; storyboarding, filming, and editing could be completed in a series of short 

lessons. 

The Queensland Studies Authority (2004) through the rationale of the mathematics 

syllabus has regularly confirmed the link of mathematics with technology (though not 

always ICT). Filmmaking seems to fit naturally into the Queensland Studies Authority’s 

understandings of, (a) thinking, reasoning, and working mathematically, (b) the attributes 

of lifelong learning, (c) the cross-curricular priorities of literacy, numeracy, lifeskills, and 

futures perspective, and (d) understandings about learners and learning.   

The findings from this study have shown the effectiveness of a filmmaking revision 

strategy that teachers may choose to apply across the curriculum and across grades. The 

next step in my research is for my students to record on film, salient points of a unit of 

work during, or at the end of each lesson on a given topic. By building a body of recorded 

information students will then produce a documentary as a culminating activity or 

investigation. These documentaries could fulfil the same role as a written assignment or 

“write up” of class work. They could also be used as an assessment piece. The research 

focus will be to determine not only if student learning outcomes are improved but also 

why. 
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The concept of students making films in specific subject areas such as mathematics 

brings with it enormous educational potential as it requires metacognitive processes, 

collaboration, and communication as well as technical skills to be successful. A technology 

that allows students to communicate their mathematical ideas incorporating, spoken word, 

still and moving images, in everyday mathematics classroom settings has the ability to 

influence positively the teaching and learning process of mathematics.  
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In this paper we discuss the considerations and challenges in designing instructional tasks 

that support both students’ mathematical engagement and their developing mathematical 

competence. We draw on Dewey’s work and take the perspective that cultivating students’ 

content-related interests should be an instructional goal in their own right rather than solely 

serving the instrumental purpose of supporting students’ conceptual understanding. We 

reflect on our learning from two classroom design experiments to offer illustrations of issues 

related to supporting students’ interests. We offer these illustrations, not as exemplary cases, 

but instead, as points of reflection and discussion. In this paper, we focus specifically on 

instructional tasks by presenting a retrospective analysis on the role of tasks in supporting 

students’ interests and access to important content ideas.  

Introduction 

Reform recommendations have called attention to the use of real world contexts in 

mathematics problems (National Council of Teachers of Mathematics, 1989, 2000) and 

culturally relevant pedagogy has emphasised drawing on students’ local and broad 

communities as a source for engaging problem topics (Ladson-Billings, 1995). In this 

paper, we focus on instructional tasks and their role in supporting both students’ 

mathematical interests and their developing mathematical competence. In doing so, we 

develop what it means for an instructional task to be effective from our perspective as 

mathematics educators. Our discussion centres on two ideas: (a) how a task holds potential 

for supporting students’ development of mathematical interests and (b) how a task holds 

potential for providing students with access to important mathematical ideas. We believe 

that instructional tasks are deemed effective according to how well they respond to both of 

these points. We use the term task to refer to problems that are designed and presented to 

students in mathematics class. We use the term instructional activity to refer to how these 

tasks become realised in the course of discussions and interactions in the mathematics 

class. In focusing on the design of instructional tasks we emphasise intent and potential. 

Additionally, we must examine how instructional activities become constituted in a 

classroom in order to test and refine what we understand about designing effective tasks. 

Therefore, our focus is on the considerations and challenges in the design of effective 

instructional tasks while at the same time exploring tensions that might emerge as these 

tasks become realised in the classroom.  

In order to discuss effective tasks in this way, it is important for us to delineate more 

specifically how we might evaluate tasks in how they provide access to interests and 

content ideas. To this end, we initially lay the foundation for the analysis to come. We do 

so by clarifying an orientation toward students’ development of content-related interests 
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that draws heavily on the ideas of John Dewey (1913/1975). This orientation has 

implications for how we think about the specific role of tasks in supporting students’ 

mathematical interests. Secondly, we provide background to two design experiments from 

which the retrospective analysis draws data. We then share insights from the analysis in 

order to 

• clarify a two-part process of cultivating students’ mathematical interests 

• examine the potential of task situations in supporting students’ development of 

mathematical interests 

• explore the role of tasks in supporting the emergence of particular mathematical 

topics in whole-class discussions.  

These three parts of the analysis relate to each other in that the first describes a way of 

cultivating students’ mathematical interests whereas the second and third parts clarify the 

role of tasks in supporting this process.  

An Orientation on Cultivating Students’ Interests 

As we have indicated, our purpose in this paper is to examine characteristics of 

instructional tasks that can contribute to supporting both students’ interests and their access 

to important mathematical ideas. For this reason, we draw on the work of Dewey since his 

perspective encourages us to think about the resources teachers can draw on to support 

students’ interests within the context of the classroom. In this paper, we focus primarily on 

tasks, but as will become apparent, classroom discourse and the role of teacher serve as 

resources in this process as well.  

Dewey’s ideas have been helpful in that he describes interests as something that 

individuals can cultivate rather than characteristics that are inherent aspects of people. 

From his perspective, students’ current interests act as leverages from which students’ 

content-related interests could be developed. In this process, current interests could afford 

opportunities from which content interests, such as mathematics, could be developed. 

Dewey used the term cultivation to indicate that he regarded it a teacher’s responsibility to 

support the development of students’ disciplinary interests. He argued that disciplinary 

interests are an inherent aspect of disciplinary literacy, and as such their development 

should be an instructional goal in their own right. 

Importantly, Dewey’s view on interests also highlights the nature of students’ interests. 

His focus was on students’ interests in particular content ideas that could be cultivated over 

time in a class, and subsequently a series of courses. His view is in contrast to the more 

typical emphasis on engaging students to participate in particular activities in the classroom 

without necessarily noting what students are becoming interested in as they engage in such 

activities. This orientation on cultivating mathematical interests reflects a developmental 

perspective that emphasises the deeply cultural nature of students’ interests. In this way, 

Dewey anticipated Vygotsky’s argument that interests cannot be adequately accounted for 

by either biological desires or skill acquisition but are culturally developed (compared with 

Hedegaard, 1998; Vygotsky, 1987).  

From this orientation, cultivating students’ mathematical interests becomes a challenge 

for both instructional design and teaching. As instructional tasks are the most visible means 

of organizing students’ mathematical activity, we examine their potential as a resource in 

cultivating students’ mathematical interests. In doing so, we attempt to discern 

characteristics of tasks that support students’ long-term interests in learning mathematics. 
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The kinds of tasks we identified as effective are quite different from activities and 

problems that connect with what can be identified as students’ current interests but are 

weak in providing access to significant mathematical ideas.  

 

The Design Experiments 

The classroom design experiments on which we draw focused on supporting students’ 

increasingly sophisticated forms of statistical reasoning. A member of the research team 

served as the teacher in both experiments, which were conducted in an urban middle school 

in the United States. Twenty-nine seventh-grade students participated in the first 

experiment that was conducted over a 12-week period and involved 34 classroom sessions 

of approximately 40 minutes in length. This experiment was conducted in the students’ 

regular mathematics classroom and focused on the analysis of univariate data. The 

following school year, a smaller contingent of students from the same class (now eighth 

graders) participated in a 14-week experiment involving 41 classroom sessions of 40 

minutes that focused on the analysis of bivariate data.  

Analyses that we have reported elsewhere indicate that the teacher was generally 

successful in supporting students’ development of increasingly sophisticated forms of 

statistical reasoning (P. Cobb, 1999; P. Cobb, McClain, & Gravemeijer, 2003). The 

relatively impressive nature of the students’ learning encompasses both the sophistication 

of the data-based arguments that they developed and the depth of their understanding of 

issues related to the process of generating data such as the representativeness of samples 

and the control of extraneous variables (P. Cobb & Tzou, 2000). Additional analyses (P. 

Cobb, Gresalfi, & Hodge, 2007; P. Cobb, Hodge, Visnovska, & Zhao, 2007) reveal that 

students during the course of the design experiments came to view analyzing data as an 

activity that was worthy of their engagement. The findings of these prior analyses indicate 

that the design experiments provide a rich context from which to examine the role of 

instructional tasks in supporting students’ mathematical engagement and their developing 

competence.  

 

Instructional Tasks in the Design Experiment Class 

A basic design principle that guided the development of instructional tasks during both 

experiments was that they should support students’ analyses in involving the investigative 

spirit of exploratory data analysis from the outset (cf. G. W. Cobb & Moore, 1997). As a 

consequence, we attempted to develop instructional tasks in which the students analyzed 

data sets that they viewed as realistic for purposes that they considered legitimate. Most of 

the instructional tasks involved comparing two data sets in order to make a decision or 

judgment (e.g., determining whether installing airbags in cars does have an impact on 

automobile safety). To support the students’ engagement further in what might be termed 

genuine data analysis, they were required from midway through the first experiment to 

write a report of their analyses for a specific audience that would act on the basis of their 

reports (e.g., a police chief who wanted to know whether a speed trap had been effective in 

reducing traffic speed). 

In most of the instructional tasks, the students did not collect data themselves. Instead, 

the teacher introduced each task by engaging the students in an introductory discussion that 
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was often times lengthy. In the course of these discussions, the class talked through the 

process by which data might be generated. Specifically, the teacher and students together 

delineated the particular phenomenon under investigation, clarified its significance, 

identified relevant aspects of the phenomenon that should be measured, and considered 

how they might be measured. The teacher then introduced the data as having been 

generated by this process and the students conducted their analyses individually or in small 

groups. The final phase of an instructional activity consisted of a whole-class discussions 

of the students’ analyses. The resulting organization of an instructional activity often 

spanned two or more class sessions.  

Data Sources and Method of Analysis 

Our analysis of instructional activities draws from data that include video-recordings 

made with two cameras of classroom sessions, copies of all student work, and two 

independent sets of field notes of all the classroom sessions. Our central question had to do 

with discerning which instructional tasks were constituted as worthy of students’ 

engagement and those that were not. Three members of the research team used video-

recordings of one productive and one unproductive introductory discussion from the 

second design experiment as test cases initially in which to develop, test, and refine these 

criteria. They focused on these introductory discussions because it was during these 

discussions that the teacher and students negotiated the intent of the activities by talking 

through the significance of the problem at hand and the relevance of analyzing the situation 

from a mathematical point of view. This procedure was repeated by reexamining two 

further productive introductory discussions. As a result, the following criteria were 

established to determine whether an instructional task was constituted as worthy of 

students’ engagement: (a) at least half of the students contributed to the data generation 

discussion, (b) the number of turns taken by students in the discussion was equal to or 

greater than the number of turns taken by the teacher, and (c) the majority of student 

contributions concerned ways to address the question under investigation by generating and 

analyzing data (e.g., relevant aspects of the phenomenon that should be measured, how 

these aspects might be measured, and how data might be generated). These criteria are 

generally consistent with Engle and Conant’s (2002) contention that evidence of 

engagement can best be seen by considering questions such as: “How are students 

participating? What proportion of students is participating? And how are students’ 

contributions responsive to those of other students?” (p. 402). Three members of the 

research team subsequently used these developed criteria to analyze the video-recordings of 

introductory discussions of all 14 tasks presented in the first experiment independently in 

order to determine which of these tasks were constituted as worthy of students’ 

engagement. All researchers agreed that eight of the tasks were constituted as worthy of 

students’ engagement whereas six were not. A comparative analysis was conducted to gain 

insight into the characteristics of the instructional tasks that contributed to the differences 

documented in students’ engagement. We discuss findings from this analysis at a later 

point in this paper.  
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A Two-Part Process: Cultivating Pragmatic Interests and Mathematical 

Interests 

Our learning in the design experiments sheds some light on processes that are involved 

in supporting students’ mathematical interests (P. Cobb et al., 2007). One aspect of our 

learning concerns a two-part process of supporting students’ development of disciplinary 

interests. This two-part process involved first cultivating students’ pragmatic interests or 

interests in the problem situation presented in the instructional task. These pragmatic 

interests we describe relate to an interest in pursuing the specific problem at hand. To 

illustrate what we mean, one of the instructional activities in which students engaged in the 

latter part of the seventh-grade design experiment involved analyzing data on the T-cell 

counts of AIDS patients who had enrolled in a standard treatment program and an 

experimental treatment program. The datasets presented to students are shown in Figure `1. 

Experimental Treatment 

 

 

Traditional Treatment 
Figure 1. AIDS Data. 

A pragmatic interest that we encouraged students to develop related to investigating 

which treatment was more effective rather than solely an interest in the broad topic of 

AIDS. It seemed from our observations that the issue of AIDS was relevant to few if any of 

the students’ personal daily lives. In other words, they did not know anyone, including 

family and friends, who had been diagnosed as having AIDS. However, they appeared to 

have developed a genuine interest in the issue as they engaged in an introductory whole-

class discussion that clarified the instructional task and took place prior to the students 

conducting their own analyses. The teacher typically initiated these introductory 

discussions by posing a general problem or issue. In the ensuing conversation, the teacher 

and students clarified why this problem or issue would be significant to them or to a 

particular audience.  

During the AIDS introductory discussion, the teacher and students talked about the 

general topic of AIDS, the importance of finding an effective treatment, and how data 

might be collected to help the class decide which of the two AIDS treatments had better 

results. The initial focus on the students’ knowledge of AIDS led to a conversation about 

both the relevance of finding an effective treatment for AIDS and measures that could 

indicate to what extent an applied treatment is effective. We conjecture that many students 

became interested in the instructional activity as they came to see the relevance of 
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developing effective treatments for AIDS within the context of wider society. In this way, 

students’ pragmatic interests were cultivated as they engaged in a discussion that clarified 

the overall relevance of the task investigation and how data might be used to address this 

issue. This first phase of cultivating students’ pragmatic interests in issues of social 

relevance was crucial in students coming to see a reason for analyzing the data sets with 

which they were presented. As we later discuss, our analysis of effectiveness of 

instructional tasks indicated that the tasks, which did not afford leverage for cultivation of 

students’ pragmatic interests in the problem at hand, were not instructionally effective. As 

will become apparent, although critical, cultivation of students’ pragmatic interests was 

only one part of cultivating students’ interests in mathematics. 

As part of their attempts to cultivate students’ mathematical (or, specifically statistical) 

interests, the research team supported students’ participation in the emergence of practices 

consistent with those in which data analysts might genuinely engage. The students’ 

participation in these practices involved identifying relevant patterns in the data, presenting 

data-based arguments, writing a report to a decision maker summarising their analyses, and 

judging the adequacy of arguments presented by others. During the whole-class discussion 

that focused on the students’ analyses of the AIDS data, it became apparent that all the 

students in the class had concluded that the new treatment was more effective than the 

traditional, standard treatment. However, a lengthy, whole-class discussion ensued that 

focused on different ways of structuring and organizing the data. It appeared in this 

discussion, at least on the surface, that students were becoming interested in developing 

data-based arguments and judging the adequacy of these arguments in the context of this 

class session in spite of their consensus on which treatment was more effective. We refer to 

these developing interests, related to practices of doing mathematics, as mathematical 

interests. The following excerpt illustrates the nature of the whole-class data analysis 

discussion students were afforded. This excerpt focuses on one group’s analysis (Figure 2), 

in which the students proposed an inscription to show the global differences in the way the 

two sets of data were distributed.  

 

Figure 2. One student group report. 
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Janet:  I think it’s an adequate way of showing the information because you can see where the 

ranges were and where the majority of the numbers were. 

Dan:  What do you mean by majority of the numbers? 

Teacher:  Dan doesn’t know what you mean by the majority of the numbers. 

Janet:  Where the most of the numbers were.  

Teacher:  Sue, can you help? 

Sue:  What she’s talking about, I think what she’s saying, like when you say where the majority 

of the numbers were, where the point is, like you see where it goes up. 

Teacher:  I do see where it goes up (indicates the “hill” on Figure 2) 

Sue:  Yeah, right in there, that’s where the majority of it is. 

Teacher:  Okay, Dan. 

Dan:  The highest range of the numbers? 

Sue:  Yes. 

Teacher:  The highest range? 

Students:  No. 

Teacher:  Valerie. 

Valerie:  Out of however many people were tested, that’s where most of those people fitted in, in 

between that range. 

Teacher:  You mean this range here (points to lower and upper bounds of one of the “hills”)? 

Valerie:  Yes. 

 

In this excerpt, students clarified Janet’s use of the term “majority” in relation to the 

datasets. In doing so, majority as related to the notion of relative proportions became an 

explicit topic of conversation in the classroom. This opportunity to clarify statistical ideas 

was prompted by both the task situation and the design of the specific data sets to make 

comparisons of unequal data sets necessary. Furthermore, this excerpt is illustrative of the 

discussions that constituted the second part of a two part process that sought to cultivate 

students’ interests in learning mathematical ideas. As we reiterate later, the tasks that 

would not allow for a meaningful mathematical discussions to develop based on students’ 

mathematical contributions make it difficult for teachers to cultivate students’ 

mathematical interests effectively. 

Task Situations and Their Potential for Cultivating Students’ Pragmatic 

Interests 

Students’ development of pragmatic interests was critical in providing a reason to 

engage in discussions about specific mathematical ideas. We conjectured that “effective” 

task situations drew from topics that were located within students’ zones of proximal 

development. These situations and topics were located within a space of topics that 

students were likely to find engaging when supported through discourse and interactions 

within the classroom. During the design experiments, we found issues that were of a 

personal or societal relevance to be the most effective in engaging students. This finding is 

understandable given adolescents’ growing interest in their place in society and their sense 

of power in affecting change on society and their immediate community (Hedegaard, 

1998).  

During the design experiments, we made a number of modifications to the instructional 

tasks in light of the instructional agenda, students’ mathematical learning, as well as what 

we learned about ways to cultivate students’ interests. In a retrospective analysis on 

instructional tasks, we found four distinguishing characteristics of effective instructional 

activities. As an illustration, we draw on the AIDS task that was deemed as a success in 
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engaging students in both pragmatic and mathematical issues. We discuss the four 

characteristics of task situations that were engaging to students: 

• Students have developed some familiarity with or awareness of the phenomenon 

either in school or out-of-school (e.g., the topic of AIDS, batteries, etc.) 

• Students have developed a prior awareness of the specific question to be 

investigated and initial familiarity with the processes involved (e.g., finding an 

improved treatment for AIDS patients, AIDS involves your immune system, the 

physical effects of AIDS on the body).  

• Students came to view the specific question to be addressed as significant during 

the course of a discussion that introduced the instructional activity (e.g., finding 

a more effective treatment for AIDS would be important to patients and to 

medical staff).  

• Students came to view addressing the question from a mathematical perspective 

as reasonable during the course of a discussion that introduced the instructional 

task (e.g., the analyses of AIDS patients’ T-cell counts to assess the effectiveness 

of the two treatments).  

It is important to note that we documented examples of ineffective instructional 

activities in which different ones of the four listed key characteristics were violated. In this 

sense, we propose that each of the characteristics was necessary for cultivating students’ 

interests in the statistics design experiment classroom. 

Many would argue that statistics lends itself to real world task situations whereas this is 

not the case with all mathematical topics or ideas. At this point, we would not make the 

claim that all effective instructional tasks require a real world scenario; however, we would 

make a two-fold argument that (a) an introductory discussion that clarifies the intent of the 

task and its significance (to society or to the students’ mathematical learning) is critical in 

providing all students opportunities to understand the task and to become engaged in it and 

(b) a real world situation may be useful in engaging students, but the task situation must 

also be scrutinised in terms of the mathematical ideas that it affords. 

Interests, Learning, and the Space of Possible Mathematical Topics 

In retrospect, we found it helpful to consider task situations and questions posed in 

these tasks specifically in light of the space of possible mathematical issues that might 

emerge in whole-class discussions. This would involve considerations of how students 

might interpret and reason about the task and what conversations might come about from 

clarifications and comparisons of these ways of reasoning. It is not surprising that 

instructional tasks that do not adequately support teachers’ efforts in building on students’ 

reasoning towards instructional goals are also generally not effective in supporting 

students’ mathematical learning. Similarly, in order to cultivate students’ mathematical 

interests, it is critical to provide students with access to mathematical ideas that would 

enable them to solve problems that they come to see as pragmatically important. 

In the case of the AIDS activity, the research team purposefully constructed data sets 

with a significantly different number of data points when we developed the activity so that 

the contrast between absolute and relative frequency might become explicit. This in turn 

required a task scenario in which the inequality in the size of the data sets would seem 

reasonable to the students and which they would view as significant and engaging. The data 

sets for this activity were therefore designed so that 46 people enrolled in the experimental 
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treatment and 186 people enrolled in the traditional treatment. Additionally, the total 

number of data points in the larger data set was not a multiple of the total number of points 

in the smaller data set. These design decisions were made in order to support students’ 

examination of the data in proportional terms. During the whole-class discussion of the 

students’ analyses, a number of significant mathematical issues emerged during the 

conversation. These include the meaning of the term majority, the distinction between 

absolute and relative frequency, the usefulness of percents in specifying relative 

frequencies and the interpretation of graphs in which data sets were partitioned into four 

groups that contained the same number of data points.  

When mathematics becomes a tool for students to solve significant problems they can 

be supported to see mathematics as relevant and interesting in its own right. We concur 

with Clarke (2005) that mathematics as it becomes realised in the classroom can be 

relevant in different ways when situated within multiple contexts. In his description of 

Chinese classrooms, mathematics can be seen to be situated within the broader cultural 

context in which it is respected and valued as both a pragmatic and intellectual tool (Svan 

& Clarke, 2007). Additionally, Clarke describes classrooms in South Africa in which 

mathematical learning is in the service of informing a broader agenda, that of addressing 

social issues such as substance abuse or AIDS (Sethole, Adler, & Vithal, 2002). In our 

reflection, we have emphasised the importance of the task situation, the mathematical 

ideas, and the relationships between the two. When constructing effective mathematical 

tasks, the multiple ways in which mathematics can become relevant to students should be 

considered. For our part, we have focused on what can be done in the classroom to support 

students’ development of mathematical interests in situations when the students do not 

necessarily see mathematics as relevant to their lives from the outset.  

Discussion 

In closing, we refer to two points that we have emphasised in this paper. First, we have 

argued that when designing instructional tasks, it is important to consider how the task 

holds potential for cultivating both students’ pragmatic and mathematical interests. We 

have described both of these aspects as closely related and as phases of a process that 

serves to cultivate students’ mathematical interests. We acknowledge that considering both 

of these aspects at the same time when designing a task is challenging. Similarly, as an 

instructional activity becomes constituted, addressing both of these aspects in teaching is 

challenging as well. Tensions can and often do arise between addressing pragmatic 

interests and content-related interests (Azevedo, 2002). This emphasises the need for 

analyses that investigate how instructional tasks can serve as resources for teachers as they 

navigate such tensions and how classroom practices mediate this process.  

Second, critics of the use of real world contexts argue that not all students have 

experiences that support their understanding of such contexts. Some would say that some 

students are advantaged over others (Lubienski, 2002). Introductory discussions and the 

ideas of pragmatic interests as accomplishments emphasise topics that are located within a 

zone of proximal development and substantive discussions that support students’ access to 

understanding the task context and its significance. In this way, the meaningfulness of a 

task is seen to be supported and developed through discussions, interactions, and other 

resources within the social context of the mathematics classroom.  
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Strong relationships established between schools and communities can improve the 

mathematical learning outcomes for Aboriginal students. The 2005-2006 Building 

Community Capacity project sought to identify key aspects of meaningful engagement 

between schools and communities focusing on the development and implementation of 

contextualised, relevant and connected mathematics curriculum and appropriate teaching 

and learning strategies to enhance Aboriginal students’ mathematics outcomes. Using case 

study methodology within two school sites in New South Wales, the paper identifies critical 

elements of community engagement and provides underlying principles, which other 

communities might consider in their own community capacity building.  

 

From 1999-2005, the Board of Studies, New South Wales (NSW) in conjunction with 

the NSW Department of Education and Training, Australian Catholic University, and 

University of Western Sydney, has worked with schools and community members at two 

sites: one urban site in western Sydney and one rural site in western NSW in the 

Mathematics in Indigenous Contexts (MIC) project. These two sites were selected because 

of the significant enrolment of Aboriginal students in the schools. MIC focused on 

establishing a learning team comprising teachers, Aboriginal educators, and local 

Aboriginal community people to develop contextual multistage mathematics units that 

suited the learning needs of Aboriginal students. The mathematics activities reflected each 

community’s knowledge, engaged the students in meaningful learning, created closer 

school/community links, and brought cross-cultural groups together. An underlying 

principle of the project was having the school seen as central to the community, with both 

working together to develop curriculum which enhanced the knowledge and the capacity of 

the Aboriginal students, community, and school. Building community capacity was a key 

element of the MIC project. The MIC participants included: Aboriginal educators, 

Aboriginal parents and community people, primary and secondary teachers, teacher 

mentors, Aboriginal and non-Aboriginal students, NSW Board of Studies personnel, and 

university mentors. 

MIC was based upon the principle that the mutually beneficial engagement of people 

and cultures is essential in developing a community’s capacity for educating Aboriginal 

students. According to Matthews, Howard, and Perry (2003), “educating Aboriginal 

students requires Aboriginal and non-Aboriginal teachers to understand the needs and 

cultures in which each Aboriginal student lives” (p. 18).  

Mathematics and Aboriginal Students’ Learning 

All education, including mathematics education, needs to be a “place of belonging” for 

Aboriginal students. Aboriginal students need to feel that schools belong to them as much 

as to any other child. School success for Aboriginal students is dependent upon “cultural 

appropriateness, development of requisite skills and adequate levels of participation” 
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(Elson-Green, 1999, p. 12). To move towards the achievement of potential by Aboriginal 

students it is important that Aboriginal culture and language are accepted in the classroom 

and students have a sense of belonging (Matthews et al., 2003). Developing a shared 

understanding and appreciation of the beliefs of the culturally diverse groups involved in 

mathematics learning can help lessen cultural conflict in the mathematics classroom and 

place more focused attention on the learning potential of Aboriginal students. Parents, 

teachers and students need to come together to develop and implement relevant curriculum 

and teaching strategies that utilise and value Aboriginal peoples’ knowledge and values 

(Howard, Perry, & Butcher, 2007). Cultural identity is a major issue for Aboriginal people. 

No matter where an Aboriginal child lives it is likely he/she will identify with aspects of 

Aboriginal culture. Identity is personal and evolves as individuals grow in the knowledge 

of their cultural backgrounds and as they respond to varying places and circumstances.  

 Howard (2001) reported Aboriginal beliefs about mathematics, mathematics teaching, 

and mathematical learning. The identification and reporting of these mathematical beliefs 

help inform teachers and Aboriginal communities about required reform in mathematics 

teaching to enhance Aboriginal students’ mathematical learning. Learning mathematics is a 

process of sociocultural interaction (Sfard & Prusak, 2005). All students, Aboriginal and 

non-Aboriginal, will meet cultural conflicts in their mathematics classrooms. For 

Aboriginal students, such cultural conflict may occur through the teaching strategies being 

used, the lack of relevance of mathematics activities, confusion in the mathematics 

language being used or the lack of awareness of the social, cultural and historical issues 

that Aboriginal students bring to the mathematics classroom. Teachers have to become 

aware of, and appreciate, the cultural diversity and hence the cultural conflicts that can 

occur amongst teachers, students, parents, and the curriculum content. They need to 

understand where the school conflicts originate for Aboriginal students in order to 

implement effective pedagogy. Appropriate curriculum can enhance the mathematics 

achievement of Aboriginal students through its relevance, appreciation of the complexity of 

the mathematical language and presentation of practical mathematical learning activities 

(Howard & Perry, 2005). 

Community Capacity: Setting the Scene and Identifying Challenges 

The Building Community Capacity project seeks to analyse the success of the 

Mathematics in Indigenous Contexts project and encourage its generalisation into other 

communities and contexts by examining the: 

• place of community capacity building within current political, social, and 

educational contexts; 

• nature of community capacity building; and 

• challenges such community capacity building provides for teachers and 

communities. 

MIC was funded by the Board of Studies NSW at a time when there were limited, if 

any, formal channels for Aboriginal communities to have a representative voice in local 

curriculum development initiatives. Within MIC, priority was given to the voices of 

Aboriginal people and students as an essential means to enhancing the cultural 

appropriateness and educational potential of learning goals and strategies for Aboriginal 

students.  
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Nature of Community Capacity Building 

Community capacity can be described as the bringing together of the community’s 

knowledge, skills, commitment, and resourcefulness to build on community strengths and 

address community challenges (McGinty, 2002). Community capacity building involves 

both attending to the foundations of the capacity and taking the capacity beyond where it is 

at present. Engagement that is respectful of, and sensitive to, the values of these 

communities and cultures are key to community capacity building. 

Challenges of Community Capacity Building 

Community capacity building involves school leaders, teachers, students, community 

leaders and members in a process of mutually beneficial engagement through a discourse of 

relationships and exploration. Relationships of respect and trust are the gateway to 

effective engagement. School leaders and teachers are challenged in the first instance to 

move beyond the educational model of “teacher and taught” to one of mutual respect and 

engagement with the Aboriginal community as learning partners.  

Community capacity building challenges schools and teachers to use learning 

approaches that are based upon the mutual engagement of the school and the community. 

One of the criteria for quality teaching and learning (NSW Department of Education and 

Training, 2003) is that schools must move beyond approaches that assume they alone have 

responsibility for ensuring learning is related or applied to students’ contemporary world 

and cultural contexts. A second challenge requires educators to move beyond a model of 

minority children’s school achievement that deals only with factors that educators can 

potentially influence (Okagaki, 2001). Leadership and power lie within and across the 

school and Aboriginal communities rather than with the school alone. The integrity of 

leadership lies in the capacity to engage and explore in an alternative and open discourse 

which will inform approaches to education and learning for Aboriginal students. 

A third challenge for schools and teachers lies in their stance with respect to 

quantifiable measures of student capacities such as student attendance, progression and 

retention data which are used as benchmarks for public reporting and accountability. Key 

among these measures in NSW are Basic Skills Tests, Secondary Numeracy Assessment 

Program, English Language and Literacy Assessment, School Certificate, and Higher 

School Certificate data. These “evidence-based” measures, which report upon student 

behaviours, performance, and competencies, inform one’s understanding of the learner and 

learning but do not define or bring closure to a student’s capacity. In the case of Aboriginal 

students’ learning, such “informing” requires educators to consider a further register of 

indicators and evidence that are both informative and culturally inclusive. 

A fourth challenge for schools and teachers is to engage with communities in a shared 

understanding of how home, community, and school can work together in supporting 

student learning. Alton-Lee (2003) found that for most effective development of student 

learning outcomes there needs to be an alignment of capacities across student, teachers, and 

the school community as a whole. This requires teachers to value community contexts and 

their strengths. Schools and teachers are challenged to engage with the community and the 

cultural contexts of the students’ worlds (Howard, Perry, & Butcher, 2006a) in ways that 

impact upon school and teacher approaches that are aligned with these contexts. School 

leaders and teachers develop the cultural and educational alignment of school and 
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community through enhancing their own capacity to think with the cultural perspectives of 

the students and their communities (Bernstein, 1996). 

A fifth challenge underlying a school’s and teacher’s capacity to enhance Aboriginal 

students’ education lies in teachers developing their own personal and collective efficacy 

for community engagement. Educators and researchers are challenged to see teacher 

efficacy as being multi-dimensional including not only their current pedagogical focus on 

teaching and classroom management (NSW Aboriginal Education Consultative Group 

Inc./NSW Department of Education and Training, 2004), but also their efficacy to engage 

with the community (Labone, 2004).  

In summary, community capacity building for enhancing the education of Aboriginal 

students presents schools and teachers with the five challenges of developing: 

• mutual respect between the Aboriginal community and the school community; 

• mutual engagement with the community in developing learning approaches 

based upon alternative and creative discourses; 

• evidence-based discourses to inform one’s understanding of learners and 

learning;  

• home-school-community alignment for enhancing student learning; and 

• personal and collective efficacy for community engagement. 

These five challenges pose a framework for engaging with the school and Aboriginal 

communities and exploring their community capacity building to enhance the education of 

Aboriginal students. Within the MIC project the curriculum focus of Aboriginal students’ 

learning of mathematics was the specific vehicle for enhancing community capacity.  

Methodology 

The Building Community Capacity project focused on three NSW Department of 

Education and Training schools in the two sites – a primary school in an urban community 

and both a primary and secondary school in the rural site. These schools were chosen based 

on the collaboration between the Aboriginal community and school in previous 

Mathematics in Indigenous Contexts activities. Each site identified an Aboriginal educator 

as the key project link between the school and the Aboriginal community.  

Qualitative data about building community capacity through meaningful engagement in 

the Mathematics in Indigenous Contexts project were collected by the authors during visits 

to each site. Semi-structured interviews with Aboriginal community members, Aboriginal 

Educational Assistants, Aboriginal students, teachers, and school principals were the 

principal data collection strategies. During 2005, three visits were made to each site. There 

was a fourth visit to each site in 2006. 

The Building Community Capacity project focused on investigating attitudes of 

teachers (primary and secondary, including school executive) in respect to 

parent/community (Aboriginal) involvement, issues impacting upon community 

(Aboriginal) involvement, and the possible ramifications on student engagement 

(Aboriginal and non-Aboriginal) in school (primary and secondary). The three key 

research questions were the following. 

1. What are the critical interactions between Aboriginal communities, increased 

community capacity, and positive Aboriginal student engagement with education? 

2. What are the critical issues that impact on developing sustainable community 

capacity projects between schools and Aboriginal people? 
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3. What activities and processes underpin the development of effective school 

community capacity projects? 

All interviews were audio-taped and transcribed. An initial categorization of the 

qualitative data was established using a grounded theory approach. Coding was conducted 

by the authors and identified four constructs linked to the research questions. These 

constructs formed the Framework for Successful Community Capacity Building:  

• Context – data related to the physical, social, economic, cultural and historical 

factors in each site;  

• Engagement and Learning - data related to levels of involvement of Aboriginal 

students and community with the schools; 

• Sustainability – data related to factors influencing the continuity of initiatives 

established during the Mathematics in Indigenous Contexts project; and 

• Activities and Processes – data related to the effective interactions that facilitated 

school/community engagement. 

Each site formed a case study that informed conclusions and recommendations for the 

building of community capacity through a mathematics curriculum development project. 

The Sites 

The urban site is situated in Western Sydney. The primary school was established in the 

mid-1970s. In 2005, approximately 140 of the 450 students at the school were Aboriginal. 

Most of the people in the community are long-term residents, and many of the children at 

the school are second generation students.  

In 2002/2003, Year 4 teachers volunteered to be involved in the Mathematics in 

Indigenous Contexts project. In collaboration with the Aboriginal Education Assistant 

(AEA) and the Aboriginal community, mathematics units were developed around a mural 

theme, use of the local Aboriginal reserve, and group-based activities that focused on 

building specific mathematical skills such as measuring, numeracy, basic operations, and 

geometry.  

The rural site is a harmonious western New South Wales community of about 3000 

people, approximately one-third of whom are Aboriginal. Almost half of the primary 

school students and one in five of the high school students are Aboriginal. Most of the 

people in the community are long-term residents.  

A key focus of the MIC project in the rural site was building Aboriginal students’ 

specific mathematical skills in measuring, mapping, enlarging, estimating, using 

compasses, and understanding volume and fractions. The students completed in-class 

mathematics activities, mapped changes in land use near the school with the help of a local 

community member, and described directions using compasses. Following these activities, 

the students visited “The Pines”, an area where the Aboriginal community lived from the 

1950s to the mid-1970s. The area was well known to the Aboriginal educators at the school 

and community members. The non-Aboriginal staff knew little of the history of this land. A 

concept map was generated by the mathematics teachers and Aboriginal community 

members to identify what type of mathematical knowledge and understanding students 

could gain from activities utilising the site. The site, as suggested by its name, was covered 

in pine trees. These became a key resource in the development of mathematical activities 

such as measuring the heights and circumferences of the trees and estimating their age. The 

teachers developed a mathematics unit of work about the central theme of the environment 

Mathematics: Essential Research, Essential Practice — Volume 1

406



of The Pines. Non-routine problems involving orienteering through The Pines highlighted 

position, angle and direction. Other activities included drawing, naming and categorising 

various flora. These processes reinforced 2D representation from 3D objects. Plans/maps 

were drawn of various sections of the site with students generating scales and keys. The 

project day included a talk from Aboriginal Elders about their life on the site and how the 

families lived from day to day. The integration of mathematics and history engaged the 

students in the learning and enabled them to become more aware and appreciate a critical 

element of the history of their town (Handmer, 2005). 

For Harry (Head Teacher, Mathematics), the culminating day of the project evidenced, 

… a sense of achievement in that we had got so far from where we had set off. I know it was a maths 

unit that we were asked to do, but then we decided ourselves that there was far more importance on 

the fact that we should acknowledge, appreciate and know about the Aboriginal people out in that 

area. [It was enlightening] going out there and seeing, the interaction of the children, and seeing the 

Aboriginal children take an ownership role of their little groups. All the kids learnt something about 

the identity of the Aboriginal people who lived there. For a lot of the non-Indigenous kids The Pines 

was an area that you drove past and thought “Oh, so what?” but now it means something. We need 

to do far more to acknowledge that part of our history.  

Harry felt that it was now important for the school community to acknowledge the past: “If 

you don’t know where you came from and have an identity, you flounder for the rest of 

your life. You’re wondering. Yes, you’re always wondering.” 

The Mathematics in Indigenous Contexts project enabled part of the Aboriginal history 

of the rural community to come to the surface. For Harry, the mathematics project was “a 

good learning experience for both of them (Aboriginal and non-Aboriginal students). It 

was an excellent learning experience for the staff – not only the people involved but the 

reaction that went through the whole school community.”  

 

Results, Analysis, and Discussion 

The Mathematics in Indigenous Contexts project gave priority to the voices of 

Aboriginal people as an essential means of enhancing the cultural appropriateness of 

mathematical teaching and learning for Aboriginal students. It was based upon the rights of 

Aboriginal people to be engaged as decision makers in local policies regarding the nature 

and form of mathematics education.  

The Aboriginal community members interviewed expressed the view that the 

Mathematics in Indigenous Contexts project enriched the engagement of Aboriginal and 

non-Aboriginal students in their mathematics learning, acknowledged the relevance of 

community-based mathematics teaching strategies, and increased the capacity of the 

community to engage in effective mathematics curriculum reform. Further detail of the data 

gathered and its analysis is presented here within the previously developed Framework for 

Successful Community Capacity Building. 

Context 

All three school sites involved in the project were physically welcoming to the 

Aboriginal community, through significant displays of art and photographs both inside and 

outside the school buildings and a general feeling of overall calm. There was an obvious 

sense of pride in the presentation of the schools and this was respected by their 

communities, staff, and students. There was a sense of self-respect amongst the students 
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and staff of each school. As well, the schools were seen as important centres within the 

communities. 

There’s an exchange of knowledge there when you’re getting Aboriginal people that come into 

schools. OK, they’re not very well educated but they know a lot about how Aboriginal people live. 

And the teachers can see how they relate to the kids and the kids relate to them and you’re learning 

off each other all the time. (Aboriginal community member, rural site) 

Staff, students, and community at all of the schools commented that there was really no 

overt racism. When isolated instances of conflict occurred, those involved were clearly told 

by school or community that it was just not acceptable in these locations. People from all 

groups took the responsibility for ensuring harmony.  

In all the sites, there are key members of the communities and the school leadership 

teams who have shown long-term commitment to their roles in developing the strengths of 

the schools and their engagement with their communities. Of particular note are the roles 

played by some school executive members and the Aboriginal Education Assistants. The 

data identify people at both sites who provide role models for other sites in terms of their 

skills and knowledges and the ways in which they act and interact to build community 

capacity. Of particular importance in the sites studied were the following people. 

Urban site  Aboriginal Education Assistant; Principal; Assistant Principal. 

Rural site  Aboriginal Education Assistants (primary and secondary schools); 

Principal (secondary school); Head Teacher, Mathematics; Assistant 

Principal (primary school).  

The participants in both sites expressed their beliefs that they wanted to go beyond an 

involvement of the community with the schools through traditional parent/teacher 

meetings, school barbecues and sports days. They wanted to move towards a purposeful 

engagement of community in providing appropriate learning opportunities for Aboriginal 

students. This willingness was evident in a long-term commitment to build relationships 

between schools and communities and mutual trust and respect among all involved.  

Engagement and Learning 

By coming together and engaging in community capacity building, all participants are 

engaged in learning. The teachers were mentored by the Aboriginal educators and 

community people in developing a different appreciation of the learning ways of their 

Aboriginal students. 

There is a lot of ignorance of Aboriginal culture. We have to educate them to what we are made of, 

what we are and where we have come from. We have to open their eyes to see that their way, while 

it’s a good way, it’s not the only way to do things. (Aboriginal community member, rural site) 

When Aboriginal people and the community are engaged in the school curriculum, 

with their knowledge and presence valued, they come to feel a greater part of the school. In 

MIC, such engagement has developed a greater awareness amongst all participants of 

Aboriginal culture and the importance of education and learning.  

Change is coming. It has been gradual but I think now there’s a bigger focus on it whereas before it 

was ignored. I think getting people into the school to raise the teacher’s awareness is helpful. It 

makes the students feel more a part of the school. It’s that awareness that’s changed in non-

Aboriginal people and leads to other changes. I reckon it’s making the kids more aware of their 

education and the need for education. (Aboriginal community member, rural site) 
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Sustainability  

The effects of many educational initiatives are short-term and unsustained. One of the 

features of the approach taken in MIC was to endeavour to have the changes last well 

beyond the intervention period. There was a commitment to an engaged presence of the 

Aboriginal community within the schools and a clear purpose in the tasks undertaken. 

Commitment, explaining and timing were seen to be critical elements in facilitating 

change.  

The people involved in it from the beginning got to be committed and they’ve got to go out and first 

be here with their Elders and with the community and not give up on them. So you go back there 

now and you find another way of doing it, it may work. But you’ve got to keep at it … it’s just 

explaining yourself more. If they don’t understand what they’re getting into, well, they’re not going 

to have a go. You’ve got to catch them at the right time. Things are going on in their lives where it’s 

impossible for them to do things. So if you get them at that right time, you’re right. Sometimes you 

just can’t so you just have to keep going back. And you don’t try to push it on them, you explain it to 

them and if they don’t understand it, if you haven’t explained it properly then you will go back and 

you’ll think about it and go back again … you got to have compassion. (Aboriginal community 

member, rural site) 

The indications from these participants are that they now feel in a position to continue 

similar initiatives generated from within their own schools and communities. 

The coming together of the knowledges of all participants has led to an enhanced 

understanding of each others’ roles within community and a deeper appreciation of the 

complementarity of these roles. Key features of the sites that have made this possible are: 

• an environment of openness and trust;  

• mutual respect;  

• sincerity in establishing and maintaining relationships; 

• a shared commitment to the tasks involved; 

• effective leadership from both the school and community;  

• willingness to do more than might be seen as one’s duty;  

• knowledgeable and confident Aboriginal Education Assistants;  

• confidence, resilience, efficacy, and initiative of Aboriginal community people; 

• expressed recognition and celebration of the value of Indigenous knowledge; 

• the presence of key Aboriginal and non-Aboriginal community members with a 

history of harmonious engagement;  

• an appreciation of the risks that need to be taken to engage purposefully and a 

willingness to take these risks;  

• active listening;  

• a sharing with other schools and community of what had been achieved; 

• managing the subtle prejudicial behaviours that might emerge; and 

• tangible products and outcomes from the work undertaken. 

When these features are achieved in a project, then there would seem to be an excellent 

chance for sustainability in building community capacity.  

If our kids are going to thrive, we need our community members, and the only way to get them is to 

let them know what is going on and let the school know what and who is available out there. I’m like 

a contact person, liaison person and also make sure that the Aboriginal people that are in the school 

are comfortable. We want them to come back and do what they are good at doing. (Aboriginal 

Education Assistant, urban site) 
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Activities and Processes 

What mathematics is done in a project such as MIC is less important than how it is 

done, providing it does offer opportunities for all participants to engage in meaningful, 

relevant and interesting tasks. However, there is much evidence that the mathematical 

excursions to The Pines in the rural site and to the Aboriginal Reserve in the urban site 

were most worthwhile activities in their own rights. They enhanced student mathematical 

outcomes in special and particularly relevant ways. As well, they helped the adult 

participants understand each others’ cultural history in ways that would be impossible 

using traditional classroom-based teaching approaches.  

What we did with these projects was brought it back to relevance, not only for just the Aboriginal 

kids but for the non-Aboriginal kids too. It would be better for the community if they’ve got 

awareness of the history of it, the town they’re living in and the people in it. So that must feel better. 

(Aboriginal community member, rural site) 

From the perspective of community capacity building, the actual mathematics learned was 

a pathway along which people travelled to reach a greater understanding of each other and 

their communities.  

Conclusion 

Through these two case studies and the reporting of MIC’s impact upon the 

communities, key features have been identified that other communities could use in 

enhancing their own community capacity building efforts. Clear progress has been made 

towards meeting the five challenges for community capacity building that were described 

earlier in the paper. This framework, as well as the Framework for Successful Community 

Capacity Building, have been useful in analysing the achievements of MIC. The 

frameworks provide a structure whereby communities can evaluate to what degree they are 

achieving the key components of a successful capacity building program.  

In the past, too much has been left to chance as well-meaning groups of people strived 

to improve the lot of Aboriginal people without Aboriginal people having a direct 

engagement in the process. The Mathematics in Indigenous Contexts project has provided a 

strong model for a shift in approach which does ensure that Aboriginal communities play a 

leading role in the development of their capacity.  
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A literature-based instrument gathered 147 final-year preservice teachers’ perceptions of their 

mentors’ practices related to primary mathematics teaching based on five factors for mentoring 

(i.e., personal attributes, system requirements, pedagogical knowledge, modelling, and 

feedback). Results indicated acceptable Cronbach alpha scores for each factor: 0.91, 0.77, 0.95, 

0.90, and 0.86, respectively. Furthermore, less than 45% of mentors were perceived to provide 

specific practices associated with mentoring system requirements. This paper discusses 

possibilities for using the survey instrument including benchmarking mentees’ perceptions of 

their mentoring for developing their mathematics teaching and as a reference point for 

delivering professional development for mentors.   

 
 University-community engagement is a high national priority.  Although university-

community collaboration has not been a traditional strength of higher education (Holland, 

2004, p. 11), there appear to be considerable benefits through university-community 

engagement. Institutions have found university-community engagement has strengthened and 

expanded the scholarship and teaching at the academic level (Brukardt, Holland, Percy, & 

Zimpher, 2004, p. 1), particularly as “Community-based research can be a bridge between the 

academy and the community” (Heffner, Zandee, & Schwander, 2003, p. 3). These effective 

partnerships align goals with adequate time to establish partnerships (Kriesky & Cote, 2003). 

Determining the progress of university-community engagement requires some form of 

measurement.  Many educators have advocated benchmarking as a means for measuring 

successful practices and as a useful tool for balancing outcomes and processes (Garlick, 2003). 

Garlick argues that benchmarking must “…begin with an extensive consultation program” 

(2003, p. 5) and, certainly, university and community consultation needs to be part of the 

benchmarking process. There are various types of university-community engagement that 

have the potential for benchmarking practices.  

 Mentoring is prominent in education systems throughout the world (Hawkey, 1997; Power, 

Clarke, & Hine, 2002; Starr-Glass, 2005) and mentors (i.e., supervising teachers or 

cooperating teachers) in professional experience settings (i.e., practicum, field experiences, 

internships) are well positioned to assist preservice teachers in developing their practices 

(Crowther & Cannon, 1998). Mentors’ responsibilities for developing preservice teachers’ 

practices are increasing as mentoring continues to amplify its profile in education (Sinclair, 

1997). Primary teachers in Australia generally work across all key learning areas (KLAs) and 

hence, in their roles as mentors, are expected to facilitate quality mentoring to preservice 

teachers across these KLAs. However, primary teachers will not be experts in all KLAs and 

research shows some areas receive considerably less attention than others (e.g., science 

(Goodrum, Hackling, & Rennie, 2001) and art (Eisner, 2001)). As the curriculum is so diverse 

for primary teachers, they may need assistance in their roles as mentors with particular 

mentoring practices focused on subject-specific areas (Hodge, 1997; Jarvis, McKeon, Coates, 

& Vause, 2001), which also appears to be the case for mentoring in mathematics education 

(Jarworski & Watson, 1994; Peterson & Williams, 1998).    

 Similar to teaching practices, professional development in mentoring practices may 

enhance the mentors’ knowledge and skills. Also similar to teaching practices, mentors 
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operate in their own environment, where they may or may not receive further ideas for 

developing their practices.  Yet, mentoring cannot be left to chance (Ganser, 1996) and needs 

to be purposeful in order to be more effective with explicit practices (Gaston & Jackson, 1998; 

Giebelhaus & Bowman, 2002; Jarworski & Watson, 1994; Jonson, 2002). Guidelines for 

subject-specific mentoring can aid the mentors’ development by increasing confidence for 

raising issues, and providing topics for discussion and observation of specific teaching 

practices (e.g., see Jarvis et al., 2001). Although there are various models for mentoring (e.g., 

Colley, 2003; Jarworski & Watson, 1994; Jonson, 2002; Herman & Mandell, 2004), there is 

little literature on subject-specific mentoring in mathematics education for preservice teachers.    

 A five-factor model for mentoring has previously been identified, namely, Personal 

Attributes, System Requirements, Pedagogical Knowledge, Modelling, and Feedback 

(Hudson & Skamp, 2003), and items associated with each factor have also been identified and 

justified with the literature (see Hudson, Skamp, & Brooks, 2005). For example, statistical 

analysis of preservice teachers’ responses (n=331) from nine Australian universities on the 

five-factor model indicated acceptable Cronbach alpha scores for internal reliability on each 

key factor, namely, Personal Attributes (mean scale score=2.86, SD=1.08), System 

Requirements (mean scale score=3.44, SD=0.93), Pedagogical Knowledge (mean scale 

score=3.24, SD=1.01), Modelling (mean scale score=2.91, SD=1.07), and Feedback (mean 

scale score=2.86, SD=1.11) were 0.93, 0.76, 0.94, 0.95, and 0.92, respectively. The five 

factors and the development of the Mentoring for Effective Primary Science Teaching 

(MEPST) instrument are well articulated in the literature (see Hudson et al., 2005) for which 

this study provides a direct link. To illustrate, providing feedback allows preservice teachers 

to reflect and improve teaching practices, and this includes practices in specific subject areas 

such as mathematics. Six attributes and practices, which may be associated with the factor 

Feedback for developing mentees’ primary mathematics teaching, require a mentor to: (1) 

articulate expectations (Christensen, 1991; Ganser, 2002); (2) review lesson plans (3) observe 

practice (Jonson, 2002; Portner, 2002); (4) provide oral feedback; (5) provide written 

feedback (Ganser, 1995, 2002); and, (6) assist the mentee to evaluate teaching practices (Long, 

2002; Schon, 1987).   

 This study explores and describes 147 Australian preservice teachers’ perceptions of their 

mentors’ practices in primary mathematics education within the abovementioned five factors 

linked to a literature-based instrument (Appendix 1). This study aims to determine the 

transferability of the science mentoring instrument (MEPST) to the development of an 

instrument based on mentoring preservice teachers in primary mathematics teaching.  It also 

aims to benchmark preservice teachers’ perceptions of mentoring practices for developing 

their primary mathematics teaching.   

 

Data Collection Method and Analysis 
 

 The “Mentoring for Effective Mathematics Teaching” (MEMT) survey instrument in this 

study evolved through a series of preliminary investigations on Mentoring for Effective 

Primary Science Teaching (MEPST) (Hudson, 2003; Hudson & Skamp, 2003; Hudson, 2004a, 

b; Hudson et al., 2005), which also identified the link between the literature and the items on 

the survey instrument. A pilot study was conducted on 29 final-year preservice teachers by 

administering the MEMT survey instrument at the conclusion of their professional 

experiences (Hudson & Peard, 2005). Analysis of this pilot test indicated the possibility of a 

relationship between the MEPST instrument and the MEMT instrument; however further 

investigation was needed to verify results.  For this study, 147 preservice teachers’ 

perceptions of their mentoring were obtained from the five-part Likert scale (i.e., strongly 

disagree=1, disagree=2, uncertain=3, agree=4, strongly agree=5) MEMT instrument 
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(Appendix 1). The data provided descriptive statistics for each variable, which also provided 

an indication of the statistical relationship between variables and within each of the factors.  

Mean scale scores were derived through a statistical analysis package (SPSS) by analysing 

specific items associated with each factor.  For example, there were six items associated with 

the factor Feedback, that is, the mentee (preservice teacher) perceived the mentor to: review 

the mentee’s lesson plans before teaching mathematics; observe the mentee teach 

mathematics before providing feedback; provide oral feedback on the mentee’s mathematics 

teaching; provide written feedback on the mentee’s mathematics teaching; discuss evaluation 

of the mentee’s mathematics teaching; and, articulate expectations for improving the mentee’s 

mathematics teaching. Cronbach alpha scores were used as an indication of internal reliability 

with scores greater than .70 considered acceptable (Hair, Anderson, Tatham, & Black, 1995). 

The data examined preservice teachers’ perceptions of their mentors’ mentoring in primary 

mathematics teaching.   

 

Results and Discussion 
 

 These preservice teacher responses (109 female; 38 male) provided descriptors of the 

participants (mentors and mentees) and data on each of the five factors and associated 

attributes and practices. Responses were gathered at the conclusion of their final professional 

experience (i.e., practicum, field experience). 
 

Backgrounds of Participants  

 Twenty-five percent of these mentees (n=147) entered teacher education straight from 

high school, with 93% completing mathematics units in their final two years of high school 

(i.e., Years 11 & 12). Seventy-seven percent of mentees had completed two or more 

mathematics methodology units at university, and 86% had completed three or more block 

professional experiences (practicums) with 54% completing four professional experiences.  

There were no professional experiences under three weeks. Ninety percent of mentees taught 

at least four mathematics lessons during their last practicum with 81% indicating they had 

taught 6 or more lessons. Most of the classrooms for the mentoring in mathematics were in 

the city or city suburbs (69%) with 31% in regional cities and in rural towns or isolated areas.  

Mentees estimated that most mentors (male=22, female=125) were over 40 years of age (55%) 

with 28% between 30 to 39 years of age, and 16% under 30. Mentees also noted that 86% of 

mentors modelled one or more mathematics lessons during their mentees’ professional 

experiences, with 59% modelling five or more lessons during that period. Finally, 41% of 

mentees perceived that mathematics was their mentors’ strongest subject in the primary 

school setting.   
 

Five Factors for Effective Mentoring in Mathematics 

 Each of the five factors had acceptable Cronbach alpha scores greater than 0.70 (Kline, 

1998), that is, Personal Attributes (mean scale score=3.96, SD=0.81), System Requirements 

(mean scale score=3.31, SD=0.90), Pedagogical Knowledge (mean scale score=3.58, 

SD=0.94), Modelling (mean scale score=4.01, SD=0.78), and Feedback (mean scale 

score=3.76, SD=0.88) were 0.91, 0.77, 0.95, 0.90, and 0.86, respectively (Table 1). Data from 

items associated with each factor were entered in SPSS13 factor reduction, which extracted 

one component only for each factor. The associated eignevalues accounted for 59-69% of the 

variance on each of these scales (Table 1).  
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Table 1 

Confirmatory Factor Analysis for Each of the Five Factors (n=147) 

 

Factor 

 

Eigenvalue* 

Percentage 

of variance 

 

Mean scale score 

 

SD 

 

Cronbach alpha 

Personal Attributes 4.13 69 3.96 0.81 0.91 

System Requirements 2.05 68 3.31 0.90 0.77 

Pedagogical Knowledge 7.19 65 3.58 0.94 0.95 

Modelling 4.70 59 4.01 0.78 0.90 

Feedback 3.64 61 3.76 0.88 0.86 

* Extracting only one component with an eigenvalue >1 is considered acceptable (see Hair et al., 1995). 

 

The following provides further insight into specific data on mentees’ perceptions of mentors’ 

attributes and practices associated with each factor.   
 

 Personal Attributes. 

 When analysing the mentees’ responses on their mentors’ “Personal Attributes”, a 

majority of mentors were supportive towards their mentees’ primary mathematics teaching 

(89%) with mentors appearing comfortable in talking about mathematics teaching (86%, 

Table 2). However, more than a quarter of mentees believed that their mentors had not aided 

their reflection on mathematics teaching practices (i.e., 73% of mentees agreed or strongly 

agreed their mentor facilitated this practice), instilled positive attitudes for teaching 

mathematics (69%), listened attentively to their mentees about mathematics teaching (67%) or 

instilled confidence for teaching mathematics (64%). Table 2 provides mean item scores 

(range: 3.67 to 4.35; SD range: 0.85 to 1.08) and percentages on mentees’ perceptions of their 

mentors’ Personal Attributes.   
 

Table 2 

“Personal Attributes” for Mentoring Primary Mathematics Teaching (n=147) 

Mentoring Practices %* M SD 

Supportive 89 4.35 0.85 

Comfortable in talking 86 4.25 0.88 

Assisted in reflecting  73 3.87 1.01 

Instilled positive attitudes  69 3.92 0.88 

Listened attentively 67 3.67 1.07 

Instilled confidence 64 3.75 1.08 

* %=Rank-order percentages of mentees who either “agreed” or “strongly agreed” their mentor provided that 

specific mentoring practice. 

 

 System Requirements 

 Items displayed under the factor “System Requirements” presented a different picture 

from the previous factor. The percentages of mentees’ perceptions of their primary 

mathematics mentoring practices associated with System Requirements were all below 50%, 

that is, 44% of mentors discussed the aims of mathematics teaching, 41% of mentors 

discussed the school’s mathematics policies with the mentee, and only 29% outlined 

mathematics curriculum documents (Table 3). Implementing departmental directives and 

primary mathematics education reform needs to also occur at the professional experience 

level, yet the data indicated (mean item scores range: 2.71 to 3.15; SD range: 1.14 to 1.24, 

Table 3) that many preservice teachers may not be provided these mentoring practices on 

System Requirements for developing their mathematics teaching within the school setting.  
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Table 3 

“System Requirements” for Mentoring Primary Mathematics Teaching 

Mentoring Practices %* M SD 

Discussed aims 44 3.15 1.14 

Discussed policies 41 3.06 1.18 

Outlined curriculum 29 2.71 1.24 

%=Rank-order percentages of mentees who either “agreed” or “strongly agreed” their mentor provided that 

specific mentoring practice. 

 

 Pedagogical Knowledge 

 Mean item scores (3.31 to 3.84; SD range: 1.08 to 1.24, Table 4) indicated that the 

majority of mentees “agreed” or “strongly agreed” their mentor displayed “Pedagogical 

Knowledge” for primary mathematics teaching. However, in this study, more than 20% of 

mentors may not have mentored pedagogical knowledge practices (see Table 4 for rank-order 

percentages). For example, 64% of mentors were perceived to assist in the planning stages 

before teaching mathematics, 67% discussed timetabling the mentee’s mathematics teaching, 

and 71% assisted with mathematics teaching preparation (Table 4). Furthermore, teaching 

strategies need to be associated with the assessment of students’ prior knowledge, yet nearly 

half the mentors were perceived not to discuss assessment or questioning techniques for 

teaching mathematics (52%). Many mentors also appeared not to consider content knowledge 

and problem-solving strategies for teaching mathematics (57%) and providing viewpoints on 

teaching mathematics was not considered a high priority (61%, Table 4). This implies that 

many final-year preservice teachers may not be provided with adequate pedagogical 

knowledge in the primary school setting to develop successful mathematics teaching practices.   
 

Table 4 

“Pedagogical Knowledge” for Mentoring Primary Mathematics Teaching  

Mentoring Practices % M SD 

Discussed implementation 77 3.84 1.08 

Assisted with classroom management 73 3.77 1.08 

Guided preparation  71 3.69 1.14 

Assisted with teaching strategies 68 3.73 1.16 

Assisted with timetabling  67 3.74 1.16 

Assisted in planning 64 3.61 1.04 

Provided viewpoints 61 3.51 1.17 

Discussed problem solving  57 3.51 1.08 

Discussed questioning techniques 57 3.45 1.11 

Discussed content knowledge  52 3.31 1.24 

Discussed assessment  52 3.50 1.19 

* %=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that specific 

mentoring practice. 

 

 Modelling 

 Modelling mathematics teaching provides mentees with visual and aural demonstrations 

of how to teach and, indeed, mean item scores (3.81 to 4.30; SD range: 0.83 to 1.19, Table 5) 

indicated that the majority of mentors were perceived to model mathematics teaching 

practices. Even though more than 75% mentees believed their mentors modelled practices for 

teaching mathematics including modelling a rapport with their primary students (85%), 

modelling the teaching of primary mathematics (79%), displaying enthusiasm for teaching 

mathematics (78%), and using language from the mathematics syllabus (78%), more than a 

quarter of mentees indicated their mentors had not modelled a well-designed lesson or 

effective mathematics teaching (see Table 5 for rank-order percentages).   
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Table 5 

“Modelling” Primary Mathematics Teaching 

Mentoring Practices % M SD 

Modelled rapport with students 85 4.30 0.83 

Modelled classroom management  82 4.11 0.97 

Demonstrated hands-on 81 4.03 1.04 

Modelled mathematics teaching  79 4.14 0.90 

Displayed enthusiasm 78 4.02 1.00 

Used syllabus language 78 3.97 0.89 

Modelled a well-designed lesson 73 3.81 0.99 

Modelled effective mathematics teaching  71 3.83 1.19 

* %=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that specific 

mentoring practice. 

 

 Feedback 

 Mean item scores (3.31 to 4.18; SD range: 0.97 to 1.38, Table 6) indicated that the 

majority of mentees “agreed” or “strongly agreed” their mentors provided “Feedback” as part 

of their mentoring practices in primary mathematics teaching. Yet, surprisingly, mentees 

perceived that 82% of mentors observed their mathematics teaching with only 63% 

articulating their expectations for the mentees’ teaching of mathematics. More surprising is 

that 4% of mentors provided oral feedback without observation. Fifty-nine percent were 

perceived to provide written feedback and only 55% of mentors reviewed lesson plans, which 

is necessary to provide feedback before teaching commences for enhancing instructional 

outcomes (Table 6).   
 

Table 6 

Providing “Feedback” on Primary Mathematics Teaching 
Mentoring Practices % M SD 

Provided oral feedback 86 4.18 0.97 

Observed teaching for feedback 82 4.08 1.00 

Discussed evaluation on teaching 81 3.97 1.08 

Articulated expectations 63 3.55 1.16 

Provided written feedback 59 3.48 1.38 

Reviewed lesson plans 55 3.31 1.25 

* %=Percentage of mentees who either “agreed” or “strongly agreed” their mentor provided that specific 

mentoring practice. 

 

Further Discussion and Conclusions 
 

  There appeared to be transferability of the MEPST survey instrument (Hudson et al., 

2005) to the MEMT instrument, which was supported by acceptable Cronbach alpha scores 

and descriptive statistics (Table 1). Even though the Likert scale differentiated the degree of 

mentoring (e.g., strongly disagree to strongly agree), the quality of these mentoring practices 

requires further investigation. Also, the mentoring indicated in this study only focused on the 

mentors’ practices and attributes and not on mentees’ involvement in the mentoring processes. 

Nevertheless, 93% of these preservice teachers had completed at least three professional 

experiences (practicums) and nearly four years of a tertiary education degree in teaching 

before responding to this survey on their final-year Mentoring for Effective Mathematics 

Teaching (MEMT, Appendix 1). Mentees’ perceptions of mentors not providing the above 

practices may be interpreted in two ways: the mentor did not provide the particular mentoring 

practice or the mentoring practice was not apparent enough for the mentee to perceive it. 

Either way, mentors need to provide such practices that are clearly evident to their mentees. 

Anecdotal evidence suggests mentors vary their mentoring practices considerably, and as 

there are national standards for teaching and assessing mathematics (e.g., NCTM, 1991, 1992, 
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1995), a set of standards for mentoring practices for mathematics appears a logical sequence. 

The MEMT instrument provided a way to collect data for benchmarking mentees’ perceptions 

of their mentors’ practices in primary mathematics teaching occurring in various Queensland 

schools. Such benchmarks can aid toward developing mentoring programs that enhance 

mathematics teaching practices. 

 The inadequate mentoring outlined in this study may be initially addressed through 

specific mentoring interventions that focus on effective mentoring (i.e., attributes and 

practices associated with the five factors: Personal Attributes, System Requirements, 

Pedagogical Knowledge, Modelling, and Feedback). As each item associated with the MEMT 

instrument is linked to the literature, a mentoring intervention for developing mentees’ 

mathematics teaching can be based around these items. Benchmarking mentees’ perceptions 

can provide starting points for designing well-constructed mentoring programs that provide 

professional development for mentors to enhance not only their own mentoring practices but 

possibly their mathematics teaching practices. Further benchmarking may occur using the 

MEMT instrument with mentoring early-career mathematics teachers. For example, a 

mentoring intervention based on early-career teachers’ perceptions of their mentoring may aid 

induction processes, particularly in the form of programs for mentors to provide adequate 

mentoring support for mathematics teaching. Additionally, the MEMT instrument may be 

used by tertiary institutions or departments of education to benchmark the degree of 

mentoring in primary mathematics and, as a result of diagnostic analysis, plan and implement 

mentoring programs that aim to address perceived issues.  
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Appendix 1 

Mentoring for Effective Mathematics Teaching (MEMT) 

  

The following statements are concerned with your mentoring experiences in mathematics teaching during your 

last professional experience (practicum/internship).  Please indicate the degree to which you agree or disagree 

with each statement below by circling only one response to the right of each statement.   

 

Key 

SD = Strongly Disagree  

D = Disagree  

U = Uncertain       

A = Agree   

SA = Strongly Agree 

 

During my final professional school experience (i.e., field experience, internship, practicum) in mathematics 

teaching my mentor: 
 

1. was supportive of me for teaching mathematics.  …………………………… SD D U A SA 

2. used mathematics language from the current mathematics syllabus.  ………. SD D U A SA 

3. guided me with mathematics lesson preparation.  …………..………………. SD D U A SA 

4. discussed with me the school policies used for mathematics teaching. …….. SD D U A SA 

5. modelled mathematics teaching.  ……………………………………………. SD D U A SA 

6. assisted me with classroom management strategies for mathematics teaching.  SD D U A SA 

7. had a good rapport with the students learning mathematics.  ………………. SD D U A SA 

8. assisted me towards implementing mathematics teaching strategies.  …….... SD D U A SA 

9. displayed enthusiasm when teaching mathematics.  …………………..…..… SD D U A SA 

10. assisted me with timetabling my mathematics lessons.  ………………..…. SD D U A SA 

11. outlined state mathematics curriculum documents to me.  ………………... SD D U A SA 

12. modelled effective classroom management when teaching mathematics. SD D U A SA 

13. discussed evaluation of my mathematics teaching. ……………………….. SD D U A SA 

14. developed my strategies for teaching mathematics.  ………………………. SD D U A SA 

15. was effective in teaching mathematics.  …………………………………… SD D U A SA 

16. provided oral feedback on my mathematics teaching.  ……………………. SD D U A SA 

17. seemed comfortable in talking with me about mathematics teaching.  ……. SD D U A SA 

18. discussed with me questioning skills for effective mathematics teaching.   SD D U A SA 

19. used hands-on materials for teaching mathematics.  ………………………. SD D U A SA 

20. provided me with written feedback on my mathematics teaching.  ……...… SD D U A SA 

21. discussed with me the knowledge I needed for teaching mathematics.  …… SD D U A SA 

22. instilled positive attitudes in me towards teaching mathematics.  …………. SD D U A SA 

23. assisted me to reflect on improving my mathematics teaching practices.   SD D U A SA 

24. gave me clear guidance for planning to teach mathematics.  ………………. SD D U A SA 

25. discussed with me the aims of mathematics teaching.  ……………………. SD D U A SA 

26. made me feel more confident as a mathematics teacher.  ………………….. SD D U A SA 

27. provided strategies for me to solve my mathematics teaching problems.  … SD D U A SA 

28. reviewed my mathematics lesson plans before teaching mathematics.  ….... SD D U A SA 

29. had well-designed mathematics activities for the students.  ……………….. SD D U A SA 

30. gave me new viewpoints on teaching mathematics.  ……………………..... SD D U A SA 

31. listened to me attentively on mathematics teaching matters.  ……………… SD D U A SA 

32. showed me how to assess the students’ learning of mathematics.  ………… SD D U A SA 

33 clearly articulated what I needed to do to improve my mathematics teaching.  SD D U A SA 

34. observed me teach mathematics before providing feedback?  …………….. SD D U A SA 
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Relational or Calculational Thinking: Students Solving Open 

Number Equivalence Problems  

Jodie Hunter 
Massey University 

<jodiehunter@slingshot.co.nz> 

Student transition from arithmetic to algebraic reasoning has been acknowledged as an 

essential but problematical process. Previous research has highlighted the difficulties in 

shifting students towards relational thinking when solving equivalence problems. This paper 

reports on an investigation into students’ use of relational thinking to solve equivalence 

problems after they have been in classrooms where specific focus has been on developing 

flexible, efficient computational strategies. The results reveal that most students used 

computational strategies to solve the equivalence problems rather than relational strategies. 

Many of the common errors, students made reflected a lack of understanding of the equal 

sign.  

Introduction  

Over the past decade, there has been increased focus, both in national and international 

research and reform efforts, on the teaching and learning of algebraic reasoning (e.g., Irwin, 

& Britt, 2005; Knuth, Stephens, McNeil, & Alibabi, 2006; Ministry of Education (MOE), 

2006; National Council of Teachers of Mathematics (NCTM), 2000). Such emphasis has 

arisen from growing acknowledgment of the insufficient algebraic understandings students 

develop during schooling and the role this has in denying them access to potential 

educational and employment prospects (Knuth et al., 2006). In response, there have been 

significant curricular reforms designed to support students making the transition from 

arithmetic to algebra (Freiman & Lee, 2004; Kaput, 1999). One approach has been to 

promote students’ ability to work flexibly with numbers. By developing the students’ 

computational strategies it is claimed that their “structural thinking can then be exploited to 

develop their understanding of algebra” (Hannah, 2006, p. 1). This paper explores the 

strategies that students within the age band of 9 to 13 years old used when solving open 

number equivalence problems. It also investigates the common errors students made when 

solving these problems due to their lack of understanding of the equal sign. This study adds 

to previous research of student understanding of equivalence through the analysis of the 

common errors the students made.  

Concepts of equivalence and understanding of the equal sign are essential to algebraic 

understanding (Freiman & Lee, 2004; Knuth et al., 2006). The foundations of the transition 

from arithmetic to algebraic reasoning requires that students are able to abstract key 

concepts including those associated with equivalence and relations. For students to abstract 

their structural numerical reasoning across to algebraic reasoning it is necessary they 

understand the equal sign relationally as an equivalence symbol meaning the “same as” 

(Knuth et al., 2006; McNeil & Alibabi, 2005). The seminal research of Kieran (1981) 

illustrated that students often have inadequate understanding of the equality symbol. Recent 

research continues to show that many primary and middle school students lack deep 

understanding of the equal sign (Carpenter, Franke, & Levi, 2003; Falkner, Levi, & 

Carpenter, 1999; Knuth et al., 2006; McNeil & Alibabi, 2005). Students with limited 
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understanding of the equal sign view it as an indication of where to put the answer, or 

alternatively, equate the symbol with doing something – a left to right action or carrying 

out an operation (Carpenter et al., 2003; Rivera, 2006; Warren & Cooper, 2005). 

Inadequate understanding of the equality symbol can lead to difficulties for students 

solving symbolic expressions and equations (Kieran, 1981; Knuth et al., 2006). 

Furthermore, a limited understanding of the equality symbol can make the transition to 

algebra difficult for students (McNeil & Alibabi, 2005).  

Errors made by students when solving open number equivalence problems reflect their 

understanding of the equal sign. Freiman and Lee (2004) demonstrated that open number 

sentence problems in the form of a + b = d + c involving a blank in the last two positions 

consistently caused difficulties across grade levels. Carpenter et al. (2003) argue that 

students’ errors in solving open number sentence problems are errors of syntax. Students 

erroneously interpret the rules for how the equal sign is utilised. For example, when 

solving 9 + 6 = __ + 5, students may put 15 in the blank space considering that the equal 

sign is an indication to put an answer. Alternatively other students may put 20 in the blank 

space. These students overgeneralize the property of addition and assume the sequence of 

symbols in the number sentence is unimportant.    

Understanding of the equality symbol as a sign of relational equivalence is a hallmark 

of the transition between arithmetic to algebraic thinking (Carpenter et al., 2005). Students 

with a relational view of the equal sign view it as a symbol of equivalence or quantitative 

sameness. Relational understanding enables students to solve open number sentence 

equivalence problems such as 8 + 4 = __ + 5 successfully (Falkner et al., 1999). However, 

within this group of students who understand the equal sign as a symbol of equivalence 

further distinctions can be made. These distinctions are between students who use 

computational forms of thinking or those who use relational forms of thinking to solve 

open number sentence problems. 

Stephens (2006) defines relational thinking as dependent on whether children are “able 

to see and use possibilities of variation between numbers in a number sentence” (p. 479). 

Students who are able to use relational thinking to solve open number sentence problems 

consider the expressions on both sides of the equal sign. They are able to solve the problem 

by using the relation between both expressions without carrying out a calculation. In 

contrast, students who use computational thinking view the numbers on each side of the 

equal sign as representing separate calculations. These students perform a calculation to 

solve open number sentence problems (Carpenter et al., 2003; Stephens, 2006). Students 

who successfully use relational thinking to solve equivalence problems are also able to 

identify the direction in which the missing number will change, in order to maintain 

equivalence. Direction of variation in equivalence problems involving addition is different 

from those problems that involve subtraction. Stephens maintains that this can cause 

further difficulties for students.  

Warren and Pierce (2004) propose that the difficulties that students encounter may be 

due to differentiation in requirements for algebraic reasoning and arithmetical reasoning. 

Some researchers have suggested that classroom mathematics experiences in the early 

years of schooling are the basis for many problems. This is particularly when emphasis is 

placed on computation and students are presented with the equal sign as a signal to carry 

out a calculation (e.g., Carpenter et al., 2003; Knuth et al., 2006; Warren & Pierce, 2004). 

Warren (2003) also argues that there may be potential problems associated with current 

reform shifts that focus on a need for number sense and identification of computational 
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patterns. She maintains that these need to be balanced with explicit abstracting of 

arithmetic structures. 

Advocates of mathematics curriculum reform initiatives have suggested teaching 

algebra and arithmetic as an integrated strand across the curriculum (e.g., Carpenter et al., 

2003; NCTM, 2000; MoE, 2006). This approach focuses on building early algebraic 

thinking through focusing on students’ informal knowledge and numerical reasoning. 

Teachers who use this approach provide students with learning situations which challenge 

their notions of equality and encourage them to think about relations. This supports 

students’ transition from computation to relational thinking (Carpenter et al., 2003). 

Stephens’ (2006) comparison of two Australian schools found that students exhibited 

higher levels of relational thinking to solve open number equivalence problems within a 

school that had a specialist mathematics teacher who explicitly focused on teaching of 

relational approaches. However, acquiring understanding of equivalence and developing 

relational thinking is acknowledged as a complex and difficult task and one which 

necessitates substantial time and explicit teacher attention (Carpenter et al., 2003; Freiman 

& Lee, 2004).   

Method  

This study was exploratory in nature and used a qualitative case study design. The aim 

of the study was to explore student understanding of the equal sign and equivalence. In 

particular, the study addresses the following research questions. 

• What strategies do students use to solve open number equivalence problems? 

• What errors are commonly made by students when solving open number 

equivalence problems?  

Participants  

The participants were 361 primary and intermediate school students (37 Year 5 

students aged 9-10; 47 Year 6 students aged 10-11; 145 Year 7 students aged 11-12; 132 

Year 8 students aged 12-13). The study was conducted at a New Zealand urban primary 

school. The students came from a predominantly middle socio-economic home 

environment. They were primarily from a European New Zealand ethnic grouping (67%), 

with students of Maori ethnic grouping (5%), Pacific Island ethnic grouping (10%), Asian 

ethic grouping (7%), and Indian ethnic grouping (11%).  

The school was in its third year of participating in the New Zealand Numeracy Project 

and algebra had been taught as a separate strand from the number (arithmetic) strand.  

Data Collection  

The students were given a pen and paper questionnaire derived from a questionnaire 

developed by Stephens (2006). This consisted of equivalence balance problems with 

missing numbers and a question about the equal sign. The questionnaire was completed by 

each individual in regular class time and adequate time was provided to complete it. The 

students were advised that the questionnaire was not a test but a way to find out how 

students would solve the problems.  

This study reports on the students’ responses to the following sets of open number 

equivalence problems. All the problems were presented in the form of  

a + b = c + d or a – b = c – d. 
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Each set of questions began with the words: “Write a number in each of the boxes to make 

a true statement. Explain your working.” 

 

Table 1 

Sets of Open Number Equivalence Problems 

Group A Group B Group C 

23 + 15 = 26 + __ 39 – 15 = 41 – __ 746 – 262 + __ = 747 

73 + 49 = 72 + __ 99 – __ = 90 – 59 746 + __ – 262 = 747 

43 + __ = 48 + 76 104 – 45 = __ – 46  

__ + 17 = 15 + 24   

Data Analysis 

Data analysis used the scoring rubric devised by Stephens (2006), which categorised 

students thinking using a five-point scale. This scale categorised students’ responses 

according to whether they used arithmetical thinking or different levels of relational 

thinking. Further to this categorisation, responses were grouped into three categories 

according to students’ stability in using different types of thinking to solve the various sets 

of problems. These were: stable arithmetic thinkers, the students who used only arithmetic 

strategies; stable relational thinkers, the students who used only relational strategies; and 

the unstable relational thinkers, students who used a mixture of relational and arithmetic 

strategies.   

The data set was then re-analysed to identify common error types exhibited across the 

four year levels. In particular, incorrect responses, which indicated a lack of understanding 

of the equal sign, were identified and analysed. Common erroneous responses were 

grouped into categories identified in Freiman and Lee’s (2004) study. These included: 

direct sum, responses when the blank was in the c or d position and students ignored the 

number in the c or d position and entered the sum of a and b; complete the sum, responses 

when the blank was in the a or b position and students filled in the blank to complete the 

equation to a number in the c or d position; and a sum of all terms category, when students 

added or subtracted all the numbers in the equation.    

Results and Discussion  

All students in this study had teachers who had completed the professional 

development associated with the New Zealand Numeracy Project (MoE, 2004). The New 

Zealand project aims to develop student facility to work flexibly with numbers through 

developing their computational strategies. An espoused intention of the project is to use the 

structural thinking the students construct as a foundation for understanding algebra and 

developing early algebraic reasoning (Hannah, 2006). Despite this intended focus, the 

findings of this current study reveal that 46% of all the students only used arithmetic 

strategies, 28% of all students only used relational strategies, and 26% of students used a 

mixture of arithmetic and relational strategies.  
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How Consistent was the Student’s Strategy Use Across the Year Levels? 

Table 2 illustrates the distribution of students at each year level in each category. 

Consistently at every year level from Year 5 to Year 8 students predominantly used 

arithmetic strategies to solve the open number sentence problems.   

The data in the table illustrate that the number of students classified as “stable 

relational” increased across the year levels. The most significant increase was between the 

Year 5 and Year 6 level.  Increases in use of relational thinking between Year 6 and Year 7 

students and Year 7 and Year 8 students were relatively small. The number of students 

classified as “stable arithmetic” decreased from Year 6, to Year 7, and Year 8 with some 

corresponding rises in the number of students classified as “stable relational” or “non-

stable relational”.   

Table 2 

Percentage of Students at Each Year Level in Each Category 

 Stable Arithmetic Stable Relational Non-stable relational 

Year 5 50 19 31 

Year 6  53 27 20 

Year 7  46 31 23 

Year 8  35 34 31 

How Were the Problems Solved by Students Using Relational Thinking? 

This section outlines the student responses that represent relational thinking given in 

response to the open number equivalence problems. Responses in this category indicated 

that the students were able to identify the relation between each side of the equal sign and 

use this to solve the problem. They were also able to use the correct direction of variation 

between the uncalculated equations on each side of the equal sign to solve the problem.   

Year 5 student: 73 and 72 are 1 apart leaving 73 as the bigger number so I know that I need to make 

72’s partner 1 bigger than 49.  

Year 5 student: 41 is two more than 39 so I have to take away 2 more to make the same answer.  

Year 6 student: 48 is 5 more than 43. To make it fair the number in the box has to be 5 bigger than 

76.  

Year 7 student: If 99 is 9 more than 90, you would need 9 more than 59 to equal it out.  

Year 8 student: Subtraction is different to addition. You have to add the 2 on to the first number, you 

also have to add it on the second to get the same answer 39 + 2 = 41 so you have to add two on 

to the other number 15 + 2 = 17. 

What Were the Common Errors Students Made When Solving the Open Number 

Equivalence Problems?  

A range of student errors were identified. Many of these errors were due to 

miscalculations as the students attempted to solve the problems using computation. A 
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significant number of errors was also made in group B equivalence problems that involved 

subtraction. These errors were due to students failing to identify the correct direction of 

variation between the uncalculated equations. The following examples illustrate that the 

students have not identified the correct direction of variation in the uncalculated 

subtraction equations.  

Year 5 student: There is 9 between the two numbers so 99’s partner needs to be 9 less than 59.  

Year 6 student: 46 is 1 bigger than 45 so I minused the 1 from 104 to get 103.  

Year 7: I did 13 because it is two less than 15 so 39 – 15 and 41 – 13 would have to have the same 

answer.  

Examination of the data revealed that when the blank space was in specific positions 

the student responses indicated a lack of understanding of the equal sign. Predominantly 

across all year levels the students displayed an error identified by Freiman and Lee (2004) 

that they termed “complete the sum”. This error occurred when the blank was in position A 

or B of an equation such as A + B = C + D. This error suggests that these students viewed 

the number on the right of the equal sign as providing the answer. The data in Table 3 

shows the percentage of students at each year level demonstrating this error in their 

response. Responses showing this error remained consistent across students from Year 5 to 

Year 7 but decreased at Year 8 level.  

Table 3 

Percentage of Student Responses Which Were Classified as the “Complete the Sum” Error  

 Year 5 Year 6 Year 7 Year 8 

43 + 5 = 48 + 76 

43 + 33 = 48 + 76 

16 19 15 3 

7 + 17 = 15 + 24 3 6 7 0 

99 – 9 = 90 – 59 14 17 14 3 

 

Freiman and Lee (2004) identified a common student error they termed “direct sum”. 

As illustrated in the data when the blank space was in position C or D the students treated 

the equivalence problem as a direct sum. In this case they ignored the other number and put 

the answer to A plus B in the blank space. This error suggests that these students view the 

equal sign as an indication to write the answer. The data in Table 4 reveal the percent of 

students making this error decreased slightly over the year levels. However it should be 

noted that this was the most common error still occurring in the Year 8 students’ responses.  
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Table 4 

Percentage of Student Responses Which Were Classified as the “Direct Sum” Error 

 Year 5 Year 6 Year 7 Year 8 

23 + 15 = 26 + 38 0 2 7 1 

104 – 45 = 59 – 46 3 11 11 5 

39 – 15 = 41 – 24 8 6 5 5 

 

Students also made errors of adding all the numbers in the equivalence problem and 

putting their sum in the blank space. Freiman and Lee (2004) label this error as “sum of all 

terms”. This error indicates students have over-generalized the property of addition and 

have ignored the importance of the sequence of symbols in the problem. The data in 

Table 5 displays the percentage of students at each year level showing this error in their 

responses. This error was less commonly made by students at the higher year levels.  

Table 5 

Percentage of Student Responses Which Were Classified as the “Sum of all Terms” Error 

 Year 5  Year 6  Year 7  Year 8  

73 + 49 = 72 + 194 8 6 1 1 

23 + 15 = 26 + 64 8 6 3 2 

104 – 45 = 13 – 46  3 4 7 3 

 

Conclusion and Implications 

This study sought to examine students’ use of strategies to solve open number 

equivalence problems. The results indicate that relatively few students made consistent use 

of relational strategies across the different sets of equivalence problems. In contrast, many 

students consistently used arithmetic strategies across all the sets of equivalence problems. 

However the results also showed that the number of students using only arithmetic 

strategies decreased across the year levels with more students making some use of 

relational strategies in combination with arithmetic strategies.  

All students within this study had been involved in a mathematics program that focused 

on strengthening their use of efficient computational strategies for the past three years. 

However, although emphasis had been placed on developing a flexible range of strategies, 

many students demonstrated an inability or disinclination to use relational thinking to solve 

the equivalence problems. These results highlight a need to balance teaching of 

computational strategies with explicit attention to the fundamental concepts of algebraic 

reasoning such as relational thinking.  

Examination of common student errors when solving the equivalence problems also 

highlighted some students’ lack of understanding of the equal sign. Errors the students 

made reflected their view of the equal sign as an indication to carry out an operation. 

Although many of these errors occurred more frequently in the earlier year levels, the 
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frequency of these errors occurring in Year 7 is of some concern, as is the persistence of 

the “direct sum” error in Year 8.  These results support other researchers’ contention that 

greater attention needs to be paid to developing students’ understanding of the equal sign 

through primary and middle school (Carpenter et al., 2003; Falkner et al., 1999; Knuth et 

al., 2006). 

Implications of this study would suggest that an emphasis on increasing numerical 

reasoning is not adequate to develop deep powerful understandings of essential algebraic 

concepts. To develop students’ algebraic reasoning, explicit attention needs to be given to 

developing relational forms of thinking. This also requires focus on developing students’ 

notions of the equal sign as representing relational equivalence.  
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In the current reform of mathematics classrooms teachers are required to develop discourse 

communities in which all students have equitable opportunities to engage in productive 

discourse. The challenge is for teachers to engage students in the mathematics talk across a 

range of classroom situations. In this paper I address how a teacher used interactional 

strategies to scaffold participation of her diverse students in small group interactions. I 

report on the actions the teacher took to shift the patterns of discourse from a disputational 

form to one in which the students collectively constructed group explanations and 

justification.   

Over recent years significant changes have occurred in how mathematics classrooms 

are conceptualised as best able to meet the needs of students in the 21
st
 century. An 

important hallmark of the changes is a vision of students actively engaged in mathematical 

discourse  within   classrooms  that   resemble  learning  communities   (Manouchehri  &  

St John, 2006). In New Zealand, the responsibility falls on teachers to design “learning 

environments that foster learning conversations and learning partnerships, and where 

challenges, support,  and feedback are readily available”  (Ministry  of  Education,  2006,  

p. 24). Similarly, the National Council of Teachers of Mathematics (2000) charges teachers 

with the responsibility to “establish and nurture an environment conducive to learning 

mathematics through … the conversations they orchestrate” (p. 18). To achieve such 

learning communities teachers are required to establish ways in which students can engage 

in multiple forms of interaction. These include whole class discussions and also small co-

operative problem solving groups. But, although the use of small interactive groups is 

promoted in recent New Zealand policy document (Ministry of Education, 2006a) no 

guidance for teachers is provided for how these should be established (Irwin & Woodward, 

2006). Although there is considerable research available that describes the learning that 

occurs within small groups and the factors that influence the mathematical learning, there 

appear to be limited studies that have explored the teacher’s role in establishing and 

maintaining effective small co-operative groups. Therefore, the purpose of this paper is to 

outline how two teachers created and maintained effective small interactive mathematics 

groups. The focus of the paper is on the interactional strategies the teacher used and how 

these resulted in the students engaging socially and cognitively with each others’ thinking. 

The potential for positive social and cognitive outcomes of working in small groups has 

been widely recognised (e.g., Blunk, 1998; Mercer & Wegerif, 1999a; Yackel, Cobb, & 

Wood, 1991). Proponents of collaborative grouping maintain that through providing the 

individual students with opportunities to articulate their thinking not only do they learn to 

exchange mathematical ideas – but also they make available their reasoning for 

examination and critique (Artzt & Yaloz-Femia, 1999; Rojas-Drummond & Zapata, 2004). 

In addition, through opportunities to explain and justify reasoning, explainers are able to 

review and reconstruct their mathematical thinking, and extend and build stronger 

arguments (Whitenack & Yackel, 2002). Other advocates who support teacher use of small 

groups propose that this structure better meets the needs of the diverse or at-risk students 

(Baxter, Woodward, Voorhies, & Wong, 2002; Boaler, 2006; Rojas-Drummond & Zapata, 
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2004; White, 2003). These researchers illustrate that through small group interactions, 

these students are provided with opportunities to participate in and contribute to productive 

mathematical discourse without being in the public eye. Within the small supportive 

groups it is the peers who provide an important forum for the diverse students to develop 

and extend their mathematical reasoning. In turn, through listening and making sense of 

their peers’ explanations they are able to integrate their reasoning with that of others. 

Moreover, their peers serve as important models for how they are to recognise and make 

sense of task demands, make conjectures, and extend their mathematical explanations and 

justification.  

In contrast however, other studies have shown problems that may occur when small 

group organisation is used by teachers. These relate specifically to the enacted 

communication patterns and how different members of the group are positioned both 

socially and academically. For example, Barnes (2005) illustrated how cognitive 

development of specific individuals was limited by both the communication patterns and 

social relationships in the small group activity. She reported how specific students within 

the group were attributed lower status and therefore actively positioned by the others as 

“outsiders”. As a result, their contributions were both interrupted and ignored as irrelevant 

to progress collective understanding. Likewise, Irwin and Woodward (2006) in a New 

Zealand Numeracy Project classroom noted the way in which the communication and 

social relationship patterns limited the collective reasoning of the group. The teacher 

consistently modelled inquiry discourse patterns when working with the whole class. 

However, Irwin and Woodward’s close examination of groups working independently 

revealed a predominant use of competitive talk both student to student, and between the 

boys and girls. Although the teacher had directed them to work cooperatively in these 

groups she had provided no specific guidance. Similarly, the extensive studies of Mercer 

and his colleagues (e.g., Mercer & Wegerif, 1999a, 1999b; Rojas-Drummond & Mercer, 

2003; Rojas-Drummond & Zapata, 2004) illustrate that without teacher guidance student 

talk is often of a disputational or cumulative form. In disputational talk the students rather 

than trying to reach joint agreement work through cyclic assertions and counter-assertions 

as they struggle for control and status. In the cumulative form a collective view is reached 

but without evaluative discussion. 

Therefore, if students are to engage in productive small group activity teachers need to 

scaffold specific interactional strategies that support equitable outcomes for all participants. 

To do this Mercer (2000) promotes the use of a specific programme for teachers to use 

which he terms “talk lessons”. Mercer and his colleagues in a range of studies illustrated 

how teachers implementing “talk lessons” utilise a number of interactional strategies. 

These are used to scaffold student participation in mutual inquiry and exploration of the 

reasoning used by the group members. The teachers use a set of ground rules that 

emphasise sharing of information, a need for group agreement and responsibility for 

decisions. But the ground rules also focus on challenge and justification of the collective 

reasoning. Similarly, Alrø and Skovmose (2002) describe teacher use of an interactional 

structure they term an “inquiry co-operation model”, which aims to engage students in 

mutual inquiry of open-ended problems. Descriptions of studies that have used this model 

focus on how the teachers specifically scaffold active listening and identification of varying 

perspectives of the participants. However, when the reasoning is clarified, it is then 

subjected to challenge and debate before a collective view is accepted.  
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Boaler (2006) extends the thinking related to how teachers use interactional strategies 

to scaffold productive discourse in small groups to include ways teachers have used these 

with diverse learners. In her research Boaler (2006) examined how teachers used an 

approach she terms complex instruction. In this approach she outlines the use of 

heterogeneous grouping and open-ended problems to draw multiple ways to value student 

contribution. She includes as important group roles for students and responsibility for each 

others’ learning. Within the notion of group responsibility Boaler illustrates the importance 

of justification and reasoning and the way in which the “teachers carefully prioritised the 

message that each student had two important responsibilities – both to help someone who 

asked for help, but also to ask if they needed help” (p. 6). In this model the importance of 

teacher’s high expectations, their affirming effort over ability and their assigning 

competence is emphasised. Competence is assigned when teachers raise the status of 

students through public recognition of the intellectual value of their reasoning. Boaler also 

showed how the diverse students learnt valued learning practices through the teachers 

explicitly noting which specific actions best supported their learning.   

The theoretical framework of this study is derived from a sociocultural perspective. 

From this perspective mathematical teaching and learning are inherently social and 

embedded in active participation in communicative reasoning processes (Lerman, 2001). In 

this environment, students successively gain increased levels of “legitimate peripheral 

participation” (Lave & Wenger, 1991, p. 53) as they access and participate in productive 

mathematical discourse. 

Research Design 

This research reports on one teacher case study from a study that involved four teachers 

in a one-year collaborative teaching experiment. The study was conducted at a New 

Zealand urban primary school where students came from predominantly low socio-

economic home environments. Students were predominantly of Pacific Nations and New 

Zealand Maori ethnic groupings with many speaking English as their second language. 

Based on the results from the New Zealand Numeracy Project Assessment tool (Ministry of 

Education, 2004) members of the 8-, 9-, and 10-year-old group were achieving at 

significantly lower numeracy levels than comparable students of similar age grouping in 

New Zealand schools at the beginning of the study. 

Collaborative teaching experiment design (Cobb, 2000) was used in order to direct 

teacher and researcher attention on the social process of the mathematical discourse, while 

retaining awareness of the mathematical product of the activity. In recognition of the two 

central characteristics of teaching experiment design research, the iterative cycles of 

analysis and an improved process or product, a tentative communication and participation 

trajectory was used to map the progression of the discourse toward inquiry and to provide 

focus for the subsequent shifts in participation and communication. For example, after Ava 

(pseudonym for the teacher) had completed teaching a unit of work that focused on number 

and before she taught a rational number unit, the types of questions Ava and the students 

could use and the patterns of interactions anticipated to scaffold a further shift toward 

inquiry and justification of reasoning were considered and mapped out.  

Data collection over one year included three semi-formal teacher interviews, classroom 

artefacts, field notes, twice-weekly video-captured observations of lessons, diary notes of 

informal discussions during and after lesson observations, written and recorded teacher 

reflective statements and teacher recorded reflective analysis of video excerpts. The on-
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going data collection and analysis maintained a focus on the developing mathematical 

discourse. This supported the iterative cycles and revision of the interactional strategies. 

Data analysis occurred chronologically using a grounded approach in which codes, 

categories, patterns, and themes were created. Through use of a constant comparative 

method, which involved interplay between the data and theory, trustworthiness was 

verified and refuted. 

Results and Discussion 

At the beginning of the study in line with the New Zealand Numeracy Project (Ministry 

of Education, 2006), Ava regularly used a small group format in which the students were 

required to construct explanations of their solution strategies. However, examination of the 

group interactions in the first lesson observations revealed that the students predominantly 

used either cumulative or disputational talk (Mercer, 2000). For example, a group of three 

students are solving a fraction problem. 

Hinemaia: What I think is five is a quarter of ten. 

Candice: Yeah. No but what about … 

Helen: You put five in each paddock and then all the five because you have got two paddocks 

equal ten plus another five will equal ten and ten plus ten will equal twenty. We need a 

fraction. 

Hinemaia:  Oh maybe a ten is a half quarter of twenty. Now we need to think more in our mind.  

Helen:  Well me and you Hinemaia are thinking. All you are doing is sitting and saying yeah 

true. You are not doing any maths thinking [to Candice] 

Candice:  Well I am trying to … 

Hinemaia:  You have got to think there actually [points to her head].   

In this discussion the erroneous reasoning was left unexamined. The third member of the 

group was positioned by the other two in such a way that she was not able to contribute to 

the discussion. They consistently interrupted or discounted her explanation or questioning. 

Then they attributed to her a lower social and academic status because they stated that she 

had not demonstrated “thinking”.  

Developing a Shared Perspective in Small Group Interactions 

To change the interaction patterns, in the first instance Ava focused on how the 

students participated together in small group activity. In accord with the trajectory, she 

placed a focus on their need to engage actively in listening, discussing and making sense of 

the reasoning used by others. After the students had individual time to think about a 

solution strategy she directed them:  

Ava: You are going to explain how you are going to work it out to your group. They are 

going to listen. I want you to think about and explain what steps you are doing, each 

step you are doing, what maths thinking you are using. The others in the group need to 

listen carefully and stop you and question any time or at any point where they can’t 

track what you are saying. 
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Ava emphasised their responsibility to develop understanding of the reasoning from the 

perspective of each member of the group. She discussed the roles of members in the group 

and placed particular importance on the need for justification and reasoning to develop a 

collective view. For example, she observed the students as they worked together and then 

noting that some members of the group were accepting uncritically the explanations from 

other group members she instructed them:  

Ava: Argue your maths. Explore what other people say. Listen carefully bit by bit and make 

sense of each bit. Don’t just agree. Check it all out first. Ask a lot of questions. Make 

sure you can make sense that you understand. What’s another important thing in 

working in a group? 

Alan:  Share your ideas. Don’t just say I can do it myself that adds on to teamwork. 

Ava:  That’s right. We do need to use each other’s thinking … because we are very 

supportive and that’s the only way everyone will learn. So we have to be discussing, 

talking, questioning, and asking for clarification. Whatever it takes to clarify what you 

understand in your mind.     

Thus, Ava had emphasised that they were required to understand the reasoning from the 

perspective of others. In addition, she had outlined their need to question and she had 

reminded them of their responsibility to respond and clarify their reasoning when 

questioned by other group members.  

To further develop group consensus of their reasoning Ava introduced the use of 

only one pen and one piece of paper in each group. She also required that every member of 

the small group could explain to her or to a larger sharing group the collective 

explanations. This was illustrated when Ava instructed a group before they began work:  

Ava:  Together you need to know what you’re … saying and what you are doing. You may 

need to use your fractions pieces and lots of different ways to make it make sense to all 

of you in the group … When it comes to the sharing time you need to be able to 

explain and justify what you are saying in lots of different ways. We are all going to 

need to be able to see what you are saying, see your reasons behind your explanations. 

I am going to ask anybody in the group to explain. So you have to make sure that 

everybody in the group can explain anything you are asked.  

The group explored three different solution strategies and then they discuss which one to 

provide to the larger group. 

Rachel:  About this one, it’s a bit hard to understand because it was so fast. 

Tipani:  Okay. The truth is this is the most efficient way. That’s a good way. That’s a good way. 

But that’s the most efficient. 

Rachel:  Yeah but that one is the most efficient because it’s easier to understand. This is more 

confusing even if it is the fastest. So let’s go with the one we know everyone will 

understand.  

In their discussion they illustrated that they recognised that their responsibility to make 

their reasoning clear extended to a wider audience. They knew that they needed to consider 

how their explanation would be understood from the perspective of the listeners.   

 Ava was aware that different students had different status in her class. Although she 

focused on their need to consider the reasoning used by all the participants in the group she 

also actively positioned specific students. For example, after she had observed a shy 
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Pasifika student making an explanation to the small group she began the large group 

sharing by asking: 

Ava:  Aporo do you mind if we kick off with you because you were doing some really good 

talking and explaining to your group and I think this will be a really good opportunity 

for you to show your maths thinking.    

When Aporo began his explanation in a quiet voice Ava requested that the other students 

listen closely. Then when another student began to prompt him and he hesitated she told 

the student:  

Ava:  He knows. He knows. You don’t have to prompt him because he knows where his 

thinking is going.  

As this point Aporo became more confident and completed his explanation using a louder 

voice and making notated recordings to illustrate his reasoning further. Through her actions 

and her direct focus on the intellectual value of Aporo’s reasoning, Ava had shifted 

Aporo’s social status within the group. She had positioned him so that he had a voice and 

confidence to use it. 

Learning Ways to Disagree and Challenge Politely  

Engaging in questioning and inquiry involved considerable challenge to how many of 

these diverse students had experienced mathematics previously. Therefore, in accord with 

the trajectory Ava introduced the use of open-ended tasks and problems. These supported 

the notion that there were multiple ways the students in their small groups could develop 

and support each other in the construction of explanatory reasoning and justification. Ava 

explicitly directed their attention to the many different roles the individuals in the group 

could take in developing the collective reasoning. She affirmed those students who 

preferred to begin by using concrete materials and drawings. She emphasised that these 

actions were part of the different ways all the members contributed to group activity. She 

also often stopped groups shortly after they had begun working together and discussed with 

them the different ways they had selected to approach the problems. She would explore 

with them where their reasoning had begun and what actions and ideas the different group 

members were working with. Alternatively, she would join a group and listen closely and 

then question a group member quietly: 

Ava:  So how are you going Ruru? How are you going with your thinking? 

Ruru:  I am trying to explain it to them. 

Ava:  You are trying to explain it. Are they listening? 

Hinemoa:  No. He just said he already knows that they have eaten the same. 

Ava:  That’s all right. He has started you thinking. Now you need to listen to him. He needs 

to explain step by step. 

Ruru:  I don’t know yet. 

In response, Ava affirmed the role he had played in beginning the development of a group 

solution strategy.   

Ava:  That’s fine. You have started the thinking. Now other people in the group may have 

other ways of thinking and explaining.   
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Hinemoa:  I think he is wrong because if they both ate the same. But I am not sure. He said they 

both ate the same but there’s only five. There’s two fifths there and you have to cut it in 

half but you can’t cut it in half if you have only five. 

Aroha:  Yes you could if you actually had a half, if you halved the piece. 

Ava, listening to the students’ discussion, realised that they were engaging with the 

thinking Ruru began. She then advanced their reasoning by suggesting the use of an 

alternative means to clarify their ideas.   

Ava:  What about drawing what you mean? 

Aroha:  You could go like that. So that halved that piece in the middle so it would be equal 

[Draws a cakes and then uses her hand to show a half of a shape and a half again]. 

Ava’s actions in the group had shown them that she valued the multiple ways the group 

members contributed to the group discussion. The students were learning what Boaler 

(2006) terms multidimensionality, which highlights that “when there are many ways to be 

successful, many more students are successful” (p. 3). These students were learning that 

every contribution they made in their groups provided a valid basis for open discussion and 

a way to progress the group reasoning.    

Ava recognised the social and academic risks students took when they disagreed or 

challenged the reasoning of others. Therefore she carefully structured ways in which the 

students in their small groups could approach disagreement and challenge. She would 

watch the students working together in their small groups and then she would ask specific 

members if they agreed or disagreed with the reasoning being used. She also consistently 

required that they provide justification for the specific stance they took. As the groups 

worked together she reminded them:  

Ava: Please feel free to say if you do not agree with what someone else has said. You can 

say that as long as you say it in an okay sort of way. If you don’t agree then a 

suggestion could be that you might say I don’t actually agree with you. Could you 

show that to me? Could you perhaps write it in numbers? Could you draw something to 

show that idea to me? That’s fine because sometimes when you go over and you do 

that again you think…oh maybe that wasn’t quite right and that’s fine. That’s okay.  

Ava would also place herself as a participant in small group activity and model 

behaviour that tuned the students into becoming more aware of other participants responses 

revealed in their body language. She would actively prompt and probe for agreement or 

disagreement when she noted a frown on participants’ faces or a querying shift in their 

bodies. Her active prompts to voice agreement and disagreement were appropriated by the 

students when they worked independently. They would explain a solution strategy step by 

step, watching the other group members carefully. When they saw a hesitant or querying 

look on a peer’s face the explainer would halt the explanation and respond by asking: 

Rachel:  Tama you look confused? Do you need to ask some questions? 

Tama:  Well three times three? Isn’t it three plus three plus three not the times way?    

As a result the students took ownership of their reasoning and they recognised their 

collective responsibility to ensure that it was understood by all group members. 

Justification and reasoning had become key components of the collaborative interactional 

strategies the groups used.  
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Learning the Practices of Mathematics 

Ava consistently interacted with the students, exploring and discussing with them 

interactions that supported them learning the practices of mathematics. When she heard a 

student persistently questioning another group member’s reasoning she stopped the group 

and told them: 

Ava:  One thing I will say about you Jo you are never scared to question. It makes other 

people start to question what their own thinking is.    

Her description affirmed that a sound learning practice was to question until sense-making 

was achieved. At another time she stopped the groups to focus attention on the way in 

which a student had persistently worked at a problem. 

Ava:  Did you see that? Rona has been working this way and that way. She went down one 

path and then down another and she never gave up. That’s how you learn, thinking and 

rethinking, starting and starting again and that’s okay, that’s how you learn.   

Ava had used Rona as a model to illustrate to the students that both persistence and effort 

were valued attributes in mathematics.   

Ava wanted the students to examine the reasoning used by the members of their small 

group closely. In the first instance she would halt a group when she heard a students ask a 

question that clarified or challenged the reasoning. Or she would ask the students to 

formulate questions they could ask each other when they approached her for support. 

However, she knew that they required more scaffolds than her directives to them to 

question and challenge. Therefore, using the trajectory as a guide, at regular intervals 

during the year she introduced a different set of questions and prompts. She began with a 

set of questions that the students could use to elicit more information about mathematical 

explanations. They included such questions as “what”, “where”, “is that”, “can you show 

us”, “explain what you did”. When the students were using these ably she introduced a 

range of questions that challenged and drew justification of the reasoning other group 

members used. The questions included “but how do you know it works”, “why”, “how”, 

“convince us”, “so what happens if”, “are you sure”. The final set of questions she 

introduced, were designed to draw generalisations. They included “so why is it”, “does it 

always work”, “does it work for all numbers”, “is it always true”, “why does that happen”, 

“is there a different way”. She actively modelled the use of these questions and prompted 

the students to use them as she participated in their small groups. She also displayed them 

on charts on the wall. When she heard a student use a different form of one of the questions 

she would halt the group and draw their attention to the question and how it was being 

used. Then she would add it to the wall chart. 

Conclusions and Implications 

Within the teaching design experiment the communication and participation trajectory 

was used successively to review and map out the interactional strategies Ava used to 

scaffold the students in small group interactions. Over the year, Ava implemented a wide 

range of interactional strategies that focused the students’ attention on the development of a 

collective view. Many of the interactional strategies that Ava emphasised matched those 

described by Boaler (2006). These included the importance of open-ended problems and 

tasks that supported a range of ways to contribute to the group processes. However, of key 

importance in the development of productive group processes and discourse in Ava’s 
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classroom was the emphasis she placed on group responsibility to each other. As Boaler 

(2006) described, central to the group responsibility was the requirement for the students to 

justify and provide valid reasoning for their solution strategies.       

The observations of group processes at the start of the study confirmed what Mercer 

(2000) and his colleagues describe. The students encountered many difficulties when asked 

to participate in small groups. As Mercer describes, the students predominantly used 

unproductive talk and poor social behaviour. Ava employed specific strategies to position 

her diverse students. She scaffolded them to take a stance and agree or disagree with the 

reasoning and she also ensured that they were viewed as academically competent. Her 

actions are similar to those described by other researchers including White (2003) and 

Boaler (2006). 

The findings of this research reveal that the consistent attention Ava directed toward 

developing different forms of questioning scaffolded the students’ skills to examine and 

analyse the reasoning group members used. Although she did not use specific programmes 

like those described by Mercer (2000) or Alrø and Skovsmose (2002), her carefully 

considered scaffolding of student interactions and questioning paralleled their work.  

Effecting change in the small group interactions was a lengthy process. It required on-

going attention by Ava of the discourse used in the groups. It also required her active 

participation as a model of the interaction patterns in the group and her highlighting student 

behaviour to demonstrate valued interaction patterns. Further research is needed to 

examine other factors that are important in enacting and maintaining diverse learners’ use 

of productive discourse.  
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This qualitative multiple case study involved eight Year 6 and 7 students and six classes and 

investigated their capacity to recognise, apply, and question the use of mathematical ideas 

embedded in a range of contexts. It also considered the extent to which students’ capacity to 

connect mathematical knowledge to other contexts could motivate them to learn 

mathematics. In particular, it investigated the effect of the Mathematical Search strategy in 

achieving these ends. It found that student thinking about mathematics and their attitudes 

towards it could be enhanced by targeting mathematical connections through the use of the 

Mathematical Search. 

In recent times, much has been written about numeracy. One common aspect in most 

definitions of numeracy is the disposition and ability to apply widely one’s mathematical 

knowledge.  In her discussions of the notion of statistical literacy, a related concept, 

Watson (1995; 2004) was concerned not only with the quantity of statistical information 

that continually bombarded the general population, but also that many people ignored it, 

misunderstood it, or did not bother to check if its associated claims were valid. In a similar 

vein, Peter-Koop (2004) found that, when working with worded problems, primary school 

students often failed to identify the key mathematical ideas involved and tended to 

randomly apply numbers contained in the text of such problems to arbitrarily chosen 

mathematical operations. Both of these ideas are encapsulated in Perso’s (2006) statement 

that “since numeracy involves both the mathematics you know and the disposition to use it, 

teaching must focus on both of these” (p. 25).  

The inference for teachers is clear – it is not only necessary to teach the mathematical 

content but also important to provide students with strategies for recognising and applying 

mathematics in a range of contexts. Therefore, a main research issue addressed by this 

study is the investigation of the effectiveness of teaching and learning strategies in helping 

students to connect their mathematical knowledge to various contexts and situations. 

The overall study (Hurst, 2006), on which this paper is based, investigated three ideas: 

• The effectiveness of strategies like the Mathematical Search in enhancing 

student ability to recognise mathematics in context. 

• The extent to which such strategies enhance student motivation towards 

mathematics. 

• The value that teachers see in using such strategies to enhance student thinking 

and motivation. 

This paper focuses on the first of the above issues, as embodied in the following research 

question: To what extent does the Mathematical Search enhance student capacity to 

recognise mathematical ideas embedded in a written context, and to display contextual and 

strategic thinking about mathematical ideas embedded in written contexts? 
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Theoretical Framework 

This study drew upon a wide range of research-based writing in developing the 

research questions and methodology and there were several key points that emerged. First, 

at the very heart of the numeracy debate, are the notions of situated cognition and 

transferability of learning. Boaler (1993) noted that traditional approaches to developing 

student numeracy were based on the assumption that “mathematics can be learned in 

school, embedded within any particular learning structures, and then lifted out of school to 

be applied to any situation in the real world” (p. 12). However, as Kemp and Hogan (2000) 

pointed out, “evidence suggests that students do not automatically use their mathematical 

knowledge in other areas” (p. 13). Indeed, if learning were freely transferred from the 

mathematics classroom to any of a number of outside situations, it is unlikely that the 

numeracy debate would have begun, or at least, reached the proportions it has.  

Second, the idea of teaching “numeracy across the curriculum” emphasises that 

numeracy is more than mathematical knowledge and that students learn best when “the 

richness of a context helps them to make sense of mathematical ideas” (Willis, 1998, p. 8). 

This is closely allied to the previous point as students who tackle mathematics in restricted 

contexts will be likely to develop limited cognitive structures (Coles & Copeland, 2002). 

The importance of embedding mathematical learning in a range of contexts was underlined 

by Morony, Hogan, and Thornton (2004): 

Education must be about enabling people to understand and interact with the world. The skills, 

habits of mind and dispositions developed through effective attention to numeracy across the 

curriculum are clearly key components of understanding and interacting with the world. (p. 2) 

The above ideas about numeracy are encapsulated in the Numeracy Framework 

developed by Willis and Hogan (Hogan, 2000; Morony et al., 2004; Willis, 1998). The 

framework incorporates three perspectives on numeracy, a blend of which was required for 

students to display intelligent mathematical action in context. The three types of knowledge 

are: 

• Mathematical knowledge – the knowledge needed for intelligent mathematical 

action 

• Contextual knowledge – the ability to link mathematics to experiences 

• Strategic knowledge – the ability to ask questions about the application of 

particular mathematical knowledge 

A Conceptual Framework – The Model for Teaching Numeracy in Context 

The ideas related to numeracy outlined above, particularly the Numeracy Framework 

(Hogan, 2000; Willis, 1998), informed and were incorporated in the Model for Teaching 

Numeracy in Context (Figure 1) that became the conceptual framework for the study. This 

model was based on the notion that the different modes of thinking in the Numeracy 

Framework, that is mathematical, contextual and strategic thinking, could be developed by 

using the Mathematical Search and associated teaching and learning strategies. The 

Mathematical Search was devised by the researcher and was used on four occasions by the 

researcher during the course of the study. It was developed with the intent of ascertaining 

whether or not a specific strategy of that type could enhance the capacity of students to 

recognise and use mathematical ideas embedded in a variety of contexts. In the study, only 

written contexts were used. Students had not used the Mathematical Search prior to their 

involvement in the study. 
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 Figure 1.  Conceptual framework (Model for Teaching Numeracy in Context). 

In a Mathematical Search, students were given a body of text to read. These were based 

on themes and topics that were being taught in classes, such as Indigenous Australians, 

Gold Rushes, and Environmental Pests. Their task was to describe the mathematical ideas 

in the text and what the mathematics told about the main ideas in the text, and to use the 

mathematical ideas to explain some of the patterns, trends and any apparent inconsistencies 

in the text. The purpose of the Mathematical Search was to encourage students actively to 

seek mathematical concepts and facts embedded in any of a variety of contextual situations. 

In this study, students were also asked to pose questions about the text using the 

mathematical ideas described. The Mathematical Search was supported by other teaching 

and learning strategies such as concept mapping, graph scaffolding, debriefing discussions 

following a Mathematical Search, and one-to-one interviewing.  

Design and Methodology 

In order to generate the rich data required, the study made use of qualitative methods, 

specifically, a multiple case study approach. This involved a group of eight female Western 

Australian primary school students, aged 11 or 12 years, in six Years 6 and 7 classes. 

MATHEMATICAL SEARCHES 

Actively seek the mathematical content and related issues, describing what it tells (or does not tell) 

in a textual, audio and visual context. 

PLANNING for LEARNING 

Pre-planned intervention 

Spontaneously address issues 

Deferred dealing with issues 

DIFFERENT CONTEXTS 

Child’s Living World 

Learned World 

Outside World 

 

MATHEMATICAL 

KNOWLEDGE 

STRATEGIC 

KNOWLEDGE 

CONTEXTUAL 

KNOWLEDGE 

LEARNING  

STRATEGIES 

Concept mapping 

Graph scaffolding 

Task pre-briefing 

Task debriefing 

Collaborative discussion 

Audio visual contexts 

Interviewing 
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Frankel and Wallen (2003) and Yin (2003) noted that evidence from multiple case studies 

was generally more convincing compared to that from a single case study and could lead to 

useful and valid generalisations.  

Over a period of 6 months, evidence gathered from the multiple case study was 

supported by evidence from a General Sample of students, this consisting of the remaining 

students in the six classes from which the case study students were drawn. In order to 

ensure the validity of the data, and increase the possibility of making reasonable 

generalisations from the results of the study, data triangulation was achieved using multiple 

sources of evidence, as shown in Table 1. 

Table 1 

Data Collection Instruments Used During the Study 

Instrument                       Purpose 

Pre-Project Student 

Survey 

Identify students who display a positive attitude towards mathematics, for 

possible selection in the case study group.  

Pre-Project Benchmark 

Task in Mathematics 

Provide a benchmark for later comparison in order to have a basis for 

assessing changes in student thinking. 

Western Australian 

Literacy and Numeracy 

Assessment (WALNA) 

data for each student 

Enable selection of students to be confirmed on the basis of a combination 

of researcher-generated criteria (Student Survey, Pre-Project Interview) and 

standardised testing. 

Pre-Project Teacher 

Interview 

Provide an understanding of the level of experience, commitment to 

numeracy teaching, teaching style and general philosophy of project 

teachers. Act as a reference point for later comparisons after implementation 

of project tasks.  

Pre-Project Student 

Interview 

Provide an understanding of current student thinking about mathematics in 

context, the importance of mathematics and how success in mathematics is 

judged. Act as a reference point for later comparisons after implementation 

of project tasks.  

Project tasks   

Mathematical 

Searches (four ) and 

other tasks 

Provide students with opportunities to identify, discuss meanings of, and 

apply mathematical knowledge in a variety of contexts. Generate work 

samples to serve as indicators of student thinking and progress. 

 

Researcher’s 

Reflective Journal and 

Anecdotal Notes 

Record details of observations made during classroom visits to administer 

project tasks. These visits occurred at least monthly over a six month period. 

Teacher Progress 

Interviews 

Provide anecdotal information about case study students from the 

perspective of the class teacher. 

Post-Project 

Benchmark Task in 

Mathematics 

Provide a benchmark for comparison with Pre-Project Benchmark Task in 

order to have a basis for assessing changes in thinking.  

Post-Project Teacher 

Interview 

Act as a reference point for comparisons with earlier interview after 

implementation of project tasks. Ascertain extent of changes to teacher 

thinking about the value of the project tasks. 

Post-Project Student 

Interview 

Act as a reference point for comparisons with earlier interview after 

implementation of project tasks. Ascertain extent of changes to student 

thinking about the value of the project tasks, mathematical learning in 

context, importance of aspects of mathematics, and how mathematical 

ability is recognised. 
 

The interviews with students were in part “task-based” in that students were given 

samples of articles, maps, and advertisements, about which they were asked questions to 

probe the development of their thinking. The benchmark tasks were based on tabular 
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information and students were to identify key ideas that the information showed and also 

give possible explanations for the variations in that information. Benchmark Task 1 

contained a table of information based on school fund raising and Benchmark Task 2 was 

about a school traffic counting activity. One associated strategy used in the study was task 

debriefing. This followed each Mathematical Search and consisted of whole class 

discussions in which the possible responses and thinking were modelled by the researcher. 

During the initial phase of data analysis, interview transcripts, work samples, and field 

notes were analysed and some thirteen empirical assertions were developed from the data. 

An empirical assertion could be described as a contention, statement, declaration or claim 

that something in particular is likely to occur, based on the contender’s observations and 

experiences (Erickson, 1986). Two of the empirical assertions generated from Research 

Question 1 that are discussed in this paper are contained in Table 2. 

Table 2 

Empirical Assertions Generated from Research Question 1 

1. Students will display an improved capacity to recognise mathematical ideas in a written context, and 

to use contextual and strategic thinking when considering mathematical ideas embedded within a 

written context, having used the Mathematical Search strategy on several occasions. 

2. Students will display a greater capacity to recognise mathematical ideas embedded in a written 

context, and to use contextual and strategic thinking when considering mathematical ideas embedded 

in a particular written context, when they are personally interested in that context. 

 

It was important not to set the boundaries of the research too wide and therefore some 

potential variables were eliminated from the sample. For example, it was not intended to 

make wide-ranging comparisons involving gender, different year levels, different types of 

schools (such as Government, Catholic, or Independent), or other issues such as school 

policy, socio-economic characteristics of school intake areas, and student ethnicity. 

Consequently the sample for the study was restricted to Years 6 and 7 female students.  

Findings and Discussion 

The discussion that follows is based only on Research Question 1 and the two empirical 

assertions listed in Table 2.  

Empirical Assertion 1 

Students will display an improved capacity to recognise mathematical ideas in a written context, and 

to use contextual and strategic thinking when considering mathematical ideas embedded within a 

written context, having used the Mathematical Search strategy on several occasions. 

In attempting to warrant or reject Assertion 1, evidence from the multiple case studies is 

presented here. To begin with, the responses to Benchmark Tasks 1 and 2 are considered. It 

is apparent from a comparison of responses by the eight case study students to Benchmark 

Tasks 1 and 2 that gains were made in terms of the various modes of thinking, that is, 

mathematical, contextual, and strategic thinking. Mathematical thinking is characterised by 

the recognition, reiteration, and/or application of specific mathematical information to 

perform a mathematical operation. For example, a student working with an advertisement 

showing a price reduction and “new” price for a sale item might use the information to 

calculate the “normal” price of the item. Contextual thinking may involve the interpretation 

of data or the posing of questions that require such interpretation. For example, a student 
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working with a similar advertisement to the above might consider a claim made in the 

advertisement that the product “whitens in fourteen days” and pose the question such as 

“Does the container last for fourteen days?” Strategic thinking may involve the synthesis of 

data to produce a new idea or the evaluation of data for consistency and the identification 

of anomalies. For example, a student working with an advertisement claiming that 

“Everything is reduced by 15%” might test the claim by comparing original and discount 

prices to see if the claim was accurate. 

The basis on which “gains” are considered to have been made is whether or not a 

student has displayed modes of thinking that were not displayed earlier in the project. For 

example, a student displaying mathematical thinking on Benchmark Task 1 is deemed to 

have made “substantial gains” if, on Benchmark Task 2, he/she displayed contextual 

thinking, as well as mathematical thinking. A student is considered to have made 

“reasonable gains” if, for example, emerging contextual thinking on Benchmark Task 1 had 

developed into established contextual thinking on Benchmark Task 2. Similar criteria 

described “very substantial gains”, “no gains”, or “loss”. 

Five of the eight students made “substantial” or “reasonable” gains and three made “no 

gain”. For each of the eight students, the quality and frequency of responses for Benchmark 

Task 2 were higher than for Benchmark Task 1. In Benchmark Task 1, students may have 

displayed emerging contextual thinking without applying mathematical ideas or they may 

have displayed genuine contextual thinking but only gave one example. For Benchmark 

Task 2, all students provided multiple responses incorporating mathematical ideas relevant 

to the context of the task. Responses by the student Tania were typical of those of the other 

seven students and are shown here in Table 3. It can be seen that Tania gave more 

responses and more detailed responses to the second task compared to the first. In addition, 

during the second task, she displayed strategic thinking that was not evident in her 

responses to the first task.  

Table 3  

Comparison of Responses by Tania for Benchmark Tasks 1 and 2 

Benchmark 1 Benchmark 2 

Contextual Thinking – Learner User Contextual Thinking – Learner User 

I think Year Seven raised the most because there are 

more children in that year. 

Brett took 28 minutes and Craig took 12 minutes. Is 

this because Brett was on a road with a traffic jam or 

the speed limit was low, or made up some of the 

answers? 

Maybe they were at different times of the day or 

more populated cities. 

 Strategic Thinking – Critical User (emerging) 

 There must have been at least four emergencies 

because it shows four emergency vehicles on the 

chart. But that might not be true because it says at the 

top that they’re all from different schools so they 

might not be in the same city or did it on a different 

day. 

 Each time the sedan cars were the most seen. Maybe 

because they were the cheapest or the most useful? 
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The development represented in Table 3 was typical of the case study students. Where 

there was not a “reasonable” or “substantial” gain in modes of thinking, there was at least 

an increase in the quantity and variety of responses. Similar gains in modes of thinking 

were noted when case study student responses for the Pre-Project and Post-Project 

Interviews, and responses to the first and final Mathematical Searches, were compared. All 

case study students displayed both mathematical and contextual thinking during the first 

interview and all three modes of thinking, mathematical, contextual, and strategic, during 

the second interview. For six students, this represented a “substantial” gain, for one a “very 

substantial” gain, and for one, a “reasonable” gain. A summary is contained in Table 4 

where “M” represents mathematical thinking, “C” represents contextual thinking, “S” 

represents strategic thinking, and (em) represents emerging thinking. 

Table 4 

Comparative Gains for Student Responses to Mathematical Searches 1 and 4, and 

Interviews 1 and 2, for the Case Study Students 

Student Mathematical Search 

#1 to #4 

Gain Interview #1 to 

Interview #2 

Gain 

Mary M(em) to M/C Very Substantial M/C to M/C/S Substantial 

Sara M(em) to M Reasonable M/C to M/C/S Substantial 

Jenny M to M/C/S (em) Very Substantial M/C to M/C/S Substantial 

Tania M to M/C Substantial M/C to M/C/S Substantial 

Kerryn M/C to M/C No gain M/C(em) to M/C/S Very Substantial 

Louise M to M/C Substantial M/C to M/C/S Substantial 

Lexie M/C(em) to M/C Reasonable M/C to M/C/S(em) Reasonable 

Sonia M/C to M/C/S (em) Reasonable M/C to M/C/S Substantial 

 

Responses from the Post-Project Interviews support Assertion 1 in that the eight case 

study students unanimously thought that the Mathematical Search helped them to develop 

their thinking about mathematics. The following responses were made in reply to the 

interview question “Do you think that doing these tasks [Mathematical Searches] helped 

you to understand mathematics better and if so, how did they help you with your thinking 

about mathematics?” 

I think they’ve helped my mind expand and look at things in a different way that I haven’t seen them 

before, to make it easier and different to learn, and I think it’s helped a lot. Instead of just looking at 

a picture or something once, I look at it closely and see if I can find any maths in it. (Jenny, student, 

Post-Project Interview, November 18, 2005) 

 

Well, ever since the first task, it really made me think, just looking around at things. It really, really 

did make me think about everywhere maths is and I talked about it a lot to my parents and they 

realised a lot too. I know some things I probably wouldn’t have noticed as well about maths and I 

realised that there was heaps of maths everywhere. (Kerryn, student, Post-Project Interview, 

November 20, 2005) 

 

Yeah, ‘cause it helped me understand maths because I didn’t know there was maths in writing. I 

thought there was just maths in numbers, but there’s maths in writing as well. (Lexie, student, Post-

Project Interview, November 25, 2005) 
 

The level of gain in student thinking as well as sentiments expressed by students during 

Post-Project Interviews provide sufficient evidence to establish a warrant for Empirical 
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Assertion 1. That is, capacity to recognise and use embedded mathematical ideas and to 

display contextual and strategic thinking is enhanced by using the Mathematical Search on 

several occasions. 

Empirical Assertion 2 

Students will display a greater capacity to recognise mathematical ideas embedded in a written 

context, and to use contextual and strategic thinking when considering mathematical ideas embedded 

in a particular written context, when they are personally interested in that context. 
 

In attempting to warrant or reject Assertion 2, examples of evidence from teacher and 

student interviews, and the Researcher’s Reflective Journal are presented here. The 

interview responses from teachers support the assertion that context is an important 

consideration. The following comment from Karen (teacher) was made in response to a 

question about the level of reading involved in the Mathematical Search tasks. Around the 

time that her class completed the first Mathematical Search task, the context of which was 

about Indigenous Australians, an indigenous student of a similar age, and known to her 

students, had died. This gives the following comment considerable weight in terms of the 

importance of context. 
 

The reading with the first one [Mathematical Search task 1] . . . the level was fine, but I’m not sure 

if they found the content engaging until this child’s death, because then it became more interesting to 

them because it was their real world. (Karen, teacher, Post-Project Interview, November 25, 2005) 
 

Another teacher, Georgie, made the following comment in response to an interview 

question about the value of the Finding the Maths task. This task was the third 

Mathematical Search where students chose the context and samples to analyse. Typical 

things chosen by students were “junk mail” catalogues, advertising material, and 

newspaper articles. 
 

When they actually found the context, they became active learners and they were putting their skills 

into practice. I thought that was the most valuable task, but they had to have experienced texts 

presented to them to begin with but then when they did that [pause] in fact if we gave them that task 

now, having done two more practices at presenting them with texts, I think the results would be even 

better. (Georgie, teacher, Post-Project Interview, November 25, 2005) 
 

The following excerpt from the Researcher’s Reflective Journal, compiled immediately 

after a Post-Project Interview with Nick (teacher), provides another example of the 

importance of considering the context in which mathematics may be embedded. 
 

The idea of context has arisen again. Today’s interview with Nick was very enlightening from 

several viewpoints; one being that Nick considered that the choice of context for written texts was 

very important when devising text samples to use with the Mathematical Search tasks – he felt that 

student interest was quite dependent on the information contained in the text. (Researcher’s 

Reflective Journal, December 3, 2005) 
 

Responses from students also supported the assertion that context was an important 

consideration when considering whether or not students might be able to recognise and 

apply mathematical ideas contained in that context. The following exchange from a Post-

Project Interview provides an example of this view. 

Interviewer: Was there any one of the tasks that was more useful for you than others or more 

enjoyable for you to do? 

Louise: I really enjoyed the Finding the Maths where you could go out and think where you could 

find it yourself in the real world, so that’s like, real world things you can do. 
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Interviewer: So because it was real world thing, you thought it was particularly good?  

Louise: Yeah, that way you think of things outside the class, things like catalogues and things. 

Interviewer: So, if it’s something that you’re interested in do you tend to think more about it maybe? 

Louise: Yep.  

 (Post-Project Interview, November 30, 2005) 
 

On the basis of the above evidence presented, a warrant for Assertion 2 was 

established. Teachers and students both indicated that familiarity with, or interest in a 

particular context enhanced student capacity to recognise and use embedded mathematical 

ideas. It seems as though the concerns about student numeracy that were illuminated in the 

review of research literature may have been partly addressed by using the Mathematical 

Search. For instance, the inability of people to recognise embedded mathematical ideas, 

and to understand and apply them (Peter-Koop, 2004; Watson, 1995, 2004), and the lack of 

disposition by people to use such mathematical ideas (Perso, 2006) inferred that teachers 

need to use specific strategies designed to address those problems. On the basis of 

empirical evidence presented in this study, it appears that the Mathematical Search may be 

such a strategy that could be used successfully. 

It is also important to note that the Conceptual Framework for the study, the Model for 

Teaching Numeracy in Context, incorporates a number of other teaching and learning 

strategies.When used in tandem with the Mathematical Search, these strategies, such as 

task debriefing, concept mapping, graph scaffolding, and interviewing can be effective in 

enhancing the capacity of students to recognise and apply embedded mathematical ideas. 

Task debriefing was conducted by the researcher following each Mathematical Search task 

and involved modelling of how to recognise and apply the embedded mathematical ideas. 

As well, the task debriefing sessions incorporated concept mapping in which typical 

examples of embedded mathematical ideas were developed around the central theme of the 

particular Mathematical Search context.  

Conclusions and Implications 

This study has shown, through the warranting of Empirical Assertions 1 and 2, that 

student thinking and capacity to connect mathematical learning to a range of contexts can 

be enhanced by using particular dedicated strategies. In other words, the Mathematical 

Search strategy can enhance student performance, subject to some qualifications. These 

qualifications included regular use of the strategy, application of associated strategies such 

as task debriefing, and choice of context in which mathematical ideas are embedded. Other 

aspects such as teacher style and philosophy, and student reading ability had an impact on 

student performance. Hence, this study has begun to address the important research issue of 

investigating the effectiveness of teaching and learning strategies in helping students 

connect their mathematical knowledge to various contexts and situations. The following 

implications can be made for both teaching and research. 

Implications for Teaching Practice 

The Mathematical Search  

• has been shown to be an effective link between classroom mathematics and other 

learning areas and contexts in which mathematics might be embedded; 

• is an effective tool in helping students recognise and connect their own 

mathematical knowledge; 
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• helps students develop mathematical, contextual and strategic thinking when 

working with a variety of contexts; 

• could be successfully applied to audio visual and pictorial contexts, as well as 

written texts; and 

• is effective when used in tandem with a range of other strategies, shown in 

Figure 1 as “Learning Strategies”. 

Implications for Further Research  

Further research could replicate the study or focus on the use of the Mathematical 

Search and associated strategies where other variables could be considered such as 

• both male and female students,  

• different age groups,  

• socio-economic status of students,  

• students with varying reading ability,  

• use of the Mathematical Search in audio-visual contexts, and 

• use of the Mathematical Search over extended periods of time, perhaps 

beginning at a younger age. 

References 

Boaler, J. (1993). The role of contexts in the mathematics classroom: Do they make mathematics more real? 

For the Learning of Mathematics, 13(2), 12-17. 

Coles, D., & Copeland, T. (2002). Numeracy and mathematics across the primary curriculum. London: 

Fulton. 

Erickson, F. (1986). Qualitative methods in research on teaching. In M. C. Wittrock (Ed.), Handbook of 

research on teaching (3
rd

 Ed.) (pp. 119-161). New York: MacMillan. 

Fraenkel, J. R. & Wallen, N. E. (2003). How to design and evaluate research in education (5
th

 Ed.). Boston: 

McGraw Hill. 

Hogan, J. (2000). Numeracy – Across the curriculum? The Australian Mathematics Teacher, 56(3), 17-20. 

Hurst, C. (2006). Numeracy in action: Students connecting mathematical knowledge. Unpublished doctoral 

dissertation. Perth: Curtin University of Technology 

Kemp, M., & Hogan, J. (2000). Planning for an emphasis on numeracy in the curriculum. Adelaide: 

Australian Association of Mathematics Teachers. Retrieved September 16, 2003, from 

http://www.aamt.edu.au 

Morony, W., Hogan, J., & Thornton, S. (2004). ANSN Snapshot: Numeracy across the curriculum. Lindfield, 

NSW: Australian National Schools Network. 

Peter-Koop, A. (2004). Fermi problems in primary mathematics classrooms: Pupils’ interactive modeling 

processes.  In I. Putt, R. Faragher, & M. McLean (Eds.), Mathematics education for the third 

millennium: Towards 2010. (Proceedings of the twenty-seventh annual conference of the Mathematics 

Education Research Group of Australasia, Vol. 2, pp. 454-461). Sydney: MERGA. 

Perso, T. (2006). Issues concerning the teaching and learning of mathematics and numeracy in Australian 

schools. The Australian Mathematics Teacher, 62(1), 20-27. 

Watson, J. M. (1995). Statistical literacy: A link between mathematics and society. In A. Richards (Ed.), 

FLAIR: Forging links and integrating resources. (Proceedings of the fifteenth biennial conference of the 

Australian Association of Mathematics Teachers, pp. 12-28). Adelaide: AAMT. 

Watson, J. M. (2004). Quantitative literacy in the media: An arena for problem solving. The Australian 

Mathematics Teacher, 60(4), 34-40. 

Willis, S. (1998). Which numeracy? Unicorn, 24(2), 32-42. 

Yin, R. K. (2003). Case study research – Design and methods. Thousand Oaks, CA: Sage. 

Mathematics: Essential Research, Essential Practice — Volume 1

449



A Story of a Student Fulfilling a Role in the Mathematics Classroom 

Naomi Ingram 
University of Otago 

<ningram@maths.otago.ac.nz> 

This paper presents a case study of a secondary school mathematics student in New Zealand. 

Stories about this student relating to the context of mathematics form his mathematical 

identities and are told by his parents, his teachers, his peers, himself, and the researcher. The 

student’s negative affective responses to mathematics are explored through these stories. The 

student was found to have very positive beliefs, values, attitudes, feelings, and emotions 

about mathematics. He “loves” mathematics because of his enjoyment of mathematics as a 

discipline, and because he is good at it compared with his classmates. He is perceived to be 

in the top group of mathematicians in his school, a role endorsed by himself, the school, his 

teachers, and his peers. During the year however, he becomes less positive about some 

aspects of mathematics as he struggles to continue to fulfil this role. 

Introduction 

Exposure to mathematics seems to generate a range of emotions and feelings in 

secondary school students.  These affective responses are often negative and are thought to 

influence both learning and achievement (Gómez-Chacón, 2000; McLeod, 1992; Reyes, 

1984). Students seem to become less resilient to negative emotions and feelings about 

mathematics as they move through school (McLeod, 1992), and it is important to capture 

this process of change by conducting research in mathematics classrooms over a period of 

time to understand its effect on the students’ learning of mathematics (Leder & 

Grootenboer, 2005). 

This paper presents a case study of one secondary school student and forms part of a 

continuing research project. This project investigates a group of students over two years to 

capture their mathematical identities (who they are in mathematics) and explore the 

students’ negative affective responses to mathematics. The main data for the research are 

stories told by the teachers, the parents, peers, the researcher, and the students themselves.  

In the next section, the theoretical background of the affective domain and the use of 

stories for investigating learning are outlined. The methodology is then detailed and the 

student described in terms of his mathematical identities and his negative affective 

responses to mathematics. 

Theoretical frameworks 

The Affective Domain 

There have been varied definitions of the affective domain in the literature (Leder & 

Grootenboer, 2005). This research however uses Douglas McLeod’s definition. McLeod 

(1992), a mathematics educator, described the affective domain as a “wide range of beliefs, 

feelings, and moods that are generally regarded as going beyond the domain of cognition” 

(p. 576). This domain had three components: beliefs, attitudes, and emotions. Further 

research enlarged McLeod’s model to include values (Goldin, 2002), and an understanding 

of the relationships of different parts of the domain. Leder and Grootenboer (2005) 
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summarised the different conceptions and relationships in Figure 1. The different elements 

of the domain lie on a continuum of stability and intensity of responses, and levels of 

cognitive and affective involvement. This model of the affective domain is useful as a 

beginning framework to inform this research. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The affective domain (Leder & Grootenboer, 2005). 

Rather than study just one of the elements of the affective domain, it is the relationships 

among the elements that are significant in understanding the effects on learning (Schuck & 

Grootenboer, 2004). Emotional responses, for example, may result from a perceived conflict 

with beliefs (McLeod, 1994), and when a person repeatedly experiences an emotion, this 

may lead to more stable attitudes and beliefs (Zan et al., 2006). For the purposes of this 

paper therefore, an affective response is thought of as a reaction to mathematics that could 

relate to any part of the affective domain. This reaction could be for example, joy, anxiety, 

fear, avoidance, frustration, or boredom. Only negative affective responses are considered 

here, which are defined more operationally in the methodology section of this paper. 

Mathematical Identities 

As socio-cultural theories have become prominent and there is focus on understanding 

individuals’ actions, there has been renewed interest in the notion of identity (Sfard & 

Prusak, 2005). Grootenboer et al. (2006) suggest identity is a connective construct 

containing multiple elements such as beliefs, attitudes, emotions, cognitive capacities, and 

life histories, defining it as “how individuals know and name themselves … and how an 

individual is recognised and looked upon by others” (Grootenboer et al., 2006, p. 612). 

Anna Sfard and Anna Prusak believe identity to be a narrative “constantly created and 

recreated in interactions between people” (Sfard & Prusak, 2005, p. 15). They see identity 

as individuals’ visions of their own and other’s experiences. They “equate identities with 

stories about persons. No, no mistake here: We did not say that identities were finding their 

expression in stories – we said they were stories” (Sfard & Prusak, 2005, p. 14). More 

operationally, they define an identifying story to be: 

• Reifying - through the use of the words be, have, can, always, never, usually; 

• Endorsable - with the identity-builder (the person the story is about); 

• Significant - if any change in it is likely to affect the storyteller’s feelings about the 

identified person particularly with regard to membership of a community. 

Attitudes 

Values 

Beliefs 
Emotions 

and 

Feelings 

Increased cognition and stability, 

decreased affectivity and intensity 

Increased affectivity and intensity, 
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People therefore have a number of stories relating to them. They have multiple 

identities. Sfard and Prusak (2005) split these multiple identities into actual identity (I am, 

he is – stories about the actual state of affairs) and designated identity (I should be – a state 

of affairs expected to be the case now or in the future). In this paper, stories told about the 

student by the participants in the social context of the mathematics classroom are viewed as 

mathematical identities. 

Methodology 

Cresswell (2003) prescribes for research a methodological framework with three 

elements: “philosophical assumptions about what constitutes knowledge claims, general 

procedures of research called strategies of inquiry, and detailed procedures of data 

collection, analysis, and writing, called methods” (Cresswell, 2003, p. 3). In terms of 

knowledge claims, my research is guided by social constructivist principles. The data are 

filtered through my personal and cultural values and experiences that form my own identity 

and I need to acknowledge that filter. I am an experienced secondary school mathematics 

teacher with previous research interests in cooperative learning and therefore I am strongly 

influenced by social dimensions of learning. This research therefore is largely classroom 

based; it is important that I spend time with the students in their classroom environment to 

try and understand their processes of engagement and interaction because this is the major 

arena for developing mathematical identities. 

Although theoretical perspectives on affect and identity help to inform my research, I 

am also informed by a grounded theory approach to the methodology and this approach is 

my strategy of inquiry. Grounded theory is the derivation of theory from data 

“systematically gathered and analysed through the research process” (Strauss, & Corbin, 

1998, p. 12). This approach is useful for this investigation because it allows the research to 

be inductive. Decisions I make about each stage of the data collection process are grounded 

in the data itself and the emerging categories and themes (Strauss, & Corbin, 1998). Using 

each piece of data to learn more about each student, the class, and the context, I am better 

able to direct each phase of my data collection and analysis. 

This is an instrumental case study in the sense that I am exploring in depth one 

individual and collecting rich data about that individual over a period of time (Cresswell, 

2003). The case itself however, is of secondary interest to the purpose of the research, and 

the overall project is a analysis of multiple case studies to understand negative affective 

responses in mathematics (Stake, 2005). 

Participants 

The participants in the larger study are 30 students aged 14-15 who, in 2006, were in the 

same mathematics class in a co-educational, medium SES, urban secondary school in New 

Zealand. The students were chosen to be in the achievement class of their year level because 

they demonstrated excellence in one or more fields, not necessarily mathematics. The 

students’ mathematical abilities range from average to high. 

The participant chosen for this initial case study is Colin. He is of high ability according 

to standardised testing, and was chosen for this paper, rather ironically, because he 

demonstrates very few negative affective responses to mathematics. He is, indeed one of the 

most positive students I have come across. It makes the negative responses he does have 

significant in their rarity and because of this there is an element of clarity about them. 
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Data Collection and Analysis 

Methodology in affective research needs to be broad enough to capture the complexity 

of the issue (McLeod, 1994; Zan et al., 2006), and therefore I am using a variety of 

instruments and techniques in the study. The expanding data set for the larger study consists 

of audio-taped and video-taped observations, interviews with students and teachers, student 

and parent auto-biographical questionnaires, an anxiety questionnaire (adapted from Chiu & 

Henry, 1990), metaphors collected from the students about mathematics (Buerk, 1996), 

students’ drawings of mathematicians, assessments, exercise books, school reports, 

academic prizes, disciplinary reports, student subject choices (initial and actual), enrolment 

information, and student journal writing. 

Each piece of data that pertains to Colin or his social and physical context is seen as a 

story and therefore identified according to Sfard and Prusak’s (2005) operational definition 

of identity and represented by BAC where A is the identified person, B is the author, and C is 

the recipient. This creates a structure to differentiate between multiple identities of an 

individual; for example, a story told about Colin by the teacher to the researcher would be 

Teacher ColinResearcher. I then took a subset of these identities and highlighted instances of when 

Colin displayed or experienced negative affective responses. Operationally, a negative 

affective response is seen as a negative reaction to mathematics that could be: 

• Physiological – a physical reaction, such as going red, or becoming agitated; 

• Psychological – feelings such as dislike, boredom, worry, panic, frustration; 

• Behavioural – an overt and observable reaction to mathematics endorsed by the 

student, for example, poor classroom behaviour, avoidance of mathematics. 

A microanalysis was performed on these stories to understand how Colin’s negative 

affective responses position themselves within his mathematical identity. 

Results 

Describing Colin 

Colin is a tall, angular boy who has the loose-limbed carelessness of a teenage boy, too 

big already at 14 for the school desks. Colin is the oldest child of two. His parents describe 

him as an imaginative, caring, and helpful boy with a good sense of humour, and a strong 

sense of justice. Colin, his teachers, and his peers endorse this view of his personality. He 

does well in all his subjects, in particular music, where he is viewed as gifted.  

During the observational phase he always had with him the necessary mathematics 

books and equipment. His teachers describe him as well behaved, with sound work habits, 

and a positive manner. This was observed, in general, during the course of 2006, and Colin 

agrees he works hard in mathematics. Colin’s squared exercise book shows that he 

completes the set work neatly on a ruled and dated page. There is little working shown 

when he is completing exercises from the textbook, the main activity in the class. His 

working on starter problems however, are written out of the squares in a larger, more fluid 

style.  

Colin loves mathematics, thinks it is fun, and is excited by it. “Maths is a thing for me 

… I just feel like I have a thing for maths” (ColinColinResearcher).  He concurs he loves it for 

two reasons; one because of his enjoyment of the field of mathematics itself, and the other 

because he perceives he is good at it compared with his classmates. 
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Colin the Mathematician 

Colin’s own definition of mathematics is that it is “a language we use to evaluate 

situations and predict what will happen next” (ColinColinResearcher). His metaphors for 

mathematics are all scientifically oriented. He believes that mathematics is like  
 

1. The universe. It is infinite and all encompassing. 2. An atom because it makes up everything. 3. 

The entire worldwide ecosystem. It fits together like a giant jigsaw puzzle. 4. The colour white. It is 

a blending of all the colours of light like all the elements of maths (ColinColinResearcher).  
 

Importantly, he believes mathematical learning to be of great value and not restricted to the 

curriculum or institutional structure.  
 

When stuff is really repetitive it motivates me to actually do my work … perhaps if I can get all of 

these done I can have some free time at the end of the period and think about music or other maths 

… I don’t see maths as a subject itself, I think of it more as a thing that goes everywhere 

(ColinColinResearcher).  
 

Colin does not suffer from significant test anxiety. Colin, early in the research period, 

expressed only very mild, probably facilitative anxiety, when doing a mathematics test, and 

being given a mathematics test he was not told about. He also does not worry about getting 

tests back. Colin enjoys being challenged during mathematical activity, and is patient when 

he does not immediately understand something, knowing that he will in a few minutes, a 

few days, or a few years. The more he learns, the better he feels about it. 

There’s no problem that I haven’t found out the answer to … I have a big book at home full of brain 

teasers … and you learn how they work eventually and some I just don’t get and I come back and I’m 

like oh I know what that word means now so … or I know the answer to that now. That makes sense 

(ColinColinResearcher). 

When asked to draw a mathematician, Colin drew a trendy man with dreadlocks and 

wrote: 

Say hello to Simon. He is the mathematician. He has cool sunglasses to prevent UV rays getting into 

his eyes and going into his brain. He is a normal person. He’s really cool. In other words, anyone can 

be a super mathematician. So instead of drawing a stereotypical nerd, I drew my form teacher … [he] 

is actually [not] that great a mathematician, but hey  (ColinColinResearcher). 

Refreshingly, Colin feels that there is little social stigma attached to being good at 

mathematics.  
 

No one really cares about whether you’re a nerd or not any more … people are my friends regardless. 

It’s great. I love it. I’m lucky to be born at this time … nerds don’t really exist as much any more 

(ColinColinResearcher). 

Being Good at Mathematics 

Colin enjoys mathematics because he perceives he is good at it compared with his 

classmates. “I always like being better … than other people … I like the feeling of knowing 

that no-one usually understands that but I kind of do”(ColinColinResearcher). He clearly 

acknowledges he is one of the top mathematicians in the class and indeed the school. 

Colin, with Peter and Angela, are three students that recognise themselves and are 

recognised by others as being top in the class. “Everyone wants to be in my group when we 

do maths things … it’s like [calling out] Peter, Colin, Angela, come over here” 

(ColinColinResearcher). Colin’s name was mentioned (unsolicited) by ten students a total of 18 

times during interviews as being a part of this group or the top student in the class. Peter 
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and Angela were only mentioned a couple of times, and others in the class at the most once. 

One student, whose mathematics capability is similar to those in this group, identifies Colin 

and at the same time distances himself because of how he perceives his own behaviour. “I 

feel like there are … people like Colin and Angela that just get down to it. I probably don’t 

feel like [I’m in the top group] because I just slack off when I can”(FinlayColinResearcher). Other 

students think Colin knows the mathematics automatically “If it’s something hard, it takes a 

couple of weeks to get through my head … but the really brainy ones like Angela and Colin 

… it’s just like they know it”(TiaColinResearcher).  
Colin is especially competitive with Peter and Angela and they are observably 

competitive with him. Colin knows all of their results in mathematics for the last few years 

and thinks about their learning processes. “I do think about it more complicatedly than 

[Angela] does sometimes. She’s a better learner and more motivated person than I am 

sometimes because she’s a girl” (ColinColinResearcher). Other people in the class do not feel 

competitive, and do not see that label as applying to them, only to people in the “top group”, 

again identifying Colin as one of them.“That’s not like me. That’s between Peter and Colin 

and people like them. I don’t compare myself with them. They’re a lot better than me at 

maths” (FernColinResearcher). 

The main role Colin has in the class is that of unofficial teacher or tutor, a role he 

enjoys. “I like it when people ask me things. I could be a teacher when I grow up … and 

even when someone else might [be able to help] … I feel like they think I’m just the person 

who knows it really” (ColinColinResearcher). 

The School and the Teachers 

In the three years before 2006, Years 7, 8, and 9, Colin received mathematics honours 

awards at prize-givings (only 2 or 3 are given per year). Colin himself endorsed these 

rewards as being important to him; he remembers what he and several of his classmates got 

in all their subjects over several years. He had, until the middle of Year 10 in 2006, received 

mostly Excellence grades or near 100% in his mathematics assessments. Colin’s school 

reports reinforce his ability in mathematics to Colin and his family with strong identity 

statements. “Colin is an excellent student” (Year 7 Mathematics Teacher Colin Colin/Parents). “Colin is 

brilliant. He has never really been tested this year in class, however he has stayed focussed 

and set his sights only on excellence. His exam results were impressive. He is certainly 

deserving of the [honours award]” (Year 9 Mathematics Teacher Colin Colin/Parents). 
Colin is always included in mathematics competition teams or external mathematics 

enrichment activities. Other students who have the potential to be in the top group of 

students but are not recognised as such, perceived themselves to be excluded from 

mathematics competitions and external projects only requiring two or three people, often 

because the teacher automatically asked those in the “top group” or had an expectation it is 

those people who go. 

During the observational phase of this research, the teacher frequently named Colin to 

the class, to encourage others to get help off him, or to highlight his work or assessment 

results. He spoke openly to the researcher in front of the students about who was good at 

mathematics in the class. Colin frequently put his hand up to answer questions and was well 

received by the teacher, sometimes to the exclusion of others in the class. During one 

observation, the teacher asked a series of verbal questions to check students’ understanding. 

Except for one other person, who was not asked to contribute, only two people put their 

hands up for the entire session, one of whom was Colin and the other Angela. 
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Negative Affective Responses 

During 2006, some negative emotions and feelings could be observed in Colin. Early on 

in the research period, I asked him if he wanted any help with a difficult starter I had seen 

him struggling with after the class had gone on to the main lesson. Colin seemed 

immediately flustered and defensive and told me that was not the focus of the day’s lesson. 

He seemed genuinely surprised that I asked. The teacher laughed when I told him about it 

and said Colin was not used to being asked if he wanted help. When I asked the class to 

hand in their exercise books that day, Colin did not want to and hid his book, as he did on 

another occasion when he had perceived he had done little work.  

A number of times Colin reacted badly when he got marked assessments back and 

seemed defensive and secretive about his marks. He explained he got a bit down in class 

when he did not do well in an assessment (which he defined as achieving Excellence, 100% 

or performed comparatively to the others in the top group). This was highlighted during the 

interview when he was asked what his worst mathematics experience was. 

Whenever I only get one wrong. I feel like [I] can’t get 100% in a test. I shouldn’t be making silly 

mistakes. I check it like three times. I wish I could like start school again and then get 100% in every 

test … and then be able to say I got 100% in every test I ever did at school (ColinColinResearcher). 

During the year Colin had a moderate number of absences mostly due to music 

commitments and a noticeable change of focus. During one term, he had 13 absences out of 

34 periods, missing around 40% of the lessons. In Colin’s individual interview he said that 

he found it hard when he had missed out on work by being away and someone told him 

what to do when he would normally tell him or her what to do. “Then when I get it I am 

back on top” (ColinColinResearcher). Different too from the beginning of the year he now said 

that he felt anxious in mathematics when he did not know something, and he perceived 

everyone one else knew how to do it. 

In the latter part of 2006, Colin talked about his parents. “They … don’t want to push 

me, but they end up pushing me because I’ve got Excellences all the time and they get a bit 

worried when I don’t get an Excellence, I just get a Merit” (ColinColinResearcher). Colin’s 

mother was already aware his level of focus had changed. “His interest in maths extension 

opportunities has decreased in direct relation to the increase in his music interest/social 

activities” (MotherColinResearcher). This change in Colin was further highlighted at the end of 

year exam. He only studied for mathematics for “two minutes” and got mostly Merit rather 

than Excellence marks. Significantly, because of his placing in the class, he did not get an 

Honours award for the first time. His behaviour changed in class after the exam results 

came back and became more casual. He wrote in an end of year questionnaire that 

Mathematics was his worst subject in the exams. 

Discussion and Conclusions 

The stories told in this paper capture Colin at the start of 2006 as being very positive 

about mathematics. He has a mature and well-developed understanding of what 

mathematics is, and values it highly as a discipline for life-long learning. Colin loves 

mathematics as a subject but also, perhaps equally, because he feels he is good at it 

compared with his peers. Grades, marks, place in the class, and prizes, in particular, are all 

institutional narratives for declaring who Colin is, and they all reinforce he is one of the best 

mathematicians in the school. Furthermore, Colin has received a number of reinforcements 
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from teachers and peers to believe in himself as an excellent mathematician, strongly 

reifying stories that make up his actual mathematics identity.  

For most of the year, Colin had a role in class of a top mathematician, a role again 

endorsed by himself, his teachers, the school, his parents, and his peers. This role can be 

seen as his designated identity, and therefore there were a number of expectations of Colin; 

doing extremely well in, or being the “best” in assessments, answering the teachers’ 

questions, helping others, working consistently, being organised, behaving well, and always 

understanding everything in class. 

The Gap Between Colin’s Designated and Actual Identities 

Until mid 2006, there was no discernable gap between Colin’s actual and designated 

identities. He was fulfilling his role of being a top mathematician. During the year however, 

because of the role he had been given (designated identity), he felt he needed to continue to 

fulfil that role or prove himself in the classroom and at assessment time. This became more 

difficult to do because of a change in focus, absences, and a lack of study and application. 

He did not do so well in assessments, did not prepare for the exams, did not understand 

everything in class, and did not get the coveted Honours award for mathematics. 

These instances can be seen as critical stories that would make Colin feel as if his whole 

identity had changed. Sfard and Prusak (2005) concur that assessment results that are not up 

to expectation have a particular capacity to replace stories that have been part of a student’s 

designated identity. When there is a perceived and persistent gap between actual and 

designated identities there is likely to be a sense of unhappiness in that person. Colin began 

to experience negative affective responses to mathematics because of this new gap. He was 

no longer fulfilling the expectations of his role, or his designated identity. Colin began to 

show negative affective responses to mathematics for the first time. He became anxious 

when he did not know immediately how to do something, he worried about what his parents 

might think about his results, and his behaviour changed in class. There was erosion in his 

emotions and feelings about mathematics and a concurrent drop in performance. 

This is early in the story of the gap between Colin’s actual and designated identities, and 

he, in general, remains very positive about mathematics and he continues to value it highly, 

but he has lost some of the positive feelings he got from being good at it compared with his 

classmates. Repeated instances of this could lead to negative change in his stable beliefs and 

values, particularly when he starts the assessment driven Year 11 NCEA Level One in 2007. 

Lessons Learnt from Colin 

This is Colin’s story (or stories) and the lessons learnt from Colin need to be considered 

in terms of other students. Angela, for example, continues to have very little gap between 

her actual and designated identities. She however is different from Colin because she values 

doing well in the subject more than enjoying and valuing the subject itself. If she is unable 

to maintain her designated identity, there is likely to be higher consequences than for Colin 

in terms of increased negative affective responses and related learning outcomes or choices. 

Other students who are not viewed as top mathematicians (designated identity), but whose 

results and class work indicate they are excellent mathematicians (actual identity) feel 

excluded and as a result feel compounding frustration because of lack of acknowledgement. 

Average mathematicians in the class have the strongest negative affective responses, 
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perhaps compounded by their utter exclusion from the top group of mathematicians, class 

discussions, and their own reinforced and very much endorsed role as low in the class. 

Colin’s teachers from the last few years are significant narrators in his story and 

therefore are strong reinforcers of Colin’s role of a top mathematician. Although the 

teachers’ reinforcements may be seen as having high expectations of Colin, they need to be 

aware that a student’s identities are being re-shaped constantly. A teacher therefore can 

exacerbate expectations that may become unrealistic for a developing, and sometimes 

mecurial, adolescent. Teachers, as both professionals and mathematics educators, need to 

understand and take responsibility for not only the effect that this reinforcement has on the 

individuals they perceive as being the best, but also the effect it has on the learning 

environment, and the other students in the class. 

By capturing Colin’s multiple mathematical identities, a context is provided for 

understanding his affective responses in mathematics. Colin’s rare, but increasing, instances 

of negative affective responses can be seen as a result of a gap between his designated and 

actual identities. Other students too are affected by a gap, which contributes to their greater 

level of negative affective responses. By understanding these gaps, and especially the 

impact that a teacher can have, students with a potential gap can be identified, and the 

students helped to become more resilient to negative affective responses in mathematics. 
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We report on the mathematics competencies of 206 Engineering and Science students 

commencing an algebra and calculus course at an Australian university in the first semester 

of 2006. To inform course design in the face of growing student diversity, skills were 

assessed via a pre-test covering six fundamental areas. These data were also compared with 

the 1997 to 2001 data. The findings revealed reasonable skills with arithmetic, fractions, 

and index laws but ongoing weaknesses in areas of algebra, functions, and trigonometry. 

These findings have important implications for planning in Australian universities. 

Implications for school curricula are also considered. 

Introduction: The Australian Context 

Secondary-tertiary transition and mathematics under-preparedness for tertiary studies 

have long been the focus of educational interest in Australia. Much was written on skills, 

misconceptions, and related issues in the 1990’s, especially in the context of the 

development of support structures in universities in Australia (Taylor, 1999). The 

challenges of addressing under-preparedness for university mathematics studies continue 

and have also been reported internationally (Ulovec, 2006). 

Examining the Australian context, it is clear that widening tertiary entry policies 

generally, and the lowering of mathematics pre-requisites in many Engineering and Science 

programs in particular, have had a dramatic effect on the mathematics skills of students 

commencing tertiary studies (Wood, 2001; Coutis, Cuthbert, & MacGillivray, 2002). In a 

recent report, University of Sydney academics Britton, Daners, and Stewart (2006) 

observed that many students are “not ready for the sophisticated level of mathematics at 

university”. In response, many Australian universities now offer what were mathematics 

foundation courses as full courses in Science and Engineering programs, to build basic 

competencies (Carmody, Godfrey, & Wood, 2006). While this flexibility has opened 

tertiary studies to more students, lower mathematics entry requirements have taken a 

serious toll on mathematics studies in Australia generally. Not only is it harder to persuade 

school students to do advanced mathematics subjects in Years 11 and 12, but 

accommodating school content in Science and Engineering degrees has also reduced the 

study of higher level tertiary mathematics subjects. 

These and other factors have contributed to the general downward spiral in 

commitment to studies in the mathematical sciences in Australia and elsewhere. Declining 

numbers of mathematics majors have resulted in Australian universities closing 

Mathematics Departments. In the recent National Strategic Review of Mathematical 

Sciences Research in Australia (Australian Academy of Science, 2006), international 

leaders reported that “Australia’s distinguished tradition and capability in mathematics and 
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statistics is on a truly perilous path”. Key findings were that Australian students are 

abandoning higher-level mathematics in favour of elementary mathematics, that not 

enough trained mathematics teachers are entering the high school system, and that many 

university courses such as engineering that should include a strong mathematics and 

statistics component, no longer do. Key recommendations included encouraging greater 

numbers of high school students to study intermediate and advanced mathematics, 

significantly increasing the number of university graduates with appropriate mathematical 

and statistical training, and ensuring that all mathematics teachers in Australian schools 

have appropriate training in the disciplines of mathematics and statistics to the highest 

international standards. 

Against this background, declining numbers of tertiary mathematics teachers are 

endeavouring to support and retain students in their studies, and to provide courses 

appropriate for their needs. Faced with the challenge of assessing academic readiness 

quickly and efficiently, to counsel students and steer them into courses appropriate for their 

needs, there is a need to assess mathematics skills tests alongside other factors. Clear 

information on current entry-level skills is needed to inform support programs for under-

prepared students, and to guide course and curriculum development at tertiary level. 

Empirical data provide information on the long effect of school studies on both school-

leavers and mature-age students. 

Skills Tests and Assumptions 

Much of the early mathematics skills-testing in secondary-tertiary transition and adult 

learning was done by specialists in the area of bridging and support (Taylor, 1999; Wood, 

2002). However, diagnostic tests of entry-level mathematics competencies are increasingly 

being used in mainstream first-year university mathematics and statistics courses, to 

identify, advise, and support students who may be at risk of failing. In recent work, 

University of Sydney academics Britton, Daners, and Stewart (2006) administered a 

diagnostic skills test with the objective of better informing students on their suitability for 

first-year university mathematics studies. The findings were also used in conjunction with 

school results to gain a better predictor of students’ success in university courses. 

With similar concerns, Sydney University of Technology academics Carmody, 

Godfrey, and Wood (2006, p. 24) claimed that one reason for the high mathematics failure 

rates is the “differing mathematical backgrounds of students who enter university”. Their 

response was to administer a diagnostic skills test in the first week of the semester, and use 

the results to advise students on doing support studies or doing a foundation course to build 

skills. The diagnostic test was found to be useful in “alerting those students who were 

seriously under prepared for mathematics at university”. 

Queensland University of Technology academics Coutis, Cuthbert, and MacGillivray 

(2002, p. 97) reported the sharp increase in the diversity of academic preparedness as 

follows: “a substantial proportion of commencing students taking mathematically based 

university subjects do not have the prescribed assumed knowledge requirements”. Using 

diagnostic skills tests they identified students with weak mathematical background, and 

offered a range of support programs which they concluded were effective in bridging the 

gap between the students’ assumed and actual knowledge. Similarly, other reports on the 

effectiveness of interventions that attempt to address such gaps report positively on 

students’ participation and affective response. However, scanning the literature reveals no 

sustained objective research into the effects on learning and performance, and in fact, 
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Wood (2002) claimed that short programs are not effective for what are termed “weak” 

students. 

The emphasis in most Australian reports on the use of diagnostic tests has been on 

skills testing to inform student support and counselling. Certainly, there have been few 

attempts to compare the mathematics skills of students entering Science and Engineering in 

Australia now with the skills of those who entered a few years ago. Obvious reasons for 

this gap in the literature are that changes in student population and curriculum emphases in 

many university courses make comparisons difficult. However, clearly university programs 

must respond to these changes, and comparisons are valuable for informing both school 

and university curricula. 

This paper describes the findings of a study that addresses this gap in the literature. We 

report on the core mathematics skills of students on entry to an Australian tertiary-level 

mathematics course in 2006, and compare these with the skills of students entering the 

same course five years earlier. We also consider the implications of the findings. 

The Study and the Skills Test 

The investigation targeted students entering Algebra & Calculus I at the University of 

Southern Queensland (USQ). The topics in this course are typical of those traditionally 

studied by Science and Engineering students on entry to their university studies: single-

variable calculus, complex numbers, vectors, and matrices. With declining entry skills 

however, an increasing number of students now study a foundation mathematics course 

first, to develop skills that were previously established in school studies. 

In the first week of their studies in 2006, Algebra & Calculus I students were 

encouraged to complete a diagnostic test covering six areas: basic numeracy and arithmetic, 

fractions and percentages, index laws and scientific notation, algebra, functions and graphs, 

and trigonometry. An existing test was used, to facilitate comparison with data from past 

years. Developed and administered by Janet Taylor and others in USQ’s support division 

some years before, the test comprised 51 questions covering key skills academics had come 

to expect recent school-leavers to have on entry to Engineering and Science. This team also 

gathered the 1997-2001 data. Their contribution is noted with thanks. Evolving curricula 

and use of technology have made some questions on this test dated, but we retained all to 

capture maximum information and to facilitate comparison with earlier years. The findings 

of this study have been used to inform the development of a new test for subsequent stages 

of our work. 

Of the 331 students enrolled initially, just over half were studying externally (52.6%). 

We administered the test electronically, but marked by hand. Submission was voluntary, 

but the response rate was good, 206 students (62.2%) completing the test.  The majority 

(135) were engineering students, 54 were in science, 11 in education, and the remaining 6 

in other faculties. 

Analysis and Findings 

Appendix A lists most of the questions on the test, and the success rates for each, in 

2006 and the years 1997 to 2001. In this earlier period, data were only captured for on-

campus Engineering students. Hence two sets of data are provided for 2006: the full group 

of 206 students, and the 75 on-campus Engineering students, a subgroup. Because of 
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limited space, data for 13 questions are omitted: those on which performance was 

consistently high, over 80 or 90%, largely basic calculations and percentages. 

Skills Data for 2006 

The overall 2006 test results were disappointing. Converted to percentages, the mean 

and standard deviation of marks were calculated to be 62.7% and 20.0%, respectively. 

Sixty students (29.1%) scored less than 50% overall. Figure 1 shows the overall mark 

distribution for all 206 students. 
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Figure 1: Distribution of test marks in 2006. 

 

Of the six areas tested, questions on basic arithmetic, fractions, and the index laws 

were generally well answered. However, students’ skills in the areas of algebra, functions, 

and trigonometry were cause for concern. Table 1 shows the percentage of students who 

scored less than 50% in each of these areas. 

Table 1 

Percentage of Students Scoring Less Than 50% in Each Area 

Arithmetic Fractions Index Laws Algebra Functions Trigonometry 

1.0 1.0 10.7 48.5 37.4 44.2 

 

See the boxplots in Figure 2 for more information on the spread of marks within each 

area. Algebra skills were very disappointing: 

• 40% could not factorise the quadratic 6x
2
 + x − 12. 

• 42% could not solve the quadratic equation 3x
2
 + 4x − 8 = 0. 

• 43% could not rearrange the equation  y = (8t + 3)
3
 +  4. 

• 44% could not expand (x + 1)(-2x + 1)(x − 3). 

• And 59% could not subtract two algebraic fractions. 

Given current curriculum emphases, some success rates were expected to be low: 

• Only 28.6% could solve a cubic equation. 

• Only 21.8% could solve 633 <+x . 

• Only 15.4% could complete the square in a quadratic expression. Hence 

questions such as finding the centre and radius of a circle, given its equation, 

were poorly answered. 

• Only 20% knew that θθθ sincos22sin = . 
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Figure 2: Boxplots showing the distributions of marks in these areas. 
 

Graphing skills were also disappointing: 

• 70% could draw the graph of a parabola, given its equation. 

• But only 51% were able to sketch the graphs of sine and cosine functions. 

• Only 34% could sketch xyey e
x log  and == . 

• Only a quarter could find the domain and range of 1)( −= xxg . 

• Less than a third could solve =−12
x x  graphically. 

• Similarly, only a third could sketch
2

1

−

=

x
y . 

Function notation skills were very limited. Given 1)( 2
+= xxf  and 1)( −= xxg . 

• 64% could calculate )1(−f . 

• But only 39% could find )h( +xf . 

• And only 47% could find ))(( xgf . 

Straight line skills were mixed: 

• 82% could find the equation given slope and y-intercept. 

• But only 54% were able to find the equation of a line given 2 points. 

• And 61% could write the equation of a line, given a simple graph. 

Trigonometry skills were dismal: 

• 68% knew the basic trigonometric identity 1sincos 22
=+ θθ . 

• But when asked to find all angles between 0 and 2� that satisfy 4.0sin =A , less 

than a third gave both angles. Using their calculators didn’t help much either: 

only another 15% managed to use a calculator to give one angle correctly. 

• Only around 44% could use the cosine rule to find one side of a triangle. 
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• Similarly, only about 45% could solve a simple word problem involving 

trigonometry. 

Comparison with Previous Years 

As noted above, skills data were only gathered for on-campus engineering students in 

the years 1997 to 2001. Therefore, for fairer comparison with the 2006 data, the skills of 

the subgroup of 75 on-campus engineering students in the 2006 class were compared with 

those of the 2000 and 2001 cohorts, comprising 86 and 71 students, respectively. 

For these cohorts, no statistically significant differences were found in the six broad 

skills areas. However, differences were found for particular skills in algebra, functions and 

graphing, and trigonometry. These include a decline in ability to substitute x + h into a 

given function f(x), a trend continued in 2006. The success rate for sketching the basic 

trigonometric functions dropped from above 60% in the 1990’s to below 50% in 2006. The 

ability to multiply out three given linear factors of a cubic polynomial was also 

disappointing, with success rates well below 50% in three out of the 6 years measured, and 

only 44% in 2006. 

On the positive side, some skills showed improvement, but only one improved 

significantly to a success rate of over 50%: finding the equation of a straight line given the 

coordinates of two points. All other improved skills remained at low success rates, with 

increases generally from 10-20% to 30-40%. These include simplifying a fraction and 

writing it with no negative powers, determining the centre and radius of a circle, using a 

graph to find the solution to an equation, and using the cosine rule to find the side of a 

triangle. These general weaknesses are especially disappointing, given that 61 out of these 

75 students had spent at least one semester in Foundation Mathematics, which covers these 

skills. 

Further Analysis of the 2006 Data 

T-tests were conducted on the following groups to assess differences in skills 

associated with the following factors: 

• Mode of study (on campus versus external). 

• Foundation Mathematics (studied versus not studied). 

• Faculty (engineers versus non-engineers). 

• Age-group (school-leavers versus older students). 

Mode of study revealed the biggest differences, with externals (98 students) performing 

better in algebra than their on-campus counterparts (108 students) on four out of nine 

algebra questions (p-values ranging from 0.010 to 0.043). These include factorising a 

quadratic expression, subtracting two algebraic fractions, solving an inequality containing 

an absolute value, and completing the square. External students also performed better on 

two trigonometric questions, namely using the cosine rule (p = 0.031), and solving a real 

world problem (p = 0.011). 

Foundation studies, faculty and age-group yielded no overall statistical differences in 

each of the six skills areas. However, differences were found for some specific questions. 

For example, non-engineers (71 students) performed better than engineers (135 students) 

on some tasks, including simplifying a fraction containing negative powers (p = 0.020), 

expanding three linear factors (p = 0.047), and substituting into a quadratic function (p = 

0.019). 
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Students who did not do foundation mathematics (96) performed better than those who 

did (110 students) on the following tasks: solving a cubic equation, solving a system of 

linear equations, and recalling the trigonometric identity θθθ sincos22sin = . Note, 

however, that success rates for these three questions were low for both groups. For 

example, around 40% versus 25% success rate for expanding the cubic equation. Note too 

that Engineering now recommends that its students do foundation mathematics studies, but 

it can no longer be assumed that those who do not do foundation studies are those who 

come better prepared from school. 

Data for age-groups were available for only 41 students. The school-leavers (14 

students) performed better than the older students (27 students) on a number of tasks. The 

younger students were better with quadratic functions: describing its graph (p = 0.000), 

using the graph to predict y-values (p = 0.031), and finding the turning point (p = 0.041). 

They also performed better with fractions (p =0.003), finding the equation of a line given 

slope and y-intercept (p = 0.050), and sketching the sine and cosine functions (p = 0.018). 

Discussion and Implications 

The competencies of 206 students who completed a pre-test on entry to Algebra & 

Calculus I in 2006 were measured in six areas: basic numeracy and arithmetic, fractions 

and percentages, index laws and scientific notation, algebra, functions and graphs, and 

trigonometry.  Data are reported for the 2006 cohort, and the 1997 to 2001 cohorts, as 

measured by the same test. 

The 2006 findings revealed reasonable skills on arithmetic, fractions, and index law 

tasks, many of which could be done with the aid of a calculator. Of concern, however, are 

findings that reveal ongoing weak skills in areas of algebra, functions, and trigonometry. 

And these skills such as rearranging a straightforward equation, solving quadratic 

equations, finding the equation of a straight line, sketching sine and cosine, and finding 

angles from a sine value are fundamental for studies in calculus, vectors, and linear 

algebra. 

Comparing the 2006 data with those of previous years, no significant differences were 

found in overall skills in each of the six areas described in this paper. There were 

differences in some specific skills, many related to functions and graphing, but the few that 

showed improvement remained at a low level. This was disappointing considering that the 

majority of the engineering students of 2006 had studied the foundation subject. 

Furthermore, the 2006 data revealed that students who had done the foundation studies 

performed significantly worse on two algebraic and one trigonometric task. It seems that 

these are not students who simply need some time to refresh these skills. More likely it is a 

warning that many have never engaged deeply enough with these fundamentals to 

internalise the concepts. 

A significant 2006 finding was that the external students showed stronger algebraic 

skills overall than their on-campus counterparts in four out of nine algebra tasks. This may 

reflect a range of differences, including study habits. The differences between faculties 

were less pronounced, non-engineering students performing better than the engineers in 

just one algebra task and one function task. As expected, school leavers performed better 

than the older students on a few tasks, especially in the area of function and graphing. 

Nevertheless their skills levels were disappointing. 

These findings have important implications for course and program planning in 

Australian universities. Algebra & Calculus I used to be the entry-level mathematics course 
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for students in Engineering and Science, but declining levels of mathematical preparedness 

have resulted in many of these programs now placing students in foundation studies first. 

Enrolment in Foundation Mathematics at this university alone has risen by close to 6%, to 

around 900 students, the majority of these studying externally. 

It is clear that in many Australian universities, foundation mathematics studies are now 

an essential part of the degree studies for increasing numbers of students. Should these 

students pay extra for these studies? Or should universities give credit points to students 

who enter having done advanced mathematics subjects at school? Either way, current 

tertiary entry-level skills tests are wish-lists; the reality is different.  It is clear that tertiary 

teachers must radically re-examine the skills they assume their students have on entry to 

university mathematics courses, and tertiary programs and curricula need restructuring to 

respond appropriately. And it seems likely that non-foundation courses will need to sustain 

integrated and effective strategies to develop the core algebra, graphing, and trigonometry 

skills students need to facilitate even basic studies in calculus, vectors and linear algebra 

for higher studies in mathematics, sciences, and engineering. 

The evolving nature of current tertiary mathematics studies raises questions about the 

implications for school mathematics curricula and assessment. If universities must respond 

to widening entry by incorporating current school content in tertiary courses, are school 

curricula freed from some content and constraints? Can focus be on depth in core skills and 

content, rather than breadth? We propose that the time is right for secondary-tertiary 

collaboration on the best path forward for Australian mathematics education at both levels. 
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Jane’s decision to write her maths-autobiography came as she witnessed the benefits 

achieved by other preservice teachers at UNDA undertaking the same task. However, unlike 

fellow students, Jane did not suffer from Mathematics Anxiety. Jane’s autobiographical 

writing demonstrates the potential uses and benefits for a non-anxious preservice teacher. 

Her autobiography provides insights for teachers and teacher educators into the everyday 

experiences of the classroom and students. For teacher educators, it further demonstrates the 

value of various writing styles as tools for self-growth. Jane’s writing contains a number of 

examples that demonstrate that her childhood experiences and subsequent writing about 

those times, directly impact on her emerging teaching philosophy and future professional 

work. Jane’s writing also demonstrates the transformative potential of writing a mathematics 

autobiography for preservice teachers.  

Jane’s Journey to Writing a Maths-Autobiography 

Jane was a high achieving mature-age student. Several of her friends had enrolled in a 

Directed Individual Study unit, coded ED4810, for the purpose of writing their maths-

autobiography. Jane was aware that her peers in that group suffered from varying levels of 

Mathematics Anxiety, and was interested in the impact the autobiographical writing was 

having on them. They had informally shared many of the experiences they were writing 

about, and Jane was interested in the obviously increased confidence levels they were 

displaying. In one of our conversations, Jane suggested she “join in” and write her maths-

autobiography, to tell the story of a transient student. She was aware that she did not suffer 

from Mathematics Anxiety, and reflected that whilst there were adequate precipitating 

factors in her own life, there were also numerous protective factors. Jane was interested as 

she had a strong sense developing that she wanted to teach mathematics very differently to 

the way she had experienced it for most of her school life. Although her recollections are 

subjective, from a phenomenological viewpoint what she experiences is what she 

experiences. Jane understood the dangers of solipsism and her writing echoes an awareness 

of the lack of objectivity that can exist in autobiographical writing. 

Stepping into Jane’s Story 

Jane’s autobiography recounts a series of critical events within her school life, 

including changing schools, moving house, relocating to the country, forming new social 

sets of friends and interacting with new teachers. It is her relationships with teachers, 

however, that are at the forefront of her memorable experiences. It is well recognised that 

teachers play a vital and significant role in student learning. Jane’s writing reiterates a 

recurring theme that student-teacher relationships are central to learning.  

My earliest recollection of mathematics was in Year 1. I was six years old and the youngest of eight 

children. I was very eager to start school just like my big brothers and sisters. I couldn’t wait to be in 

Mrs. H.’s class. Mrs. H. was the Year 1 teacher at M.P. Primary School in a small country town in 

South Australia. The very first incident I can recall about mathematics was learning to count using 

an abacus. I loved the colours of all the balls and enjoyed sliding the balls along the wire. The Year 
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1 classroom had a lot of mathematics equipment on the mathematics shelves. There was a shelf full 

of abaci in the classroom and every morning we were allowed to play on the mat with them. 

On the mathematics shelf were all sorts of amazing things to play with. One of my favourite 

resources was the till with money in it. Mrs. H. used to set up shopping stalls all around the room, 

one stall would sell fruit, another would sell groceries and another would sell stationery. I liked it 

best when I got to be the shopkeeper and had to sell the items on my stall and take the money. I 

don’t recall actually being able to calculate the money, although I was able to imitate what I had 

experienced when I went to the shop with Mum. I regularly went to the local shop for Mum by 

myself because the local store was only about 4 doors down from where we lived. In the 1970’s 

most people had a monthly account at the store so I never really got to use money in a real life 

situation.  

I also remember learning to write the numbers up to 10. My favourite number to write was the 

number two (2), Mrs. H. taught me how to turn the number two into a beautiful swan. She used to 

use lots of coloured chalk and make all the numbers into pictures, for instance the number eight was 

a teddy bear. I can’t actually recall learning to count or finding it difficult to count. I know I loved 

school and really liked the mathematics shelf. Mrs. H. really gave me a great start to my school 

years, especially in mathematics. I can only ever remember doing mostly concrete activities with her 

and she always made it fun.  

The mathematics experience that I can recall is learning to regroup, this was really tricky. We used 

to have to write the numbers under each other and then draw a line and add them up, my answers 

were always wrong. I don’t remember who my teacher was but I can remember having to write a lot 

in mathematics. I remember that there was a big emphasis on getting things right, I didn’t like it 

when things were wrong because then I thought I was stupid and couldn’t do mathematics. I only 

stayed at that particular country school until the end of Year 4. 

It is instructive to note the differences in Jane’s descriptions as she recalls her 

experiences over time. She provides a detailed description of her feelings and learning 

activities with Mrs. H., the teacher who made school fun and who really engaged her with 

mathematics. This contrasts with the sparse description in the final paragraph of the next 

three years of school. She does not remember the names of her teachers and the relational 

elements that were detailed in the first grade paragraphs are missing. She does, however, 

remember several other things that were instilled in her: that you had to get things right, 

and that when you got things wrong you felt like you were stupid and “couldn’t do 

mathematics”. Jane’s writing illustrates the human dimension of mathematics learning.  

Teachers Make the Difference 

Teachers have a major impact on student learning. For example, Turner and Patrick 

(2004) found that student participation is highly related to teacher practices. Such practices 

will either be supportive or undermining of the development of student work habits. Jane’s 

autobiography illustrates the relationship between varying learning environments and 

factors such as resilience, teacher-student relationships, learning programs, and teaching 

style.  

The Impact of Classroom Culture on Learning 

The relationship that teachers establish with students is reflective of the culture of the 

classroom (Dix, 1993). Classroom culture includes the beliefs, attitudes, and values that are 

then manifest in actions, symbols, icons, and relationships (Good & Brophy, 1994). For 

example, in a very tidy and well-organised classroom, it could be conjectured that order 
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and organisation things the teacher considers to be important. A classroom with an 

attractive reading corner, with cushions, beanbags, and books available, would indicate the 

importance of reading. The presence of open and effective classroom meetings, with a 

rotating student-chair, would indicate that democratic principles are valued. Classroom 

culture does not exist in isolation from the broader aspects of the school culture, family 

culture and social culture (Jones, 1996). A classroom culture might be attempting overtly to 

be counter-cultural. For example, a school in a socially disadvantaged area with racial 

tension might focus on developing a respectful, harmonious community “feel” to the 

classroom. Classroom culture includes the norms and values that teachers establish within 

the classroom (Stoll & Mortimer, 1995).  

Positive Classroom Culture Reduces Mathematics Anxiety Related Factors 

A positive and effective classroom culture results from a broad range of operational 

factors including appropriate classroom management techniques, a sustained focus on 

learning, cooperative, and respectful attitudes and harmonious relationships (Cavanagh & 

Dellar, 1997). A practical example of how mathematics teachers can support a positive 

classroom culture is by ensuring that students’ “put down” remarks about other students’ 

mathematical performance, and student behavior that belittles others, is not tolerated. A 

positive classroom culture encourages “risk taking” and so “at risk” students need to feel 

safe that they will not be humiliated or criticised for making errors. A classroom culture 

that fosters tension, anxiety and discord provides fertile ground for breeding anxiety about 

mathematics.  

Good teachers are able to create a learning environment in which students have high 

and positive expectations about their learning, co-operative behaviour is pronounced, and 

the culture encourages learning to occur. 

Patrick, Turner, Meyer, and Midgley (2003) found that three different types of 

classroom psychological environments can be established by teachers in the first days of 

school: supportive, ambiguous, and non-supportive. In supportive environments teachers 

exhibited behaviours such as expressing enthusiasm for learning, respect for their students, 

appropriate use of humour and sharing of expectations that all students would and could 

learn in their classrooms. By contrast, teachers in non-supportive environments tend to use 

authoritarian control and emphasised extrinsic motivation. Students in supportive 

classrooms exhibited significantly less work avoidance behaviour and significantly more 

on-task behaviour than existed in the ambiguous or non-supportive environments 

(Gallimore & Tharp, 1990). Although these findings were specific to the mathematics 

learning environment created in the classroom, it is likely that the same applies to other 

learning areas (Meyer, 1993). Central to the supportive environment is a teacher whose 

focus is student centred and encourages intrinsic student motivation (Anderman & 

Midgley, 1998).  

The traditional view of “impartially imparting objective knowledge” implies the 

existence of a passive learner. Jane’s writing illustrates that from a young age, children are 

active constructors in the learning process. 

Jane’s Emerging Beliefs about Mathematics Learning 

My family then moved to the city of my father’s work and I started Year 5 in C.C.C.. This is the first 

time that I can remember using MAB’s. I think in Year 5 the concept of ten finally sunk in, that was 
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my “aha” moment. I enjoyed seeing how many ways I could make ten using the MAB’s, numbers 

really started to make sense to me and I loved mathematics. I finally understood the concept of 

regrouping; using MAB’s made it so much easier. I liked trading the ones for tens and tens for 

hundreds. Increasingly over the year most of the mathematics that we did was copied from the 

board, but we were allowed to access the MAB’s if we needed to. Measurement was a major part of 

our mathematics in this year, we got to use the big measuring tapes from the sports shed and we 

went onto the school oval and did lots of measuring activities. This is about the time that the real 

importance of 10 in mathematics started to make sense to me. I learnt that 10 millimetres makes 1 

centimetre and that 100 centimetres made 1 metre. I did not like having to do problem solving that 

was embedded in number stories such as, Sally travelled 10km to school and 10km home from 

school, how many kilometres did she travel each day? I struggled with problem solving where I had 

to read a story and solve the problem. Overall, I enjoyed my one year at that particular school.  

L. in the city was my next port of call. This school was much closer to my home and a vacancy 

became available in Year 6 so my parents decided to move me from C. to L. I settled easily into this 

new school and my teacher Mrs. R. quickly realised that my reading age was only marginally above 

my chronological age. During this year I worked extensively on my reading and comprehension 

skills and gained a lot of ground with my reading skills. My comprehension skills were below 

average and I had difficulty recalling information. I was becoming increasing frustrated and I was 

eventually put into a special reading program called the PACE reading program. The PACE 

program made a big difference to my ability to read and comprehend information from the text.  

I liked the positive praise that the students who finished first received from Mrs. R.. I began to rush 

my work in order to be one of the first finished and receive the praise that the other children were 

given. Once I had been in the classroom for a few weeks I think Mrs. R. realised what I was doing 

and she spent a lot of time sending me back to my desk to complete my work to a better standard. I 

found this very frustrating and on reflection I now understand what a wonderful teacher Mrs. R. was. 

She always gave a lot of positive praise when you did things correctly and a lot of encouragement 

when things were not exactly right. Mrs. R. really knew how to get the best work from me and she 

was my turning point at school. She taught me that mathematics was not about getting it right all the 

time, it was often about the process that helped you get the answer.  

In the opening sentence of the previous paragraph Jane identifies one of the key 

strategies of an effective teacher as giving frequent encouragement and affirmation to 

students in the class. This was something that Jane was seeking, as evidenced by her 

description of her desperate need to finish first so that she too would be praised.  

As a preservice teacher Jane has developed a clear understanding of the essence of 

good quality mathematics teaching when she states that she knows that the process is more 

important than the right answer. She attributes this insight directly to her teacher. Every 

time Jane rushed to complete activities, Mrs. R. instructed her to return to her desk to 

produce a better standard of work. This vignette also provides an insight into how students 

respond to constructive feedback. It is clear that Jane’s relationship and self-esteem were 

not being adversely affected by Mrs. R.’s insistence on high quality work. She was able to 

impart to Jane that it was important and yet at the same time, Jane felt affirmed and valued 

as a child in that classroom.  

Affect Attunement 

The term “affect attunement” refers to the emotional connectedness between 

individuals (Stern, 1995). It can be observed in various life-long relationships, such as 

between parent and child. It can be also be found in relationships between close friends and 

couples. All children have a basic need for emotional attachment with other people. It is a 

powerful part of their growing confidence to learn, their willingness to take risks, and their 
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ability to build relationships with significant people who will assist in their learning 

processes. Some children display a heightened need for emotional attachment to other 

adults, influenced by factors such as their age, developmental stage, personality factors, 

previous experience of adult-child relationships, or their experience of teacher-student 

relationships within their lives (Fennema, 1989; Garden, 1997). Affect attunement can be 

significantly impacted upon by a wide range of factors either within or external to the 

classroom. Factors include teacher personality, subject matter, class size, emotional needs 

of students, behavioural management needs and demands of the class, emotional and 

psychological problems of a student or students, and the dynamics of the whole school 

community and its processes (Grootenboer, 2001). 

Poulsen and Fouts (2001) found that attuned teaching, in which teachers and students 

share close relationships, has a considerable positive impact on academic performance in 

comparison with “traditional” non-attuned teaching relationships.  The same research (p. 

189) found that improvement occurred within the context of a single lesson and that the 

effect of attunement was both “immediate and powerful”.  

Jane writes: 

The classroom was split into three groups for mathematics; I started in the lowest group. Mrs. R. 

persevered with each of us giving us lots of encouragement and she allowed us to feel comfortable in 

taking risks in order to learn. I think she allowed us to learn by mistakes, but because of the 

wonderful way she encouraged us, it never felt like you were wrong. She made the process of 

mathematics feel like you do when you are doing a jigsaw puzzle; sometimes the pieces don’t fit 

together the first time, but if you try a different piece eventually, through perseverance, you begin to 

put the puzzle together. At the end of June I took my report card home to my parents with a huge 

amount of pride because it read “Jane has fast moved up to the middle group which would indicate 

that she has grasped the basic concepts and is now ready for some extension.”    

My reading and mathematics continued to improve and at the end of Year 6 the mathematics 

learning area on my report card read “Definitely Jane’s best area. She has come along in ‘leaps and 

bounds’ since coming up to the middle group.”  I contributed this improvement in my mathematics 

to the fact that my reading and comprehension had improved so much. I found it much easier to 

complete number sentences or problem solving tasks where mathematics was required.  

Exploring the Jigsaw Metaphor 

At the end of her autobiographical writing, I asked Jane if the metaphor of the jigsaw 

was important for her mathematics teaching. She explained that it was very important to 

her. It described her concept of small parts joining to form a larger picture but, unless you 

knew what the large picture was and what you were working towards, you could never 

make the small pieces come together. This was a powerful metaphor that she was able to 

articulate. She elaborated on the impact this had on her own teaching and the processes that 

she intended to engage in when she worked with students in her own care. This discussion 

was transformative for Jane, based on both her later feedback, and my immediate 

impression of her responses as she spoke. In real terms, she was developing her personal 

metaphor to describe “connected” teaching and learning. 

Jane attributes her successes again to Mrs. R., who identified her reading problems and 

provided additional literacy support. Jane sees strong, directive teaching as being 

something that generates significant life-long change. In her experience it has impacted 

positively upon other learning areas and fostered life long learning.  
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I remember liking the fact that mathematics was so easy, considering I found English a real struggle; 

it was nice to feel like one of the kids who “got it”. However, if it was not for Mrs. R. identifying my 

reading problems and her encouragement and support, I think I would have stayed in the bottom 

group in mathematics and I would have slowly hated school on the whole. I continued into Year 7 

feeling very confident in mathematics and was really disappointed when I had to again go into a 

remedial reading class. I think that I felt that I had to prove myself in the area of mathematics and 

began to rush to try and finish first. Very quickly I started to make mistakes in calculating sums and 

my work was showing more and more errors. As the work got increasingly more difficult I was 

beginning to find some new concepts difficult to understand but I still generally enjoyed 

mathematics. My final report card for year 7 read “Works well. Errors in mechanics due to 

impatience. Highly satisfactory grasp of work covered.”   

Humiliation as Destructive to Learning 

In some classrooms when students make mistakes, teachers use humour as a way of 

dealing with the issue at hand. In some circumstances they may be reinforcing the notion of 

“put down” albeit in a situation that is funny for students at the time. To be a participant in 

the humour may be a funny and warm moment. To be the victim of the humour may be a 

very negative personal experience that can have far reaching and long term impacts on 

student learning, and on the learning of other students who are vicariously involved in the 

situation. 

The profoundness of this memory is a significant part of Jane’s autobiography. The 

trauma of the teacher ridiculing her about her spelling has stayed with her into adulthood. It 

is apparent that one person can quickly erode confidence that has previously been built by 

another. Positively affective and effective teachers do not ridicule or make fun of students. 

They create learning environments in which students feel positive about themselves, and 

where they know that they are protected from ridicule and humiliation. Humiliation is 

known to be a significant risk factor for Mathematics Anxiety (Burns, 1998). Jane 

demonstrates the vulnerability of students to be damaged by a teacher reaction or comment, 

long after the event. 

My teacher in Year 7 was not like Mrs. R. She did not give me much praise and often would belittle 

us if we did something wrong. I remember when I gave her some written work and I had misspelled 

a word and she said in a very condescending tone “and I suppose you would put two t’s in writing”.  

This has always stuck in my mind because at the time I don’t think I knew if writing had two t’s or 

one. The sad thing is that those words have stuck with me for 24 years. She took away all my 

confidence in those few seconds that Mrs. R. had spent a whole year building up. I could feel my 

stress levels increasing and I can never remember feeling relaxed with this particular teacher. I was 

always hesitant to hand work into her in case I had made an obvious mistake and she would make 

fun of me in front of the whole class. The work that was displayed in the classroom was only ever 

the very best work and therefore mine never quite reached the display board. I always felt as though 

that particular teacher had no confidence in me, or perhaps she just didn’t like my chatty personality.  

My Year 7 teacher took away all my confidence in the area of mathematics, I felt scared to try 

anything new and often struggled with fear and nerves when it came to test time. Because she made 

me feel nervous I did not like to take risks in case I got the answer wrong. When she explained a 

new concept I did not like to ask questions for fear of being ridiculed by her in front of the class. It 

was not until I reread my reports from Year 7 that I realised that the teacher did think I was quite a 

good student.  

The final report for Year 7 showed that I had achieved above average in all subject areas for effort 

and ranged from average to above average for achievement.  
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The Transformative Potential of Autobiographical Writing 

This part of Jane’s autobiography demonstrates that the writing process was a cathartic 

process for her. Interestingly, Jane’s writing might not be transformative for the reader; the 

transformative potential of an autobiography does not need to extend to readership, 

explaining why many autobiographies and journals are never published. The authors of 

such do not desire publication; it is the need to tell the story, more than the need to have 

others read, that can be a significant motivator for the writer. When she started to write 

about this time she went back to her old reports and re-read them. She was struck by the 

fact that her perception (of how the teacher felt about her) was not accurate. Her perception 

was challenged, and this had a positive impact on Jane. 

One particular area that I always felt I struggled with was my times tables. The times tables were a 

major part of the class learning and therefore this was an ongoing problem for me. We were tested 

regularly and had to get 100% in our test before we could move onto the next lot of tables. This, on 

reflection, was only taught through rote learning, and at no stage did anyone explain to me that 5 x 7 

was the same as 7 x 5. The whole class kept moving at the teacher’s pace, and if you did not have an 

understanding of the topic being taught that week it did not matter, the teacher moved on anyway.  

Again my parents moved to the country. This time they had purchased a hotel. L. was a boarding 

school but there were no vacancies for me in the boarding section so it was back to the country and 

B. Community School was my new school. I started Year 8 feeling very confident and felt as though 

I had a good handle on the level of academic achievement expected. This school was very different 

to my previous school; this was an open plan school and very stark and had boys in it. My previous 

two schools had been all girl schools. I do not remember seeing any resources or concrete materials 

for mathematics and I quickly became bored. Everything was presented on a white board and I can 

remember having great problems understanding “area”. I just really struggled with the concepts that 

were being presented to me, possibly because of how they were presented to me. The teacher style 

was very much chalk and talk style. I do not remember seeing any sort of teaching aids other than 

perhaps an overhead occasionally and lots of worksheets. We did have a mathematics book that we 

worked through from front to back with very little variation from that particular book. I do know that 

the answers were in the back of the book, so often we would copy the answers into the book and the 

teacher would mark it and we would move onto the next page.  

There was never any group work or group discussion; it was very much students sitting in rows 

working independently. If you were game enough you might put up your hand and ask for help 

occasionally but usually only if you were very desperate to get some help. The teacher did not 

encourage discussion between students and if you did discuss a particular mathematics problem with 

another student it was considered as cheating and you were normally punished.  

Jane’s reflection on her Year 8 experiences is sadly an all-too-common picture of lower 

secondary mathematics for many students. Learning that is teacher-centred and utilizes 

didactic pedagogy is likely to alienate students and reduce their interest in a learning area 

(Kohn, 2000). 

Jane observes that whenever students worked together it was perceived as cheating and 

they were punished rather than encouraged to engage in co-operative or collaborative work 

activities. In discussion, Jane affirmed that a fundamental belief she holds about effective 

mathematics teaching is to have students to work together, to talk, to interact, and to learn 

from each other. The constructivist philosophy that has been embedded into her tertiary 

mathematics learning area lectures, combined with her experiences, is becoming evident in 

her own beliefs about how she will teach mathematics in the future. 
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Classroom Teaching-Learning Styles 

In the social constructivist classroom the learning environment and teaching practices 

are student-centred. Mrs. R. adopted a student-centred approach that was reflected in her 

ability to identify and cater for the various needs of the individual students in the class. The 

positive impact this has had upon Jane’s learning is evident in her writing. 

Jane is able to differentiate between the social constructivist environment that she 

chooses to create as a pre-service teacher, and the non-social “traditional” classroom model 

where interaction and talk are actively discouraged rather than being seen as a powerful 

technique for learning and understanding. Jane has also described the positive impact 

motivation has upon learning and the adverse impact the incorrect use of negativity has as a 

de-motivator for learning. 

The Effects of Teacher Expectation and Affirmation 

The Pygmalion in the Classroom Project (Rosenthal & Jacobsen, 1968) found that 

“teacher expectation of student performance” was the most significant variable to impact 

on student learning. Teachers were given grouped ability students with the groups 

incorrectly labelled. High ability students were described as low ability students and vice 

versa. The study revealed that students performed as the teachers had expected them to, 

despite the lack of correlation between the expectations and their actual abilities. Other 

research has demonstrated that teachers expect better performance from students about 

whom they have higher expectations of ability, and lower performance from students 

whose academic ability they doubt. These expectations are matched by student 

performance. Students who experience low expectations make fewer efforts to seek teacher 

attention and gradually withdraw psychologically from the learning environment. In effect, 

what teachers believe about the educational potential of their students has a pronounced 

effect on their performance and achievement. Mrs. R. communicated her expectation to 

Jane that she was able to produce good quality work. Her Year 7 teacher communicated her 

low expectations of Jane with her comment, “and I suppose you would put two t’s in 

writing”.  

Writing Leading to Reflection 

Jane commented that after writing her mathematics autobiography she began to think 

about her teaching philosophy. She stated that it was another “aha” moment when she 

determined that she really wants students in her classes in the future to have a strong sense 

of developing understanding and grasping the “big picture” rather than being overly 

focused on “minor tasks being correct”. She was able to articulate the importance of 

process orientated, conceptually based learning as opposed to superficial, topic focused 

learning.  

Jane commented that writing her autobiography had been an interesting and demanding 

process. She felt that she had learned a lot about herself as a learner, as a person, and as a 

teacher. Teachers with whom she had positive learning experiences and attuned 

relationships were the ones she wanted to model herself upon. She intended to reject the 

practices of those teachers with whom she had non-attuned relationships and negative 

learning experiences. Having completed three core units of mathematics education, Jane 

said that she felt confident in tackling mathematics in the classroom and making it a 

subject which would be a positive learning experience for the students in her future care. 
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Jane’s mathematics autobiography recalls her educational pathway as a passive learner. 

Yet her attitudes, values and intentions as a preservice teacher are to encourage her 

students of the future to be active learners. In our post-writing discussions, Jane expressed 

her thoughts and feelings that it was a composite range of factors that had led to this 

transformation. For her, these factors included the autobiographical writing process, her 

own life-long disappointing memories of mathematics learning, the mathematics education 

courses she had undertaken, her relationships with the lecturers and tutors in those units, 

and, importantly, her practicum experiences. In her practicum work she was able to see 

highly effective teachers of mathematics, and felt energized by the students appearing 

really to enjoy mathematics work, noting the difference from her own feelings about 

mathematics at school.  

Jane did not develop Mathematics Anxiety. There are several potential factors that 

appear to insulate her from this condition: 

• There were a number of positive teacher relationships which developed her 

confidence as a learner. 

• She was aware of making academic progress, of growing in knowledge, thus 

feeling she could manage new material. 

• Transient movement can build resilience – the need to be self-sufficient, 

manage change, form new social groups – experiences that potentially provide 

protection from anxiety. 

• Jane’s transient life-style was “positive” – each move related to changed 

employment for her parents, not homelessness, family breakdown, financial 

difficulties or being “forced” to move – which can be more common in transient 

students.  

Conclusion 

Although the use of reflective writing in mathematics is most often used as a 

therapeutic tool, Jane’s biography has the potential to be used as a discussion starter with 

both preservice and practicing teachers. It could be used to explore the deep impact of 

teacher “throw away” remarks, transient families, resilience to prevent anxiety, informal or 

unplanned career guidance, the power of writing and transformative readership 

understandings. A piece of maths-autobiography, or journalling, once de-identified, has 

numerous potential usages as a tool for readers and practitioners. The use of reflective 

writing for all students in mathematics education units, as demonstrated by this example, 

would indicate that it could be a powerful tool for self-awareness which may have 

considerable impact on future teaching performance.  
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“Connection Levers”: Developing Teachers’ Expertise with 

Mathematical Inquiry 
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One of the challenges in research is in understanding processes and systems that enable 

teachers to build their expertise and commitment to reform-based pedagogies. A qualitative 

study documented the influence that a set of support mechanisms, or connection levers, had 

in assisting upper primary teachers over the course of a year in developing confidence in 

teaching mathematics through inquiry.  

The research literature in mathematics education has been fairly clear that students 

benefit from posing and investigating meaningful, open-ended problems (e.g., Diezmann, 

Watters, & English, 2001; Boaler, 1997). Inquiry is one means to learning that incorporates 

these ideals. Although inquiry has been embraced in other content areas (e.g., National 

Research Council, 2000), it continues to be under-utilised in mathematics. One reason for 

this is likely difficulties that teachers have changing conventional practice (Stigler & 

Hiebert, 1999; Cuban, 1990). Calls for reform in teaching have been with us for decades 

(Dewey, 1938/1997; Tyler, 1949/1969; Schwab, 1978; Ball, 2002), but little is known 

about the processes by which teachers alter their practice.  

This paper reports on outcomes from the first year of a research project designed to 

understand better the processes and experiences of teachers learning to develop expertise in 

teaching mathematics with inquiry. In the first year of the project statistical inquiry (Wild 

& Pfannkuch, 1999) was used to segue into mathematical inquiry because of its natural 

connections to context and interpretive epistemology, and its potential as a tool for 

understanding problems in multiple disciplines. The goal of this paper is to understand how 

a number of support mechanisms, called connection levers, enabled the teachers in the 

study to develop their expertise, confidence, and commitment to teaching mathematics 

through inquiry. 

Literature 

In inquiry, students often engage in epistemological processes of coming-to-know 

using ill-structured problems, where the initial definition of the problem is ambiguous or 

has many open constraints (Reitman, 1965). Several obstacles arise in teaching and 

learning with inquiry because it requires skills unfamiliar in conventional mathematics 

classrooms. In solving ill-structured problems, the solution phase (where nearly all 

teaching is focused in schools) requires a relatively small proportion of the cognitive effort 

compared to the process of structuring and seeing the problem through to completion. The 

skills required for conducting inquiry have been shown to pose multiple difficulties for 

learners (Diezmann et al., 2001). In statistical inquiry, for example, there are challenges in 

designing a measurable question (Confrey & Makar, 2002), collecting and organizing data, 

and relating findings back to the original question (Hancock, Kaput, & Goldsmith, 1992).  

Previous research by the author suggests that initial experiences with inquiry pose 

unique challenges because learners start with a very narrow perspective of the inquiry 
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process. Her research found that these first experiences can result in frustration and poor 

outcomes and that learners need to undergo multiple iterations of inquiry with a number of 

support mechanisms – time, feedback, support, reflection, and validation – before they can 

begin to understand the nature of the inquiry process (Makar, 2004; Makar & Confrey, 

2007). For example, inquiry often raises more questions than it answers and learners 

typically believe they have failed in their inquiry if their initial question (often overly 

simplistic and broad) is left unanswered, even if through the inquiry they have gained a 

much deeper understanding of the question under investigation.  

Inquiry is equally challenging for teachers. It requires the ability to embrace 

uncertainty, foster student decision-making by balancing support and student 

independence, recognize opportunities for learning in unexpected outcomes, maintain 

flexible thinking, hold a deep understanding of disciplinary content, and tolerate periods of 

noise and disorganization (National Research Council, 2000). These often go against 

learning trajectories traditionally held in mathematics of neat and orderly classrooms with 

well-defined learning goals. Because mathematics is not envisioned as a field requiring 

inquiry, it is unusual for teachers to teach mathematics with this approach. If they do, the 

difficulties encountered in an initial experience likely dissuade them from continuing. Like 

learners, Makar (2004) speculated that teachers would need similar elements – time, 

feedback, support, reflection, validation, and multiple experiences – to develop expertise in 

teaching mathematics with inquiry in a program of effective professional development. 

Research on teachers’ learning has provided insight into principles of effective 

professional development. For example, in a large-scale study of relationships between 

teachers’ professional development and their teaching practices, Cohen and Hill (2001) 

found that the only professional development approaches that appeared to influence 

teachers’ classroom practices significantly involved a sustained focus on reform curriculum 

they were to teach, and collaborative analysis of student work. Ball (1996) has argued that 

professional development must provide teachers with opportunities to learn content in an 

environment that models effective teaching. And Elmore (2002) contends that professional 

development must be purposefully connected to student learning of core content, sustained 

for long periods of time, focus on the curriculum and pedagogy of teachers’ classrooms, 

provide feedback, and develop within a collaborative environment.  

Method 

The study was developed using a design research framework (Cobb, Confrey, diSessa, 

Lehrer, & Schauble, 2003), in which the researcher simultaneously studies and tries to 

improve the study context. The main question was: How do teachers come to develop 

expertise, confidence and commitment to teaching mathematics with inquiry in a supported 

environment? This paper reports on links between support and the teachers’ development.  

Four teachers of students in Years 4 and 5 (ages 8-11) at a government school in 

Queensland volunteered for the study. Teachers participated in four professional learning 

days during the year, once per term (approximately every 10 weeks). On these days, 

teachers were engaged as learners on various aspects of statistical inquiry. Time was also 

set aside for sharing of teaching experiences and planning their inquiry units. Sessions were 

recorded and portions transcribed for more detailed analysis. Teachers committed to teach 

an inquiry-based unit in their classrooms each term (see Table 1). They designed the units 

themselves, sometimes using published materials as a base. Lessons were videotaped to 

capture the flavour and content of the units, enculturate the researcher into the teachers’ 
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classroom practices, provide ongoing support, and gather episodic evidence of teaching and 

learning issues that arose while teaching the units. Teachers were interviewed at the 

beginning and end of units to gather data on goals, challenges that arose, unexpected 

outcomes and opportunities, what they learned and would change next time, and particular 

aspects that supported and moved forward their emerging expertise and confidence. As part 

of the process of supporting the teachers to improve and sustain these practices, the 

researcher continually sought their input into elements that had impact on their practice, 

working to both improve on their learning and to investigate links between these supports 

and evidence of the teachers’ development.  

Table 1  

Units Designed by the Teachers each Term 

TERM Year 4 Units (Kaye & Carla) Year 5 Units (Naomi & Josh) 

1 
Can you roll your tongue? - Exploring 

hereditary traits 

Are athletes getting faster? - Investigating winning 

times at the Commonwealth Games  

2 
What’s in your lunchbox? - Investigating 

healthy lunches 

Kangaroos! - Modelling and interpreting data from 

a predator-prey game on the oval (Naomi) 

How fast is a blue-tongued lizard? - Class 

negotiated investigation (Josh) 

3 
Tibia mystery - Estimating height from a 

tibia bone found at a archaeological dig 

Who is a “typical” Year 5 student? Developing a 

survey and exploring “typical” (Naomi) 

4 

How many commercials does a typical Year 

4 student watch in a year? (Kaye) 

Comparing students’ ages (Carla) 

Investigating paper airplane designs (Naomi) 

Designing a parachute for an egg (Josh) 

 

An initial list of support mechanisms relevant to the context was developed using 

literature (Table 2). This list was used as a framework to code and mark episodes in the 

transcripts where the teachers discussed these support mechanisms or raised additional 

possibilities. Special focus was given to supports articulated by the teachers that helped 

them to connect their learning from one unit to apply to subsequent units and their evolving 

practice. Based on the episodes retrieved, the list was refined and illustrative examples 

were drawn from the interview data, focusing on those elements that demonstrated strong 

links to the development of the teachers’ evolving practice (Figure 1). Due to the role these 

support mechanisms had in helping teachers to apply learning from one teaching 

experience to subsequent ones, they were called connection levers. 

Table 2 

Initial List of Support Mechanisms 

• Developing content 

knowledge in an 

environment that models 

reform-based practices 

• Reform curriculum 

• Collaborative 

environment 

• Sustained 

involvement 

• Time 

• Feedback & Support 

• Validation 

• Multiple iterations 

• Reflection 

 

 

Mathematics: Essential Research, Essential Practice — Volume 2

485



Connection Levers 

 

Figure 1. Connection levers to support teachers’ learning to teach with innovative pedagogies. 

Results 

Inquiry Experiences as a Learner 

One of the most compelling experiences for the teachers in learning to teach using 

inquiry was having the opportunity to work through inquiry problems themselves. The first 

learning seminar focused on the ambiguity and uncertainty associated with ill-structured 

problems by having the teachers work together to design an ergonomic chair (adapted from 

TERC, 1998). They spoke throughout the year about the impact the activity had on them. 

Kaye: I thought it was helpful to actually physically throw us into the deep end and say “I want 

you to investigate chairs”. And for a lot of us that’s very different to what we’ve done 

before and for us, even as a group, it was quite a hard task for us to maintain some sort of 

focus and to have a direction moving forward. And I think putting us in that situation was 

good because I think it showed us that some of the things the kids can happen – it gave us a 

little bit of an insight as to where we might need to help kids move forward. 

Carla: You know it made you see sort of phases [of an inquiry process] didn’t it?  It made you see 

well, perhaps you need to just brainstorm this part first. 

The teachers believed in principle that inquiry was a beneficial approach for learning, 

but before being immersed in a problem as learners they were unsure what an inquiry-based 

problem felt like. Experiences with the open-endedness of the initial activity therefore 

raised a number of issues they had not considered. They worried about teaching students to 

work collaboratively, managing student diversity in dealing an inquiry, and coming up with 

good problems. For one pair of teachers, they reflected on their own struggles managing 

ambiguity and decided they should carefully structure the first unit for their students.  

Kaye: We’ve seen how difficult it is for us, that we’ll try to make the introductory process less 

stressful for them. ... 
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Carla: Yeah, it might have to be more constrained the first time. 

Kaye: Or they would probably need more teacher input or adult input or someone just to sit and 

focus them. Like you had to come back ... [and] focus on trying to subtly pulling us back to 

where you want us to go without dominating our investigation but you would hope that we 

even now, given the same task or a different task after lunch, would be more focused. 

After teaching their first unit, Carla and Kaye again mentioned their experiences with 

the chair problem and how it caused them to decide to scaffold the first unit. 

Carla: I was going to do less guidance or less modelling at the beginning but I’m glad I haven’t. 

Otherwise yeah I could foresee that my kids would just go ‘oh well, I don’t know what I’m 

supposed to do so, oh well, why bother doing it’, those kinds of questions. 

Kaye: It’s not only children. Let’s have a look at four of us up a few, two or three weeks ago 

when we were given ‘Do an investigation on a chair’. How much time did we spend, really 

without any direction? We were going off in all different planets. But we, as adults, we 

found it difficult to do, so children will find it difficult to do. I guess even as adults we like 

structure and we like a scaffold. I guess that’s why Carla and I went for a scaffold and 

we’re pleased that we did.  

The reaction to the chair activity was quite different for the other pair of teachers. They 

wanted to give students more control and designed their unit to incorporate this.  

Naomi: I think to a large extent this is how it does work in the world. ... It’s not as if the boss is 

standing there saying, ‘well this is what the end product has to look like and these are the 

steps you’re going to take’, which is what we do in the classroom. 

Although the teachers had different responses to their experience with the ambiguity of 

an open-ended task in designing their first unit, it was clear that it was an important 

experience for them to think back to during the year. 

Multiple Iterations 

Regardless of whether they were structured or open-ended, all of the teachers ran into 

difficulties in their first units.  

Naomi: The first one, we were more uncomfortable with it. ... We wanted something that was 

absolutely, you know, out of this world and we didn’t, we didn’t plan properly where it 

was going and whether or not we had the tools to get it to go in the right direction. ... that 

was a steep learning curve!  

Kaye: It’s like all things that we introduce to kids to start, we think the results you get on the first 

thing you do are probably not going to follow what we want, but probably the more that we 

do the better they get. 

In the second unit, both pairs of teachers designed units that were more balanced 

between structure and open-endedness. Over the course of the year, they experimented with 

different phases of the inquiry cycle, sometimes focusing on data collection and other times 

on interpreting findings or communicating results. At the end of the year, Naomi reflected 

on how through multiple iterations, both she and her students came away with a robust 

sense of what statistical inquiry could do. 

Naomi: The first unit we looked straight at data collection really, and the interpretation of that data. 

... [The second unit] was, yeah, just collecting data and having a look at the data. Then the 

third unit we extended it a little bit further and we looked at devising our own [survey] 

forms with which to collect data. And then, interpreting the data to the extent of saying, 

well, you know, “What was a typical Year 5 student?” But the last one is by far my 
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favourite one because it went right from collecting the data all the way through using that 

data. And then creating something from that data then using, um, taking more 

measurements and using that data to see what could be improved and keeping a cycle 

going. So the children could actually then look at the data and say, “Ok, well, this is what 

we can realize from it and this is what we need to do next time”. It was so much more of a 

practical use in how we would really use that sort of data in the outside world. 

Naomi’s statement was indicative of observations by the other teachers as well. In 

nearly every case, the final unit was the most complex and well-designed. This suggests the 

iterations were central to the teachers’ abilities to build their expertise. 

Validation 

Having the support of the researcher and the other teachers in the study helped them to 

build confidence and persistence. Particularly in the beginning of the project, the teachers 

had concerns about whether they were “doing it right”. When things did not go well, they 

often blamed themselves for not anticipating issues in advance. 

Naomi: I said it was the worst day because it was all the stuff I should have anticipated and 

allowed for so I was blaming myself. You have lessons where something goes wrong and 

it’s outside your control—that’s one of those things. But this was well within my control 

and I didn’t account for it. 

When I asked the teachers what helped them persist through the units, Josh commented 

that the validation that their experiences were normal was important to his ability to persist 

when things did not go as anticipated or unexpected school events disrupted the plans. 

Josh: Well, to start with, … you’re always there saying, “look, this is a normal classroom”. 

The students also validated the teachers’ efforts through their enthusiasm and learning. 

Naomi recounted a particularly challenging day for her, but when she reflected on the kind 

of lifelong skills the students had gained from the unit, she felt validated. 

Naomi: There was one day I could have thrown my hands up and said ‘I’m not doing this’ but I 

could see that the children were enjoying it. ... [And] the way they’re now approaching 

things and saying “yes, but, what if - ? Could it be that - ?” And that’s just wonderful. 

Resources 

Several times during the study, the researcher asked the teachers what they would 

suggest to someone attempting to teach mathematical inquiry. 

Kaye: I do believe where teachers feel a bit threatened or are doing something new, they work 

better if they’ve got a structure to work from. They’re more inclined to have a go at it. Like 

I don’t know if we would have gone down the path that we have or had the ideas to go 

down the path that we have without the resource that we’ve used.  

Naomi and Carla both talked about how they used the resources for inspiration and 

guidance to generate ideas. 

Naomi: The other thing that really helped is that TeachStat book [Gideon, 1996] because just 

flipping through there was a really good place to start to get ideas. Because right from the 

start, it was well, “Ok, this is a great principle, great in theory. How do I do it? ... What do 

I do? How do I come up with ideas?” So that TeachStat book was actually full of some 

really good ideas. And one of them gave me the idea for “The Typical Year 5 Student” 

[her third unit]. ... [Otherwise] the ideas are hard to generate sometimes. 
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Carla: I’m sure that if Kaye and I didn’t have that resource we’d be racking our brains trying to 

think of a good one that’s going to try and interest as many people as possible. 

Sustained Support and Feedback  

Ongoing feedback and technical support were also important for the teachers. In an 

interview at the end of the year, Kaye recalled a suggestion to consider stacked plots 

instead of a single graph to allow students to compare, not just describe, their data.  

Kaye And actually the support, the throwing in of things that we could do, I appreciated it. A 

couple of times when you came in, [and suggested] ‘this is how you can do this’. ... For 

me, somebody that, I often learn a lot better and work a lot better when there is input. ... A 

classic example was stacked line plots, which was something that, you know, I hadn’t even 

registered that stacked line plots made it so easy for the students to interpret the data. And 

from there that’s something that they have been able to do a lot easier, doing it that way 

rather than putting it [a single graph] on their presentation. Yet in all the books I read 

through, it hadn’t mentioned stacked line plots! So without your input there, I wouldn’t 

have been able to fly the way I did. 

Collegiality 

The teachers also expressed how important it was for them to interact together and how 

this contributed to their ability to develop. 

Josh: I think one of the most beneficial things about today, has just been listening to each other.  

Naomi: We all had problems, it was ok because we could learn from each other’s problems. 

Kaye: I think has been one of the major aspects of [Carla] and I just actually working, and 

bouncing off [ideas] – “oh well this is what we can do, let’s try it with this” or “let’s use 

this resource”, so that has been professionally very good for us. 

Both the professional sharing of teaching in teams and the opportunity to share their 

experiences with others trying the same innovation was important to their development. It 

not only helped them continue the momentum, but also enabled them to learn each other. 

Development of Deep Disciplinary Knowledge 

Another connection lever that the teachers said helped them to sustain and develop 

expertise in teaching inquiry-based mathematics was their new understanding of statistics. 

This new learning changed the way that they focused their students’ learning. 

Carla: Now at the end of the year, I know what it might mean to understand a statistical 

investigation or working with data, where at the beginning of the year [I only considered] 

“can they draw that graph?” ... [But now we know] what to look for to say this child 

understands what working statistically means. [To the others] Wouldn’t you say? 

Naomi: Oh, definitely. I’ll be honest, I used to look at chance and data and say, yeah, “if they can 

draw a graph – good, if they can work out the probability of tossing a head when tossing a 

coin – that’s done. Chance and data’s out of the way”. 

Carla: But now you can say, “Wow, this person can interpret that data and make this assumption”. 
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Time and Support for Reflection 

The time to think, to plan, to talk, to try things, and to generate ideas away from school 

was talked about by the teachers. This was time for them to reflect on what they had 

learned in a supportive environment with others sharing in the same experience. 

Naomi: Once you’re out at the university, or anywhere else that’s away from school, you stop 

thinking about what’s going on at school. ... We could just shut out school completely, and 

just sit and talk and focus completely on maths. And that was really valuable.  

Through supported reflection, the teachers drew on their experiences of each unit in 

planning subsequent units and to stand back, abstract from their experience, and consider 

how they would apply it to improving their practice. 

KM: What about for you professionally? What do you think that you gained? 

Naomi: Well a couple of things. First of all, I’d never actually thought to use an inquiry approach 

in mathematics before. We use it in science commonly but not in mathematics. So to see 

that there was a way that we could incorporate that into the classroom was wonderful. It 

was, uh, a learning curve for me though because I’ve realised now there’s a lot more 

planning that I have to do in inquiry maths than I would in a normal maths unit. Simply 

because I have to try and anticipate now where the unit could go to make sure the children 

have those underlying skills. 

Relevance 

The project immersed the teachers in thinking about teaching with inquiry. The way 

that the professional learning opportunities were directly linked to the teachers’ classroom 

practice and were sustained throughout the year became important support mechanisms for 

the teachers. Taken together, the inquiry experiences they had during professional 

development, the opportunity to participate in a community of learning about what they 

were doing in their classroom, and knowing that others were thinking through the unit with 

them as they were teaching it, all contributed to their ability to build their expertise. The 

opportunity to integrate their learning with their teaching was relevant to their classroom 

work and day-to-day practice. They were excited when they saw that the work they were 

doing was at the forefront of teaching mathematics and that the inquiry approach they were 

teaching was being promoted as well by state and local initiatives. 

Kaye: We’ve had to really look deeply at what an investigation really is and investigations really 

do form a major part of the new maths syllabus. ... One of the new [mathematics] outcomes 

... was about children creating and interpreting and analysing data, which is all what we’ve 

been doing the whole year. So I guess this whole thing we’ve been doing has been 

excellent for us getting a handle on the sorts of things that we can do.  

Josh: There was a classroom magazine that a friend of mine had the other day and there was a 

big [article on] inquiry. ... I looked at it and I thought, “Oh! That’s what we did!” 

Accountability 

A big issue for these teachers was juggling the demands on their time. With good 

teachers, there is intent to try new things, but sometimes the best intentions get buried. 

Naomi spoke about the fact that she would not have gone beyond the first iteration had I 

not been there expecting a unit to watch each term. 
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Naomi: [The accountability] kept me going. Otherwise, ... you go to the conference, you sit there 

and you write it all down. You say ‘this looks wonderful’, and you go back and you drop it 

on your desk. And about six months later when you sort out the pile of things that’s built 

up on your desk. You go, “oh, that looks interesting, I’ll put it in a file and I’ll try and read 

that later”. And that’s kind of it. Whereas this was good. The first one [unit], yep, we did 

it. We did what we were supposed to do. It was good, I can see some value in it and I can 

honestly say, that I probably would have then said, “ok, well, I’ll try that next year”. 

Maybe! And then probably forgotten. Whereas because there was an expectation to do one 

every term, by the time you got to the last one, you felt comfortable with it, the unit was 

great, the kids took it to places that I just, and showed understandings that I didn’t think 

they would be capable of. ... So, I’m completely sold, but it would have taken more than 

one to do that. ... The accountability, and the fact that you had to rehearse it, effectively, 

over and over, kind of solidified the skills. 

Discussion and Implications 

Over the past two decades, there has been a paradigm shift in the teaching and learning 

of mathematics. In this shift, the ideal for mathematical instruction transforms from an 

emphasis on skills, facts, and procedures towards greater stress on developing children’s 

mathematical conceptions and proficiency at applying mathematical tools to new 

situations: in particular, open-ended, complex and everyday problems. In order for teachers 

to make these shifts in designing innovative learning experiences for their students, they 

must develop capability with this approach and be able to envision and embrace it. This 

project examined the process of learning to teach mathematical inquiry in a supported 

environment. The preliminary results presented here suggest that these connection levers 

enabled the teachers to reflect on their iterative experiences in teaching mathematical 

inquiry towards building their emerging expertise. The teachers described how these 

connection levers supported their ability to persist beyond the challenges encountered 

during the initial teaching experiences, and continue to sustain them, building their 

confidence and commitment in the process.  

The teachers in this study developed a great deal of expertise in the course of a year, 

more than was predicted. It must be cautioned, however, that this is partially due to the fact 

that the teachers in the study already possessed beliefs about learning that were consistent 

with an inquiry-based environment. Quite possibly progress would be slow unless teachers 

first commit to an inquiry-based epistemology. Similar work in research on middle 

schooling suggests that unless teachers’ philosophy is consistent with the reform, any 

apparent change in practice is not sustainable (Pendergast et al., 2005). 

Although these findings are tentative and preliminary, many of the connection levers 

named by the teachers were consistent with research on good professional development 

(Elmore, 2002; Ball, 1996; Cohen & Hill, 2001). There was no magic in these levers; none 

are beyond the reach of schools or districts with creative leadership. The challenges the 

teachers faced and the supports they named were in the context of work in authentic 

classrooms with diverse student needs. The use of a design experiment further supported 

the applicability of the research and layers of iterative learning by the researcher, teachers, 

and students. On one hand, the excerpts from the teachers and the support mechanisms they 

list point to the complexity of moving teachers from a stage of orientation about teaching 

mathematical inquiry towards a commitment to teaching with this approach. On the other 

hand these supports are consistent with moves in education to support more collaborative 

engagement of teachers throughout their careers in the learning profession. 
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Postscript 

An additional support that has been discussed and will be trialled this year is having the 

researcher model particular teaching approaches with the teachers’ students in their 

classrooms. This kind of interaction, if equally effective, would further support 

recommendations for expanding partnerships between schools and universities (Loucks-

Horsley, Love, Stiles, Mundry, & Hewson, 2003). The teachers are already being utilised 

by their schools to begin training their colleagues in this approach. In addition, they are 

presenting their work at teachers’ conferences both locally and nationally. 
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Acquiring the mathematics register is often assumed to occur when learning mathematics. 
However, when students learn in a second language and are taught by teachers who are also 
not teaching in their native language, this may not be a straight-forward process. This paper 
describes the strategies that teachers in a Mäori immersion school (kura kaupapa Mäori) 
used to scaffold and model the mathematics register. Although most strategies could be seen 
in many classrooms, there were some strategies that seemed to be related to the students and 
teachers using te reo Mäori as the language of instruction. 

Kö ta te rangatira kai he körero 

As described in the whakatuaaki above, language is the food of chiefs because fluency 
in it provides access to and control of learning. Khisty and Chevl (2002) summarised the 
impact of this by stating, “[i]n essence, those with power are literate or in control of a 
discourse” (p. 167). Analysis of the student data from the Mäori medium numeracy project 
(Te Poutama Tau) found that language proficiency was a significant factor in student 
achievement in the higher stages of the number framework (Christensen, 2003). In kura 
kaupapa Mäori, students often have te reo Mäori as a second language, with various 
degrees of fluency in it. This means that there is a need to understand more about how to 
support students learning mathematical content at the same time that they are learning te 
reo Mäori and in particular the mathematics register, te reo tätaitai. This situation is 
complicated by the newness of this register in te reo Mäori (Christensen, 2003; Meaney, 
Fairhall, & Trinick, 2006).  

During 2005 and 2006, the scaffolding and modelling of students’ mathematical 
language by the teachers in a kura kaupapa Mäori was documented. It involved a 
partnership between seven teachers of mathematics and three researchers who are the 
authors of this paper. The kura teaches mathematics to students from Year 0 to Year 13. 
The teachers in the primary section of the school were also participating in Te Poutama 
Tau and felt that this research would complement that project. The final stage of the 
research investigated how this knowledge affected the teaching practice of those involved 
and this enabled an appropriate evaluation of the research for its practical value to be 
undertaken. Better understanding of how the mathematics register is acquired is likely to be 
of benefit not just to kura kaupapa teachers and their students but to others considering 
language issues in other content areas.  

This paper provides information on the first part of the project, the strategies that the 
teachers used to support students learning te reo tätaitai. The role of the teacher has been 
emphasised in providing the environment in which learning should occur (Anghileri, 
2002). This learning includes expectations about the interpretation and production of 
mathematical language (Khisty & Chevl, 2002). Research by Khisty and Chevl (2002) 
showed the importance of the teacher’s own use of mathematical language when students 
were learning in a second language. When teachers did not use mathematical language 
fluently, their students were unable to describe mathematical ideas.  
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The two main ways that support is provided to students to learn and use the 
mathematics register are modelling and scaffolding. Modelling is when a teacher uses 
mathematical language within an appropriate context. For example, if a student provides a 
response to a mathematical task in everyday language, a teacher might rephrase it in more 
appropriate mathematical language (Chapman, 1997).  

Scaffolding is when a teacher provides part of a response with the student completing 
the rest. Wood, Bruner, and Ross (1976) originally described the scaffolding by an adult as 
that which “enables a child or novice to solve a problem, carry out a task or achieve a goal 
which would be beyond his unassisted efforts” (p. 90). As time goes on, a teacher would 
expect to reduce the amount of scaffolding and modelling that is provided, thus transferring 
the responsibility for using the language from the teacher to the student. However, as 
Williams and Baxter (1996) stated, there is a risk that this transfer of responsibility fails to 
occur in many classrooms: “Edwards and Mercer pointed out that handover, or the process 
of gradually shifting control of learning from teacher to student, was missing in the 
classrooms they observed” (p. 25).  

Although the work of Bickmore-Brand and Gawned (1990) would suggest that the 
effect of modelling and scaffolding of mathematical language has been known for some 
time, there has been limited research on what are effective modelling and scaffolding 
strategies. Chapman’s (1997) study would be the most comprehensive. From watching a 
secondary mathematics class for a term, Chapman described how teachers reframed student 
responses so that they: clearly showed the relationship to the theme of the lesson; focussed 
on the typical linear, metonymic structure rather than the metaphorical content; and became 
more certain and less hesitant (what she labelled as high modality). Although Chapman 
concentrated on the teacher’s role within the interactions, researchers such as Rogoff 
(1988) showed that students themselves have a major influence on the types of scaffolding 
and modelling that are offered to them.  

There is also cross-cultural research on mother-child interactions which suggests that 
the ways that scaffolding are undertaken are culturally determined (Kermani & Brenner, 
1996). Research in reading classrooms for Hawaiian students suggested that reading 
achievement increased when discourse interaction patterns more closely matched those of a 
traditional Hawaiian cultural activity, such as talk story (Au, 1980). Therefore, Mäori 
teachers teaching Mäori children in te reo Mäori may not use scaffolding strategies similar 
to those identified by Chapman. Nelson-Barber and Estrin (1995) suggested that: 

 

[u]nfortunately much of the knowledge on culturally influenced notions of good teaching remains 
unrecorded and unformalized because, as a whole, educators (researchers and practitioners alike) 
have made little effort to elicit the perspectives and experiences, or study the classrooms, of teachers 
who are highly effective with non-mainstream students (p. 5).  

Methodology 

The ethnographic research tradition was used in this research for two reasons. The first 
is that research in kura kaupapa Mäori needs to be in alignment with Kaupapa Mäori or 
Mäori-centred research tradition. The second was because the project was about evaluating 
the effectiveness of different modelling and scaffolding strategies requiring an in-depth 
consideration of what this meant. Christensen (2003) summarised the five dimensions that 
contribute to Kaupapa Mäori research. Each of these dimensions is described in the 
following paragraphs, with an indication of how they were met in this project.  
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A Mäori World View 

There is a need for the unique Mäori world view to be reflected in what is researched, 
how it is analysed and written up. In considering how te reo Tätaitai is scaffolded, there is a 
need to be aware of those strategies that are unique to the language and culture of the 
teachers and the students. If Mäori students are to improve their educational achievement, 
the role of culture in learning needs to be acknowledged. It cannot be assumed that good 
teaching for students from diverse backgrounds will always look the same (Alton-Lee, 
2005). It is therefore important that effective practices that resonate with cultural practices 
are documented, and this was one of our aims for this project. 

Culturally Safe Research Practices 

There is a need for Mäori to feel that they will not be exploited as a consequence of 
being involved in research. Irwin (1994, cited in Christensen, 2003) suggested “mentoring 
by kaumätua and research being undertaken by a Mäori researcher as two aspects of 
culturally safe practices” (p. 14). In our project, two of the principal researchers are 
respected Mäori mathematics educators. Their involvement has provided a mentoring role 
for the teachers who were involved in researching their own practices. Regular meetings 
with teachers meant that the project could evolve to meet the needs of the kura as the 
teachers’ opinions and ideas were incorporated into what was being researched and how 
this was being done. 

Challenges to Existing Power Relationships 

It is important that Kaupapa Mäori research results in Mäori development. In order to 
do this, the way that Mäori have traditionally been portrayed needs to be reconsidered. This 
will support students’ active movement into the wider society as the primary benefactors 
from the research. By documenting effective strategies and acknowledging their 
relationship to culture, we anticipate that the impact of this research will not just support 
students at this kura but be of value to students at other kura.  

Accountability and Mediation 

There is a need to ensure that control of the research remains with Mäori so that “the 
research is worthwhile and contributes to Mäori development” (Christensen, 2003, p. 15). 
This will ensure continued validation of the research so that it reflects a Mäori world view 
and culturally safe research practices. In our research, we did not have a supervisory group. 
However, the project was jointly run by the researchers, two of whom were Mäori, with 
frequent meetings with the teachers who were also researchers of their own practice.  As a 
group research project, there were opportunities for reassessment as it progressed. The 
project therefore was accountable to the people who were involved in it. 

The Researcher is Concerned with Mäori Advancement 

The positioning of the researcher is important in Kaupapa Mäori in order for the 
different issues of doing research, such as the need for Mäori development, ethics, and 
being systematic, to be considered. This research was a joint activity that valued the 
different skills and experiences brought to the research project. This ensured that the 
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various demands of the research were dealt with adequately. All of those involved in the 
project are concerned with Mäori advancement.  

Method 

Data was primarily collected through videoing each of the seven teachers’ mathematics 
lessons in both 2005 and 2006. The classroom interactions were transcribed and the 
teachers then watched them with a university researcher. The joint analysis involved 
identifying the modelling and scaffolding strategies that the teachers used in the classroom. 
These were arranged around the stages in the Mathematics Register Acquisition (MRA) 
model (Meaney, 2006). These stages and their strategies are described in the next section.   

Findings  

Our original research question had been about identifying the effective strategies used 
by teachers to support students in acquiring aspects of the mathematics register. However, 
it soon became clear from our analysis that a scaffolding or modelling strategy could not be 
judged as effective in isolation from the whole lesson or in fact from classroom practices in 
general. 

Noticing 

The Noticing stage is when the teachers introduce new terms or expressions or add 
extra meanings to ones that students are already familiar with. The function of this stage is 
to make students aware of new aspects of the mathematics register, whether these are new 
layers of meaning for already known terms or previously unheard terms or expressions. The 
strategies that were identified for this stage were: 

 

• providing opportunity for the new terms to be used appropriately 
• using linguistic markers to highlight what was to come 
• using intonation to emphasise a correct term after students used an incorrect one  
• repeating new terms and expressions several times in appropriate places 
• rephrasing the expressions by using other terms  
• writing the new term in an equation which is related to what has just been discussed 
• giving definitions verbally and through diagrams  
• emphasising the relationship between ideas using diagrams or physical materials and words 
• modelling a new term/skill (idea) as it is being explained 
• after teacher explanation, having students say back the new term 
• having students repeat the final answer after the teacher has modelled finding the solution 
• relating new terms to already known ones  
• using a set of leading questions so that students are channelled into using a particular term 
• using fill-in-the-blank sentences 
• acknowledging the difficulty of learning some terms (ideas) 
• providing a rationale for the need to learn a new term (idea) 
• requesting students’ attention before introducing a new term 
• describing a new term as being important in a subsequent lesson 

 

This stage is characterised by teachers doing almost all of the cognitive work. They 
engineer the activity so that the new terms are needed. They ensure that the words are used 
frequently, mostly by themselves but also by the students. Quite often when a new term is 
being introduced, the teachers repeat it many times, often associating it with activities.  
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In one of Teacher 6’s (T6) lessons on introducing division, she used whakawehe 
(division) 41 times and the students (äkonga) used it 10 times. These repetitions were 
spaced, giving students time to absorb the vocabulary. Spacing repetition has been noted as 
important in vocabulary acquisition in second language learning (McNaughton, 
MacDonald, Barber, Farry, & Woodard, 2006). In the extract, the teacher had the students 
separate blocks into groups. This allowed her to introduce the term whakawehe, which then 
became the focus of the lesson. 

 

T6:  N� ka ono, waru, tekau, i kaute ahau i ng� ( ) ana ( ). E hia ngä mea paraone?  
 E whä ng� röpü. He rereke, äe. He mahi mämä tënei. Ko te tumanako, he mahi mämä mä 

koutou. E whä ng� röpü taki, ana. E hia ng� tae ia tae. E whä ng� röpü. Nuku atu i ö koutou 
pukapuka kia taea e koe te waiho ng� mataono ki mua i a koe, kua pënei koe.  

Äkonga: Äe. 
T6: Kua whakatakoto koe i o mea pënei [teacher observes students]: Nö reira, titiro mai, he mea 

kowhai i përä hoki koe. 
Äkonga: Käo. 
T6: Anä, he aha te pätai mä koutou? I tënei rä. Käore au i te hoatu te whakawehe ki a koutou 

nërä mä koutou. Kia whakaaro, �e, me whakaaro pea e koutou. Mehemea i ahau e rua ng� 
röpü takitoru. E hia te katoa o ia takiwha? E hia te katoa o ng� tor- toru? 

Äkonga: Ono 
T6:    Ka tahi, rua, toru, whä, ono, ko tënei te whakarau aha e ono. 
Äkonga:  Toru, toru 
T6: Tuhia te whakawehe möku. E hia te katoa ehara ko te toru [throws pen to child] 
Äkonga: ( ) 
T6: Timata i te aha, ka pai. 
 

It would seem that for a strategy to be an effective, it must contribute to students 
hearing new vocabulary or grammatical expressions frequently and gaining meaning from 
them. At this stage, the understanding that students are expected to acquire is usually a 
definition. However, the teachers giving a rationale also provided another kind of meaning 
to the new aspect of the register that they were highlighting.  

Intake 

By this stage, some of the cognitive load has shifted to the students. They now need to 
give definitions and examples, rather than just being expected to notice and interpret those 
provided by the teacher. However, the teacher is still very much in control and students’ 
contributions are usually short, thus providing them with little opportunity to provide 
inappropriate responses.  

Teacher check on their students’ understanding by asking them for definitions. If the 
definitions were concise and clear, then the students were at the Output stage. When the 
teacher or other students had to provide extra clarification, prompts, and/or information, 
then the students were more likely still to be learning how to use the terms and so would be 
at the Intake stage. In the extract, the teacher commanded a student to explain what was 
happening when two lines met on the graph (tutakitanga and rerekë). The student went up 
to the whiteboard and was helped in the explanation by suggestions from other students 
and from the teacher. 

 

T7: Inanahi, i tuhi au ngä rärangi e rua me te pätai ki a koutou. Ah, käre, i te pätai he tono ki 
a koutou, körerohia mai te tutakitanga o ngä rärangi e rua. Nö reira, Äkonga 1 haere ki te 
tuhi i ngä rärangi e rua 

Äkonga 1: E ai ki töku mea 
T7: Oh, koinä täu e kï ai he rerekë 
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Äkonga: Whä ripeka, oh, mäku e tuhi engari, pätai mäu e whäki mai 
Äkonga 1: [stands up and goes towards whiteboard] 
T7: Äkonga 2, hoki ki a koutou kei te pai kë mehemea i tino pango te rärangi o waenganui o 

ngä tua, he uaua te kite i runga i tënä 
Äkonga 2: Oh 
Äkonga 1: Oh he aha tënä? 
Äkonga 2: Oh 
Äkonga: Whä kei runga rua ki te taha 
Äkonga: I whakaaro au i tuhi au e rima 
T7: Koinä te tutakitanga, në? 
 

The strategies that teachers used at the Intake stage of scaffolding students’ acquisition 
of te reo tätatai were: 

• choral responses with the students  
• having students as a group do choral responses  
• giving the first syllable of a term so that students are reminded of the term and then complete it 
• asking students for names, definitions, or explanations of terms 
• having students model the use of terms/skills (ideas) 
• asking students for examples of a term 
• using the similarities between concepts (e.g. 7 + 3 and 70 + 30) as an entry into having students 

reflect on the differences 
• having students draw their own diagrams or use materials to show a particular term 
• repeating or having students repeat appropriate responses 
• elaborating on students’ responses in words and with diagrams 
• asking further questions to help students reflect on what they were describing and to check on 

what they know or have done  
• having students provide a rationale for what they are learning 
• ignoring inappropriate answers and just acknowledging appropriate ones  
• querying students’ inappropriate responses  
• suggesting that students’ inappropriate responses are close 
• having students work backwards from an inappropriate answer to the question which was asked 
• using specific amounts to illustrate a general rule (idea) 
• focusing students back onto the main idea being discussed to help solve a problem  
• using student-devised terms in giving an explanation 
• going over an activity which requires the use of the new language as a whole class before 

expecting students to do the activity as individuals 
• showing students the relationship between what they already know and can do and the new 

language term or skill 
• having students answer a series of closed questions to lead them to using the new term/skill 

(idea) 
• after modelling how a new term or skill is used, having students repeat the action 
• recording in writing what had been discussed or done 
• students can query obvious errors by the teacher or another student 

 

The function of the Intake stage is for students to form understandings of when and 
how new aspects of the mathematics register are to be used. Effective strategies, therefore, 
are ones that support students exploring when and how to use these new aspects of the 
mathematics register. This support would include providing students with both positive and 
negative feedback about their experimentation with the new aspects. 

Integration 

By the Integration stage, students have a good understanding of the new aspects of the 
mathematics register. They just need to be reminded that they have good skills and 
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knowledge and that they should be making use of them. For example, listening is a skill 
that students need to become fluent in. In the following discussion, the teacher seemed to 
be predicting that some students would struggle to follow the logic so she used words and 
commands to ensure that they paid full attention to the important sections. 

 

T1: Tekau ngä tapa, tekau ngä mata me ngä akitu, tekau mä rua ngä tapa tapirihia kia rua, ä, 
ka tekau mä rua kë tërä. He oi anö, i mutu i te karaehe i kï mai kë tëtahi; “Whaea kei te 
hë tëtahi o ngä mahi, me kï ngä kaute, kua hë tëtahi o ngä wähanga.” Ko [Äkonga 1] tërä, 
he aha täu i kite ai? 

Äkonga 1: E waru ngä tapa? 
T1: E? 
Äkonga 1: Waru ngä tapa. 
T1: Me whai kë mehemea kei te tika ia. Tahi, rua, toru, whä, rima, ono, whitu, waru, nä reira, 

käore ko te tekau! Nä reira, kei te tika te maha o ngä mata me ngä akitu?  
Äkonga: Äe!  
T1: Äta whakaaro koa! 
Äkonga: Äe! 
T1: Äe, i te mea he aha tëtahi atu huarahi i kite kë? 
Äkonga: Tapirihia te rima ki te rima? 
T1: Nä reira, kei te körero, i rongo koe, koutou i a ia e kii ana? Körero mai anö koa, tama. 
Äkonga: Tapirihia te rima ki te rima? 
T1: Tapirihia te maha o ngä mata ki te maha o ngä akitu, kua puta kë ko te tekau, nëhä? Te 

maha o ngä tapa me kï waru inäianei, he aha te huarahi e whai ake? Äe! 
 

This was part of a discussion of how Euler’s rule (Vertices + Faces – Edges = 2) 
worked on a pyramid and how some of what had been discussed on the previous day had 
been incorrect. The kë highlighted for the listeners that they should notice and be surprised 
by what follows. It, therefore, acted as a scaffolding device for students’ listening. They 
needed to listen so that they could understand the differences between what had been said 
on both days. This was further emphasised by the teacher with the command “Äta 
whakaaro koa!”, which was to understand carefully and occurred a few turns later. Once 
the student had responded to the initial question, the teacher emphasised that the students 
needed to listen. She then had the student repeat what he had said. All of these examples 
suggest that the teacher was confident that the students would understand what was being 
discussed but, because of its complexity, she needed to remind them to be careful so that 
they would not miss the information. 

The function of this stage is to have students use new aspects of the mathematics 
register but in a situation where the teacher is able to step in and provide support if 
necessary. Consequently, the teacher’s role has become one of reminding students of what 
they know and can do. The students are the ones who have the major responsibility for 
making use of the language that they have gained. If the student seems unable to operate at 
this level, the teacher is quickly able to supply more support, thus recognising that the 
student is still at the Intake stage. The strategies at the Integration stage included: 

 

• using commands and linguistic markers to highlight for listeners that they need to pay extra 
attention to what they are hearing and doing 

• encouraging students to make contributions to the teacher and to each other  
• reminding students to think about what they already know 
• asking a student to repeat a good response  
• if a slight correction is needed, the teacher repeat the response correctly 
• summarising what a student has said 
• if a slight correction is needed, the teacher can model doing the action so that the student self-

corrects their own response 
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• prompting in a general way for more details  
• having students write a summary of, or record as a diagram what they have learnt 
• facilitating an environment where students will correct each other 
• asking students to say whether an answer/term is correct 
• repeating the question if the students appear to have responded to a different one 
• having students complete appropriate actions as they respond to questions  
 

Effective strategies are ones that allow students to have major control of their use of the 
mathematics register but enable the teacher to remind students about what they know and 
can do. 

Output 

The final stage of the MRA model allows students to show their fluency in using the 
mathematics register. Its function is for students to be able to show what they know and 
can do without any support from the teacher. At this stage, there are only the two following 
strategies:  

 

• providing opportunities for students to use their acquired aspects of the mathematics register 
between themselves and with the teacher 

• providing an environment in which the students can query the language use of the teacher 
 

The teacher’s role is simply to provide opportunities for students to make use of the 
fluency that they have acquired. An effective strategy is, therefore, one that supports this 
provision. This extract comes from T1’s fifth lesson, where a student had to describe the 
arrangement of five blocks to another student. The second student could not see the 
arrangement and relied entirely on the first student’s description. Many students struggled 
initially with being able to describe the arrangement of groups of different coloured multi-
link blocks. However, it was clear from this student’s response that he had full control of 
the location expressions and knew how to use them to give a clear description in this 
activity. 

�konga:  E rua ng� mea o te k�whai ki te taha, kotahi te mea k�whai, oh, e rua ng� whero ki te 
taha. Kotahi te mea köwhai o ia huapae. 

Combining Strategies 

When considered in isolation, some strategies employed by teachers at the various 
stages of the MRA model could be considered less effective than others. For example, 
having students repeat an answer, after the teacher has gone through an explanation to 
reach it, is perhaps not going to highlight for students new aspects of the mathematics 
register very effectively. However, when this is one strategy of many, all designed to 
support students to become aware of these new aspects, then it could be seen as having 
more value. In each of the lessons, if the teachers used strategies from any of the MRA 
stages, they would always use more than one strategy. Combining a range of strategies, 
therefore, seems to be part of what makes effective support for students who are operating 
at the different stages. 

Mäori Scaffolding and Modelling Strategies 

In considering the modelling and scaffolding strategies for supporting the acquisition of 
the mathematics register, all of the strategies can be considered culturally appropriate 
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because they were used by these teachers. Many of the strategies used by the teachers in 
this project would also be seen in English medium classrooms both in New Zealand and in 
other countries. However, the use of the linguistic resources within te reo Mäori for 
scaffolding is one strategy that is unique. Words, such as ara and kë, that warn listeners 
about the type of material that will follow are not found in English. Given that Mäori 
immersion education was set up to reverse the decline in Mäori language (Spolsky, 2003), 
there has been a recognition that “the authenticity of the language is maintained” 
(Christensen, 2003). Concerns have been raised about the possible implications for te reo 
Mäori as a consequence of its use for discussing mathematics (Barton, Fairhall, & Trinick, 
1998). It, therefore, is interesting to find authentic resources within te reo Mäori that can be 
of value in the teaching of mathematics. 

Another feature, although not unique to kura kaupapa Mäori classrooms but that 
seemed to be more strongly observed in the video recordings, was the number of student 
contributions to the interactions. Even at the Noticing stage, which is where teachers have 
the most responsibility for doing the cognitive work, students have an active role in 
contributing to the discussions. It was quite clear that the originators of interactions could 
be students as often as it was the teacher. Video recordings of pairs of senior students show 
them working together as “teacher” and “learner”. The lack of reticence in taking up either 
role is considered to be an outcome of the valued tuakana-teina, older-younger sibling, 
relationship. Mäori children do not traditionally segregate themselves into age-based peer 
groups, rather there is the expectation that they will take responsibility for each other, 
whether younger or older. This can be seen in interactions around the learning of 
mathematics. 

It would seem that strategies that reflect a Mäori world view are those that use the 
features of te reo Mäori effectively and those that support students to become active 
participants in interpreting and producing the mathematics register appropriately.  

Conclusion 

The setting up of kura kaupapa Mäori was done to support the revival of te reo Mäori.  
Consequently mathematics has been taught through this language to students who are not 
only learning mathematics but also learning the mathematics register in te reo Mäori. This 
research has begun an investigation with teachers about how they support students to learn 
te reo tätaitai.  

In this paper we have outlined the strategies that teachers used in the four stages of the 
MRA model. It was noted that all of the teachers used a variety of strategies when 
operating at each of the stages, except for the final stage, Output. As this stage was about 
the students fluently using te reo tätaitai in authentic situations, it was unsurprising that the 
teacher’s role was one of providing appropriate opportunities that would allow students to 
us the new aspects of the mathematics register.  

We also documented strategies that seemed to be related to the language and the culture 
of the students and their teachers. These strategies are interesting because they encourage 
the use of what is already present to be incorporated into the mathematics teaching. For 
teachers in other kura, this information means that they no longer have to rely only on 
adapting what is considered best practice in English medium classrooms.  
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A group of practising teachers implemented the Teaching for Abstraction method for 

the Year 8 topic “Ratio and Rates”. The authors first constructed materials for a unit 

in which students explored familiar ratio and rates contexts, searched for similarities 

in their mathematical structure, defined the two concepts, and learned to apply these 

concepts to other contexts. After an introductory workshop, teachers taught the topic 

in six 1-hour lessons. They experienced considerable difficulties adapting the 

approach to the abilities and interests of their particular classes, but all students 

showed evidence of learning. It was concluded that, although Teaching for 

Abstraction shows promise, there are many factors that need to be taken into account 

if it is to be implemented in practice.  

Teaching for Abstraction is an approach to teaching that takes account of the fact 

that most elementary mathematical ideas are abstractions from experience 

(Mitchelmore & White, 2004a). It consists of four steps, in which the teacher helps 

students to: 

• familiarise themselves with the structure of a variety of relevant contexts,  

• recognise the similarities between these different contexts,  

• reify the similarities to form a general concept, and then 

• apply the abstract concept to solve problems in related contexts. 

The rationale for this approach is the theory of empirical abstraction (Mitchelmore & 

White, 2004b), where an abstract concept is seen to be “the end-product of ... an 

activity by which we become aware of similarities ... among our experiences” (Skemp, 

1986, p. 21)�.  

Teaching for Abstraction was originally developed from research on the learning 

of angle concepts in primary school (Mitchelmore & White, 2000). It has been 

applied successfully to the teaching of angle concepts in Stage 2 (NSW Department 

of Education and Training, 2003) and has also been trialed with decimals in Year 4 

(Mitchelmore, 2002) and percentages in Year 6 (White & Mitchelmore, 2005).  The 

project reported in this paper is one of two studies conducted in 2006 in which we 

continued to investigate student learning of multiplicative relations through Teaching 

for Abstraction. 

Multiplicative Relations 

A cursory look at the school mathematics curriculum shows that multiplicative 

relations underpin almost all number-related concepts studied in school (e.g., 

fractions, percentages, ratio, proportion, rates, similarity, trigonometry, and rates of 

change). Vergnaud (1983) called this set of concepts the multiplicative conceptual 

field. There is a long history of research showing that many children have 

considerable difficulty understanding these concepts (Behr, Harel, Post, & Lesh, 

1992; Carpenter, Fennema, & Romberg, 1993; Harel & Confrey, 1994).  
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Ratio is a crucial multiplicative concept, and one of the most difficult ideas for 

students to come to terms with. Although working with ratios of the form a:b when a 

is a multiple of b causes few problems, cases where a is not a multiple of b can be 

highly problematic. Particularly prevalent is the so-called additive error (Misailidou 

& Williams, 2003) illustrated by the following, taken from a seminal study of a 

sample of 2257 English students aged 13-15 (Hart, 1982). 

You can see Mr Short’s height measured with paperclips. 

When using matchsticks, Mr. Short’s height is 4 match sticks. 

His friend Mr. Tall’s height is 6 match sticks. How many 

paper clips are needed for Mr. Tall’s height? 

Only about one third of the students could correctly 

answer this question, with the majority opting for the 

answer of 8 (focusing on the additive difference 6 – 4 

rather than the multiplicative 6:4). 

 
  Mr Short 

An additional problem is the confusion that often arises between ratios and 

fractions. For example, if two boys and three girls sit at a table, the fractions 
5

2  and 
5

3  

and the ratio 2:3 (often equated to
3

2 ) arise. When a ratio connects two parts of the 

same whole, students may not adequately differentiate the part-part from the part-

whole relationship (Clark, Berenson, & Cavey, 2003). 

In New South Wales, the syllabus (NSW Board of Studies, 2002) suggests that 

rates be taught after ratios in Year 8 in a purely arithmetical context without any 

reference to slope or linear relations.  It seems reasonable to expect the same errors as 

for ratio. The need to take account of different units may introduce additional errors. 

However, the fact that the two components clearly relate to different variables may 

reduce the prevalence of the additive error and eliminate the ratio-fraction confusion. 

The Present Study 

We hypothesise that students’ poor performance on multiplicative tasks is at least 

in part due to the fact that curriculum materials rarely highlight their multiplicative 

nature. An emphasis on the underlying structure, including helping students to 

differentiate multiplicative from additive relations, could help students understand 

ratio and rates more deeply and enable the formation of stronger links to other 

multiplicative concepts. We propose Teaching for Abstraction as one way of 

focussing on this underlying structure. 

A Teaching for Abstraction approach to ratios and rates would proceed as 

follows: Students would firstly explore various familiar situations involving ratios 

where they can solve simple problems without difficulty. They would then look for 

structural similarities between these calculations, explore the concepts involved, 

generalise and practise the procedure, and apply what they have learnt to new 

situations. This process would then be repeated for rates, emphasising the similarities 

and differences between rates and ratios. 

This paper reports a research project designed to investigate whether it is possible 

for classroom teachers to implement the Teaching for Abstraction approach to ratio 

and rates in Year 8. A teaching unit was developed, teachers familiarised themselves 

with the approach and the content and then taught the unit, and we collected data on 

teacher and student learning. The study parallels a similar study of teaching 

percentages in Year 6 that is reported separately (White, Wilson, Faragher, & 

Mitchelmore, 2007). 
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Method 

Participants 

The students and teachers from six Year 8 classes in four schools participated. Two 

classes were from a selective boys’ school, two were from comprehensive girls’ 

schools and two were from comprehensive co-educational schools. Of the 

comprehensive classes, two contained high ability students, one average ability, and 

one low ability (as described by their teachers). In each class, five students were 

selected as a representative “target group”.   

Teaching Materials 

Teachers were supplied with a unit consisting of six lessons, each intended to fit 

into a 60-minute period, covering the Ratio and Rates section of Outcome NS4.3 in 

the NSW Mathematics Syllabus (NSW Board of Studies, 2002). The materials 

included, alongside an orientation to Teaching for Abstraction, a suggested outline 

for each lesson together with black line masters that could be used for duplicating 

student worksheets. The six topics were as follows: 

1. Relative and absolute comparisons 

Students explore a number of situations requiring the comparison between two values, and 

decide when it is more informative to compare them as they stand (absolutely) or in relation 

to each other or to other values (relatively).  

2. The concept of ratio 

Students abstract the concept of ratio by looking for similarities between a variety of different 

situations where relative comparison is appropriate, and then explore its properties. 

3. Calculating with ratios 

Students explore various methods of carrying out ratio calculations, including the unitary 

method, and are introduced to the concept of gradient. 

4. Fractions and ratios 
A variety of practical situations is used to help students understand the similarities and 

differences between a ratio and a fraction.  

5. The concept of rate 

Students explore a number of rate situations, and then explore the similarities and differences 

between rates and ratios. 

6. Calculating with rates 

Students extend their skill at ratio calculations to similar calculations with rates, and explore 

the concept of speed. 

Instruments 

A short, task-based interview was used to assess students’ understanding of the 

multiplicative structure of ratios and rates. It consisted of four questions focussed 

around four familiar multiplicative situations. Students were asked to perform various 

calculations and justify the methods they used. The content of the items is described 

in the Results section. 

A 15-item unit quiz was constructed to assess students’ calculation skills at the 

end of the unit. There were five items on simplification of decontextualised ratios, 

two on dividing in a given ratio, five on simplification of contextualised ratios, and 

three rates problems. Students were not asked to explain their answers because it was 

felt that deep understanding was better assessed through the interviews.   

Procedure 

The study took place in Term 3, 2006. In a one-day orientation workshop, 

teachers were introduced to Teaching for Abstraction and the proposed teaching unit. 
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They then taught the unit over a period of 2-3 weeks, and returned for a second 

workshop to share their experiences and assess the effectiveness of the unit. 

The third author visited schools regularly during the teaching period. On her first 

visit, she interviewed all target students to assess their initial understanding of ratio 

and rates. On subsequent visits, she observed two lessons for each class and discussed 

each lesson with the teachers afterwards. On her final visit, she again interviewed the 

target students. Teachers also collected work samples from the target students in their 

class, and administered the unit quiz at the end of the teaching period.   

The effectiveness of the teaching unit was assessed on the basis of the following 

data: 

1.  Lesson evaluations as shown by teachers’ comments after each lesson and at the second 

workshop, the third author’s observations, and student work samples; 

2.  Student learning as shown by the change in their understanding between the two 

interviews and their performance on the unit quiz.  

Results 

The topics taught in each lesson varied from school to school depending on the 

length of each period (varying from 40-80 minutes) and the ability level of the 

students. A further complicating factor was teacher unavailability: Four of the six 

classes were taught by at least one teacher who had not attended the orientation 

session. In two classes, the assigned teacher taught less than half the lessons. 

The average- and low-ability students were only able to complete the first four 

lessons of the unit. These two classes also had one lesson in which only half the 

students were present, and there was no time to repeat the lesson. Students in the 

other four classes completed all the materials provided. 

The results show that the students in the two selective schools performed at about 

the same level as the high-ability students in the two non-selective schools, so we 

have often pooled their data in the following. 

Lesson Evaluations 

Lesson 1 commenced with reports of a survey that students had been asked to 

administer, in which respondents were asked to indicate whether certain deductions 

from given data were valid. For example, given that “over the last 20 years in 

Australia, 10 people have died from crocodile bites and 12 people have died from dog 

bites”, is it valid to deduce that being bitten by a dog has been more dangerous than 

being bitten by a crocodile? This was followed by discussions of the rationale for 

deciding The Biggest Loser (a well-known television program) and for assessing 

animal ages in human equivalents. Finally, the terms relative and absolute were 

defined and practiced.  

These activities generated much heated discussion. Many students had enjoyed 

giving the survey to their parents and were amazed at the variety of responses. Most 

students seemed to understand that the survey data needed to be interpreted relatively, 

that percentage weight loss was the fairest criterion for The Biggest Loser, and that 

animal ages should be assessed relative to their average life span. However, many 

students were hindered by calculation difficulties – graphical displays sometimes 

helped.  The teachers realised the activities were stimulating and felt that all students 

had understood the difference between relative and absolute comparisons. But they 

were clearly unused to leading discussions; two teachers found it difficult to curtail 
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digressions peculiar to particular contexts and focus on the essential mathematical 

content. 

In Lesson 2, students were asked to do some simple calculations involving “3 for 

the price of 2” sales, gear wheels, cinema queues on different nights, making 

playdough, scale drawings, and maps. It was expected students would solve these 

problems using their contextual knowledge. They were then asked to look for 

similarities between how they had solved each problem and to derive some 

generalisations. It was suggested that students use a bar model for making ratio 

comparisons. The concept of equivalent ratios was then introduced and practiced in a 

number of practical situations (sharing chocolate, making muffins, comparing 

fertilisers, and balancing voices in a choir). 

Although there were a few context-related difficulties (especially with the map 

item), students seemed to be able to solve the given problems and recognise that they 

were each dealing with a relative comparison. Teachers said they would not normally 

have spent so much time on each context, but they seemed to be more familiar with 

these contexts and showed more skill in highlighting the underlying mathematical 

structure than in Lesson 1. The computation of equivalent ratios caused different 

problems for different students. The high-ability students recognised the similarity 

with equivalent fractions, but could not see how (for example) they could use a recipe 

for damper if they did not have a measuring cup to measure out the stated quantities. 

The students at the other end of the spectrum experienced mathematical difficulties 

(finding equivalent ratios) similar to those they had reportedly experienced with 

fractions.  

Lesson 3 introduced the unitary method for solving proportion problems, and 

students applied it to some problems from the previous lesson. They then looked at 

the idea of gradient as a ratio and compared the gradients of some given slopes.  The 

high-ability students enjoyed this lesson, but the other students again had difficulties 

calculating fractions and often confused the order of the two components of a ratio. 

The low-ability students attempted to work through all the examples but became 

confused and did not reach the intended outcomes. At this point, two of the three 

teachers of that class believed that the Teaching for Abstraction approach was not 

suitable for their students, so they decided to revert to their previous way of teaching 

the topic. 

Lesson 4 was intended to address a problem, referred to in the introduction, that 

teachers had identified at the first teachers’ meeting: the confusion between a ratio 

(relating two parts of a whole) and a fraction (relating a part to the whole). The two 

concepts were computed in a number of practical contexts and their different 

significance compared. The process of dividing a quantity in a given ratio was then 

addressed, after which the relation between ratio and percentage was explored.  

The high-ability students had little difficulty with this lesson. One teacher 

supplemented the unit materials by beginning with a “drill and practice” exercise, but 

students did not make any errors on these calculations. The teacher of the low-ability 

class, who had reverted to the traditional approach, gave the students drill and practice 

after stating the rules to be followed. But students had difficulties both with the 

computations and with knowing which computations to do, and repeatedly questioned 

the rules they had been given. The teacher of the average-ability class used what 

seemed to be a more successful approach that certainly engaged the students. She 

worked only on the example with the smallest numbers. Students worked in pairs, and 

were required to explain their methods. The teacher then gave several slight variations 
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before generalising and setting students a similar problem for homework. 

Unfortunately, this was one of the lessons for which only half the class was present.  

Lesson 5 explored rates in several contexts (including run rates at cricket), 

encouraged generalisation by comparing rates and ratios, and addressed the issue of 

changing units. Gender differences appeared in relation to the cricket calculations and 

many students experienced difficulties converting units.  

Lesson 6 gave more practice in rates, with a special emphasis on the rate-gradient 

relation in graphical representations (including distance-time graphs). The selective 

students seem to have covered all these topics previously. Some of the students had 

the same difficulties calculating with rates as they had experienced with ratios, 

especially when fractions or decimals were involved.  

To summarise: Teachers and students liked having so many practical problems to 

discuss but were often distracted by contextual peculiarities. Teachers enjoyed 

“watching students think”, and students enjoyed the challenge of making 

mathematical sense of interesting situations. The higher ability students had little 

difficulty abstracting the mathematical structure of ratios and rates, but the lower 

ability students were often hindered by difficulties manipulating fractions and 

decimals and often got frustrated. All the teachers agreed that they would be more 

selective of examples and teach the unit better next time.  

Student Learning: Interview Results 

Thirty students were interviewed before and after the unit had been taught. Figure 

1 summarises the results. 

Item 1, comparing the performance of basketball players who shot 20 goals from 

40 shots or 25 goals from 50 shots, was answered well by all but two students before 

the unit was taught and by all students afterwards. 

Item 2 posed three questions relating to mixing a given cordial. Only one student 

gave any additive answers (the same student before and after the unit). Among the 

others, the number of correct answers that were correctly explained increased from an 

average of 17 to 25.   

Item 3 gave the positions of two runners at the start of a 100 m handicap race and 

10 seconds into the race. Students were asked to predict the winner and the winning 

time.  Only a few students from the lower ability classes showed any evidence of 

additive thinking, and the number of students giving correct responses increased from 

17 to 22.  

Item 4 asked students to suggest how the nutritional information on a food 

package could be used by people wishing to restrict their fat intake. The number of 

correct responses increased from 21 to 25. Interestingly, the number of students 

referring to the need to compare different foods decreased from 10 to 6, whereas the 

number stating that the information could be used to compare different serving sizes 

increased from 11 to 19.  
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Figure 1. Number of correct interview responses before and after teaching. 

To summarise: Most high-ability students had already learned to think 

multiplicatively before this unit was taught. During the course of the unit, some of the 

average- and low-ability students started to think multiplicatively and learnt how to 

perform the correct calculations.  

Student Learning: Unit Quiz 

Although there were no data available from a pre-test or from comparison classes, 

the 139 responses obtained to the unit quiz were still informative. 

Students in the selective and top-stream classes performed at about the same rate 

(88% versus 83%), whereas students in the other two classes gave averages of 53% 

and 39% correct responses, respectively (partly because they did poorly on the rates 

questions, which they had not studied).  The types of errors students made were also 

different in the three groups. In the high-ability classes, about 50% of the errors were 

related to units. Among the average-ability students, the most common error (30%) 

was incorrect multiplication or division. In low-ability students, the most common 

error (29%) was failing to reduce a ratio to its simplest form. 

Discussion 

We have learnt a great deal about the implementation of the Teaching for 

Abstraction method from this study. We discuss our findings under three headings: 

teaching, learning, and assessment. 

Teaching 

The teachers were all unfamiliar with the methodology of Teaching for 

Abstraction. In particular, they were not sure about when to let a discussion ramble, 

when to cut it off to draw out a mathematical point, and when to supply information 

or conventional terminology. Some teachers felt it was more difficult to maintain 

control when so many students wanted to talk at once. As a result, more time was 

taken than would normally have been available. 

The contextualisation of the mathematics appeared to have been beneficial in 

arousing student interest, especially when teachers could bring in their own 

experiences (e.g., in raising rabbits). However, the converse also applied when 

teachers or students were unfamiliar with a context. For example, some teachers were 

not familiar with “The Greatest Loser” and some students were not interested in 

cricket, so these examples produced more mystification than enlightenment. 

But the major difficulty that teachers experienced lay in adapting the given unit to 

the prior understanding of the students in their classes. In the higher ability classes, 
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students were generally set to work through all the questions supplied after a minimal 

introduction, and teaching mainly resulted from discussion surrounding the more 

difficult questions. Some of these students were clearly frustrated at having to work 

through problems that did not challenge them. In the lower-ability classes, students 

could not cover all the material provided because of the calculation difficulties they 

experienced. Teachers had difficulty selecting exercises that would avoid these 

difficulties and still allow students to learn the concepts of ratio and rate.  

Despite these difficulties, students generally seemed to enjoy the teaching 

approach and contributed willingly to the discussions. Teachers believed that, as a 

result, they came to know their students and appreciate their ways of thinking better. 

However, some students found it difficult to explain their thinking and others 

preferred working on their own, guided by answers at the back of the textbook.  

Learning 

There was some evidence of additive thinking in this study, although it never 

occurred among the high-ability students. Even students in the average- and lower-

ability classes made relatively few errors due to additive thinking in the final 

interview and the quiz – most at least attempted to use multiplication or division. 

However, this may have been a result of the teaching unit’s emphasis on 

multiplicative relations and may not represent any generalisable learning.  

In the classes that had not studied rates, additive methods were more prevalent on 

the rates question in the quiz. Given a medicine label which says “Use 2 mL for each 5 

kg body weight” and asked how much one should use for someone weighing 75 kg, 

one student proceeded to make a long table starting with 2 – 5, 3 – 6, 4 – 7, and ending 

with 75 – 78. He finally decided that you should use 72 mL for a 75 kg person. The 

same student used multiplication and division for all the questions on ratio. Without 

teaching, he clearly saw no connection between ratios and rates.  
The major difficulty for the students in the higher-ability classes was in 

partitioning a given quantity in a given ratio. It appears that they often omitted the 

units because they believed ratios did not need units. There were also frequent errors 

in converting units.  

Students in the average- and lower-ability classes had two main difficulties. 

Firstly, they often confused the ratio of two parts with the fraction for each part of the 

whole. This difficulty was known beforehand, but apparently Lesson 4 had not 

adequately addressed this misunderstanding – and student absence in the average-

ability class only exacerbated the problem. Secondly, students often could not convert 

ratios to their simplest form because they were unable to recognise common factors. 

Converting ratios to unitary form was much easier because students could use their 

calculators for this. Unfortunately, no attempt was made to show students how to use 

the fraction mode on their calculators to reduce a ratio to simplest form.  

All students, but particularly those in the lower ability classes, found the 

graphical representation of a ratio by a partitioned bar to be helpful. It would have 

been even more helpful had it previously been used in the teaching of fractions and 

percentages. Greater familiarity with the bar model could have enabled more students 

to relate the representation to the mathematical operations involved. 

Assessment 

In this study, we had to infer student understanding of ratios and rates mainly from 

lesson observations and teacher comments. Neither the interview nor the quiz 
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adequately assessed non-routine learning (e.g., the connection with other topics) and 

what were judged as favourable responses could have been due to the influence of 

recent teaching. The absence of a pre-test on calculational skills was also a limitation 

on this study. Closer attention needs to be given to the assessment of multiplicative 

understanding in future studies. 

Conclusions 

This study has highlighted the difficulties in implementing Teaching for 

Abstraction in practice. Teachers were unfamiliar with the approach, and were unable 

to assimilate it in the one day briefing session. Furthermore, the frequent replacement 

of teachers during the course of the study meant that several classes were taught by 

teachers who had not been exposed to the philosophy behind the study unit at all. As 

a result, teachers were not in a position to do what they normally do as a matter of 

course: adapt the approach and the materials to the needs of the students in their class.  

Encouragingly, all teachers said they would use at least some of the unit materials 

the following year, with modifications to suit their class. At that time, they would be 

more familiar with the approach, better able to choose appropriate contexts, and more 

confident about how to adapt the method to students’ ability levels. Future 

implementation might be more successful if teachers, after an initial introduction to 

Teaching for Abstraction, were involved in the development of a revised ratio and 

rates unit. It may also be necessary to plan a general implementation of the model 

over a longer period of time, and not just for one unit. Professional development is 

obviously a key issue here. 

Despite these difficulties, we still believe that Teaching for Abstraction holds 

promise. In this study, it appeared that many students were able to abstract the ratio 

concept from discussion of several contexts, and that more would have been able to 

do so if the contexts had been more appropriate for them. However it is clear that, in 

planning the practical implementation of the method, much more attention needs to 

be given to what needs to occur between the recognition of a concept and the 

application of that concept to new contexts – that is, the reification stage.  

This study shows that pre-existing computational fluency plays an important role 

in the reification of ratio and rates concepts. Students who cannot recognise simple 

common factors or cannot perform simple multiplication and division calculations 

will have difficulties recognising multiplicative structure even in familiar contexts. 

Consequently, they will not be able to generalise across different contexts and 

abstract the desired concepts. Drill and practice exercises focussed on multiplication 

and division skills are unlikely to be helpful, and may only reinforce a feeling of 

failure. It is also likely to be unhelpful to restrict the examples to simple numbers that 

provide no challenge, because the multiplicative structure may then completely 

escape students’ attention. More likely to be successful is careful grading in the 

difficulty of the arithmetical computations involved, more widespread use of 

graphical models, and the provision of electronic assistance once the underlying 

structure has been recognised. 

 The other side of the coin is that many Year 8 students may already have 

acquired the necessary computational fluency, even in ratio and rates problems. 

Instead of repeating unstimulating practice, such students would best deepen the 

reification of ratio and rates concepts by exploring the limitations of ratios and rates 

in practice as well as the links between them and other multiplicative concepts such 

as slope and enlargement.  
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Setting a Good Example: Teachers’ Choice of Examples and their 

Contribution to Effective Teaching of Numeracy 
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This paper reports on teachers’ choice of examples and the role they play in students’ 

construction of knowledge. Selecting an appropriate example is a challenging task for 

teachers, with both the teacher’s content and pedagogical content knowledge being a 

determining factor in the selection process. A case study approach was used to document 

the nature of three different teachers’ choice of examples. Qualitative descriptions illustrate 

the types of examples selected and the understandings the students constructed from these 

examples. The findings indicate that teachers need to consider carefully their choice of 

examples to avoid the likelihood of students forming misconceptions about important 

mathematical concepts. 

Background 

According to Askew (2005) effective teaching of numeracy involves helping students 

acquire knowledge of and facility with numbers, number relations, and number operations 

and assisting them with building an integrated network of understanding, techniques, 

strategies and application skills. In assisting students to construct understanding, teachers 

often select examples to illustrate particular principles, concepts and techniques. The 

selection of examples can be an indicator of effective teaching for numeracy, with both the 

teacher’s content and pedagogical content knowledge being a determining factor in the 

selection process. There has been considerable research into what constitutes effective 

teaching of numeracy (Groves, Mousley, & Forgasz, 2006) including the Effective 

Teaching of Numeracy project (Askew, Brown, Rhodes, Johnson, & Wiliam, 1997a), 

which identified effective teachers of numeracy based on rigorous evidence of increases in 

pupil attainment, not on presumptions of “good practice”. Their findings identified a 

number of characteristics which were common among effective numeracy teachers. Other 

studies (e.g., Jones, Tanner, & Treadaway, 2000; Clarke & Clarke, 2002; Saunders, 2004) 

supported these findings which indicated that effective teachers of numeracy:  

• Maintained a focus on and taught for conceptual understanding of important 

mathematical ideas 

• Used a variety of teaching approaches which foster connections between both 

different areas of mathematics and previous mathematical experiences 

• Encouraged purposeful discussion through the use of question types to probe and 

challenge children’s thinking and reasoning and encouraging children to explain 

their mathematical thinking 

• Possessed knowledge and awareness of conceptual connections between the areas 

which they taught of the primary mathematics curriculum and confidence in their 

own knowledge of mathematics 

 

Based on the commonalities identified among the various studies, the author devised a set 

of six “Principles of Practice” which provided part of the theoretical framework for 

conducting the study and involved the teacher’s ability to: make connections, challenge all 
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pupils, develop conceptual understanding, focus on the key ideas of mathematics, engage 

the students in purposeful discussion, and possess a positive attitude towards mathematics. 

This type of teaching places high demands on teachers’ subject matter and pedagogic 

content knowledge (Commonwealth of Australia, 2004) and this became evident when 

particular teaching behaviours were examined. The author termed these behaviours, 

“observable numeracy practices” and they included choice of examples, teachable 

moments, modeling, questioning, use of a variety of representations, and choice of task. In 

this paper, teachers’ choice of examples is specifically discussed along with the impact this 

choice has on students’ construction of understanding. 

Theoretical Framework 

Constructivism 

The basic tenet of constructivism is that the learner constructs his/her own knowledge; 

each learner constructs a unique mental representation of the material to be learned and the 

task to be performed, selects information perceived to be relevant, and interprets that 

information on the basis of his or her existing knowledge (Shuell, 1996). The process is an 

active one and according to Shuell (1996) the most important determiner of what is 

learned. The construction of an idea will therefore vary from individual to individual even 

with the same teacher and within the same classroom (Van de Walle, 2007). The teacher’s 

role is to ensure that students engage with the material to be learned and particularly to 

foster the connections between both different areas of mathematics and previous 

mathematics learning. The connectionist teachers identified in the Askew et al., (1997a) 

study were found to hold beliefs that supported this premise, including the need to 

explicitly recognise and work on misunderstandings (Askew, Brown, Rhodes, Wiliam, & 

Johnson, 1997b). 

Teacher Knowledge 

In order for a teacher to practice within a constructivist paradigm, knowledge of the 

subject matter being taught, along with knowledge of the pedagogical principles needed to 

impart this knowledge to students, is required. There is a general lack of agreement over 

what exactly teachers need to know to teach mathematics (Hill, Schilling, & Ball, 2004), 

but teachers should possess a sufficient depth of understanding in order to communicate 

what is essential about a subject and be able to impart alternative explanations of the same 

concepts or principles (Shulman, 1987). Knowing more mathematics, however, does not 

ensure that one can teach it in ways that are meaningful for students (Mewborn, 2001). 

Individuals may have well-developed common knowledge, yet lack the specific kinds of 

knowledge needed to teach it (Hill et al., 2004). Pedagogical content knowledge (PCK) 

(Shulman, 1987) is of special interest because it represents “the blending of content and 

pedagogy into an understanding of how particular topics, problems or issues are organised, 

represented and adapted to the diverse interests and abilities of learners, and presented for 

instruction” (p. 8). PCK involves preparation, representation of ideas and instructional 

selections from an array of teaching methods and models (Shulman, 1987) and as a 

mathematics teacher, “one needs to know the location of each piece of knowledge in the 

whole mathematical system, its relation with previous knowledge” (Ma, 1999, p. 115). The 

study of teachers’ PCK has been the focus of recent research in mathematics education 

(e.g., Baker & Chick, 2006; Southwell, White, & Klein, 2004) and the highly successful 
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Cognitively Guided Instruction (CGI) program (Carpenter, Fennema, & Franke, 1996) 

focused on developing teachers’ PCK through the provision of a framework that teachers 

could use to represent and explain a subject to make it comprehensible. Ma’s (1999) 

comprehensive study found considerable differences in both the subject knowledge and 

PCK between Chinese and American teachers and used the term “profound understanding 

of fundamental mathematics” (PUFM) to define understanding a topic with depth. She 

argued that elementary mathematics is not a simple collection of disconnected numbers 

facts and algorithms, and therefore elementary teachers require PUFM in order to approach 

a topic in multiple ways, supporting the findings by Askew et al., (1997a), which indicated 

that the highly connectionist teachers were the most effective teachers of numeracy. 

Choice of Example 

One instructional strategy that teachers can use to help students construct meaning and 

one that plays a central role in the learning of mathematics is the use of examples. 

Examples may include illustrations of concepts and principles, contexts that illustrate or 

motivate a particular topic in mathematics and particular solutions where several are 

possible (Watson & Mason, 2002). Because examples are chosen from a range of 

possibilities (Watson & Mason, 2002), teachers need to recognise that some examples are 

“better” than others (Huckstep, Rowland, & Thwaites, 2003). A good instructional 

example is one which is transparent to the learner, helpful in clarifying and resolving 

mathematical subtleties and generalisable (Bills, Dreyfus, Mason, Tsamir, Watson, & 

Zavlavsky, 2006). Bills et al., (2006) maintain that the specific representation of an 

example or set of examples and the respective focus of attention facilitated by the teacher, 

have bearing on what students notice, and consequently on their mathematical 

understanding. Inappropriate examples can lead to a construction of understanding that was 

not the intention of the teacher. For example, when teaching analogue time to students, 

Huckstep et al. (2003) noticed a pre-service teacher using the example of “half past six” to 

demonstrate “half past”. When the students she was teaching were subsequently asked to 

show “half past seven” on their clocks, one child put both hands on the “7”. As the authors 

note, of the twelve possible examples available to exemplify “half past”, “half past six” is 

arguably the least helpful (Huckstep et al., 2003). 

Clearly the extent to which an example is transparent or useful is subjective, requiring 

the teacher to offer learning opportunities that involve a large variety of “useful examples” 

(Bills et al., 2006, p. 9). Ball (1990) questioned her own choice of examples when teaching 

fraction concepts to a third grade class. Presenting a scenario involving sharing a dozen 

cookies among family members appeared to be a legitimate example, based on a context 

familiar to students. Ball (1990) however, found problems with the social and cultural 

appropriateness of her choice, and the fact that the problem entailed cookies encouraged 

the use of a circle representation, making the drawing of equal parts inside the circle 

technically difficult. Similarly, Askew (2004) found that pupils will always interpret 

classroom tasks in the light of their previous experiences and that, “however carefully a 

teacher sets up a task, one cannot assume that the individual pupils’ interpretations of that 

task … are either similar to each other’s, or fit with the activity expectations of the 

teacher” (p. 74). 
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Methodology 

A case study approach (Stake, 1995) was used to document the numeracy practice of 

three teachers. The researcher observed and videotaped between four and seven numeracy 

lessons (one each week) for each teacher. The transcripts of these lessons were then 

analysed, initially used the “principles of practice” and “observable teaching behaviours” 

to identify instances of occurrence. Data analysis was flexible, however, and allowed for 

other themes to emerge. Lesson and interview transcripts were analysed manually and 

instances of particular behaviours highlighted. Observable numeracy practices, including 

choice of examples, were identified and analysed. A lesson transcript, for example, may 

have included six instances where the teacher chose examples. Each of these examples was 

then examined for effectiveness in terms of its transparency and generalisability (Bills et 

al., 2006). In relation to this paper, the following research questions were identified: 

• What is the nature of the examples chosen by teachers in the study?  

• To what extent are these examples useful in students’ construction of 

understanding? 

It must be acknowledged that although the researcher attempted to evaluate the 

appropriateness of the examples based on classroom observations and her own pedagogical 

knowledge, it was not possible to ascertain whether or not the example was perceived to be 

equally appropriate (or not appropriate) for all participants. Three teaching episodes in 

which examples were used to demonstrate and develop strategies and concepts are 

discussed. 

Results and Discussion 

Problem Solving Examples 

In the first lesson excerpt described, the teacher, Sue, introduced the problem solving 

strategy of “guess and check”; it was one in a series of lessons based on problem solving 

observed by the researcher. The whole class of grade 5/6 students was seated on the floor 

in front of Sue. Two examples were presented to the class, with the emphasis being on 

using a table to record the guesses. The researcher interpreted the teacher’s intention as 

being primarily to introduce the guess and check problem solving strategy and then 

providing students with an efficient method of recording their working out through the use 

of a table. Students took turns to volunteer their “guesses” and showed their working out 

on the whiteboard using a table. The first example presented to the class was: 

Jenny collected 45 stickers over a 5 day period. Each day she was given 3 more stickers than the day 

before. How many was she given each day? 

The example was interpreted by the researcher as being a good example in that guess 

and check was an appropriate strategy to be used and following some clarification as to 

what the problem was actually asking, students were able to use the strategy of guess and 

check correctly to eventually solve it. They also adjusted their “guesses” accordingly, 

based on the information gained from other students’ attempts. The drawing of a table 

initially caused confusion for at least one student, who volunteered to draw up a table on 

the whiteboard and actually drew a dining table with four legs, but subsequent modeling by 

students established what the teacher intended by “make a table”. 

The second example involved larger numbers and although it was set out in a table, and 

could have been solved by using guess and check (it could also have been solved by 

working backwards), the larger numbers made it more difficult for children: 
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A family set out on a 5-day trek. Each day they traveled 50 kilometres less than the day they had 

before. Total distance that they traveled was exactly 1500 kilometres. How far did they travel each 

day? 

The following exchange highlights some of the difficulties posed by the numbers: 

 
Tr:

1
 All right Mandy, have a go. 

 

M: (goes to board) I thought it was, they started on 900.  

 

Tr: OK, so you’re going to say they traveled 900 on Monday. 

 

Tr: 900 – that says 90 (Mandy has written 90 in the first column – she then adds another 0). 

 

Tr: OK, so how far would they travel on Tuesday? 

 

M: 850. 

 

Tr: OK. 

(Mandy writes down 850) 

Simon: They have to get to 0. 

 

Tr: Do we have to get to 0 Simon? What does it have to add up to? What do they all have to add up to? 

 

S: Oh, 1500. 

 

Tr: So looking at that, who’s going to have another guess and see what they can come with? Randall? 

Just use that (referring to table drawn) and put a line down. So which one are you going to use Randall? 

 

R: 200. 

 

Tr: 200, all right. 

 

(Randall starts filling in table, beginning with 200) 

 

Tr: So they’re not traveling – whoops – they’re not traveling anywhere on Friday? They’re going to stay 

at home. OK, so is that going to add up to 1500?  Is it Randall? What does it add up to?  3, 4, 500? 

 

As the process of “guess and check” was being introduced as a new strategy, it was 

unfortunate that the inclusion of larger numbers in the second problem created confusion 

and detracted from the modeling or consolidation of the “guess and check” process. The 

students did not have a written copy of the problem to refer to and Sue later reflected that 

this would have been beneficial.  

Following the sharing of these two problems, students were issued with problems to 

complete individually. One of the problems involved identifying how many lizards and 

spiders there would be if one counted 60 legs and 10 heads – this may have been a 

preferable example to model with the whole class as it involved smaller numbers and 

arguably better suited the “guess and check” process. Although it is not possible to 

generalise that the whole class understood the process and used a table to record their 

guesses and checks, Figure 1 shows a typical response to the problem and indicated that 

this student did construct the understanding intended.  

 

                                                 
1
 Tr. refers to teacher throughout 
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Figure 1. Student’s use of table to record guess and check strategy. 

Sue’s lesson highlighted the need for teachers to consider their choice of example in 

the context of students’ previous mathematical experiences. If the aim was for students to 

construct an understanding of the guess and check process, then it was unfortunate that 

some students may have been excluded from the process because of their lack of 

confidence in operating with larger numbers. Examples need to be selected that are 

suitably challenging and motivating enough in order to engage students, yet still provide 

for the desired construction of understanding. The teacher’s judgement is vital here, with 

appropriate selection likely being influenced by both the teacher’s content and pedagogical 

content knowledge. 

Percentage Examples 

The following lesson details a second teacher, Ronald’s, selection of examples with 

relation to percentages. This was the first “formal” introduction that the grade 5/6 had to 

percentages and it followed on from work on decimals and fractions. Following a general 

brainstorming discussion about percentages, students worked in small groups to identify 

where, why and how percentages were used. Several authentic examples were then shared 

and connections were made with real life, such as sport and discounts, and links were made 

within mathematics to decimals and fractions. Ronald then moved on to teach how to 

calculate percentages explicitly. The initial example selected was 20% of 100, and this was 

recorded on the board: 

Tr: Just looking at that, can somebody tell me what 20% of 100 might be? 

N: 20. 

Tr: Why do you think the answer is 20 Nigel? 

N: ’Cause it’s out of 100. 

Ronald reminded students about the process they used to multiply fractions and related 

this to the process used to find percentages of numbers using the above example. This 

example was worked through with the whole class with a variety of students contributing 

answers. The example chosen was deemed to be appropriate in that the numbers were 

‘friendly’ to work with and the process could be used to demonstrate that the same answer 

was obtained as the original response. Further examples were also given, including 10% of 

90 and 5% of $5.00 and the process was worked through again with the whole class. Again 

these examples were considered appropriate as they included a diversity of numbers yet 

were still reasonably straightforward to operate with (the 5% of $5.00 had the potential to 

be problematic, but the students appeared comfortable with the division of decimals). 
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Through the selection of the examples and the order in which they were presented the 

teacher provided scaffolding for the students to construct their understanding of the 

process. The use of different amounts and the money context may have also counteracted 

students’ inclination to form the construction that percentages could only be calculated 

with amounts of 100.  

Students then worked individually to calculate the example, 10% of 110. The choice of 

this example demonstrated that percentages could involve numbers more than 100, yet the 

numbers were easy to operate with. Students appeared to be comfortable with the process 

and the solution was again shared with the whole class. Ronald then wrote the following 

examples on the board which the students were expected to complete individually: 25% of 

100, 15% of 200, 30% of 96, 60% of 110 and 24% of $48; 30% of 96, and 24% of $48 

proved problematic for some students and Ronald later reflected on his choice of 

examples: 

They picked it up really quite quickly – once I did a couple of more complicated ones on the board, 

probably three quarters of the class were picking it up, and that one quarter who were still 

struggling, they were struggling with the numbers not with the actual process – I probably stuffed 

up with the last example that I used – I put 24% of something, when I should have put 25% - that’s 

just one of those errors that can just happen, but in another way it was an advantage because it 

showed me those kids who would persevere through something when they come to a problem that 

wasn’t straight forward … and it also showed me the limitations of some kids at this point in time 

Ronald’s choice of examples generally indicated he possessed a strong content 

knowledge of mathematics and PCK – the examples were mostly appropriate in terms of 

the numbers involved and the order in which they were presented provided for scaffolding 

of students’ understanding to occur. He recognised that 24% was not a good example, but 

then interpreted it as a positive and used it as a subsequent teaching point. The excerpt also 

illustrates the value of using a variety of examples and Ronald’s awareness of the links 

between different aspects of the mathematics curriculum (Askew et al., 1997b). 

Decimal and Money Examples 

The next lesson differs from the previous ones in that it documents a teaching episode 

involving a group of four grade 8 students. The lesson was conducted by a specialist 

mathematics teacher and the small group focus allowed for more interaction between 

teacher and students to occur than probably would under normal classroom conditions. The 

aim of the session was to gauge where students were at in terms of their understanding of 

place value involving whole numbers, then expand on this knowledge to include decimals. 

The students and teacher were seated around a table and the students had access to paper, 

pens and bundling sticks. Following a discussion and some demonstration involving 

bundling the sticks into groups of ten and a hundred, and feeling confident that the students 

could accurately represent a four-digit number using the materials, Jeff asked one of the 

students, John, to cut one of the sticks into parts to represent tenths. As he began randomly 

cutting the stick, a discussion occurred on whether or not the parts needed to be equal. To 

demonstrate this point, Jeff used the example of the bundling sticks and stated, 

OK, suppose I ask you this – see that number there 5345 – now with that 5, would it be all right do 

you think if we had 1000 in this pack and 995 in another pack and a group of 1500 in another pack, 

or is it important that all the group sizes are the same when we write a number like that? 

John still was not convinced and stated that, “It doesn’t matter what size the things are as 

long as you’ve got ten of them there.” 
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Jeff continued to question John and tried to use the materials to demonstrate that the 

size of the pieces were important, but John remained confused. Jeff then decided to use the 

example of money and this choice proved to be quite problematic. Lampert (1989, as cited 

in Ball, 1990) argues that money may provide a useful familiar context to develop 

students’ understanding of decimals, but the particular way in which this example was 

presented led to further confusion. 

Tr: If you were working in the work place and you were getting paid … you guys might get paid 

$5.00 an hour and let’s say you worked three hours for $15.00 one night – now let’s say, Cara, you 

work Wednesdays and Sarah worked Tuesdays and Sarah was actually getting more money than 

you on Tuesdays because $15.00 actually meant a bit more than $15.00 on Wednesdays – would 

you be very happy with that? 

Jeff was using a context that he thought students would relate to, but did not anticipate 

the following response from Cara, “But some days, like Saturday and Sunday you do get 

paid more because it’s like the weekend.” 

Jeff immediately recognised the logic behind this, and stated that,  

“Yeah, well this is an example of how my question hasn’t worked there because the understanding 

I’m trying to get out of you – you’ve actually gone off on another whole track…”  

The students still seem confused but agreed that it should be worth the same each day. 

Although not mentioned by any of the students, further confusion could have been created 

by the use of this particular example, as the value of the dollar does fluctuate and can 

indeed be seen to be worth more on a particular day as it varies in exchange rates for 

different countries.  

The money example further proved problematic when Jeff asked students to write 

down $1.05. Although Cara wrote the amount correctly, Adam wrote it as $1.5. After some 

discussion and when there was no general agreement in the group about which was correct, 

Jeff returned to the bundling sticks: 

Tr: So (if we say) this is a dollar coin (holds up one bundling stick), this is a ten dollar note (holds 

up a bundle of ten sticks) and this is a hundred dollar note (holds up bundle of 100) and pretend just 

for today that we have a thousand dollar note (holds up the bag of 1000 sticks), so what would that 

bit there be worth (points to one of the chopped up pieces of bundling stick)? 

J: A five cent coin. 

Tr: A five cent coin – and how do you  know that? 

J: Because five cents is the smallest and that (piece) is smaller than the rest of them. 

John’s answer shows a clear example of pupils interpreting information in light of their 

previous experiences (Askew, 2004); because the one cent coin is no longer in circulation, 

his response is quite a logical one. Jeff then reminded the students that we did actually 

once use one cent coins (although the piece of stick would actually represent ten cents) and 

made the comment that the five cent coin will probably be the next coin to go, making ten 

cents the smallest denomination. The exchange illustrates that again, although money is a 

common example to use when teaching decimals, it was proving to be too abstract for 

these students to construct a meaningful understanding of what the numbers on the right of 

the decimal point actually represented. Furthermore, during the plenary session when Jeff 

was encouraging the students to reflect on what they had learned from the lesson, one of 

the students, Sarah, responded that, “I learnt that five cent pieces will go…” 

Jeff’s reflection on the lesson revealed that he had to abandon the plan he originally 

made for the lesson because of the students’ lack of conceptual understanding about the 
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place value system, but that the lesson was useful in that it identified the misconceptions 

that they did hold. He stated: 

If you really believe in the constructivist view of learning, then it’s really about the students’ 

understanding and that’s where the questioning is so important and you have to keep questioning – 

it’s like the teacher is a mathematical doctor and the questions are like a scalpel and you keep 

probing at what it is they’re picking up and leading them towards that desired understanding so they 

go, yes, I see what you’re getting at. 

Conclusions 

In order to help students develop mathematical understanding, the teacher must select 

examples that enable students to construct accurate knowledge about the concepts 

presented. Effective teaching for numeracy involves many aspects, but through the careful 

consideration of selecting which examples to choose and then reflecting on their 

effectiveness, teachers can reduce the likelihood of students forming misconceptions about 

important mathematical concepts. The treatment of examples presents the teacher with a 

complex challenge and the specific choice and manner of working with examples can 

either facilitate or impede learning (Bills et al., 2006). This paper has provided descriptions 

about the types of examples teachers select and the way in which students construct 

understanding, based on these examples. It supports the findings of other research (e.g., 

Huckstep, et al., 2003; Ball, 1990) and acknowledges the role that teacher content 

knowledge and PCK play in selecting and presenting these examples. The discussion of 

Jeff’s lesson also shows that even teachers considered to hold both sound content 

knowledge and PCK, can still select examples that do not lead to accurate construction of 

meaning. Further research may be needed to look at the link between teachers’ PCK and 

the selection of good examples, along with research on comparing teachers’ and students’ 

perceptions of what constitutes a good example and documentation of individual students’ 

interpretations of the same example. 

References 

Askew, M. (2004). Mediation and interpretation: Exploring the interpersonal and the intrapersonal in primary 

mathematics lessons. Proceedings of the 28th Conference of the International Group for the Psychology 

of Mathematics Education (pp. 71-78). Bergan, Norway: PME. 

Askew, M. (2005). It ain't (just) what you do: effective teachers of numeracy. In I. Thompson (Ed.), Issues in 

teaching numeracy in primary schools (pp. 91-102). Berkshire, UK: Open University Press. 

Askew, M., Brown, M., Rhodes, V., Johnson, D., & William, D. (1997a). Effective teachers of numeracy. 

London: School of Education, King’s College. 

Askew, M., Brown, M., Rhodes, V., Wiliam, D., & Johnson, D. (1997b). Effective teachers of numeracy in 

primary schools: Teachers' beliefs, practices and pupils' learning. Paper presented at the British 

Educational Research Association Annual Conference, University of York. 

Baker, M., & Chick, H. (2006). Pedagogical content knowledge for teaching primary mathematics: A case 

study of two teachers. In P. Grootenboer, R. Zevenbergen & M. Chinnappan (Eds.), Identities, Cultures 

and Learning Spaces (Proceedings of the 29
th

 annual conference of the Mathematics Education Research 

Group of Australasia, Canberra, pp. 60-67). Adelaide: MERGA. 

Ball, D. L. (1990). Halves, pieces and twoths: Constructing representational contexts in teaching fractions, 

(Craft Paper 90-2). East Lansing: Michegan State University, National Center for Research on Teacher 

Learning. 

Bills, L., Dreyfus, T., Mason, J., Tsamir, P., Watson, A., & Zaslavsky, O. (2006). Exemplification in 

mathematics education. In J. Novotna (Ed.), Proceedings of the 30
th

 Conference of the International 

Group for the Psychology of Mathematics Education. Prague, Czech Republic: PME. 

Carpenter, T. P., Fennema, E., & Franke, M.L. (1996). Cognitively Guided Instruction: A knowledge base for 

reform in primary mathematics instruction. The Elementary School Journal, 97(1), 3-20. 

Mathematics: Essential Research, Essential Practice — Volume 2

521



Clarke, D., & Clarke, B. (2002). Challenging and effective teaching in junior primary mathematics: What 

does it look like? In M. Goos & T. Spencer (Eds.), Proceedings of the 19
th

 Biennial Conference of AAMT 

(pp. 309-318). Brisbane: AAMT. 

Commonwealth of Australia. (2004). Teachers enhancing numeracy. Canberra, ACT: Clearinghouse for 

National Literacy and Numeracy Research. 

Groves, S., Mousley, J., & Forgasz, H. (2006). Primary numeracy compendium. Canberra, ACT: 

Clearinghouse for National Literacy and Numeracy Research. 

Hill, H.C., Schilling, S. G., & Ball, D.L. (2004). Developing measures of teachers’ mathematics knowledge 

for teaching. The Elementary School Journal, 105(1), 11-30. 

Huckstep, P., Rowland, T., & Thwaites, A. (2003). Primary teachers' mathematics content knowledge: what 

does it look like in the classroom? Retrieved 12 October 2005, from 
http://www.leeds.ac.uk/educol/documents/00002534.htm 

Jones, S., Tanner, H., & Treadaway, M. (2000). Raising standards in mathematics through effective 

classroom practice. Paper presented at the annual meeting of the Australian Association for Research in 

Education, Sydney. 

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Lawrence Erlbaum Associates, 

Inc. 

Mewborn, D. (2001). Teachers content knowledge, teacher education, and their effects on the preparation of 

elementary teachers in the United States. Mathematics Teacher Education and Development, 3, 28-36. 

Saunders, P. (2004). Characteristics of effective teaching. Retrieved 18 April, 2005 from 

http://www.wmich.edu/teachlearn/new/char_effect_tch.html 

Shuell, T. J. (1996). Teaching and learning in a classroom context. In D. C. Berliner & R. C. Calfee (Eds.), 

Handbook of educational psychology (pp. 726-764). NY: Simon & Schuster Macmillan. 

Shulman, L. S. (1987). Knowledge and Teaching: Foundations of the new reform. Harvard Educational 

Review, 57(1), 1-22. 

Southwell, B., White, A., & Klein, M. (2004). Learning to teach mathematics. In B. Perry, G. Anthony & C. 

Diezmann (Eds.), Research in mathematics education in Australasia 2000-2003 (pp. 197-218). Flaxton, 

Qld:: MERGA. 

Stake, R. E. (1995). The art of case study research. Thousand Oaks, CA: Sage Publications. 

Van de Walle, J. A. (2007). Elementary and middle school mathematics (4th ed.). Boston, MA: Pearson. 

Watson, A., & Mason, J. (2002). Student-generated examples in the learning of mathematics. Canadian 

Journal of Science, Mathematics and Technology Education, 2(2), 237-249. 

 

 

 

 

Mathematics: Essential Research, Essential Practice — Volume 2

522



Developing the Concept of Place Value 

Mala Saraswathy Nataraj 
The University of Auckland 

<mala@math.auckland.ac.nz> 

Michael O. J. Thomas 
The University of Auckland 

<m.thomas@math.auckland.ac.nz> 

What a study of the historical development of mathematical concepts can offer teaching is 

still being debated. This study examines use of a combination of the historical development 

of number systems and modelling, with concrete materials as a way of deepening students’ 

understanding of positional notation. It looks at place value in different number bases as a 

way of enhancing students’ understanding of the decimal number system. The results 

suggest that the combination of a historical and a concrete approach helped the students to 

understand the place value system to the extent that they could generalise it to other bases. 

Background 

The understanding of the concept of a positional, or place value, system is central to 

developing number sense and is also the basis for the four fundamental operations on 

numbers,  as  confirmed  by  the  concept  map  research  of  Schmittau  and  Vagliardo 

(2006,  p. 7), who have shown “the centrality of positional system in the conceptually dense 

system of concepts that comprise elementary school mathematics. Not only does it connect 

to many important concepts … it is also a prerequisite for any real understanding of the 

base ten system”.  However, anecdotal and other evidence (Thomas, 2004) suggest that this 

vital and central concept is not well understood by students. One reason is that the concept 

of positional system cannot be developed through the teaching of base ten alone, and 

students cannot completely understand the decimal system unless it is seen as a particular 

case of a more general concept of positional notation. Thus this stresses the need for 

teaching of multiple bases to help students develop the concept of positional system. In 

addition, since a positional system is a superordinate concept, founded on multiple basic 

concepts, in order to understand it one must have rich foundational schemas. 

Unfortunately, one cannot just define such a concept into existence for students since 

“concepts of a higher order than those which a person already has cannot be communicated 

to him by a definition, but only by arranging for him to encounter a suitable collection of 

examples” (Skemp, 1971, p. 32).  

Not only is the knowledge of multiple bases vital for understanding the concept of 

place value, but it also serves as a foundation for the development of other crucial 

concepts, such as variable, exponent, polynomial, and polynomial operations, amongst 

others. Students’ difficulties in algebra and these areas have been well documented (e.g., 

Kieran, 1992; MacGregor & Stacey, 1994; Warren, 2003) and educators’ views on the 

various approaches to beginning algebra, such as generalisation, problem solving, and 

function/modelling, are also clear in the literature (e.g., Mason, 1996; Radford, 1996; 

Ursini, 2001). According to Mason (1996), generalisation is the heartbeat of mathematics 

and that “expressing generality is central to all mathematics, including arithmetic” (Mason, 

Graham, & Johnston-Wilder, 2005, p. 95). He goes on to state that one of the most 

important sources of generalization is the domain of number and, in detecting and 

expressing number patterns, general number can be seen as a pre-cursor of variable, the 

central concept of algebra. Hence a good knowledge of positional notation could assist in a 
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smoother transition to algebra through a consideration of multiple bases to the notion of a 

general number base n.  

In this research study we considered the importance of understanding of positional 

notation and how it might be improved using a combination of concrete materials, multiple 

representations and historical perspectives. The first of these has been appreciated since the 

time of Piaget’s description of the concrete operational stage of learning, because for these 

students one must recognise that “in sum, concrete thought remains essentially attached to 

empirical reality” (Inhelder & Piaget, 1958, p. 250). At one time materials such as Dienes 

blocks (Dienes, 1960) were widely used but have since grown unfashionable. Secondly, 

representational versatility (Thomas, 2006) lies at the heart of much of what mathematics 

is. Students may interact with a representation by observing it, for example by noticing 

properties of the representation itself or of the conceptual processes or object(s) 

represented, or acting on it. The versatility arises in the ability to translate between 

representations of the same concept and to interact with these representations in 

qualitatively different ways. The third aspect is the use of history to inform practice. In 

recent years, there has been a continuing tradition of using history of mathematics in the 

teaching and learning of mathematics. Educators and researchers (Fauvel & van Maanen, 

2000; Gupta, 1995; Katz, 2001) have asserted that the history of mathematics is an 

excellent resource for motivating students to learn mathematics, and one of the greatest 

benefits is in enhancing the understanding of mathematics itself. Of course there are 

different ways in which historical material may be incorporated in the classroom, with the 

history implicit or explicit in the teaching situation (Fauvel & van Maanen, 2000). Either 

way it can bring about a global change in the teacher’s approach. This is because a 

historical and epistemological analysis (Puig & Rojano, 2004) may help the teacher to 

understand stages in learning (Barbin, 2000) and why a certain concept is difficult for the 

student. In turn this can help with teaching strategy and development. A specific example 

of the implicit use of history is the historical development of the present day decimal 

number system.  

A review of some texts (Datta & Singh, 2001; Joseph, 2000; Srinivasaiengar, 1967) 

reveals that the decimal number system with place value and zero used today originated in 

India, and this system was passed on to the Arab mathematicians who then carried the 

system to Europe. A study of this history reveals that the “perfection” of the number system 

was preceded by centuries of experience of working with very large numbers (as part of 

solving problems in astronomy). The ancient Indian mathematicians developed a scientific 

vocabulary of number names including names for powers of 10, even going up to 10
53

 and 

this consideration of large numbers and exponential multiplication and its symbolisation 

seems to have prompted the creation of zero and the number system with place value 

(Datta & Singh, 2001). Although the rhetorical, syncopated, and symbolic stages are 

usually associated with algebra (Kieran, 1992), they seem to have also been present in the 

realm of number in Indian history of mathematics. In addition, studying different number 

systems from history provides students with the opportunity of developing an 

understanding of the concept of numerals as number symbols, as well as the principles that 

were used with these symbols. Moreover, the study of number systems from history 

presents mathematics as a human endeavour with twists and turns, false paths, and dead-

ends, and helps learners towards a more realistic appreciation of their own attempts. 

In some countries, including New Zealand, the teaching of multiple bases is no longer 

present in most mathematics textbooks at the Primary and Intermediate level and so is not 
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taught in schools. Hence this research study sought to use concrete materials, the theory of 

representations, and both explicit and implicit historical analysis, in the classroom for the 

concept of place value. We addressed the question of whether such an approach could help 

to improve students’ understanding of this positional system of representing number. 

Method 

The research study comprised a case study of a class of 27 Year 9 (age 13 years) 

students at a decile 5 (middle socio-economic level) at a secondary school in Auckland, 

New Zealand. This class, called the “Global” class, was a new concept in 2005, with 

students from many different cultures and ethnicities, and a “global” approach to core 

subjects. The class used in the research thus represents a wide variety of cultural 

backgrounds, including Indonesian, Russian, Hungarian, Dutch, American, Malaysian, 

Zimbabwean, Chinese, Korean, Japanese, Cypriot, Swedish, Maori, Pacific Island, and 

New Zealand European students. However, most of the students had their intermediate 

schooling in New Zealand and hence were proficient in English. The exceptions to this 

were two Korean students and a Chinese student who had only recently arrived in the 

country, who were taking ESOL classes. Possibly due to a positive attitude the class was 

performing above average for the year group in the school. The teacher explained to the 

students what was going to be taught and why it was important to their learning. The 

classroom process was very much task oriented, and all the class lessons were taught by the 

first-named researcher. The first task was intended to get students to think about the need 

for a number system and how it might have been constructed. To accomplish this they were 

encouraged to work in groups of 2, 3, or 4 and try to create a number system of their own. 

This included deciding on the grouping size, the number of symbols needed, and how they 

would represent and add numbers. The students were given a large number of coloured 

sticks to help with their thinking and sheets of paper on which to write their ideas. 

Following this the students were given a pre-test comprising questions that addressed their 

current understanding of place value. A sample of the kind of questions used is given in 

Figure 1. 

Following the test the students’ second task was to investigate the number systems of 

past civilisations to see what could be learned from them. Having considered the numbers 

0-10 in their own languages, including writing down the number symbols in their language 

on the board, and saying the numbers, they then spent five to six lessons of 60 minutes 

each working through worksheets on different number systems from around the world and 

from different time periods. These included Primitive, Egyptian, Babylonian, Roman, 

Greek, and Mayan, and finally the present Indian decimal system. The tasks involved them 

writing numbers in the different systems, only two of which had a place value (Babylonian 

and Mayan). Following the investigation of each number system the students discussed the 

symbols in the system, along with general features such as place value and zero, its 

advantages and disadvantages, and then wrote down their observations on the system. 

The third task, comprising two lessons, was to use concrete materials to analyse base 

10 numbers. The students were given large numbers of coloured sticks and were asked to 

group the sticks in tens and then hundreds, thousands (they managed one ten thousand!) 

etc., tying the sticks with elastic bands that they were given (parts of sticks were used for 

tenths and hundredths) and they used them to model numbers, such as 12386. Keeping in 

mind that the historical development through the rhetorical stage was in place for a long 
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time, the sticks were used to model numbers in the same way that we say the number, that 

is, one set of ten thousand and two sets of one thousand (1 set of 10101010 ×××  and 2 sets 

of 101010 ×× ). 

 

  Section A 

 
a) 35275   b) 6008   c) 7658.32 

   

 
 Section B 

 

 

 

Figure 1. Some of the pre- and post-test questions. 

In the next stage of this task, only a single bundle of sticks was placed to represent the 

place value. For example, only one bundle of 10 was placed and 8 sticks were placed 

underneath it to represent 80. During the final stage of the task the bundle of 10 was 

removed and students had to imagine the value of the place. Examples of two of these 

representations of the number 234.23 are given in Figure 2 (the decimal point is 
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represented by a band). The cognitive linking of these representations is a key step in the 

construction of the system. There was also discussion surrounding the need for a symbol 

for zero when we consider a number such as 407.  
 

 

Figure 2. Two different representations of 234.23 used in task 3. 

Following these tasks the students were given a post-test, along with extra questions on 

generalisation (see Figure 3 for some of these questions) involving bases 6, 7, 8, and 29 as 

well as base 10, and also asking for a generalisation. 
 

 

 

 

 

 

 
 

Figure 3. Some of the “extra” post-test questions. 

Due to the difficulty of the extra questions some students requested further explanation 

on the idea of generalization, so the teacher used half a lesson to put up some patterns on 

the board that the students had to generalise. She explained that she wanted them to look at 

the patterns, say what they saw and then write a sentence with symbols that would 

represent any one or all of the lines. They discussed what “make a generalisation”, “in 

general” and “generalise” means. The patterns below were put up on the board and students 

had to verbalise as to what was the same and what was changing across any line and 

generalise. Then they had to look at the vertical line on the right and generalise further for 

any base a. Finally, the students were allowed to answer the extra questions one more time. 
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Results 

In order to establish some comparative baseline data on Year 8 students’ understanding 

of place value we accessed the results of the Assessment Tools for Teaching and Learning 

(asTTle) (Hattie, Brown, & Keegan, 2005) standardised tests for the whole Year 9 group at 

the school the Global class attended. Five of these questions were on the topic of place 

value and hence exposed areas of difficulty for students of this age and background, 

forming a comparative population. The students all sat the tests on the first day of their 

school year, before the research study took place. Results on questions 8 and 22 were 

combined on the test, since both address the skill “Explain the meaning of digits in 

numbers up to 3 decimal places”, and could not be separated. Question 8 essentially asked 

whether 1.35 or 1.342 is larger, and question 22 asked students to write a number with 1 in 

the hundredths column, 2 in the tens, 5 in the thousandths, 6 in the ones and 9 in the tenths. 

Similarly questions 11 and 23 considered “Order decimals up to 3 decimal places” and 

question 13, “Explain the meaning of the digits in any whole number”. Table 1 shows the 

comparison of the Global class results with those of the rest of the year group. These show 

that on questions 8 and 22 (χ
2
=9.95, p<0.01) the Global class performed significantly 

better than the year group. However, on question 13 (χ
2
=0.45, ns) and questions 11 and 23 

(χ
2
=3.06, ns), there was no significant difference in performance. Two comments may be 

made on this. Firstly it confirmed the view that the Global class was performing a little 

above average for their year group, and secondly that these place value skills are a problem 

for many students of this age. 

Table 1 

A Comparison of Year 9 Students with Global Class on Place Value 

Question Year 9 Group (N=125) 

% Wrong 

Year 9 Global Class (N=27)  

% Wrong 

8 and 22 72% 54% 

13 72% 66% 

11 and 23 51% 29% 

Work on the Tasks 

When we look at what the students produced for their number systems on the first task, 

most simply took the base 10 system and created their own symbols (Figure 4, row 1). 

Others (Figure 4, row 2) employed an additive system using a symbol for ten as their base 

to get 39. The only group who tried to do anything differently is shown in Figure 4 row 3. 

They used a system of merging two symbols together into a partial multiplicative 

arrangement, but they still have a new symbol for 36 and are not using place value. 

However, this was the first task that the students worked on and it accomplished its 

purpose of getting them to think about number systems and how they are constructed. 

The second task on considering how the different number systems developed 

historically proved interesting to the students, for differing reasons. Some liked particular 

symbols such as the Egyptian and the Roman for aesthetic reasons, and others felt that 

some systems, such as Roman and Primitive systems, were easier to use, whereas others 

found the Mayan system difficult and confusing. However, when asked to represent large 

numbers students realised they had to repeat symbols many times and also had to create 
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more and more symbols (see the sample comments of S1 and S24 in Figure 5). When asked 

why they were able to write large numbers with only ten symbols in the present decimal 

system, students found the question quite challenging and one student said “it was because 

of all the zeros”.  
 

    

 

   

Figure 4. Students’ work on creating their own number system. 

During episodes of teacher intervention during the work with the groups of coloured 

sticks, different numbers were modelled on the board in base 10 (for example 10
3
 was also 

written as 10×10×10, 10
2
×10, 1000, and in words), leading to a discussion of exponential 

multiplication and place value. This was done so that students not only see one thousand as 

a thousand ones, but also as 10 groups of 10 groups of 10. The following was written up on 

the board for each one of the positions. 

 

Thousand 

1000 

10102
×  

101010 ××  

 
410           310    210         110           010         110−  

 

 

 

S24

   

S24   

S1 

 

 
S1

 

Figure 5. Two students’ observations on historical number systems. 

4 1 8 6 7 2 
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The tasks gave students an opportunity to construct other concepts, such as the relative 

sizes of numbers like 10
4
 and 10

–2
. That they were engaging with these ideas was shown by 

comments about the “bigness” of something like 10
12

 and 10
53

 and the smallness of 10
–23

! 

In the second session of this task exactly the same procedure was followed, but this time 

the students grouped the sticks in sets of 6s, 36s, 216s, etc., and hence different numbers 

were represented in base six. Again this was written on the board as above in different 

representations: in words, exponential forms, and full forms, (e.g., 4 lots of 216 ( 36 ), 5 lots 

of 36 ( 26 )). There was discussion on the word base and how many symbols were needed 

for a particular base. When working with the groups of coloured sticks and by looking at 

the patterns, students came up with 10
0
 as 1 and one tenth as 10

–1
. It was brought to the 

attention of students that in a number such as 12796.34 the three sticks used represented 3 

lots of the tiny bits of sticks, or 10
–1

.  

Some of the students commented that they found the work on the tasks, and especially 

the “project” to create their own number system, enjoyable and fun, stating: “This is lots of 

fun. Got us thinking about funny names and symbols” (S3); “This is fun. We like working 

together and bounce ideas off each other but it is hard. It is like making your own language 

up” (S5); “It was fun. Kind of interesting figuring out what symbols to use. A great way to 

get creative” (S23); and “Very interesting. Sticks helped us to think. I felt I was designing 

something for the future” (S24). As S5 observed, it was also challenging for them, to the 

point that some found it very difficult and others felt out of their depth. This was 

occasionally, according to S9 and S12 because their group did not work so well together: 

“Extremely hard to create own number system. The group were not communicating very 

well as all of us were thinking differently and it was hard to co-ordinate our ideas and write 

them down”(S12); and “The group was confused. Different opinions in the group and they 

all wanted different things/symbols”(S9). 

Others also said how they found the work “challenging” (S13) or “quite hard” (S21), or 

they were “Confused. Concerned I was not doing anything” (S27). Student S21 was the 

only one who was negative throughout the whole unit of work and it was very difficult to 

help her. She felt she was not good at mathematics and she said she did not care about 

mathematics anyway. In summary, we can say that the task was stimulating but not easy for 

this group of students.  

Test Results 

From the pre-test to the post-test all students except for S13 improved their scores, and 

overall there was a significant improvement in the mean score on the test (Meanpre=7.41, 

Meanpost=13.63, t=6.22, p<0.0001). There was improvement on every question on the tests 

(sections A and B), but especially on section A, questions 7 and 8 (from 5 and 3 correct to 

23 and 20, respectively), and every question in section B (from 0 on every question to 

scores from 15 to 17 correct). Questions 7 and 8 asked how many symbols are need for 

bases 6 and 43, and this generalisation was clearly better understood after the module of 

work. Two students, S6 and S19, are attending ESOL classes and were very hindered by 

language difficulties. Although they only attempted to answer some of the questions they 

did both improve, from 0 each on the pre-test to 6 and 7 respectively on the post-test. It was 

pleasing to see that by the end of the module of work 23 of the students could answer Q4a) 

for base 8 and 19 of these could generalise the place value to 8
x
 (Q4b)), or equivalent. 

Similarly 24 students could do the same for base 29 (Q5a)), 21 of these could generalise 

Mathematics: Essential Research, Essential Practice — Volume 2

530



  

the place value here too to 29
x
, and the same number could even take this to any base and 

write n
x
 (Figure 6). 

 

  

   

 
 

 
 

Figure 6. The generalisations of two students. 

A number of students, S2, S3, S5, S9, S16, S17, S26, and S27, all expressed the 

thought that they had found the use of the sticks helpful to formulate their thinking, 

commenting that “I think the sticks helped me learn about doing place value in different 

bases” (S2), “The sticks helped me visualise the challenge” (S3), “With the sticks it was 

easier because we saw what we were doing not just hearing it” (S5), “When you do it with 

the sticks it helped because you learn better when you do stuff in person, using your hands” 

(S16). Only a couple of students (S22 and S25) mentioned negative aspects of the sticks, 

saying how “the sticks didn’t help me much” (S22) or how they found the sticks 

“confusing” (S25). Some also mentioned that they had enjoyed and benefited from the 

historical ideas they had engaged with: “the different systems were quite fun because we 

now know how some other cultures write and do their systems” (S5); “the different number 

systems have made me realise how [much] easier our number system is” (S11); “I learnt 

how much they struggled to accomplish these historic number systems” (S12); and “Using 

the other number systems was fun” (S20).  

Conclusions 

We suggest that the importance of the understanding of place value cannot be 

underestimated, as Schmittau and Vagliardo’s (2006) research on concept mapping 

confirms. This study attempted to develop in students a meaningful understanding of place 

value and a structure of the number system through: considerations of large numbers and 

exponential multiplication; use of concrete materials, multiple bases, multiple 

representations; and a review of development of historical number systems. The focus was 

on students’ understanding of structure and recognition that the numerals that they deal 

with on a daily basis are number symbols forming part of a system. The results show that 

students achieved a certain measure of success and were able to generalise the 

multiplicative (including exponential) structure of the number system. The study also 

shows that students respond well when extended beyond what they are responsible for in 

terms of learning in order to conceptualise what they have to learn in the curriculum. This 

may have implications for mathematics curriculum development, as the positional system 

receives superficial treatment from most mathematical textbooks. The research suggests 

that if students are to develop meaning for place value then the topic should be included in 
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the curriculum, since a failure to develop understanding of positional notation adequately 

will restrict future learning in mathematics.  
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This paper describes the process of developing a survey instrument aimed at measuring 

aspects of mathematical confidence, value, and the interconnectedness of mathematics as 

part of a larger study investigating the thinking processes and attitudes towards mathematics 

of Singaporean secondary school students (aged 12-14) during interdisciplinary learning. 

Results from exploratory and confirmatory factor analyses on scale items tested revealed six 

scales with sound validity and reliability properties. The scales are intended for measuring 

attitudes towards mathematics particularly during interdisciplinary education.      

Background 

Interdisciplinary and integrated curricula are present in education systems in the United 

States (Berlin & Lee, 2005) and Australia (VCAA, 2006; Norton, 2006). Interdisciplinary 

projects were introduced in Singapore schools in 2000 to provide opportunities for students 

to engage in holistic learning (Curriculum Planning and Development Division, 2001). 

This paper describes the process of developing a survey instrument aimed at measuring 

aspects of mathematical confidence, value of mathematics, and the interconnectedness of 

mathematics for Singaporean secondary students before and after participation in an 

interdisciplinary project undertaken over approximately 15 weeks.  

It is assumed that mathematical confidence, value of mathematics, and the 

interconnectedness of mathematics are three affective domains directly associated with 

interdisciplinary learning involving mathematics. Such interdisciplinary tasks require 

integrating relevant mathematical knowledge with other school subject knowledge for 

decision making and problem solving within real-world contexts.  

A review of literature revealed that different aspects were considered in the definitions 

of mathematical confidence and the perception of the value of mathematics. Hence, the 

decision was made to develop the scales for these domains in the study instead of adopting 

established ones so as to explore aspects of the constructs proposed by others, especially 

within the Singaporean context. The perception of the interconnectedness of mathematics, 

nonetheless, is a new contribution to literature by the first author. Though empirical studies 

on the impact of integrated learning on mathematical confidence and perception of the 

value of mathematics exist (e.g., Austin, Hirstein, & Walen, 1997), none was found 

measuring the effect of interdisciplinary learning on perceptions of the interconnectedness 

of mathematics. Empirical investigations into students’ perceptions of the 

interconnectedness of mathematics pave the way for statistical generalisations on the 

impact of mathematically-based interdisciplinary work for secondary schools in Singapore 

that, on the average, conduct one interdisciplinary task per year level annually. Moreover, 

these scales could be useful for future research involving interdisciplinary learning in 

different education contexts.  
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  Literature Review on Theoretical Components of Domains 

For this study, mathematical confidence consists of three components: students’ 

perceptions of their (a) abilities to carry out mathematical tasks (Barnes, 2003), (b) 

confidence in learning and succeeding in mathematics with and without making 

comparisons with their peers (Fennema & Sherman, 1986; Lester, Garofalo, & Kroll, 

1989), and (c) determination and effort in mathematics (Schunk, 1984). Items measuring 

mathematical confidence were adapted from confidence in mathematics scales of Fennema 

and Sherman (1986), Tapia and Marsh II (2002), and Mittelberg and Lev-Ari (1999), 

together with Sandman’s (1979) self-concept in mathematics scale and Barnes’ (2003) 

items measuring self-efficacy as part of mathematical confidence. Some items were also 

created by the first author according to the definition presented.  

Perception of the value of mathematics is considered from three aspects: (a) current 

relevance or usefulness of mathematics (Meece, Parsons, Kaczala, Goff, & Futterman, 

1982), (b) importance of mathematics for further education and career choice (Barnes, 

2003), and (c) value of mathematics in society (Bishop, 2001). Initial items measuring the 

perception of the value of mathematics were adapted from Barnes’ (2003) and Sandman’s 

(1979) value of mathematics scales.  

Interconnectedness of mathematics involves students’ perceptions about (a) the 

possible links between mathematics with other subject areas (Jacobs, 1989), (b) usefulness 

of mathematics in understanding and learning other subjects (Boix Mansilla, Miller, & 

Gardner, 2000), and (c) complementary relationships between mathematics and other 

subjects in problem solving (Boix Mansilla et al., 2000). Items measuring this domain were 

created by the first author from a synthesis of literature about interdisciplinary education. 

The three components espoused in the definition can be represented on a continuum, 

ranging from awareness of interconnectedness knowledge through consideration of 

possible action upon this awareness to concrete use of relevant interconnectedness 

understanding. 

Every item included in the initial item pool was examined carefully to determine if it 

needed rephrasing to suit Singaporean students between the ages of 12 and 14 who are non-

native speakers of English. It was expected that subsequent piloting phases would reduce 

the number of items to critical representations of the three domains.    

Scale Development, Analysis, and Results 

Ten experts from mathematics education in Australia and Singapore, and 292 students 

(aged 12-14) with varying English competencies from seven Singaporean government co-

educational secondary schools were involved in the pilot. Participating students had yet to 

encounter interdisciplinary projects at secondary level. An initial pool of 45 items was 

piloted in four phases consisting of student interviews, a large scale trial with exploratory 

factor analysis, confirmatory factor analysis, and test-retest reliability checks. The items 

were ordered differently without any section headings in the various versions of the scales 

used during the first two pilot phases to avoid presentation bias. A five-point Likert scale 

was used to elicit students’ responses to the items. 

Validity of Scales 

The first author employed three approaches to address the content validity of the scales. 

Firstly, the theoretical components of the three affective constructs established or discussed 
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in existing research were investigated. Some of these theoretical components were 

validated by extensive empirical research. Secondly, items measuring mathematical 

confidence and perception of the value of mathematics were chosen from item pools of 

established scales. The first author used professional experience as a secondary 

Mathematics and English teacher at a Singapore school to rephrase selected items to suit 

non-native speakers of English. For the scale measuring perception of the 

interconnectedness of mathematics, however, literature pertaining to interdisciplinary 

education was relied upon for creating the initial items. Lastly, two expert panels of 

mathematics educators from Singapore and Australia vetted the phrasing of each item and 

checked item appropriateness of the scales. The experts also commented on whether the 

scale items were grouped appropriately according to the identified theoretical components. 

Construct validity of the scales was further established through factor analysis techniques. 

Phase I: Individual Student Interviews 

The first pilot phase was conducted in stages. In the first stage, items from the three 

scales were reviewed by nine students (aged 12-14) of varying English language abilities 

from three educational streams in six schools. During face-to-face individual interviews, 

students selected their responses from the options and explained their choice to the 

researcher. Particular attention was paid to the selection of the neutral option in order to 

confirm if the option was chosen because of ambiguity in phasing or an informed reflection 

on the statement. Occasionally, students were asked to rephrase problematic items in their 

own words to check if they had interpreted them as intended. Rephrased versions of 

difficult items were re-tested immediately on subsequent interviewees for clarity.  

In the second interview stage, all 45 items (reworded or otherwise) were administered 

to another group of 36 students (aged 13-14) from an average-ability stream in one school 

to attempt on two separate occasions one week apart. Their responses to each item both 

times were compared qualitatively to identify items of high response inconsistency. The 

first author then selected 13 students who had inconsistent responses to the majority of the 

tested items for individual face-to-face interviews to explain their response differences. 

Special attention was paid to the phrasing of items with general high response 

inconsistency in order to identify any confusing statements for deletion.  

The scales were reduced to 41 items here. One example of deletion was an item from 

the mathematical confidence scale, “I can usually come up with good approaches for 

solving problems”. This item was highly ambiguous for the students because the phrase 

“good approaches” was misleading. Even mathematically confident students may 

“disagree” with the statement if they were not sure if they came up with “good” approaches 

most of the time during problem solving.  

Tables 1 and 2 present the list of items measuring the three affective domains retained 

for large scale trial after reduction based on student interview feedback and item sources. 

Negatively phrased items are marked with “#” and scored in reverse during analysis. Items 

that were subsequently deleted after the large scale trial and confirmatory factor analysis 

are in italics. The items are arranged according to the theoretical components identified in 

the definitions of the three domains. For the component, “Perceiving Links between 

Mathematics and Other Subjects” under the interconnectedness of mathematics domain, a 

high score on “Math may share some common topics and skills with other subjects” 

indicated high personal sensitivity to the interconnectedness of mathematics.   
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Table 1  

Mathematical Confidence: Items for Large Scale Trial and Sources 

Item 

Code 

 Item  Item 

Source 

Mathematical Confidence 1: Confidence in Learning and Succeeding in Mathematics 

CS1  I feel good when I am doing math.  FSa 

CS2#  Math is my weakest subject.  FSa 

CS5#  I am not good in math.  FSt 

CS10  I am sure I can learn math.  FSt 

CS11#  I will always find math difficult no matter how I hard I study.  FSa 

CS12  I want to learn higher-level math.  FSa 

CS13  I usually understand what is going on in my math class.  SMa 

CS16#  I’m not the type to do well in math.  FSt 

CA1#  Studying math makes me feel nervous.  TMa 

CA2#  I am scared of math.  TMa 

Mathematical Confidence 2: Confidence in Ability to Carry Out Mathematical Tasks 

CS3#  I am afraid to use math because I am not good at it.  R 

CS4  I have a lot of self-confidence when it comes to doing math.  FSa 

CS6  I am good at working with math problems.  SMa 

CS9  I am ready to try more difficult math problems.  FSa 

CS14  I’m confident I can understand even the most difficult material in my math 

class if it is explained clearly. 

 BNa 

Mathematical Confidence 3: Determination and Effort in Mathematics 

CS8  I like to think how to solve the difficult math problem first before asking for 

help. 

 MLa 

CS17#  If I don’t get an idea how to solve a math problem right away, I will never 

solve it. 

 SMt 

CS18#  I often think, “I can’t do it,” when a math problem seems hard.  SMt 

CS19  When I meet a difficult math problem, I do not give up until I solve it.  MLt 

Mathematical Confidence 4: Confidence in Mathematical Performance in Relation to Peers 

CR1  Overall, I feel I am better than some of my friends in math.  R 

Note. FS = Fennema & Sherman (1986), SM = Sandman (1979), BN = Barnes (2003), ML = Mittelberg & 

Lev-Ari (1999), TM = Tapia & Marsh II (2002), a = adapted, t = taken, R = researcher-created, # = 

negatively phrased item.  

Phase II: Large Scale Trial and Exploratory Factor Analysis 

The second phase consisted of a large-scale trial (n = 204) using 41 scale items with 

students (aged 12-14) from two schools. Statistical analysis was conducted using SPSS 

(Noonan, 2001). The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.833, 

implying that exploratory factor analysis was necessary to ascertain the minimum number 

of hypothetical factors. Initial solution to exploratory factor analysis using principal 

component extraction with eigen values more than one and varimax rotation revealed 12 
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orthogonal components accounting for 66.6% of variance. However, inspection of the scree 

plot (Figure 1) derived indicated the possibility of fewer components as the graph levelled 

off to form a straight line with an almost horizontal slope beginning at the fifth component.  

Table 2 

Value and Interconnectedness of Mathematics: Items for Large Scale Trial and Sources 

Item 

Code 

 Item  Item 

Source 

Value of Mathematics 1: Current Relevance/Usefulness of Mathematics 

VA1#  The math I am studying is useless to me now.  BNa 

VA2#  The math I am learning won’t be useful to me later in my life.  BNa 

Value of Mathematics 2: Importance of Mathematics for Further Education and Career 

VE1#  The math I am learning won’t be important in my future studies.  BNa 

VE2  I expect to be able to use the math I am studying in my future job.    BNa 

VE3  Being good in math will help me get a job more easily.  BNa 

VC1  I will choose to do math after secondary school because I will need it to 

get a job next time. 

 BNa 

VC2  Getting high marks for math will get me more respect from family and 

friends. 

 BNa 

Value of Mathematics 3: Value of Mathematics to Society 

VS1#  Math cannot help me understand my surrounding world.  SMa 

VS2  Math is of great importance to a country’s development.  SMa 

Interconnectedness of Mathematics 1: Perceiving Links Between Mathematics and Other Subjects 

IR1  Math may share some common topics and skills with other subjects.  R 

IR2  I can see links between some math topics and other subjects.  R 

IR3  I find learning more meaningful when math and other subjects have 

common topics. 

 R 

IR4#  I don’t try to make connections between math and other subjects when I 

learn. 

 R 

IR5#  Math has no connections with the other subjects I am studying.  R 

IR6  It is important to relate math to other subjects when learning.  R 

Interconnectedness of Mathematics 2: Perceiving the Usefulness of Mathematics in the Learning of 

Other Subjects 

IU1  I can use math to help me learn another subject better.  R 

IU2#  We can’t use another subject to help understand some math topics better.  R 

IU3  Sometimes I use math to help me understand another subject.  R 

IU4  I use another subject to help me learn math sometimes.  R 

IU6  I have used math while working in another subject before.  R 

Interconnectedness of Mathematics 3: Perceiving the Complementary Relationship of Mathematics and 

Other Subjects in Problem Solving 

IC2  Sometimes, I combine what I know from math and other subjects to solve 

problems. 

 R 

Note. SM = Sandman (1979), BN = Barnes (2003), a = adapted, t = taken, R = researcher-created, # = 

negatively phrased item.  
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Figure 1. Scree plot showing initial 12-factor solution. 

Having 12 factors for 41 items meant that small scales were formed with possibly low 

validity and reliability. Although there were ten theoretical components to start with, some 

were made up of single items which could either be deleted or grouped in stronger 

components. Factor models consisting of fewer components were then investigated to see if 

these could fit the data set. More solutions were thus generated using principal component 

analysis, in particular two to ten factor models, judging from the marked changes in the 

slope of the scree plot. Item factor loadings of less than 0.3 were suppressed. The results of 

selected models generated by exploratory factor analysis were analysed with the theoretical 

components defined for the three affective domains in mind. For each model, items 

purported to belong statistically to the same component were checked if they also fitted in 

meaningfully as part of a coherent construct. Allocation of items with similar factor 

loadings to two or more components was based on theoretical decisions.  

Initial scale reliability checks and decisions about item deletions were based on an eight 

factor model. This was because the components of this model were closest in alignment 

with the theoretical components first envisioned. In this model, items from the 

mathematical confidence domain were grouped into four scales whereas those from value 

and the interconnectedness of mathematics domains were categorised into two scales each. 

The model explained 56% of total variance in the sample data, with the first two 

components accounting for the highest percentage of variance. Five relatively small scales 

were derived from the model. Four of the scales had Cronbach’s alpha values of less than 

0.6.  

The process of scale reduction was cyclical, consisting of reiterated tests. Firstly, items 

with low communalities and low factor loadings within the component were marked for 

possible deletions. Secondly, student interview records of the marked items were examined 

for whether the item had appeared ambiguous to some students at times. Thirdly, the 

frequencies of neutral responses to the marked items were examined because items with 

high frequencies of such responses would not be helpful in future analyses. Fourthly, the 

internal consistency reliabilities of the scales generated in the eight factor model were 

assessed. Some items increased alpha values of the scales when deleted. Fifthly, items with 

low corrected item-total correlation values were considered for deletion. For scales with 

more than one item considered for deletion, repeated scale reliability checks with various 

combinations of items or single items deleted were carried out to choose the best option. 

Lastly, exploratory factor analysis was conducted again on the remaining items to check if 

they remained intact within the eight components generated earlier. 

Five out of 41 items were deleted in the process of scale reduction. A deletion from the 

value of mathematics domain was, “Math cannot help me understand my surrounding 
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world”. Compared to others, this item had the lowest communality value of 0.317. It did 

not have any factor loadings greater than 0.3 to any of the eight components. Some student 

interviewees were puzzled about what the item meant. A high 42.6% of respondents chose 

the neutral response to this item. Its corrected item-total correlation in the scale was 0.269. 

Deleting this item raised the alpha value of the scale to 0.735. In addition, some items had 

similar factor loadings to more than one scale. For example, the item, “I feel good when I 

am doing math”, had factor loadings of 0.469 and 0.508 to two scales. A model involving 

fewer components could be more best-fitting to the data. Confirmatory factor analysis was 

conducted next on a different sample to test this hypothesis. 

Phase III: Confirmatory Factor Analysis 

Data collection with the remaining 36 items was conducted from another three schools. 

The items were grouped under three headings during data collection, namely, (a) your 

feelings when doing mathematics, (b) mathematics in relation to other subjects, and (c) 

your feelings about school mathematics. It was not necessary to divide further the three 

sections consisting of items from the three domains into eight components.   

Confirmatory factor analysis was conducted on a total of 398 questionnaire responses 

using AMOS (Noonan, 2001). The best-fitting model resulting from confirmatory factor 

analysis using data here could further establish scale validity because by then, the scales 

would be exposed to at least two implementations involving separate student samples. 

Results revealed that a six factor model consisting of 34 items and six correlated scales was 

best-fitting to the data. Two items (i.e., CS17# and CS18#) were deleted in this process. 

The six factor model (Tables 3 and 4) classified items from the three affective domains into 

two scales for each domain. There were still items having dual factor loadings to 

components under their theoretical scales. In such cases, item allocation was based on the 

standardised regression weights of these items to their scales.  

This model explained about 50% of variance in the sample and had internal consistency 

reliability values of more than 0.7 in at least four of the scales. The AMOS run yielded a 

goodness of fit index (GFI) of 0.876. The adjusted goodness of fit value was close to this 

(0.855). Tabachnick and Fidell (2001) postulate that the GFI should be close to 100% for 

the model to be a good fit. In this case, the six factor model was a comparatively better fit 

compared to other models according to GFI values. The choice of the six factor model was 

further substantiated by its root mean square error of approximation value of 0.048, which 

indicated a good fit using standards proposed by Hu and Bentler (1999). Moreover, the 

root-mean square residual value was 0.044, an ideal fit according to Tabachnick and Fidell. 

Taken together, these statistics indicated the six factor model was a good fit to the data. 

Phase IV: Test-Retest Reliability 

The last piloting phase checked the test-retest reliability of scales from the six-factor 

model consisting of 34 items. The scale items were administered on two occasions one 

month apart to 34 students (aged 12-13) from a non-related sample who had not undergone 

interdisciplinary projects at secondary level. Correlations between the mean scores to the 

six scales from both administrations were calculated. Except for the smaller scales of 

usefulness of mathematics and prospects with mathematics, the test-retest reliabilities of 

the remaining scales were relatively high, ranging from 0.596 (Beliefs and Efforts at 

Making Connections) to 0.854 (Self-Concept in Mathematics) (Tables 3 and 4). 
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Table 3 

From Six Factor Model: Mathematical Confidence 

Item Subscale/ Item Statement Corrected 

Item-Total 

Correlation 

F1 F2 

Scale 1: Self-Concept in Mathematics (SCM) 

Cronbach’s α = 0.880; Test-retest correlation r = 0.854** 

CS5# I am not good in math. 0.820 0.728  

CS2# Math is my weakest subject. 0.695 0.798  

CS3# I am afraid to use math because I am not good at it. 0.645 0.792  

CA2# I am scared of math. 0.668 0.752  

CS11# I will always find math difficult no matter how I hard I 

study. 

0.625 0.767  

CA1# Studying math makes me feel nervous. 0.565 0.728  

CS16# I’m not the type to do well in math. 0.639 0.740  

Scale 2: Confidence in Ability and Motivation in Mathematics (CMM) 

Cronbach’s α = 0.850; Test-retest correlation r = 0.772** 

CS6 I am good at working with math problems. 0.544 0.542 0.531 

CS12 I want to learn higher-level math. 0.567 0.397 0.603 

CS9 I am ready to try more difficult math problems. 0.709 0.343 0.701 

CS1 I feel good when I am doing math. 0.658 0.449 0.514 

CS4 I have a lot of self-confidence when it comes to doing 

math. 

0.628 0.420 0.648 

CS10 I am sure I can learn math. 0.599  0.638 

CS13 I usually understand what is going on in my math 

class. 

0.517 0.366 0.553 

CS14 I’m confident I can understand even the most difficult 

material in my math class if it is explained clearly. 

0.391  0.611 

CS8 I like to think how to solve the difficult math problem 

first before asking for help. 

0.476  0.562 

CS19 When I meet a difficult math problem, I do not give 

up until I solve it. 

0.458  0.590 

Note. # represents item in reverse coding. Factor loadings for stated scale in italics. *p < 0.05.     **p < 0.01. 

Discussion and Conclusion 

Scale development requires a delicate balance between theory and statistical 

evaluation. Although the theoretical components conceptualised were assessed during 

factor analyses, the selection of factor models generated for further testing also depended 

on theoretical considerations. A limitation in this study is that the scales were only tested at 

high school level. To further validate the scales, the scale instrument could be administered 

to students from other levels of schooling in various educational settings where 

interdisciplinary learning takes place. The two small scales consisting of three to four items 

generated by both factor analyses had comparatively lower internal consistency values. An 

extension to this study would be to reassess the item composition of these scales, possibly 

adding parallel items for testing. 
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Table 4 

From Six Factor Model: Value and Interconnectedness of Mathematics 

Item Subscale/ Item Statement  Corrected 

Item-Total 

Correlation 

F3 F4 F5 F6 

Scale 3: Usefulness of Mathematics (UOM) 

Cronbach’s α = 0.735; Test-retest correlation r = 0.540** 

VA2# The math I am learning won’t be useful to me 

later in my life. 

0.629 0.844    

VE1# The math I am learning won’t be important in 

my future studies. 

0.575 0.836    

VA1# The math I am studying is useless to me now. 0.484 0.787    

Scale 4: Prospects with Mathematics (PWM) 

Cronbach’s α = 0.584; Test-retest correlation r = 0.445** 

VE3 Being good in math will help me get a job 

more easily. 

0.436  0.805   

VS2 Math is of great importance to a country’s 

development. 

0.364  0.752   

VE2 I expect to be able to use the math I am 

studying in my future job.   

0.381 0.379 0.487   

 

Scale 5: Inter-subject Learning (ISL) 

Cronbach’s α = 0.735; Test-retest correlation r = 0.608** 

IU3 Sometimes I use math to help me understand 

another subject. 

0.551   0.687  

IU1 I can use math to help me learn another 

subject better 

0.560   0.750  

IU4 I use another subject to help me learn math 

sometimes. 

0.503   0.667  

IC2 Sometimes, I combine what I know from math 

and other subjects to solve problems. 

0.396   0.615 0.326 

IR4# I don’t try to make connections between math 

and other subjects when I learn. 

0.367   0.554  

IR3 I find learning more meaningful when math 

and other subjects have common topics. 

0.351   0.478  

IR6 It is important to relate math to other subjects 

when learning. 

0.408   0.547  

Scale 6: Beliefs and Efforts in making Connections (BEC) 

Cronbach’s α = 0.622; Test-retest correlation r = 0.596** 

IU6 I have used math while working in another 

subject before. 

0.442    0.638 

IR2 I can see links between some math topics and 

other subjects. 

0.382    0.725 

IR1 Math may share some common topics and 

skills with other subjects. 

0.424   0.472 0.536 

IR5# Math has no connections with the other 

subjects I am studying. 

0.374   0.388 0.528 

Note. # represents item in reverse coding, factor loadings for stated scale in italics. *p < 0.05.     **p < 0.01. 
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In summary, items from the three affective domains, mathematical confidence, value of 

mathematics, and the interconnectedness of mathematics were classified into six scales, 

with two scales representing each domain during scale development. All items and their 

scales have been tested rigorously and the scales were found to have sound validity and 

reliability properties. Nevertheless, this study recognises that the scales especially 

purporting to measure perceptions of the interconnectedness of mathematics are new 

contributions to research on interdisciplinary learning, and that there were limitations to 

interpretations using the scales. However, information generated through the scales is 

useful in facilitating interdisciplinary learning. Hence, the scales are recommended for use 

in future research involving interdisciplinary education. 
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Analyses and commentary for 2002-2005 Mathematical Methods (CAS) pilot examinations 

in Victoria, on student performance with respect to common items with the standard course 

have been reported at previous MERGA conferences. In 2006, both Mathematical Methods 

and Mathematical Methods (CAS) were available to all Victorian schools as equivalent 

subjects with a new examination structure that comprised a 1-hour common technology-free 

examination and a 2-hour approved technology active examination. This paper provides 

some analysis of student performance on the technology free examination, and also with 

respect to common items in both the multiple choice and extended response components of 

the technology-active examination. 

Mathematical Methods and Mathematical Methods (CAS) are equivalent (in terms of 

curriculum and assessment) but alternative mainstream function, algebra, calculus and 

probability courses accredited 2006-2009 (Victorian Curriculum and Assessment Authority 

(VCAA), 2006a). Units 1 and 2 are typically studied at Year 11, and Units 3 and 4 are 

typically studied at Year 12 with corresponding end-of-final-year external examinations. 

Mathematical Methods was first accredited in 1993 and has been re-accredited several 

times, most recently in 2005. Student access to an approved graphics calculator (with 

stored material in calculator memory such as notes and supplementary programs allowed) 

both for learning and assessment, including examinations, has been assumed since 1998 

(the use of graphics calculators was permitted but not assumed for the 1997 examinations). 

Mathematical Methods (CAS) was an accredited pilot study of the VCAA 2001-2005 and 

is now a fully accredited study available to all Victorian schools. Mathematical Methods 

(CAS) assumes student access to an approved CAS (calculator or software). For the first 

time in Australia it is now possible to carry out comparative analysis of student 

performance on two such studies with respect to a common technology-free examination. 

 

During the most recent review of the Victorian Certificate of Education (VCE) 

Mathematics studies, the areas of study (content) and outcomes (expectations) for 

Mathematical Methods effectively converged to those for Mathematical Methods (CAS) – 

the latter essentially a progressive development from its parent study. In part this process 

was due to Mathematical Methods (CAS) being a more recently developed study of the 

mainstream function, algebra, calculus, and probability kind, but also it acknowledged the 

convergence between graphics calculator plus supplementary program and CAS 

functionality in several key regards. Thus, Mathematical Methods (CAS) encompasses 
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Mathematical Methods, and includes some additional curriculum content related 

principally to the use of matrices with respect to the solution of systems of simultaneous 

linear equations, transformations of the plane, two state Markov sequences, and an 

elementary introduction to functional relations. Mathematical Methods (CAS) also 

involves a more general treatment of families of functions defined using parameters and 

related algebra, and a greater emphasis on exact value representations. The VCAA has 

foreshadowed that the two studies will be merged into a single CAS-enabled study from 

2010.  

Aspects of research related to the use of CAS in senior secondary mathematics from 

Australia and around the world has been noted in Evans, Norton, and Leigh-Lancaster 

(2005). This included a summary of those systems and jurisdictions that have some CAS 

permitted or assumed components of examination assessment. In particular, by 2008, 

Denmark will have moved from several years of a situation similar to that which now 

applies in Victoria, to a technology-free and CAS-assumed examination structure for its 

Baccalaureat Mathematics examination.  

The emergence over the past few years of hand-held enabling technologies (at 

comparable cost to graphics calculators) such as the Classpad 300 and TI-nspire (with 

corresponding software versions) that readily support integrated numerical, graphical, 

statistical, dynamic geometry, symbolic, and text functionality in a single platform, 

provides an opportunity for the related research agenda to move beyond the context (senior 

secondary, function, algebra, calculus, and probability) in which much of this, and earlier, 

work of the authors has been predicated. That is, it is now possible to go beyond a 

conceptualisation of CAS calculators as essentially graphics calculator devices with 

symbolic manipulation capability, to one where the relevant enabling technology is 

understood to provide a selection of mathematical functionalities that may be deployed, 

and of which symbolic manipulation is just one such functionality. 

The Common Technology Free Examination  

Mathematical Methods (denoted MM) and Mathematical Methods (CAS) (denoted 

MM CAS) Examination 1 is a common 1-hour technology-free examination comprising 

short answer questions and some extended-answer questions worth a total of 40 marks (see 

VCAA, 2006b). It is designed to assess students’ knowledge of mathematical concepts, 

their skills in carrying out mathematical algorithms and their ability to apply concepts and 

skills in standard ways without the use of technology.   

A comparison of the mean performance of the two groups on the technology-free paper 

showed that the MM CAS group (M = 21.22, n = 538) performed at an almost identical 

level to the MM non-CAS group (M = 21.12, n = 16 057). This is also evident from Figure 1, 

which displays for each group the mean mark obtained for each question part on the 

examination. A non-significant result obtained by applying a sign test to these data is 

consistent with this conclusion (n = 22, x = 11, p > 0.05). 
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Figure 1.  Mean question part marks by group (MM CAS and MM).  

The virtually identical performance of the two groups on the technology-free 

examination does not appear to support the concern that students learning with the aid of 

CAS would potentially not develop the same level of symbolic facility as those learning 

without the support of a CAS.  It should, however, be recognised that the group of students 

taking Mathematical Methods CAS in 2006 is not necessarily a representative sample of all 

students undertaking the Mathematical Methods study in 2006. The Victorian Tertiary 

Admissions Committee (VTAC, 2007) scaling report, which compares the performance of 

all students in a given study with the rest of the student cohort across studies, indicates that 

the overall level of ability of the two Mathematical Methods cohorts (the standard and CAS 

studies) is effectively the same.  It would seem likely that the common curriculum 

requirements for both studies (in terms of key knowledge and key skills specified in the 

study designs) with respect to mental and by-hands skills of the type tested on the common 

examination 1, provides a robust basis for very similar levels of performance when 

students from either cohort do not have access to the relevant enabling technology. Indeed, 

given the slightly greater curriculum content for Mathematical Methods (CAS), it could be 

argued that these students have achieved very similar performance to the Mathematical 

Methods students, with slightly less available time. 

 

Common Multiple Choice Items on the Technology Active Examinations 

Mathematical Methods Examination 2 and Mathematical Methods (CAS) Examination 2 

are separate two-hour approved technology-assumed access examinations worth a total of 

80 marks each (VCAA 2006c, 2006d). They are designed to assess students’ ability to 

understand and communicate mathematical ideas, and to interpret, analyse, and solve both 

routine and non-routine problems. Examination 2 comprises 22 multiple choice questions, 
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worth a total of 22 marks, and several extended-answer questions (four in 2006) worth a 

total of 58 marks. Although there are some distinctive questions and/or parts of questions 

between the two examinations, much is common or very similar (roughly 70 - 80 % of 

material). Here we only look at the 17 common multiple choice items.  

Discussion of Multiple Choice Questions 

A comparison of the mean performance of the two groups on the common multiple-

choice questions showed that the MM CAS group (M = 12.13, n =  538) out-performed the 

MM group (M =11.50, n = 16 057). This is also evident from Figure 2 which displays, for 

each group, the percentage of students correctly answering each multiple choice question. 

The superior performance of the MM CAS group is confirmed by a sign test             

(n = 15, x = 13, p = 0.004).  
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Figure 2. Percentage of students correctly answering each common multiple choice question by group (MM 

CAS and MM). 

A comparison of the group mark profiles suggests that the MM CAS group 

outperformed the MM group on common questions 6 (by 15%), 9 (by 19%) and 10 (by 

7%). A statistical test of these differences, conservatively corrected for the effects of 

repeated testing, shows all of these differences to be statistically significant (p < 0.001).  

There were no multiple-choice questions on which the MM group statistically 

outperformed the MM CAS group. 

The questions have again been classified as technology independent (I); technology of 

assistance but neutral with respect to graphics calculators or CAS (N); or use of CAS likely 

to be advantageous (C). This classification scheme has now been used for several years in 

previous reports (Evans, Leigh-Lancaster, & Norton, 2005) and is similar to other schemes 
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used by researchers. Table 1 lists the stems of the multiple choice questions for which the 

MM CAS group outperformed the MM group and the classification of the questions. 

 

Table 1 

Classification of Multiple Choice Questions for Which the MM CAS Group Clearly 

Outperformed the MM Group 
 

Question 

number ( % 

difference) 

Question stem Classification 

6 (15) The function g has rule g = logex – b|, where b is a 

real constant. The maximal domain is 

I 

9 (19) The value(s) of k for which 2k + 1| = k + 1 are C 

10 (7) A fair coin is tossed 10 times. The probability, correct 

to four decimal places, of getting 8 or more heads is 

N 

 

Question 6 is a classic pencil-and-paper problem. Computational technology has no 

direct role to play in its solution, although an intelligent student could look at one or more 

graphs with technology where the b was replaced by a number to assist in answering the 

question. Both the absolute value function and the term “maximal domain” appeared for 

the first time in the MM curriculum, but had been in the MM CAS curriculum for the 

previous four years. Question 9 also uses the absolute value function, the equation can be 

directly  solved  by  a  student  with  a  CAS  by  simply  entering  a  command  like  “solve 

(abs(2k + 1) = k + 1, k)”. The two required solutions, 0 and 
3

2
−  are then automatically 

generated. In contrast, a non-algebraic graphics calculator only has a numerically-based 

equation solver that generates one solution at a time. This could potentially mislead a 

student into thinking that there is only a single solution. However, by drawing the graphs of 

either y = abs(2x + 1) − x − 1 or both  y = abs(2x + 1) and y =  x + 1 a MM student could 

have arrived at the correct alternative. Moreover, this is an example of a question for which 

the correct answer could be obtained by substituting each of the given alternatives into the 

equation to determine the correct selection. In answering question 10, the use of 

computational technology is highly advantageous.  However, a CAS offers no advantage 

over a non-CAS enabled graphics calculator in this situation. 

Extended Answer Questions 

Twenty-two question parts on the extended answer section of the MM CAS 

Examination 2 and the MM Examination 2 paper were both common in content and 

equally weighted in terms of marks. In terms of the marks obtained on these common 

questions,  the  MM  CAS  group  (M  = 21.99, n = 538)  out  performed  the  MM  group 

(M = 19.91, n = 16 057). This is also evident from Figure 3, which displays, for each group, 

the mean mark obtained for each question part. The superior performance of the MM CAS 

group is confirmed by a sign test (n = 21, x = 19, p = 0.0007). 
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Figure 3.  Mean question part marks by group (MM CAS and MM).  

A comparison of the group mark profiles coupled with a statistical test of the observed 

differences, conservatively corrected for the effects of repeated testing, showed 11 

questions on which the mean question marks differed between the two groups. All of these 

differences were found to be to be statistically significant (p < 0.001). For each of these 

questions, the mean difference in percentage terms (positive if in favour of the MM CAS 

group) and their classification in terms of technology independent (I), neutral (N) or CAS 

active (C) are displayed in Table 2. In addition, those items for which technology is of 

assistance but that are likely to be answered efficiently by conceptual understanding, 

pattern recognition or mental and/or by hand approaches have been indicated by an 

asterisk. 

On nine of these questions the MM CAS group outperformed the MM group. On the 

remaining two questions, the situation was reversed. 

Questions 7 and 8, where the MM group outperformed the CAS group, are clearly 

technology neutral (and asterisked), in that technology may be required to multiply and add 

fractions. There is evidence to suggest that the observed differences reflect the influences 

of curricula differences. These questions involved condition probabilities and their solution 

was best facilitated through the use of tree diagrams. This was consistent with the MM 

curriculum. In contrast, in the MM CAS curriculum, conditional probability is also 

introduced in the context of Markov chains in which problems are formulated in matrix 

terms. Using a matrix formulation to answer Questions 7 and 8 increases their difficulty 

level.  

The other two questions appearing in Table 2 that are technology neutral, Questions 9 

and 10, require a sketch of a density function and the calculation of an integral of a density 

function numerically, respectively. This area of continuous probability distributions is new 

to the Mathematical Methods curriculum.  
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Table 2 

Classification of Extended Answer Question Parts for Which the MM CAS Group Clearly 

Outperformed the MM Group on Nine 

Question Mean difference (%) Classification Notes 

3 12 C* Solve 0)( =′ xf  

4 21 C Equation of tangent 

5 32 C* Find axis intercepts of line 

6 18 C* Analysis skills required 

7 –17 N* Probability calculation based on 

conditional probabilities  

8 –46 N* Same as 7 

9 54 N Sketch of continuous density 

function 

10 24 N Numerical integral 

18 11 I Substitution of  x = 0 into 

polynomial equation 

21 10 C Solve 0)( =′ xf ; find value of  

f at this point 

22 10 C Solve simultaneous equations, 

one arising from a derivative 

 

All but one of the other questions mentioned are classified as being CAS-advantaged. 

Question 3 asked for the exact value of the other solution to 2 cos(x) = 1 over the domain 

[0, 2π].  (The solution 
3

π
 had already been given.)  It should be noted that not all CAS will 

find this answer. Questions 21 and 22 were  easily done using CAS. For question 22, 

students would simply define the function 
bx

a
xg

−

=

1
)( , and then simply issue a command 

such as “solve {g(0) = 7, 25.4)0( =′g } for {a, b}”. 

Conclusions 

The virtually identical performance of the two groups on the technology-free 

examination does not appear to support the concern that students learning with the aid of  

CAS would potentially not develop the same level of algebraic skills  as those learning 

with an ordinary graphing calculator. This is the first time that such a comparison has been 

able to be made. Follow up studies will be possible for the next few years while the 

Mathematical Methods and Mathematical Methods (CAS) examinations continue in their 

present form, with a technology-free examination. 

As has been observed in previous studies of Evans et al. (2005) MM CAS students 

generally perform better overall than MM students on common multiple choice items  and 

on common parts of extended response questions. One advantage of using CAS is that once 

a solution method has been formulated, it is often simple to carry out the method using 

CAS thus avoiding trivial algebraic errors. This then allows the student with CAS to 

engage easily with further parts of the question.  
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Student difficulties with the study of algebra have been well documented. The inability of 

many students to understand variables and formal symbolic manipulation act as a barrier to 

success in mathematics study. This report documents an intervention that uses a concrete 

approach to teaching algebra in a Year 9 class. Results indicate that much of the student 

struggle was associated with a lack of understanding of arithmetic concepts including those 

associated with equivalence, operations with negative integers, and the distributive law and 

fraction concepts. Once these difficulties were addressed through the explicit teaching of the 

links between materials and symbols, materials and language, language and symbols, students 

made considerable progress in writing, simplifying expressions, and solving equations with 

variables on both sides.     

Introduction and Background 
 

This paper reports on a teacher’s (Jane) attempts to teach critical algebra understandings, 

in particular, how to solve equations with variables on both sides. Jane is the mathematics 

subject head of department in a suburban high school situated in a middle to lower class outer 

Brisbane suburb. Historically very few students in the school opted to study intermediate or 

advanced mathematics and Jane hoped to increase the proportion of students enrolling these 

courses (Mathematics B and Mathematics C). To this end Jane devised an algebra 

intervention for Year 9, in which she hoped that student success in middle school algebra 

would encourage a higher proportion of the students to enrol in the more advanced senior 

mathematics subjects. This paper describes the intervention (in brief) and reports on the 

barriers to, and successes in, student learning of algebra when a verbal and concrete approach 

to teaching was undertaken. Stacey and Chick (2004) noted “The algebra teacher has a crucial 

role to play both in bringing algebraic representations to the fore and in making their 

manipulation by students a venue for epistemic growth” (p. 31).   

Many students come to the study of early algebra with poor understandings of arithmetic 

(Thompson & Fleming, 2003). The use of calculators can account for some of the difficulties 

associated with number computation (MacGregor, 2004), however, it is likely that failure to 

understand the structures of arithmetic (e.g., commutative law, distributive law, fractions, 

integers and operations) will place an added cognitive load on students when it comes to the 

study of algebra. Kieran and Yerushalmy (2004, p. 21) described algebra as “Generalization 

of numerical and geometric pattens and the laws governing numerical relationships” and 

Sfard (1994) discussed algebra as “generalised arithmetic” consisting of the “operational” and 

“structural” phases. Sfard’s (1994) definition of “operational algebra” can be summed up as 

being tied to arithmetic operations, for example, the use of backtracking to solve simple linear 

equations can be seen as the reversal of arithmetic operations. “Structural algebra” can be 

seen in solving an equation with variables on both sides, however, simple reversal of 

operations such as in backtracking does not suffice. The solution requires the suspension of 

operational thinking to view the overall structure of the equation, that is, “structural” 

thinking. Stacey and MacGregor (1999) regarded students’ ability to solve equations with 

variables on both sides as an indicator of “formal algebra” or what Sfard (1994) regarded as 

“structural algebra”. The ability of students to solve such equations can be seen as a marker 

between arithmetic and algebraic thinking.  
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Stacey and Chick (2004) noted an important part of algebra learning is transformational 

processes. Clearly, without the transformational tools of arithmetic, students are likely to be 

burdened with added cognitive load and struggle to move from operational to the structural 

phase of algebra thinking. Another way of putting this is to say that without a foundation of 

numeracy the “generalization” of it would seem to be a more difficult task, some would say 

an impossible task, unless the structures of arithmetic were made explicit and taught 

simultaneously with algebra, at least as far as can be done. In addition, Lins and Kaput (2004) 

support this position emphasising the parallels between fundamental processes of arithmetic 

and algebra.  

Jane’s concerns about the proportion of students undertaking more advanced mathematics 

are shared by the broader mathematics community (e.g., Barrington, 2006). It has previously 

been reported that traditional school algebra is not appropriate for students with weak literacy 

and numeracy skills and that these students may prefer to acquire knowledge through 

increased verbal interaction and concrete activity, and that failure in early algebra is likely to 

lead to passive withdrawal from further study or active rebellion (MacGregor, 2004). In this 

way algebra study acts as a filter to the study of more advanced mathematics (e.g., 

MacGregor, 2004; Stacey & Chick, 2004). Similarly, Jane’s focus on equivalence, 

expressions, variables and solving with variables on both sides of the equal sign have been 

described as critical to algebra (e.g., Bazzini, Boero, & Garuti, 2001; Herscovics & 

Linchevski, 1994; MacGregor & Stacey, 1997; Stacey & Chick, 2004; Stacey & MacGregor, 

1999). It is generally recognised that traditional approaches to teaching algebra have failed. 

Booker (1987) summed up the difficulties with problems associated with the introduction of 

symbolic values as being a result of changes in language and nuances with respect to 

operations when students attempt to move from operating arithmetically to algebraically. 

Kaput (1987) puts the issues more bluntly, pointing out the perceived meaninglessness of 

school mathematics in general, and algebra in particular, as being at the heart of the problem. 

Kaput (1995, p. 4) reported that most students see algebra as “little more than many different 

types of rules about how to write and rewrite strings of letters and numerals, rules that must 

be remembered for the next quiz or test.” In short, algebra makes little sense to many 

children. Solutions to the problem of algebra failure are many and frequently interconnected, 

and include the following:  

• Making explicit algebraic thinking inherent in arithmetic in children’s earlier 

learning (e.g., Lins & Kaput, 2004; Warren & Cooper, 2006). 

• Explicit teaching of nuances and processes of algebra in an algebraic and symbolic 

setting (e.g., Kirshner & Awtry, 2004; Sleeman, 1986; Stacey & MacGregor, 

1997, 1999; Stacey & Chick, 2004), especially in transformational activities (e.g., 

Kieran & Yerushalmy, 2004; Stacey & Chick, 2004). 

• Using multiple representations including the use of technology (e.g., Kieran & 

Yerushalmy, 2004; Van de Walle, 2006). 

• Recognising the importance of embedding algebra into contextual themes 

(National Council of Teachers of Mathematics, 1998; Stacey & Chick, 2004).  

Clearly, much more can be said about the scope of algebra research, however, this is a 

brief paper. A review of the literature reveals that as more and more is written the 

terminology becomes increasing specialised, but the problems have persisted over 20 years of 

algebra teaching reform. One explanation is that top down reform recommendations have 

been difficult to implement in the classroom. In this study, the reforms reported have been 

generated from a teacher’s perceptions of student needs and implemented as a reform of 

pedagogy in her classroom.  
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Method 
The overall design is a case study that uses design based research, in so much as cycles of 

design, enactment, analysis and re-enactment, analysis, and further design take place. As in 

all design-experiments, the specific research questions investigated in each iteration are 

conjured out of analysis of recent failures of previous iterations (Bereiter, 2002). This study 

reports on Jane’s third iteration of the intervention in 2006, but each iteration was essentially 

identical in terms of teaching approach. This iteration was the beginning of the researcher’s 

engagement with the school algebra project. Future iterations will reflect what has been learnt 

from the analysis reported in this paper. The involvement of the researcher as an active 

participant in this process gave the research design a participatory collaborative action 

research element (Kemmis & McTaggard, 2000).  

Participants  

The participants in this study were the classroom teacher, Jane, and the 18 students 

engaged in a 6 week algebra course. The school was a State School located in a middle to low 

socio-economic status suburb. In recent years between 4% and 7% of the senior school had 

enrolled in Mathematics C (Advanced Mathematics). Although approximately 25% enrolled 

in Mathematics B (Intermediate Mathematics), half of these students failed and or withdrew 

in Year 11, leaving approximately 12% entering Year 12. In comparison, the national average 

enrolment in 2004 for Advanced Mathematics was 11.7% and for Intermediate Mathematics 

it was 22.7% (Barrington, 2006). The students in the study were drawn from the 180 students 

in the Year 9 cohort. All 180 students were tested for general numeracy and more specifically 

to determine those who were “comfortable with the use of symbols to describe patterns” 

(Jane, personal communication, 2007). Students who scored in the top 1/3 on the pre-test 

were offered the algebra extension. There were three cohorts of about 20 students each. The 

intervention occurred in 18 one-hour lessons over 6 weeks.  

Data collection and Analysis  

All 18 lessons were observed and video recorded over the 6 weeks, including recording of 

class discussions, examples of student working on tasks in small groups, and examples of the 

teacher and researcher scaffolding student learning. Student work samples including 

workbooks, tests, and scripts were collected. Students were asked to explain their reasons for 

making mathematical decisions throughout the duration of the study. Student work was 

analysed for error patterns.  In the case of their test scripts errors in computation and 

transformation could be seen in their recording of their mathematical processes. This also 

occurred in examining their class work. Additionally, in class students asked why they made 

mathematical decisions.  Finally, the nature of student difficulties could be deduced from the 

questions they asked Jane and the discussions they had with their peers during group work.  

 

Results and Discussion 

Description of Instructional Discourse.  

Instructional discourse refers to the rules for selecting and organising instructional content 

(Bernstein, 2000). Jane articulated her intentions as follows, “They needed to experience 

mathematics study in an academic and rigorous way.” The instructional discourse was based 

on an underpinning theoretical framework put forward by Booker, Bond, Sparrow, and Swan 

(2004, p. 20).  
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While the role of materials and patterns they develop is fundamental, materials by themselves do not 

literally carry meaning…it is language that communicated ideas, not only in describing concepts but 

also helping them take shape in each learner’s mind.  

Jane’s selection of activity sources was based on helping students make connections 

between materials, verbal language initially, and then symbolic language. The primary 

sources of activity were A Concrete Approach to Algebra (Quinlan, Low, Sawyer, White, & 

Llewellyn, 1987) and Access to Algebra Book 2 (Lowe, Johnston, Kissane, & Willis, 1993). 

These resources used unmarked cups with hidden counters (blobs), envelopes with hidden 

counters to help develop the concept of variables, and extensive use of other concrete 

materials including patterns made from counters or match sticks.  Both resources emphasised 

the use of language and logic to connect patterns modelled with material to verbal 

descriptions of the patterns, tabular summaries of the patterns and symbolic representations. 

Jane used match stick patterning to introduce variables and activities with cups, counters 

(blobs) and envelopes to explore writing expressions, equivalent expressions, simplifying 

expressions, expanding expressions and writing equivalent equations.  Equations were created 

and solved using the balance model, initially with the concrete materials and, then, linking to 

traditional recording using symbols. Activities from Lowe et al. (1993), were selected that 

emphasised the links between materials and symbols. In this way students saw the meaning of 

the equals sign in the context of an algebraic equation. They also learnt the careful recording 

of transformations on both sides of the equation. The third source of student activities was 

based on the symbolic recognition and manipulations of algebra terms covered above 

embedded in algebra games that Jane had devised. The algebra games were constructed 

according to principles outlined by Booker (2000), some were track or strategy grid board 

games in which diagrammatic representations of concrete materials needed to be matched 

with symbolic expressions. Other games included concept games in which randomness of 

question was introduced by throwing dice of various configurations. For example, a concept 

game required players to write an algebraic equation from a scenario given in words and then 

solve the equation: A number is multiplied by � (a ten sided die is rolled to provide this 

number), then � is added to it (a second 10 sided die is rolled to provide this number), the 

answer is � (a 36 sided die is rolled to provide this number), what is the number? Such an 

equation is linear with a variable on one side of the equals sign. It can be solved using the 

balance model and frequently results in a fraction solution. The games could be played by two 

or three students, and enabled them to consolidate and attain competency in the mathematics 

learnt in prior activities.  

Description of Regulatory Discourse  

Regulative discourse refers to the models of the teacher, learner and, pedagogic relations 

that underpin the selection and organisation of content within learning activities (Bernstein, 

2000). Typically, the 1-hour lessons were divided into three segments. In an introductory 

segment, Jane used the white board and an activity selected from Quinlan et al. (1987) or 

Lowe et al. (2001) as the basis to conduct a class discussion on the key concepts. During the 

segment she kept a careful record of the discourse on the white board. In this discourse, Jane 

emphasised the links between materials, natural language which she extended to the nuances 

of algebraic language, and symbols. Typically, in the second segment, students worked in 

pairs or threes on activities selected from Quinlan et al. (1987) or Lowe et al. (1993) and Jane 

helped individuals or pairs of students when they requested assistance. Sometimes this 

activity continued to the end of the class. Generally, the third segment was used by students to 

play the algebra games designed to give students an opportunity to apply and consolidate the 

algebra learning that had occurred earlier.  
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Results of Discourse  

The results of this discourse are presented in two sections. First, the types of errors that 

limited student completion of the algebra tasks are presented. Second, the success or 

otherwise of students on a written test and an analysis of their errors is presented.  

Video analysis of teacher/student discussion indicated that the following difficulties 

and/or errors were most common in limiting student understanding and completion of the 

algebra based activities. 

1. Difficulties associated with operations with negative integers (e.g., 4 – - 3; - 4 + - 2; 

 -3 – -7). Students did not know how to complete these computations. In addition 

students experienced difficulties with subtraction signs when expanding, for 

example 2(4 – 5), students ignoring the – sign and treating it as an addition 

obtaining an answer of 18; and 3(2x – 4) expanded to 6x + 12.  

2. Difficulties associated with solving equations of the form 3x + 3 = 15. In particular, 

students not treating the equal sign as an indication that equivalence must be 

maintained. For example, students removed the 3 from the left hand side but not the 

right hand side, thus solving for x as equal to 5. Similar mistakes were made on 

equations such as x – 2 = 2x + 3 where students would add 2 to the LHS but not to 

the RHS. When students were first challenged with problems of this structure, some 

attempted to use “backtracking” and simply reported it could not be done.  

3. Difficulties associated with number facts, such as students not knowing their 

multiplication facts and making computational errors. 

4. Difficulties associated with fractions, such as errors in solving equations of the form 

3y + 18 = 6y + 6; students responding with y + 18 = 2y + 6 indicating that students 

had generalised inappropriately about cancelling. In this instance the error has its 

roots in arithmetic where students are taught to simplify fraction computations by 

cancelling. For example, in operating upon the fraction below (e.g., (2 + 3) divided 

by 2), students simply cancelled the 2s and answered 3.  

This over generalisation in regard to fraction cancelling results from an inadequate 

understanding of fractions, and the application of this limited understanding to the algebra 

solving problem above fails the student irrespective of the student’s understanding of 

symbolism. One of the goals of the teaching program was to address these difficulties within 

the teaching of the algebraic skills. Jane and the researcher’s approach when confronted with 

such problems in the context of algebra was to re-teach the concepts in arithmetic contexts 

(e.g., students adding 
1
/2 to 

3
/3  equal 

4
/5); Jane would revise the concept of equivalence of 

fractions using paper fraction strips to display a visual model of equality or in equality, in this 

case one half is not equal to one third, before linking this to multiplication by unity (e.g, 
1
/2 

×
3
/3 = 

3
/6 to enable the formation of fractions with the same name or denominator). The 

approach of teaching arithmetic and algebra concurrently with the aid of concrete materials 

has found favour in those who recommend the teaching of algebra early in students study (e.g, 

Lins & Kaput, 2004; Warren & Cooper, 2006).  

Summary of Written Test Results 

A written post test consisting of 25 separate questions was completed by 15 students. One 

of the students missed many of the algebra lessons and her results were consistently incorrect. 

A sample of the questions and the number of students who answered them correctly are listed 

in Table 1. All students were able to recognise the pattern, complete the table of ordered pairs 

and represent it symbolically as equivalent to p + 2 = n. One student did not complete the 

equation. Seven of the students were able to correctly graph the function. Little class time was 

spent on graphing of variables. A number of authors have noted that multiple representations 
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of functions including the generation of tables and graphs assist student understanding of 

algebraic relationships (e.g., French, 2002; Kieran & Yerushalmy, 2004). French (2002, p. 

81) commented that “students need to understand the links between the equation, the table of 

values or set of co-ordinates and the graph, and to be able to move fluently between these 

representation.” In this regard the use of technologies such as excel spread sheets and 

graphing calculators has been recommended (e.g, Kieran & Yerushalmy, 2004; Kissane, 

1999). Clearly, this was an instructional discourse issue to be addressed in future algebra 

teaching in this school.     

Table 1 

Summary of Test Results for 15 Students 

Concept Typical question  Correct 

responses  

Completing a 

pattern, table, and 

describing the 

pattern 

algebraically.  

 

•••• ••••  •••• ••••  ••••    

••••  •••• ••••  •••• ••••  ••••  •••• ____ ____ ____ 

1 2 3 4 5 6 

                   

 

P 1 2 3 4 5 6 20  

N        102 

     

14 /15 

1 partial  

Writing 

expressions and 

equations 

(f)    

 
 

 

14/15 

 

 

 

 

 

13 /15 

1 partial  

Simplify 

expressions  

7x – 2x +5y – 3y 14/15 

Expand and 

simplify  

3(3x – 2y) 

b(x + 2y) 

14/15 

 8/15 

Solving equations 

with model 

3y + 2 = y + 6 10/15, 2 partial 

answer.  

Solving equations 

without a model 

5x + 2 = 7x – 9 5/15 correct, 2 

partial correct. 

 

Almost all students were able to write the symbolic expression given a pictorial 

representation. For example, all but two students could transform an equation represented 

with cups and counters into an algebraic equation (see question g; 2y + 6 = 3y + 3). These 

findings suggest that student understanding of the variable concept was progressing, in that 

students used symbols to represent variables in an unknown context. These findings are in 

Mathematics: Essential Research, Essential Practice — Volume 2

556



  

contrast with those of MacGregor and Stacey (1997) who reported that the majority of 

students in a broad Australian study up to age 15 seemed unable to interpret algebraic letters 

as generalised numbers or even specific unknowns. MacGregor and Stacey found students 

ignored letters, replaced them with numerical numbers or regarded them as short hand names. 

For example, some students viewed letters in algebra as abbreviated words, whereas others 

the letter with its place in the alphabet (as occurs in some puzzles and code translations). In 

addition, MacGregor and Stacey noted that students writing of letters in contexts such as h10 

meant add “10 to h” and 1y meant take one from y, indicative of the Roman subtraction 

principle. Clearly, some of these errors arise out of the inappropriate transfer of 

generalisations. Of additional concern to MacGregor and Stacey was the prevalence of 

students being unable to distinguish the name of the object (e.g., the person Con) from the 

name of the attribute (e.g., Con’s height). Such errors are a serious obstacle to writing 

expressions and equations. Such errors were not evident in the final written tests or during 

class in the latter stages of the intervention in this study. The findings that almost all the 

students could interpret and simplify the cups and counters equation representations correctly 

is encouraging and in contrast to the results reported by MacGregor and Stacey (1997). 

Essentially, this meant that the students recognised that x and y were symbolic representations 

of a variable (generally) and could complete simple arithmetic computations involving the 

symbols.     

Almost all students expanded 3(3x – 2y) correctly, but less than half of these students 

were able to expand b(x + 2y) appropriately. This suggests that the students might not have an 

understanding of multiplication separate from repeated addition. Subsequent to reviewing 

these results Jane reported that she had believed that the way she taught expansion by using 

concrete materials encouraged the students to use repeated addition at first. She had hoped for 

them to then establish a pattern which would mature to the full understanding of the 

distributive law. Jane said she was attempting to assist the students to develop a full 

understanding rather than a superficial procedural knowledge likely to be generated by the 

usual approach to expansion such as drawing arrows from the 3 to the 3x and -2y.  The test 

scripts supported her preferred approach for treating 3(3x – 2y). However, those students who 

could not expand b(x + 2y) expanded 3(3x – 2y) using the repeated addition algorithm as 

follows (Figure 1): 

 

( ) =− yx 223  6x – 6y 

+

yx

yx

yx

22

22

22

−

−

−

 

   yx 66 −  

 

Figure 1. Teaching expansion 

When the variable in front is included, as in b(x + 2y), the repeated addition model is no 

longer an available strategy. However, students with a good understanding of the distributive 

law, for example, being able to view 14 x 3 as (10 + 4) multiplied by 3, which can be taught 

with a focus on place value (i.e., 4 ones multiplied by 3 ones is 12 ones, renamed as 2 ones 

and 1 ten; 1 ten multiplied by 3 ones is 3 tens, added the renamed ten gives a total of 4 tens 

and 2 ones or 42 ones), ought to have been able to make the transition. Most did not. When 

this early number teaching is linked to the array model and the application of the distributive 

law, the number multiplication 3(10 + 4) has exactly the same structure b(10 + 4) and the 

similarity in structure can be extended to b(x + 2y). This example illustrates the opportunity 
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to capitalise on an understanding of arithmetic structures in the learning of algebra. In this 

study the use of the array model in linking the application of the distributive law in number 

and algebra was not made explicit, hence it might reasonably be argued that the student 

results reflected this omission.  

Almost all students solved an algebraic equation with unknowns on both sides using 

materials (Table 1 – Solving equation with model), and one third of the students solved a 

similar structured equation without the use of materials (Table 1 – Solving equation without 

model). It could be said that those students who completed the solving task without materials 

had developed an abstract schema of variables while those who solved the equation with 

materials but not without, were at an intermediate stage. Ability to equation solve such as that 

above has been described as achieving beyond a didactic cut or cognitive gap (Herscovics & 

Linchevski, 1994) and is a critical indicator of algebraic thinking. Similarly, Stacey and 

MacGregor (1999) regard this type of problem solving as an indicator of formal algebra 

capacity. This is the case since the equation cannot be easily solved arithmetically, algebraic 

competence is required (Stacey & MacGregor, 1999). Stacey and MacGregor reported that 

only about 8% of Year 10 students made this cut, those failing tending not to use logical 

reasoning in relation to inverse operations, instead using guess and check methods or 

attempting to use numerical methods; that is, they could be described as not reasoning 

algebraically.     

Encouragingly, there was no evidence at the end of the study that students retained 

misconceptions about symbolism including confounding with place value, letters standing for 

abbreviations or for specific numbers, misuse of conventions (e.g., work from left to right), 

and false analogies with ordinary language such as that described by Stacey and MacGregor 

(1997) and Sleeman (1986).     

 Conclusions and Recommendations 

The activities in this intervention were not applied or linked to authentic contexts or real 

world situations. This was almost pure algebra with a heavy focus upon the development of 

symbolic meaning and symbolic manipulation through the use of concrete materials. The 

results cause us to qualify the recommendations of the NCTM (1998) that the teaching of 

algebra be tied to contextual themes. The relative success of students in writing expressions 

and solving equations reported in this study prompt us to reconsider what “contextual” really 

means. The use of concrete materials and student discussion such as that recommended by 

Quinlan et al. (1987) and Lowe et al. (1993), and also reflected in algebra games, was 

sufficient to engage and help students make sense of algebra processes.     

 The results support the notion that the essence of learning algebra like that of arithmetic 

is to make connections between materials, patterns and symbolic meaning through the 

medium of language (e.g., Booker et al., 2001). In this instance, the use of materials was 

guided by resources that have been available to Australian teachers since the late 1980s (e.g., 

Quinlan et al., 1987) and early 1990s (e.g., Lowe et al., 1993). These resources place 

emphasis on students making meaning through the use of materials, discussion and students’ 

articulation of their mathematical thinking, through natural language initially, then 

subsequently through the specialised language of algebra conventions. The results support the 

explicit teaching of the nuances and processes of algebra in an algebraic and symbolic setting 

(e.g., Kirschner & Awtry, 2004; Sleeman, 1986; Stacey & MacGregor, 1999). The findings 

should encourage teachers and researchers to look again at multiple representational 

techniques and the use of concrete material resources as an alternative to the way algebra is 

traditionally taught in middle school.     

Mathematics: Essential Research, Essential Practice — Volume 2

558



  

An examination of student needs in needing the links between representations to be made 

explicit throughout the trial and, to a less extent the error patterns exhibited in the final test, 

indicate that much of the “trouble” for students was not associated with algebra but rather had 

its roots in incomplete understanding of arithmetic structures.  The error patterns associated 

with doing operations with integers (operating with negative integers), lack of understanding 

of the equal sign, over generalisation of cancelling procedures (fraction errors), and an 

incomplete understanding of the distributive law, have their roots in arithmetic 

misconceptions, and incomplete understandings and inability to transfer arithmetic 

understandings to algebraic contexts.  

In this small and “streamed” class most of the misconceptions usually could be addressed 

through the intervention of the teacher and researcher. Subsequent to this analysis, the use of 

more explicit linking of arithmetic and algebraic structures will be investigated in future 

iterations of the research study (e.g., the application of the distributive law in two digit 

multiplications and expansion of algebra expressions). In a larger and heterogeneous class it 

is easy to envision that a limited understanding of the structures of arithmetic and inability to 

see their relevance to algebra could spell the end of algebra competency and confidence 

among students. We concur with the assertions of previous authors (e.g., Lins & Kaput, 2004; 

Warren & Cooper, 2006) that critical concepts underpinning algebra (e.g., equal concepts, 

integer study, fractions, the distributive law and general arithmetic computational 

competency) need to be emphasised in the primary years. For example, younger students can 

be taught with the aid of materials in order to help them solve simple equations (Warren & 

Cooper, 2006). This process helps students understand the structures of arithmetic in that the 

unknown is seen as a quasi variable to be solved by backtracking, or arithmetic operations 

based about the balance model, and reverse operations that emphasise the meaning of equals. 

With the careful use of materials the balance model thinking can be extended to 

understanding how to solve equations with variables on both sides.  

 With an understanding of arithmetic, upon the beginning of formal algebra study, when 

arithmetic processes including “do the same to both sides”, “use a graph”, “guess and check”, 

and “backtracking”, do not work (Stacey & MacGregor, 1999), students would be equipped 

with an operational and structural understanding of arithmetic such that they can transfer the 

understanding to the “operational” then “structural” phases of algebra, and to “value” the 

study of algebra. The importance of valuing algebra is that usually arithmetic means do not 

work efficiently with “real algebra” problems, whereas algebra enables an efficient solution to 

be found (Stacey & MacGregor, 1999).     
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Developing Positive Attitudes Towards Algebra 

 
This paper reports on one teacher’s attempts to teach critical algebra understandings to a 

Year 9 class in ways that engage the students and help them to develop positive perceptions 

of their ability to learn algebra in a “rigorous and symbolic way”. This paper describes a 6-

week algebra intervention based upon connecting concrete representations with symbolic 

expressions and equations through the careful use of formal algebra language. The teacher 

had expressed her aspirations that interventions such as this would encourage more students 

to undertake intermediate and advanced mathematics courses in senior secondary years. The 

study collected data on student perceptions about their learning experiences including 

perceptions about mathematics as a subject domain, engagement with the activities, 

development of algebraic understanding, and the quality of discourse within the classroom. 

This study found that the students valued the classroom discourse much more than they did 

the normal mathematics learning experiences. These findings have implications for in-

service and pre-service teacher education.  

 

Introduction and Background 

This paper analyses one teacher’s (Jane) attempts to teach critical algebra 

understandings, in particular, how to solve equations with variables on both sides. Jane is 

the mathematics subject head of department in a large suburban school situated in a middle 

to lower class outer Brisbane suburb. Historically very few students in the school opted to 

study Advanced Mathematics and Jane’s goal was to increase the proportion of students 

enrolling in these subjects (Mathematics B - Intermediate Mathematics and Mathematics C 

- Advanced Mathematics). In recent years between 4% and 7% of senior students enrolled 

in Advanced Mathematics, much lower than the national average of 11.7% in 2004 

Barrington, 2006). Approximately 25% enrolled in Intermediate Mathematics, which is on 

a par with the national average (Barrington, 2006). With this goal in mind, Jane devised an 

algebra intervention for Year 9 to be extended to Year 10 that she considered would foster 

student success in middle school algebra and, consequently, would encourage a higher 

proportion of the students to enrol in the more advanced senior mathematics subjects. That 

is, she hoped that if students had success and formed positive perceptions about 

mathematics they would be more inclined to tackle Mathematics B and C.  

The research literature indicates that declining student perceptions and participation in 

mathematics study is of broad concern. For example, a decline in student perceptions of the 

worth of mathematics study has been reported from about Year 4 onward (e.g., Thompson, 

& Fleming, 2003), and Barrington (2006) has reported the declining participation in 

intermediate and advanced mathematics between 1995 and 2004. He concluded that:  

There has been a significant nett loss of students taking the Year 12 mathematics options in which 

higher-level mathematical skills are taught. This has implications for the recruitment of students to 

undertake tertiary studies in the quantitative sciences, and for the national capacity for innovation in 

engineering and technology. The effects are much wider: fields such as finance and molecular 

biology are developing into quantitative and sophisticated areas. (p. 4)  
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Student attitudes to algebra are central to this process because early failure in algebra is 

likely to result in passive withdrawal from further study in the area or active rebellion 

(MacGregor, 2004). Hence, algebra study may act as a filter for further study in 

mathematics (e.g., MacGregor, 2004; Stacey & Chick, 2004), therefore, the development of 

positive attitudes to the subject are essential to increase student enrolments in advanced 

mathematics subjects.  

Researchers have noted that early educational and socialisation processes are critical to 

children’s learning and perceptions and subsequent participation in education (Khoon & 

Ainley, 2005). Student perceptions, which include their expectations of success and the 

value that they attribute to particular tasks, have been found to correlate strongly with later 

participation in study (Ethington, 1992; Wigfield & Eccles, 2000). The analysis of this 

relationship in the TIMSS data for Australian school students by Thomson and Fleming 

(2003) supports theorised connections between perceptions, participation and performance. 

Perceptions shape the information individuals attend to and how it is interpreted (De Bono, 

2004). In summary, the decreasing participation of students in mathematics can be related 

to the interaction of three perceptions held by an increasing proportion of students:  
 

1. Algebra is perceived as uninteresting and based upon symbolic manipulation with limited 

meaning and little relevance to every day life (e.g., Boaler, 2000; Kaput, 1995; MacGregor, 

2004; Stacey & Chick, 2004). 

2. Algebra is perceived as difficult (e.g., MacGregor, 2004).  
 

Some critical aspects that have led students to see mathematics in these ways include 

an over-reliance on textbook work with a procedural focus, teacher dominated discourse, 

and closed learning activities that result in a lack of understanding and capacity to transfer 

knowledge (e.g., Hollingsworth, Lokan, & McRae, 2003). Gregg (1995) described this 

“school mathematics tradition”, as a tradition that is well entrenched and resilient (Perry, 

Howard, & Tracey, 1999). Repeatedly, students report that they neither understand 

important mathematical concepts nor appreciate why they are worth the effort of learning 

(Watt, 2005). What is true for mathematics in general is especially true of algebra since its 

understanding assumes knowledge of the specialised processes and language nuances 

associated with symbolic representations (e.g., Stacey & Chick, 2004). The student 

perceptions that they cannot understand mathematics and that it is a hard subject is linked 

to an image students have of mathematics as an abstract collection of rules and processes 

(Boaler, 2000; Kaput, 1995). This is particularly in the case of algebra where resources 

found in standard texts frequently do not encourage teachers to enact appropriate pedagogy 

to foster algebraic thinking (Kaput, 1995; Stacey & MacGregor, 1999). Further, it has been 

reported that if students engage in “extensive symbolic manipulation before they have 

developed a solid conceptual foundation for their work, they will be unable to do more than 

mechanical manipulation” (Kirshner & Awtry, 2004, p. 39). That is, they did not think 

deeply about mathematical concepts and structures and were not challenged to think about 

solving problems, rather, classroom discourse was dominated by the practice of routine 

operations. In terms of the difficulty students have with algebra study, Stacey, and 

MacGregor (1999) found that only 8% of 116 Year 10 students (16 years old) could solve 

an equation with variables on both sides if it included fraction operations. Given this lack 

of success in algebra study it is hardly surprising that many students developed the 

perception that algebra was a hard subject and that they had little confidence in succeeding. 

In addition, MacGregor (2004, p. 315) noted: 
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Academic learning based upon reading and writing, such as the traditional school algebra of 

symbolic manipulation and word-problems, is not appropriate for students with weak literacy and 

numeracy skills.  

MacGregor (2004), citing Marks and Ainley (1997), indicated that only about 20% of 

14-year-olds had the literacy and numeracy skills to cope with algebra study. Stacey and 

MacGregor (2004) have reported that the major reason for student difficulties with using 

algebraic methods for problem solving is that they do not understand its underpinning 

logic. Students tend to wish to calculate in the first instance, a behaviour that is consistent 

with their arithmetic learning. However, algebra requires an analysis of the problem and 

transforming it into algebraic equations. That is, students need to recognise, construct and 

manipulate algebraic expressions before applying their computational skills. Many students 

struggle with this change in operating and have had little support to make the transition.  

Teachers are central to any model of effective educational reform and renewal (e.g., 

Doerr, 2004). Consequently, it is imperative to analyse systematically all aspects of 

teachers’ classroom practices including the intended curriculum (curriculum guidelines, 

lesson plans), implemented/enacted curriculum (co-construction of classroom knowledge), 

and attained curriculum (what students actually learn) (Taylor, Muller, & Vinjevold, 2003). 

Thus the purposes of this paper are as follows: 
 

1. To describe briefly an algebra intervention designed to immerse students in active learning 

through engagement with concrete materials and careful use of language.  

2. To describe the students’ perceptions about the algebra intervention including: whether they 

were engaged to think deeply and understand mathematical ideas, perceptions of fun, 

availability of teacher support, how hard they worked and how much they were challenged, 

the collaborative nature of tasks and perceptions about the nature of mathematics, in 

particular, whether they viewed algebra as essentially symbolic manipulation or about 

mathematical ideas.  
 

The cognitive gains of students have been analysed and described in a companion paper 

(Norton & Irwin, 2007).  

 

Method  

The overall methodology is a case study that uses design based research, in so much as 

cycles of design, enactment, analysis and re-enactment, analysis and further design take 

place. As in all design-experiments, the specific research questions investigated in each 

cycle are conjured out of analysis of recent successes and/or failures of previous cycles of 

the research (Bereiter, 2002). This paper reports on Jane’s third iteration of her teaching 

intervention commenced in 2006. Each iteration was essentially identical in terms of 

teaching approach. The third iteration was concurrent with the researcher’s engagement 

with the school algebra project. Future iterations of the intervention will reflect what has 

been learnt from the analysis reported in this paper. The involvement of the researcher as 

an active participant in this process gave the approach a participatory collaborative action 

research element (Kemmis & McTaggard, 2000).  

Participants  

The participants in this study were the classroom teacher, Jane, and the 18 students 

engaged in a 6-week algebra course. The students in the study were drawn from the 180 

students in the Year 9 cohort. All 180 students were tested for general numeracy and more 

specifically to determine those who were “comfortable with the use of symbols to describe 
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patterns” (Jane, field notes). Students who scored in the top 1/3 on the pre-test were offered 

the algebra extension. There were three cohorts of about 20 students in each group. These 

students were drawn from the 7 mixed ability classes in Year 9. Although the students had 

done some patterning, backtracking and work with quazi variables, this was their first real 

exposure to algebraic symbolism. Since the selected students came from most of the 7 

mixed ability mathematics classes, we can conclude that the students’ descriptions of the 

mathematics classes that they were drawn from are representative of middle school 

teaching in that school.   

Description of Intervention  

The intervention will be described in terms of the concept Instructional Discourse, 

which refers to the rules for selecting and organising instructional content (Bernstein, 

2000). The instructional discourse was based on an underpinning theoretical framework put 

forward by Booker, Bond, Sparrow, and Swan (2004, p. 20).  

While the role of materials and patterns they develop is fundamental, materials by themselves do not 

literally carry meaning … it is language that communicated ideas, not only in describing concepts 

but also helping them take shape in each learner’s mind.  

Jane’s selection of activity sources was, therefore, based on helping students make 

connections between materials, verbal language initially, and then symbolic language. The 

primary sources of activity were A Concrete Approach to Algebra (Quinlan, Low, Sawyer, 

White, & Llewellyn, 1987) and Access to Algebra Book 2 (Lowe, Johnston, Kissane, & 

Willis, 1993). Jane used match stick patterning to introduce variables and activities with 

cups, counters (blobs), and envelopes to explore writing expressions, equivalent 

expressions, simplifying expressions, expanding expressions, and writing equivalent 

equations. Activities from Lowe et al. (1993) were selected that emphasised the links 

between materials, patterns, and variables, and used the balance model for representing and 

solving equations including those with variables on both sides. The third source of student 

activities was based on the symbolic recognition and manipulations of algebra terms 

covered above embedded in algebra games that Jane had devised. The algebra games were 

constructed according to principles outlined in Booker (2000). The games were played by 

two or three students, and enabled them to consolidate and attain competency in the 

mathematics learnt in prior activities. A companion article describes the teaching approach 

in more detail (Norton & Irwin, 2007).  

Typically the 1-hour lessons were divided into three sessions. In the introductory 

session Jane used the white board and an activity selected from Quinlan et al. (1987) or 

Lowe et al. (1993) as the basis to conduct a class discussion on the key concepts. In the 

second session students worked in pairs or threes on activities selected from Quinlan et al. 

(1987) or Lowe et al. (1993) and Jane scaffolded the learning of individuals or groups of 

students. Sometimes this activity continued to the end of the class. Generally, the third 

session was spent by the students playing the algebra games.  

Data Collection 

Eighteen one-hour classes were observed and recorded on video. At the end of the 

intervention the students completed a 5-point Likert perceptions survey, developed by the 

first author, consisting of 40 questions related to eight attributes. The selection of eight 

attributes was informed by the literature on student attitudes towards mathematics and, in 

particular, to learning of algebra (e.g., Boaler, 2000; Kaput, 1995; MacGregor, 2004; 
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Stacey & Chick, 2004). These attributes of mathematics learning are thought to be 

important to the formation of student perceptions and subsequent participation in 

mathematics study. The items were positive or negatively worded and each question started 

with the phrase, Compared to the way I usually study (or study) maths …. The eight 

attributes and a relevant sample question are shown below,  
 

1. Student perceptions on the depth of their mathematical thinking. E.g., … the activities in 

this class help me to think deeply about mathematical ideas.  

2. Student perceptions of fun and interest associated with the algebra learning. E.g., … the 

learning in this class is more fun. 

3. Student perceptions of their confidence to develop mathematical understanding 

underpinning mathematical processes. … the learning in this class has encouraged me to 

believe I can understand mathematics better.  

4. Student perceptions of support for learning provided by the teacher. E.g., … the teacher in 

this class helps me more. 

5. Student perceptions of how hard they worked in class. … I work harder in this class. 

6. Student perceptions about how challenging the activities were. In this class I am challenged 

to figure out how to solve problems. 

7. Student perceptions of collaborative learning. … I and the people I sit with help each other 

more. 

8. Student perceptions about the nature of mathematics … Before I thought maths was mostly 

about operations and symbols, this class has helped me see it is about ideas. 
 

Subsequently, each student was interviewed about her/his responses, a process 

designed to increase the validity of the perceptions survey. For example, students were 

asked explain and expand upon their responses to the survey and, in addition, compare 

these responses with their perceptions of mathematics in their normal classrooms. These 

interviews were video recorded. Finally, the students were asked to draw two pictures, one 

to represent their perceptions with regard to their normal mathematics classroom 

experiences and the second to represent their perceptions with respect to their algebra 

learning experiences in the intervention class. The students then briefly interpreted their 

diagrams for the author and these were audio recorded.  

Results  

The results of the analysis of students’ perceptions of the intervention are presented in 

three parts. The first part describes student responses to the perceptions survey. Second is 

the description and analysis of student interview data. Finally, an analysis of the pictures 

students were asked to draw about activities and feelings in the different classes is 

presented. The results of the survey are summarised in Table 1.  

The responses indicate that students responded either strongly agree (5) or agree (4) on 

each attribute gauging their perceptions of Jane’s intervention. In short, the high mean 

values for each attribute imply that on completion of their engagement in Jane’s 

intervention all students perceived that they thought more deeply about mathematical ideas, 

perceived that the activities were more interesting and fun; that they had developed greater 

confidence in their capacity to understand mathematics; that they had the perception that 

the teacher had a greater role in helping them learn; that they worked harder and spent 

more time on task and perceived that the tasks were more challenging; that there was more 

collaborative learning; and that they had developed the perception that their concept of 

mathematics had shifted from one predominately associated with computations and 

symbolism towards one aligned with problem solving and mathematical ideas.  
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Table 1 

Summary of Student Responses to the Perceptions Survey  

Learning attribute Mean n=18 Standard Deviation 

1 Depth of thinking  4.48 0.44 

2 Fun and interest  4.48 0.63 

3 Confidence to understand  4.57 0.43 

4 Teacher support  4.62 0.53 

5 Hard working 4.57 0.46 

6 Task challenge  4.22 0.47 

7 Collaborative learning 4.39 0.37 

8 Nature of mathematics  4.22 0.54 

 

Interview data supported the key findings from the survey analysis described above. 

The interview data did reveal that, in stark contrast to positive outcomes from the teaching 

intervention, all 18 student participants reported that in their normal mathematics class they 

did little mathematics work. Several indicated that in one class a small group of boys was 

disruptive and diverted the teacher from teaching students who wanted to learn. It was also 

reported that classroom activities were usually boring and consisted mostly of repetitious 

work from a textbook or worksheets that the students found confusing. The students 

reported that – frequently – they did not understand the mathematics work and received 

little assistance from the teacher. The following comment can be described as a typical 

example of students’ perceptions of their normal classrooms: “Text books are a bad thing, 

because, you are just doing the same thing from the same maths book over and over again. 

It gets really boring.”   

Explanations for the behaviour of peers who disrupted the normal classes included that 

these students had “given up trying to learn mathematics” and it was unlikely that any form 

of mathematics teaching “would interest them”. For example Lorry reported:  

They just do not want to do it, or they can’t, or they are just too lazy or they have just given up hope.  

The students were asked “If the average student who ‘mucks up’ received the teaching that 

they had experienced in the algebra class, could they understand the algebra work?” Most 

students responded “Probably”. 

It was clear that student responses to questions about the learning environment could be 

grouped into two themes: those related to teacher scaffolding and student collaborative 

learning, and those related to the use of the concrete materials and games. The following 

responses made during the final interview were typical of student comments on teacher and 

peer support in the algebra class.  

This teacher helps me understand a lot more. 

The teacher explains it more and my friend can help me as well. 

We help each other a lot more in this class.  

These student comments above are substantiated by data collected through prolonged video 

observation of the class during the intervention. An increased level of cooperative learning 

increased over time was observed as the students became more familiar with other and the 

teacher’s ways of providing appropriate assistance. 
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When asked about the role of the materials in facilitating their understanding of algebra 

all but two students (Tammy and Simon) responded with comments similar to those shown 

below (Interview data).  

It shows you what is actually happening and what is going on, it is not all in your head. The cups and 

counters helped us to make sense when we had to write down the x and y’s. 

The activities in the algebra class are a lot harder than the ones in the textbook and it actually makes 

you have to think. And it is fun. 

With the text book I had to work harder to find the information. With the cups and counters it makes 

it easier to understand.  

The cups and counters are very important. Without them it is just “What the!” but with the cups and 

counters and envelopes you can see what you are doing and so you can learn heaps more.  

You have to think about what does that equal before you can do it. 

I feel like a maths nerd, which is good (Girl).  

Tammy reported that she did not really use the materials. When asked to explain this she 

responded, 

I used them at the start, but I did not really understand them. But then the teacher drew them on the 

board, and I did not need them (physical materials). The diagram was enough.  

Simon who was asked to explain why he had responded on his survey that he worked less 

in the algebra class explained, 

Well, with the cups and counters and games, it is easier to understand, that’s why I voted I worked 

less in this class.  

The student comments with respect to the algebra games were similar to those above. 

The following comment by Kingsley summed up the class evaluation of the algebra games.  

I understood it more with the games. It is actually showing you how to put it into action. It is 

showing you things. You have to try harder to find it rather than just finding an answer by adding or 

multiplying. You have to find the equation, and you have to do it with cups and counters and a 

diagram.  

Classroom observations supported student comments in that they demonstrated a high 

proportion of time on task while working with the games and much of the discussion 

between students centred around the underpinning mathematics.  

With respect to student drawings of their activities and feelings in the different classes 

some common themes emerged and were subsequently expanded upon by the students. 

Figure 1 represents one student’s (Harry) report of his perceptions about learning in the two 

classrooms. Harry explained that in his usual mathematics class he started with enthusiasm. 

This enthusiasm waned over time. 

This is like the path of a ball, it bounces around. It loses momentum and eventually just sits and does 

nothing. I was trying to do my work that was just confusing, so eventually you just lose motivation. 

You just do nothing. 

Harry explained his feelings about the algebra class as follows, “It is like the opposite of 

the box. These (lines) are clear straight and easy to understand. It is like the algebra class.” 

The underlying themes evident in Harry’s drawings were common to all student sketches. 
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Figure 1. One Student’s (Harry) Comparison of his usual Mathematics Lessons (LHS)  

with the Algebra Lessons (RHS). 

 

Discussion and Conclusions 

Survey responses, student diagrams, interview data, and sustained classroom 

observations in the specialist algebra class indicated high student engagement on 

mathematical tasks, with productive discourse between students and teacher, and high 

quality collaborative learning behaviours. Students helped each other and discussed 

activities and games. Sfard, Nesher, Streefland, Cobb, and Mason (1998) have reported that 

getting students to talk about mathematics in a meaningful way is challenging. The results 

of this study indicate that these students placed high value upon the instructional discourse. 

This discourse was based on the use of materials to build algebraic concepts, as 

recommended by a variety of researchers (e.g., Becker & Rivera, 2005; Booker et al., 2004; 

Quinlan et al., 1987; Lowe et al., 1993), and emphasised the links between concrete and 

visual representations and explicit algebraic language. No students reported that 

mathematics was inconsistent with their identity formation, an issue reported by other 

researchers (e.g., Khoon & Ainley, 2005; Watt, 2005). Rather, students reported an 

increased confidence in their capacity to understand algebra. This is an educationally 

significant finding because expectation models (e.g., Ethington, 1992; Wigfield & Eccles, 

2000) indicate that success and positive perceptions about mathematical study are likely to 

encourage students to undertake studies in advanced mathematics. 

The results from the interview data where students described and commented upon 

their learning in the non-streamed classes confirmed what many authors have reported, that 

the school mathematics tradition of talk and chalk from the front of the room and reliance 

on worksheets and textbooks with a focus upon repetitious symbolic manipulation played a 

significant role in their perception that mathematics is dull, boring, and hard and was a 

collection of rules that frequently made little sense (e.g., Barrington, 2006; Boaler, 2000; 

Kaput, 1996; Thompson & Fleming, 2003; Watt, 2005). In addition, the students reported 

that this pedagogy did little to foster their deep thinking about the mathematical ideas. Such 

findings support those of other authors with respect to standard algebra activities (e.g., 

Kaput, 1995; Stacey & Chick, 2004). Some students also reported that their 

disenchantment with the learning activities in normal classes was linked to issues of 

behaviour management and consequently limited help from the teacher for their learning. 

Although these results raise the issues of classroom management strategies and streaming 

of mathematics classes according to ability, such issues are largely beyond the scope of this 
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paper. The authors are aware that the intervention class was smaller than normal classes 

that have about 25 students and that this would have impacted upon teaching dynamics. 

The students commented that the absence of students who were overt in disrupting the 

normal classes made the class “much better”. Without exception they did not want to go 

back to their mixed ability classes. However, it is noteworthy that most students 

acknowledged that the choice of activities in this class would “probably” have helped most 

students in unstreamed classes to learn algebra. This finding encourages the authors to 

extend the teaching models to the mixed ability classes. The students and Jane reported that 

the pedagogy enacted in unstreamed classes appeared to condemn students to failure in 

mathematics. 

The students in this study were highly articulate in explaining why they valued the 

instructional discourse. First, it was apparent that the learning activities helped create a 

classroom environment in which the teacher was able to provide learning support to 

individuals and small groups of students. This was the case because the students found the 

activities valuable and engaging and being on task, did not disrupt the class or their peers. 

Second, student comments emphasised the importance of physically manipulating the 

materials and linking the material representations, pictorial displays and symbolic 

representations. Some students reported the use of materials to be useful in early phases of 

learning, but once the procedural rules were understood, no longer needed to manipulate 

the materials physically. These results are consistent with those of researchers who 

recommend this approach to teaching (as above) and in contrast to the descriptions of 

teaching of algebra in most classrooms (e.g., Kirshner & Awtry, 2004; MacGregor, 2004; 

Stacey & MacGregor, 1999) and the teaching of mathematics in general (e.g., Barrington, 

2006; Gregg, 1995; Hollingsworth et al., 2003; Perry et al., 1999; Thompson & Fleming, 

2003).   

Teachers are central to effective reform (e.g., Doerr, 2004) and this study indicated that 

there are good instructional discourse models upon which to build engaging conversations 

that would help students to develop perceptions that they can learn algebra, that it is not 

mostly a collection of unrelated rules and symbolic manipulations but rather an inquiry 

based upon ideas. It also provided data that students can improve in their perceptions that 

mathematics learning can be fun. This conclusion highlights the potential importance of the 

nature of the instructional pedagogical discourse used by Jane in her intervention for the 

professional development of pre-service and in-service teachers.  In particular, the use of 

concrete materials, games and explicit language should underpin middle school 

mathematics teaching and learning in order to foster students’ positive perceptions of 

algebra. 
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Papua New Guinea has hundreds of languages and cultures and each group measures in 

different ways. This report discusses the informal measurement and contexts for measuring 

by a range of cultural groups as obtained from a survey. Intuitive approaches traditionally 

used in villages indicate an interesting use of length for deciding areas. People seem to 

visualise the areas and rely on lengths for comparing or counting to compare these areas. 

The use of informal measurement has implications for schooling in that it is a valuable 

place to begin measurement education rather than smaller formal units. Concepts, such as 

area, and the structure of measurement units, such as placing length units end to end, can be 

ascertained and established from these informal measures as a transition to more formal 

school measurement. 

Students enter school with a wealth of home experiences. Teachers often make 

assumptions about the nature of these experiences based on their own familial situation 

rather than knowing what alternative experiences may be available to their students. 

Sensitive teachers realise there are differences when teaching students from socio-

economic backgrounds or cultures that differ from their own but may not have a 

framework for exploring these differences or making use of these diverse experiences 

when teaching. Other teachers rely on the textbook to guide their teaching of a 

mathematics topic without realising that it might have little significance for the students. 

They presume mathematics is the same for all students. However, home cultural 

background can be very important in how and what a student learns in mathematics 

(D’Ambrosio & Gomes, 2006; de Abreu, Bishop, & Presmeg, 2006; Gerdes, 1996; Kaleva, 

2003; Matang & Owens, 2004; Nunes, 1992). According to Bishop (1988), all cultures are 

involved in the mathematical activity of measuring and he showed that tertiary students 

from Papua New Guinean (PNG) societies thought differently about mathematics. He 

concluded “there is more than one way of viewing the world, the mathematician’s view is a 

particular one … shaped by a particular culture, it assumes many cultural ‘supports’, and 

increasing our own awareness of these cultural supports will improve the ways we 

introduce learners to the mathematician’s world” (Bishop, 1978, p. 90).  

Recent studies on home-school transitions have focussed on the conflict of the school 

system and the socio-economically disadvantaged cultural groups (Civil & Andrade, 2006; 

de Abreu et al., 2006). Disassociated knowledge can be rationalised “At home I add, at 

school I multiply,” said Bishop’s (1978, p. 90) PNG interviewee when confronted with 

conflicting choices of ways of finding area in his two sociocultural contexts. Bishop 

interpreted the student’s explanation of pacing up the side and across the width as finding a 

semi-perimeter. However, the student’s rationalisation did not generate a coexistence 

productive of a strong understanding of area. One recent PNG study in culture and 

mathematics illustrated the continuities and discontinuities of out-of-school mathematics 

and school mathematics for counting and currency by showing a two-way influence of 

school and community (Esmonde & Saxe, 2004) but not as a focus of how to assist 

schooling.  

More productive transitions are expected when teachers and students understand their 

cultural capital in terms that link to school mathematics. The possibilities are widened by 
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associations that belong to another language and culture; they are curtailed by unresolved 

conflict (Presmeg, 2006; Valsiner, 2000). Students and teachers must recognise and value 

cultural mathematics for this knowledge to be related effectively in school mathematics 

(Gorgorió, Planas, & Vilella, 2006; Owens, 1999). The Yupiaq in Alaska have improved 

their performance on standard mathematics test questions from their use of cultural 

mathematics topics (Lipka & Adams, 2004). One cultural topic, fish racks, involved the 

use of measurement.  

Complementarity underlying explicit cultural interaction may be dependent on cultural 

immersion in the first language, which is supported by schools recognising cultural ways 

of measuring. “(These) ways of acting, interacting, talking, valuing, and thinking, with 

associated objects, settings, and events (impact on) … the mental networks” that constitute 

meaning but can only be determined by ethnographic study (Gee, 1992, p. 141) because of 

their implicit manifestation (de Abreu et al., 2006; Thomas & Collier, 1997). Explicating 

tacit knowledge and visualisation requires careful observation, discussion, and reflection 

on practice (Frade & Borges, 2005). Cultural capital is a powerful tool for learning and 

social justice (de Abreu et al, 2006; Fowler, 1997) but it is embedded in cultural 

relationships. In PNG societies, respect impacts on the language of everyday activity and 

on communication, knowledge is embodied in actions that are often observed and not 

described, and certain people may have particular knowledge (Owens, 2006). Furthermore, 

researchers must provide educators with theory to consider how to make the tacit 

knowledge of the student explicit in school learning (Gee, 1992). 

This paper presents recently collated data from tertiary students illustrating other 

important aspects of their thinking about area and clarifying the discontinuity that Bishop 

had observed during his visit to PNG. These data have informed our knowledge of 

contextual learning about area and hence our pedagogical knowledge of teaching and 

learning measurement, especially area.  

Background on Papua New Guinea 

Papua New Guinea is comprised of 800 distinct language groups living in mountainous 

regions, large valleys, coastal swamps, and plains, and many differently-sized islands. 

There are large towns with people from many language groups often communicating in the 

lingua franca Tok Pisin. These towns have modern buildings, simple dwellings, and self-

help housing with or without basic amenities such as electricity, sewerage, and water. Most 

people live in rural areas in villages with bush-material housing often without piped water 

or electricity. Children now begin school in schools supported by the community with the 

government providing minimal, flexibly delivered training and salaries for teachers. These 

elementary schools begin in the children’s home language as far as possible and gradually 

transfer to the English curriculum. Vernacular languages and cultures are encouraged 

throughout the primary school and later. These elementary schools have a syllabus called 

Culture and Mathematics that provides broad guidelines but because of the diversity of 

cultures does not give specific details. The teachers use some group work, the village as a 

resource and some basic equipment like a slate, an exercise book, pencil, and stones and 

sticks to assist with counting. Assisting the teachers and teacher educators to understand 

the continuities and discontinuities between cultural mathematics and western school 

mathematics is critical for improved education. Previous, extensive work on the diversity 

of counting systems by Lean (1993) has been linked recently to schooling (Matang & 

Owens, 2004; Owens, 2000). This study extends it for measurement. 

Mathematics: Essential Research, Essential Practice — Volume 2

572



Papua New Guinea Studies on Measurement 

Earlier studies in Papua New Guinea referred mainly to Piagetian stages and in 

particular the time lag for conservation of quantity, length, area, volume, and mass 

compared to western students (Jones, 1973; Price, 1978; Shea, 1978). Prince’s (1968) 

study of teachers college students indicated such a result. Prince (1968) commented that 

the rate of conceptual development was due to lack of manipulative skills, problems in 

logical operations, causality problems, and conceptual problems, particularly in 

conservation of physical quantities. However, in cross-cultural Piagetian studies, testing 

processes use unfamiliar circumstances and language, and schooling impacts on the formal 

operational level indicating the bias in the assessment processes (Dasen, 1972). However, 

although some of these studies were Piagetian style clinical studies as well as paper-and-

pencil studies, they did not actually consider the cultural development of the students. 

Some mathematics tests and some of the Piagetian and spatial tests were given a cultural 

context for the questions but they did not consider cultural thinking. Although cultural 

issues were recognised by the Indigenous Mathematics Project (1979), and some 

continuing research by the Mathematics Education Centre at the PNG University of 

Technology (Philip Clarkson studied the language issues and Glen Lean carried out his 

now famous research on counting systems), cultural processes for measuring were not 

covered. Current doctoral research studies by Charly Mupe and Patricia Paraide are on 

their own cultural mathematics whereas Rex Matang is focussing on influences of his 

cultural counting on learning arithmetic strategies in school. Wilfred Kaleva (2003) and 

Francis Kari showed a strong interest in ethnomathematics and a need to pursue this area 

of research for improving mathematics education in PNG. A study of multiple systems 

should throw more light on the diversity of ways of thinking about measurement. 

Current Knowledge about the Development of Measurement Concepts 

Early psychological studies on measurement by Gal’perin and Georgiev (1960) showed 

that students need to learn that a length may be treated as a whole, that orientation and 

visual comparison, and rearrangement may be used to compare. Identification of the 

attribute, of units with parts, a unit’s size, and the unit as a tool are important measurement 

knowledge. The ability to conserve, reason (Hiebert & Carpenter, 1980), and recognise the 

structure of repeated units (Curry, Mitchelmore, & Outhred, 2006) assists development. 

Willis (2005) pointed out that students and teachers may restrict their concepts and images 

of the abstract units for area by using concrete material tiles, and Owens and Outhred 

(1998) illustrated students have difficulties representing tiling of areas. From international 

studies, only 29% of students at the end of primary school could complete a diagram on 

grid paper to represent 13 square centimetres (Australian Council for Educational Research 

[ACER], 2002). Many students will calculate areas as a product of the length and breadth 

regardless of the shape being considered and many will not understand the concepts of area 

and an area unit (Clements, 1995; Hart, 1981; Willis, 2005). However, two separate studies 

have shown experiences that included both formal and informal units of measurement and 

self-made composite units (e.g., five paces) increased students’ taken-as-shared 

understanding of measurement, units, and instruments (Maranhãa & Campos, 2000; 

Stephan & Cobb, 1998). Nevertheless, there is still a gap in our understanding of how 

intuitive thinking about area and home cultural experiences can enhance formal schooling. 

The study reported in this paper provides new insights into the diversity intuitive thinking 
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and how people can successfully move from intuitive understandings of area to formal 

understandings. 

The Current Study 

By investigating how a range of different cultural groups think about measurement 

(especially of length and area), it is anticipated that our understanding of intuitive thinking 

about length and area will provide mathematics educators with a new perspective on 

learning about area and how to measure area. This knowledge will improve the teaching of 

area by illustrating how to bridge the intuitive and formal understandings, and the out-of-

school and school views of area. This paper is based on survey data enhanced by some 

questioning of the participants as they completed the survey and some previously collected 

reports on culture and mathematics by teacher education (secondary and postgraduate 

primary) students at the University of Goroka, PNG. The majority of students are from the 

highlands region and northern mainland region (known as Momase). Most students were in 

their late twenties or older. 

The survey was distributed either electronically or in paper copy to students. Currently 

74 surveys from students from different language groups (some from the same language 

group) have been summarised. The surveys were introduced by explaining that the 

research was a joint project between the researchers from Australia and Papua New 

Guinea. Examples of measurement in different Pacific cultures were described briefly. The 

survey asked demographic questions on language, dialect, village, district, and subdistrict, 

and the following questions to be answered on length (including possible associations with 

area) and other kinds of measurement. These questions and the survey format developed 

after its initial use with a few students. The focus was on length and area. In addition, the 

authors had records from projects prepared by many students over the years linking their 

community and culture to secondary mathematics topics and reporting on comparisons of 

cultural differences in mathematics. The survey questions began with reference to western 

mathematics but also encouraged significant consideration of cultural mathematical 

activities. The questions were: 
 

1. During which activities in your language community have you noticed people using 

traditional ways of measuring? 

For each activity, note what was being compared or measured? (e.g., length, area, volume 

(size), mass (weight), other, something specific to your community)  

2. Select an activity in which people were using length. 

3. Do specific people in your community carry out this measurement in certain activities? 

4. Describe the processes in detail of how they compare or measure for each activity? E.g., what 

units do they use, what do they do with these units or tools.  

5. Do people use a unit that combines smaller units? If so, how many and how do they join 

them? Why might this be done? 

6. Do they use body parts? Explain and give an example of how the body part might be used in 

describing the measurement. 

7. Is there a standard unit kept for comparing from one time to the next? 

8. Talk about how much people think about accuracy when measuring. How do they achieve 

this? 

9. What neighbouring language groups use this practice? 

10. Is there another thing they might measure that might be closely linked to this measurement? 

(For example, some people associate bamboo lengths with the area of land it can water. Some 

people associate the plan area of a house with the needed wall area.) 

11. Is there anything else that you think is important about this measurement activity? 
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In addition, students were asked to provide their language words for a range of words 

commonly used in relation to measuring such as big, heavy, long. They were asked to 

repeat these questions for one other activity involving another measurable attribute. 

The data were analysed in terms of western perceptions of education in measurement 

(Owens & Outhred, 2006) and cultural capital (de Abreu et al., 2006).  

Results 

A number of students only provided language words or descriptions that were 

insufficient for us to analyse in terms of the measurement activity. However, these surveys 

did indicate that concepts related to measurement were used in their cultures. 

The descriptions by 30 students from the highlands provinces indicated that paces, foot-

sized steps, and ropes were commonly used for measuring lengths. A wide range of 

activities involved measuring lengths and some indicated links to area. These included 

house building, drains, and gardens but they also included smaller three-dimensional 

objects such as wigs in which small lengths of string and finger parts were used to ensure 

symmetry and a good fit on the person’s head. The wig-makers provided words to indicate 

the finger width unit that could be used to mark off lengths on the wig.  

Informal discussions with students indicated that many villages used a length measure 

to determine area. The students confirmed that they visualised the garden area width for 

the plot. One student indicated that the garden plots were generally a certain width so the 

total size could be determined by pacing out the lengths. Another student from a different 

area pointed out the garden plot was generally a fixed length as well as width and the plots 

would grow different vegetables. Several plots might contain one kind of plant. Another 

student commented that the gardens were long and thin running in long strips down the 

hillside. Each garden strip had a particular vegetable. Gardens owned by different people 

could also be compared as the widths were roughly the same. Sometimes a long rope was 

used to measure each of the lengths. The length of rope may or may not have been equal to 

a fixed number but it was common for it to equal 20 paces or arm spans as most languages 

have 20 cycle counting systems (without a specific word for 10, which is denoted as two 

fives) (Lean, 1993; Owens, 2000). In the cases where people counted paces to a certain 

number, marked the place, and then repeated the count, a long line for a garden would be 

marked off in 20 paces with a tankard plant or stick that also acted as a boundary marker 

(Simbu province languages, from Charly Muke and students). Twenty paces illustrated an 

intuitive understanding of a composite unit for measuring lengths but it also indicated a 

garden plot or area as western mathematics might consider an area unit like a hectare. In 

this way, the person was using a form of composite unit for length primarily but 

coincidentally marking out an area unit. The width of area unfolds in the mind as the 

length is paced out. The image did not appear to be that of blocks of narrow area one pace 

long but of the whole area determined by the counting. It is like the footballer who 

instinctively has an image of the size of a football field. If those fields were together, they 

would image the total area as units of a football field.  

Volume measures in this region generally linked to feasts such as bride-price 

ceremonies, pig exchanges and mumu of large quantities of food cooked in a ground pit 

covered by leaves and heated by hot stones. In exchange and other recognition ceremonies, 

the number of pigs was important but the sizes of the pigs were also considered. This was 

frequently decided by the height of the pig but the girth of the pig was also considered. 

This was measured and compared using rope and much discussion. There was recognition 

of the idea of volume in taking the girth. One student indicated that this was a relatively 
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new practice in his place. Cooking food, for example, a mumu in the ground requires a 

certain amount of water for steam and this will be determined by the size of the pit and the 

type of wood used to heat the stones. The amounts needed are decided by experience. 

The 20 students from the coastal mainland provinces (Momase region) described how 

measures were used for making houses, bridges, gardens, holes, canoes, and bows and 

arrows. The depth of holes and heights were often found by a long cane. In some cases, 

marks were made on sticks or cane. These were used for smaller lengths such as canoe 

building. The marks were not necessarily showing a unit. They may have been developed 

for a particular canoe so that lengths can be assessed as equal for symmetry whereas other 

marks provided the necessary curvature. Further field work will assist with exploring the 

details of this aspect of measurement. In some cases the stick or cane was used for more 

than one measuring task. Some students made connections between these shorter lengths 

and long distances. 

Other examples of length being used to determine areas included that of the round shell 

money, maprik. It was measured using a string around the circumference. It could be 

argued that the shells are generally of a similar shape and so the circumference, although 

not necessarily linearly related to area, could be used to compare the relative area (size) of 

shells. We also found composite units being used such as those given from the Ambulas 

language area. One bamboo length called, Kama nak is equivalent to five bamboo 

internodes called ndik nak tamba. About 5 x 7 bamboo length (that is 7 lengths of 5-

internodes) is equal to one garden area or tumbu. The use of the multiplication sign to 

indicate the composite length is confusing with the use of multiplication for rectangular 

area. Records from Lean (1993) of languages given this name by students in the 1970s and 

1980s indicated more than one kind of counting system including a (2, 5 cycle) system, 

that is, counting words were made up of the frame words 1, 2, and 5 only (note that 

counting numbers above five were built on five rather than the decimal system of 10). It 

would be interesting to investigate the use of seven as well as five. Our personal 

experience with men whose languages use a (2, 5 cycle) counting system is that they 

frequently stop to think after seven when asked to count. From another language, it was 

said that 1 bamboo stick = 10 arm spans. If so, it is difficult to visualise this length 

suggesting further information needs to be sought from this student or his language group. 

It is possible the stick was representing ten arm spans in a similar way to a stick 

representing 10 rather than a very long split or whole bamboo.  

Measurement was linked to purpose. The data indicated that the cultural activity – bride 

price, canoe making, garden building, or hole making – influenced the comparison and 

measurement technique. The unit size, if used, was appropriate for the kind of length. 

Similar information on the use of legs and hands was given by the 11 students from the 

Papuan regions. In the Bamu area of Western Province, the student reported “They use a 

long cane which has marks indicating length of different things, for example, men’s house, 

garden, war canoe, men's carving etc.” Previously, these people built large communal 

houses requiring a degree of accuracy as well as communication between a number of 

people. The student whose language is Vula’a (Hula) from the Central Province around 

Port Moresby, said, “In measuring fish they use hand span. In measuring depth of the 

ocean they use a long stick. In gardens they take steps of the same pace.” This quote 

illustrates the use of different units for different reasons. 

The data given by 13 students from the New Guinea island languages covered some of 

the activities above like mumu cooking, canoe and garden making, and bride-price 

ceremonies but they added the use of length measurement for making fishing nets, bat nets 
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and graters, as well as weaving and cutting up pigs. The nets had different lengths for the 

holes as needed. Graters are used for sago and for coconut and the spacings were carefully 

measured. Elaborate details of the importance of lengths of shell money tabu (arm span) 

were also discussed.  

Discussion 

In often subtle ways, there was variation between cultural groups. For example, for the 

same task of house-building, paces and foot-sized steps were used by some whereas others 

just compared with a rope or cane without counting units. Many places used both methods 

from time to time. Although terrain may have determined when measurements were taken, 

for example upland valleys with high rainfall required drainage, other measures were 

linked to marriage and other exchange ceremonies that are fairly ubiquitous but again ways 

of measuring and the value placed on measurements varied. These measurements were also 

influenced by the role that size of shell money or pigs played in the exchanges.  

Lengths were often compared indirectly using a length of rope or a stick and some 

cultures did not use units to measure or compare. Body parts were commonly used as units. 

Feet and paces, arm spans, and hand spans were used extensively. Although some places 

did measure certain lengths with counted units, it was not always the case that the same 

unit was used for measuring different lengths in different activities (e.g., house and canoe). 

In other cases, they did use the same unit for length (pace for garden and house). 

Furthermore, not all language reports used more than one kind of length unit. These data 

would indicate that measuring more accurately was needed in only some activities. Small 

length units were evident in making nets and graters, wig making and canoe building. In 

general, these smaller units were not related to larger units as they were used in different 

activities (house and canoe building) whereas 20 paces may have been a length used as a 

composite unit for measuring gardens. Our data come from less than a hundred of the 

hundreds of available languages and we may find that in other groups there is more of an 

association of larger and smaller units. 

The counting system structure sometimes influenced the composite units used in a 

community. For example, 20 paces were marked off or a rope used for that length. 

Variance and change were also recognised for the area of a net hole especially when the 

hole area increased in size when it was stretched out between poles or trees to catch bats.  

The use of composite units arises from either the practical use of a rope or stick length, 

the counting system, or the natural environment such as a bamboo or stick node. Other 

practical considerations are also made such as the height or width of the biggest man in the 

village. His width was used to determine the diameter of a hole in a special door for 

entering the spirit house in one village whereas it was used for the height of a house in 

another village. There is also some evidence that the lengths used in a canoe depend on the 

size of the tree but are usually determined by previous constructions of canoes. Canoes for 

rivers are usually a single hollowed out trunk but the canoes used for the sea and large 

rivers are usually one-sided outrigger canoes with a sail. 

Informal interviews with students on garden measuring by pacing have indicated a 

visualising of area that coincided with the pacing of the length. In other words, the students 

were not measuring area as a semi-perimeter but they determined the width and then 

established the area plots by counting lengths. Some visualised fixed plots by counting 20 

paces and repeating this composite unit. Different places had differently sized plots and 

arrangements so that some formed a long line whereas others formed wider rectangles and 

the units formed a grid or were kept as separate plots.  
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The students were expressing their answers in English, which was sometimes mixed 

with the lingua franca Tok Pisin. This has made it difficult to be sure what students were 

intending if they said “leg”. After the first class completed the survey, we encouraged 

students to be more precise in how they described their unit.  

Numerous students hesitated in completing the survey as they were not sure how to 

explain how much the use of the eye, estimates and “logic” (as they called it) dominated 

the process rather than what they perceived as a western idea of exact unit. 

Conclusion 

These survey data have indicated that estimation is commonly used for comparing 

lengths and areas in different PNG cultural groups. However, it is also clear that informal 

units are used extensively with varying degrees of emphasis on accuracy using these 

measures. Making gardens and drains were the main areas for discussion, especially in the 

highlands. Food gathering and preparation is also an area where measurement takes place. 

This might be for nets or graters or for cooking-pit size and water for steam.  

The idea of gardens being compared by pacing out the length and width (a semi-

perimeter) (Bishop, 1978) now seems to be only part of the story. Although one student did 

say they did this and then gave the measures to someone else to calculate the size of the 

land, it would seem that in any village area, the people also consider the space taken up by 

the garden of a relatively standard width. The length is then used to decide how many of 

those garden plots will be used or compared. Garden area is only one of the variables that 

are important in comparing gardens. Fertility of the soil, closeness to the village and to 

water, natural drainage, and the direction it faces are all considered. The purpose for 

valuing also positions the discussion and may indicate relationships to family members. 

This study has begun to make the implicit and visual explicit (Frade & Borges, 2005). 

The informal cultural approach to measurement allows students to grasp more easily the 

meaning of measurement and how units are structured (e.g., end to end when measuring 

length). The cultural practices have elicited the structure of the units (Curry, Mitchelmore, 

& Outhred, 2006). Moreover, the area unit such as the garden plot or the hole of the net is 

recognised even though they are counted by lengths. It is wise for a teacher to use the 

cultural or out-of-school experiences of students for measuring rather than textbook 

suggestions that may have been written in a different context emphasising calculations and 

giving small visuals of shapes. It is no wonder that experiences of large areas from out-of-

school contexts were not related to small diagrams drawn on the board or in textbooks.  

This ethnomathematics study is rich in itself in changing our perspectives on 

measurement in a cultural context and informs us of the importance of visualisation and 

out-of-school experience for learning in the classroom. It also suggests alternative ways by 

which we can introduce area in Australasian schools. For example, experiencing larger 

informal area units might assist students to recognise an area unit. These units might then 

be associated with sets of paces for length and then the larger areas imagined by pacing out 

these sets. In some schools, these might be garden plots but they are likely to be maps of a 

block of houses or classrooms, netball or handball courts, provide the context. Estimations 

of areas in terms of the larger units may take on more meaning. Informal measurements 

made by paces may solve problems related to determining the number of area units to fill a 

space like the netball court. 

This research has only just tapped the potential wealth of Indigenous knowledge 

expected to be generated by further research in PNG. Although the western notions of 

units, structure of the units, and the notions of estimation, comparison, order, and size can 
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be linked to traditional measurement systems, it is also clear that the measurement systems 

have their own specific non-western methods, purposes, and indeed strengths in 

introducing students to the idea of measurement. 
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This paper presents results from a survey of secondary mathematics teachers in rural, 

regional and metropolitan schools across Australia. The purpose of the survey was to 

compare the major needs of teachers in relation to the attraction and retention of qualified 

staff, professional development, availability of material resources and support personnel, 

and the accessibility of a range of student learning opportunities across the three 

geographical areas. Although differences emerged for some of these factors, the most 

significant findings were identified in schools with Indigenous populations of greater than 

20%.  

A review of the 2003 Programme for International Student Assessment (PISA) results 

indicates that Australian students achieved comparably with a mean of 525 points to the 

OECD mean of 500 points, with similar results emerging for PISA 2000. However, when 

these results are deconstructed further, variations in student achievement across 

geographical divisions are identifiable. Table 1 presents data for PISA 2003 and illustrates 

that the mean score for students in remote schools for scientific and mathematical literacy 

was below the international mean of 500. Further, the standard error bars demonstrate that 

Australian students in metropolitan schools significantly outperformed (p < 0.05) those in 

provincial schools, who in turn had a higher mean achievement than students in remote 

schools (Thomson, Cresswell, & DeBortoli, 2004).  

Table 1 

Means and Standard Errors Across Location of Schools for PISA 2003 

Mathematical Literacy Scientific Literacy Problem Solving Geographic Location 

Mean SE Mean SE Mean SE 

Metropolitan 528 2.5 529 2.6 533 2.2 

Provincial 515 4.4 516 4.2 522 4.4 

Remote 493 9.6 489 6.8 503 8.4 

(Source: Thomson, Cresswell, & De Bortoli, 2004) 
 

Further evidence of the gap between student achievement across geographical regions 

is provided from the National Numeracy Benchmarks, which represent agreed minimal 

standards for numeracy at particular year levels. Figure 1 identifies the percentages of 

students in Years 3, 5 and 7 across geographical locations in Australia achieving these 

standards in 2004. Clearly, there are differences between the achievement of students with 

particularly lower numbers of students in Remote and Very Remote schools achieving the 

benchmarks.  

The factors driving this geographical divide in mathematics have not been explored to 

any great extent although studies on rural education (Roberts, 2005; Vinson, 2002) have 

identified several areas for investigation, including the attraction and retention of teachers, 

accessibility to professional development, provision of adequate teaching resources 

Mathematics: Essential Research, Essential Practice — Volume 2

Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia
J. Watson & K. Beswick (Eds), © MERGA Inc. 2007

581



(Cresswell & Underwood, 2004; Vinson, 2002), and the provision of learning opportunities 

for students. 
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Figure 1. Percentages of Year 3, 5, and 7 students achieving the National Numeracy Benchmarks in 2004 

across geographical locations (MCEETYA, 2006). 
 

Clearly, a key factor when considering these research studies is the impact of socio-

economic status. Williams (2005) reported that much of the rural-urban variation in the 

mathematics results for PISA 2000 could be explained by the socio-economic backgrounds 

of students and schools in the different regions. Importantly, this is not just the case in 

Australia with many international studies recognising socio-economic status as a 

confounding variable (Canadian Council on Learning, 2006; Howley, 2003) when 

investigating student achievement in this manner.  

To explore the issues impacting secondary mathematics, science and ICT teachers in 

rural and regional, a National Survey was conducted in 2005. This paper discusses the 

findings of this survey (Lyons, Cooksey, Panizzon, Parnell, & Pegg, 2006) as it related to 

mathematics teachers.  

Method 

The National Survey consisted of five questionnaire surveys designed for primary 

teachers, secondary science, ICT and mathematics teachers, and parents. Each of the 

teacher surveys sought views about the difficulties in attracting and retaining qualified 

teachers, the degree of access to professional development, the material resources, and 

support personnel available with each school context, along with student accessibility to a 

range of learning opportunities.  

Definitions of Rural and Metropolitan 

Schools in the study were categorised according to the MCEETYA Schools Geographic 

Location Classification (MSGLC), which considers population size and accessibility to a 

range of facilities and services. The MSGLC has four main categories of location: 

Metropolitan Areas, Provincial Cities, Provincial Areas, and Remote Areas (Jones, 2004). 

Table 2 provides details regarding the category criteria. 
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Research Sample 

Mathematics teacher surveys were distributed to 1998 secondary departments, 

including all provincial and remote secondary departments across Australia along with a 

stratified random sample of 20% (N=291) of metropolitan secondary departments. 

Teachers were invited to complete the survey online if they preferred using an identifiable 

code for the school. Responses were received from 547 secondary mathematics teachers 

representing Government, Catholic and Independent schools (Table 2).  

Table 2 

Secondary Mathematics Teacher Respondents by MSGLC Category 

 Main MSGLC categories  

 
Metropolitan Area Provincial City Provincial Area Remote Area  

Criteria 

Major cities pop.  

� 100 000 

Cities with pop. 

25 000 – 99 999 
Pop. < 25 000 

and ARIA* Plus 

score � 5.92 

Pop. < 25 000 

and ARIA* Plus 

score > 5.92 
Total 

Number of 

mathematics 

respondents 

(%)  

 

 

142 

(26%) 

 

 

132 

(24.1%) 

 

 

240 

(43.9%) 

 

 

33 

(6%) 

 

 

547 

(100%) 

Total teacher 

respondents 

(%) 

 

580 

(19.7%) 

 

661 

(22.5%) 

 

1425 

(48.5%) 

 

274 

(9.3%) 

 

2940 

(100%) 

* ARIA = Accessibility and Remoteness Index of Australia (ARIA). Locations are given a value for each of 

these criteria between 0-15 based on road distance to the nearest town or service centre. 

Data Analysis 

The analytical strategies altered depending on the research questions and the 

characteristics of the data sets. For example, categorical data (teacher background 

information) were explored through frequency analyses, cross-tabulations, and chi-squared 

significance tests. To minimise inaccurate claims about significance the convention of p = 

0.05 was reset to a much stricter level of p = 0.001. However, statistical tests achieving a 

level of significance of p = 0.01 were identified as suggestive and worthy of further 

exploration.  

Rating importance and availability of need items. The mathematics teacher survey 

consisted of two Likert scales with teachers rating the Importance and Availability of a 

range of items related to professional development opportunities, resources, and learning 

experiences in their school. The Importance scales ranged from 1 (Not at all Important) to 5 

(Extremely Important) whereas the Availability scales ranged from 1 (Never Available) to 

4 (Always Available). The Importance and Availability ratings were then combined to 

produce an “Unmet Need” scores, where higher values indicated a greater unmet need for 

the resource or opportunity. This score was calculated using the transformation “need” = I 

x (5 – A), where ‘I’ was the Importance rating and ‘A’ the Availability rating. An item 

considered extremely important (5) but unavailable (1) generated the highest unmet need 

score (20). Alternatively, items that were unimportant and always available attracted the 

lowest score (1). More detail about this approach is found in the full technical report 

(Lyons et al., 2006). 
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Principal components and multivariate analysis of covariance (MANCOVA). As the 

mathematics teacher survey contained several items addressing an overarching theme (e.g., 

professional development) Principal Components analysis was undertaken to identify 

subsets of items measuring common sub-themes. Once the components were identified in 

each analysis, respondents were given a score for each component with subsequent 

statistical tests focused on these component scores. In particular, MANCOVAs were 

conducted to compare the component scores across various respondent categories 

including, sex, MSGLC of school, and Indigenous population. Only those MANCOVAs 

revealing a significant result were pursued by undertaking univariate tests on each 

component separately, an analytical flow consistent with the logic set out by Tabachnick 

and Fidell (2001). Importantly, the MANCOVAs controlled for the effects of school size 

and socio-economic status of the school location, thus minimising any confounding effects 

of these variables on the results (Lyons et al., 2006).  

Results and Discussion 

Within this section the major findings from the survey are presented for each of the 

four main factors. Given that identical analyses were undertaken for the professional 

development, material resources, and student learning experiences items, full details are 

provided for the first analysis with reference made to this in later discussions. 

Attraction and Retention of Qualified Mathematics Teachers 

Teachers were asked initially to consider staff turnover rates by selecting the 

percentage of teachers leaving the school each year. Choices included: 0-10%, 11-20%, 21-

30%, 31-50% and greater than 50%. Compared to their metropolitan colleagues, almost 

twice as many respondents from Provincial Area schools, and about six times as many 

from Remote Area schools reported a turnover rate of >20% p.a. These results were highly 

significant (p < .001). 

In the next item, teachers rated the degree of difficulty experienced in filling secondary 

mathematics positions. Options included: Not difficult, Somewhat difficult, Moderately 

difficult and Very difficult. Significant differences (p < .001) emerged with secondary 

mathematics teachers in Provincial Areas twice as likely and those in Remote Areas about 

four times as likely as those in Metropolitan Areas to be working in a school in which it 

was “very difficult” to fill vacant teaching positions in mathematics (Table 3).  

Table 3 

Percentage of Mathematics Teachers in MSGLC Categories Selecting “Very Difficult”  

  MSGLC categories  

  Metropolitan Provincial  

City 

Provincial 

Area 

Remote 

Area 

Total 

Count 18 29 78 20 132 

% within Row item 12.4 20.0 53.8 13.8 100 
Secondary 

Mathematics 

Teachers 

% within MSGLC 14.0 24.6 33.8 64.5 28.5 

Subsequently, mathematics teachers were asked whether they were teaching subjects 

for which they were not qualified. Results were significant (p < 0.001) with twice as many 

teachers in Provincial Areas and four times as many in Remote Areas identifying the need 
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to teach outside of their subject expertise (Table 4). However, when compared to the 

science and ICT results, mathematics teachers were least likely to be required to teach 

outside of their subject area. This finding probably relates to the national shortage of 

qualified secondary mathematics teachers.  

Table 4 

Percentage of Mathematics Teachers in MSGLC Categories Required to Teach Subjects 

for which they are not Qualified 

  MSGLC categories  

  Metropolitan Provincial 

City 

Provincial 

Area 

Remote 

Area 

Total 

Count 17 24 75 16 132 

% within Row item 12.9 18.2 56.8 12.1 100 
Secondary 

Mathematics 

Teachers 

% within MSGLC 12.2 18.9 31.5 50.0 24.6 

Professional Development Opportunities 

When teachers rated items within this construct the areas of greatest need were 

professional development opportunities for teaching higher-order thinking, classroom 

management, organization and alternative teaching methods, and release from face-to-face 

teaching for in-school collaborative activities (Table 5).  

A principal components analysis of these “need”-transformed items produced four 

substantive components: Mathematics Teaching Professional Development, General 

Professional Development, Development for Teaching to Targeted Groups, and 

Professional Relationships Development. Scores on these four components were analysed 

using a series of MANCOVAs in order to make specific group comparisons. Two 

MANCOVAs were conducted comparing mean component “need” scores by MSGLC 

categories and percentage of students with Indigenous backgrounds. Although the 

multivariate test for MSGLC category differences across the four professional development 

components was not significant, the multivariate test in relation to Indigenous students was 

significant (p<0.001). 

A subsequent test revealed that the reasons for this result were due to a significant 

univariate difference for the Development for Teaching to Targeted Groups (p < 0.001) 

component and a suggestive difference for the Mathematics Teaching Professional 

Development component (p<0.01). Teachers from schools with more than 40% Indigenous 

students, and to a lesser extent from schools where the percentage was between 21% and 

40%, indicated substantially greater levels of “need” for these two components than other 

teachers. These differences are identifiable in Figure 2 with a display of the profile plot of 

the original professional development “need” transformed items (ordered by component 

and labelled across the top of the graph) by percentage of students with Indigenous 

backgrounds.  

Material Resources and Support Personnel 

The average scores on the “need”-transformed items dealing with material resources 

and support personnel are provided in Table 6. Clearly, the areas of greatest overall “need” 

included having a suitably skilled assistant to help integrate ICT in the classroom, having 

Mathematics: Essential Research, Essential Practice — Volume 2

585



appropriate numbers of computers for student use, having suitable learning support 

assistant(s), and having other computer hardware for teaching and learning mathematics.  

 

Table 5 

Summary of Average “Need” Scores*, Standard Deviations and Valid N for Mathematics 

Teachers’ Ratings for Professional Development  

*Items arranged in descending order of mean “need” score between 1-20  (Adapted: Lyons, et al., 2006)  
 

A principal components analysis of “need”-transformed material resources produced 

three components: ICT Resources and Support, Mathematics Teaching Resources and 

Support, and Teaching Resources for Targeted Groups. As with the earlier analysis, scores 

for the three components were analysed using a series of MANCOVAs. The multivariate 

test for MSGLC category differences across the three material resources components was 

 Professional Development Items Mean SD Valid N 

Professional development opportunities: teaching of higher-order skills  10.70 3.91 492 

Professional development opportunities: classroom management & 

organisation  
10.47 4.04 496 

Professional development opportunities: alternative teaching methods  10.34 3.98 494 

Release from face-to-face teaching for collaborative activities  10.33 4.25 499 

Effective communication between education authorities & teachers  9.92 3.72 492 

Professional development opportunities: teach mathematics to 

gift/talented students 
9.89 3.72 490 

Professional development opportunities: integrating technology into 

math lessons  
9.89 3.85 497 

Professional development opportunities: teaching math to special 

needs students 
9.77 3.96 493 

Collaboration with mathematics teachers in other schools  9.65 3.61 501 

Professional development opportunities: methods for using group 

teaching strategies  
9.60 3.80 489 

Opportunities for observing teaching techniques of colleagues  9.49 3.97 499 

Workshops to develop your ICT skills  9.47 3.82 492 

Involvement in region/state-wide syllabus development/research 

projects  
9.29 3.90 493 

Financial support to attend external in-services/conferences  9.04 4.00 498 

Opportunities for mentoring new staff  8.90 3.68 501 

Opportunities to attend external in-services/conferences related to 

T&L math 
8.76 3.57 502 

Professional development opportunities: use of graphics calculators  8.75 3.82 495 

Professional development opportunities: outcomes/standards-based 

teaching  
8.72 3.87 495 

Opportunities to mark/mod external mathematics assessments  8.62 3.99 488 

Professional development opportunities: teaching mathematics to 

Indigenous students 
8.40 4.31 480 

Professional development opportunities teaching mathematics to 

NESB students 
8.29 3.99 459 

Collaboration between mathematics teachers in your school  7.86 3.44 500 
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not significant. However, the test comparing the three components across schools with 

different percentages of student with Indigenous backgrounds was significant (p<0.001).  

 

Figure 2. Profile plot of mean “need” scores of mathematics teachers for professional development 

components compared by percentage of students from Indigenous backgrounds (Table 5 lists full item names) 

(Source: Lyons et al., 2006). 

A follow-up test identified that this difference was due to significant univariate 

differences on the Mathematics Teaching Resources and Support (p<0.001) and Teaching 

Resources for Targeted Groups components (p<0.001). Essentially, teachers from schools 

having more than 21% of students with Indigenous backgrounds indicated substantially 

greater levels of “need” for the two components when compared to teachers from 

remaining schools. Figure 3 illustrates that “needs” are greatest in the specific areas of 

resources for teaching mathematics to Indigenous students, having suitable Indigenous 

Education Assistants, students having access to scientific calculators, and having suitably 

skilled personnel to assist in integrating ICT in the classroom from schools having more 

than 40% of students with Indigenous backgrounds. In schools where the percentage of 

students with Indigenous backgrounds was between 21% and 40%, “needs” were greatest 

in the specific areas of resources for teaching to gifted and talented students and having 

concrete materials for mathematics teaching. Overall, it is clear that where the percentage 

of students in a school with Indigenous backgrounds exceeds 20%, “needs” are greater in 

most of these areas (Lyons et. al., 2006). 

Student Learning Experiences 

The areas of greatest overall “need” identified by mathematics teachers for these items 

(Table 7) included students having opportunities to visit mathematics-related educational 

sites, alternative/extension activities in mathematics teaching programs for gifted and 

talented and for special needs students. Interestingly, the results of this component was 

lower for mathematics teachers than science and ICT teachers suggesting that this was a 

moderate rather than high need. 

A principal components analysis of these Student Learning Experience items 

highlighted three substantive components: Alternative and Extension Activities for 
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Targeted Groups, Teaching Context in the School, and Student Learning Opportunities. 

Subsequent analyses of these components using MANCOVAs identified that differences 

for the three Student Learning Experience components across MSGLC categories was not 

significant. Alternatively, the multivariate test between schools having different 

percentages of students with Indigenous backgrounds was significant (p<0.001).  
 

Table 6 

Summary of Average “Need” Scores*, Standard Deviations and Valid N for Mathematics 

Teachers’ Ratings of the Material Resources and Support Personnel items 

*Items arranged in descending order of mean “need” score between 1-20 (Adapted: Lyons, et al., 2006).  

Further testing revealed significant univariate differences on the Teaching Context in 

the School (p<0.001) and Student Learning Opportunities (p<0.001) components as well as 

a suggestive difference on the Alternative and Extension Activities for Targeted Groups 

(p<0.01) component. The greatest level of “need” in the Teaching Context in the School 

component was demonstrated by teachers from schools having a percentage of Indigenous 

students between 21% and 40% while the lowest level of “need” was expressed by teachers 

in schools with no Indigenous students.  

 

Mathematics Resource and Support Items Mean SD Valid N 

Suitably skilled personnel to assist in integrating ICT in your 

classroom 
9.72 4.34 517 

Appropriate number of computers for student use 9.44 3.69 520 

Suitable learning support assistant(s)  9.24 3.61 523 

Other computer hardware for teaching & learning mathematics  9.06 3.76 512 

Suitable software for teaching & learning mathematics  8.91 3.69 520 

Suitably skilled ICT support staff  8.87 3.75 518 

Mathematical resources that address the needs of gifted/talented 

students  
8.59 3.48 511 

Suitable computer resources for teacher use 8.58 3.63 523 

Mathematical resources that address the needs of special needs 

students  
8.57 3.72 514 

Suitable Indigenous Education assistant(s)  8.21 4.05 501 

Effective maintenance & repair of teaching equipment  8.07 3.21 515 

Sufficient mathematics equipment & materials  8.02 3.03 525 

Fast, reliable internet connection  7.98 3.68 523 

Mathematical resources that address the needs of Indigenous 

students  
7.91 4.24 488 

Concrete materials for mathematics teaching  7.85 3.11 524 

Mathematical resources that address the needs of NESB students  7.80 4.05 462 

Access range of internet mathematics resources 7.78 3.45 517 

Student access to scientific calculators  7.55 3.30 520 

Student access to graphics calculators for in class  6.84 3.41 519 

Class sets of suitable texts  6.50 3.22 518 

Suitable library resources for teaching & learning mathematics 6.46 2.97 515 

Suitable AV equipment  6.39 3.24 520 

Worksheets for classroom teaching  6.14 2.77 526 
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Figure 3. Profile plot of mean “need” scores of mathematics teachers for the Material Resources and Support 

Personnel components compared by percentage of students from Indigenous backgrounds (Table 6 lists full 

item names) (Source: Lyons et al., 2006). 
 

Table 7 

Summary of Average “need” scores*, Standard Deviations and Valid N for Mathematics 

Teachers’ Ratings of the Student Learning Experience  

Student Learning Need Items Mean SD Valid N 

Opportunities for students to visit mathematics related educational sites 9.36 3.70 505 

Alternative/extension activities in mathematics teaching programs  for gifted 

& talented students 
9.22 3.58 500 

Alternative/extension activities in mathematics teaching programs  for 

special needs students 
8.86 3.64 496 

Alternative/extension activities in mathematics teaching programs  for 

Indigenous students 
8.47 4.16 474 

Alternative/extension activities in mathematics teaching programs  for NESB 

students 
8.43 4.05 455 

Teachers qualified to teach the mathematics courses offered in your school 8.15 3.06 505 

Having the total indicative hours allocated to face-to-face teaching 8.12 3.48 492 

Having the full range of senior mathematics courses available in your school 7.14 3.24 506 

Student participation in external mathematics competitions and activities 5.92 2.49 510 

*Items are arranged in descending order of mean “need” score between 1-20 (Adapted: Lyons, et al., 2006). 

Teachers from schools with Indigenous populations of between 21-40% of students 

indicated a high “need” for alternative or extension activities with respect to all four 

targeted groups. Within the Teaching Context component, having a full range of 

mathematics courses on offer with total indicative hours allocated to face-to-face teaching 

reflected a markedly higher level of “need” from respondents from schools where 21-40% 

of students were from Indigenous backgrounds; having qualified teachers was at a high 

level of need for respondents from schools where the percentage of student with 

Indigenous backgrounds exceeded 20%. Within the Student Learning Opportunities 

component, teachers from schools where greater than 20% of students were from 
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Indigenous backgrounds indicated a substantially greater level of “need” in the area of 

opportunities for students to visit mathematics related educational sites.  

Conclusion 

The results from the survey suggest that teachers in Remote Area and to a lesser extent 

Provincial Area schools are likely to experience the effects of teacher shortages, a lack of 

opportunity to access professional development, and difficulties in providing resources for 

their students to a greater extent than teachers in Metropolitan and Provincial schools. 

However, it was interesting that significant differences did not emerge consistently for 

these components across MSGLC categories for mathematics teachers whereas this was the 

case for science and ICT teachers. Alternatively, significant differences emerged across the 

MSGLC categories when the percentage of Indigenous Students higher than 20% was 

considered as a variable. Addressing the needs of our Indigenous Students highlights a 

critical area for which our mathematics teachers seek major support.  
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A case study monitored the development of 53 preschoolers’ mathematical patterning skills 

in two similar preschools, one of which implemented a 6-month Intervention promoting 

patterning concepts. Pre- and post-Intervention assessment data and follow-up data 

evaluated the impact of the Intervention on the growth of Repeating and Spatial Patterns. 

Intervention children outperformed Non-Intervention children across a range of patterning 

tasks and this trend was maintained 12 months after formal schooling. Intervention children 

readily identified the unit of repeat and the structure of spatial patterns. Without exposure 

to Growing Patterns, Intervention children identified, extended, represented and justified 

triangular and squared number patterns. 

Background to the Study  

Despite recent research interest in early algebra (Kieran, 2006), there is little known 

about the role of young children’s mathematical patterning in the development of algebraic 

reasoning. Studies conducted before the 1990s contributed to the belief that algebra was 

best left for the later years of schooling. The 1990s saw a shift in research to children’s 

mathematics reasoning and problem solving which included the development of 

combinatorial thinking. This was paralleled by studies with children aged 4 to 9 years 

supporting the idea that young children could learn more complex mathematics than 

previously thought. Further, much of the research in the 1980s and 1990s on early 

numeracy that focused on the development of arithmetic strategies influenced research on 

the relationship between arithmetic structure and algebraic thinking. However, there were 

few studies focused on underlying processes of patterning and abstraction with very young 

children.  

Research on Patterning in Early Mathematics 

Recently, mathematics education researchers have focused more seriously on the early 

development of patterning and its role in early mathematical thinking. Some studies have 

incorporated patterning as one component of investigation in early mathematical 

development. A series of studies have indicated that first and second graders’ use of pattern 

and structure generalises across a wide range of mathematical content domains and this can 

be described as a general cognitive characteristic (Mulligan, Mitchelmore, & Prescott, 

2006). Children’s identification and representation of the structure of patterns was critical 

to successful task solution and the level of sophistication of structural awareness. 

Children’s patterning knowledge has also been found to influence the development of 

analogical reasoning and the ability to identify, extend, and generalise patterns important to 

inductive reasoning (English, 2004).  

Studies of preschoolers have found that they are capable of symbolic and abstract 

thought far beyond traditional expectations (Ginsburg, 2002). Young children have been 

observed developing skills in argumentation (Dockett & Perry, 2001) and algebraic 

reasoning (Blanton & Kaput, 2004). Some studies have included aspects of patterning such 

as simple repetition, part-whole thinking, spatial and geometric patterns, subitising, and 
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counting patterns using calculators. However, few studies have focused explicitly on young 

children’s development of patterning skills in early childcare settings. One recent 

observational study by Waters (2004) found that preschool children initiated and described 

their own patterns, ranging from simple repetition to geometric forms. Waters highlighted 

the limited pedagogical content knowledge of preschool teachers who needed to become 

more aware of the types, level and complexity of patterns. Her study suggests that more 

research is needed to support the inclusion of patterning in early childhood programs, and 

to develop a more coherent understanding of how early patterning skills develop. The study 

of patterning has also been explored through early childhood programs designed to enhance 

mathematical development generally (e.g., Ginsburg, 2002). Although it appears that 

patterning forms an integral part of these types of programs, the scope and complexity of 

patterning has not necessarily been informed by research that describes explicitly, the 

informal development of mathematical patterning. It is not yet clear how simple repeating 

patterns are extended to other mathematical contexts or how they are linked to growing 

patterns and functional thinking. Although contemporary studies of children’s early 

algebraic thinking, such as exploring repeating and growing patterns, and functional 

thinking are mainly concerned with children in the 6-8 years age range, there remains 

unanswered questions about how and when early algebraic thinking develops in the years 

prior-to-formal schooling.  

A case study was therefore designed to describe the development of patterning skills 

from preschool through to formal schooling and to investigate the role patterning plays in 

the development of early mathematical concepts and processes. Four key research 

questions were addressed: What are the characteristics of mathematical patterning young 

children develop naturally prior-to-school? In what ways does an intervention promoting 

mathematical patterning impact on the complexity of children’s patterning concepts and 

skills and the development of other mathematical processes such as multiplicative 

thinking? Is the influence of such an intervention maintained after one year of formal 

schooling? If so, in what ways? What is the role of patterning in the development of early 

algebraic thinking?  

In an earlier report, Papic and Mulligan (2005) presented preliminary findings of initial 

assessment data from the study. This paper describes the assessment data focusing on 

changes in children’s patterning skills at pre- and post- Intervention and following 12 

months of formal schooling. 

Method  

The study was designed as an intervention employing a mixed-method approach: 

integrating a traditional constructivist-based teaching experiment with more contemporary 

aspects of a design study. Following pilot work, an interview-based assessment of children 

informed the development of an instructional framework implemented through the 

Intervention. The Intervention provided explicit opportunities for children to explore and 

develop their patterning skills through problem-based tasks. The researcher (as participant 

observer) collaborated with teachers to model opportunities for the development of 

Repeating Patterns and Spatial Patterns. Observations included data showing how 

children constructed and justified patterns in a variety of modes. Further, the Intervention 

included on-going professional development on the importance of pattern and structure in 

early mathematical learning, which assisted teachers in modifying the emergent curriculum 

to incorporate patterning skills. 
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Setting and Participants  

A large long-day care centre in the South-Western area of Sydney that operated a 

preschool program was selected as a case study for the Intervention (for details see Papic 

& Mulligan, 2005). A similar long-day care centre was identified within the region as a 

“contrast” group (Non-intervention preschool). It was not intended to generalise the results 

from this case study but every attempt was made to select two similar preschools that were 

considered to be typical of centres in this region. The sample comprised 53 preschoolers, 

balanced for gender and broadly representative of the children in the final year of each 

preschool. Thirty-five of the initial sample were reassessed on completion of the preschool 

year and 32 of these on completion of the first year of formal schooling. Despite the 

substantial attrition, there was no indication that the final sample was biased. Analysis of 

the data collected at each assessment showed that, for both groups, the children who were 

not retained had given a fair distribution of responses at the first assessment. 

Data Collection and Analysis 

Data collection included three interview-based assessments on children’s patterning 

skills and an additional numeracy assessment at the third assessment (Schedule for Early 

Number Assessment 1, NSW Department of Education & Training, 2001). A systematic 

interview protocol was employed to elicit each child’s explanations and strategies used to 

solve each assessment task. A range of data sources collected throughout the Intervention 

included photographs, video recording and observations of children’s patterning in 

structured and play situations. Work samples were compiled in individual portfolios. 

Figure 1 provides a summary of the data collection points. Preschool and Kindergarten 

teacher surveys were conducted at the conclusion of the study. The first researcher 

conducted all interview-based assessments and teacher surveys.  

 

Intervention 

Preschool 

June 2003 

Interview 1 

(n = 27) 

 

� 

July – Dec 03 

Intervention  

Program 

 

� 

Dec 2003 

Interview 2 

(n = 19) 

 

� 

Dec 2004 

Interview 3 

(n = 20) 

Dec 2004 

Teacher 

Survey 

(n = 18) 

         

Non-

intervention 

Preschool  

June 2003 

Interview 1 

(n = 26) 

 

� 

Regular 

Preschool 

Program 

 

� 

Dec 2003 

Interview 2 

(n = 16) 

 

� 

Dec 2004 

Interview 3 

(n = 12) 

Dec 2004 

Teacher 

Survey 

(n = 12) 

Figure 1. Data collection points. 

The classification of children’s responses to assessment tasks was supported by other 

data: drawn representations, photographs of children’s patterns and solution processes, 

interview transcripts, observation notes and digital recordings (20% of interviews). The 

analysis of assessment data involved initial coding of responses for accuracy, followed by 

classification of solution processes focused on the level of complexity of pattern 

recognition. Initial coding was verified by an independent coder (intercoder reliability 

calculated at 89%).  

Three key aspects of patterning were identified from the research literature and initial 

analyses (Papic & Mulligan, 2005): Repeating Patterns, Spatial Structure Patterns, and 

Growing Patterns. Eleven task categories were derived from these key aspects (see Table 
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1). These tasks were devised to investigate children’s ability to create, identify, extend, and 

copy from memory patterns, in a variety of modes. Tasks administered at Assessments 1 

and 2 (for task descriptors see Papic & Mulligan, 2005) were identical, but tasks at 

Assessment 3 increased in complexity to accommodate Growing Patterns and children’s 

growth in patterning concepts and skills. 

Interview-Based Assessment Tasks 

Table 1 

Key Aspects of Patterning and Related Task Categories 

Key Aspect Task Category Descriptor 

Repeating Patterns Tower 

Border 

Hopscotch 

Number 

Repeating Patterns contain an element that continuously 

recurs. In these tasks patterns contained single or dual 

variable, simple and complex repetitions using coloured 

blocks, tiles or numerals. 

Spatial Structure 

Patterns 

Array 

Block 

Grid 

Subitising 

Triangular 1 

Spatial Structure is the mental organisation of objects or 

groups of objects and their components. In these tasks the 

organisation of patterns was presented in the form of 

triangular patterns of dots and square and rectangular patterns 

of dots, arrays and grids. 

Growing Patterns Triangular 2 

Square Tiles 

Growing patterns increase (or decrease) systematically. 

Spatial Structure tasks were reformulated to explore the idea 

of more complex, growing patterns presented as the pattern of 

triangular numbers (triangular dots) and the pattern of squared 

numbers (square tiles). 

The Intervention  

The researcher, in collaboration with the preschool staff, developed, implemented, and 

monitored an intervention program. The Intervention was designed on the basis of 

children’s existing patterning knowledge to: provide explicit opportunities to explore and 

develop patterning skills through problem-based tasks; develop children’s mathematical 

reasoning in order to provide a foundation for later mathematical learning particularly in 

early algebraic thinking; provide a framework of assessment and learning experiences to 

guide emergent curriculum and scaffold individual children’s learning; describe the 

development of patterning in both play situations as well as structured situations; and 

provide professional development for staff on the importance of pattern and structure in 

early mathematical learning to assist them in modifying their emergent curriculum to 

incorporate patterning. 

The Intervention comprised three distinct components: structured individual and small 

group work on pattern-eliciting tasks, Patternising the regular preschool program, and 

observing children’s patterning in free play. Structured pattern-eliciting tasks were based 

on the Tower, Subitising and Hopscotch tasks administered in the first assessment because 

they provided critical opportunities for developing patterning concepts. A Framework of 

Assessment and Learning that guided instruction and highlighted children’s development 

was designed for both the Tower and Subitising tasks. 

Discussion of Results 

The following results compare Intervention (I) and Non-intervention (NI) children’s 

responses across three assessment points. A discussion of the growth in children’s 
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acquisition of patterning skills is provided, supported by excerpts from interview 

transcripts and children’s drawn and constructed representations. When interpreting data it 

must be noted that small differences in percentages, particularly NI at Assessment 3, are 

insignificant due to the size of each sample group.  

Table 2 indicates the percentage of correct responses for the eleven task categories 

(data show the average score, as a percentage of correct responses on sub tasks within each 

category). The NI group was moderately more successful across most task categories at 

Assessment 1, but by Assessment 2, the I group was more successful across all task 

categories. This success was particularly evident in the task categories Number, Grid, 

Subitising, and Triangular 1. Number tasks were more challenging than other Repeating 

Pattern tasks because children were not provided with concrete materials and the tasks 

involved two variables, colour and number. NI children showed no improvement on 

Number tasks between Assessments 1 and 2, whereas I children improved substantially. 

Between the first two assessments, I children participated in various games and activities 

using dice and regular dot patterns as part of the 6-month Intervention. This may have 

impacted on I children’s responses at the second assessment where their performance on 

Subitising tasks improved. Conversely NI children showed no improvement on Subitising 

tasks. It was observed that NI children were more focused on counting the individual dots 

or blocks in the patterns. For example, the simple three-dot pattern, which children 

immediately recognised at Assessment 1 was instead counted one-by-one at Assessment 2. 

This unitary counting strategy may have been attributed to the overemphasis on counting 

by ones in their preschool program.  

Table 2 

Percentage of Correct Responses for Task Categories at Three Assessment Points 

At Assessment 2, the Array proved to be the easiest of the Spatial Structure tasks. It 

was inferred that arrangements of dots in this task (e.g., 2 x 3 array of dots) made spatial 

structure explicit. In comparison, Triangular 1 proved to be the most difficult of the 

Spatial Structure tasks. NI children found it difficult to identify the number, shape, size, 

orientation, spatial and numerical structure of the triangles when copying with counters 

 Assessment 1  Assessment 2 Assessment 3 

Task Category I 

n = 27 

NI 

n = 26 

 I 

n = 19 

NI 

n = 16 

I 

n = 20 

NI 

n = 12 

Repeating patterns 

Tower 34 47  85 73 93 47 

Border 74 81  100 88 53 22 

Hopscotch 16 28  55 45 65 8 

Number 11 19  58 19 83 17 

Spatial structure patterns 

Array 47 42  79 72   

Block 47 46      

Grid  33 27  79 25   

Subitising 15 20  58 16   

Triangular 1 7 8  50 13   

Growing patterns 

Triangular 2      38 0 

Square Tiles      48 0 
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and drawing triangular dot patterns. However, even without intervention, the NI group 

showed some progress at Assessment 2: Tower, Border, and Array tasks. However, there 

were marked differences between the two groups in terms of the patterning strategies 

employed to solve the tasks.  

The increase in task complexity renders any comparison between Assessment 2 and 

Assessment 3 invalid. However, it is valid to compare performance between the I and NI 

children at Assessment 3. There were striking differences across all task categories in 

favour of the I children. Intervention children continued to show improvement across the 

more complex Repeating Pattern tasks at Assessment 3. However, the NI children found 

the tasks more challenging and performed well below the I group, particularly on 

Hopscotch and Number tasks.  

Spatial Structure tasks were reformulated into more complex Growing Pattern tasks at 

Assessment 3. Neither I nor NI children had been exposed to Growing Patterns in the first 

year of schooling and these tasks had not comprised part of the Intervention. Nevertheless, 

many of the I children could construct, extend, represent, and justify these patterns. It 

appeared that about half these children depicted some underlying structure in the pattern. 

Forty-five percent could successfully continue a growing triangular number pattern “1, 3, 

6”, presented as a triangular dot pattern and 55% could successfully continue a growing 

squared number pattern “1, 4, 9”, made with square tiles (see Figures 6 and 7 following). 

In comparison, Growing Patterns proved to be extremely difficult for all NI children, with 

no NI child giving a correct response. 

Patterning Strategies 

Repeating Patterns. By Assessment 2, I children developed a sound understanding of 

pattern as unit of repeat that appeared to lead to growth in the abstraction and complexity 

of patterning skills. Intervention children could successfully identify, construct and 

abstract the unit of repeat and calculate the number of repetitions. This was the dominant 

strategy used by I children at Assessment 2 and sustained at Assessment 3 (12 months 

later). Many I children were able to draw complex repetitions from memory, identify the 

pattern element, and number of repetitions as exemplified in the following excerpt. 

Researcher: How do you know that you have finished making your tower?  

Why didn’t you keep adding some more blocks? 

Child I 19: I remembered red, blue, blue, black, three times. 

In comparison, NI children relied on an alternating colours strategy to complete 

Repeating Pattern tasks. For example, when copying an ABABAB tower, NI children 

remembered the tower pattern as single alternating colours of “red, blue, red, blue, red, 

blue” rather than the element “red, blue” and the number of repetitions. For example, one 

NI child continued to add alternating colours of blocks, red then blue, and then after 

making a 9-block tower measured it against the tower that had been modelled to establish 

height. At Assessment 3, when the complexity of the tower was increased, (e.g., an ABBC 

repetition), and when asked to complete the task from memory, NI children’s alternating 

colours strategies became ineffective. Most NI children tried to remember the order of the 

coloured blocks and at times, the height of the tower. However, due to the complexity of 

the tower pattern they could not remember the sequence and thus made errors. 

At Assessments 1 and 2 a simple repetition was presented in a vertical and horizontal 

hopscotch pattern with a unit of repeat created with four squares: Two vertical, two 

horizontal (see Figure 2). The Hopscotch category differed from other Repeating Patterns 
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tasks in that it investigated changes in orientation of the pattern and children’s 

transformation skills. At Assessment 1, both I and NI found it difficult to visualise the 

Hopscotch pattern when it had been rotated by 90º. At Assessment 2 both groups improved 

on the Hopscotch tasks. It could be assumed that exposure to a variety of concrete 

materials and viewing objects from different perspectives in the children’s regular program 

assisted in developing these skills. For example, by the second assessment children had 

been exposed to a variety of activities such as block play and puzzles that encouraged 

transformation skills and this was critical to the completion of the Hopscotch rotation 

tasks. However, I children were more confident at drawing the rotated hopscotch from 

memory than the NI children. Figure 3 shows an I child’s drawing of the hopscotch 

template rotated by 90° (on the left hand side) at Assessment 1 and her drawing 6 months 

later at Assessment 2 (on the right hand side). 

   

Figure 2. Hopscotch patterns. Figure 3. Drawing of a Hopscotch pattern rotated at 90º, Child I 17. 

 

At Assessment 2 children were also given an extension task where they were asked to 

design their own hopscotch pattern. Sixty-three percent of I children successfully designed 

their own hopscotch that showed repetition of elements. Many I children could additionally 

integrate a second variable, colour, in their hopscotch pattern and could extend the number 

of tiles that formed the pattern element. For example, in Figure 4 the child created a 

complex pattern element, “two horizontal, one vertical, two horizontal, two vertical, four 

horizontal” using a systematic arrangement of colours, and replicated it once. In Figure 5 

the child created a pattern element of “three, two, one”, creating a descending row of steps. 

In contrast, only 25% of NI children designed a hopscotch pattern that showed a single 

variable repetition and there were no examples of complex patterns; rather they were 

restricted to AB repetitions. All NI children attempted to make their own hopscotch but 

they seemed unaware of the need to create and replicate a pattern element. 

 

Figure 4. Design own Hopscotch pattern,  

I 25, 5.1 yrs. 

 

Figure 5. Design own Hopscotch pattern,  

I 18, 5.0 yrs. 

 

At Assessment 3, the Hopscotch task required the children to complete a cyclic pattern 

where they needed to identify the pattern as a sequence of 90° turns. Sixty-five percent of I 

children successfully modelled and predicted the pattern as a sequence of 90° turns. In 

contrast, the NI children did not identify the pattern as a sequence of 90° turns but saw the 

three hopscotch templates as an ABC pattern element to repeat. 

At Assessment 3, children’s ability to identify a pattern beyond a linear form was also 

explored. One of the Border tasks required children to identify an ABC repetition (3 x 5 

border pattern of red, blue, green tiles) from multiple starting points. The task proved very 
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difficult for both groups, with only a small number of children from each group accurately 

completing this task. The majority of children identified the pattern with a starting point in 

the top left hand corner. It may be inferred that this was due to the children’s limited 

exposure to patterns presented as different spatial arrangements. This response could also 

be explained by the children’s classroom experience of making patterns that were limited 

to horizontal and vertical linear forms that begin in a designated position, using left-to-

right or bottom-to-top directions.  

In another Border task, children were asked to identify the number of green tiles 

required to complete the ABC pattern. Structuring the task in this way allowed the 

researcher to observe whether children determined the number of times the pattern element 

could fit into the remaining spaces. Intervention children outperformed NI children on this 

task. This may have occurred because the children were more aware that the pattern 

element contained three colours and they needed only to count every third tile. Such a 

strategy would suggest a sophisticated understanding of pattern as repetition and reflect 

early multiplicative thinking. Many of the I children immediately identified every third 

position in the border by placing their fingers on the square where the missing green tile 

needed to be placed. It appeared that these children visualised the pattern element 

accurately; some skip counted every third position in the pattern, translating the repetition 

of colours into a number pattern of multiples. In contrast, most NI children attempted to 

complete the pattern by verbalising alternating colours to determine how many greens 

were required. 

Spatial Structure Patterns. Intervention children outperformed NI children on all 

Spatial Structure tasks at the second assessment where almost all I children represented the 

structure of the patterns. For example, one Grid task required children to copy a grid of 

three connected squares. Most I children were able to draw the correct number of equal-

sized squares in correct formation. Those who made errors, made counting errors rather 

than those related to the spatial arrangement. In another example, when presented with an 

array of dots (e.g., 2 x 3) a number of children clearly represented the structure of two 

rows of counters forming a rectangular shape however, there were two rows of four 

counters, rather than two rows of three counters presented. It seemed that the I children 

focused their attention on the spatial structure of the patterns. This is not surprising since 

teachers encouraged children to look for similarity and difference in the structure of 

patterns throughout the Intervention. In comparison, many NI children’s incorrect 

responses lacked any structural features. For example, in Array tasks, children’s responses 

did not represent the shape of the array and frequently included an incorrect number of 

counters. It was inferred that the children did not “see” the structure of the array or the 

rows of dots in alignment.  

Growing Patterns. A number of I children, although not exposed to Growing Patterns 

throughout the Intervention or in the first year of schooling, were able to extend a growing 

triangular number pattern (see Figure 6) and a growing square number pattern (see Figure 

7). Most of the I children who made errors in constructing the Growing Patterns were still 

able to observe holistically the increasing size of the triangles or squares, and attempted to 

make the pattern larger.  

 

Figure 6. Triangular Growing Pattern,  

I 11, 6.3 yrs. 

 

Figure 7. Square Tile Growing Pattern,  

I 21, 5.5 yrs. 
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Of particular importance was the I children’s use of spatial structure to explain the 

pattern as an extension of the previous pattern element. This showed early signs of co-

variational thinking where children were required to deal with a change in the structure of 

the pattern. This result supports the findings of Blanton and Kaput (2002), which highlight 

the importance of quantitative relationships in developing algebraic thinking.  

Researcher: Can you tell me what is happening each time we make the triangle bigger. 

Child I 18:  It gets bigger. 

Researcher:  Can you tell me how it is getting bigger? 

Child I 18:  It’s going one, two, three, four. 

Researcher:  What’s going one, two, three, four? 

Child I 18: See the bottom of the triangle, here it is one, then here it is two, then three, here it’s 

four (outlines each successive triangle when explaining it). 

Most I children who could successfully extend Growing Patterns could also justify the 

pattern. The following excerpt demonstrates one I child’s justification of the pattern as 

growing systematically in two dimensions.  

Researcher: Can you tell me what is happening each time we make the square bigger. 

Child I 4: Yeh, here it has one, then it has 2 and 2 lines and it’s bigger. Then this one has three 

and three lines and then four and four lines. 

Researcher: What do you mean four and four lines.  

Child I 4 See there’s four in each line. 

Researcher: So what would the next one in my pattern be? 

Child I 4: Umm … five and five lines. 

In contrast, NI children were unable to identify or extend Growing Patterns. Many saw 

the triangles and squares exclusively as items in simple repetitions in the same way as the 

simple repetitions that they were familiar with. Many successfully created an ABC 

repetition however, they did not see the pattern as a growing pattern.  

Conclusions and Implications  

Interview-based assessment of children’s patterning skills identified that young 

children can develop complex patterning concepts prior-to-formal schooling. It appears 

that the Intervention experiences encouraged children to see the structure of simple 

repetition using a unit of repeat, and to represent patterns in different spatial forms such as 

borders, grids, arrays, subitising patterns, and numerical sequences. It was also apparent 

that the development of pattern as a unit of repeat promoted other mathematical processes 

such as multiplicative thinking and transformation skills. 

Warren (2005), in her study with 9-year-olds, questioned whether growing patterns 

were cognitively more difficult, or whether the real difficulty could be traced to over-

emphasis on repeating patterns in early mathematics curricula. The findings of this present 

study showed that the difficulty with growing patterns was not necessarily the absence, or 

predominance of repeating patterns in early mathematics curricula. Rather, the inadequate 

or inappropriate development of repeating patterns without a sound understanding of the 

unit of repeat, limited and possibly impeded the development of growing patterns. 

Commonly, when teachers are dealing with repeating patterns, the structure of the pattern 

is ignored or misinterpreted. Therefore, expecting children to observe other pattern 

structures such as growing patterns is unreasonable. 

Algebra has at times been considered developmentally inappropriate for young 

children, lying well beyond their developmental capabilities. However, the findings of this 

study suggest that this is not the case. It can be inferred that older students’ difficulties may 
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not be a result of developmental constraints after all, but rather, traced to the limited 

opportunities and/or limited or inaccurate approaches experienced in the early years. These 

include a lack of awareness of unit of repeat and inadequate attention to structure. The 

results indicated that the predominant strategy used by NI children to solve patterning 

problems was an alternating colours strategy. In comparison, I children were able to 

identify the unit of repeat and use this to solve various complex patterning tasks. Therefore 

it might be questioned whether the approach to teaching patterns and algebra used in 

mathematics curricula encourages an alternating colours strategy rather than the 

identification of pattern elements and number of repetitions. Could teachers’ lack of 

understanding and their approach to teaching repeating patterns limit children’s 

development of patterning? Further research is needed to explore the impact on children’s 

mathematical development if changes to curriculum and teacher pedagogy were to occur 

that explicitly encourage representation, abstraction, and generalisation of repeating and 

growing patterns in the early years. 
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Many researchers have noted that students’ whole number knowledge can interfere with 

their efforts to learn fractions. In this paper we discuss a teaching experiment conducted 

with students in Years 5 and 6 from an eastern suburban school in Melbourne. The focus of 

the teaching experiment was to use number lines to highlight students’ understanding of 

whole numbers then fractions. This research showed that successful students had easily 

accessible whole number knowledge and recognised the relationship between the whole and 

the parts whereas the weakest students had poor number knowledge and could not see the 

connections. 

Research Background 

Over the past 20 years research on rational number learning has focused on the 

development of basic fraction concepts. This has included partitioning of a whole into 

fractional parts, naming of fractional parts, and order and equivalence (Behr, Wachsmuth, 

Post, & Lesh, 1984; Kieren, 1983; Streefland, 1984). Kieren (1976) distinguished seven 

interpretations of rational number that were necessary to enable the learner to acquire 

sound rational number knowledge, but subsequently (Kieren, 1980; 1988) condensed these 

into five: whole-part relations, ratios, quotients, measures, and operators. Kieren suggested 

that difficulties experienced by children solving rational number tasks arise because 

rational number ideas are sophisticated and different from natural number ideas and that 

children have to develop the appropriate images, actions, and language to precede the 

formal work with fractions, decimals, and rational algebraic forms. 

Several researchers have noted how children's whole number schemes can interfere 

with their efforts to learn fractions (Behr et al., 1984; Bezuk, 1988; Hunting, 1986; 

Streefland, 1984). Behr and Post (1988) indicated that children need to be competent in the 

four operations of whole numbers, along with an understanding of measurement, to enable 

them to understand rational numbers. They suggested that rational numbers are the first set 

of numbers experienced by children that are not dependent on a counting algorithm. The 

required shift of thinking causes difficulty for many students. 

Mack (1990) found that where students possessed knowledge of rote procedures they 

focused on symbolic manipulations. Mack’s study suggested that if a strand of rational 

number is developed based on partitioning, using the students’ informal knowledge, then 

other strands of rational number could be developed more easily. 

Steffe and Olive (1990) showed that concepts and operations represented by children's 

natural language are used in their construction of fraction knowledge. Two distinct fraction 

schemes emerged from their research. In the iterative scheme, children established a unit 

fraction as part of a continuous but segmented unit. From this, children developed their 

own fraction knowledge by iterating unit fractions. The foundation of a measurement 

scheme occurred when the children’s number sequence was modified to form a connected 

number sequence. 
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Saenz-Ludlow (1994) maintained that students need to conceptualise fractions as 

quantities before being introduced to standard fractional symbolic computational 

algorithms. Streefland (1984) discussed the importance of students constructing their own 

understanding of fractions by constructing the procedures of the operations, rules, and 

language of fractions. This research focuses on students’ use of number lines firstly to 

probe students’ understanding of fractions as numbers capable of being represented on a 

number line, and then to look at how number lines involving whole numbers and fractions 

can be used to develop fractional language and to articulate fractional concepts.  

Previous Studies 

In previous research (Pearn & Stephens, 2004; Pearn, Stephens, & Lewis, 2002; 

Stephens & Pearn, 2003) analysis of results from the Fraction Screening Test A (Pearn & 

Stephens, 2002) has highlighted students’ difficulties with fraction concepts. The Fraction 

Screening Test is a paper and pencil test designed mainly for students in Years 5 and 6 and 

for weaker students in Years 7 and 8. The tasks include contexts such as discrete items, 

lengths, fraction walls, and number lines. Analysis of the results from the Fraction 

Screening Test highlighted the difficulties that many students experienced with number 

lines. The three number line tasks from the Screening Test are shown in Figure 1. 
 

9. Here is a number line 2 units long. 

Put a cross (x) where you think the number 
5

3  would be on the number line below. 

 

 

10. This number line shows where the numbers 
2

1  and 1 are.   

Write any fraction that fits between 0 and 
2

1 .     _______ 

Place your fraction as accurately as you can on the number line below. 

 

 

 
 

11. This number line shows where the number 
3

1
  is. 

Put a cross (x) where you think the number 1 would be on the number line. 

 

 

           

Figure 1. The three number line tasks (Fraction Screening Test A). 
 

Many students in Question 9 confused three-fifths of the number line with the number 

three-fifths. In Question 10 many students who chose one-quarter represented it correctly. 

Other fractions seemed to be placed using guess work rather than any systematic division 

of the number line. A similar tendency to use guess work was evident in Question 11. 

Table 1 compares the results of 288 students in four year levels from four different 

Victorian schools on the above three number line tasks. These results highlight the 

0 
2

1  1 

0 
3

1
 

0 1 2 
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difficulties that students have with the notion of fractions as numbers and with placing the 

fractions on number lines accurately.  

Table 1 

Success with Tasks from the Fraction Screening Test A (n = 288) 

Task from Fraction Screening Test A Year 5 

(n = 84) 

Year 6 

(n = 66) 

Year 7 

(n = 89) 

Year 8 

(n = 49) 

Marks 3/5 of the number line 23% 32% 32% 20% 

Chooses then marks number between 0 and 1/2 44% 31% 52% 19% 

Marks 1 given 1/3 46% 41% 56% 25% 

Subsequent Interviews 

In a previous study (Pearn & Stephens, 2004), several students who had completed the 

Screening Test were asked to compare two fractions and then place them on number lines 

marked zero to one. We observed that some students just “placed” the fractions on the 

number lines without using any referents to other known fractions, for example, one-half. 

For example, one student randomly placed the fraction three-quarters close to the number 

one on the number line then placed three-fifths the same distance from three-quarters as 

she had placed three-quarters from one (Figure 2). This was because, “three-quarters is 

only one away from a whole and three-fifths is two away from a whole”. Pearn and 

Stephens (2004) refer to this as gap thinking, illustrating how whole number thinking can 

interfere with fraction knowledge. 

 
Figure 2. Three-quarters and three-fifths. 

 

Another student when comparing three-quarters and three-fifths correctly converted 

both fractions to twentieths concluding that three-quarters was bigger (Pearn & Stephens, 

2004). When invited to use number lines to compare these two fractions he divided the first 

number line (below) by eye into quarters and marked one-half and three-quarters. He then 

placed one-half on the number line below corresponding to its position on the first number 

line. He said that “three-fifths is smaller than three-quarters” and marked three-fifths to the 

right of one-half and to the left of three-quarters on the first number line with no attempt to 

divide the line into fifths (Figure 3). 

 
Figure 3. One-half, three-quarters and three-fifths. 
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When the interviewer asked where the fraction one-fifth would be the student 

responded with “One-fifth is more than one-half, I think.” He then used a new number line 

and placed one-fifth to the right of one-half. The interviewer then asked where he thought 

one-third and one-quarter would be on the number line. The student then placed these two 

fractions in between one-half and one-fifth as shown in figure 4. Despite apparent correct 

thinking in the previous example, this student unexpectedly lapsed into larger-is-bigger 

thinking – another example of incorrect whole number thinking. 

 
Figure 4. Larger denominator is bigger. 

 

These instances demonstrate the importance of asking students in a probing interview 

to represent their fractional thinking using a number line. On the other hand, asking other 

students to represent fractions on a number line assisted them to identify and correct their 

misconceptions. However the study did not set out to explore remedial strategies with the 

students interviewed.  

The current study also uses a screening test and interview using number lines to probe 

students’ understanding of fractions as numbers. The interview commenced by looking at 

how number lines involving whole numbers can be used to develop fractional language and 

to articulate fractional concepts.  

Initial Testing 

All students from Years 5 and 6 from School A in the eastern suburbs of Melbourne 

were given Fraction Screening Test A (Pearn & Stephens, 2002). The tasks used contexts 

such as discrete items, lengths, fraction walls, and number lines. One fraction task based on 

area was replaced in this study with an extra number line task. Figure 5 shows the 

additional number line task added specifically for this group of students. 

 
12. On this number line 0 and 1 are shown.  

 

 

 

 

What fraction number do you think M represents? _______ 

Figure 5. Additional number line task (Fraction Screening Test A). 

Results 

The students’ results on the Fraction Screening Test A reflected the types of responses 

achieved previously from other groups of students. Results shown in Figure 6 show that 

these students were more successful with tasks presented in conventional contexts such as 

shading three-fifths of an unmarked rectangle and with the fraction one-third, for example, 

finding the whole given a third using discrete objects. They were less successful with tasks 

that involved fractions as numbers, for example “Put a cross (x) where you think the 

0 1 M 
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number 
5

3
 would be on the number line”. Many students interpreted this question as 

requiring them to find three-fifths of the entire line ignoring the numbers 0, 1, and 2 

marked on the number line.  
 

Fraction Screening Test
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Figure 6. Success with tasks from Fraction Screening Test A. 

 

Teachers from School A had undertaken considerable professional development 

presented by the authors. In Table 2 we compared the combined results of Years 5 and 6 in 

School A with results on the same three questions from other schools (see Table 1) where 

teachers had not had the same level of professional development. Students at School A 

were more successful with the first and third tasks. In the second task, while 60% of School 

A’s students were able to state a fraction between 0 and ½, only 38% could place the 

fraction they chose accurately on the number line. 

Table 2 

Comparative Success of Students from School A on Fraction Screening Test 

Number line tasks (Fraction 

Screening Test A) 

School A 

(n = 58) 

Other Year 5 

(n = 84) 

Other Year 6 

(n = 66) 

Marks 3/5 of the number line 50% 23% 32% 

Chooses then marks number 

between 0 and 1/2 

38% 44% 31% 

Marks number 1 given 1/3 59% 46% 41% 
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Analysis of the additional number line question (Figure 5) revealed that only 41% of 

the students from School A were able to identify the number denoted by M (3/4) on the 

number line. A few students thought the letter M should represent a letter so responses 

included words like “million”, “middle”, and “mixed number”. 

Fraction Number Line Interview 

The authors developed an interview protocol called Working with number lines to 

probe fraction concepts (Pearn & Stephens, 2006). The interview required students to 

complete number line tasks while describing what they were thinking or how they worked 

it out. Students were initially required to place whole numbers on number lines, then 

fractions on number lines and finally, to review their responses to the four number line 

questions from the Fraction Screening Test. Figure 7 is an example of one question that 

requires students to place a number between two given whole numbers and then place 

another number relative to one of the given whole numbers. Following research by Behr 

and Post (1988) and Mack (1990), questions like this were designed to see how well 

students could connect their whole number knowledge in a fraction context.  
 

4.  This number line shows 0 to 30. 

 a) Where would you put the number 10? How could you be sure? 

 

 

 

 b) If you want to mark the number 40 on this line how could you do that? How could you be sure? 

Figure 7. Marking whole numbers on a number line. 
 

After working with whole numbers students were asked to place proper fractions and 

mixed numbers on number lines. Figure 8 gives an example of a question involving 

fractions. For this task the interviewers were looking for evidence that students could place 

fractions accurately by using points of reference rather than just “placing” the fraction 

randomly on the line. The second part of this task requires students to use previous 

information to assist them to decide the most appropriate point for the number. 

 
8. This number line is marked 0 and 1. 

 a) Where would you put the number ¾? How could you be sure? 

 

 

 

b) If you want to mark the number 1
8

1
 on this line how would you do that? How could you be sure? 

Figure 8. Marking fractions on a number line. 

The Interviews 

Students were individually interviewed by the authors. In Task 1, students were shown 

a number line marked 0 and 100. They were then asked to show where the number 50 

would be placed.  Students justified their answers by saying things like: 
 

• 50. It’s in between. Half of a 100 is 50. 

0 1 

0 30 
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• Another student placed 50 correctly and said: “It’s in the middle (of the line).” 
 

Many students found Task 2 (Figure 9) more difficult where, unlike the previous task, 

the midpoint of the line was unmarked. Some students’ responses to this task highlighted 

the lack of understanding of the relationship between the number of marks used to divide 

the line and the numbers parts so formed. Despite giving a correct answer, Student S could 

not connect her numbers to the parts. Even when students, like Students R and T, were 

helped to identify the number of parts their lack of number knowledge prevented them 

from giving a confident correct response. 
 

2.  This number line is marked 0 to 100 and has been divided up. 

 Can you work out what numbers should go on the marks? 

 

 

 

Student R (Year 5) 

Pointing to the last mark (where 80 

should be) she said: “Maybe this 

should be 75”. 

Interviewer: How many parts? 

A: four … six  

I: Count the parts. 

A: Five 

I: Five people to share 100 lollies.  

How many each?  

A: Fifteen … 15, 30, 45, 60 … No. 

Maybe 30 … maybe 25 … maybe 20  

I: Please check for 20. 

A: correctly marked the line 20, 40, 

60 … to 100 

Student S (Year 5) 

Wrote 20, 40, 60, 80  

S: I just know. 

I: How many parts are there? 

S: Four 

I: Does it help to know the parts? 

S: Not really. 

 

Student T (Year 5) 

Placed the numbers 15, 20, 60, 75 on 

the marks provided. 

I: Is 15 going to work? 

A: 15, 30, 45, 60 … No.  

He then placed 20, 40, 60, 80. 

I: How many spaces? 

A: Five 

I: Share 100 between five people. 

I: 2 … 20  

 

Figure 9. Examples of students’ responses for Task 2. 
 

Those students who knew that 30 consisted of three 10s, or that 10 was one third of 30, 

dividing the number line into three equal parts was easy. For students like Student T the 

process of halving and then partitioning again proved problematic (see Figure 10). 
 

4.  This number line shows 0 to 30. 

 a) Where would you put the number 10? How could you be sure? 

 

 
 

b) If you want to mark the number 40 on this line how could you do that? How could you be sure? 

Student S: About there. (Placing 10 correctly). 

It’s about a third.  

I: “Could you check.” 

She marked in 10, 20, and 30 correctly. 

Placed 40 correctly. “Because it’s the same distance (10) 

up from 30”. 

Student T first placed 15 half way. Then said: “Twenty 

would be about there.” 

He then estimated where 10 would be (no partitioning) and 

decided that 40 would be the same distance from 30. 

 

Figure 10. Examples of students’ responses for Task 4. 
 

0 100 

0 30 
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For Task 5, (Figure 11), several students, including Students U and V, assumed the 

arrow at the end of the drawn line was the mark for 100. These students used this 

assumption rather than the information given on the number line. 
 

 

5.  This number line shows 0 to 25. 

 a) Where would you put the number 75? How could you be sure? 

 

 

             

b) If you want to mark the number 5 on this line how could you do that?      

Student S Put in two marks to 

represent 50 and 75 but very 

inaccurate increments of 25. 

I: Could you use your pencil to 

measure? 

A used an accurate measure to place 

50 and 75 but didn’t know how to 

place 5. 

 

Student U marked 50 then 75. 

“I think here is about 100 (end of 

drawn line). “Three-quarters is 75. 

Because 25, 50, 75”. 

Placed 5 about half way between 0 

and 25, then rethought. 

I: Half of 25? 

S: 12½ 

I: Half of 12 is …? 

S: “Six”. Placed 5 a bit to the left of 

where 6 would be. 

Student V (Year 6) marked in two 

more intervals to correctly place 75. 

He appeared puzzled because he 

assumed the end (arrow) was 100. 

He initially subdivided 0 to 25 too 

small. Self corrected to get fifths quite 

accurately.  

 

Figure 11. Examples of students’ responses for Task 5. 
 

In Figure 12 the interviewer assisted students by asking them to focus on the interim 

fractional points (¼, ½, and ¾). Some students thought the arrow was the mark for the 

number two but once they had focussed on the interim fractional points were able to 

correctly place 1� by subdividing correctly the line between 1 and 1¼. 
 

8. This number line is marked 0 and 1. 

 a) Where would you put the number ¾? How could you be sure? 

 

 

b) If you want to mark the number 1
8

1
 on this line how would you do that? How could you be sure? 

Student S marked ½ then ¾ correctly by eye. Not sure 

about 1�. 

I: What’s the distance between ¾ and 1? 

S: ¼  

I: Where is 1¼? 

She identified 1¼ and then said “Half of that (distance 

between 1 and 1¼) is 1�”. 

Student T said: ¾ is about here (placed it but didn’t use ½ 

or ¼ as reference points). 

I: Where is ½ and ¼? 

He subdivided and then was able to place 1¼ correctly and 

halved the distance from 1 to 1¼ to get 1� 

Figure 12. Examples of student responses for Task 8. 

Analysis of Interview Results 

Successful students used number knowledge, accurate skip-counting, and 

multiplication facts to partition the number line. They confidently related halves, quarters, 

and three-quarters to the numbers being used. For example they could relate eighths to 

quarters. Some students needed help to identify the number of spaces (parts) instead of 

focussing only on the vertical division marks. The number line questions allowed those 

0 25 

0 1 
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students who had confident whole number knowledge to apply fractional concepts to their 

subdivisions of the number line. Other students who were unable to draw on whole number 

knowledge frequently used guesses to place numbers on the number line using “Where I 

think it should be” rather than accurate “by-eye” partitioning. These students were rarely 

able to apply the language of fractions to subdivisions of the number line, and often needed 

assistance to see connections between halves, quarters, and eighths.  

Students Reviewing their Written Responses to the Screening Test 

On the initial Screening Test, Student S correctly marked the number one but showed 

no evidence of the strategy she used. Student T’s response showed no understanding of 

equal intervals. However after being interviewed Students S and T applied correct 

subdivision strategies to this task that they had used for their whole number questions 

(Figure 13). 
 

This number line shows where the number 
3

1
 is. 

Put a cross (x) where you think the number 1 would be on the number line.        

      

 

 
On the Screening Test Student S had placed the number 1 

correctly with no interim marks.  

In interview she doubled 1/3 to give 2/3 and added a 

further 1/3 to get 1 then explained that she could also 

count in sixths by halving the line 0 to 1/3. 

On the Screening Test Student T had placed the number 

one incorrectly (too close with two incorrect interim marks 

that were not equivalent to 1/3).  

I: “Is your old one correct?” He then used the distance 

from 0 to 1/3 to create 2/3 and added 1/3 accurately to get 

3/3. 

Figure 13. Comparison of Task 3 responses before and after the interview. 
 

When asked to review their earlier written responses, many students showed evidence 

of being able to recognise errors and to self correct, as shown in Figure 14, for the fraction 

task using the letter M. Both Students S and T were now able to see that the letter M 

represented the fraction ¾. 
 

Task Student S Student T 

On this number line 0 and 1 are 

shown.  

What fraction number do you think M 

represents? 

 

S wrote ¼ as the value of M on the 

Screening Test.  

In interview she said:  

“M is ¼  … ? Oh no, it’s ¾.” 

 

 

A wrote that M was 2/3 but in 

interview he said: “It should be ¾.” 

I: Why did you choose 2/3? 

A: Because there were three parts. He 

then added by pointing: “That part (0 

� ½ ) is bigger than this (½ � 2/3)” 

Figure 14. Comparison of Task 4 responses before and after the interview. 

Conclusions 

Successful students demonstrated easily accessible and correct whole number 

knowledge and knew relationships between whole and parts. They attended to equal parts 

not the vertical lines used to create the parts. They could apply fractional terms to the equal 

parts. Less successful students tended to look at lines and needed help to focus on equal 

parts. These students often had difficulties with number lines marked without a midpoint. 

Sometimes these students assumed that arrows at the end of lines represented “the next” 

0 
3

1
 

 

1 M 
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whole number. Due to their poor whole number knowledge, the weakest students could not 

see connections between whole numbers and fractional parts of the number line. Also, they 

appeared dependent on guess work to place numbers on number lines. 

By using whole numbers on number lines first, the interview questions clearly helped 

many students to connect whole number and fraction knowledge. The interviews also 

helped students to recognise and correct their own misconceptions in previous assessment 

tasks. 
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This paper reports on a project that identified and explored the factors leading to 

outstanding mathematics outcomes in junior secondary public education in NSW for 

students across the ability spectrum. Once a sample of mathematics faculties was identified 

by drawing upon the extensive quantitative and qualitative data-bases within the NSW 

Department of Education and Training (DET), seven intensive case studies were conducted 

to identify faculty-level factors. Seven common themes are reported and these are the strong 

sense of team, staff qualifications and experience, teaching style, time on task, assessment 

practices, expectations of students, and teachers caring for students. 

An Exceptional Schooling Outcomes Project (ÆSOP) was designed to investigate the 

principles, processes, and practices in a sample of sites in NSW Years 7-10 Department of 

Education and Training (DET) schools producing outstanding educational outcomes. The 

research focus was on teams of teachers (i.e., mathematics faculties). The nature of 

“outstanding educational outcomes” was determined using the Adelaide Declaration on 

National Goals for Schooling in the Twenty-first Century, approved by all State, Territory 

and Commonwealth Ministers of Education in 1999. They stated that schooling should:  

• Develop fully the talents and capacities of all students; 

• Enable high standards of knowledge, skills and understanding through a 

comprehensive and balanced curriculum; and  

• Be “socially just” (MCEETYA, 1999). 

There is growing evidence in the research literature of the importance of a research 

focus on faculties in secondary schools. Although there is an extensive body of research 

highlighting the important roles played by the school Principal at one end of the spectrum, 

and the individual classroom teacher at the other, in advancing the quality of students’ 

educational outcomes as they proceed through school, there is comparatively little research 

on the significance of the roles played by subject faculties as groupings of teachers working 

towards a common agenda. Yet, as Goodson and Marsh (1996, p. 54) stated “the subject 

department provides the most common organisational vehicle for school subject 

knowledge, certainly in secondary schools, but unlike ‘the curriculum’ it has not been 

widely researched or much noted in our studies of schools.” Bennett (1999, p. 289) 

supported this perspective suggesting that the latest school effectiveness and school 

improvement research recognised the different levels of school structure and practice, and 

the “resurgence of interest in sub-units of schools” – in particular, subject faculties and 

their organisation and leadership (Busher & Harris, 1999; Sammons, Thomas, & 

Mortimore, 1997).  

Other evidence from school improvement research has also emphasised the growing 

importance of focusing efforts at changing practices at various levels within an 

organisation. For example, the largest study of differential school effectiveness in the 
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United Kingdom identified the differences between faculties as a means of explaining 

school performance (Busher & Harris, 1999; Sammons et al., 1997). As Hannay and Ross 

(1999, p. 346) concluded, “we need far more research on the micro-processes involved in 

secondary schools.”  

In a report on the Investigation of Effective Mathematics Teaching and Learning in 

Australian Secondary Schools (ACER, 2004) one of the main findings of the study was 

that the effectiveness of mathematics teaching in a school is related to the strength of 

professional community in the school’s mathematics department. Ayres, Sawyer, and 

Dinham (2004) came to a similar conclusion in their study that focused on characteristics 

of effective teachers at the Higher School Certificate (HSC) level. The researchers found 

that the subject faculty was one of seven factors deemed to contribute towards HSC 

teaching success and warranting further investigation.  

This paper reports on seven mathematics faculties in which the past 4 years of student 

cohorts had either scored consistently highly on value-added measures or demonstrated 

consistent improvement on the same scores. Importantly, sites had to demonstrate their 

ability to “value add” for students in low, middle and high achievement bands. Sites were 

selected to cover as wide a socio-economic and geographical cross-section of schools as 

possible. In particular, the more influential themes emerging from the analysis of processes 

and procedures of secondary mathematics faculties visited are discussed.  

Research Design and Methods 

Overall, the ÆSOP study involved a series of approximately 50 intensive case studies 

in a variety of “sites” across NSW. These sites were generally faculty-based although some 

other teacher groupings were explored in some schools (e.g., learning support teachers). 

Paramount to the project was a valid and justifiable method for selecting schools given that 

students had to be achieving outstanding educational outcomes.  

Selection of Sites in Schools 

The process for selecting schools for inclusion in the project was complex, involving a 

matrix of data. The basic source was value-added data collected for all students attending 

DET schools in NSW. The data were prepared by the DET School Accountability and 

Assessment Directorate by profiling student learning outcomes as measured in standardised 

tests commencing with the Year 5 Basic Skills Test, the Year 7 ELLA and SNAP tests, and 

the English/literacy, mathematics, science, Australian history, geography, civics and 

citizenship tests in the School Certificate. The criteria for selection of a site in a school 

were as follows: 

• Cohorts of students consistently, i.e., over the past four years, scoring high on 

value-added data, across the low, middle and high achievement bands, or 

• Cohorts of students consistently, i.e., over the past four years, improving their 

value added scores across the low, middle and high achievement bands. 

With the emphasis on the three bands of students, selective schools in NSW were 

automatically excluded as potential sites due to the lack of low and often middle achieving 

students.  

Selection also included qualitative data as part of a triangulation process. Nominations 

of sites were sought from DET staff at the central, district, and school levels, as well as key 

education groups, such as the NSW Teachers’ Federation, the NSW Federation of Parents 
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and Citizens, the NSW Secondary Principals’ Council, the Professional Teachers’ 

Associations and the NSW Student Representative Council. In all cases, nominations had 

to be substantiated by evidence. Consideration was also given to HSC data in the relevant 

subject area in terms of the numbers of students pursuing the subject and overall student 

results. Finally, District Superintendents and school Principals were contacted by phone to 

discuss the appropriateness of the selection of sites particular to their district and school, 

respectively. Once the initial selection of the sample sites was verified as potentially 

outstanding, agreement was reached with Principals of schools for the research visits to 35 

schools in 23 districts throughout the state. Site visits were made to seven schools for 

mathematics representing a cross-section of socio-economic and geographical locations 

(Table 1).  

Table 1 

Profile of Sites Visited for ÆSOP Mathematics 

School Location Student 

Population 

% Indigenous 

Students 

% NESB 

Students 

Other Characteristics  

1 Western NSW 900-1000 2 4 High proportion of 

students with disabilities 

Middle socio-economic 

status 

2 Northern Coast 

NSW 

900 < 1 < 1 Few students with 

disabilities  

Middle socio-economic 

status 

3 Northern Sydney 1300-1500 < 1 < 1 Few students with 

disabilities  

High socio-economic 

status 

4 Western Sydney  1000-1200 < 1 85 Middle socio-economic 

status 

5 South Western 

Sydney (Female 

only) 

1000-1100 < 1 92 Low to middle socio-

economic status 

6 South Western 

Sydney (male only) 

900 < 1 50 Low to middle socio-

economic status 

7 South Sydney 1100 < 1 85 Middle socio-economic 

status 

Study Design 

ÆSOP was guided by four research questions: 

• What are the variables and processes leading to outstanding educational 

outcomes in terms of the goals specified in The Adelaide Declaration – personal 

identify, academic success, and social attainment? 

• Is it possible to identify the relationship(s), if any, between the different types of 

goals specified in The Adelaide Declaration as achieved through subject 

departments and/or other formal groups and special programmes and initiatives? 
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• What organisational and institutional factors – NSW DET, district, school, 

leadership, community, faculty, other groups and individuals – contribute to 

and/or constrain this success? 

• To what degree and through what means, if any, can the outstanding educational 

outcomes identified be shared with others within and beyond the schools 

investigated? 

With sites selected intensive case studies were undertaken in each of the schools. This 

involved a Project Team consisting of a university researcher in a related discipline (i.e., 

mathematics education), a university researcher with expertise in case study methodology, 

the local Chief Education Officer (School Improvement), and a Head Teacher from a 

nearby school. Each team spent up to 5 days investigating the policies, programs, and 

practices that lead to the outstanding schooling outcomes being achieved in sites.  

In the school the team collected a range of data. This included semi-structured 

interviews with Principals, Deputy Principal(s), Head Teachers, subject teachers, school 

advisors, students (Year 7-11), and parents. Lesson observations using a specified protocol 

were conducted with teachers who agreed to the involvement of the research team. Finally, 

a document analysis was undertaken of school reports, results, subject programmes, school 

and faculty policy documents, and any other documents deemed appropriate (e.g., media 

coverage). All interviews were taped with approval of interviewees.  

Once the protocols and procedures for ensuring consistency across Project Teams were 

developed, four site visits were conducted to pilot the techniques for the main study. This 

resulted in an interim report with changes made to the conceptual framework guiding the 

study, alterations to the protocols, and variation to the overall design. The main study was 

conducted over the next 2 years of the project.  

Data Analysis  

At the completion of each site visit the research team prepared a report using the data 

available. The work of the writing teams was assisted by two key activities – 

consultations/workshops and detailed, qualitative analysis of each relevant site report. 

Frequent combined meetings of the writing teams were held so that experiences during 

visits could be shared with preliminary findings discussed and compared. Further analysis 

of each site report was assisted through the use of NUD*IST software. This facilitated 

analysis through a tree-node system as a hierarchical index of topics, themes, concepts, and 

ideas emerged (Richards, 2002).  

Results and Discussion 

Analysis of the mathematics data identified seven major elements in relation to the 

school, faculty, characteristics of teachers, pedagogical practices, and parents and students. 

The findings discussed in this section represent a number of the major themes that emerged 

as being particularly influential from these elements.  

Strong Sense of Team  

We are working in a friendly environment, staff are helpful. Good teamwork. Keen to help each 

other. We have similar views … like correct Mathematics … We use different methods. Our 

department has a staff room that is good for working together. I am very happy to teach here. 

(Teacher) 
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This quote encapsulates many of the comments made by mathematics teachers about 

their faculties as teachers invariably likened the experience to working as a “family”. 

Interestingly, this included agreements and disagreements, good times and bad, and 

friendships of varying intensities. Through it all, however, there was a unifying sense of 

purpose and collegiality. It was common to hear teachers speak about how much they 

gained from sharing with their colleagues and how much they appreciated their own 

opinions being valued. The ability of mathematics teachers to function collaboratively was 

evident from the policy changes (e.g., registers and programmes), continued changes in 

assessment practices, and improved classroom approaches aimed at enhancing student 

understanding.  

At the individual level, teachers were cognisant of issues their mathematics colleagues 

faced and were supportive of one another’s challenges and achievements. Teachers had 

established good working relationships with their peers and used their initiative to 

determine ways to help colleagues maintain a high-quality learning environment for their 

students. The focus of this support was evident in various ways such as ensuring 

colleagues’ classes were not disadvantaged by covering absences and ensuring equity in the 

provision of resources.  

Each team of mathematics teachers exhibited a clear sense of pride in the culture of 

success they helped create and this was disseminated to newly appointed teachers. New 

teachers who came to the school spoke of encountering an established faculty culture with 

an expectation for conformity to meet relatively high standards of performance. The 

enculturation of new staff was implicit and/or explicit ensuring that members of these 

faculties were able to advocate and share a common vision that encouraged a consistent 

staff approach.  

Importantly, leadership qualities were admired and respected by the mathematics staff. 

Although leadership was usually the province of the Head Teacher this was not always the 

case with a distributed leadership (Spillane, Halverson, & Diamond, 2001) style evident in 

some instances. In general, the leaders of these exceptional faculties exhibited common 

characteristics including a commitment to keeping abreast of the latest developments in 

teaching mathematics, a strong subject and syllabus knowledge that would enable them to 

support other faculty members, and sound classroom practice. These leaders appeared 

pivotal in establishing and/or maintaining the culture of the faculty.   

Qualified Staff with a Breadth and Depth of Experience 

Subject knowledge and experience in teaching mathematics were two important 

features of the staff in the faculties visited. First, the University training of the staff was at 

a high level with the majority of teachers holding third-year majors or an equivalent in 

mathematics in their degrees. Second, teachers in these faculties had many years of 

successful teaching experience, often in several schools. Subsequently, they brought a 

wealth of different experiences to their current positions.  

These faculties could be described as communities of scholars with deep knowledge of 

the subject and a special pride in teaching mathematics clearly evident. Their work was 

well recognised by people outside the faculty who were aware that the Mathematics 

teachers always exhibited a high degree of professionalism. As one Year Adviser 

remarked: 
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Staff members here are confident about mathematics. We sit here and talk Mathematics and 

exchange ideas. When we put in a request for what classes we want next year there are a number of 

us who automatically put up our hands for the lower classes … I think that is unusual. 

Solid Teaching 

All teachers interviewed referred to their style as “traditional” meaning it involved a 

“standard” approach to classroom instruction. Although there were variations to the 

meaning of a standard approach there was a great deal of commonality in approaches 

across schools. In particular, there was a clear and consistent structure to lessons.  

In practice, this common structure related to similarities in the way teachers started 

lessons, how lessons proceeded, and how lessons ended. This structure gave a sense of 

security to students in their learning. Nevertheless, within this structure, there was still 

variety in these lessons. For students, lessons were not dull, repetitive, or boring. 

At some stage in the lessons observed students were given practice exercises. Students 

who finished the work were given additional activities, usually from another source. 

Teachers made every effort to ensure that students were given an opportunity to learn, or to 

practise skills, in each lesson. A feature of the lessons observed was that teachers were 

aware of the need for appropriate revision before proceeding, careful explanation of new 

concepts, appropriate practice and follow-up. 

Common to many lessons observed was an underlying rigour appropriate to the ability 

of the students. Teachers were conscious of helping and encouraging all students to 

achieve. Numerous conversations with teachers revealed the importance of “bringing 

students up to a level rather than pitching the work down”. Every effort was made to ensure 

that students achieved syllabus outcomes. 

Faculty members established supportive classroom environments for their students 

using an array of teaching aids or interesting approaches to topics. They accepted the need 

for some change and appeared willing to try new ideas, but did so in an environment of 

scrutiny. They were skeptical of educational fads and felt that they had been “burnt” many 

times before through change for change’s sake. They spoke about being prepared to put in 

place whatever was needed to ensure that their students were placed in the best position to 

benefit from changes.  

We have battled away with all these new approaches in teaching, group work and so forth … and 

mathematics-wise we have found it very hard to really move away from set maths lessons … you 

know your structured maths lessons. … As soon as you get the unstructured happening the students 

are not comfortable. (Head Teacher Mathematics) 

Time on Task 

Time on-task was maximised by the teachers and students at the schools visited. 

Emphasis around “on-task” time and a commitment to a cooperative and supportive 

environment were high on the teachers’ agendas. Classroom teachers made every effort to 

ensure that students were actively engaged in the learning process. When asked about 

discipline in Mathematics a Year 8 student said: “In Mathematics we are too busy to muck 

up.” 

The value of on-task time was also apparent in more subtle ways in the schools. An 

example from among many help exemplify intrinsic aspects of this feature. In one school 

visited, the staffroom was located at some distance from the demountable village teaching 
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rooms allocated to mathematics. Despite this geographic arrangement, the mathematics 

teachers were invariably punctual to lessons and got down to productive teaching and 

learning in minimum time. Further, when they had consecutive lessons it was noted that 

they took resources for all lessons with them so as to save time and not have students 

waiting while they returned to the staffroom. 

In this and other cases there was a clear message being directed to students: their 

teachers valued mathematics, valued teaching mathematics, and valued the time provided 

to mathematics. Further, this implied that the time spent on Mathematics was important 

and teachers would do all they could to maximise this time. Students came to accept the 

importance of time. At the staff forum a teacher commented on this: 

When I came here my first problem was I’d walk in and would run out of work–what took 40 

minutes at my former school took 20 minutes here so the implications of the students being good is 

that you have to change your style of teaching and I think that is characteristic of us here. We 

probably all come from different backgrounds and changed our style of teaching to suit the school 

… Kids come with a lot and we have to add to it. (Teacher) 

Time-on-task was considered a vital factor in helping students achieve their best. This 

was communicated to students in many ways both explicitly and implicitly. Nothing 

seemed more powerful in getting the message across to students than the teachers’ role-

modelling this practice.  

Assessment as a Catalyst for Teacher Cohesion 

The faculties invariably had a well-developed testing regime. Some had formal half-

yearly and yearly examinations that commenced with students in Year 7. Regardless of the 

type and formality of the testing, the faculties appeared to use the testing/assessment 

process for a variety of purposes. For students, the testing regime served to provide a 

catalyst to assist them in developing and consolidating their understanding. It also 

enhanced their skills, expectations, and preparation for examinations, revision techniques 

for examinations, and the establishment of regular patterns of study. Interestingly, students 

viewed this positively. 

For teachers the testing process was different. It was to identify students’ abilities, what 

they had understood, and how they were proceeding in comparison with their peers. 

However, tests were also used as a basis to discuss with colleagues the effectiveness of 

teaching various topics. They helped provide a focus on pacing lessons and illuminating 

different emphases that teachers had placed in their teaching. These tests were seen as 

helping identify and better understand the major issues, what were important subsidiary 

ideas, and the development of questions that would elicit greater student understanding.  

Most faculties had elaborate and collaborative setting and marking plans for tests. 

Sometimes teachers not currently teaching a course were required to produce tests. In other 

faculties, teams of teachers teaching a particular course would collaborate, often with 

teachers within a team taking on different roles. Regardless, of the organisational structure, 

tests were carefully scrutinised. This would involve a focus on the wording, the breadth of 

content, the overall standard, and the marking scale. It was important in these faculties that 

there was consistency and that all tests were set to a high standard.  

Quick feedback on student performance was also a feature. Papers were invariably 

returned very soon after the test. Feedback varied from school to school, but in general 

there was a focus on how the test had addressed syllabus outcomes and also what students 

needed to do to ensure a maximum score for each question. As classes were invariably 
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streamed, this enabled students to see where they were tracking in comparison with their 

peers. Usually, in the case of substantial tests, this ranking resulted in some students being 

allocated to a different class. The argument was that this reorganisation allowed students to 

work with peers at their level. This would encourage greater and more relevant on-task 

learning time as students within the same class would more likely be at similar learning 

points. 

In practice there was some flexibility in this process and students were often moved or 

retained within a specific class out of consideration of social and/or personal factors. The 

overriding consideration was: “What was in the best educational interests for a particular 

student.” In reaching decisions most Faculties involved parents and students. 

Students appeared to respond positively to class movement based on test results, 

supporting teachers’ view that this action had a motivating effect on students. They saw the 

outcomes as “fair” and in the case of those demoted, they spoke how they had the chance to 

return to their class if their results improved.   

Clear Mission of High Expectations 

A lot has to do with the kids. The kids are on the whole studious, value an education, and they’re 

concerned about their progress and that makes a big difference … The support you get from the 

families … If they are away for a day and miss something then they worry about what they have 

missed. Not like other kids who say “hooray I have missed something”, they worry about it. (Head 

Teacher) 

The environment provided by the maths department teachers helps her (daughter) learn. (Parent) 

These two quotes are illustrative of how teachers and parents attributed reasons for the 

exceptional mathematics performances in their school. A common theme associated with 

these observations was mutual respect among all parties. Teachers acknowledged that 

students and their parents were a central reason for the results obtained, whereas parents 

and students saw the teachers as being the key. 

Every time you deal with a parent here it is usually a very pleasant experience because they are 

interested in their kids. We might send letters home saying the standard sort of thing, “We are 

worried about your child in this area” or “They haven’t been doing their homework” … Their 

response is usually positive. (Head Teacher) 

Teachers spoke of students in their school being well motivated and that they came to 

school and to class willing to learn. The students appreciated the care and support provided 

by the mathematics teachers and they cooperated accordingly. 

It was evident that a situation was established in these schools whereby teachers were 

assisted by students’ commitment to learning and their desire to achieve. Students at all 

schools generally agreed that it was easy to get help from their mathematics teachers. One 

Year 8 student, when asked if she could go to the staffroom to ask for help, commented: 

“In class she asks if we have problems you only have to put your hand up.” 

Who has contributed most to success – the teacher, student or parent? The answer to 

this question is irrelevant. The key feature is that all three stakeholders are moving in the 

same direction. In these exceptional faculties there have developed over time a culture of 

success and achievement for students at all ability levels. Teachers, students and parents 

are all swept along with it. That each group takes pride in recognising the efforts of others 

is simply one manifestation on this shared commitment.  
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Caring for Students in their Learning 

In the maths area, I just think good pedagogy goes on up there. They have a fantastic concern for 

kids, all of them. In the school we have very few problems in the Maths area because they get on 

with kids and they work very well with them. I mean their programming and all that sort of stuff 

would be similar to what might occur in other Faculties. There is nothing innovative from what I 

have seen anyway, it is sequential as I would have seen other Maths Faculties. But I just think the 

personnel and the leadership and the way they get on with kids and their care for kids are very 

important factors as far as I am concerned. (Principal) 

The Project Team was impressed by the strong student focus of the mathematics 

faculties visited. Policies and actions had a clear student focus. These policies, developed 

through ongoing discussion about student matters in the staffrooms were extensive. 

Clearly, teachers saw their role as helping students whenever they could. 

Teachers reported genuine enjoyment in teaching their classes. They had developed a 

strong rapport and what appeared to be healthy relationships with students. There was a 

nice balance of formality and informality. At a personal level, the students saw their 

mathematics teachers as approachable and available to offer assistance.  

It was obvious that teachers cared for their students’ learning and encouraged students 

to approach them if they were having difficulties. Teachers were happy to make themselves 

available at breaks to assist students who came to the staff room. The staffrooms were 

welcoming places for students and many commented upon how they were encouraged 

when they went there for additional help. When they did ask for help, they found the 

teachers to be supportive, patient, and helpful. 

At these schools it was common to see students from all years and at different ability 

levels at the mathematics staffroom seeking help. Seeing students across the full age range 

requesting help and being supported seemed to have a positive effect on all students. In 

particular, it was seen as beneficial to those with low self-esteem and belief in themselves. 

The practice of having staff readily available for help meant that students were aware that 

there was the backup in the faculty to support them and help them believe that they could 

be successful.  

In considering the findings presented in this section it is important to interpret them in 

relation to the research questions and design. Essentially, only schools that demonstrated a 

sustained record (over 4 years) of outstanding achievement for students across all ability 

levels were targeted. Subsequently, there are particular findings of the study that are a 

direct consequence of the methodology employed. For example, there is no implication that 

the teaching practices observed were always “cutting edge”, innovative, or exemplary and 

that the sites visited could not improve their practices. Answers to questions concerning 

what teaching practices display these qualities and how schools, who are achieving 

outstanding outcomes, improve further are interesting but they lie outside the scope of this 

particular study. Consequently, caution is required in generalising or extending the findings 

beyond what the research set out to achieve.  

Conclusion 

It is clear from these findings that these outstanding faculties have evolved over time 

and have developed a strong academic and educational culture in their schools. The 

mathematics teachers in these sites realised there was no opportunity for “resting on their 

laurels” with continued effort required to maintain these high standards. 

Mathematics: Essential Research, Essential Practice — Volume 2

619



An Exceptional Schoolings Outcomes Project (ÆSOP) has provided substantial 

evidence of excellent mathematics teaching in NSW public secondary schools in Years 7-

10. The overriding challenge is how the insights generated by this study can improve the 

educational achievement of students across the public education system. It also highlights a 

number of potential important issues for schooling into the future around the need: 

• To provide opportunities to help teachers develop the knowledge and skills 

necessary to exercise effective leadership in the role of Head Teacher; 

• For early career teachers  to work with and learn from experienced mid and later 

career teachers; 

• To facilitate strong group interaction within faculties; 

• For relevant professional development; 

• For high subject-knowledge standards for new and current teachers; 

• To create a culture in which teaching and learning, rather than behaviour 

management, dominates all classrooms; and 

• To develop common goals among teachers, students, and families. 
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In this study eight primary school teachers formed partnerships with researchers to 

investigate the use of questioning during two numeracy lessons. The teacher researchers 

were encouraged to act as reflective practitioners (Schön, 1995) and contribute to 

formulating their own “interpretive frames” (Cochran-Smith & Lytle, 1990). Methods of 

data-gathering, analysis and interpretation were developed to allow the teacher researchers 

to have control over the research and contribute to the direction of the project as it evolved. 

This paper describes some of the challenges faced by both the teacher researchers and the 

researchers in developing partnerships. It also discusses how the methodologies allowed 

teachers’ views about practice to be made explicit. Teachers gained insights into the 

complexity of their teaching practices and described ways in which the experience impacted 

on their views of research as a bridge between theory and practice.   

Theoretical Perspectives 

The Nature of Teacher Research 

Many teachers have the perception that research in teaching is “an esoteric activity having 

little to do with their practical concerns” (Carr & Kemmis, 1986, p. 8) and regard the creation of 

a knowledge base for teaching as belonging to the domain of university academic researchers. 

Recent prevailing concepts of the teacher “as technician, consumer, receiver, transmitter, and 

implementor of other people’s knowledge” (Cochran-Smith & Lytle, 1999, p. 16) have 

perpetuated this perception, fuelled by the way in which “some consider the kind of knowledge 

that teacher research produces to be inferior to, and less valuable than, other kinds of academic 

work” (Roulston, Legette, DeLoach, & Buckhalter Pitman, 2005, p. 182). Cochran-Smith and 

Lytle (1990) describe the gap that has occurred:  
  

What is missing from the knowledge base for teaching, therefore, are the voices of the teachers 

themselves, the questions teachers ask, the ways teachers use writing and intentional talk in their work 

lives, and the interpretive frames teachers use to understand and improve their own classroom practice. 

(p. 2) 

 

Gould (2005) has identified the need to reduce the “gap” that exists between research and 

practice in classrooms. Approaches that encourage teachers to carry out their own research in 

the context of their own classrooms, with the support of researchers, serve to validate their 

perspectives and enable greater insights into the complexities of teaching and learning. Teacher 

research, defined as “a systematic and intentional inquiry carried out by teachers”, represents a 

“significant way of knowing” about teaching (Cochran-Smith & Lytle, 1993, p. 43). Traditional 

views about the relationships of knowledge and practice, and the roles of teachers in educational 

change are challenged, “blurring the boundaries between teachers and researchers, knowers and 

doers, and experts and novices” (Cochran-Smith & Lytle, 1999, p. 22). Such approaches can 

produce opportunities for a “hybrid discourse” between practitioners and university researchers 
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based on “democratic research relationships” (Paugh, 2004) resulting in increased learning for 

both partners, and significant contributions to the knowledge base of teaching.  

By participating more substantially in research, teachers develop their own skills as 

researchers, which are more likely to impact on their practice: “Experienced teacher-researchers 

become the high risk-takers we need to develop innovative practice” (Mitchell, 2002, p. 253). 

This may, in turn, encourage other teachers to examine more closely their own pedagogical 

practice: “Teachers may be influenced to change their practices more readily by reading reports 

of research by other teachers … rather than university researchers” (van Zee & Minstrell, 1998, 

p. 792). However, establishing suitable conditions and productive partnerships for effective 

teacher research is problematic. Difficulties with teacher research are discussed by a variety of 

writers and include: issues of power and ownership, access to resources, isolation, and 

possibilities for manipulation and exploitation (Cochran-Smith & Lytle, 1993, 1999; Mitchell, 

2002; Paugh, 2004). Dissemination of teacher research has also presented problems. In their 

investigation of the ways such research had impacted on schools, Berger, Boles, and Troen 

(2004) found it difficult to find schools where teacher research was making a difference to the 

teaching and learning culture of an entire school. 

Methods of Research into Questioning 

Much of the research undertaken to investigate teachers’ questioning has been synthesised 

from data gathered by researchers observing in classrooms, rather than from teachers 

themselves. A review of comprehensive research syntheses (Houston, Haberman, & Sikula, 

1990; Richardson, 2001; Sikula, Buttery, & Guyton, 1996; Wittrock, 1986) did not reveal any 

studies deeply grounded in teachers’ perspectives. The existing knowledge base reflects a 

looking from the “outside in”. A search of the literature located studies that reported teachers’ 

questions and questioning, but few investigations were identified that looked from the “inside 

out”. Up until now, categorisations of teachers’ questions in mathematics have predominantly 

been undertaken by researchers focussing on only a selection of the questions asked by teachers 

during a lesson. Perry, VanderStoep, and Yu (1993) coded questions about addition and 

subtraction asked in 311 lessons in Japan, Taiwan, and the United States. They deliberately 

excluded questions they deemed nonmathematical or questions that were asking for agreement. 

Vale (2003) devised question categories to accommodate the question types teachers nominated 

they used most often. Some research has allowed for categorisation of questions by general 

intention rather than “type” (Morgan & Saxton, 1991), allowing for a focus on the function of a 

question rather than form (Cazden, 2001). Other researchers have observed “expert” teachers 

and synthesised how questions can be used in mathematics lessons to develop students’ 

thinking (Fraivillig, Murphy, & Fuson, 1999; Jacobs & Ambrose, 2003). Each of these 

categorisations was devised by researchers or observers rather than by the teachers from within 

the lesson.  

Formulating questions within a lesson is a complex process driven by a range of variables, 

and analysis of this process requires more than categorising and counting by researchers: “Real 

insight into questioning needs to take on board contextual factors which are too subtle for the 

classification systems to handle” (Kerry, 2002, p. 71).  

Method 

The eight teacher researchers (TRs) gathered data in two cycles, each taking five 

consecutive days in each of the middle two terms of the four-term school year. In each cycle 
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they recorded, categorised and analysed their use of questioning within a numeracy lesson. To 

assist the analysis and interpretation of their findings, the teachers discussed aspects of their 

findings in individual interviews with a researcher, and then as part of a forum with the other 

TRs. They also had opportunities to examine current research in this area, reflect on aspects of 

the research process and contribute to report-writing. Over the course of the project, data were 

also collected by the researchers who took the role of Research Team Leaders (RTLs). These 

data related to the TRs’ involvement and experience of the research, with the processes for its 

collection emerging as the project unfolded.  

Overall, the data were analysed using the three main stages of data reduction, data display, 

and drawing and verifying conclusions (Miles & Huberman, 1994). Most of the data collected 

were qualitative. The qualitative information was considered alongside the quantitative data to 

identify similarities and differences. The RTLs met following interviews with the TRs to share 

and compare findings, sorting responses using the same sorting process that the TRs had used in 

their initial data analysis. This enabled themes to emerge and helped to reduce the collected data 

to its key elements. The reduced data were then displayed to help identify trends. Responses to 

various questionnaires given to the TRs throughout the project were compiled to support the 

identification of key ideas. TRs contributed to the process of interpreting findings at all stages of 

the project by responding to summaries of emerging ideas presented by the RTLs. The TRs also 

interpreted their findings in light of current research, which they discussed in a group meeting. 

The RTLs verified their interpretations of the data with the TRs by feeding speculations back to 

them at research team meetings for discussion and comment. These methods reflected a 

grounded theory approach, such as that described by Strauss and Corbin (1998). 

Processes for Data-gathering and Analysis  

At the introductory meeting of the research team, the roles of team members were clarified, 

the research aims for the project were shared, and interview questions were negotiated. 

Processes for data-gathering were discussed by the team, and the “F-sort” (Miller, Wylie, & 

Wolfe, 1986) data categorisation method was examined. This method allowed teachers freely to 

generate their own categories for their questions, and provided access to the teachers’ ideas and 

language about categories of questions from the outset of the project.  

Within each of the cycles, the TRs recorded two consecutive mathematics lessons, and 

chose one to analyse. To enable the TRs to have maximum control over the data-gathering 

process, the TRs themselves were responsible for setting up the technology for the recording 

procedures. This ensured ownership of the process – no one else was “present” in their 

classroom. The technology comprised a video camera that remained in one position throughout 

the lesson, and a “Notetaker” cassette recorder with built-in microphone, which they wore 

around their necks. After the second lesson the TRs sent the audiotapes of their chosen lessons 

to be transcribed, which were returned a day later. Only the audio recordings were transcribed 

and access to these transcripts was restricted to the teachers concerned, the transcriber, and the 

two RTLs. The TRs were subsequently released from teaching for 2 days to analyse their lesson 

using their reading of the transcript, assisted by viewing the videotape footage, alongside their 

recent recollections of the lesson. 

The main activity in the analysis phase involved the identification and categorisation of 

questions within the lesson. This was achieved by extracting the TRs identified questions from 

hard copies of their transcripts, then sorting them into groups of similar questions for which they 

devised labels (Miller et al., 1986). At the end of the second day of analysis, the TRs discussed 

their findings with one of the RTLs in semi-structured, one-to-one interviews (Denscombe, 
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1999). Summaries of the interviews were later sent to the TRs for verification, and findings 

were shared in subsequent group meetings. 

Group meetings were a key aspect in distilling meaning from findings as they emerged 

throughout the project. Members of the team brought aspects of their findings to share, and 

similarities and differences were explored and debated. The Cycle 1 group discussion began the 

process of establishing common categories with which to analyse the lesson in Cycle 2. The 

TRs were also asked to record any questions and issues arising from the analysis of their first 

transcript. Their responses were to be used to inform the future direction of the project. 

Throughout the project teachers responded to questionnaires that explored their perspectives on 

aspects of the research process. The TRs were unable to be involved fully in writing the final 

report of the research project. Instead, they wrote reflective responses to the final questionnaire, 

and these responses were used to amplify the TR’s voice in sections of the report.  

Findings 

Ownership of the Research and Roles of the Research Team 

In the initial stages of data-gathering and analysis, some of the TRs described difficulty with 

the sorting of questions into categories. At this early stage, the TRs tended to draw on 

frameworks and language about questioning that were familiar to them. In some cases they 

struggled to produce efficient descriptors from their own language to label groups of questions. 

Perhaps this indicated the TRs’ doubts that what they had to say would have validity or 

authority in the research project. The TRs may have seen the research in traditional terms such 

as those described by Cochran-Smith and Lytle (1993) as “outside-in”, or as research that 

“constructs and pre-determines teachers’ roles in the research process” (p. 7). The process of 

sorting their questions had meant that the TRs were encouraged to take responsibility for 

generating language and ideas, and the commonly agreed categories developed within the forum 

reflected their own language, which promoted a sense of ownership. 

An important principle of teacher research is that teachers have a “sense of ownership and 

control of their research” (Mitchell, 2002, p. 250). Current definitions of teacher research 

describe the selection and development of research questions as emerging from the teachers’ 

own practices (Cochran-Smith & Lytle, 1993). Although each of the TRs joined the team with 

an awareness of the field they were to research, the requirements for the funding for this 

research had meant that the research questions and aims were established before they met 

together as a team. However, the research questions had emerged from close links to teaching 

practice that the RTLs had developed, both in their current and recent classroom teaching 

experience, and in the considerable number of mathematics lessons they had observed as 

numeracy advisers.  

The RTLs’ sense of ownership was strong at the onset of the proposal process as initiators 

of the research questions and the methodology. This diminished as the proposal progressed and 

as the three institutions involved established areas of territory and accountability. Ownership 

was further dispersed as the RTLs continued to work with the TRs. It became apparent that the 

RTLs had begun the project expecting significant but limited input from the TRs rather than an 

authentic partnership. Thus, to ensure the development of research capabilities of the TRs, and 

to increase validity of findings, it was felt necessary to share aspects of control of the project. 

This was not easily achieved, as the TRs demonstrated differences in perceptions of their role 

and the RTLs’ role. Perceptions of roles were further complicated by the relationships 
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previously established by the RTLs as mentors and advisers within the context of in-depth 

professional development. It would seem that the co-researcher relationship “was infiltrated 

by the discursive positionings more in common in relationships between academics and 

teachers, or teachers and students” (Honan, 2007, p. 622). 

The Changing Nature of the Methodology   

Aspects of the methodology were continually adjusted to allow the TRs to develop a greater 

sense of control within the project. 

The approach was good because it was flexible and allowed the group to have true ownership. The 

“organic” nature of the form of our meetings allowed researchers to listen without taking over with 

pre-determined paths. (Erin, Final questionnaire) 

In some respects this flexibility paralleled the way the TRs responded to their students, changing 

direction and transferring power within their classroom practice: 

One thing I’ve really enjoyed about the research, is that it’s just confirmed for me a lot of good 

teaching practice … It’s made me be a little bit more relaxed about letting the children take control.  

(Erin, Interview 2) 

It was originally intended that the RTLs would conduct an analysis of each lesson at the 

same time as the TRs, reading the transcript and viewing a video of the lesson. Their analysis 

would then be compared with the TR’s findings. However after the initial trial phase, it was 

decided that the TRs would be solely in charge of the analysis process. This meant that the TRs’ 

own observations and views on their lessons were paramount. Feedback from the Trial teacher 

shifted the focus of the interview from a comparison of findings to a vehicle for assisting the 

TRs’ reflective processes. 

An important aspect of developing the teachers’ capability as researchers was introduced 

between the two cycles of data gathering. At the suggestion of the research consultant, relevant 

research readings were sent to the TRs for discussion at the upcoming meeting. The themes for 

these readings were established in response to ideas emerging throughout the interviews and in 

the second research team meeting, and were also directly indicated by the TRs in their responses 

to questions and issues arising from the analysis of Transcript 1. An additional day was 

allocated to discuss these and other relevant themes, to enable the TRs to see their current 

research in the context of other research in this area. 

Moves to incorporate the TRs’ voices more prominently in the writing aspects of the 

research included the use of a final questionnaire. This allowed them opportunity to review the 

research outcomes and processes, and contribute reflective and crafted responses that could be 

incorporated into the report. The style of the report reflected the partnerships developed in the 

project, by aligning the RTLs’ contributions, observations and interpretations alongside those of 

the TRs’. This made visible the key role the TRs had throughout the project by anchoring 

interpretations of findings in their statements. A draft of the findings was shared with the TRs 

for their editorial comment before publication. 

Developing Community and Accessing Support 

The research team meetings were important in refining the methodology and allowing the 

research team to discuss and interpret findings. They contributed toward establishing a shared 

understanding of the research question, served to generate common categories for coding 

questions, and assisted the TRs to establish a common interpretation of findings. These forums 

also provided the collaborative support necessary for such projects as described in Mitchell 
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(2002). Mitchell notes the loneliness often experienced in such studies, which was also 

identified within our project. 

For the first release days I felt isolated and completely lost. (Ingrid, Final questionnaire) 

At times, interactions at the research team meetings caused concern. The fact that three of 

the teachers were drawn from one school, and knew each other well, may have impacted on the 

group dynamics. Moves to incorporate the views of all the team members more fully included 

the provision of extra meetings and the use of strategic groupings and activities within group 

meetings. 

An awareness of the issue for the TRs of managing their research project commitments 

along with teaching workloads was evident throughout.  

The amount of time involved was underestimated and at times it got stressful with other demands of 

work. (Stephanie, Final questionnaire)  

It was often apparent that the teachers felt a tension between the demands of undertaking the 

research and being present in their classrooms. Cochran-Smith and Lytle (1993) note that: 

Participation in teacher research requires considerable effort by innovative and dedicated teachers to 

stay in their classrooms and at the same time carve out opportunities to enquire and reflect on their 

own practice. (p. 20)  

Oliver (2005) found that school support was a significant factor in the success of teacher 

research projects. Responses to a questionnaire given to the TRs midway through the research 

described a full range of support from the teachers’ schools. External systemic support (Osler & 

Flack, 2002) was also essential to the project. Money allocated from funding provided through 

the research funding allowed the teachers to have release time to analyse their lessons in detail, 

and to attend meetings. 

Links to Practice 

The research process was seen as providing significant relevance and immediate impact on 

the TRs’ own classroom practice. 

I have developed an awareness of the types of questions that I can use ... the research has helped to 

identify a specific area of focus and thought and therefore it must have an impact back in the 

classroom. (Quentin, Final questionnaire) 

This has identified needs and gaps in my questioning and there have been surprises in other areas. 

(Olivia, Final questionnaire) 

The TRs also described possible directions for further research about their own practice. 

Maybe the biggest question for me personally is how to take the information I have now about my 

questioning and find practical ways to implement change in the class. Maybe I need to do more 

reading about that. (Olivia, Final questionnaire) 

It would be interesting to look again at the types of questions asked at which part of the lesson. ... 

Are there any significant shifts in the types of questions asked? (Stephanie, Final questionnaire) 

Although early on in the project the TRs recognised that this research should be able to 

inform the wider teaching community, at the conclusion of the project it was felt that the 

research process itself, rather than their findings about their use of questioning, was what they 

considered significant. 
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Having the opportunity to micro-analyse within a subject area has heightened my awareness of the 

strengths and weaknesses of my own classroom practice. This in turn has challenged me to either 

strengthen those practices that are valuable and to adjust/ improve those practices that are weak. 

(Erin, Final questionnaire) 

The TRs found it difficult to be specific about exactly how the research findings relating to 

questioning might be applicable to teachers in general. The categories were seen as useful to the 

teachers involved in the project, as they had created them and “owned” them. There was a lack 

of confidence that other teachers would find them useful. 

We need to be careful with transferring research to their [other teachers’] situations – qualify it with 

the fact that it is for “here and now” and may be less relevant when different factors are taken into 

account. (Ursula, Final questionnaire) 

This research was done by a small group of teachers. What are the implications for other teachers? 

How would it transfer across to other teachers? (Natalie, Final questionnaire) 

Perhaps this reflects findings from Mitchell (2002) who noted: “TRs are more interested, at 

least initially, in finding what may appear to be context-specific solutions in their own 

classrooms” and that many aspects of the research process are personal: “in some important 

ways, the journey is experiential – some parts of the story cannot be told, they must also be 

experienced” (pp. 262-263).  

Changing views of research 

Osler and Flack (2002) found that skills to be developed by TRs included: “reflection, 

articulation, familiarity with research literature, linking their own work to the work of others, 

writing, and presentations” (p. 243). The development of each of these skills was in evidence in 

various forms throughout the project. The developing capability of the teachers as researchers 

was reflected in their changing views about the nature of research. The ability to reflect on and 

articulate their practice was evident. 

It is a huge learning curve because you see things from a different perspective. (Quentin, Final 

questionnaire) 

Research was seen as a vehicle for sharing, challenging, or confirming existing ideas and 

introducing new ones. One aspect described by the TRs was the complexity and scale of the 

research process. 

Research is fascinating when you are involved in it!! It is really difficult to do. [There are] heaps of 

factors to consider. It doesn’t always give us answers. (Ursula, Final questionnaire) 

It has been fun, scary, challenging and time consuming... I realise how much work goes into these 

projects. (Olivia, Final questionnaire) 

Throughout the research, areas for future investigation continually arose. At the completion 

of the study, a range of diverse questions for further research had emerged from the group. 

Some major shifts in understanding about research were also evident. 

When we first started out I was not sure of what I was getting into and therefore my mind was a bit 

of a blank slate. I think there is a definite need for teacher research to continue as it informs practice 

and changes views and brings together your own personal experiences which must be better for your 

classroom. (Quentin, Final questionnaire) 

The TRs have been encouraged to present and discuss the findings and methods of the 

research with their staff to contribute to developing a culture of inquiry within their schools. 
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Aspects of the research process were presented by TRs and teacher researchers at one regional 

and two national conferences. This has further contributed to the development of teacher 

researcher skills and enabled the research partnerships fostered during the project to be made 

visible.  

Conclusions 

Research doesn’t always provide you with answers. It often provides more questions. There isn’t 

always a neat, tidy conclusion that can be drawn. (Natalie, final questionnaire) 

Participation in this project impacted on the teacher researchers’ views of the relationship 

between research and practice and provided opportunities to reduce the gap between them. 

Throughout the project, the teacher researchers encountered authentic research problems 

regarding methodology, analysis, and interpretation of data as they sought to make meaning 

from data gathered. The process of researching their own teaching practices served to transform 

the apparent simplicity of the task of identifying and categorizing questions, to a complex 

undertaking that confronted the teacher researchers with some of the essential elements implicit 

in their everyday teaching. This acted to problematise rather than simplify the teaching process.  

The unique perspectives of these teacher researchers about questioning provide a valuable 

contribution to the knowledge base about teaching in this area. The use of the interview and 

team forums compelled the teacher researchers to articulate their practice more precisely, and to 

discuss and debate related issues. The process of close analysis and discussion of their teaching 

practice was an outcome valued by the teacher researchers, which they saw as useful for other 

teachers. However, it was difficult for them to assess the value of their observations about the 

questions they asked and the categorisations they devised; they seemed unsure of the validity of 

their findings, perhaps due to the lack of sufficient time to explore fully patterns and 

commonalities that may have been present in their questioning practices.  

The structure of the initial research design was significant in developing the TRs’ 

confidence and capabilities in research, as it scaffolded the data-gathering and analysis process. 

This structure allowed the TRs maximum control over the selection of the primary level of data 

to be analysed, and opportunities for in-depth reflection. Important features that contributed to 

the success of this process were:  

• the use of accessible technology, which the TRs controlled, 

• the lesson transcript being made available to them within a short timeframe, 

• the interaction between the printed transcript and the video,  

• the inductive categorising process used, 

• having immediate and concentrated time for analysis, and 

• discussing their findings with a RTL in a reflective interview. 

A key feature of this study was the ability for the Research Team Leaders to be 

responsive to the input of the team members as the research progressed. Respecting their 

contributions and interpretations was imperative, and this was firmly established by making 

teacher researchers solely responsible for the initial stages of data-gathering and analysis. 

This ensured their interpretation of data was central to the project and established a sense 

of trust in the developing research partnerships. The researchers had greater time for 

reflection and interpretation of findings which meant they initiated much of the direction 

for the research. Although this was necessary, it created a tension within the project, as the 

teacher researchers had only a limited time available for these activities. This meant that 
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the balance of “power” within the partnerships, and the responsibility for the direction and 

the interpretations of findings were aspects of the project that were constantly negotiated.  

Implications 

Support for further research that includes the teachers’ perspectives in the analysis of 

teaching practice is vital. To allow teachers to develop the research skills necessary to contribute 

their perspective in a meaningful and rigorous manner, teacher researchers need to be provided 

with:  

• sufficient release time to examine their practice in depth, and to attend research 

meetings, 

• access to experienced researchers for support and guidance, 

• research forums for discussing ideas with other teacher researchers, and  

• interest and encouragement from management and colleagues within their 

schools. 

Research questions that originate from teachers themselves can contribute to a closer 

alignment between research and practice. To enable them to have authentic ownership of 

research questions, involvement in the earliest stages of a research project needs to be 

encouraged. Teacher initiation of such proposals could be promoted by the inclusion of a 

research component into teachers’ job descriptions. Consideration also needs to be given to 

methods that enable teachers to have maximum ownership of processes throughout. 

I had the impression research was often done by a researcher to you, however this has shown that it 

can be embedded in your practice and the research can be for you. (Natalie, Final questionnaire) 
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Debate about changes in teachers’ beliefs and attitudes about mathematics teaching leads us 

to understand that these changes result from a teacher’s personal experience. Professional 

learning in its various forms is an attempt to change teachers’ practices in the classroom, 

and hence influence student learning outcomes. The paper uses the responses of one 

mathematics teacher involved in a professional learning project to examine the relationship 

among the professional learning, classroom practices, and teacher beliefs and attitudes.  

The Australian Government Quality Teacher Programme (AGQTP) is a federal 

government flagship initiative for supporting quality teaching and school leadership, with 

$300 million allocated to the programme to the end of 2009. The Department of Education, 

Science and Training (DEST) website states that the programme’s “primary function is to 

fund professional learning activities for teachers under agreements with state and territory 

government and non-government education authorities” (DEST, 2007). The programme’s 

two objectives are:  
 

1. to update and improve teachers’ skills and understanding in priority areas (literacy, 

numeracy, mathematics, science, information technology and vocational 

education); and  

2. to enhance the status of teaching in government and non-government schools.  
 

The programme was established in 2000 and since then more than “240 000 professional 

development opportunities have been taken up by teachers” (DEST, 2007, p. 1). This paper 

examines the impact of the project of one of those teachers involved in a professional 

learning project funded within the AGQTP programme.  

The State of Victoria, Department of Education and Training states that “teacher 

professional learning can be defined as those processes and activities; formal and informal, 

designed to enhance the knowledge, skills and capacity of staff” (2007). This can include 

on-site or at school learning, which may involve formal activities such as mentoring and 

working in project teams or informal activities such as the involvement in school 

discussions about policy. Teacher professional learning may also take place off-site or as 

outside school learning such as conferences, workshops, on-line training, and modular 

programs over a period of time or network activities. The State of Victoria, Department of 

Education and Training conducts programs such as the Principles of Learning and 

Teaching (PoLT) and state “the initiative provides a structure to help teachers focus their 

professional learning” (2007). It aims to “capture the essence” of effective learning and 

teaching as well as providing a basis for teachers to review and develop their teaching 

practices. The teacher who is the focus of this report participated in a teacher professional 

learning model that occurred on-site at her school. The model is based around a 

mathematician in residence (in this case the author who acted in a role as a mathematics 

educator) providing a form of mentoring. The professional learning model consisted of 

three week-long visits spaced throughout a year in a rural Victorian primary school. Some 
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background to the two key elements underpinning the professional learning, teacher change 

and reflective practices, are described in the following sections.  

Teacher Change  

Teacher professional learning programs are an attempt to bring about “change in the 

classroom practices of teachers, change in their beliefs and attitude, and change in the 

learning outcomes of students” (Guskey, 1986, p. 5). As presented in Figure 1, Guskey 

proposed an ordered framework to help better understand trends that appear to “typify the 

dynamics of the teacher change process” (p. 7). This model proposes that change is a 

learning process for teachers largely determined by their experiences in the classroom. If 

their experience results in a change in student learning outcomes Guskey proposes that the 

teacher then uses this to make a judgement about the effectiveness of their teaching. 

Guskey found when teachers see students attaining higher levels of achievement as a result 

of a new programme or professional learning then possibly, although not always, there is 

significant change in the teachers’ beliefs and attitudes.  

 

 

 

 

 

 

 

 

 
Figure 1. A model of the process of teacher change (Guskey, 1986). 

This developmental sequence is reflected in other studies of teacher learning. Brown 

and Renshaw (2006) argue that change in teaching practices requires teachers to negotiate 

with past pedagogy, while maintaining the useful skills and techniques that work, and 

dispensing with the techniques that do not work. This change in teachers’ pedagogical 

practice takes time (Guskey, 1986; Higgins, 2002, 2003; King & Newmann, 2001, 2004; 

MacGilchrist, Myers, & Reed, 1997). It seems that for change to occur in teaching, 

pedagogical professional learning needs to be on-going and requires continual support to be 

sustained.  

This model, in which Guskey argues that teacher’s beliefs and attitudes are developed 

largely from classroom experience, fits the process developed by the school in the 

presented case study. In the case of the school, it was felt by the principal that there was a 

need for teacher professional learning as a vehicle to improve students’ Achievement 

Improvement Mentoring (AIM) test results and student engagement in mathematics. The 

teacher professional learning model developed by the principal and the mathematician in 

residence presented new ideas, theories, and activities for the teachers to try with the 

support of the mathematician in residence. The teachers tried these in their classrooms to 

see what happened, and in some cases there were perceived improvements in student 

learning and motivation. More ideas were tried, and classrooms as well as students 

observed. It was hoped that after a period of time (initially it was thought in excess of three 
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years) change in students learning outcomes and perhaps teachers’ beliefs and attitudes 

may be observed. 

Reflective Practice  

The second component of the process adopted by the school as key to the teacher 

professional learning model, relates to the reflective practice by the staff in professional 

partners with the support of the mathematician in residence. Pritchard and McDiarmid 

(2005) state that one of the key components within effective teaching and professional 

development is reflective practice. This is the deliberate act of “reviewing and critically 

thinking about practice with the purpose of increasing learning opportunities for students 

and teachers” (p. 433). McDuffie (2004) argued that reflective practice is distinguished 

from “thinking back” to a process which requires teachers acting on their reflections 

resulting from when a difficulty or a problem has been experienced. In the case study of the 

school, reflective practice was implemented with teachers, their professional partners and 

the mathematician in residence. It is these reflections that can lead toward the development 

of a professional learning community as teachers critically examine and reflect on their 

practice individually, in groups and as a whole staff. Reflective practice provided the 

support for teachers in this case study to make changes in their classrooms, and in this 

paper the case study of one teacher illustrates that it was through this reflective practice 

that the teacher found a tool in facilitating change. Willis (2002) states that “teachers need 

to learn how to analyse practice – both other teachers’ practice and their own” (p. 2). The 

teachers in the project were provided with the opportunity to view other teachers and 

classes, as well as spending time discussing and reflecting with professional partners and 

the mathematician in residence about their own learning and teaching experience. Stigler 

(2002, as cited in Willis, 2002), argued that to analyse means one needs to think about the 

relationship between teaching and learning in a cause-and-effect kind of way. This is 

compatible with the Guskey (1986) model in which change in student learning outcomes is 

a result of a change in teacher’s practices which in turn is a result of staff development or a 

teacher’s own learning. Hence it can be interpreted that student learning is related to 

teachers and teacher learning.  

The Professional Learning Project 

The teacher professional learning project at the basis of this report is centred on an 

external critical friend termed in the project “mathematician” in residence, conducting 

teacher professional learning, visiting classes, observing specific lessons, teaching model 

lessons and team teaching with staff as required. The role expanded to include attending 

staff meetings and conducting professional learning sessions at these meetings. In this case 

mathematics was the focus, but as the project developed it is clear that it could be 

implemented in any or all subject areas. This particular AGQTP project involved three 

week-long visits to a school in rural Victoria spaced throughout the year. Rather than a 

random and ad-hoc approach during each of the visit weeks, a timetable was developed and 

teachers were paired with professional partners, which they selected from their peers. For 

each teacher, a half hour was spent with the external critical friend prior to each lesson to 

be observed, discussing the lesson and other concerns or interests regarding the teaching of 

mathematics. Then a lesson of approximately one hour was taught, with the external 

critical friend and professional partner viewing and participating as appropriate. After the 
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lesson, a half an hour (or more) was spent reflecting on the lesson with the external critical 

friend and professional partner. The aim of the model was to promote teacher learning, 

with an individual focus on goal setting. This would hopefully lead to changes in the 

classroom which result in changes in student learning outcomes. A longer term goal was a 

change in teachers’ beliefs and attitude may also be attained.  

During the initial phase of the project one of the teachers called Belinda indicated her 

desire to change her teaching methods and practices in mathematics through her written 

and verbal comments. It is her journey of her perceived change that is presented in this 

paper – a single study within a larger study of ten primary school teachers. It is noted that 

there are significant practical and ethical issues associated with methods of researching 

change in teachers such as, what is the actual change, how has this change occurred and 

was this change permanent.  

The data collected and presented in this paper are predominately written and verbal 

responses, as well as comments made by Belinda throughout the project as her process of 

change is examined. Methods included written observations, written comments and 

reflections by Belinda and transcripts from video footage as the author was involved in the 

methodology of design research. Sometimes these responses were prompted with 

questioning whereas other responses were of Belinda’s own reflections. A survey of 25 

statements adapted from Barell (2003), which required teachers to respond with a ranking 

of 1 – 5 (hardly ever – often) on a Likert scale, was implemented at the beginning and at 

the end of the project. In this paper the survey results are only used to support Belinda’s 

comments.  

One Teacher’s Response to the Professional Learning Initiative 

Belinda is an experienced teacher who has been teaching in excess of 15 years. She has 

taught at all levels from Prep to Year 6 and Belinda has been a leading teacher and acting 

principal at different times during her teaching career. She seems confident and involved in 

school life as is exemplified by her involvement in another project at the school that 

focused on rich assessment tasks and students expressing their learning and understanding. 

It is through this involvement that Belinda seems willing to learn and seeks opportunity to 

do so. From observation, she is a quiet and thoughtful member of staff, and is well 

respected by the staff and the principal who readily seek her advice.  

The case study of Belinda attempts to examine the changes in Belinda’s beliefs and 

attitudes in response to this particular AGQTP project.  The data collected focussed on:  
 

• Belinda’s initial feelings about the project and how a mathematician in 

residence may impact on her teaching. 

• What impact the professional learning had in terms of changing classroom 

practices? 

• Was there a change in student learning outcomes? 
 

Although the project had only been running for a year, an open mind was kept to see 

whether there was an indication of the above factors leading to a change in Belinda’s 

beliefs. 
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Initial Response 

At the beginning of the project, three questions were posed:  
 

• How do you feel about having a mathematician in residence?  

• How do you feel about having someone coming to view your teaching?  

• Would you prefer to attend external professional development?  
 

Belinda’s responses to these initial three questions indicated that she supported the 

concept of having a mathematician in residence and was looking forward to the experience. 

Belinda wrote:  

a mathematician in residence would get to the nitty gritty of what was happening [in her classroom] 

and what  was needed and hopefully real change and progress in both teaching and learning would 

be attained.  

Belinda saw the process as being an advantage for the students by having “an expert on 

hand” and she was looking forward to “having someone who could watch the kids with me 

and help me evaluate both their needs and my teaching practices”. She was not worried 

about having someone in her classroom viewing her teaching, although she did admit that 

she would be a “little uncomfortable, nervous and apprehensive” as she was not as 

confident in teaching mathematics and she was also returning to Year 5/6 after a number of 

years with younger students. Belinda felt that having someone in the classroom would 

allow the person to work with her and her students. She felt that “a mathematician in 

residence would get to the nitty gritty of what was happening and what was needed and 

hopefully real change and progress in both teaching and learning would be attained”.  

All teachers were asked to respond via email to the question “After the first week of the 

mathematician in residence, how do you feel about the project?” Belinda responded with:  

After a week working with Pauline [the mathematician in residence] I feel extremely positive about 

the project. Any apprehensions I had re Pauline watching my teaching proved false as she always 

concentrated on the positives and had heaps of suggestions on anything I asked about. She also 

followed up on things immediately and has already emailed suggestions. I have tried several already 

and can’t wait to share them on her return. She was very insightful about the kids learning and was 

aware of the direction our school wanted to head, as directed in our charter. Pauline also took the 

lead from the teachers’ concerns and needs. She became very much part of our team during the 

week, which was appreciated by everyone. I found it interesting to go into another teacher’s 

classroom, to participate in a lesson as that is not a possibility often afforded to teachers. The 

discussion from that experience was also valuable for my teaching. 

Belinda’s initial feelings of apprehension were dispelled as she seemed to see the 

advantages of the mathematician in residence for her teaching. The professional learning 

Belinda had experienced in the form of a full staff development day, as well as the 

professional partner experience, particularly the reflection and discussion, had already 

resulted in change in Belinda’s classroom practices as she attempted new ideas. These 

changes were positive as she was keen to share her experiences and continue the learning 

process. In other words, the discussion about practice, the practical ideas and the 

observations of the other teachers, all created an apparent openness for Belinda to consider 

her practice.  
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Developing Ideas 

Throughout the project Belinda seemed open to ideas and tried many new activities 

with her class. She introduced partner tables games and table tests that the students make 

up themselves. She wrote “they love (tables) Bingo. I think they are improving their skills 

also.” Belinda was experiencing positive changes with the students as a result of changing 

her classroom practices. This was also reflected in her comment “their favourite topic for 

the term was BODMAS”. One student wrote “It was a whole new thing for me and I was 

good at it.” Belinda also wrote “I still need to work on negative attitude and motivation to 

Maths. Comments from the students such as ‘that wasn’t Maths it was fun!’ were offered.” 

Although some changes in classroom practice had occurred, Belinda still felt that changes 

in student outcomes were only developing. She wanted to see greater improvements in 

student attitudes across the whole class. Although Belinda had examples of positive student 

attitudes, she still felt that overall student motivation and attitude needed more time and 

perseverance. This is where Guskey’s model could be seen as cyclic as Belinda sought 

more ideas and strategies through professional learning as she set about making changes in 

her classroom practice in an attempt to improve student attitudes and motivation. Belinda’s 

personal goal for the year was student attitudes and this became part of the drive in 

Belinda’s professional learning. Belinda maintained focus on this goal throughout the year, 

and this is reflected in Belinda’s evaluations and reflection of her involvement in the 

project.  

Reflection  

Some of the best insights into Belinda’s experience were gained at the end of the 

project therefore, the final reflection component of the project is introduced here. The last 

day of the project was one of reflection and looking forward. Each staff member was asked 

to reflect on the project and their own learning. Teachers were asked to prepare a written 

piece to bring to the last session. Sentence starters and questions were provided or teachers 

could just write about their experience. Belinda wrote a piece not based on any of the 

prompters, and this proved to be a great insight into Belinda’s learning. Two main 

components of this reflective piece will be explored in this section: goal setting and 

Belinda’s reflection on her own teaching.  

Goal Setting 

Belinda found the goal setting component of the project helpful.  

It made me think about my teaching by setting goals, talking about why I set them and then putting 

them into practice. 

This was a new experience for many of the teachers in the project as they were asked to 

set large project goals about their own learning, and Belinda’s was to motivate her 

students. She indicated that this was “still a work in progress”. This perhaps indicates that 

not all Belinda’s attempts at change were positive and new ideas were continually being 

tried. This is where Guskey’s model could be cyclic as staff development is on-going as 

teachers’ classroom practices are continually adapted and refined, leading towards a 

particular or desired change in student outcomes. As well as project goals, teachers were 

also asked to set lesson goals and Belinda found the lesson goals to be useful as “I feel I 

consistently set small goals for each lesson and am achieving them more consistently.” 

This goal setting is a change in Belinda’s practice as prior to the project: lesson and 
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personal goals were not being set. The goal setting component of the project continued to 

provide aims and direction for teachers, providing them with motivation within the project. 

It was also hoped goal setting would establish some of the sustainability of the project, 

which would be a change in teachers’ practice and perhaps their beliefs as goal setting 

would be seen as a worthwhile tool in teaching.  

Belinda’s Reflection: My Teaching 

Belinda explained that the professional learning “enabled me to see other teachers in 

their classrooms, it allowed me to see an expert model lessons at my level and other levels, 

and most important of all it pushed me to improve my teaching and achieve my goals.” 

When asked how she improved her teaching, Belinda indicated that she learnt that 

mathematics needed to be more “real” and that “students need to see a purpose in all that 

they do” in the mathematics classroom. This was also evident in the survey in which 

Belinda had ranked the statement “One of my goals is ensuring that students understand 

and can apply mathematical concepts to life experiences” as high. She felt that students 

“need to have ownership of the activities” and “that many activities need to have a ‘fun’ 

element”. Belinda’s perception about improvements in her teaching resulted from positive 

experiences in her classroom due to new ideas and changes she made. According to 

Guskey’s model this would result in a change in student learning outcomes. Belinda felt 

that she had seen an overall improvement in student attitude and motivation. This also 

came in the form of feedback from her professional partner viewing her class. This acted to 

reinforce the changes in Belinda’s beliefs and attitudes, particularly her involvement in the 

project as it continued strongly for another year, and she expanded it into other subject 

areas such as Science. Belinda noted that:  

my own maths teaching is changing in that I try to make activities more real, I involve the students 

more often in composing and assessing the tasks, I try to include games on a regular basis, I am 

trying to set more open tasks that students of all levels can tackle and I am becoming more of a 

facilitator rather than a stand out the front teacher. 

When viewed in the first teaching session at the beginning of the initiative, Belinda 

modelled the “stand out the front” style of teaching where she was driving the lesson, 

questioning and reflection. The lesson on patterning, felt like a “one off” and no references 

were made to previous lessons or prior knowledge or learning. During the last teaching 

session of the project Belinda facilitated a lesson on graphing, in which previous learning 

was brought into the lesson. The task of drawing a graph was open-ended and students 

shared their learning during the session and at the end of the lesson they completed a self 

assessment rubric. Although it could be argued that the final lesson could have been 

carefully planned to exhibit the “correct” elements of a lesson, Belinda taught her lesson at 

short notice due to a change in the time table for the week. Also, the questions that students 

asked could have been responded to with single word answers, however Belinda guided the 

students to find their own answers by referring to previous lessons in their maths books and 

looking up information in a “big book” the class had created. Belinda was exhibiting many 

of the changes she felt had occurred, such as acting as a facilitator and linking the lessons 

so that the students could see the purpose of the different lessons within the mathematics 

classroom.  
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Reworking the Model 

Guskey’s model argues that change in teacher practice occurs before change in beliefs, 

and indeed change in practice occurs before changes in orientation. It seems, however, that 

the model presented by Guskey (Figure 1) is a simplistic representation of a much more 

complex process. Indeed, although the model presented by Guskey is linear, the actual 

process seems to be cyclic (see Figure 2). The model presented in Figure 2 is an alternative 

for the conception process of teacher change. This proposed model shows the change in 

teachers’ classroom practices is a result of on-going teacher learning. This teacher learning 

has the aim of a change in student learning outcomes. This is a process which is slow and 

on-going and requires time and the continual input of teacher learning. It is this more 

complex model that appears to apply to Belinda’s situation, as it is the on-going teacher 

learning that is contributing to change in student learning and a resulting change in 

Belinda’s beliefs. Like Guskey’s linear model (Figure 1) it is after a significant or desired 

change in student learning outcomes is attained, that perhaps a change in the beliefs and 

attitudes of teachers may be observed. Guskey (1986) mentioned that it was only when 

teachers used new ideas and gained evidence of positive change that changes occurred in 

their beliefs and attitudes. Belinda continued to try new ideas to attain goals set for student 

outcomes as she reflected on her own practice. It was after much professional exploration 

of her teaching that Belinda began to see results in student outcomes and hence felt a shift 

in her own teaching practice and beliefs. So it seems staff professional learning needs to be 

ongoing and changes in teachers’ classroom practices supported before positive changes 

are seen in student learning outcomes, which then may result in a change in teacher’s 

beliefs and attitudes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Alternative model of the process of teacher change. 

This proposed model has implications for teacher professional learning. It implies that 

some teacher professional learning needs to be on-going over a period of time and may not 

reflect an immediate change in student learning outcomes. Teachers need time to 

implement changes in their classrooms and critically reflect on these changes and those in 

student learning. This implementation of professional learning and reflective practices can 

be supported with a person such as a mathematician in residence, who can offer a different 
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view on the learning taking place. On-going professional learning may need to occur before 

desired or positive changes in student learning outcomes take place. It appears that it is 

only when these changes are seen to be positive or having results in student learning that a 

change in teacher beliefs and attitudes may take place (Guskey, 1986).   

Belinda’s story is a single study within a larger study of ten primary school teachers. 

Recommendations for further study include more case study analysis to test the rigour of 

the proposed alternative model presented in Figure 2 and further case study work with 

Belinda to examine if there has been a true and on-going change in beliefs and attitudes.   

    Conclusion 

Belinda had identified areas of her teaching that she wished to change such as making 

activities for her students more “real”. From the beginning of the project, Belinda 

supported the concept of a mathematician in residence, and she looked forward to 

examining her teaching practices in her classroom from both a teaching and learning 

perspective. Belinda took ideas from the professional learning discussions, as well as 

observations of other classes and adapted suggestions from the reflective discussions about 

practice and implemented these in her classroom. These resulted in a change in Belinda’s 

classroom practices as she attempted new ideas.  

Belinda also found the goal setting component of the project useful as she set both 

lesson and personal goals, a practice she had not previously used. This goal setting aided in 

the reflective practice of the professional learning project as Belinda and the other teachers 

involved in the project analysed both their own practice and that of their peers. Belinda 

found through this professional learning experience, a tool that helped her facilitate change 

in her own classroom. The implementation of these new classroom practices, such as the 

goal setting, led to slow and gradual changes in student attitudes and motivation. As this 

change in student learning outcomes was gradual, Belinda continued to re-evaluate her own 

teaching.  

Guskey (1986) argued that changes in practice precede changes in beliefs, and it may 

be that changes in practice precede changes in orientation. It seems Belinda feels that she 

has changed. Belinda now sees herself more as a facilitator than a “stand out the front 

teacher”. She has made changes to her teaching and classroom practices that have provided 

some positive results in both students’ attitudes and motivation. This change has been 

gradual and has encouraged Belinda to continue her own learning and to make different 

changes in her practice as she looks for improvements in student learning and attitudes. 

This indeed supports Guskey’s model that a change in beliefs occurs from a positive 

change in student learning outcomes resulting from changes in classroom practices due to 

professional learning. However, this process appears to be cyclic in nature rather than 

linear as many changes in practice may need to be made and the professional learning 

ongoing before a change in student learning outcomes observed.  

It is proposed that Guskey’s model is cyclic rather than linear as it appears that 

continual professional learning needs to be experienced to allow teachers to try new ideas 

in their classrooms and time to reflect and evaluate the resulting student learning outcomes. 

If these student outcomes are not of or to a teacher’s expectations, then further strategies 

may need to be implemented as a result of further professional learning. In the case of 

Belinda, she attempted new ideas in her classroom and after a period of time some change 

in student attitudes was noted; however, Belinda wanted a change across her class, so she 

tried new strategies as a result of ongoing professional learning. This process continued 
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throughout the year and as the results in the student outcomes in Belinda’s class improved, 

she found her own teaching and beliefs were also changing. The responses from Belinda 

supports Guskey’s argument that it is when teachers use new ideas and gain evidence of 

positive change that a change may occur in their beliefs. It appears that these changes in 

student learning outcomes need to be positive before a change in teacher’s beliefs and 

attitudes is observed, and it appears that this may be a result of on-going professional 

learning and a cyclic interpretation of Guskey’s model.   
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This paper reports the use of three questions to guide students’ discussions and reflective 

writing in a year 5/6 mathematics class. Journal entries and work samples were examined 

for evidence of students making sense of their thoughts and processes used during the 

completion of Space-based tasks. Reflective writings were inspected for evidence of the 

three functions of metacognition and Bloom’s Taxonomy was used to note changes in 

students’ levels of understanding of the content. Preliminary findings suggest that the 

approach and questions used in this study warrant further investigation. 

Directives in curriculum that require teachers to assess and report students’ thinking are 

complex. One approach is explained in this paper, which commences with background 

information about the change in emphases in recent curriculum. This is followed with an 

overview of the literature that informed the approach used and provided the basis for the 

data analysis in the investigation. Then preliminary findings are discussed. 

Trends in Curriculum for Developing Thinking and Understandings in 

Mathematics 

New directions in curriculum across Australia share a focus on preparing students for 

further education, work, and life (Department of Education and Children's Services, 2001; 

Department of Education Tasmania, 2007; Department of Education Training and the Arts, 

2004; Victorian Curriculum Assessment Authority (VCAA), 2006). In 2005, the Victorian 

government introduced the Victorian Essential Learning Standards (VELS) (VCAA, 

2004), a framework for planning whole school curriculum from Preparatory – Year 10. The 

Learning Standards are developed within three interrelated strands: Physical, personal and 

social learning; Discipline-based learning; and, Interdisciplinary learning. These three 

strands seek “to equip students with capacities to manage themselves and their relations 

with others, to understand the world, and to act effectively in that world” (p. 3). Each 

strand has a number of domains. In each domain, the essential knowledge, skills, and 

behaviours are identified in subcategories called dimensions. Specific standards are written 

for each dimension according to three broad stages of learning: P-4, Years 5-8, and Years 

9-10. These standards define essential and developmentally appropriate expectations for 

teaching and learning programs (VCAA, 2004). The Learning Standards may be addressed 

in programs either “through explicit teaching focused on a particular strand [or] … by 

creating units of work which address a number of standards at the same time” (p. 3). 

Since the implementation of VELS teachers have been grappling with the complex task 

“for ensuring that all three strands, and their domains are addressed by all schools in their 

teaching programs and in their assessment and reporting practices” (VCAA, 2004, p. 3). 

The complexity of the task is not necessarily in the planning or implementation stages but 

in the mandate to assess and report each of the domains. For example, Table 1 lists a 

possible set of domains and dimensions from the three strands included in a mathematics-

based unit of work. 
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Table 1 

Strands, Domains, and Dimensions in a Mathematics-based Unit of Work 

Strand Domain Dimension 

Physical, Personal and Social 

Learning 

Personal Learning The individual learner 

Managing personal learning 

Discipline-based Learning English Writing 

 Mathematics Space  

Interdisciplinary Learning ICT ICT for visualising thinking 

 Thinking Reflection, evaluation and metacognition 

 

A mathematics-based unit comprising these domains and dimensions may produce 

worthwhile experiences for students learning not only in the content but also possibly in 

those generic skills and strategies applicable in various contexts. Yet, one might ask: 

Which tools and strategies will teachers use to measure and report students’ progress in the 

domain of thinking?  

This paper reports one approach for assessing and reporting student progress given the 

expectations of teachers in Victorian schools using three questions addressing the three 

strands in VELS. The key question addressed in this study is: 

• Does the use of three specific questions at the commencement of reflective 

writing sessions provide evidence of the development in children’s thinking and 

mathematical understandings? 

Gaining Insights into Students’ Thinking and Understandings of Mathematics 

A scan of proceedings at MERGA conferences suggests that teacher educators not only 

share a desire to help students articulate their ideas during mathematics lessons but also 

have various ways of encouraging the exchange of thoughts either orally and/or in writing 

(Beswick & Muir, 2004; Brown & Renshaw, 2004; English & Doerr, 2004; Falle, 2005). 

Although not necessarily building on the same theme, insights from each of these studies 

shaped and informed the study discussed in this paper. 

In a study by Beswick and Muir (2004) comprising 20 year 6 students from five 

primary schools researchers examined participants’ abilities to communicate their problem 

solving strategies and mathematical thinking. Using semi-structured interviews, each 

problem was read to the student by the interviewer. Students were asked to solve the 

problem and record the process used in writing. Concrete materials were available for 

students’ use. On completion of the task, students were asked to explain verbally what they 

had done. Beswick and Muir reported that, regardless of students’ abilities, students 

expressed their mathematical thinking more effectively in verbal than in written forms. 

Beswick and Muir (2004) concluded that learners would benefit from instruction that 

encouraged visualisation of their thinking and “efficient and meaningful ways of recording 

their thinking in writing” (p. 101) and this is one of the goals of the study discussed in this 

paper. 

Another source shaped the approach and the design of the tasks used. Brown and 

Renshaw (2004) argued that “success in school mathematics is often measured in terms of 

a student’s capacity to reproduce others’ inventions and justifications” (p. 135) and 

advocated the need to link students’ experiences and processes with the more formal 

content knowledge in the domain of mathematics. They proposed an alternative format to 

Mathematics: Essential Research, Essential Practice — Volume 2

642



  

teachers for initiating class discussions and for developing deeper understandings of 

mathematics by incorporating both everyday and scientific notions of mathematics into 

their discussions.  

Two terms, replacement and interweaving, were recommended as ways for students “to 

make sense of the mathematics being presented to them and about linking students’ 

inventions to the conventions of mathematics rather than about teacher and/or textbook 

evaluations of student answers” (Brown & Renshaw, 2004, p. 142). Replacement referred 

to using “an everyday understanding with a more sophisticated conventionalised 

understanding” (p. 135). Interweaving seemed to refer to an acceptance of and interchange 

between informal and scientific concepts and/or language. 

Also contributing to the teaching approach, English and Doerr (2004) claimed that 

recent research necessitates teachers to be “more attentive and responsive to their students’ 

mathematical reasoning” (p. 222). Teachers who display a hermeneutic disposition in their 

teaching tend to use tasks that provide opportunities for students to explore mathematical 

ideas, carefully listen to students’ ways of thinking, and adopt various roles in their 

interactions with students. Such teachers observe, listen, and ask students questions for 

further clarification.   

Similarly, Falle (2005) reported that students’ explanations reveal not only the degree 

of their mathematical thinking but also the linguistic features used by students in their 

responses that may serve as indicators of their level of understanding. Falle noted that less 

successful students resort to “parroting” mathematical rules even though they may not be 

able to use them. In contrast, students who are more mathematically capable tend to 

experiment with logic and have greater control over the language needed to express 

themselves. This provided further justification for the attention to developing students’ 

expressive skills in mathematics. 

Monitoring Metacognition 

An overview of processes for monitoring students’ thinking processes is also relevant 

to the discussion given the focus on developing thinking skills in several curriculum 

policies. Wilson and Clarke (2004) referred to metacognition as the “awareness individuals 

have of their own thinking; the evaluation of that thinking; and the regulation of that 

thinking” (p. 26). Given this definition Wilson and Clarke noted three functions of 

metacognition: awareness, evaluation, and regulation. “Metacognitive awareness relates to 

individuals’ awareness of where they are in learning process or in the process of solving the 

problem, of their content-specific knowledge, and of their knowledge about the personal 

learning contexts or problem solving strategies” (p. 27). “Metacognitive evaluation refers 

to judgments made regarding one’s thinking processes, capacities and limitations as these 

are employed in a particular situation or as self-attributes” (p. 27). “Metacognitive 

regulation occurs when individuals make use of the metacognitive skills to direct their 

knowledge and thinking” (p. 27). 

Wilson and Clarke (2004) assumed that promoting metacognition was a valuable 

exercise in mathematical learning contexts and that some strategies encouraged 

metacognitive acts. To address the known difficulties with monitoring metacognition, they 

refined a multi-method clinical interview that involved self-reporting and a think-aloud 

technique, observation, and audio and video recording. The clinical interview involved a 

card-sorting procedure enabling the participant to reconstruct his/her “thought processes 

during a problem solving episode just completed” (p. 29). 
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Wilson and Clarke’s study (2004) comprised 90 one-on-one interviews with year six 

students from six different classes across Victoria using three different types of tasks: 

numerical, spatial, and logical. A series of metacognitive action statement cards varied 

according to the task but were categorised according to the three functions of 

metacognition identified in their earlier definition: awareness, evaluation, and regulation. 

For example, statements from the awareness category included: I thought about what I 

already know; I had tried to remember if I had ever done a problem like this before; I 

thought “I know this sort of problem”. Sample statements from the evaluation category 

included: I thought about how I was going; I checked my work; I thought “is this right?” In 

the regulation category some statements included: I thought about what I would do next; I 

made a plan to work out; I changed the way I was working. 

Wilson and Clarke (2004) reported that it seemed reasonable to expect a particular 

pattern in these three functions: awareness first, followed by an evaluation and finally a 

regulatory act. However, students used various sequences, many of which were non-linear. 

Generally, sequences commenced with awareness. Regulatory and evaluative statements 

were often arranged in different combinations. Students concluded tasks with an evaluation 

statement regardless of whether the task was completed successfully. 

Analysing Levels of Understandings 

Although not specifically from the mathematics education field of research, some 

reference to the levels of understanding using Bloom’s Taxonomy (Anderson, 1999) is 

helpful with the data analysis in this investigation. Bloom’s Taxonomy was first published 

in 1956 with six categories knowledge, comprehension, application, analysis, synthesis, 

and evaluation. These were considered to be increasingly complex behaviours that 

cumulated in a hierarchical structure (Anderson, 1999).   

Over the past 50 years there have been variations of the original model (Houghton, 

2003). Changes in the new taxonomy include the recognition of the role of social learning 

and “cultural-specificity of knowledge” (Anderson, 1999, p. 7). Another is the qualification 

of the premise “that the categories form a cumulative hierarchy in all cases … depends on a 

series of factors” (Anderson, 1999, p. 8). For example, Anderson (1999) reported that an 

individual may use several cognitive processes such as recall, understand, analyse, 

synthesise, and evaluate in selecting an appropriate strategy to solve a problem. However, 

there are other cases in which one may apply a given or known strategy in a routine 

manner. The difference is that metacognition is evident in the former but not necessarily in 

the latter. 

Houghton (2003) compared models of the taxonomy. The version that listed verbs for 

each category was helpful for inspecting and assessing student work samples in this 

investigation.   

In summary, over recent years various authors cited in this paper, have suggested ways 

in which teachers may link students’ experiences with mathematical learning through their 

interactions and discussions with students. Some offered a way to help identify the 

functions of an individual’s metacognitive processes in completing a task. Others 

suggested that teachers provide guidance to help students visualise and record their 

thoughts in writing, or ask questions so that students may clarify their ideas. Insights from 

such authors provide the basis for the analysis. Yet, perhaps more is needed for gathering 

and analysing children’s written records of their thinking and mathematical understandings. 

One approach is to use three specific questions as prompts for children’s reflective writing 
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within mathematics lessons and examine these for evidence of cognitive processes used 

and mathematical understandings gained. 

Investigation of the Effectiveness of Three Questions 

The study examined the changes in year 5 and 6 students’ perceptions of themselves as 

learners, their knowledge and skills in an aspect of Space, and their ability to use specific 

tools and strategies over a 2-week period. The specific research question addressed in this 

paper is:  

• Does the use of three specific questions at the commencement of reflective 

writing sessions give evidence of the development in children’s thinking and 

mathematical understandings? 

Participants 

Twenty-three students in the year 5/6 class attended a small inner city school where 

94% of the student population came from Culturally and Linguistically Diverse (CALD) 

backgrounds and 67% of the families received financial assistance. One student had 

recently arrived in Australia with limited English skills and several had learning 

disabilities. 

The classroom teacher had 2 years teaching experience and chose to work along side 

the researcher. The researcher had taught for 14 years in primary schools. 

Overview of the Planning, Lesson Format, Tasks and Approaches used 

In the week prior to the study commencing the classroom teacher collected students’ 

prior knowledge of the content and discussed these and the content to be taught with the 

researcher. The researcher planned and delivered four lessons. The classroom teacher was 

always present in the room and interacted with students as they worked on the activities.  

Each lesson was between 60 – 80 minutes in duration and followed a similar format. 

The researcher introduced the focus of lesson to the whole class and invited the students to 

accept a challenge posed in tasks. Students investigated the open-ended tasks for ten 

minutes, were asked to share their ideas and strategies, and then were directed to resume 

working on the tasks being mindful of shared insights. Lessons concluded with the 

researcher summing up key points and students reflected on their experiences of the lesson 

and wrote personal reactions in their workbooks.  

During the fourth lesson, students were invited to consider what knowledge, skills, and 

feelings they had that were somewhat different to those which they had prior to these 

lessons. Students wrote for approximately 40 minutes in response to three specific 

questions: 

• What have you learnt which is somewhat different to what you already knew 

about mathematics? Give examples. 

• What have you learnt which is somewhat different to what you already knew 

about the program, tools and games used? 

• What have you learnt which is somewhat different to what you already knew 

about yourself or the way you learn? 

Although 40 minutes is not realistic in many classrooms these students predominantly 

from non-English speaking families needed the time to reflect and write. 
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Because there were only three desktop computers in the classroom students worked in 

pairs rotating through planned tasks. These involved either the manipulation of concrete 

materials and discussions at students’ tables or completing a computer-based task. The 

series of lessons were designed to link students’ everyday experiences with mathematical 

content. Three additional aims were: 

1. to draw on students’ interests in arcade-type computer games and in programs such as 

MS Powerpoint (Microsoft Corporation, 1995), 

2. to develop students’ use and understandings of mathematical language when 

transforming two-dimensional shapes such as flip/reflection, slide/translation, 

turn/rotation, resize/enlarge/reduce/dilation, 

3. to provide opportunities for students to discuss, reflect and write their thoughts at the 

conclusion of each lesson. 

Table 2 summarises the tasks completed. 

Table 2 

Computer-based and Table Tasks Completed over Four Lessons 

Type of task Brief description of activity 

Computer-

based 

Individuals play two games of Tetris (2M Games, 2004).  

Table  Using multi-link cubes make 12 shapes which could be used in a game like Tetris. In 

pairs, one person plays the game and fills as many whole lines as possible gaining 10 

points each time. The other person provides the pieces one by one. (No flipping 

allowed). Is the game better or worse if you are allowed to flip the pieces? 

Table Create a picture using 7 tangram pieces. Trace around the outline. Make a small scale 

drawing of your solution. Recreate another person’s picture. Check the answer sheet. 

Table Groups of three complete a barrier game using tangram pieces/picture. A tells B how 

to make his/her picture by giving verbal instructions only. C acts as observer and 

records the language used. 

Table Create mosaic picture/pattern using pattern blocks. Then using grid paper, create a 

tiled floor. After a few attempts create a piece of art work using Escher’s style.  

Table Make a picture flick note pad to show an image moving. 

Computer-

based 

In pairs, create a series of four/five slides which show shapes moving (flipping, 

sliding, rotating, resizing). 

Table  Draw a simple picture onto grid paper. Enlarge and reduce the picture according to a 

scale. 

Data Collection and Analyses Techniques, Tools, and Approaches 

Prior to the series of lessons commencing the classroom teacher asked students to write 

what they knew about the topic and in which situations one might use the content or related 

terms. During the four lessons students’ computer-based work files were saved on the class 

server and samples of their book work were collected. Researcher took anecdotal notes of 

significant events and discussions with students. Researcher and classroom teacher each 

kept journals with their reflections of each lesson and later shared their thoughts via email 

communication.  

After the lessons, dated work samples were examined in two ways. First, for evidence 

of levels of understandings about concepts in transforming 2D shapes using Bloom’s 

Taxonomy from written responses to questions in pre-lesson and from the fourth lesson. 

Analyses of data were tabulated to provide an overview of the levels of understandings 
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about concepts in transforming shapes for each student. Second, the work samples were 

inspected for evidence of the three functions of metacognition (Wilson & Clarke, 2004). 

The Monitoring Metacognition Interview (MMI) multi-method interview technique 

(Wilson & Clarke, 2004, p. 29) was not used in this study. 

Results and Discussion 

A small group of participants attending a professional development session were 

provided with the adapted version of Bloom’s Taxonomy used in this investigation and 

asked to look for evidence of understandings in students’ work samples. Their responses 

were similar to those independently categorised by both the researcher and teacher. Table 3 

presents frequencies of level of understanding of concepts and vocabulary related to 

transforming 2D shapes using Bloom’s Taxonomy in students’ responses recorded pre-

lessons and in fourth lesson. This was the first way work samples were examined. 

Table 3 

Students’ Levels of Understanding of Topic using Adapted Version of Bloom’s Taxonomy 

in Written Responses 

 Remembering 

 

Understanding 

 

Applying 

 

Analysing 

 

Creating 

 

Evaluating 

No 

evidence  
  1    

Limited 

example 
3 4 9    

Pre-

lesson  

Student  

(n = 14) 

Multiple 

examples 
11 10 4    

No 

evidence  
   2 4 11 

Limited 

example 
6 7 6 6 6 7 

Fourth 

Lesson 

Student  

(n = 20) 

 Multiple 

examples 
14 13 14 12 10 2 

 

The figure 14 in the bottom left hand cell indicates that 14 of the 20 students either 

listed or described two or more examples related to the topic in their reflective writing 

from the fourth lesson. There was evidence of students’ increased levels of understandings 

about concepts in transforming 2D shapes using the adapted version of Bloom’s Taxonomy 

from written responses to questions in pre-lesson 3 Nov (n = 14) and from journal entries 

dated 17 Nov (n = 20). For example, although a group of 10 or 11 students began the series 

of lessons with a reasonable knowledge of the terms and were able to describe or define the 

terms, only four gave examples of when the terms were used in both mathematical and 

everyday settings. In contrast, by the fourth lesson there was evidence that 14 students saw 

applications for these terms. There was also evidence that students (n = 12) were 

synthesising their understandings that went beyond the tasks or saw connections between 

them.  

An excerpt from student N1’s fourth lesson written response provides a sample of the 

evidence identified for the creating category. 
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I also learnt that by stretching a picture, the picture would look very different because your (sic) only 

changing the width, but if you change both height and width the picture will look the same but 

bigger. 

It seems that this student is developing a generalisation about ratio and proportion.An 

excerpt from another student N2’s fourth lesson written response provides a sample of the 

evidence identified for the evaluating category. 

I learn’t (sic) how to draw a particular picture on grid paper and then 

making it skinny. Since my original picture was drawn on a 2cm scale 

I wanted to make it skinny. First I halved the 2cm which would be 

1cm but I didn’t halve it horizontally only vertically and drew my 

picture (sic). That is right 2 of these pictures can fit the original 

picture.  

 

There are two comments added to the diagram in which student N2 justifies her thoughts: 

“halved it vertically not horizontally” and “That is right two of these pictures can fit the 

original picture”. 

Insights from Wilson and Clarke’s (2004) three functions of metacognition and action 

card statements provided the basis for the second form for data analysis. The culturally 

diverse group of students, who refrained from participating in class discussions, were 

willing to write in journals at the end of the fourth lesson. Written responses from ten 

students indicated that they noted changes in their own thinking, skill level and/or attitude 

towards aspects related to these activities.  

Many students wrote about increased awareness of the applications of the mathematics 

being studied in everyday activities. For example, student A wrote: 

I never knew that I was using mathematics when on (sic) powerpoint but I [now know] that I was 

estimating sizes when [I was] changing [resizing] pictures [to use in slides] for [creating] 

animations. When I play tetris, I play it for fun but I was using flip, slide and rotate to fit shapes into 

gaps. 

Although this student had some difficulties with clear expression, the entry provides 

evidence of the awareness the student gained as a result of these lessons. Without the 

opportunity for writing such insights would be more difficult to capture. 

The following excerpts are all from student D’s fourth-lesson written response: 

I learnt that the game Tetris involves maths because when we use the 

shapes to make lines/rows, we are using tessellation. 

Similarly, the student seems to be reflecting on the activity and 

drawing on the metacognitive function, awareness. 

I also learnt that when allowing the person to flip in the game, it is 

sometimes easier [to get higher scores].  
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This sentence could be within the evaluation category. 

Drawing on grid paper also involves maths because we use scales when 

either enlarging or reducing the size of images/pictures. When we make our 

drawings flatter, we divide the grid that goes horizontally, smaller. 

I’ve learnt that when doing an animation on powerpoint (on the computer), 

you only move each picture a bit on each slide to make it moving when the 

entire slide was played. It was one of the best things I learnt because I have 

never done it before. 

Again, in both of these sentences there is evidence of some metacognitive awareness and 

regulation occurring. The student is aware of the new knowledge and indicates that he will 

use the knowledge to plan and complete similar tasks in the future. 

Conclusion 

To an extent the goal of the investigation was successful. The approach and the three 

specific questions provided students with opportunities to discuss and write responses 

gathering evidence of students’ progress in the three interwoven strands central to the 

Victorian Essential Learning Standards (VCAA, 2004). Even students with limited skills in 

English were able to communicate their thought processes and some deepened their 

mathematical understandings about aspects of Space over four lessons.  

There were also limitations to using the approach. Reflective writing is a text-type and 

a generic skill that needs to be explicitly taught. As with other text-types teachers need to 

model the language features used in such forms of writing (Derewianka, 1990). For this 

group of students reflective writing was a new text-type and skill. Part of the mathematics 

session was spent explaining the questions and expectations of the writing which was non-

mathematics specific learning.  

The tools and techniques used for data analyses seemed helpful in identifying changes 

in students’ written responses. Having said that, it might be useful to expand the list of 

verbs in the table of the version of Bloom’s Taxonomy used. 

Given these preliminary findings, it would be useful to replicate this investigation or 

conduct further research using these three questions with students and teachers P-10 

classrooms to check whether similar trends emerge. 
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This study extends research into the van Hiele Theory by narrowing the microscopic lens and 
providing a focused analysis on the understanding and development of class inclusion concepts 
in Geometry. This paper integrates two qualitative frameworks, identified through the 
utilisation of the SOLO model, that indicate developmental growth in understanding of 
relationships among figures, and relationships among properties. This is considered via a 
quantitative approach, using a Rasch analysis model, which provides a comparison of the 
complexity of seven different interview tasks within the context of triangles and quadrilaterals. 

This study is part of a larger study that extends research into the van Hiele Theory by 
narrowing the microscopic lens and providing a focused analysis on the understanding and 
development of class inclusion concepts in Geometry. Pertinent to this study, the level 
associated with a student who accepts and utilises notions of class inclusion is described as 
Level 3 (van Hiele, 1986). This aspect of Level 3 is regarded as both a difficult concept to 
acquire and a prerequisite for formal deductive reasoning (De Villiers, 1998; Heinze, 2002). 
The networks of relations, which are the students’ focus when exhibiting Level 3 thinking, 
can be described as those that deal with the relationships among properties within figures, and 
relationships among figures (van Hiele, 1986). In an attempt to refine the characteristics of the 
development of this concept, an initial qualitative study (Currie & Pegg, 1998; Serow, 2006) 
utilised the SOLO (Structure of the Observed Learning Outcomes) model (Biggs & Collis, 
1982) to provide deeper insights into the van Hiele levels. A central finding of this initial 
study was the identification of two frameworks that describe developmental pathways leading 
to a) an understanding of relationships among figures, and, b) an understanding of 
relationships among properties. This study is a quantitative analysis of the results using a 
Rasch analysis model with the aim of providing further insights into students’ understandings 
of class inclusion. Rasch measurement has been described as permitting “the identification 
and examination of developmental pathways, such as those inherent in the development of 
mathematical concepts” (Callingham & Bond, 2006). 

Background 

This study provides a quantitative synthesis of the developmental pathways described in 
Table 1, based upon the application of ACER’s QUEST analysis program, using the partial 
credit modelling process, provided by Masters (1982). This analysis program enabled the 
plotting of item difficulties for the seven tasks upon a single scale and provides some initial 
insights into a comparison of item/category difficulty concerning tasks that target geometrical 
relationships within the contexts of triangles and quadrilaterals. 

In addition to the van Hiele Theory, the SOLO model was utilised in the initial qualitative 
study. This model is comprised of two main components, these being: the modes of 
functioning, and, the cycles of levels. There are two modes of functioning relevant to this 
paper, namely, concrete symbolic (CS) and formal (F). The concrete symbolic mode involves 
the application and use of a system of symbols, for example, written language and number 
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problems, which can be related to real world experiences. The formal mode is characterised 
by a focus upon an abstract system, based upon principles, in which concepts are imbedded. 
Within each mode development occurs described in terms of levels. General descriptions of 
the levels are the following. 

1. Unistructural (U): response is characterised by a focus on a single aspect of the 
problem/task. 

2. Multistructural (M): response is characterised by a focus on more than one 
independent aspect of the problem/task. 

3. Relational (R): response is characterised by a focus on the integration of the 
components of the problem/task. 

Studies (Campbell, Watson, & Collis, 1992) have extended the SOLO model through the 
suggestion that more than one cycle of levels exist within each mode. As a result, two cycles 
of levels in the concrete symbolic mode have been identified. The pathways that were 
identified in the earlier qualitative study were characterised by two cycles of responses of the 
concrete symbolic mode (SOLO), and two cycles of responses of the formal mode (SOLO). 

In the initial qualitative study, the developmental frameworks that emerged through the 
application of the SOLO model are detailed in Table 1 below. Descriptors of the tasks used, 
within the contexts of triangles and quadrilaterals, are outlined in Table 2 in the Methodology 
section. 

Table 1 
Developmental Frameworks Concerning Relationships Among Properties and Relationships 

Among Figures 

Coding Properties Figures 

R1(CS) The focus of the task is upon the figure in 
question from which all known properties are 
derived. A specific example of the figure is 
utilised from which each property is determined. 
There is a strong reliance on ikonic support. 
The properties are perceived as features. 

A single property or feature is identified to 
link the figures. The focus of the response is 
upon the identification of an observed single 
quantifiable aspect, which places figures into 
spontaneous groups. There is a strong 
reliance on visual cues. 

U2(CS) The reference for the response is the figure in 
question. The figure determines a single 
property. Minimisation is understood to be 
“less” and is based upon the uniqueness of a 
single property to the figure. 

 

Classes of figures are known by name and 
are characterised by a single property. The 
class represents an identifiable unit. Links 
do not exist between classes, unless 
supported by visual cues. Observed 
differences play a significant role. 

M2(CS)  

 

The single reference remains the figure in 
question. The figure determines two or more 
unique properties, which are utilised to 
represent the figure. Properties remain in 
isolation. Minimisation is understood to be 
“less”. 

M2 responses incorporate classes of figures, 
which are known by name. These classes are 
characterised by more than one property. 
Links are not made between classes where 
differences in properties are accentuated by 
visual differences. 

R2(CS) 
response 

The focus of the response is upon a link or 
ordering between a pair of properties, or a pair 
of figures within the same context. The link is 
characterised by a single dominant property that 
precludes the utilisation of a relationship in both 
directions. 

Relationships exist between classes of 
figures, which are based upon similar 
properties. Inclusive language is used to 
describe the classes of figures; hence, 
property descriptions allow for similarities 
to be acknowledged. 

U1(F) 
response 

This type of response incorporates a 
relationship between two properties, or between 

When prompted, tentative statements are 
made concerning the possibility of subsets 
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two figures, and is justified accurately. Two 
properties are now perceived to work together, 
and as a result determine the figure. This single 
relationship has become a workable unit. 

within a class of figures. There is no 
acceptance of this notion, however, it is able 
to be discussed tentatively. 

 

M1(F) The response is based upon the existence of 
multiple pairs of relationships between 
properties or relationships between figures. 
While the focus of the response is on more than 
one relationship, they are treated in isolation. 
Minimisations remain in conflict with the need 
to distinguish a certain figure from other figures 
within the same global class. 

There is an unprompted acceptance of a 
class of figures containing subsets. While 
this notion of class inclusion is accepted and 
utilised, it is not justified adequately. 

 

R1(F) 
response 

 

The response includes a focus upon the network 
of relationships among known property and 
figure relationships. The interrelationships may 
not incorporate all property relationships. 

 

The notion of class inclusion is an 
integrating feature of the response. A class 
of figures incorporates subsets, which are 
inclusive of generic categories identified by 
other names. Each class maintains a 
workable identity while the focus is upon the 
network of relationships. 

U2(F) 
response 

 

A network of relationships is the focus of the 
response. There is an understanding of the 
general overview, which utilises relationships 
among groups of properties and figures. The 
notion of minimisation can be held in more than 
one circumstance spontaneously. 

The notion of class inclusion acquires 
further development. Conditions are placed 
upon the classes of figures, which 
acknowledge more than one system of 
relationships. This requires an overview of 
the interrelationships. 

 

The study reported here was designed to provide a quantitative synthesis of the 
developmental frameworks that described students’ understandings of the relationships among 
figures and properties. The research questions addressed are the following. 

1. How do the identified response categories reflect the hierarchical framework of the 
SOLO model? 

2. Is there an order of difficulty among the item responses, which can assist in interpreting 
the complexity of students’ responses to tasks concerning relationships among figures and 
relationships among properties? 

3. Which response categories to tasks had relatively larger increases in complexity from 
the prior response category, concerning students’ understandings of relationships among 
figures, and relationships among properties? 

Methodology 

The previous qualitative study involved in-depth interviews with 24 students of higher 
mathematical ability, purposely selected, within Years 8–12 (ages 13–18 years) in two 
secondary schools. There were equal numbers of males and females. Twelve of these students 
repeated the interview tasks two years later, and hence the data set to be analysed comprises a 
total of 36 sets of student responses. 

The nature of the qualitative study was to have the students complete seven tasks that 
focused upon known relationships among figures and among properties within the contexts of 
triangles and quadrilaterals. Seven items were included in the interview protocol. The tasks 
provided a catalyst for discussion that enabled prompts and probes as appropriate. The 
duration of each interview was approximately 1 hour. Further details of the interview are 
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presented in Serow (2006) and Currie and Pegg (1998). An outline of interview tasks (items) 
is contained in Table 2 below. 

Table 2. 
Item Focus and Descriptors 

Item Focus of the Item Item Descriptors 

1 Relationships among 
triangle figures 

Design a tree diagram that links the different triangles (equilateral, right 
isosceles, acute isosceles, obtuse isosceles, right scalene, acute scalene, 
and obtuse scalene). Discussion follows concerning the reasons for links 
and/or lack of links. 

2 Relationships among 
quadrilateral figures 

Design a tree diagram that links the different quadrilaterals (trapezium, 
square, rectangle, rhombus, parallelogram, kite). Discussion follows 
concerning the reasons for links and/or lack of links. 

3 Relationships among 
equilateral triangle 
properties 

After selection of known property cards for the equilateral triangle, the 
student is asked to provide a minimum combination of cards to enable a 
friend to identify the shape with accuracy. Multiple combinations were 
then requested. 

4 Relationships among right 
isosceles triangle 
properties. 

Task above repeated for the right isosceles triangle. 

5 Relationships among 
square properties. 

Task above repeated for the square. 

6 Relationships among 
parallelogram properties. 

Task above repeated for the parallelogram. 

7 Relationships among 
rhombus properties. 

Task above repeated for the rhombus. 

 

Each of the responses to the seven tasks was coded according to the SOLO codings 
described in Table 1. The results presented in this paper are a review of the Rasch results 
across the seven items and 36 student response sets. With the categories of each item being of 
an ordinal nature, the data assumptions of the QUEST application of the Rasch modelling 
process are consistent with the data of this study. The partial credit model was used to provide 
data concerning the relatively larger distances between response categories and clusters of 
response categories. The data set is combined to allow a conservative comparison of the item 
response categories on a single hierarchical line of inquiry (Bond & Fox, 2001). 

Results 

Reliability 

Item separation reliability statistics produced by the QUEST software are described by 
Adams and Khoo (1993) as the proportion of the observed variance that is considered true. In 
this study, the relatively small sample size across a limited number of grades meant that the 
item separation reliability was low, due to larger measurement error. Due to this factor, the 
item estimates are to be interpreted conservatively and the results are presented in clusters of 
response categories. Even though the item separation reliability was low, there are some 
points of interest in terms of the relative difficulties among the response categories and this is 
the focus of the paper. 
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Fit Statistics 

Fit statistics are the means and standard deviations of the infit (weighted) and outfit 
(unweighted) fit statistics in the mean square form. When the observed data and estimates are 
compatible, the expected value of the infit mean square is close to 1 (1.02) with a small 
standard deviation (0.17), and the transformed infit (Infit t) is close to zero (0.12). Hence, the 
items come from the same underlying construct, namely, relationships among figures and 
relationships among properties. 

The component infit mean square values are presented in graphical form in Figure 1 to 
assist in interpretation. The infit statistic for each item is the weighted residual based statistic, 
which indicates quantitatively how appropriately each item fits the model (Fisher, 1993). This 
comparison can be used to confirm the unidimensionality of the items, confirming construct 
validity of the items. Fit is acceptable if the mean lies between 0.77 ad 1.3 (Keeves & 
Alagumalai, 1999), in this case the infit mean is 1.02. 

The figures on the horizontal scale represent the infit mean square scale and the asterisks 
indicate the magnitude of the fit statistic for each item on the same line. Fit statistics that lie 
within the two dotted vertical lines are considered acceptable. The well-fitting nature of the 
items to the model indicates that the items represent aspects of a latent trait. The infit mean 
square map for the seven items, which appears below in Figure 1, indicates that six of the 
seven items are within the acceptable limits. Item 4, which concerns students’ understanding 
of the relationships among properties of the right isosceles triangle, is only slightly to the 
right-hand side of the acceptable limits. This indicates that for Item 4, there is an element of 
randomness in coding. 

 
 

INFIT MNSQ                                                            
           .63     .71       .83      1.00      1.20      1.40  
-----------+--------+---------+---------+---------+---------+----- 
  1 item 1               .             *|              . 
  2 item 2               .         *    |              . 
  3 item 3               .   *          |              . 
  4 item 4               .              |              .* 
  5 item 5               .              *              . 
  6 item 6               .          *   |              . 
  7 item 7               .              |    *         . 
================================================================== 

Figure 1. Item map. 

Item Difficulty 

The information pertinent to item estimates is displayed in the variable map in Figure 2. 
There are seven tasks in total, and 36 sets of student responses represented. The chart includes 
a logit scale on the left of the diagram on which both items (n=7) and cases (n=36) are 
calibrated. The distribution of students is represented by XXXs on the left-hand side of the 
chart. The seven tasks are identified in Figure 2 as: 

1. Relationships among triangle figures. 
2. Relationships among quadrilateral figures. 
3. Relationships among equilateral triangle properties. 
4. Relationships among right isosceles triangle properties. 
5. Relationships among square properties. 
6. Relationships among parallelogram properties. 
7. Relationships among rhombus properties. 
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LOGIT  CASES    ITEMS       

3  |      

   |      

   |      

   |      

   |      

   |      

   |      

  X |      

   |   5.U2(F)   

2  |      

   |      

   |      

   |   5.R1(F)   

   |      

   | 1.U2(F)     

   |      

   |   6.U2(F) 7.U2(F) 

   | 2.U2(F)     

1 X |   3.U2(F)   

   | 1.R1(F)  3.R1(F) 4.U2(F) 

  XXX | 1.M1(F)  6.R1(F)   

   | 1.U1(F) 2.R1(F) 4.M1(F)   

  X |   3.M1(F)   

  XXX |   7.M1(F)   

  XXX |      

  XX | 2.R2(CS)     

  XX |   5.M1(F) 6.M1(F) 

0 XX | 1.R2(CS)     

  XXX |      

  X |   3.U1(F) 4.U1(F) 

  XX |   6.U1(F) 7.U1(F) 

  XXXX |   3.R2(CS) 5.U1(F) 

  XXXX |   4.R2(CS)   

  XX |      

   |   7.R2(CS)   

   |   6.R2(CS)   

   | 2.M2(CS)     

-1 X |   3.M2(CS) 5.R2(CS) 

   | 1.M2(CS)     

  X | 2.U2(CS)  6.M2(CS)   

   |      

   |   4.M2(CS) 5.M2(CS) 

   |   6.U2(CS) 7.M2(CS) 

   |      

   |      

   |      

-2  | 1.U2(CS)     

Figure 2. Item and case estimates (thresholds). 

Item Analysis 

The following discussion addresses the patterns that have emerged concerning item 
difficulty across item response categories. A comparison of item difficulties across items 
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concerning figures and property relationships follows. The comparison involves individual 
response category item difficulties, which appear in Table 3. 

Table 3 
Item Response Category Difficulty Levels 

 Concrete Symbolic Formal 

FIGURES U2  M2 R2 U1 M1 R1 U2 

Triangles -2.06 -1.10 0.07 0.74 0.82 0.94 1.42 

Quadrilaterals -1.28 -0.97 0.22   0.70 1.16 

PROPERTIES        

Equilateral  -1.08 -0.35 -0.20 0.58 0.91 1.08 

Right Isosceles  -1.44 -0.50 -0.12 0.72  0.88 

Square  -1.44 -1.03 -0.36 0.19 1.72 2.09 

Parallelogram -1.63 -1.26 -0.77 -0.32 0.16 0.81 1.23 

Rhombus  -1.63 -0.74 -0.28 0.48  1.24 
 

Similarities and differences in relation to degree of difficulty and characteristics of the 
responses form the basis of the comparison. This is considered in clusters of item responses 
beginning with the lower level SOLO responses, which also appear at the lower end of the 
item estimate threshold.  

In the tasks concerning relationships among figures, and those concerning relationships 
among properties, a hierarchical framework emerged that is evident in the SOLO 
categorisations and is reinforced by the application of the Rasch analysis. Each of the items 
followed the SOLO sequence of levels within cycles without exception. The following 
discussion provides a comparison of item estimate thresholds when comparing item difficulty 
across clusters of response categories concerning relationships among figures, and item 
responses concerning relationships among properties. 

The U2(CS) response category concerning relationships among triangle figures was found 
by the sample of students to be of the lowest degree of difficulty. This was followed by other 
groups of U2(CS) and M2(CS) responses concerning relationships among figures, and 
relationships among properties. Hence, the students found the utilisation of the three mutually 
exclusive classes of triangles at a similar degree of difficulty to focusing upon unique property 
signifiers of figures with reference to the figure only. It appears that the progression to finding 
multiple properties that are unique to a figure assists in the formation of minimum 
combinations to encapsulate multiple properties to form generic categories. Although 
restrictive language, which does not facilitate the inclusive nature of properties, is utilised in 
U2(CS) responses concerning figures and properties, this level is a necessary precursor for 
developing notions of minimum property combinations. 

Next on the logit scale is a cluster of R2(CS) responses including all five tasks concerning 
relationships among properties. Hence, the students found ordering between two properties to 
be at a similar degree of difficulty in both the triangle and quadrilateral contexts. Although the 
U1(F) responses are grouped together when addressing tasks concerning the relationships 
among properties, these appear before the R2(CS) responses in the context of relationships 
among figures, thus indicating that the students found a focus upon relationships between 
pairs of properties and/or figures, and making property links across classes, of a similar 
degree of difficulty in both triangles and quadrilaterals contexts. The U1(F) response 
concerning property relationships appears to be a precursor to focusing upon relationships 
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among classes of figures, which are not supported by visual cues. The remaining first cycle 
formal responses are clustered at a similar degree of difficulty, thus indicating that the 
utilisation of a single network of relationships among figures, utilising multiple relationships 
among properties, and an attempt to focus upon the interrelationships among property 
relationships are at a similar degree of difficulty. 

The U2(F) responses have a greater range in terms of degree of difficulty. This final 
cluster indicates that the students found the focus upon more than one network of 
relationships involving notions of class inclusion, and the focus upon the network of 
relationships to form minimisations, the most difficult groups of responses. In the context of 
property relationships the students found the right isosceles triangle and parallelogram items 
the least difficult at this SOLO level. Class inclusion notions requiring the acknowledgment 
of multiple subsets when relating figures were at a similar degree of difficulty to the 
utilisation of the network of relationships among properties of the equilateral triangle. This 
was closely followed by the rhombus task. 

It is interesting to note the high degree of difficulty found by the sample of students when 
forming minimisations of square properties based upon the network of property relationships. 
Although this indicates that the lower SOLO categories indicated a comparatively lower 
degree of difficulty for the square item compared with other items of the same SOLO level, 
the shift required to move from M1(F) to R1(F) is relatively difficult in the context of the 
square. The responses indicated that this is due to factors such as visual cues assisting links, 
and multiple unique properties of the square that assist understanding at lower SOLO levels. 
In contrast, at the formal mode the student must leave the real world referent behind and focus 
upon the network of relationships among the properties, as opposed to concrete symbolic 
justifications. 

The degree of difficulties between item response categories, known as step difficulties, 
further clarifies the similarities and differences among the SOLO categorisations. The step 
difficulties describe the change in degree of difficulty, found by the sample of students, 
between one SOLO level and the subsequent SOLO level. These appear in Table 4, and also 
include the mean step difficulty for each SOLO response category. 

Table 4 
Step Difficulties 

 Concrete Symbolic  Formal 

 U2 to M2 M2 to R2 R2 to U1 U1 to M1 M1 to R1 R1 to U2 

Item 1 0.96 1.17 0.67 0.08 0.12 0.48 

Item 2 0.31 1.19    0.46 

FIGURES MEAN 0.64 1.18 0.67 0.08 0.12 0.47 

Item 3  0.73 0.15 0.78 0.33 0.17 

Item 4  0.94 0.38 0.84 0.16 0.25 

Item 5  0.41 0.67 0.55 1.53 0.37 

Item 6 0.37 0.49 0.45 0.48 0.65 0.42 

Item 7  0.89 0.46 0.76   

PROPERTIES 
MEAN 

0.37 0.70 0.42 0.68 0.67 0.30 

 

Of particular interest, are the higher and lower step difficulties. The step difficulty 
between a U2(CS) response and an M2(CS) response concerning relationships among figures 
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has a mean of 0.64. It was also found to be difficult by the sample of students to respond at 
R2(CS) compared with M2(CS) concerning relationships among figures (mean 1.18). This was 
similar to the step difficulties concerning relationships among properties, where M2(CS) to 
R2(CS) (0.70) was found to have a comparatively high step difficulty. 

In addition, movement through the first cycle of the formal mode is a difficult progression 
concerning relationships among properties. This is evident by: U1(F) to M1(F) (mean 0.68) 
and M1(F) to R1(F) (mean 0.67). It is interesting to note that the highest individual step 
difficulty concerns the shift from M1(F) to R1(F) in regards to relationships among square 
properties (1.53). Overall the progression from U1(F) to M1(F) concerning relationships 
among figures has the least step difficulty (0.08). 

Discussion 

The study was designed to complement and extend a qualitative analysis of results, 
through a procedure that provided comparative qualitative results across relationships among 
figures, relationships among properties, and different contexts. Of particular interest was the 
finding that despite the quadrilateral context being chosen in the study due to an increase in 
complexity, this was not mirrored by the analysis. The degree of difficulty was found to be 
similar within the triangle and quadrilateral contexts. The application of the Rasch model 
supported the developmental sequence that evolved through the SOLO categorisations. The 
results also highlighted a number of interesting trends. The first of these is the consistency of 
the groupings evident in the item estimate thresholds when comparing student responses 
across figure tasks, property tasks, and different contexts. Secondly, the fit statistics and item 
estimates indicate that the items came from the same underlying construct. This provides 
confirmation of the appropriateness of the SOLO model. 

The concrete symbolic responses indicate that a focus upon a single property to 
encapsulate separate classes of figures is a prerequisite to focusing upon a single unique 
property of a figure when asked to provide a minimum description of a figure. The M2(CS) 
responses indicate that the shift in moving from multiple properties to form individual classes 
of figures is at the same level as identifying multiple unique property signifiers while 
maintaining a real world referent. Thus, the figure determines the properties. 

The identification of a link between two properties, and the shift to utilising the 
relationship as a workable unit, are necessary precursors to the utilisation of relationships 
among classes of figures without the need for a real world referent. This progression is a shift 
into the formal mode in terms of relationships among properties, and is characterised by the 
property relationships determining the figure in both contexts. When the formal mode is 
entered, concerning relationships among properties, the degree of difficulty is the same in 
regards to linking properties or figures despite the bifurcation. The focus upon perceiving the 
property relationships as determining the figures and utilising inclusive language to describe 
properties begins at a lower level than focusing upon links across classes of figures. This 
sequence flows through to a focus upon the network of relationships among figures and 
properties where there is greater variation in degree of difficulty found by the students across 
the seven tasks when providing a U2(F) response. 

The higher and lower step difficulties between SOLO response categories assist in the 
interpretation of the more difficult, and less difficult progressions from one SOLO level to the 
subsequent SOLO level. The highest increases, or “hard boundaries”, were found to be in the 
second cycle of the concrete symbolic mode concerning relationships among figures. These 
increases concerned the progression from a focus upon single properties to form individual 
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classes of figures, to multiple properties while maintaining mutually exclusive classes, with 
the hardest boundary being the shift to a focus upon relationships between classes that are not 
supported by dominant visual differences. Similarly, in the context of property relationships, 
hard boundaries exist in the shift from a focus upon multiple properties as unique signifiers of 
a figure, to a focus upon an ordering between two properties. To a lesser extent, the boundary 
is relatively difficult when moving from an understanding that the figure determines the 
property, to a shift into the formal mode where relationships among properties determine the 
figure. Another boundary exists in the progression from a focus upon multiple relationships 
among properties, to an overview of the network of relationships among properties. 

Of particular interest are the supporting influences between relationships among figures, 
and relationships among properties. These include the encapsulation of properties to form 
classes, a shift to perceiving the properties as determining the figure, the dominance of 
recognised similarities and differences across classes of figures and among properties, and the 
utilisation of inclusive or exclusive, class, or property descriptions. The identification of 
differing boundaries between the categories provides insight into the difficulties found by 
students when encountering notions of class inclusion in Geometry. 
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This paper reports the case of two teachers with respect to the positioning of numeracy in a 
reform curriculum and subsequent student learning across five dimensions of numeracy. By 
analysing the conversations of these two teachers, their underlying beliefs about numeracy 
and its value and role in the curriculum were able to be explored. These beliefs were further 
reflected in the learning outcomes of the six students in this study. The paper describes 
examples of how the five dimensions of numeracy were evident in the thinking and practice 
of both the teachers and their students.  

Recent curriculum reform in Tasmania has been guided by a consideration of the 
knowledge, skills, and attributes required of students living in the twenty-first century. 
Tasmania’s Essential Learnings Framework (Department of Education, Tasmania [DoET], 
2002) places thinking skills and strategies at the core of the curriculum and encourages the 
connection of knowledge and concepts across the curriculum. It emphasises the importance 
of being numerate rather than purely of knowing and doing mathematics. An ability to 
understand and apply mathematical concepts is valued alongside the development of 
students’ abilities to problem solve, reason, communicate, and reflect upon their learning.  

Teachers and Students Negotiating Curriculum in the Classroom 

Innovative and reform curricula are filtered through teachers’ beliefs and practices 
(Wilson & Lloyd, 2000). Although researchers are aware of the broader contexts and 
policy-driven environments that influence curriculum construction, it is the curriculum that 
is enacted in the classroom that drives the research from which this study is taken. 
Teachers add a pedagogical dimension to curriculum to create daily learning experiences 
for their students. It is that knowledge that equips teachers to “lift the curriculum away 
from texts and materials [and] to give it an independent existence” (Doyle, 1992, p. 499). 

The role of the student in curriculum is also acknowledged. Students determine their 
own level of engagement and interest in classroom activity and therefore exert some 
control over their learning and knowledge construction. Snyder, Acker-Hocevar, and 
Snyder (1992) suggest that “curriculum enactment” appropriately describes the process of 
implementation and educational experience that teachers and students jointly undertake as 
they negotiate and determine what the curriculum will be like in each classroom.  

With respect to the teaching of mathematics, teachers’ knowledge, beliefs, and 
practices play a significant role in the learning of their students (Hill, Rowan, & Ball, 
2005). It is therefore important to look at the beliefs and practices of teachers in relation to 
the learning of students in Tasmania’s curriculum context. This study aims to deepen 
understanding of the construct of numeracy through considering two ideas: 

 

• The way in which two teachers position numeracy in a values-focused 
curriculum, and 

• The way in which their students experience numeracy.  
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Theoretical Framework 

Numeracy has become an essential capability for any individual who wishes to 
participate fully in a democratic society and to apply not only knowledge and skills, but 
also critical reasoning capabilities, to learning and to everyday life. “Whereas mathematics 
is a well-established discipline, numeracy is necessarily interdisciplinary … numeracy must 
permeate the curriculum. When it does … it will enhance students’ understanding of all 
subjects and their capacity to lead informed lives” (Steen, 2001, p. 115). The concepts and 
skills required to meet the numeracy demands of everyday life are defined and examined 
under various names, including quantitative literacy (Steen, 2001), mathematical literacy 
(Organisation for Economic Cooperation and Development [OECD], 2006), critical 
numeracy (Johnston, 1994), mathemacy (Skovsmose, 2004), and numeracy (Australian 
Association of Mathematics Teachers [AAMT], 1998). Each definition has particular 
theoretical underpinnings, whether it be an emphasis on the psychological, social, or 
cultural nature of learning, or as is the case of more recent terms, such as mathemacy and 
criticalmathematical [sic] literacy, whether it be informed by critical theory where the role 
of politics and power within social and cultural contexts is placed at the fore. 

Green (2002), in considering the role of literacy in the English classroom, and the 
wider curriculum, acknowledges the different discourses of language, meaning, and power 
that play a role in the development of literacy. He advocates the synthesis of these 
dimensions in forming a three-dimensional model of literacy where “the most worthwhile 
robust understanding of literacy is one that brings together the “operational”, “cultural”, 
and “critical” dimensions of literate practice and learning” (Green, 2002, p. 27). Although 
Green acknowledges the political nature of literacy as a social practice, he calls for a 
balance between all the important dimensions of literacy with the aim being to support 
students in meaning-making in context. 

It is equally important for mathematics educators to acknowledge the different 
dimensions that are necessary for the development of competent and effective numeracy 
practice. Mathematical language, skills, and functions are required for students to make 
sense of, and critically evaluate, the contexts in which the mathematics is embedded. The 
socio-cultural and critical aspects of knowledge construction enable the selection of 
appropriate mathematical tools and informed critique of both mathematics and society.  
This study acknowledges the important contribution each element brings to a 
comprehensive definition of numeracy. Numeracy is about making meaning of 
mathematics, at whatever level of mathematical skill. It is not inferior to mathematics, but 
rather is about understanding and using mathematics, in all of its representations, for 
making sense of the world, for considering critically information presented, and for making 
informed decisions. 

The view of numeracy adopted in this study is underpinned by social constructivist 
theory. Shepard (2001) expounds the principles of social constructivism as drawing from 
contemporary cognitive, constructivist, and socio-cultural theories. Although valuing the 
sense-making and active process of mental construction that individuals undergo to 
construct their own knowledge, the importance of the social and cultural interactions is not 
neglected.  

Table 1 contains a summary of five dimensions of numeracy, based upon the 
aforementioned principles together with a comprehensive review of the literature as it 
pertains to numeracy education. In particular, the work of AAMT (1998), Steen (2001) and 
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Queensland School Curriculum Council (1999) was considered in presenting a 
comprehensive balanced view of numeracy extending across foundational mathematical 
concepts and skills, strategic thinking, disposition, recognition of context, and critical 
practice. Numeracy is a complex construct with many aspects, beyond mathematical skill, 
contributing to a high level of numerate behaviour. 

Table 1 
Dimensions of Numeracy  

Aspects of knowledge 
construction 

Dimensions of 
numeracy 

Description 

FOUNDATIONAL Mathematics  

 

The foundational understanding and use of the language, 
concepts, and skills of mathematics, as they relate to number, 
measurement, space, data and chance, and pattern and algebra.  

PSYCHOLOGICAL Reasoning The use of (i) mathematical thinking strategies to question, 
identify, represent, explain, and justify mathematical approaches 
relevant to a given context, and (ii) general thinking strategies to 
support the problem solving process, from lower level cognitive 
processes, such as recall and application, to higher level critical 
thinking processes involved in evaluation, judgment, decision 
making, and creativity. 

AFFECTIVE Attitude 

 

The confidence and disposition to choose and use mathematical 
understandings wherever required. Willingness to take risks and 
persevere in approaching new mathematics and new contexts. 

SOCIO-
CULTURAL 

Context The ability to select and apply the appropriate mathematical 
tools for sense-making in a given context and understanding how 
the context impacts on the mathematics.  Contexts related to 
school and everyday life, public and social issues, and an 
awareness of mathematics connected to history and culture.  

CRITICAL Equity 

 

Awareness that mathematics can be used inappropriately, can be 
represented to promote bias, and can therefore promote 
inequities in society. The ability to question assumptions and use 
mathematics in an analytical and critical manner to make 
decisions and resolve problems and investigations. 

Method 

The research reported in this paper was part of a larger qualitative study designed to 
investigate the positioning of numeracy by teachers of middle grade classrooms (Grades 5-
8) in Tasmania’s reform environment and student experiences of numeracy in these 
classrooms. The larger study adopted a collective case study approach with five participant 
teachers and their students. All the teachers had an interest in numeracy and planned and 
implemented units of work informed by Tasmania’s Essential Learnings curriculum 
framework (DoET, 2002). In addition, a representation of middle years’ grades was sought 
across a range of schools. The research used a combination of interview, observation, 
document, and photographic data to provide insight into the unique positioning of 
numeracy as enacted in the classroom by each teacher and the experiences of their students.  

In this study the case of two Grade 8 teachers, interviewed together, and six of their 
students is reported. Teacher interviews were semi-structured and lasted approximately 40-
50 minutes. They were designed to gain an insight into teacher beliefs and practices with 
respect to current curriculum reforms; views concerning the place of numeracy within these 
reforms; and their planning, teaching, and assessment practices.  
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After completing the unit of work with the 34 Grade 8 students, six students were 
invited to participate in an individual in-depth interview. These six students were chosen 
by the teachers, in consultation with the researcher, as representing a spread of 
mathematical ability. The student interviews were semi-structured and were 30-40 minutes 
in length. The students brought relevant work samples to the interview to support 
discussion about the tasks they completed. 

As a qualitative study, cluster analysis (Miles & Huberman, 1994) was used to code the 
teacher and student interviews. They were analysed according to the five dimensions of 
numeracy as detailed in Table 1 of the theoretical framework. Excerpts from both the 
teacher and student interviews are included in this study to illustrate each of the dimensions 
of numeracy as they were exhibited.  

Context of the Study 

The School Setting 

Tanglefoot School, an independent girls’ school, was the setting for the study. 
Although part of the wider Tasmanian educational community, as an independent school, 
Tanglefoot did not fall directly under control of the state government education system. 
The Essential Learnings Framework (DoET, 2002) was included in Tanglefoot’s Middle 
School Handbook as the underpinning framework that informed a curriculum incorporating 
three main aspects: traditional subject disciplines, interdisciplinary units of work, and six 
week mini-courses providing options in academic, life skills, and recreational areas of 
student interest.  

At Tanglefoot School the discipline of mathematics was a core subject for students in 
the middle school. It involved the explicit teaching of the five strands of mathematics: 
number, space, measurement, chance and data, and algebra, in addition to thinking, acting, 
and communicating mathematically. Each Grade 8 class had four 50-minute mathematics 
lessons timetabled each week with students’ numeracy capabilities encouraged through the 
discipline of mathematics. At times, however, students were also required to draw upon 
their knowledge and skills developed in mathematics for use in other subject areas and in 
their interdisciplinary units of work. This was the situation with the unit of work observed 
during the case study.  

The Unit of Work: Live 8 

Ange and Jen (pseudonyms), the two Grade 8 teachers at Tanglefoot School, worked 
collaboratively to implement a five week integrated unit of work, Live 8, inspired by music 
concerts held across the world in 2005, by prominent musicians, to highlight the issue of 
world poverty. Ange and Jen were motivated by a belief that the Live 8 concerts would 
provide the Grade 8 students with an engaging, real-world context in which to learn about 
the contrasting nature of developed and under-developed countries and issues related to the 
broader concept of poverty. The unit of work brought together the disciplines of 
Mathematics and Studies of Society and the Environment (SOSE) with the aim of 
enhancing students’ numeracy capabilities, their abilities to work collaboratively, their 
skills in information literacy and communication, and ultimately their understandings of 
the concept of poverty. The context of poverty was used to develop further the students’ 
skills in graphing and data analysis. The unit of work culminated with the girls completing 
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a major assignment requiring them to investigate one country and compare it to life in 
Australia. Students were specifically asked to consider aspects such as population, 
mortality rates, literacy levels, income, government systems, economies, water supply, and 
aid programs. 

Results  

The Teachers: Ange and Jen 

Ange, the teacher of Mathematics and Science for the middle school had been teaching 
for seven years and commenced at Tanglefoot School in 2003. Jen, the teacher of English 
and SOSE, had been teaching for three years. Tasmania’s Essential Learnings Framework 
(DoET, 2002) informed Ange and Jen’s teaching since it had been incorporated into 
Tanglefoot’s construction of middle school curriculum in 2003. Ange and Jen were 
interviewed together, with Ange playing a predominant role and Jen contributing where she 
felt comfortable and where she wished to add a comment. 

Ange and Jen felt that the Essential Learnings (ELs), Tasmania’s curriculum, supported 
“real-life learning goals” and “[sat] nicely with integrated units of work”. They gave 
examples of where they had planned for mathematical learning in previous integrated units 
of work. In addition, Ange and Jen spoke of the inclusive nature of the ELs catering for the 
“different learning needs” of students and allowing students to “go in and show exactly 
what they do know and what they can achieve”, contributing to development of students’ 
“self-esteem”. Their personal views were aligned with the school’s construction of 
curriculum and they also had autonomy over how they implemented integrated units of 
work with their students. 

Ange and Jen expressed a view toward numeracy that did not place the role of 
numeracy across the curriculum above the role of mathematics as a “discrete subject”. 
Ange, in particular, spoke of the importance of mathematics for providing some students 
with “pathways” for their future learning and that the ELs enabled a focus to “get the girls 
interested in maths” and learning to be numerate across disciplines. The following section 
details how the two teachers’ conversations about their teaching practice could be 
described according to the five dimensions as state earlier in the Theoretical Framework. 

Mathematics. The foundational role that mathematics plays in developing numeracy 
was evident when Ange described numeracy. “I think numeracy is applying, the application 
of those mathematics skills into different areas”. Her content knowledge was evident 
through many of the comments she made as she discussed her teaching. For example, 
aspects of the content of algebra and number were mentioned in describing the importance 
of teaching and assessing for numeracy. 

As the SOSE teacher, Jen mentioned the importance of students having the opportunity 
to apply their knowledge of concepts related to culture, community, society, and the 
environment to build their understanding of important mathematical concepts.  

In SOSE we use numeracy in graphing, reading tables, analysing statistics and things like that. I 
make sure they can relate it to [life] … If they have to apply it they can actually grasp the concept.  

Reasoning. In discussing the role of numeracy in the middle school curriculum, Ange 
referred to the language of “thinking” as forming an important part of student assessment. 
Both teachers referred to the middle school assessment booklet (Tanglefoot, 2005) on 
numerous occasions and the important role it had in informing their teaching and 
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assessment practices. In this booklet, strategies such as posing questions, recalling 
strategies and relationships, conjecturing, justifying, explaining, and drawing conclusions 
were listed as important elements of working mathematically. 

The teachers talked about wanting to see evidence of how the students were thinking 
and problem solving. Ange highlighted the value of students “showing their working out” 
as it helped the teachers to “really know how they [the students] are going” as opposed to 
“working in class out of books”. She felt that text books did not provide her with 
information on how students were thinking when solving problems. 

Attitude. The importance of a positive disposition toward numeracy in contributing to 
positive numeracy outcomes, although not explicitly mentioned by either of the two 
teachers, was implicit in their comments. Ange mentioned her aim to “get the girls 
interested in maths” through the teaching of numeracy. Jen said she wanted to “make sure 
the girls can relate to it” and tried to engage the students with tasks that would be of 
interest to them. For Ange and Jen, the role of numeracy, as mathematics in context, was 
the key to developing this engagement, “interest”, and positive disposition.  

Context. Both Ange and Jen expressed a belief that numeracy was very much about 
using mathematics in context. They saw numeracy as “something that is taught in lots of 
subjects” and involving the “application of mathematical skills into different areas”. 

Jen gave examples from when she spent a short time teaching Grade 7 mathematics, 
not her usual teaching area, where she would provide the students with opportunities to “try 
to apply that knowledge too… to real-life situations”. The contexts valued by the teachers 
were authentic, real-world contexts, as evidenced in this comment by Ange. 

I think that is the way that maths will probably be going in the future. It is going to be real-world 
context and I think that is important. … and I think the ELs, with Being Numerate as a focus, will sit 
quite nicely with integrated units of work. Hopefully that will develop over the years. 

When talking about their teaching they provided examples of contexts they had used with 
students. Contexts such as crime, health, design, and decorating were mentioned. 

Equity. Ange discussed how important it was for mathematics education to cater for 
“the needs of all students”. She described numeracy in its role across the curriculum as 
being the way “to get the people who struggle”. Although neither Ange nor Jen expressed 
in the interview aspects of numeracy teaching that would equip students with the ability to 
consider information critically, or consider inequities in society, the Live 8 unit of work 
implemented after the interview provided an example of their underlying beliefs in this 
area. 

The Students 

The six students interviewed in this study were asked to describe and discuss specific 
graphs they had completed during the unit of work. In particular, the graphs included in 
students’ major assignments on poverty formed the focus for the interviews. The students 
were happy to participate in the interview and were forthcoming in telling the stories of 
their graphs. The conversations started with specific mathematical content displayed in the 
graphs but as the interview progressed the comments encompassed broader issues about 
how the graphs helped them understand poverty. The following excerpts provide examples 
of the students’ learning across the five dimensions of numeracy. 

Mathematics. All the students demonstrated specific mathematics understandings in 
explaining their graphs and used the mathematics to help them when comparing their 
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country of investigation to Australia. They also used the language of mathematics, 
specifically as it related to chance and data, and number. The range of their responses is 
evident in the following excerpts. 

The big difference in the way that Afghanistan live to the way Australia live, like the average 
income, people in Australia can earn $30,000 a year easily, and in Afghanistan it is $280 a month 
(emphasised).  [Student 5] 

The gini index for Australia is 35.2 and then for Rwanda it is 28.9. Basically with the gini index, 
zero is all the money in the country is completely fairly distributed and 100 means completely 
unevenly distributed.  [Student 6] 

It shows that pretty much everyone in Australia can read that are over the age of fifteen, but in Nepal 
they don’t have much literacy, or options to read. The literacy rates for men are just over 60% and 
the females just over 25%.  [Student 3] 

  Some students also mentioned how their previous mathematics learning had helped 
during this unit of work, as exemplified by Student 6’s comment about frequency tables. 

We have done frequency tables before in maths and it helped here because I understood. With 
graphs I always forget which way the x and y axes go. It helped me to remember and how to set it 
out and what they’re for.  [Student 6] 

Reasoning.  The thinking strategies of students were identified when they were 
describing their graphs. Student 4’s comments about literacy rates in Sudan was typical of 
the students as they became engaged in the discussion and moved beyond the mathematics 
in their graphs to the reasons for the results and considering other information they had 
researched about their country. 

Ah well the literacy rate. Here I suppose it shows that the females, as in probably most countries in 
that region or area are less educated than males, probably because of priorities in the system and 
religious beliefs. The literacy in Australia is obviously amazingly higher than Sudan but in Sudan 
they have a program, I can’t remember but they give free education and I think it is for the first six 
years and the government is focusing on eliminating illiteracy in the country. [ Student 4] 

The ability of the students to make comparisons and explain their work was shown by 
one student when she demonstrated a distinct engagement with the issue by her surprise 
and shock. 

When I looked at this it really shocked me a bit because you don’t really realise how much money 
goes in and out of your house and for Australia $800 a week is really a lot of money and when I saw 
Somalia which is one dollar it was really amazing. The graph when you look at it you can really see 
the difference between the two countries. [Student 2] 

At times the students’ thinking moved to a focus on the impact of poverty on the 
context of their particular country of investigation.  

The other countries, since they are so rich they shouldn’t worry about it because they have a lot of 
money and the aid programs are good, but they probably need to do more to help the country out 
like bring in more food supplies and more fresh water.  [Student 3] 

Comparing the data makes it more personal and thinking about children there who can’t read and 
write when they’re fifteen and stuff like that. [Student 1] 

Attitude.  Students’ personal disposition toward numeracy became evident when they 
were discussing their work. Five of the six students expressed a preference for using 
mathematics in real-life settings. Student 6, for example, focused on the application of 
skills in engaging her in learning.    
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It is more interesting and you actually put it to use rather than just learning it so we actually put it 
there and have to come back to the skills we’ve learnt and stick it on. I prefer to use it in real life 
because it’s interesting and it’s so much better because it is for something you’re learning about and 
not learning how to do it. [Student 6] 

By “stick it on” the student here was referring to applying the mathematics. Three of the six 
students mentioned the value of having to find the relevant information for themselves and 
making decisions about how to represent their data. 

Students’ willingness to persevere and engage with the task was exemplified in 
different ways. Examples include a comment by one student about the time put into 
gathering correct statistics, and by another student about the discussions she had with 
family members. 

Well it was actually quite hard to compile all the correct statistics and data. I had to go to several 
different websites and collect different numbers for each year and then I had to put them all together.   
[Student 4] 

I talked to my sister about it on the phone and she is in London, so it helped me to understand how 
Live 8 was working and what was happening and that had an influence on the way I did my 
assignment.  [Student 5] 

Context.  The context of student learning, in this case the country of investigation and 
wider issues of poverty, featured prominently when students were explaining their graphs. 
As discussed above in the dimension of “Attitude” students expressed a preference for 
applying their learning of mathematics to real-life contexts. There were many times, in 
explaining their graphs, that the students focused on the context of their country.  

They’re one of the poorest countries in the world and most of the people live under the poverty line 
and children under five die of malnourishment before they reach the age of five.  [Student 3] 

They are probably not living past the age of 50 because of all the violence, heaps and heaps of 
people were killed, and the water and disease and stuff like cholera and dysentery.  [Student 6] 

Student 5 also noted the value of situating her learning in the context of the country 
that formed the focus of her investigation, and the importance of comparing living 
conditions in that country to life in Australia. 

It was good to realise how much of a difference there is to the way we live to the way other countries 
live, because if we hadn’t done this we wouldn’t have known. It has made us more aware of the way 
we live to the way for example that Afghanistan lives. [Student 5] 

Equity.  In this particular unit of work, the mathematics enabled the students to 
question societal structures. Student 1 described the tensions between the importance of 
wealthier countries providing financial support and the difficulty in ensuring the money 
goes to where it is needed. 

I think that the richer and more developed countries in the world need to offer money and support, 
like they are at the moment but I also think like in Africa they have got corrupt governments and so 
they give them money and all that sort of thing but often the government takes it for themselves 
rather than using it to help the people. I think something needs to be done about the governments, 
but even if their government is overthrown they are still going to need support from richer countries. 
[Student 1] 

Student 2 focused on the basic needs and important resources needed in 
underdeveloped countries. 
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Just getting aid into countries and helping get clean water and clean food and resources and I think 
all the countries like America and Australia and Asia should really put in to help out these countries 
that are not as well off because Africa is a struggling country and I think they really do need some 
help and we are being a big selfish with our resources.  [Student 2] 

All six students considered personal contributions that they felt would, in some small 
way, assist in alleviating poverty. The following excerpts represent the range of 
suggestions, from supporting local fundraising opportunities and raising awareness, to 
considering a career in overseas aid work. 

I think a lot of countries do help out, but people in general could help more. Like everyday people, 
we do try to help and we may see an ad on tv about sponsoring children or fundraising but I think we 
need to focus more on ourselves and what we can do.  [Student 4] 

Well ever since I was little I have wanted to make a difference in those kinds of places, like I want to 
study medicine and help out there. … I was thinking of going and being a doctor of an anaesthetist 
or paediatrician in somewhere like Somalia or probably in Iraq.  [Student 2] 

Discussion and Conclusion 

Although the two teachers in this study were not explicit about what contributes to high 
level numeracy, when discussing their teaching practice the five dimensions of numeracy 
were evident in their discourse and impacted upon the learning outcomes of their students. 
The positioning of numeracy, as a cross-curricular construct in the curriculum, informed 
Ange and Jen’s teaching practice. They saw the foundational role of mathematics as crucial 
for students when tasks required them to apply their understanding of mathematical 
concepts in subjects other than mathematics and in integrated units of work. The teachers 
encouraged their students to show their reasoning when solving problems and when 
discussing their work in order to inform Ange and Jen’s assessment of student learning.  

Real-world contexts were described by the teachers as important for the learning of 
students. These included a combination of school and everyday contexts that the girls could 
relate to and also wider social, cultural, and political contexts. These real-world contexts 
were viewed as being central to the development of positive student attitudes toward 
numeracy. Planning for numeracy outcomes in interdisciplinary settings was seen by the 
teachers as supporting not only the learning of mathematics, but also of other important 
concepts. Students were encouraged to use mathematics to consider and reflect upon 
society and its structures and inequities.  

By analysing the conversations of these two teachers, their underlying beliefs about 
numeracy and its value and role in the curriculum were able to be explored. These beliefs 
were further reflected in the discourse of the six students in this study. The students were 
able to identify appropriate mathematics in describing their work. Their mathematical 
understandings also enabled them to engage positively with the context, to consider many 
issues related to the context of the country they investigated, and finally to move toward an 
informed critique of poverty. 

As Australia grapples with the re-conceptualisation of curriculum it is crucial that the 
place of numeracy is considered. This study has considered the positioning of numeracy by 
two teachers in a reform environment and the numeracy experiences of their students. It 
has described examples of how the five dimensions of numeracy were evident in the 
thinking and practice of both the teachers and the students. The results demonstrate the 
possibilities for student learning across all the dimensions of numeracy, when mathematics 
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is purposefully embedded within interdisciplinary frameworks. Further analysis of the data 
that forms the larger research project, from which this study was reported, will contribute 
further to understanding the complex nature of the construct of numeracy.  

Acknowledgements. The author wishes to thank Jane Watson and Noleine Fitzallen for 

their support and feedback in the preparation of this paper. 

References 

Australian Association of Mathematics Teachers, Inc. (1998). Policy on numeracy education in schools. 
Retrieved 16/03/04, from http://www.aamt.edu.au/about/policy/numpol/pdf 

Department of Education Tasmania. (2002). Essential learnings framework 1. Hobart: Author. 
Doyle, W. (1992). Curriculum and pedagogy. In P. Jackson (Ed.), Handbook of research on curriculum. (pp. 

486-516). New York: Macmillan. 
Green, B. (2002). A literacy project of our own? English in Australia, 134, 25-32. 
Hill, H.D., Rowan, R., & Ball, D.L. (2005). Effects of teachers’ mathematical knowledge for teaching on 

student achievement. American Educational Research Journal. 42(2), 371-406. 
Johnston, B. (1994). Critical numeracy. FinePrint, 16(4), 32-35. Melbourne, Australia: VALBEC. 
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Thousand Oaks, CA: Sage 

Publications, Inc. 
Organisation for Economic Cooperation and Development. (2006). Assessing scientific, reading and 

mathematical literacy: A framework for PISA 2006. OECD: Paris. Retrieved 5/01/06, from 
http://www.pisa.oecd.org/dataoecd/63/35/37464175.pdf 

Queensland School Curriculum Council. (1999). Numeracy position paper. Queensland: The Office of the 
Queensland School Curriculum Council. Retrieved 24/12/05 from, 
www.qsa.qld.edu.au/yrs1to10/oia/papers/numeracy.pdf 

Shepard, L. A. (2001). The role of classroom assessment in teaching and learning. In V. Richardson (Ed.), 
Handbook on research on teaching (4th ed.), pp.1066-1101. Washington, DC: American Educational 
Research Association. 

Skovsmose, O. (2004). Critical mathematics education for the future. Retrieved from, 
www.lfd.learning.aau.dk/resources/CME-for-the-Future.pdf 

Snyder, K.J., Acker-Hocevar, M. & Snyder, K.M. (1994). Organisational development in transition: The 

schooling perspective. Paper presented at the Annual Conference of the American Educational Research 
Association. New Orleans. 

Steen, L. A. (Ed.). (2001). Mathematics and democracy: The case for quantitative literacy. Princeton, NJ: 
National Council on Education and the Disciplines. 

[Tanglefoot]. 2005. Middle School assessment booklet. Tasmania: Author. 
Wilson, M., & Lloyd, G. (2000). The challenge to share mathematical authority with students: High school 

teachers reforming classroom roles. Journal of Curriculum and Supervision, 15, 146-169. 

Mathematics: Essential Research, Essential Practice — Volume 2

670



The Complexities for New Graduates Planning Mathematics Based 
on Student Need 

Carole Steketee    Keith McNaught 
The University of Notre Dame Australia  The University of Notre Dame Australia 

<csteketee@nd.edu.au>    <kmcnaught@nd.edu.au> 

During 2006, two teams of preservice teachers spent a week in three rural schools and 
completed diagnostic assessment tasks in mathematics using the Nelson Numeracy 
Assessment Kit.  The classes that were assessed were all being taught by newly graduated 
teachers.  The results were collated into detailed profiles, which enabled these teachers to 
identify whole class, small group, and individual strengths and weaknesses. It was 
anticipated that the new graduates would find these profiles of great benefit in planning for 
mathematics. However, the teacher-educators who continued to work with the new 
graduates discovered that this assumption was flawed, and that the new graduates 
experienced difficulty in planning curriculum based on identified needs. This paper 
discusses the typical approaches to curriculum planning adopted by the teachers, which 
were largely teacher-centred. 

Introduction 
 
The challenges faced by newly graduated teachers working in “hard to staff” rural 

locations are well recognised. Western Australia has a number of rural locations where 
schools find it difficult to attract and retain staff. Although coastal locations are highly 
sought after by teachers, including new graduates, less desirable locations frequently 
attract a limited pool of applicants, and those applicants are often uncompetitive in a large 
field of applicants. The poorer academic performance of students in rural areas, compared 
to their metropolitan counterparts is well recognised (Pegg, 2005). Further, the more 
isolated the location, the more pronounced the negative impact on student learning is 
(Cresswell & Underwood, 2004).   

During 2006, as part of an ASISTM project designed to support newly graduated 
teachers, a university-school partnership was established with three “hard to staff” 
locations (Northville, Eastville, and Westville Primary Schools). The project goal was to 
support newly graduated teachers with mathematics teaching and learning. Using final year 
undergraduate students, all of whom were completing a mathematics “specialisation” 
pathway, the plan involved administering diagnostic assessment to build detailed profiles 
of student needs. Given the physical isolation factors, video conferencing was used to 
provide ongoing support throughout the year.  Fifteen final year students at the University 
were trained to administer the diagnostic tasks within the Nelson Numeracy Assessment 
Kit. The kit provides assessment tasks for four strands of mathematics: Number, 
Measurement, Space, and Chance and Data.  The Number test was administered to a total 
of 14 classes across the three target schools, and each class was being taught by a newly 
graduated teacher.  

Prior to testing occurring within the schools, a full day of professional development 
was provided on site for the teachers involved in the project.  The teachers were trained in 
diagnostic assessment procedures and trained in the use of the Nelson kit. All three schools 
were independent schools, and needed to source their own staff. Northville was the least 
desirable of the three locations. All the classes at Northville were “split grades”, with a 
total enrolment of less than 90 students. Although some schools chose to operate with 
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mixed-age/multi-age groupings, the use of composite grades at Northville was related to 
small student numbers within year levels and was an administrative rather than an 
educational decision.  Both Eastville and Westville were hard to staff, but offered a range 
of social and recreational opportunities for staff, and school sizes not dissimilar to regular 
metropolitan schools.  Eastville and Westville had staff with a range of experience and it 
was usual for a new graduate to stay 2 or 3 years before returning to the metropolitan area.  
However, Northville’s most experienced staff member in 2006 was in her second year of 
teaching. In 2004 and 2005, Northville had experienced 100% staff turnover for class 
teachers; a support teacher and principal were the only two to remain on staff.  

All three schools had identified that this lack of experienced teachers on staff, and 
small staff numbers, limited the capacity of the school to offer a mentoring program on 
site.  The need for mentors for new graduates is well recognised and the benefits of “buddy 
teacher” on staff can provide invaluable assistance to a new graduate (Kyle, Moore, & 
Sanders, 1999). 

 

Developing Profiles of Students’ Mathematics Learning Needs 
 
During term two, 2006, the final year students spent a week in residence in each 

school.  They administered the diagnostic assessment tasks from the Nelson kit. With the 
tests administered, in collaboration with their teacher-educator also in residence, a whole 
class profile was created.  Each child within each class was plotted on the full range of 
tasks within Number for each year level.  In a small number of cases, children were 
assessed and plotted on tests from different year levels, in most cases to cater better for 
students who were working at least two years below their current grade level. For example, 
in Northville, two students in Year 7 were assessed on the tasks from the second grade 
battery of tests, and this provided valuable data about their performance level.   

With the whole class profiles created, hand-over meetings were conducted. The pre-
service teachers had assessed classes in collaboration with a peer, and both were present to 
hand over the profile and discuss the various components and results, with the teacher-
educator facilitating the meeting. In all three schools, the principal was present for the 
handover meeting, and took an active role in the analysis of each profile. The class 
teachers responded to the profiles in range of ways. Most common was delight that this 
detailed profile had been prepared largely “for them”, and they appreciated that a serious 
and sustained time commitment had been required.  In most cases, the individual class 
profile appeared to confirm their understandings and sense of how individual performance 
would be shown. In all classes, there were at least some students who were a surprise to the 
principal and/or class teacher, either with better than expected, or worse than expected, 
performance.    

The Year 4 class profile from Northville provides an example of the results of 13 
students within that class (Table 1).    

Armed with these profiles, and knowing the considerable amount of work that had 
gone into their creation, it was a clearly conveyed expectation that these profiles would 
provide the basis for future programming and planning in mathematics for each class.  
Each of the principals was explicit in this expectation, and the teachers were encouraged to 
use each other, physically and via video conferencing, and the two teacher-educators (via 
video conferencing, email, and telephone support) to do this.  
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Table 1 
Northville Year 4 Class Profile 
 

Topics in which 
there was an 
average student 
score of 75% and 
over 

Topics in which 
there was an 
average score of 
50% - 74% 

Topics in which 
there was an 
average score of 
26% - 49% 

Topics in which 
there was an 
average score of 
less than 25% 

Whole number Mental strategies Multiplication Division 

Addition Subtraction Problem solving Mathematical laws 

 Patterns  Computation with 
decimals 

 Place value of 
decimal numbers 

 Computation with 
fractions 

 
 

Using the Profiles for Curriculum Planning in Mathematics 
 
The teacher-educators coordinating the project assumed that this planning process 

would occur quite naturally.  That is, they assumed, that armed with the detailed class and 
individual profiles, the teachers would be able to identify the topics and skills that required 
whole class teaching focus. Additionally, it was expected that individual needs would be 
catered for, and that support programs would target specific skills for specific individuals 
within the classes. For example, it was expected that the Year 4 teacher at Northville’s plan 
for the coming term would focus on multiplication, division, computation with decimals 
and fractions, problem solving, and mathematical laws. 

Evidence suggests that expert teachers base instruction on student need.  Hattie (1992) 
identifies that effective feedback, based on recognising student strength and weaknesses, is 
the variable that provides the most impact on improved student learning. The “coach” 
metaphor is regularly applied to teachers who are highly skilled at effective feedback.  
They provide specific, not generalised, feedback and implement a teaching (coaching) plan 
based on addressing specific sub-skills to improve performance (Wiggins, 1998). Although 
the teacher-educators did not expect this level of intervention, their aim was to introduce 
the graduate teachers to the concept of curriculum planning based on student needs – a 
form of practice they hoped would become common practice with experience. 

However, this assumption was flawed and it was apparent almost immediately that the 
graduate teachers were largely overlooking the profiles and basing their curriculum 
planning on past practices. The fortnightly video conference sessions that commenced at 
the beginning of Term 3 were intended to support the teachers in their implementation of 
their mathematics program. The graduate teachers were expected to “drive” these sessions 
based on questions and concerns that arose in the course of their instruction. Instead, 
however, much of the conversation centred around trying to extract from the teachers what 
they were teaching, how they were teaching it, and what their purpose was in taking this 
approach (if not in the light of students’ learning needs). It was becoming increasingly 
evident that the graduate teachers were not able to use the profiles as the basis of their 
planning and that a range of different methods of planning were emerging and ultimately 
affecting the success of the project. 

As such, it was necessary to gain a deeper insight into these planning methods if the 
graduate teachers were to be supported in making the link between the profiles and 
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effective planning. Consequently, the data that emerged from the video conference session 
transcriptions were explored using a constant comparative method of data analysis (Glaser 
& Strauss, cited in Lincoln & Guba, 1985). Categories of meaning in relation to the various 
methods the teachers used for curriculum planning were described and refined into the 
following five themes.  
 

Findings 
 
Teachers’ Preferences 
 

A number of teachers openly discussed the fact that they mostly taught mathematics 
concepts that they enjoyed and/or were personally confident in teaching. Curriculum 
planning was in relation to their identification of concepts in the curriculum that they had 
sufficient content knowledge of, and those that they did not fully grasp. As the following 
quote below suggests, some teachers purposefully excluded certain concepts if they felt 
they were unable to understand it themselves. 
 

I have to admit maths is not my best personal area.  I am good with things like times-tables, but 
when it gets technical, things like fractions and decimals, I have to revise all the work before I teach 
the class. 

 

Ball (1997) argues that primary school teachers’ self efficacy about their mathematical 
content knowledge and pedagogical ability is low. 
 
Text-book Teaching 
 

Text-book teaching was possibly the most common type of planning discussed by 
teachers in the project.  Although this theme indicates that some form of forward planning 
is occurring, it is largely in relation to the order in which certain aspects of a text should be 
taught over the course of a term and year. The ideas of what to teach are extracted from the 
text along with the suggestions of how these concepts should be taught. As is indicated in 
the following quote, the ideas espoused by the book are often supplemented by the use of 
manipluatives and concrete objects, as well as worksheets. 
 

Yeah I use a few text-books. We’ve got some good ones at our school. I like how it helps you 
understand the sequencing of how the kids should learn how to do something. Yeah, I don’t only use 
the text-book though … I get the kids working with lots of different materials …we use a lot of 
different worksheets, not just the ones from the text. 

 
Research indicates that both experienced and beginning teachers rely heavily on 

commercially published materials to plan and deliver their mathematics instruction 
(Woodward & Elliott, 1990). The actual extent to which teachers use these materials, 
however, is possibly related to their level of confidence and experience in the classroom. 
More experienced teachers might use them to make decisions about what instruction to 
implement in the classroom whereas beginning teachers might use them to prescribe 
regimented, page by page activity. 
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Curriculum Driven Planning 
 

Curriculum driven planning was also very common. Teachers identified a variety of 
mandatory curriculum documents as being integral to the mathematics programs they 
developed. The perception is that these documents are benchmarks of what students should 
be able to do/know at a certain year level. These benchmarks are subsequently used to 
source pre-made activities and worksheets from text-books and other commercially 
produced products. Typical of this theme is the notion that mathematics concepts are 
planned to be taught on the basis that the students “have not done them yet”, as is indicated 
in the following quote. 
 

The progress maps tell you what your kids should be doing at their age. Not all the kids can do the 
same thing so I have a lot of group work going in my class with kids doing different things at the 
same time. We’ve spent a lot of time on measurement and time last term so this term we’re going to 
do number … we haven’t covered a lot of it yet. 

 
This theme is closely linked to the previous one but differs in that use of commercially 

published text-books is guided by the Western Australian Curriculum Framework (1998), 
which all schools must use to base their curriculum planning on. Although this document 
was the first point of reference for these teachers, they mainly used it to discern the level of 
complexity at which students should be performing. Most of the teachers stated that it was 
of little use beyond that as it did not provide much detail and specification about what to 
teach and how to teach it. 
 
School Focus Planning 
 

School focus planning was prevalent due to the fact that the project coincided with the 
West Australian Literacy and Numeracy Assessment (WALNA) testing that all students in 
Years 3, 5, 7, and 9 in Western Australia must sit annually. WALNA is a curriculum-based 
assessment that tests students’ knowledge and skills in numeracy, reading, spelling, and 
writing. The results provide schools with insight into their overall performance in these 
curriculum areas and, if used correctly, also assist teachers in setting improvement targets 
for their students for the following planning cycle. Teachers in this project did not discuss 
WALNA as a tool to make judgments about their students’ learning needs. Rather, they 
saw it as something that they had to do given that it was a school focus, and something that 
would ultimately be used to evaluate the school as a whole. At least half of the term’s 
planning was devoted to preparing students for WALNA, and then implementing it. 
 

We haven’t got much time to do anything else just now. We’ve got WALNA this term so that’s 
pretty much all we’re doing in class at the moment.  

 

Teaching Intuitively 
 

As the term progressed and it became evident that the profiles of student numeracy 
learning needs had not been consulted by the teachers to plan their mathematics 
instruction, the project leaders began to question how mathematics classes were being 
taught and on what basis. In response to requests to see written mathematics forward 
planning documents and lesson plans, at least three of the teachers commented that they 
did not prepare handwritten programs. They stated that they were able to assess what the 
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students needed to learn instinctively and usually had a mental outline of what they would 
implement over the term. Decisions about what to teach and how to teach were usually 
made in conjunction with other curriculum documents such as the progress maps and other 
commercially published texts. 
 

No I haven’t done a [hand-written] program since Uni. They’re such a waste of time … I just know 
what the kids have and haven’t done and have a good idea of what I want to do each term …then I 
use lots of resources to give to the students. 

 
Although it is feasible that experienced teachers are able to plan intuitively and 

spontaneously (Jones & Smith, 1997), it is unlikely that beginning teachers would be able 
to do so successfully without a considerable amount of practice across a range of different 
contexts. Jones and Smith write, “In constructing [curriculum], an experienced teacher is 
able to draw on a range of experiences and knowledge in an attempt to fit the anticipated 
and observed needs of a particular lesson or set of lessons” (p. 3). This practice comes after 
repeated opportunities to structure series of lessons around explicit learning objectives in 
the light of a particular context and available resources.  
 

Discussion 
 

The five themes that emerged in this study represent the participating teachers’ 
methods of curriculum planning in relation to mathematics instruction. A common link 
among these themes is that planning is largely teacher-centred and based on factors that are 
external to the students. The teachers’ decisions to teach particular content, and their 
instructional method were influenced by their perceived mathematical ability, the schools’ 
mandated priorities, system enforced curriculum documents and/or other commercially 
published curriculum documents. At no stage did the teachers identify students’ learning 
needs as being the starting point for their planning, despite the fact that they were armed 
with the profiles. 

This outcome was unexpected. The teacher-educators anticipated that the teachers 
would have little experience and expertise in identifying comprehensive overviews of their 
students’ mathematical learning needs. However, it was assumed that if they were 
supported in producing this information they would intuitively use it as the basis for their 
planning. Surprisingly, the teachers overlooked these profiles and instead reverted to their 
typical approach to planning. 

By far the most common method was the use of text-books and other curricular 
materials. In a case study of four beginning teachers, Kauffman (2002) also found that text-
books were central to new teachers’ planning. He suggests the reasons behind this are 
related to the teachers’ perceptions of the superior quality of the materials, the extent to 
which aspects of the text can be used to fit their own purposes and the ease with which the 
text can be used. Certainly, the stresses placed on graduate teachers during their first year 
would warrant them turning to curricular materials that alleviated the pressure to some 
degree. This is problematic, however, if teachers develop an over reliance on prescriptive 
teaching materials rather than teaching to clearly identified learning needs. What is even 
more concerning is when the teachers believe they are capable of teaching intuitively and 
in such a way that their lessons are loosely guided by mental plans of what should be 
taught. 

Consequently, the overall goal of this project was modified and plans have been 
implemented to support these teachers to develop methods of curriculum planning that are 
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based on clearly identified learning needs. Given that these same teachers are working in 
areas of recognised student-disadvantage, it is imperative that they are able to plan based 
on student need to maximise learning. Furthermore, the findings have been used by the 
teacher-educators to consider the extent to which curriculum planning is effectively taught 
in their pre-service courses. It may well be that curriculum planning taught during these 
courses is too hypothetical and the opportunities that pre-service teachers have to plan for 
real groups of students during their final internships is simply not sufficient and does not 
adequately prepare them for their first year of teaching. 
 

Conclusion 
 

The findings from this phase of the project suggest that the participating graduate 
teachers are not proficient curriculum planners. Even when made aware of their students’ 
learning needs they chose to plan as they have in the past, adopting methods that were 
largely teacher-centred. Although there is a range of possible reasons, the fact remains that, 
if left unchecked, these methods could become common practice for these teachers. 
Consequently, the teacher-educators have entered into a new phase of the project and aim 
to support these teachers in the identification of the importance of basing their mathematics 
planning on their students’ learning needs. 
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There is a strong case for arguing that the application of relational thinking to solve number 

sentences embodies features of mathematical thinking that are centrally important to algebra. 

This study investigates how well students in Years 5, 6, and 7 in three countries were able to 

use relational thinking to solve different types of number sentences. There were other 

students who appeared to rely solely on computational method to solve the same number 

sentences. The study then examined whether those who had shown clear evidence of 

relational strategies to solve the number sentences were better placed to solve symbolic 

sentences than those who had used only computational methods on these number sentences. 

Relational Thinking 

In their study, “The algebraic nature of students’ numerical manipulation in the New 

Zealand Numeracy Project”, Irwin and Britt (2005) argue that the methods of compensating 

and equivalence that some students use in solving number sentences may provide a 

foundation for algebraic thinking (p. 169). These authors give as an example the number 

sentence 47 + 25 which can be transformed into 50 + 22 by “adding 3” to 47 and 

“subtracting  3” from 25. They claim (p. 171) “that when students apply this strategy to 

sensibly solve different numerical problems they disclose an understanding of the 

relationships of the numbers involved. They show, without recourse to literal symbols, that 

the strategy is generalisable.” Several authors, including Stephens (2006) and Carpenter 

and Franke (2001), refer to the thinking underpinning this kind of strategy as relational 

thinking.  

Solving number sentences successfully using relational thinking certainly calls on a 

deep understanding of equivalence. Students need to know the direction in which 

compensation has to be carried out in order to maintain equivalence (Kieran, 1981; Irwin & 

Britt, 2005; Stephens, 2006). Some children who correctly transform number sentences 

involving addition reason incorrectly that a number sentence such as 87 – 48 can be 

transformed to be equivalent to 90 – 45. These children do not understand the direction in 

which compensation must take place when using subtraction or difference. They fail to 

recognise that the relationship of difference is fundamentally different from addition. Other 

children, however, recognise this feature explaining that in order for the difference to 

remain the same, the same number has to be added to (or subtracted from) each number to 

the left of the equal sign. These children write correctly 87 – 48 = 89 – 50. The first part of 

this study probed children’s thinking with number sentences.  

The Study 

Three groups of number tasks shown in Figure 1 were given to students in Years 5, 6, 

and 7 using a pencil-and-paper questionnaire administered in regular class time. In 

introducing the questionnaire, classroom teachers told students that: 
 

This is not a test. It is a questionnaire prepared by researchers … looking at how students read 

interpret and understand number sentences. For most of the questions there is more than one way of 
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giving a correct answer. Please write your thinking as clearly as you can in the space provided after 

each question and don’t feel that you have to write a lot. 
 

The questionnaire and the teacher’s introduction were translated into Japanese and Thai. 

Each group of problems, shown in Figure 1, was introduced with the words: “Write a 

number in each of the boxes to make a true statement. Explain your working”. 
 

Group A (on one page) Group B (on one page) Group C (on two pages) 

23 + 15 = 26 + � 39 – 15 = 41 – � 746 – 262 + � = 747 

73 + 49 = 72 + � 99 – � = 90 – 59 746 + � – 262 = 747 

43 + � = 48 + 76 104 – 45 = � – 46  

� + 17 = 15 + 24   

Figure 1. Three groups of missing number sentences. 
 

The study involved three cohorts of students Japan (277 students), Australia (301 

students) and Thailand (194 students). Two schools were used in each country with 

students in Years 5, 6, and 7 approximately the same age (10 years old to 13 years old). In 

all schools involved in the study the teaching of computational algorithms forms a key part 

of the curriculum. Even if relational approaches are taught in some schools, they are not 

given the same time or emphasis as computational approaches. In Australia and Thailand, 

the study was carried across all year levels at the one time. In the case of Japan, Year 5 was 

tested at the end of one school year and Year 6 and Year 7 at the start of the next school 

Year. For this reason, the Japan results for Year 5 and Year 6 are considered together, 

whereas Year level results for Thailand and Australia are separated.  

Evidence of Relational Thinking 

Relational thinking is evident when, for example, verbal descriptions, arrows, or 

diagrams are used to compare the size of numbers either side of the equal sign, and where 

these verbal descriptions, arrows or diagrams are used in chain of argument, based on 

uncalculated pairs, using compensation and equivalence to find the value of a missing 

number. By contrast, computational thinking follows a fixed pattern. These features were 

discussed more fully in Stephens (2004, 2006). 

In Group A and B questions, students must complete the calculation on the opposite 

side to where the � is shown, and use this result to find the value of the missing number. 

For example, in the first problem of Group B, students must first find 39 – 15; and having 

found this to be 24, they then need to find the number which taken from 41 gives a result of 

24 (or which added to 24 gives 41) for which the result is 17. In Group C, students must 

first subtract 262 from 746 giving 484, before proceeding to find the missing number by 

subtracting 484 from 747. 

For each group of questions a benchmark sample was prepared, illustrating each score. 

Each student’s work was checked independently by two markers. A high degree of 

consistency was evident across markers in all three countries. Whenever there was 

disagreement between markers, this was usually resolved by the markers themselves – 

usually one had missed an important clue. Very rarely, such disagreements were referred to 

a supervising researcher. Two student responses showing very clear relational thinking are 

given for each group of items in Figure 2. 
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Group A 

• If I take 2 from 17 and add 2 to 22, it is the same as the number sentence after it. (Year 6 student)  

• In 43 + � = 48 + 76, 43 to 48 is + 5, 81 to 76 is – 5. These are equivalent, as you’ve done the same 

action to both sides. (Year 7 student) 

Group B: 

• As 99 is 9 more than 90, the missing number must be 9 more than 59. Therefore the answer is 68. 

(Year 5 student) 

• I added 1 to 104 and 45. As long as I add the same number to both, it (104 – 45) will stay equivalent. 

(Year 6 student) 

Group C: 

• 746 is one less than 747, so 262 is one less than the answer. My answer is 263. (Year 5 student) 

• 746 is 1 unit less than 747, so if you add 263 you will only need to minus 1 unit less than 263 for the 

equation to be equal on both sides. (Year 7 student) 
Figure 2. Selected students’ responses showing relational thinking. 

Scoring procedures. Each group of problems was scored using a five-point scale shown 

in Figure 3. Thus, a single score was assigned to each group of questions even if children 

did not solve each question in the same way. This scoring scheme which had been 

validated for an earlier study (Stephens, 2004) was applied to Groups A, B, and C. 

 
0 – arithmetical thinking evident for all questions; for example, through evidence of progressive calculations 

and use of algorithms to obtain results for additions and subtractions, even where these approaches resulted in 

incorrect answers, and no evidence of any relational thinking; also where an answer only has been given with 

no working shown to indicate what method has been used 

1– a clear attempt to use relational thinking in at least one question, but not successfully executed (e.g., in 

Group B by giving answers of 13, 50 and 103) 

2 – relational thinking clearly and successfully executed in one question, even if other problems are solved 

computationally or by incorrect relational thinking 

3 – relational thinking clearly and successfully executed in at least two questions, but where the remaining 

question or questions are not solved relationally or solved using incorrect relational thinking 

4 – all questions are solved clearly and successfully using relational thinking, even if computational solutions 

are also provided in parallel. 

Figure 3. Scoring rubric. 

Results of the Questionnaire 

Clear evidence of relational thinking was present across all three Groups of questions 

among Japanese and Australian students. In the Japanese Year 5 and 6 cohort, almost 40% 

of students achieved a Score 4 (accomplished relational thinking) on Group A. The 

proportion of Score 4 was nearly 25% for Group B, and a little less than 20% for Group C. 

On the other hand, the proportion of Year 5 and 6 students who obtained Score 0, by using 

clear computational approaches or providing no evidence of relational thinking, ranged 

from about 35% for Group A, to 40% for Group B, and 65% for Group C. By Year 7, the 

proportion of Score 4 performances increased for all three groups of questions. This 

increase was not offset by an equivalent fall in the proportion of Score 0 performances that 

fell only slightly from Years 5 and 6 to Year 7. The increase in Score 4 performances in the 

Year 7 cohort was matched by reductions in the proportion of Scores 2 and 3. Although the 

Japanese mathematics curriculum seems to favour the development of relational 

approaches among many students, many other students still seem unable to or prefer not to 

use them.  
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The vast majority of Thai students used computational approaches in all three Groups 

of questions. In Year 5, no Thai student scored 4 on any group of questions. In Year 5, the 

proportions  of  Score 0  were 83% (Group A), 92% (Group B) and 98% (Group C).  In 

Year 6 the average of Score 0 across the three groups of questions was 90%. In Year 7, it 

was 84% with gradual increases in the proportion of students in Years 6 and 7 achieving 

between Score 2 and Score 4. The gradual emergence of relational thinking in the Thai 

cohort seems more likely to be the result of individual student insight rather than an 

intended result of the mathematics curriculum. 

The two Australian schools showed wide variation in the use of relational strategies. 

Looking only at the Year 6 cohorts in the two schools, the proportion of Score 0 results for 

Group A, B, and C questions in School 1 was 60%, 64%, and 78% respectively, compared 

to 34%, 32%, and 48% in School 2. Similarly, the proportion of Score 4 results for Group 

A, B, and C questions in School 1 was 25%, 9%, and 16% respectively, compared to 48%, 

30%, and 46% in School 2. The reason for this marked difference is that in School 2 

relational approaches are featured explicitly in the mathematics curriculum, whereas in 

School 1 they seem not to be emphasised. 

Stability of Thinking 

How consistent were students in their use of relational or computational approaches 

across the three groups of problems? Students were classified into three groups: those 

students who used relational strategies across all three groups of problems (SR–Stable 

Relational); those students who used only arithmetical or computational approaches across 

all three groups of problems (SA–Stable Arithmetical); and those students whose thinking 

was not consistent across the three groups (NS–Not Stable). The following rule was used. 
 

SR: if student scored � 1 on each of Group A, B, and C 

SA: if student scored 0 on each of Group A, B, and C 

NS: if student scored � 1 on one or two of Group A, B, or C; and 0 on other(s). 
 

A criterion of � 1, instead of � 2, across the three groups as evidence of stable 

relational thinking was justified because a score of 1 on Group B was without exception 

associated with successful relational thinking (� 2) for Group A and/or Group C questions. 

Aside from responses to Group B where students compensated in the wrong direction, a 

score of 1, indicating incorrect relational thinking, was very rarely given for responses to 

Group A and Group C questions. 

How do Relational Thinkers Deal Successfully with Symbolic Sentences? 

What evidence is there that students who successfully apply relational thinking to solve 

number sentences are able to extend these processes to solve sentences that are explicitly 

algebraic? Linchevski and Livneh (1999) point to the structural relations that students need 

to understand from arithmetic if they are to move successfully into algebra. MacGregor and 

Stacey (1999) also contend that deeper understanding of numerical operations is linked to 

later success in algebra. Using symbolic terms makes it more difficult for students to use 

computational checks. Some students solve symbolic expressions, such as x + 3 = 21, by 

drawing on their knowledge of number facts, or using guess-and-check methods. But 

another type of symbolic sentence, true for all values of the literal symbol, can be used to 

probe students’ understanding of the meaning of symbolic expressions. This type of 

question, shown in Figure 4, was used to probe whether there is a clear link between 
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successful application of relational thinking applied to number sentences and students’ 

ability to understand the structure of symbolic sentences. 

 

Place the four numbers n – 1,  n + 5,  7 and 1 in the four boxes below so that the statement is always true. 

  

                                     +                     =                     +                 

             

                     Box A             Box B              Box C           Box D 

Explain why your answer is correct. 

Figure 4. Making a sentence that is always true. 
 

Students in Years 5, 6, and 7 in three countries had not been introduced to “always 

true” symbolic expressions. (Of course, many students by Year 5 have met single-value 

missing number sentences, such as � + 3 = 21.) Some students did not attempt the 

question, or they wrote a sentence which is not true for all values of n, for example by 

writing a sentence which has the four numbers in boxes in the order in which they appear 

in the question. Some other students wrote a correct sentence but could not explain why it 

was true for all values of n. On the other hand, several possible approaches were used by 

students to explain why their sentence is always true. These various possibilities informed 

the partial-credit scoring rubric shown in Figure 5 used to grade students’ responses. 

 

NR – no response to the question involving literal symbols and number terms 

Score 0 – incorrect or inadequate relation, no evidence of relational thinking  

Score 1 – correct relation shown but no explanation given 

Score 2 – correct relation shown, and correctly illustrated with one or more numerical values 

Score 3 – correct relationship shown, and successfully illustrated by showing a balance with respect to the 

numbers, “ignoring” n terms; or by generally referring to balance among terms 

Score 4 – correct relationship shown, and explained by explicit reference to the numbers and the n terms 

being equivalent on both sides, whatever the value of n, or by showing that the same algebraic structure exists 

on both sides.  

Figure 5. Rubric used for scoring question involving literal symbols. 

 

The following responses formed a benchmark sample for a score of 4, 3, or 2 for this 

question. 

Exemplifying Score 4. A Year 6 student, having written, 7 + n − 1 = 1 + n + 5, said: 

“This answer is correct because you will always get an answer 6 more than n, because n 

less 1 plus 7 will give us 6 more than n. Also because n more than 5 plus 1 will give 6 

more than n. This will have a lot of different answers but you will always get an answer 

6 more than n.” 

A Year 7 student wrote n − 1 + 7 = n + 5 + 1, and explained: 

“My answer is correct as no matter what n is, n − 1 is 6 units less than n + 5. This is 

balanced as 7 is six units more than 1.” 

Exemplifying Score 3. A Year 7 student wrote n − 1 + 7 = n + 5 + 1, and wrote: 

“7 and n − 1 become 6; n + 5 and 1 become 6. Both sides are equivalent to 6”. 

Exemplifying Score 2. A Year 5 student wrote 1 + n + 5 = 7 + n − 1, and then let n = 5 

showing that  

1 + 5 + 5 = 7 + 5 − 1. No reason was offered to show why the statement is always true. 
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There  were  some  clear  associations  between  highly  accomplished  explanations 

(Score 4) given to this question involving literal symbols and accomplished relational 

thinking used on the number sentences. For example, in Japan in Years 5 and 6, all 6 

students who scored 4 on the question involving literal symbols also scored at least one 4 

on the number questions. In Japan, where 54 Year 7 students scored 4 on this question, 44 

showed very clear relational thinking on the number sentences, even if this was not always 

scored as high as a 4. In Australian School 2, the same applied to all 10 students in Years 5 

and 6 who scored 4 on this question. Further, no student in Years 5 and 6 in any of the 

three countries who scored 0 on all three groups of number sentences scored 4 on the 

question involving literal symbols. This pattern was almost perfectly replicated in Year 7 

cohorts.  

Very many students who gave highly accomplished responses (Score 4) to this question 

applied compensation to the two terms involving literal symbols and to the two number 

terms, showing equivalence, whatever the value of n. Is there a clear connection between 

relational thinking on number sentences and success on the question involving literal 

symbols? Put most simply, one might expect a strong connection between those students 

who were classified as Stable Relational (SR) thinkers on the three groups of number 

sentences and their success in dealing with the question using literal symbols. A 

consequence of this “strong” position, if it were true, is that students who were classified as 

Stable Arithmetical (SA) on the three groups of number sentences would be less likely to 

deal successfully with the question involving literal symbols. These positions are now 

analysed. 

Using Relational Thinking on Number Sentences (SR) as a Predictor 

The following table gives the numbers of students who were classified as SR who also 

obtained a score of � 1 on the question involving literal symbols (SR/LS). Their success 

rate is then compared to the percentage of their cohort in dealing successfully (i.e., obtained 

a score of � 1) with the question involving literal symbols (LS).  

Table 1 

Using Stable Relational Thinking (SR) as a Predictor 

Country Cohort Number of 

SR students 

Number (%) 

SR/LS 

Number (%) of 

LS in cohort  

Japan Year 5/6 N = 133 41 32 78% 70 53% 

 Year 7 N = 144 56 55 98% 127 88% 

Australia Year 5 N = 41 8 4 50% 13 32% 

(School 1) Year 6 N = 45 8 0 0% 3 7% 

 Year 7 N = 44 9 7 77% 27 61% 

Australia  Year 5 N = 50 13 7 54% 17 34% 

(School 2) Year 6 N = 50 27 22 81% 31 62% 

 Year 7 N = 71 49 44 92% 58 82% 

Thailand Year 5 N = 53 N/A N/A N/A 

 Year 6 N = 64 N/A N/A N/A 

 Year 7 N = 77 4 2 50% 21 31% 
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This criterion seems to work well in Years 5 and 6 in Japan and Australian School 2 

where the number of students classified as SR is comparatively high. In these two groups, 

the success rate of students who showed stable relational (SR) performance on the three 

groups of number sentences was almost 20% higher in obtaining a score � 1 on the 

question involving literal symbols than the general success rate. The strength of connection 

is not as strong in both groups in Year 7 where the success rate of the SR performers on the 

number sentences is only 10% higher than the general success rate. Ceiling effects begin to 

emerge in the Year 7 in Japan and in Australian School 2 where 88% and 82% respectively 

of students in Year 7 were able to deal successfully (Score � 1) with the question involving 

literal symbols. 

However,  serious difficulties exist in the application of the criterion in Year 5 and 

Year 6 the Australian School 1 and in the Thai cohort where few students were able to be 

classified as SR on the number questions, and where few were also successful on the 

question involving literal symbols. The criterion could not reasonably be applied in the 

case of Years 5 and Year 6 in the Thai cohort where only one student was classified as SR; 

and where in Year 5 only two students scored � 1 on the question involving literal symbols. 

In Thailand in Year 6, however, 12 students scored � 1 on the question involving literal 

symbols, despite the paucity of stable relational (SR) thinkers on the number sentences. 

Even in the Year 7 Thai cohort, the number of students classified SR was too small (4) to 

allow any reliable predictions. Similar difficulties also occur in Australian School 1 where 

only 3 students in the entire Year 6 sample scored � 1 on the question involving literal 

symbols. 

Using Arithmetic Thinking (SA) as a Predictor 

How well did those students who met the criterion for Stable Arithmetic (SA) – that is, 

those who scored 0, 0, 0 on all three Groups of number sentences – perform on the 

question involving literal symbols? Given the difficulties applying the preceding test to the 

entire Thailand cohort and to Australian School 1, this test becomes more important. In 

Australian School 1 in Year 6, 23 students scored 0 on all three groups of number 

sentences. Of these 23, 21 were graded either NR or 0 on the question involving literal 

symbols, with only one of the 23 obtaining a 1 for this question, and one other obtaining a 

2. In Year 5, 28 students got a 0 on all three groups of number sentences. Of these 21 got 

either NR or 0 (no success) on the question involving literal symbols, with four obtaining 1 

for this question, and three obtaining a 2. 

Likewise, in the Thailand cohort, there is a strong connection at each Year level 

between SA thinking on number sentences and failure to deal successfully with the 

question involving literal symbols. However, even for this cohort, the strength of this 

connection declines with each additional Year level. With each successive year level, more 

students classified as SA on the number sentences are able to score � 1 on the question 

involving literal symbols. These results across all cohorts of Years 5, 6, and 7 students are 

given in Table 2. 

The predictive value of this criterion seems to be strongest in Years 5 and 6 in all three 

country samples. Its predictive force is still quite strong in Thailand in Year 7; much less so 

in Year 7 in the Australian schools; and not at all in Year 7 in Japan. It may be argued that 

by Year 7 more students are familiar with literal symbols and so are able to deal 

successfully with the question involving literal symbols. 
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Table 2 

Using Stable Arithmetical Thinking (SA) as a Predictor 

Country Cohort Number of SA 

students. 

SA students with no success on 

literal symbol question 

Japan Year 5/6 N = 133 37 25 68% 

 Year 7 N = 144 43 12 28% 

Australia Year 5 N = 41 28 21 75% 

(School 1) Year 6 N = 45 23 21 93% 

 Year 7 N = 44 24 13 54% 

Australia  Year 5 N = 50 18 16 89% 

(School 2) Year 6 N = 50 15 9 60% 

 Year 7 N = 71 11 5 45% 

Thailand Year 5 N = 53 43 41 95% 

 Year 6 N = 64 51 44 86% 

 Year 7 N = 77 55 44 80% 

 

There are some students, more in Japan and Australia than in Thailand, who are able to 

adopt relational thinking for the question involving literal symbols, even though they 

showed no evidence of relational thinking on the number sentences. These students can 

exercise choice; they are able to apply relational strategies when required in the case of the 

sentence involving literal symbols. For example, in the Japanese Year 5 and 6 cohort, 37 

students obtained 0 on all three groups of number sentences, with 25 of these receiving 

either NR or 0 for the question involving literal symbols. Of the remaining 12 students, five 

received a score of 1, four a score of 2, and three a score of 3. The competent performances 

(Score 2 and Score 3) of these 5 students had not been preceded by any relational thinking 

in their work on number sentences. In Australian School 2 in Year 6, of the 15 students 

who scored 0 on all three groups of number sentences, 9 of these received either NR or 0, 

but three students received a score of 1 on the question involving literal symbols, and a 

further three also obtained a score of 2. By Year 7 in Thailand, 11 students classified as SA 

(0, 0, 0) on the number sentences achieved scores ranging from 1 to 3 on the question 

involving literal symbols. 

Discussion of Limitations and Future Directions 

In statistical analyses where some clear associations are present but not definitive, it is 

important to ask why this is so. The first and most obvious comment is that the three 

groups of number sentences may not have separated those who were capable only of 

thinking computationally from those who chose to solve the number sentences 

computationally but who could have used relational approaches to solve these sentences if 

pressed to do so. Some of these “computational” students applied relational approaches to 

deal more or less successfully with the expression involving literal symbols. Students who 

are competent calculators may prefer that approach even though it is much more 

demanding than relational thinking in the case of Group C, and somewhat more demanding 

in the case of Group A and B questions.  
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It should be remembered that no student who consistently solved the number sentences 

computationally was able to achieve the highest score (Score 4) on the question involving 

literal symbols, although there were quite a few who produced an expression in the correct 

form but with no explanation (Score 1) and others who were able to justify their choice of a 

correct literal expression by using one or more values of the literal symbol (Score 2). Those 

with Score 1 who produced an expression in the correct form – without explanation or 

justification – may have used strategies such as “guess-and-check” that fall a long way 

short of deep relational thinking.  

It is also clear that some students who appeared to be stable relational thinkers (SR) did 

not deal successfully with the question involving literal symbols. Among this latter group 

might be those who solved only some of each group of number sentences relationally. It is 

a big jump from being able to apply relational thinking to complete an already formed 

number sentence to being able to construct and justify an “always true” sentence involving 

literal symbols and numbers in an equivalence relation. Although the findings of this study 

support the view of Linchevski and Livneh (1999) that many of algebraic relations met by 

students inherit the structural properties associated with number sentences with which 

students are, or should be, familiar, it is clear that the missing number questions were not 

sufficiently sensitive to elicit and identify the kind of relational thinking that students 

needed in order to solve the question involving literal symbols.  

Some students may have used grouping and simplification techniques to deal with the 

question involving literal symbols even if they had chosen to solve by computation all the 

number sentences. From our study of the curriculum documents of the three countries we 

were confident that students in Year 7 had not been taught these techniques, but this cannot 

be ruled out for every student.  

Is it possible to introduce an extra question that would press those who chose to solve 

the number sentences computationally to disclose any latent relational understanding, and 

at the same time to discriminate among relational thinkers? To these purposes, a question 

modelled after the research programme, Concepts in Secondary Mathematics and Science, 

(CSMS, see Hart, 1981) might ask students:  

What can you say about c and d in the following mathematical sentence? 

c + 2 = d +10 

If equivalence and compensation are at the heart of relational thinking, the goal of this 

question is to have students say that this sentence will be true for any values of c and d 

provided c is 8 more than d. But there are intermediate responses that fall short of this 

understanding. Computational thinkers are likely to be able to give several values of c and 

d for which the sentence is true. They may even offer several pairs without seeing that the 

values are part of a pattern. More developed responses could be expected to give pairs in a 

systematic list such that (c, d) could be (9, 1), (10, 2), (11, 3), (12, 4). In this case, are 

students able to generalise a rule connecting c and d? It might also be possible to probe 

whether students can give a clear mathematical sense to sentence being true for “any values 

of c and d provided c is 8 more than d”. Such responses might make it clear that, for 

example, fractional or decimal values are possible – or even negative numbers. Being able 

to derive a correct mathematical generalisation from numerical examples is key element of 

algebraic reasoning (Carpenter & Franke, 2001; Lee, 2001; Zazkis & Liljedahl, 2002). 

A similar question could be constructed for probing relational thinking about 

subtraction. The value of questions such as these is that they can be given a limited 

meaning by computational thinkers, but they can only be answered in any depth using 
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relational thinking. A fully elaborated response needs to show that the relationship is 

determined by the operation as well as the specific numbers involved, and that the sentence 

can be true for any values of c and d where the given condition is met. This kind of 

question is likely to be a better predictor of success in dealing with literal expressions. 

Conclusion 

Students’ use of relational thinking to solve number sentences is evident in all three 

countries by the end of elementary school. The extent of its acquisition varies between 

countries and between schools. Even where it appears to be strong, there are still many 

students who seem unable to use it. Those who were consistent relational thinkers on 

number sentences were more likely to deal successfully with a sentence involving literal 

symbols and number terms than those who showed only arithmetical thinking on the 

number sentences. In all three countries, particularly in Years 5 and 6, the majority of this 

latter group was unable to deal successfully with the sentence involving literal symbols. 

This group especially should concern teachers. They may obtain perfectly correct answers 

to number questions through careful use of computational based approaches, but these 

approaches are clearly deficient when students are confronted with questions using literal 

symbols where computation will not work. Their inability to use relational thinking means 

that they are not well prepared to deal with the kinds of thinking – in particular, those 

involving equivalence and compensation – that they will need in high school algebra. More 

importantly, one should ask how much better their understanding of number and 

arithmetical operations might have been in primary school if they had been introduced to 

and were able to use relational strategies to solve number sentences. 
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A framework to support successful implementation of mathematical modelling in the 

secondary classroom was developed from transitions between stages in the modelling process 

and the cognitive activities associated with these. This framework is used to analyse 

implementation of a task with a Year 9 class. Cognitive activities engaged in during the task 

and competencies and technological knowledge required to complete the task successfully are 

identified. This framework can be used by teachers, researchers, and curriculum designers to 

design tasks and predict where in a given task blockages occur, hence allowing advance 

consideration of scaffolding for in-the-moment classroom decisions. 

Internationally the field of applications and mathematical modelling in education 

features prominently in every continent and research into teaching and learning through 

applications and mathematical modelling is currently being pursued with renewed vigour in 

many parts of the world (Kaiser, Blomhoj, & Sriraman, 2006), boosted by the 14th 

International Commission on Mathematical Instruction (ICMI) study on applications and 

modelling in mathematics education held in 2004. The recently published volume by Blum, 

Galbraith, Henn, and Niss (2007) from this study contains an up-to-the-minute account of 

progress and challenges within the field. International initiatives currently addressing these 

challenges include, for example, the Organisation for Economic Co-operation and 

Development Programme for International Student Assessment (OECD PISA) project, 

which includes the following within its assessment domains.  

An individual’s capacity to identify and understand the role that mathematics plays in the world, to 

make well-founded judgements and to use and engage in mathematics in ways that meet the needs of 

that individual’s life as a constructive, concerned, and reflective citizen. (OECD, 2003, p. 15) 

This implies engaging with mathematics across a variety of situations and contexts. In 

countries both within and outside the OECD such statements are associated with ongoing 

discussion about the design of curricula, and in particular the role of mathematical 

modelling, applications, and relations to the real world in the teaching and learning of 

mathematics (Blum et al., 2007). However, Turner (2007, p. 440) raises concerns about the 

extent to which the mathematical thinking that underpin such mathematical modelling tasks 

is really valued by those overseeing curriculum and instruction in various countries 

considering “the level of complexity of the mathematical modelling activities that 15-year-

old students can cope with … seems to be rather low”. Turner also asks: “How can teachers 

be more effectively empowered to explore and promote the mathematical thinking 

underlying these tasks, and what kinds of teaching and learning activities will be most 

effective in facilitating this kind of mathematical thinking among 15-year-old students?”   

Within Australasia modelling is advocated in curriculum documents from the primary 

years (e.g., Victorian Curriculum and Assessment Authority (VCAA), 2005) through to the 
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upper end of secondary (e.g., Ministry of Education, 1992; Queensland Board of Senior 

Secondary School Studies (QBSSSS), 2000). Evaluations of curricular initiatives become 

confused when there are idiosyncratic interpretations, which muddy notions of authentic 

practice in the field. It is of continuing importance that initiatives claiming mathematical 

modelling as their focus, are presented in terms of frameworks, criteria, and alternatives that 

are endorsed by the international community of practice.   

Given the various idiosyncrasies associated with some localised curricular initiatives 

(including Australian) we wish to be clear about meanings and interpretations ascribed to 

terms such as applications and mathematical modelling in our work. Our meanings are 

consistent with those adopted by the International Community for the Teaching of 

Mathematical Modelling and Applications (ICTMA), which is an Affiliated Study Group of 

the ICMI. Simply put, with applications we tend to focus on the direction (mathematics � 

reality). “Where can I use this particular piece of mathematical knowledge?” On the other 

hand with mathematical modelling we focus on the reverse direction (reality � 

mathematics). “Where can I find some mathematics to help me with this problem?”  

The term mathematical modelling itself, as it is used in curricular discussions and 

implementations has different, although clearly delineated, interpretations. One 

interpretation sees mathematical modelling as motivating, developing, and illustrating the 

relevance of particular mathematical content (e.g., Chinnappan & Thomas, 2003). A second 

perspective views use of applications and modelling as an end in itself for educational 

purposes not a means for achieving some other mathematical learning end. The models and 

modelling perspectives of Lesh and English (2005), for example, although clearly associated 

with the first interpretation, extend beyond to include elements of the second.  Our own 

approach sees the second interpretation as encompassing the first. Both approaches agree 

that modelling involves some total process that encompasses formulation, solution, 

interpretation, and evaluation as essential components.  

The Modelling Process and Modelling Competencies 

As interests in teaching and learning are central, our theoretical framework for studying 

modelling is oriented towards the problem solving individual to give not only a better 

understanding of what students do when solving (or failing to solve) modelling problems, 

but also a better basis for teachers’ decision making and interventions. Figure 1, modified 

from Galbraith and Stillman (2006), encompasses both the task orientation of many 

diagrammatic representations of the modelling cycle and the need to capture what is going 

on in the minds of individuals as they work on modelling tasks. This latter focus has also led 

to a reduction in the number of stages identified specifically as other researchers (e.g., 

Borromeo Ferri, 2006) have pointed out that fewer are of more use in a schooling context. 

The respective entries A-G represent stages in the modelling process, where the thicker 

arrows signify transitions between the stages, and the total solution process is described by 

following these arrows clockwise around the diagram from the top left. It culminates either 

in the report of a successful modelling outcome, or a further cycle of modelling if evaluation 

indicates that the solution is unsatisfactory in some way. The kinds of mental activity that 

individuals engage in as modellers attempt to make the transition from one modelling stage 

to the next are given by the broad descriptors of cognitive activity 1 to 7 in Figure 1. The 

light arrows that are in the reverse direction to the modelling cycle are included to emphasise 

that the modelling process is far from linear, or unidirectional, and to indicate the presence 

of reflective metacognitive activity (Maaß, 2006). 
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Figure 1. Modelling Process. 

It is imperative that we identify specifically activities with which modellers need to have 

competence in order to apply mathematics successfully particularly in settings where there is 

increasing access to electronic technologies. By “competency” is meant the capacity of an 

individual to make relevant decisions, and perform appropriate actions in situations where 

those decisions and actions are necessary to enable success. 

Mathematical modelling competency means the ability to identify relevant questions, variables, 

relations or assumptions in a given real world situation, to translate these into mathematics and to 

interpret and validate the solution of the resulting mathematical problem in relation to the given 

situation, as well as the ability to analyse or compare given models by investigating the assumptions 

being made, checking properties and scope of a given model (Niss, Blum, & Galbraith, 2007, p. 12). 

We elaborate how these components of modelling competency are realised within the 

research settings that have provided data for this paper. 

From Theory to Empiricism 

The transitions arising from our theoretical framework (Figure 1) served as a structural 

framework for indentifying student blockages in transitions as students undertook various 

modelling and application tasks. Initially the contents of the respective transition sections 

were empty, except for the bold headings of Figure 2. Intensive data were generated from 

implementations of two teacher designed tasks at one school where modelling and the use of 

technology were an integral part of classroom practice in order to develop our first result, an 

“emergent framework” (Galbraith, Stillman, Brown, & Edwards, 2007), from empirical 

study. The resulting emergent framework was then refined and tested by examining the 

implementations of a different task and a revised version of one of the first tasks in a second 

school (Galbraith & Stillman, 2006). The task was revised by the researchers in 

collaboration with the teacher to suit the different motivation towards real world tasks and 

technology use and time frame of the teacher in a different school setting. The resulting 

refined transitions framework is shown in Figure 2. The empirics gave rise to case specific 

categories and generalisations of these from the various elements in each transition section. 

Our research indicates there is potential for blockages to occur when any of these component 

A. Messy  real  

world 

situation  

B. Real 

world 

problem 

statement 

C. Mathematical model D. Mathematical 

Solution 

E. Real world 

meaning of solution 
F. Revise model or 

Accept solution 
G. Report 

1 2 3 

4 

5 6 

7 

1. Understanding, structuring, simplifying, interpreting context 

2. Assuming, formulating, mathematising 

3. Working mathematically 

4. Interpreting mathematical output 

5. Comparing, critiquing, validating 

6. Communicating, justifying (if model is deemed satisfactory) 

7. Revisiting the modelling process (if model is deemed unsatisfactory). 
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activities have to be undertaken. 

 
 

1. MESSY REAL WORLD SITUATION →→→→ REAL WORLD PROBLEM STATEMENT: 

1.1 Clarifying context of problem   

1.2 Making simplifying assumptions  

1.3 Identifying strategic entit(ies)  

1.4 Specifying the correct elements of strategic entit(ies)  

2. REAL WORLD PROBLEM STATEMENT →→→→ MATHEMATICAL MODEL: 

2.1 Identifying dependent and independent variables for inclusion in algebraic model  

2.2 Realising independent variable must be uniquely defined  

2.3 Representing elements mathematically so formulae can be applied  

2.4 Making relevant assumptions  

2.5 Choosing technology/mathematical tables to enable calculation  

2.6 Choosing technology to automate application of formulae to multiple cases  

2.7 Choosing technology to produce graphical representation of model  

2.8 Choosing to use technology to verify algebraic equation  

2.9 Perceiving a graph can be used on function graphers but not data plotters to verify an algebraic equation  

3.  MATHEMATICAL MODEL →→→→ MATHEMATICAL SOLUTION: 

3.1 Applying appropriate symbolic formulae  

3.2 Applying algebraic simplification processes to formulae to produce more sophisticated functions  

3.3 Using technology/mathematical tables to perform calculation  

3.4 Using technology to automate extension of formulae application to multiple cases  

3.5 Using technology to produce graphical representations  

3.6 Using correctly the rules of notational syntax (whether mathematical or technological)  

3.7 Verifying of algebraic model using technology  

3.8 Obtaining additional results to enable interpretation of solutions  

4. MATHEMATICAL SOLUTION →→→→ REAL WORLD MEANING OF SOLUTION: 

4.1 Identifying mathematical results with their real world counterparts  

4.2 Contextualising interim and final mathematical results in terms of RW situation (routine → complex versions) 

4.3 Integrating arguments to justify interpretations  

4.4 Relaxing of prior constraints to produce results needed to support a new interpretation  

4.5 Realising the need to involve mathematics before addressing an interpretive question  

5. REAL WORLD MEANING OF SOLUTION→→→→ REVISE MODEL OR ACCEPT SOLUTION:   

5.1 Reconciling unexpected interim results with real situation   

5.2 Considering Real World implications of mathematical results  

5.3 Reconciling mathematical and Real World aspects of the problem  

5.4 Realising there is a limit to the relaxation of constraints that is acceptable for a valid solution  

5.5 Considering real world adequacy of model output globally  

Figure 2. Refined framework for identifying student blockages in transitions. 
 

Practical Applications: Using the Framework  

With respect to the questions raised by Turner (2007) about how we can promote the 

mathematical thinking underlying modelling tasks, our attention turns to the use of this 

transitions framework and Figure 1 to examine the implementation by a teacher and 

experience by students of a real world task. In order to identify the mathematical thinking 

that is being promoted by the task and the competencies required for a successful experience, 

we answer the following questions:  

• What kinds of cognitive activites are students engaging in when the task is 

structured and implemented in this manner? 

• With respect to the task as a modelling experience, what competencies 

(mathematical/modelling/technological) must students have to complete the task 

successfully? 
 

The implementation of the task, The Bungee Experience, was chosen to illustrate the 

utility of the framework for three reasons. Firstly, it has fewer transition elements than more 
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complex tasks. It is one of a series of modelling and applications tasks used in this year level 

at the school concerned so it is not necessary for all tasks to promote all elements of Figure 2 

but it is important for pedagogical decisions to be based on informed judgements about the 

nature of the elements it does include or exclude. Secondly, the task, in various forms, has 

been used as both a teaching task and an assessment task as in this instance. The possibility 

arises that the teacher’s purpose for the task also affects the elements that are promoted and 

the competencies required. Thirdly, this particular implementation was followed by a lesson 

reflecting on the model the students had used. 
 

 

The Bungee Experience: Barbie has turned 40. Her friend Ken has given her an extreme sports experience, part 

of which is an afternoon’s bungee jumping. Your task as the operator is to CALCULATE the length of Bungee 

Cord Barbie will need to jump from the given height‚ off the Bungee tower. Remember there is concrete below 

and we don’t want to mess up Barbie’s hair.  

During the next two maths periods your team will: 

1. Conduct measurements in the classroom to determine a model that links the fall distance to the number of 

rubber bands used for a shock cord.  

2.  Record your data, the graph for the data, and your linear equation.  

3. Test your model by predicting the requirements for a fall from an unknown height.  

(This height was announced later. Suggestions were provided as to how to collect data and display results. 

Students used a doll, usually Barbie or a toy such as Poombah the Warthog for the Bungee Jumper.)  

Method 

The task was implemented in a Year 9 class of 21 students during one 100-minute 

double period. The reflection lesson comprised the next 50 minute mathematics lesson two 

days later. Two video cameras were set up in the classroom. These were mainly focused on 

the class as a whole at the beginning of the double lesson and then on the collaborative 

activity of two focus pairs of students. At times, critical incidents involving other students 

were also videotaped. A third focus pair of students were audio-recorded. One camera was 

used to record the the reflection lesson and the jump phase of the implementation lessons 

when the class went outside and tested their bungee chords. Scripts from the 10 groups and 

rough working sheets from focus groups were collected. Five students participated in post-

task interviews. Only one of these students was from the focus groups. Field notes were also 

made by the researchers during and immediately after the lessons. 

All audio and video data were transcribed for analysis. The transcripts, in conjunction 

with the video recordings, were analaysed at a macrolevel to identify episodes where 

students encountered and resolved (or otherwise) blockages between the identified 

transitions. Each episode was coded using elements of the transitions framework in Figure 2 

then subjected to intense microanalysis to see if it shared the same characteristics as the 

elements of the framework identified previously or if further elements needed to be added. 

There were none. At the end of this process a framework showing the potential blockages 

was produced. Finally, typical instances of the cognitive actvities engaged in by students in 

the task and the competencies that underpin successful transitions from one modelling phase 

to the next were identified. 

Results 

Figure 3 shows the elements in each transition that were identified in this 

implementation of the task. Each element has two parts where key (generic) categories in the 

transitions between phases of the modelling cycle are indicated (in regular type), and 
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illustrated (in capitals) with reference to the task. Cognitive activities associated with the 

elements of transitions identified in Figure 3 are: understanding, simplifying, interpreting 

context; assuming, formulating, mathematising; working mathematically; interpreting 

mathematical output; and comparing, critiquing, validating. Evidence for selected examples 

of these activities is presented in the analysis of transitions that follows. Finally, the 

competencies for carrying these out successfully are identified. 
 

1. MESSY REAL WORLD SITUATION →→→→ REAL WORLD PROBLEM STATEMENT: 

1.1 Clarifying context of problem [WATCHING DEMONSTRATION & DISCUSSING PROBLEM SITUATION]  

1.2 Making simplifying assumptions [ELASTIC LIMIT NOT EXCEEDED; AERODYNAMICS OF TOYS CAN BE IGNORED] 

2. REAL WORLD PROBLEM STATEMENT →→→→ MATHEMATICAL MODEL: 

2.1 Identifying dependent and independent variables for inclusion in algebraic model [FALL DISTANCE AND NUMBER OF 

ELASTIC BANDS – WHAT CONTROLS WHAT] 

2.3 Representing elements mathematically so formulae can be applied [POINTS] 

2.4 Making relevant assumptions [LINEAR MODEL APPROPRIATE EVEN WHEN DATA POINTS APPEAR TO FOLLOW CURVE] 

2.5 Choosing technology to enable calculation [RECOGNISING HAND METHODS ARE NOT SUFFICIENT] 

2.7 Choosing technology to produce graphical representation of model [GRAPHING CALCULATOR WILL GENERATE PLOT OF 

FALL DISTANCE FOR DIFFERENT NUMBERS OF RUBBER BANDS] 

3.  MATHEMATICAL MODEL →→→→ MATHEMATICAL SOLUTION: 

3.1 Applying appropriate formulae [EG. LINEAR MODEL TO FIND PREDICTED NUMBER OF BANDS] 

3.3 Using technology/mathematical tables to perform calculation [SUCCESSFUL CALCULATION OF GRADIENT] 

3.5 Using technology to produce graphical representations [EFFECTIVE USE OF GRAPHING CALCULATOR STATPLOT] 

3.8 Obtaining additional results to enable interpretation [PLOTTING EXTRA VALUES TO TEST HUNCHES]  

4. MATHEMATICAL SOLUTION →→→→ REAL WORLD MEANING OF SOLUTION: 

4.1 Identifying mathematical results with their real world counterparts [INTERPRETING PREDICTION VALUE]  

4.2 Contextualising interim and final mathematical results in terms of RW situation (routine versions) 

 [GRADIENT MEASURES HOW FAR IT WILL FALL PER BAND] 

4.3 Integrating arguments to justify interpretations [PRESENTING REASONED CHOICE FOR METHOD OF FINDING EQUATION OF 

LINEAR MODEL] 

4.4 Relaxing of prior constraints to produce results needed to support a new interpretation [CAN USE POINTS INVOLVING 

HALF BANDS TO FIND GRADIENT OF LINEAR MODEL]   

5. REAL WORLD MEANING OF SOLUTION →→→→ REVISE MODEL OR ACCEPT SOLUTION:   

5.1 Reconciling unexpected interim results with real situation [RECONCILING THE RESULTS OF TESTING THEIR PREDICTIONS 

26 BANDS WITH BARBIE VERSUS 26 WITH POOMBAH] 

5.2 Considering Real World implications of mathematical results [LOCAL – DO INDIVIDUAL CALCULATIONS/GRAPHS ETC 

MAKE SENSE WHEN TRANSLATED TO REAL WORLD MEANINGS?] 

5.3 Reconciling mathematical and Real World aspects of the problem [SIGNIFICANCE OF Y-INTERCPET IN LINEAR MODEL & 

HOW IT COULD BE USED TO PARTIALLY EVALUATE MATHEMATICAL EQUATION CONSTRUCTED]  

5.5 Considering real world adequacy of model output globally [MODEL PROVIDES ALL ANSWERS TO RW PROBLEM & 

EXTENDS TO OTHER SITUATIONS] 

Figure 3. Framework showing transition elements in Barbie Bungee implementation. 

Transitions 

Messy real world situation � Real world problem statement. In this implementation this 

transition presented no blockages to students’ progress. The teacher demonstrated how to 

topple the doll and the attaching of bands to the doll’s ankles (1.1). In other implementations 

viewed by the researchers, difficulties arose when students attempted data collection with the 

doll upside down hanging from her toes or they threw the doll rather than toppled her from a 

standing position. A major assumption (1.2) is that the bands will stretch at a constant rate 

and not exceed their elastic limit when the model is used to extrapolate well beyond the set 

of collected data (maximum drops of around 2m in a classroom). This assumption was 

debated by students during the reflection lesson. 

Ray:  But eventually shouldn’t the rubber bands snap therefore it can’t [interrupted]  

Teacher: It would if the weight component enables it, and ultimately the weight of the rubber band 

itself causes problems. There are some problems in the linear model … 

Dale:  Instead of snapping it could get 0.3 cm longer by bending so our calculations 
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Ray:  [interrupting] But eventually it is going to bend. It is going to snap. 

Dale:  Stretch! 

Ray:  It is not a linear model!  

Tine:  Rubber bands stretch. 

Dale:  That would make our distances vary. 

Teacher: It has to stretch. It gets to what is called its elastic limit and then the linear part changes, 

okay? … but in terms of 8 bands we would probably get away with a good approximation. 
 

In this implementation it was also assumed that the aerodynamic characteristics of toys such 

as Poombah would have negligible impact (1.2). When Poombah dropped about half the 

distance of a Barbie doll with the same length Bungee cord, one student suggested that 

perhaps it was a weight difference. No students raised its aerodynamic characteristics. From 

a modelling perspective, some of the responsibility for elements of formulation such as 

identifying the strategic entity and specifying its elements were removed from the students as 

they were told they were to collect fall distance data. 
 

Real world problem statement � Mathematical model. Even though students were told 

to collect fall distances for 3 to 8 rubber bands, not all students easily recognised which of 

these was the dependent and which the independent variable in the situation (2.1). Bea and 

Sue for example, had them reversed initially and remained unsure they were correct when 

they swapped them. Students choice of points for calculating gradients for lines of best fit 

(2.3) caused some delays in moving on from their models when algebraic manipulation 

produced equations with intercepts that clearly were too large. Although the task setter had 

already made many decisions in this transition for students by specifying a linear model be 

made and choosing the technology to use for a plot (graph paper), some students (e.g., Evan) 

decided to question whether they should use a linear model as their plot showed their data 

were curved (2.4) or chose to use a graphing calculator to check their hand drawn plot (2.7). 

It did not occur to Evan to check his data rather than merely question the model.  
 

Mathematical model � Mathematical solution. Sue and Bea did not use an appropriate 

linear model when they calculated the number of bands for their prediction (3.1) believing 

that they should choose plotted points in such a manner that the line would pass through the 

origin. They later told the teacher this was because they expected a y-intercept of zero as 

Barbie would stand and not fall at all if the length of the Bungee cord was zero. Unlike 

previous implementations of the task, no students obtained additional results or attempted in 

some way to test their models before the Jump Phase, although Sue suggested they test their 

model using 9 bands but they failed to do so (3.8). 
 

Mathematical solution � Real world meaning of solution. Possible dilemmas for 

students in this transition occur when students do not identify mathematical results such as 

the gradient and the y-intercept with their real world counterparts (4.1) and when they need 

to contextualise interim and final mathematical results in terms of the real world situation 

(4.2) for example, when predicting a shock cord length for their test jump outside the 

classroom. The doll was to be dropped so as to stop as close to the ground as possible. When 

the students finally found their mathematical result for the predicted number of bands, 

decisions had to be made about whether they should round up, truncate their answer, or over 

or under estimate. The real world implication (5.2), that rounding up or over estimating 

would mean the doll would hit the ground was foreseen by four groups.  

Tony:  So we need 24 rubber bands. 

Reg:  Yeah. Should we go with 23 just to be safe? Or should we just go 24. 
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Tony: No 24 because look point [Calculator shows 24.3950762] 

Reg:  All right. So we rounded down because if it hits the ground we have to clean the tennis courts. 
 

Two other groups rounded their result up, in keeping with expected classroom practice, 

clearly not considering the implications in the context, with Tine, Lil, and Ally showing their 

prediction resulted in a fall distance of 441.3 cm exceeding the jump distance of 440 cm. 

Others such as Ray fortuitously rounded down giving no thought to the context. 

Researcher: 27.16 recurring. So why did you round down? Do you just always do that? 

Ray:  I don’t know I just rounded down. Should I have rounded up? Well, even if it was a 9 it 

would have made it 27.2 and that is still not enough to round up anyway. 
 

Real world meaning of solution� Revise model or accept solution. As students tested 

their predictions many were puzzled as to why these were wrong. They had difficulty 

reconciling the jump results with the mathematics of the situation (5.1), which they did not 

use to evaluate their models. Ray and Joe’s Barbie made an almost perfect jump with 27 

bands whereas Di and Ash’s Barbie with 28 bands was about 70 cm short. There was no 

discussion of the difference in their models, y = 15x + 32.5 and distance (cm) = 14 × rubber 

bands + 38.3, although the teacher brought to the students’ attention the role of the gradient 

in determining how many more bands to add after he allowed them a third jump. In the 

reflection lesson student discussion teased out the meaning of the gradient. 
 

Teacher: What does the gradient measure? In Barbie’s case what does the gradient measure? 

Dale:  Rise divided by run. 

Teacher: Yeah, that’s how you calculate it. What does it actually physically mean? 

Tony:  How many rubber bands. 

Ray:  How far it would fall per rubber band. 
 

No students showed evidence of realising the significance of the y-intercept in their 

mathematical model and how it could be used to evaluate partially the mathematical 

equation they had constructed (5.3). This was discussed in the following lesson when the 

students reflected on the model they had made. In the exchange below they are discussing a 

linear equation of the form y = mx + c where c is 25.4. 

Teacher: What was the 25.4 in Barbie or, if you had Poombah (the Warthog) it was less. 

Tine:  The length of Barbie. 

Teacher: It was the length of Barbie. Now I had this discussion with a couple of people [Bea snd Sue] 

about how many rubber bands, how far Poombah or it would fall. Some said, “Zero”, but the 

thing is that Barbie would fall … So she would still be hanging by her toenails… a lot of the 

times you get c values that don’t make a lot of sense. In Barbie’s case it did. 
 

The reflection lesson continued with students suggesting and discussing many other 

applications of linear models (5.5) such as mobile phone plan charges, cost of purchasing 

concert tickets over the phone, council service charges, and electricity costs. 

Competencies 

Modelling and mathematical competencies identified as being required for the task, and 

graphing calculator technological knowledge required for the task are presented in Figure 4. 

Modelling and mathematical competencies: 

 To identify from the available information what is relevant and what is irrelevant, 

 To make simplifying assumptions about the situation, 

 To recognise relevant variables and to mathematise these,  
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 To make relevant assumptions to enable mathematics to be applied, 

 To select technology where needed to enable or check calculations, 

 To chose appropriate methods of representing, checking and testing the model, 

 To select and apply appropriate formulae (e.g., general form of linear model: y = ax + b., gradient: ∆y÷∆x), 

 To use technology appropriately to perform calculations, 

 To use mathematical knowledge to solve the problem,  

 To obtain additional results to enable interpretation, 

 To link mathematical results with their corresponding real world components, 

 To generalise or extend solution, 

 To critically check results with the real situation, 

 To consider implications of decisions and results. 

Technological knowledge needed for effective use of a graphing calculator: 

 To know data can be entered into LISTS and LIST data can be plotted, 

 To use of Homescreen of a calculator to perform calculations, 

 To know how to Plot correctly and effectively. 

Figure 4. Modelling and mathematical competencies and technological knowledge for Barbie Experience. 

Practical Implications for the Curriculum and Classroom 

The framework we have devised allows a researcher, teacher, or curriculum designer to 

identify the particular competencies that students would need in order to complete a 

particular modelling task successfully. By identifying difficulties with generic properties the 

possibility arises of teachers/researchers/curriculum designers being able to predict where in 

given problems, blockages of different types might be expected. This understanding then 

contributes to the planning of teaching, in particular the identification of necessary 

prerequisite knowledge and skills (including modelling competencies), preparation of 

interventions for introduction at key points if required, and the scaffolding of significant 

learning episodes. As well as identified blockages showing teachers what they may need to 

address to help students overcome blockages the framework also informs the teacher who is 

trying to move from dependent to independent modelling by students (Leiβ, 2005). 

Although it is acknowledged in many curricula documents (e.g., Ministry of Education, 

1992; OECD, 2003; QBSSSS, 2000; VCAA, 2005) that mathematical modelling is an 

essential component of secondary schooling, implementing this is no simple task. 

Considering how mathematics can be used to solve real problems, requires students to make 

decisions about many aspects of the task. Whilst this is an important part of the learning 

process, it can place the teacher in the position of needing to provide appropriate scaffolding 

“on the spot” when some unforseen blockage is encountered by one or more students. This 

can be a challenge for the most experienced teacher. Thus, both practising and pre-service 

teachers could benefit from the use of a tool. 

By mapping the task and its intended implementation to the transitions Framework  

(Figure 3), prior to the actual implementation, teachers can identify the specific activities 

with which the student modellers need to have competence in order to apply their 

mathematical and technological knowledge successfully to the problem. Identifying potential 

blockages can inform planning of teaching. This does not mean making decisions for 

students to avoid their confronting blockages, rather it allows the teacher to be well 

prepared, expecting particular blockages and better supporting students to overcome these. It 

also gives teachers information on which to base decisions about the preparedness of their 

students to complete a particular task. 
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One task can be easily modified to suit a range of purposes using the Framework. These 

purposes vary and include: the intent of the mathematical modelling (e.g., as a vehicle to 

teach modelling competencies or to legitimate mathematical content), the time that can be 

allocated to the task, the purpose being assessment or learning focused, previous experience 

of the teacher in implementing modelling tasks, previous experiences of students with 

modelling tasks, the technological expertise of the students, and the mathematical 

knowledge of the students. By using the Framework, teachers and others can modify a task 

to suit their particular purpose and constraints.  

Teachers and curricula designers wishing to implement a series of modelling tasks over 

the course of a year can use the Framework to ensure that, although not all elements will be 

addressed in every task, every element is included in as many tasks as necessary to develop 

students’ modelling competencies. The incorporation of formulation and reflection activities 

are critical to developing modelling skills.  
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Responding to an instrument we developed to give insights into students’ orientation to, and 
motivation for, learning mathematics, Year 8 students showed more confidence in their 
ability to learn mathematics and in their persistence than observations of their classes would 
indicate is warranted. They identified a negative influence of peers for some classmates but 
less for themselves, and had modest career aspirations. We believe teachers can assist 
students by becoming aware of their orientations to learning, their perceptions of the value 
of schooling, and their further vocational aspirations, and by finding ways to overcome 
factors inhibiting their engagement in school.   

Introduction 

The under-participation of students in learning in the middle years in Australia 
(students aged 10 to 14) is both widely reported and persistent (e.g., Hill, Holmes-Smith, & 
Rowe, 1993; Russell, Mackay, & Jane, 2003). This under-participation, in the case of 
learning mathematics, may be a product of some students: lacking confidence and giving 
up readily (e.g., Dweck, 2000); not connecting current learning opportunities with their 
future goals (e.g., Sfard & Prusak, 2005); and experiencing discontinuities between the 
curriculum, the pedagogy, assessment regimes, and their own culture and family influenced 
expectations (e.g., Delpit, 1988). 

Ideally, to promote student engagement in learning, two sets of factors must align. The 
first set of factors include that the students have the requisite prior knowledge, the 
curriculum is relevant to them, the classroom tasks interest them, and the pedagogies and 
assessment regimes match their expectations. The second set of factors relate to their goals 
for learning, their willingness to persist, and the extent to which they see participation in 
schooling as creating opportunities. The focus of this paper is on assisting teachers to 
address the second set of factors, even though the challenge for teachers of middle years 
classes, in particular, is to address both sets of factors, more or less simultaneously.  

In an earlier study, we investigated individual students’ perceptions of the extent to 
which their own efforts contribute to success in mathematics (Sullivan, Tobias, & 
McDonough, 2006) and English (Sullivan, McDonough, & Prain, 2005) through two 
separate interviews where Year 8 students encountered increasingly difficult tasks. The 
intention was that eventually nearly all students would confront the challenge of a task that 
was difficult for them. The students were asked how they felt about the challenge they 
experienced, and the type of support they needed to solve the problem. The survey included 
items adapted from three instruments proposed by Dweck (2000), and asked students to 
rate their self confidence and achievement, their persistence, their perception of the value 
of schooling, and what constitutes successful learning.  

We found that the students were surprisingly confident in their own ability, they 
perceived effort as important and themselves as trying hard, and saw these as linked. The 
students seemed to have short term goals, aiming to please the teacher by getting questions 
correct and scoring well on tests. We further found that a significant minority of responses 
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referred to the negative influence of classmates. In such cases, a lack of observable effort 
could be a result of a desire to be popular or a fear of censure by peers. The present study 
extends this to examine ways that teachers might be able to support students to overcome 
inappropriate orientations and negative influences. 

The Orientation of Students to Learning 

Both the previous work and the current study draw on the work of Ames (1992) and 
Dweck (2000) who categorized students’ orientation to learning in terms of whether they 
hold either mastery goals or performance goals. Students with mastery goals seek to 
understand the content, and evaluate their success by whether they feel they can use and 
transfer their knowledge. They tend to have a resilient response to failure, they remain 
focused on mastering skills and knowledge even when challenged, they do not see failure 
as an indictment on themselves, and they believe that effort leads to success. Students with 
performance goals are interested predominantly in whether they can perform assigned tasks 
correctly, as defined by the endorsement of the teacher. Such students seek success but 
mainly on tasks with which they are familiar, they avoid or give up quickly on challenging 
tasks, they derive their perception of ability from their capacity to attract recognition, and 
they feel threats to self worth when effort does not lead to recognition.  

Dweck (2000) connected these goals with two perspectives on intelligence: a fixed 
perspective termed entity theory that refers to students who believe that their intelligence is 
genetically predetermined and remains fixed through life; and an incremental perspective 
in which students believe that they can change their intelligence and/or achievement by 
manipulating factors over which they have some control. Students with incremental 
perspectives tend to hold mastery goals, whereas an entity view can result in performance 
goals.  

Of course, most students hold a mix of these types of goals, and there is considerable 
complexity within each type. For example, performance goals to please a teacher can 
motivate students to complete tasks satisfactorily as long as the teacher’s endorsement is 
forthcoming (Elliot, 1999). Such goals can also lead to performance avoidance in which 
students choose not to engage in tasks for fear of failure and the risk of teacher censure. 

More recently researchers have recognised the complexity of factors influencing 
students’ orientations to learning. Watt (2004), for example, argued that course choices and 
achievement are related to students’ self-perceptions, including their rating of their ability, 
and their expectations of success, the value they attribute to the particular content, such as 
its intrinsic value and its usefulness, and their evaluations of a particular task, such as its 
difficulty and the amount of effort required to complete it. Similarly, Martin and Marsh 
(2006) described adaptive or helpful characteristics of students’ orientation to learning as 
the extent to which they feel they can succeed at a task, their valuing of school, mastery 
orientation, persistence, planning, and self management.  

Drawing on these approaches, this research examines students’ self perceptions of 
confidence and effort, aspects aligned with Watt’s rating of ability, expectations of success, 
and effort to complete the tasks, and to Martin and Marsh’s self efficacy and persistence, as 
well as Dweck’s (2000) entity/incremental distinction, which is connected to Martin and 
Marsh’s (2006) mastery orientation. 

We are also interested in examining external influences on effort. For this we draw on 
Hannula (2004) who explained that potentially negative influences on effort are derived 
from adolescents’ need for identity, autonomy, and social connectedness that are often 
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enacted in negative ways, such as by challenging the authority of the teacher, and by 
conforming to peer pressure to under-perform. 

Further, we see potentially positive influences as including the extent to which students 
connect current schooling with future opportunities or their possible selves, which is “the 
future-oriented component of self-concept” (Oyserman, Terry, & Bybee, 2002, p. 313). 

Research Context and Data Collection  

As a first step, we used a questionnaire to seek students’ responses to items addressing 
such issues, with the intention of subsequently using their collective responses as a prompt 
for discussion with their class on the implications of trends in the results. 

The questionnaire used in the earlier study was based on items proposed by Dweck 
(2000), predominantly seeking to discriminate between students who had incremental or 
entity views on intelligence, and mastery or performance goals. For this current study, we 
chose the items from the earlier questionnaire that discriminated between the responses of 
the students, and added open response items on students’ job aspirations, their perception 
of the effort of others in their class, and their ideas about causes of other students’ lack of 
effort. We removed most negatively worded statements, since we found that these were 
difficult for weaker readers to interpret. Overall, our intention was for the instrument to be 
brief, clear, unambiguous, individually completed, easily analysed, and completed in under 
15 minutes requiring minimal assistance or explanation. The new instrument was piloted 
with similar students to the target population, one on one, with the students talking aloud as 
they responded, and resultant changes were made to clarify wording. In this piloting we 
found that the items were clear for students who were fluent readers, although we were 
surprised with some wordings that proved difficult (e.g., suburb) for weaker readers. We 
adjusted the protocol for administering the tool to allow explanations of words that were 
not clear. Subsequent interviews with a selection of students, including weak readers, 
indicated that those students comprehended the questions. 

Responses to the final instrument were sought from students in year 8 (age 13) in three 
government secondary schools, and one Catholic school, in a regional city in Australia. 
There were a total of 205 responses, 101 male and 104 female, with 15, 41, and 39 
respectively from the government schools and 110 from the Catholic school. The schools 
served predominantly lower socio-economic families. The regional city is prosperous, 
overall community infrastructure is good, and there are ample further education and 
employment possibilities for school leavers.  

In each school, we interviewed three students in each class following the completion of 
the questionnaire: one student identified by the teachers as a high achiever, one as a low 
achiever, and the other in between. Generally the students interviewed endorsed their 
responses on the questionnaire, and it seems that the instrument does give insights into 
most students’ thinking. 

We also conducted a class discussion with one group of students who responded to the 
questionnaire in which we presented their results in the form of a “research seminar” and 
sought their responses. The rationale was that if students become more aware of their 
respective individual responses in comparison with the group responses overall, and if they 
consider possible implications of their responses, this might allow more active decisions on 
the connections between their current effort, their learning and future opportunities. Bar 
graphs were presented to the class, the interpretation of the graphs was clarified, the 

Mathematics: Essential Research, Essential Practice — Volume 2

700



students discussed the graphs in groups, the groups reported to the whole class, and these 
reports were recorded, and transcribed.  

Results 

The results presented here are from items addressing the students’ confidence and 
perceptions of their own effort, their reported commitment to an incremental perspective on 
intelligence, the influences on their effort including the negative influence of their peers, 
and their future career aspirations. We also present data on the students’ suggestions of 
what can be done to address the issues raised, and including responses from a particular 
“research seminar” style intervention.  

The tables present the frequency of each of the six response options (strongly agree, 
agree, mostly agree, etc.). There was no attempt to quantify confidence in the instrument 
overall, such as using Cronbach Alpha, since the items were addressing quite different 
constructs, and the items and responses can be taken on face value.  

Students’ Confidence and Effort 

Table 1 presents responses of students to the item relating to confidence. Nearly all of 
the students report confidence in their ability to learn mathematics. 

Table 1 
Self Perceptions of Confidence (n=205) 

 Strongly 
agree 

Agree Mostly 
agree 

Mostly 
disagree 

Disagree Strongly 
disagree 

I feel confident I can learn most 
things in maths 

56 87 50 10 1 1 

 

Table 2 presents the items seeking their self-perception of how they felt their effort 
would be reported by friends. The stems were phrased in this way to create a sense of 
distance for the students, and perhaps get more accurate responses. In the previous study, 
the students’ responses to more direct items seemed unrealistic. 

Table 2 
Perceptions of How Effort would be Seen by Friends (n=205) 

 Strongly 
agree 

Agree Mostly 
agree 

Mostly 
disagree 

Disagree Strongly 
disagree 

My friends would say that I keep 
trying when our maths work gets hard 

24 60 69 28 15 9 

My friends probably think I give up 
quickly when maths gets hard 

9 16 24 34 76 46 

 

These items were designed to get two perspectives on the same variable. Even though 
the distribution of responses seems similar (with one reversed), the responses were not 
significantly correlated. The majority of the students report that they consider that their 
friends would think they try hard, although there is a substantial minority who do not think 
so. Overall we can infer that most students are satisfied with their level of effort.  

It is interesting to contrast these responses with the comments by their teachers who 
report low levels of persistence and significant difficulties in engaging students in learning 
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mathematics. Based on our observations in mathematics classes, the students overall seem 
neither confident in their learning nor do they try hard. This is discussed further below. 

Entity vs Incremental Views of Mathematics Ability 

We were also interested in students’ responses to items seeking their views on the 
nature of ability for mathematics learning. The items are presented in Table 3.  

Table 3 
Commitment to Incremental or Entity Perspectives of Ability (n=205) 

 Strongly 
agree 

Agree Mostly 
agree 

Mostly 
disagree 

Disagree Strongly 
disagree 

Anyone can be good at maths if they put 
their mind to it 

81 70 42 10   2   0 

People are either good at maths or not. 
They cannot get better by trying 

 7 12 16 23 62 85 

 

The responses to the two items are significantly correlated (r = - 0.2, p < .05), and the 
distributions are similar. Across each of the schools, the responses of these students 
indicate a strong commitment to an incremental view of intelligence.  

Influences on Effort 

Part of the rationale for the questionnaire is to offer teachers prompts that they can 
discuss with their students. One key focus could be the effort of the class and the influences 
on that effort. The following presents some questionnaire responses and some responses of 
students during an intervention with one class. Table 4 summarises the responses to the 
prompt “Tick the statement that best describes your maths class”.  

Table 4 
Student Perceptions of the Effort of their Maths Class (n=205) 

 Frequency 

All try their best 18 

Most try their hardest, a few could try harder 108 

A few try their hardest, most could try harder 55 

All students could try much harder 24 
 

Over half of the students report that most in their class try hard. Overall the students 
report a positive orientation to effort for their class, although a significant minority think 
that students could try harder. 

There was an open response item, “If there are any students who do not try their hardest 
in maths, why do you think this is?” The responses were categorized to simplify reporting. 
The more frequently cited categories, using our words, can be summarized as: lack of 
motivation or laziness; dislike of mathematics; boredom; difficulties with understanding of 
the mathematics; desire to be popular; and lack of sense of future. These categories could 
perhaps have been anticipated, nevertheless the responses give teachers some indication of 
ways that they might address the engagement of their students.   

In the earlier study, the responses to open items and interview questions suggested that 
there was a significant minority of students whose effort and participation were negatively 
influenced by peers. Since this was an important and unanticipated result, we included a 
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number of further items that sought responses related to influence of the class on the effort 
of others or themselves, the results of which are in Table 5. The first item in the table seeks 
a response about other students, and the others refer to the influences of the class on 
themselves as individuals. 

Table 5 
Influences of Other Students on Effort (n=205) 

 Strongly 
agree 

Agree Mostly 
agree 

Mostly 
disagree 

Disagree Strongly 
disagree 

In my maths class, some students don’t 
try hard because they are afraid of what 
other students might think of them 

35 52 44 39 24 10 

I would try much harder in a different 
maths class. This class holds me back 

8 11 28 44 76 38 

I am able to try my hardest in maths. The 
rest of the class doesn’t make any 
difference to me 

54 68 57 16 7 3 

In maths, I try my hardest in maths no 
matter what the other students think 

51 78 56 13 4 3 

 

The negatively worded items were retained because they seem to offer an additional 
perspective, and it also seemed that weak readers could interpret them. The trend is clear 
across the items, and the responses to each are significantly correlated with the others. 
Most affirm their own effort irrespective of other class members, and they deny that the 
other class members have a negative influence on their own effort. There is a minority who 
acknowledge a negative influence of peers. 

An intervention seeking to explore this further consisted of presenting these tabulated 
results to students as column graphs, clarifying that they could interpret the graphs, inviting 
them to discuss, in groups, the reasons for the responses of the classes as portrayed in the 
graphs, and then facilitating reporting back by the groups with some whole class 
discussion. The following are representative extracts from two groups of students reporting 
on their discussion in response to the first item in Table 5. 

Most people try their hardest because they don’t want bad marks, but some people didn’t try because 
they didn’t want to look like nerds, and some people are sitting next to smart people so they felt like 
being smart and doing it, but sometimes there’s a dumb group and they don’t want to look like a 
nerd in front of everyone. 

We just talked about how people try to get good marks but some people don’t try to become nerds 
and stuff, to get kicked out of social groups and things like that. 

In other words, the students are reflecting the results in Table 5 with a recognition that 
most students try hard, but there are some who are negatively influenced by others. Another 
group more explicitly connected effort with criticism. 

Because if you try hard in maths, people think you’re a nerd and then you get teased. Because if 
you’re smart usually no one likes you, as in they don’t not like you but they just call you names 
because you’re smart, and when you’re not smart they just… 

This illustrates the subtlety of the effect. It appears there is not a direct correlation between 
not being liked and effort, although effort is likely to draw comment. In a similar way, 
another of the groups noted: 
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There are loser nerds that are losers, and if they’re nerds, they are…if you’re popular and you are a 
nerd you’re going to still have all your friends around you, and if you’re a loser you’re going to have 
no friends around you and no one defending you. 

As did the class teacher, this group noted that some students who try hard, even if 
considered “nerds”, are still popular, and so presumably willing to try and achieve despite 
any criticism whereas the “loser nerd” seems vulnerable. These are issues on which 
teachers could build further discussion. Again the comments confirm the tabulated results 
and suggest that the influence of others is indeed an issue that classes could productively 
discuss. 

Future Aspirations 

It is assumed that students who have future career aspirations that might include tertiary 
education would be more orientated to positive participation in school. To explore this, the 
following open question was posed “What type of job do you want to do after you leave 
school?” Not all students responded to this item. 

We categorised 68 responses as “professional”: medicine/health (20), ICT (9), 
veterinarian (14), lawyer (7), science (2), small business (5), architect (6), and teacher (5).  

Eighty-two responses, described as “non professional”, included entertainment (13), 
beauty (16), sports (11), and military/police (9). The 13 responses that indicated they did 
not know what career they would pursue were included as “non professional” in that it is 
assumed that lack of a specific career aspiration would not be a positive motivating 
influence. Likewise, the 20 students who indicated a particular trade were included. Even 
though trades require post-school study, an aspiration to be a plumber, for example, is not 
usually associated with greater attention to learning mathematics. The item from the 
questionnaire that addressed career aspirations is presented in Table 6. 

Table 6 
Effort and Job Opportunities (n=205) 

 Strongly 
agree 

Agree Mostly 
agree 

Mostly 
disagree 

Disagree Strongly 
disagree 

Trying hard in maths will give me 
more future job opportunities 

    120 66   12    5    1     1 

 

There were no significant differences between the responses of the students from 
different schools. The majority of the students connected effort with increased job 
opportunities. It is interesting to compare this with Beavis, Curtis, and Curtis (2005) who 
reported that students were more likely to have not planned post-school education if they 
had below average levels of achievement, and if they had educational aspirations, these 
were more likely to be apprenticeships for trades. 

To investigate this further, we cross tabulated the responses of the 30 students who 
strongly agreed with the proposition, “I feel confident I can learn most things in maths” 
with whether their aspirations were professional, as described above, or not. We found that 
it was more likely that students with professional aspirations would be part of this “more 
confident” group than those without professional aspirations. We also cross tabulated the 
career responses with those who strongly agreed with the statement, “My friends would say 
that I keep trying when our maths work gets hard”, but students with professional 
aspirations were not more likely to choose the “strongly agree” category than the others.  
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In the class discussion, a question was posed contrasting their responses to the 
questionnaire item that effort in mathematics class is connected to job opportunities with 
the earlier discussion of influences on effort. Two of the groups responded as follows. 

Because we don’t think that it’s important. We’re not like really thinking of what we want to be right 
now, and we’re not thinking of how failing a subject … is going to affect our jobs and stuff. 

Another group responded: 

If you’re at school and you sit down and you have to do maths or something, you’re not really 
thinking…like, if someone asks you a question, “Will maths affect what job you get when you’re 
older”, you can like sit down and think about it, you go, of course it’s going to affect it. But when 
you sit down in maths, to do your maths after recess or lunch or whatever, you don’t really think 
what I do right now is going to affect what I’m doing in 15 or 20 years.  

Yet another group compared the influence of friends and consideration of the future: 

When you’re in school, you don’t really think about, like, that work is important, you only think that 
your friends are important and what you do at recess and lunch and not in classes and that. 

It seemed that the students took the point, and that they are also both reflective and honest 
in their assessment.  Such responses would provide an opportunity for teachers to pursue 
the issue further with the students, and perhaps find ways to connect current efforts with 
future opportunities more explicitly. 

Discussion and Conclusion 

The limited number of responses is due to stringent procedures for seeking parental 
approval, and this process may have biased the sample. Nevertheless this potential bias 
would make the results more severe. In other words, the students who did return the ethics 
approval forms were presumably those more positively oriented to schooling. 

One of the results of interest is the positive self ratings of the students’ confidence that 
they can learn mathematics. It is possible that the students’ self perceptions are accurate, 
and there are other factors constraining their participation in learning. It is also possible 
that the items do not allow students to communicate their actual confidence and self 
perception of effort. It is also possible that the students’ self perceptions may be inaccurate, 
in which case some attention to these unrealistic perceptions is necessary. This explanation 
is favoured by Dweck (2000) who argues that some teachers give students unrealistic 
positive evaluations of their achievement, and even conspire to reduce challenge to produce 
success. In other words, it seems important that assessments of students’ performance are 
realistic, and that teachers should be encouraged to affirm effort more than achievement. 

Another result relates to the influence of peers. Most students acknowledged this 
negative influence of peers on some others, but denied that it influenced them. The 
instrument and the results also raise the possibility that there is a significant minority of 
students for whom this factor is a negative influence. Recently the first author was teaching 
a year 8 class. The class was asked to work out what percentage calculations expressed in 
the form “50% of 200” they could work out in their head. The intent of the task was that 
the children would realise that it is possible to calculate some percentage calculations in 
your head, and then make generalisations about what type of percentages are 
straightforward and can be calculated mentally and for which types it is more appropriate 
to use a calculating device. After a group discussion, a spokesperson for one of the groups 
of students in reporting back said, “Well you can get half of anything, and quarter of …” at 
which stage there was a chorus of derision from some other students about the nature of 
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this response. The students from the group that had formulated the response then refused to 
articulate their answer further even though it was clear that they were satisfying part of the 
task by seeking to form generalisations. Because some other class members were critical of 
students who were either seen to be trying hard or seeking to intellectualise their 
engagement with the task, these students then not only stopped working, but could not be 
encouraged to re-engage with the task. In other words, it seems that this negative influence 
of peers would be particularly detrimental if the teacher is hoping to promote 
argumentation as a pedagogical tool. 

The third result relates to the career aspirations of these students, in that only one third 
of the students listed a career aspiration that would be associated with success in 
mathematics at school. Even though the students discounted the motivational impact of 
their future aspirations, it seems that helping students to become aware that a decision not 
to work in order to please the peer group, or for some other reason, does have longer term 
consequences. It seems that teachers could assist students by making this connection 
between current effort and future opportunities more explicit. 

For each of these aspects of learning it is important that teachers are aware of the 
responses that their students would give. We conclude that a simple instrument similar to 
the one used in this case can provide a prompt for discussion and consideration of these 
potentially important issues. The hypothesis is that if teachers are aware of the orientations 
of their students they can intervene positively. Dweck (2000), for example, argued that 
teachers can teach self regulatory behaviours such as decoding tasks, perseverance, seeing 
difficulties as opportunities, and learning from mistakes. This capacity is evident in quite 
separate research strands on self fulfilling prophecy (e.g., Brophy, 1983), and motivation 
(e.g., Middleton, 1995).  

We suspect that, concurrent with considering ways of overcoming any difficulties their 
students may be experiencing with learning, teachers could well develop awareness of 
connections between study and career opportunities, encourage students to keep future 
options open (by studying), make tasks relevant to their lives, illustrate utility of learning 
mathematics to all, especially to those who do not aspire to continue with further study, and 
develop greater awareness of effort expended and required, and ways of overcoming 
negative influence of peers.  

A Possible Continuation of the Class Discussion 

To illustrate the way that the instrument and the ensuing discussion of results might be 
used, the following suggests some ways that teachers build on the students’ comments.  

With this class, there were a number of occasions that the students made responses 
wise for their age. For example, one group, in discussing the influence of peers, said: 

It’s good to be smart because then you know stuff, and if you’re dumb just so your friends like you 
then it’s really bad. Obviously they’re not your friends if they make you be dumb to be their friend. 

This response could be used by the teacher as the basis of further discussion on the 
potential for peers to be both a positive and a negative influence, and on ways that students 
could respond to negative peer pressure. For example, the teacher could: create a story 
scenario using photographs or drawing and invite the students to work out the sequence of 
the events; invite the students to write story about a time that they underperformed for fear 
of censure by their friends; have the students create a role play of a scenario; or ask them 
what how they might encourage a friend who was not trying. 
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In the same discussion, another student made a similarly interesting comment using a 
sporting perspective. 

…if you’re playing  and you mess up or something and you have a kick and it falls short or it goes 
out of bounds on the full where it shouldn’t, if you have someone on your team that says, ‘You’ll get 
the next one,’ you’re more confident to keep playing, but if someone is like, ‘What are you doing?’  

Even though students probably see sport and school as different, this response would also 
serve as a useful prompt for further discussion on ways that peers have the potential to be 
both supportive and critical, and on the positive influence that peers can have on effort and 
achievement.  For example, the teacher might follow up by asking: 

• How might “you’ll get the next one” help? 

• What would “you’ll get the next one” look like in a mathematics class? 
Responses of Year 8 students in the present study reveal awareness that perhaps is not 

expected of students who are less engaged in learning mathematics than would be 
desirable. We have argued that the insights provided by students can be a powerful starting 
point for addressing under-participation of students in middle years learning.  
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The Interactive Teaching and ICT project explored the process of interactive teaching and 

learning with and without ICT. A key technique in our methodology was the use of video-

stimulated reflective dialogue to assist teachers to reflect on key episodes in their teaching. 

In this paper we discuss how this technique was extended to encourage pupils between the 

ages of 5 and 14 to reflect on their learning of mathematics. Analysis of the reflective 

dialogues indicates that even quite young children were able to articulate opinions about the 

ways in which they learned and the ways in which ICT supported this.  

In recent years there has been significant investment in the provision of ICT resources 

for schools in England and Wales in the expectation that this will lead to improvements in 

teaching and learning. In particular, there has been significant investment in presentational 

tools such as data-projectors and Interactive White Boards (IWBs). However, research 

indicates that the impact of ICT on pedagogy and learning within mathematics classrooms 

has been limited (Becta, 2003; Smith, Higgins, Wall, & Miller, 2005; Smith, Hardman, & 

Higgins, 2006; Moss et al., 2007).  

The Interactive Teaching and ICT (ITICT) project (Kennewell et al., 2005) is 

investigating the processes of effective, interactive teaching with and without ICT. A 

variety of ICT resources were used in the project schools, however all the teachers used 

presentational tools such as IWBs or data-projectors and the extent to which these tools 

could be used to support effective interactive teaching was a focus of the research.  

Changes in teaching and learning practices impact directly on pupils, however, and the 

project privileges pupils’ voices by ascribing to them a key role in the analysis of their own 

learning. A range of quantitative and qualitative data was collected over the course of the 

project, including pre- and post attainment tests, interviews with teachers and pupils and 

lesson observations. However, a key research technique for qualitative data collection and 

analysis was video-stimulated reflective dialogue (VSRD) (Hargreaves et al., 2003). The 

project extended the use of the VSRD technique to include pupils’ voices in the discourse. 

Video-clips of lessons selected by their teachers were shown to focus groups of pupils as a 

prompt for generating a reflective dialogue  

This paper examines the efficacy of VSRD as a research tool to stimulate children to 

reflect on their own learning of mathematics and expose their perceptions of teaching 

episodes. It examines the extent to which children are able to identify those pedagogies that 

are most effective in helping them to learn. In particular, the paper probes children’s 

perceptions about pedagogies associated with interactivity and the use of ICT. 

Interactive Teaching and ICT 

Recent policy initiatives in England and Wales have been concerned with the 

development of whole class teaching approaches that are intended to be “oral, interactive 

and lively” (DfEE, 2001: 1.26). This was intended to be more dialogical than the traditional 

recitation script of Initiation, Response, Feedback (IRF) (Tharp & Gallimore, 1988). 
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However, the nature of interactive whole class teaching was not clearly defined in the 

Strategies and is widely interpreted in practice (Mroz, Smith, & Hardman, 2000; English, 

Hargreaves, & Hislam, 2002).  

Although pedagogical interactivity may be seen as implying bi-directional 

communication, with children developing independent voices in discussion and 

experiencing higher levels of autonomy (Burns & Myhill, 2004), interactive whole class 

teaching has largely been implemented as pupil participation in fast, teacher-led question 

and answer sessions (Moyles, Hargreaves, & Merry, 2003; Hargreaves et al., 2003). 

Although teachers now ask more questions most pupil responses remain very short, just 5 

seconds on average, and involve three or fewer words. There is little opportunity for pupils 

to engage in extended responses or to express and evaluate ideas of their own (Moyles et 

al., 2003; Hargreaves et al., 2003; Smith, Hardman, Wall, & Mroz, 2004).  

The teacher-centred approaches encouraged by the Strategies contrast strongly with 

more pupil-centred approaches more often associated with the use of ICT. In the context of 

ICT, interactivity usually refers to its facility to provide rapid and dynamic feedback and 

response. Such technical interactivity has been shown to afford increased learner autonomy 

and effective independent learning by pupils (Harrison et al., 2002).  

The use of interactive whiteboards (IWBs) in particular, is claimed to motivate students 

because of “the high level of interaction – students enjoy interacting physically with the 

board, manipulating text and images” (Becta, 2003). We should distinguish, however, 

between the technical interaction of the IWB as an interface with the computer and the 

pedagogical interaction that is required for effective learning. 

Presentational tools such as data projectors and IWBs do not naturally afford an 

increase in learner autonomy in the way that, for example, individual or paired use of 

laptops to sustain interaction with learning resources does. In fact, IWBs may be used to 

“tame” ICT, bringing it more tightly under the control and mediation of the teacher. 

A potential drawback of the introduction of IWBs is the reinforcement of a 

transmission style of teaching that reduces pupil autonomy and interaction, sometimes 

reducing the role of the pupil to that of “spectator” (Moss et al., 2007). Recent large scale 

research reports that in lessons involving IWBs, initially there is an increase in the pace of 

lessons but fewer uptake questions are used and pupils’ responses remain short. The 

traditional pattern of questioning (IRF) persists in spite of the Strategies and is more 

prevalent in IWB lessons (Smith et al., 2006).  

Teachers were most likely to incorporate the more visible “surface features” of the 

Strategies, such as pupil engagement or inviting children out to the board into their 

pedagogy; “deeper features” including formative assessment, the co-construction of 

meaning through dialogue, and the development of thinking and learning skills tended to 

be less well developed (Hargreaves et al., 2003; Moyles et al., 2003; Smith et al., 2004). 

Similarly, when using IWBs, teachers sometimes focus on technical interactivity and over-

value relatively mundane activities that pupils perform at the board (Moss et al., 2007). 

It is perhaps unsurprising then that large scale studies report that the introduction of 

IWBs does not lead to general improvements in pupils’ attainment (Smith et al., 2006; 

Moss et al., 2007). The introduction of technology does not in itself encourage the 

development of more dialogical approaches. 

Several thinking skills projects, which achieved significant improvements in pupils’ 

learning, have included dialogical teaching approaches as key aspects of their intervention 
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strategies, Significantly, the most successful interventions also included metacognition as a 

major feature of their approaches (see McGuinness (2005) for an overview). 

Metacognition 

We are interested in metacognition in this paper for two reasons. First, because of its 

significance for learning – meta-studies of interventions based on metacognition report 

improved learning with large effect sizes (Hattie, Biggs, & Purdie, 1996). Second, we are 

interested in metacognition because our intention was to use VSRD to explore children’s 

awareness of their own learning processes and the extent to which they considered the 

affordances of ICT could be used to support their learning. 

Metacognition is a “fuzzy” and elusive term that refers loosely to the knowledge and 

control that individuals have of their own cognitive systems (Brown, 1987). This dual 

nature includes both (a) the awareness that individuals have of their own knowledge, their 

strengths and weaknesses and their capabilities and preferences as learners; and (b) their 

ability to regulate their own actions in the construction of new knowledge (Flavell, 1976).  

The association between some aspects of metacognition and reflected abstraction has 

led to debate about whether primary age children are able to think metacognitively or 

benefit from metacognitively based interventions as reflected abstraction is characteristic of 

formal operational thinking (Georghiades, 2004). However, Adey, Robertson, and Venville 

(2002) have reported the success of a cognitive acceleration programme with 5- and 6-year-

old pupils that included a significant metacognitive component. This accords with Kuhn’s 

(1999) suggestion that metacognitive processes are developmental in character.  

Metacognitive knowledge about one's own thinking and learning processes is often 

described as “late developing”. It is usually stateable and requires a higher degree of 

understanding than does regulation of cognition. Metacognitive skills, used to regulate 

learning and problem solving, are less conscious processes which are often invoked in an 

implicit manner and rarely stateable; “knowing how to do something does not necessarily 

mean that the activities can be brought to the level of conscious awareness and reported on 

to others” (Brown, 1987, p. 68).  

The literature is unclear, however, on whether metacognitive skills are age dependent. 

The lowest level of self regulation is to be found in quite young children but the capacity 

for reflected abstraction is suggested to develop between the ages of 11 and 15 (Piaget, 

1978). It may be that the extent to which young children are aware of and are able to 

articulate their use of metacognitive strategies is limited. 

Methodology 

The ITICT project examined teacher controlled interventions in a number of subjects 

within a quasi-experimental design of control and intervention classes. This paper reports 

on the results of the 12 classes that focused on Mathematics. There were two matched pairs 

of classes in each of the first three Key Stages (KS1 to KS3) of the Welsh education system 

(KS1: 5-7 years, KS2: 7-11 years and KS3: 11-14 years). 

In each pair of classes, one teacher used ICT as and when thought appropriate. The 

other teacher taught the same topics without ICT. The teachers who had volunteered to 

participate in the project had been selected on the recommendation of their head teachers as 

effective practitioners who wished to explore and develop their use of interactive teaching 

approaches and the extent to which the affordances of ICT supported these approaches. 
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Each research cycle included lesson observations by two members of the research team, 

and group meetings of teachers and researchers at which issues were discussed, tentative 

hypotheses formed and new focuses decided.  

During lesson observations, the lead researcher took written notes in an open, but semi-

structured framework for analysing teaching and learning activities (Kennewell et al., 

2005). The second researcher was responsible for creating a video-recording of the lesson. 

The teachers analysed their videos after the lesson and selected sections that they felt 

exemplified their best practice. In the case of the teacher using ICT, one focus was always 

on the ways in which the affordances of ICT were supporting interactive teaching. The lead 

researcher returned the following week and engaged in a reflective dialogue with the 

teacher that was stimulated by the teacher’s selected clips. The dialogue was recorded for 

transcription and analysis. 

Following the VSRD with the teacher, the lead researcher met with a focus group of 

pupils from the lesson. Focus groups generally consisted of between four and six boys and 

girls who had volunteered to participate. The focus group was shown the episodes of the 

video that the teacher had selected for their reflective dialogue and after each episode were 

engaged in semi-structured discussion about the learning that might be occurring. 

Pupils were invited to comment on the features of the episode and setting that helped 

them to learn or inhibited their learning. Follow up questions were asked to probe why they 

thought that their learning had been helped or hindered by the approach taken in the 

episode. If it had not already arisen, they were invited to discuss whether the use of ICT 

had assisted their learning (or would have assisted their learning in the non-ICT lessons).  

Results 

Pupils of all ages were generally keen to participate in the VSRD. The types of 

classroom interactions identified by pupils were similar across subject areas and occurred 

in both ICT and non ICT classes. The following key themes emerged from the VSRD case 

studies. 

Preferred Teaching and Learning Approaches 

There was a clear preference for interactive oral work with a strong dislike of lessons 

where pupils were “writing all the time and copying off the board” or “teachers are talking 

all the time and you’re just listening”. Pupils preferred the use of pictures and animation 

rather than just writing and, with particular reference to IWBs, appreciated “bright, 

coloured displays that hold your attention”. This preference for interaction was partly 

associated with the boredom that arose from a lack of variety in some teaching approaches 

but it also points to pupils’ awareness that active participation may result in more effective 

learning.  

In KS2 and KS3, pupils in the case studies could identify the value of discussing 

alternative viewpoints to challenge and clarify their learning. In one mathematics lesson, 

the teacher had deliberately designed questions to expose common misconceptions and 

generated a class discussion in which pupils argued through their solutions. During the 

VSRD, pupils commented on how this had made them reflect on their own thinking: 
 

P1: When the first couple of pupils said it [the misconception answer] I thought no, that’s not right, but 

then after more pupils said it I’m thinking, hang on now, I used to think this but now they’ve made 

me confused. 
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P2: It does sway you a bit, doesn’t it. 

P3: That actually got me thinking, why are they thinking that? 

R: So what do you do then? 

P1: Well, I’d really check it through in my head and then after I did that I thought no, they are wrong… 

The Importance of “Fun” 

In nearly all the discussions, pupils commented on whether the classroom activities 

were “fun” or not. Many pupils recognised that their teachers were trying to make activities 

“more funner” for them in order to motivate them to learn. However, unpicking the nature 

of fun revealed a number of different factors. Often fun was equated with the variety and 

novelty of the tasks. Boredom was often associated with lack of variety, although it was 

also used to describe a lack of understanding.  

Many “fun” activities were described as “games”. Competition was a feature of many 

games, but it was not a necessary feature. Competition was sometimes seen as “fun” but 

this was not always the case and sometimes was viewed negatively. Sometimes activities 

were described as games because they included a random element and the fun arose from 

not knowing what would happen next. Children also valued an element of farce or silliness. 

Often activities were described as games because they involved a degree of personal 

control of strategy within a challenging context.  

Older pupils, particularly at KS3, were able to distinguish between fun and the value of 

the task for their learning. 
 

P: I don’t really mind whether we use it (IWB) or not. I honestly think that, yeah, it’s a bit of fun but I 

don’t have my learning improved by it. 

Affordances of ICT 

The IWB was perceived to have clear advantages over a static board for presentation. They 

appreciated the accuracy of diagrams and the neatness of writing on IWBs.  

 
P: You can actually understand the writing because you can’t usually understand Mr X’s writing. 

 

Pupils claimed to be more motivated by working with the technology they saw as 

belonging to their generation such as IWBs instead of “old technology” such as OHPs. 

The transitory, provisional nature of work done on IWBs was considered useful. Pupils 

also valued the use of mini-whiteboards for the same reason: “You can just rub it out. It’s 

not untidy”. Pupils seemed happier to “have a go” and to make errors in these transitory 

formats rather than in their exercise books which were seen as “best work” that ought to be 

a neat, finished product. 

KS3 pupils distinguished between occasions when technology was used to present 

solutions as opposed to facilitating active participation with the support of a teacher. 

 
R:  So why aren’t you convinced about IWBs? 

P1: `Cos on the whiteboard they would just load up a calculator, they’d type it in and they’d hit the 

equals and it would come up with the answer and you don’t know how it came out, so if you’re not 

allowed a calculator you can’t get it. Whereas, if it’s just a plain whiteboard they have to show you 

how to work it out otherwise you can’t just work it out. 

P2:  Yeah `cos Miss shows us how to work it out. We’ll know what to do in a test then. 

P1: `Cos the normal whiteboard, it isn’t all like, you know, pre programmed, you have to work yourself 

step by step through it. 
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P1: Instead of just clicking a button then ‘Ooh look, it’s happened. 

 The Value of Feedback 

Feedback was identified by many pupils in KS2 and KS3 as important for their 

learning. The ease with which computers could give instant and individual feedback was 

valued but a distinction was made by many pupils between being told merely whether their 

answer was correct or not, and the explanation that they would get from discussion with the 

teacher or with their friends.  

Pupils reported liking learning from their friends not just the teacher. They described 

working with a partner as motivating. They liked to work collaboratively, often sharing the 

load, but they also recognised the value of the occasions when disagreements led to views 

being challenged and refined through discussion 

In some contexts, teachers were seen as mediating information that had been originally 

taken from the internet. In such cases, the computer was seen as a more reliable source of 

information than the teacher. However in other contexts, such as dedicated teaching 

software, the computer was seen as a limited source of information and restricted in its 

teaching potential, with the teacher being viewed as having a more elaborate knowledge 

and being a source of alternative explanation. Pupils talked of computers and IWBs in an 

anthropomorphic fashion, for example claiming that “The board thinks that…” or “The 

board’s method is…” 

Pupil Interaction at the Front of the Class 

In most classrooms, irrespective of whether an IWB was available, pupils were 

expected to go out to the board; how children felt about this depended on the classroom 

culture. In some classrooms, pupils said that they did not mind making a mistake at the 

board because they knew that no-one would laugh at them and that they could learn from 

their mistakes. In other classes, pupils were scared of making mistakes in public as they 

knew they would be laughed at. Some said that they would laugh at their own mistakes to 

get in first before someone else laughed at them. 

Most pupils enjoyed going to the board to participate in the lesson, however, 

sometimes their contribution required only low cognitive demands. On the other hand, 

some teachers used the affordances of ICT to challenge and develop higher order thinking, 

using the board as a site for the co-construction of knowledge. 

Pupils’ Metacognitive Awareness of their Learning 

Although these themes were common across subjects and Key Stages, the quality of 

pupils’ comments about their learning differed according to their age and ability. Pupils’ 

responses could be classified into four categories: affective comments, recall of lesson, 

description of intended learning, and metacognitive comments about their learning. 

In KS1, pupils’ responses were generally of the first two categories. When they 

watched the video, the children often re-lived the moment. They responded as if they were 

in the lesson, placing themselves back in the action again. They put their hands up as if to 

answer the teachers’ questions or called out answers. Alternatively, they described 

superficial aspects of the lesson, e.g., “Simon’s at the board now”. Many pupils were able 

to comment about the importance of working together in social terms and needing to be 
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kind to each other, but this was usually using forms of words that had been used explicitly 

by their teachers.  

As Kuhn (1999) suggested, pupils were often not aware of how or what they had 

learned and struggled to describe their thinking. One lesson in KS1 focused on the use of a 

number square to subtract two 2-digit numbers, for example, 49 – 37. Initially, one pupil 

had been unable to calculate such questions yet in the VSRD appeared not to recognise 

what or how he had learned, claiming instead that he had always known how to do it. 

No explicit metacognitive reflection on the learning process was observed with KS1 

pupils. However some precursors to metacognition were seen from the most advanced 

pupils who were beginning to be able to pause and reflect on how they had performed a 

particular task. Some pupils were aware of some of what they knew and could indicate how 

they had learned it. 

One KS1 pupil was asked a particularly challenging question. He sat in silence for 

several seconds then gave the correct answer. After congratulating him the researcher asked 

how he had arrived at the answer. The pupil replied that he had thought about it. At the end 

of the lesson, before the researcher left, the pupil came up unprompted and explained how 

he had worked out the solution. The delay suggests that he was not fully aware of his own 

knowledge but that he had chosen to reflect on his thought processes and had been able to 

reconstruct his thinking sufficiently to explain it. 

In KS2 and KS3, pupils were more able to use the video to facilitate reflection. More 

children were able to comment on which learning activities they enjoyed and which 

motivated them to learn. They were able to talk about the value of working together in 

learning as well as social terms. Pupils were more able to talk explicitly about their 

learning processes in schools that had a focus on thinking skills and learning to learn.  

At KS2, pupils’ comments about learning often echoed phrases commonly used by 

their teacher, for example: “You have to make at least one mistake every lesson otherwise 

you aren’t learning”. However, although derivative, these aphorisms were applied in 

appropriate contexts, indicating a degree of internalisation or appropriation. However, in 

most cases, knowledge about their own learning processes was implicit rather than explicit.  

At KS3, far more children were able to talk explicitly about their learning. Many were 

able to use the video as a prompt to reflect on their learning, not only during the specific 

episodes shown, but also in more general terms. All were able to describe their feelings 

about activities, which they enjoyed and which motivated them. Some were able to analyse 

which teaching and learning strategies worked for them, separating enjoyment from 

learning potential. 

Some KS3 pupils commented on the value of VSRD for making them aware of how 

their own learning had progressed. 

 
P1: Oh, I remember this lesson. It seems so obvious now when we look at it. 

P2: It is. 

R: What seems so obvious now? 

P1: How we got it wrong! 

P2: Yeah, when you said [wrong answer] but it wasn’t, it was… 

Mathematics: Essential Research, Essential Practice — Volume 2

714



Conclusions 

ICT and Interaction 

In our case studies, children’s views about the value of ICT for their learning often 

focused on the superficial features of presentational tools such as IWBs. They valued the 

big, bright, colourful display and the neatness of type. They considered themselves to be a 

technological generation and are motivated more by modern technology than older tools. 

ICT and presentational tools such as IWBs in particular, were often described as being fun 

and were valued for their potential to include an element of play or game into school life. 

However, when they were asked about how they learn, children tended to talk about 

interaction rather than the technology. The pedagogical approaches they described were 

generally not ICT dependent, although the affordances of ICT could be used to support 

them.  

They valued the social and affective aspects of school life, such as working with 

friends, having work explained by teachers and feeling safe to make mistakes. Interaction 

was highly valued for learning, both in a whole class context and on a one to one basis with 

teachers or other pupils. Oral work was preferred to writing or “copying down from the 

board”. However, “listening to teachers talk” was disliked and distinguished from more 

interactive approaches. In KS2 and KS3, some of the children were able to distinguish 

between what they enjoyed and what helped them to learn. Interactive approaches were 

considered to be more enjoyable and more effective. 

Metacognition 

Our case studies are consistent with the position that stateable metacognitive 

knowledge is relatively late developing in comparison with metacognitive skills and 

strategies. Metacognitive skills are evident, in implicit forms at least, in quite young 

children. In our case studies, metacognitive skills were more apparent in classes where 

there was an emphasis on thinking skills, discussion and reflection. 

This research is unable to make claims about the conditions for the development of the 

different forms of metacognition, but the results are consistent with the position that the 

development of metacognitive knowledge and skills is responsive to dialogical and 

reflective teaching approaches. 

VSRD 

Children can offer important insights into their learning processes that are of interest to 

us as researchers and teachers. They provide a perspective on learning that arguably could 

be viewed as central to the business of education. The use of VSRD as a research tool 

helped us to gain access to these insights by providing a focus for collective reflection.  
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This paper examines how the activities, discourse, and artefacts in a mathematics classroom 

may serve to position students as dependents or to objectify them, rather than encouraging 

the development of subjectivity by apprenticing them into the valued discourse of the 

mathematics classroom. The paper uses three sociolinguistic approaches to interpret the 

interactions between Simon, the teacher, and Dean, a student, in a Year 7 mathematics 

classroom. Although they have very different goals and methodologies, each approach has 

the potential to reveal the social function of language in a mathematics classroom. 

Introduction: Sociolinguistics 

Sociolinguistics is the study of language in society. It asks questions such as why we 

speak differently in different social contexts, how language can be used to serve social 

functions, and how language is used to convey meaning. It focuses on issues such as 

gender, race, social class, power relations, and identity through looking at language choice 

and variations (Holmes, 1992). Although it is not possible in this short paper to do justice 

to the huge field of sociolinguistics, nor to any one of the three approaches described, the 

different sociolinguistic lenses used illustrate the potential of sociolinguistics as a tool for 

examining interactions in the mathematics classroom. 

Critical Discourse Analysis (Fairclough, 1992) 

Fairclough (1992) considers discourse as a mode of action in which people act on the 

world and each other, in addition to being a mode of representation. He stresses that there 

is a dialectic relationship between discourse and social structure, with discourse on the one 

hand being constrained by social structure, and on the other being socially constitutive. He 

sketches a three-dimensional framework for conceiving of and analysing discourse, 

considering “every discursive event as being simultaneously a piece of text, an instance of 

discursive practice and an instance of social practice” (p. 4). 

The first dimension is discourse-as-text, i.e., the linguistic features and organization of 

concrete instances of discourse. Building on the work of Halliday (1978), Fairclough 

maintains that text analysis must include a consideration of vocabulary, grammar, 

cohesion, and text structure. Halliday describes the ideational function of language, which 

may be material processes, mental processes, or relational processes. This function is 

revealed by examining the field of the text and by looking at the use of active or passive 

voice and at the use of verbs such as “think” or “do”. Aspects of language such as cohesion 

and the use of given/new structures are important in describing its textual function. 

Fairclough’s second dimension is discourse-as-discursive-practice, i.e. discourse as 

something that is produced, distributed, and consumed in society. He introduces the 

concepts of “force” to describe what the text is being used to do socially, “coherence” to 

describe the extent to which an interpreting subject is able to infer meaningful relationships 
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and to make sense of the text as a whole, and “intertextuality” to describe how texts are 

related historically to other texts. The tenor and mode of the text, indicated through the use 

of personal pronouns and the degree of certainty conveyed by verbs, adverbs, or adjectives, 

reveals the interpersonal function of language. 

Fairclough’s third dimension is discourse-as-social-practice, drawing on the Marxist 

concepts of ideology and hegemony. He claims that ideology is located both in the 

structure of discourse and in the discourse events themselves. For example, he suggests that 

the turn-taking practice of a typical classroom implies particular ideological assumptions 

about the social identities of and relationships between teacher and pupils. Hegemony 

concerns power that is achieved through constructing alliances and integrating groups. 

Dominant groups exercise power through integrating rather than dominating subordinate 

groups, winning their consent, and establishing a “precarious equilibrium”. 

Morgan (2005) uses Halliday’s (1978) systemic functional linguistics to explore the 

notion of definition within two school mathematics texts, one written for advanced students 

and one for intermediate students. Her analysis reveals that in the higher level text students 

are included in the community of mathematicians through the use of passive voice, a focus 

on relations rather than materials processes and through reduced modality, which allows 

for alternative ways of thinking about ideas. 

Thornton and Reynolds (2006) use critical discourse analysis to examine one 

mathematics classroom in which students argue over the effect of changing the value of a 

in the graph of y = ax + b, suggesting that the discursive norms in the classroom led to 

heightened levels of personal agency. They conclude that a discourse that is exploratory, 

tentative and invitational, that contains emergent and unanticipated sequences, and that 

recognises alternative ideas even ones that are strange, enables students to see themselves 

as active participants in learning, having power over both the mathematics and the 

discursive practices of the classroom. 

Symbolic Control and Cultural Reproduction (Bernstein, 1990) 

Bernstein (1990) discusses what he terms the pedagogic device, considering the 

distributive rules, recontextualising rules, and rules of evaluation. The pedagogic device is 

the object of struggle for control, played out within a particular arena. Activities within that 

arena create pedagogic modalities or generating codes, which have strong or weak values 

and classificatory or framing functions. 

Classification refers to the degree of insulation between categories of discourse, agents, 

practices, and contexts, and provides recognition rules for both transmitters and acquirers. 

It is concerned primarily with power. Where school mathematics focuses on the 

development of skills and concepts such as fractions or algebra it is strongly classified, as it 

is maintains strong boundaries between mathematics and the outside world. Strong 

classification legitimises and reproduces power relations, whereas weak classification will 

challenge the boundaries upon which the division of labour is based. Framing refers to the 

location of control over the selection, organization, sequencing, pacing, and criteria of the 

communication. Strong framing locates control with the transmitter, whereas weak framing 

locates it more with the acquirer. 

Bernstein distinguishes between voice, which is a function of classification, and 

message, which is a function of framing. Voice refers to the limits of a category’s 

legitimate communicative potential; it is what can be said or realised if the identity is to be 

seen as legitimate within the arena. Message is what is actually said and its form of 
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contextual realisation. It is dependent both on voice and its potential instrument of change. 

The principle of the social division of labour necessarily limits the realisation of its 

practices, yet these practices also contain the possibility of change in the social division of 

labour. 

Bernstein calls pedagogic discourse, the process of moving a practice from its original 

site to a new site, a process of recontextualisation. Within this process values and 

ideologies always play a part, thus particular classroom practices produce behaviours that 

legitimate or disrupt what might be considered appropriate knowing. He distinguishes 

between instructional discourse, which transmits specialised competencies, and their 

relation to each other, and regulative discourse, which creates order, relation, and identity. 

Lerman and Tsatsaroni (1998) use Bernstein’s ideas to look at the systemic failure of 

certain categories of pupil to engage with the pedagogic processes through which the 

pedagogic text is produced, acquired, and assessed. They conclude that the forms of school 

knowledge constructed by certain values of classification and framing will produce 

different recognition and realisation rules to different categories of students, such as those 

from different social classes. 

Dowling (1998), building on the ideas of Bernstein, describes a “social activity theory”, 

which he uses to analyse mathematical texts written for pupils categorised as of high or low 

ability. He concludes that the texts written for pupils of high ability invite these pupils into 

the valued discourse of school mathematics as apprentices, whereas those written for pupils 

of low ability cast them as dependents.  

Evans, Morgan, and Tsatsaroni (2006) describe the link between discursive positioning 

and emotion in school mathematics. Drawing on Bernstein’s concepts of classification and 

framing in pedagogic discourse, they analyse how the discourse of the classroom makes 

alternative positions available to students. They describe these contrasting positions as 

evaluator and evaluated, helper and seeker of help, collaborator and solitary worker, leader 

and follower, insider and outsider. 

Ideology in Discourses (Gee, 1991) 

Gee (1991) maintains that ideology underlies all human interactions and their use of 

language. He states that there are two major motivations underlying all uses of language: 

status and solidarity. All uses of language situate the speaker and hearer within fields of 

status and solidarity, which are inherent social goods to humans. Thus all language is 

always and everywhere ideological, containing and transmitting beliefs, values, and 

attitudes. It is spoken and written out of a particular social identity. 

Gee discusses the notion of a Discourse, a combination of saying, doing, believing, 

valuing, and being. He distinguishes this notion of a Discourse from discourse, which is a 

connected stretch of language. A Discourse, for Gee, is an identity kit, coming complete 

with rules and resources on how to talk and act in order to take on a social role that others 

recognise. Discourses are effectively clubs with tacit rules about who is a member and who 

is not, and about how members ought to behave. 

Gee distinguishes between acquisition, which is a process of acquiring something 

subconsciously by exposure to models, trial and error, and social practice, and learning, a 

process that involves conscious knowledge gained through teaching or conscious 

reflection. He maintains that Discourses can only be mastered through acquisition, not 

learning. However learning can facilitate the development of meta-knowledge, but only 

when the process of acquisition has begun. Gee argues that classrooms that do not properly 
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balance acquisition and learning simply privilege those students who have begun the 

acquisition process at home and marginalise those who have not. 

More recently Gee (2003) has analysed the structure and learning principles inherent in 

video games, identifying principles related to the semiotic domain, to learning and identity, 

to situational meaning, to telling and doing, to cultural models, and to the social mind. 

Learning principles such as low cost failure, strong identities, amplification of input, just-

in-time information, and belonging to an affinity group, are all inherent in the structure of 

video games and lead to acquisition of a Discourse. 

Thornton (2006) uses Gee’s notion of Discourse to discuss the potential mismatch 

between students’ “first space” (Moje, Ciechanowski, Kramer, Ellis, Carrillo, & Collazo, 

2004), the historically and culturally accumulated funds of knowledge and skills that 

enable people to function effectively as individuals and in society, and the “second space” 

of the mathematics classroom, the valued knowledge and academic norms of the formal 

school environment. He suggests that rather than seeing the mismatch between first and 

second spaces as a problem, both students’ home and community funds of knowledge and 

their school funds of knowledge should be seen as a resource through which to empower 

them as effective learners in the school situation. 

Context of this Research and Data Collection 

The research reported in this paper arose from a study (Thornton, 2006) that originally 

set out to examine high school students’ funds of knowledge (Moll, Amanti, Neff, & 

Gonzalez, 1992) in mathematics. In an endeavour to obtain data relating to these funds of 

knowledge, eight case study students were given digital voice recorders and asked to reflect 

on any issues they felt strongly about, particularly as these issues affected their learning and 

participation in school mathematics lessons. The digital recordings were saved onto a 

secure computer, and then transcribed. Unfortunately the students in the study seldom used 

the recorders, often forgot to bring them to school so that the recordings could be 

downloaded and, with one exception, provided only one or two sentence recordings that 

merely stated the topic of the mathematics lesson. 

To obtain data relating to second space, mathematics lessons were observed in each of 

three Year 7 classes at the school. Field notes were taken and transcribed as soon as 

possible after the lesson. Interviews with individual students and groups were then 

conducted, using the lesson observations as a stimulus for discussion. These interviews 

were recorded and transcribed. 

Due to the difficulties of obtaining voice recordings that might illuminate the students’ 

funds of knowledge, the original research became a pilot study, informing further research. 

This paper uses a portion of the data from the original research. Rather than using 

qualitative data analysis software or coding systems to study the data, extracts from the 

field notes and interviews are used to illustrate the potential contribution of sociolinguists 

to understanding how students are positioned and position themselves in the classroom.  

Results 

The data below are arranged in five stanzas, representing different activities during two 

lessons I observed. Stanzas 1 to 3 are taken from a lesson related to converting from 12 to 

24 hour time, and differing time zones. Stanzas 4 and 5 are taken from a lesson introducing 

percentages a few weeks later in the year. The focus of the observations was on the 
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interaction between the teacher, Simon, and one student, Dean. Rather than providing a 

transcript of a whole lesson I have selected extracts typical of the interactions between 

Simon and Dean. I spoke with Dean after the lessons to obtain his impressions of various 

incidents. 

The class is a Year 7 class in a middle- to low-socioeconomic area of a capital city. It is 

a mixed ability class containing eleven girls and fourteen boys. The teacher in the study, 

Simon, is a young teacher who has been at the school for 3 years. He is trained in science, 

physical education, and mathematics, and teaches the Year 7 class for both science and 

mathematics. The case study student discussed in the paper, Dean, comes from a single 

parent family. He lives with his mother, but visits his father interstate. He frequently has a 

“blue card”, which he takes to lessons and asks teachers to sign to report on his behaviour 

and participation. During the time I spent at the school it was not unusual to see Dean 

being brought to the year level coordinator for disciplinary action. Dean scored relatively 

low marks in the school’s tests of mental computation. 

Stanza 1: Cajoling and resisting. Simon handed the students a worksheet, explaining 

that it was revision for a forthcoming test on time. 

Simon: Dean, get on with your work so you won’t be staying in. 

At this stage Dean had not picked up his pen to start the questions on the worksheet, 

and did not do so for a further 10 minutes. Fifteen minutes into the lesson Dean walked 

over to another boy, Matthew, to look at the picture on the wall behind him. 

Simon: Dean, if you don’t do your work, you will do it at lunch time. 

Stanza 2: Helping and receiving. 

Simon: Dean, sit up in your chair and I’ll give you a hand. 

Simon sat next to Dean, who responded to a question about 24-hour time. He nodded 

his head as Simon counted 12, 1pm, 2pm, 3pm, etc. Simon sat next to Dean for about 5 

minutes, writing answers on Dean’s worksheet. 

Simon: Can you do the rest? 

Dean: Yeah. 

Stanza 3: Questioning and responding. 

Simon: Class, face the front. We’re gonna go through the answers to page 60 first. 

Simon asked selected students by name, in rapid succession, to read out their answers 

to the worksheet. The students responded with single word or number answers. 

Simon: What’s the difference between the two planes, Dean? 

James: 45 minutes. 

Dean: 45 minutes. 

Simon did not respond to Dean’s answer and moved on to the next question. 

Stanza 4: Eliciting and contributing. 

Simon: Where might you have seen percentages? 

James: At the shops where they have a discount. For example, a 20% off sale. 

Dean: Biscuits are 97% fat free. 

Mark: Home loan ads. Interest is 8%. 

Simon What do they mean? 
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Dean: I don’t care. 

Simon: Taking 20% off, what does that mean? 

Dean: 100% is full price. 50% is half price. 

Simon: What might 20% mean? 

Dean: A little less than 50%. 

James: 0.2. 

Simon: What sort of fraction might 20% be? 

Mark: ¼. 

James: That’s 25%. 

Simon: What do you think 97% fat free means? 

Dean: That’s only 3% fat. 

Stanza 5: Summarising and copying. Following the above exchange Simon wrote notes 

on the whiteboard (Figure 1), and told the students to copy the notes into their books. 

 

Percentages 

Percentages are used all the time in the world around you – discounts, home 

loans, bank interest, etc. 

The term “percent” literally means “per hundred” or simply “out of a 

hundred”. 

This means that when you see a percentage e.g. 30%, you can write it as a 

fraction by taking the number in front of the % sign and putting it as a 

fraction over 100. 

E.g. 

100

5
%5

100

30
%30

=

=

 

Figure 1: Text on whiteboard. 

Discussion 

The discussion below is neither a systematic unpacking of the observations line by line, 

nor is it a rigorous analysis of the data using a particular sociolinguistic perspective. Rather 

it is a discussion of the data using insights from each of the perspectives discussed above. 

Stanza 1: Cajoling and resisting. Stanza 1 is a struggle for control. The appellation 

“Dean” at the beginning of each of Simon’s statements presents a strong message about 

power relations. Dean uses subjunctive clauses, “get … so” and “if … you will”. In doing 

so he locates responsibility with Dean, rather than with himself, suggesting that staying in 

is a natural consequence of responding inappropriately to work. In neither sentence does 

Simon use the personal pronoun “I”, thus he locates himself as impartially present to fulfil 

his role of ensuring that the students do their work. The respective roles of the speaker and 

listener are thus made very clear. It is Simon’s role to set work and Dean’s job to “do it”. 

The verbs “get” and “do” have strong modality. They are concerned with material, 

rather than mental processes. It is not the purpose of mathematics classrooms to think or 

understand, but rather to “do”. These verbs, together with the use of appellation present a 

strong social message. These discursive practices construct students as doers, not as 

learners or contributors. Simon exercises power through domination, sitting behind an 
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ideology of work/test and the hegemonic assumption that if students do their work they will 

perform better in their test. 

Simon’s language and action is characterised by strong classification and framing. The 

situation does not permit alternative agents, practices, or contexts, thus the power relations 

are maintained through a clear division of labour between the teacher and students. 

Selection, organisation, and pacing are controlled by the teacher, who requires a given 

amount of work to be covered in a given time. At the same time Dean resists this control, 

setting up a situation marked by struggle. Simon’s attempts to reproduce culture through 

pedagogic devices such as threat are ineffective. 

The stanza illustrates a clash of Discourses. Simon’s primary Discourse is one of 

school as a place in which students do work and teachers make sure that it is done. His 

solidarity is with students in the classroom who ascribe to his beliefs and values about 

schooling. Dean takes on the role of resistor, maintaining solidarity with Matthew rather 

than Simon. 

Stanza 2: Helping and receiving. In stanza 2 Simon constructs a tenuous alliance with 

Dean. His physical positioning next to Dean suggests solidarity with a student who 

struggles to do the work. Dean nods while Simon writes on his page, suggesting at least a 

partial acceptance of this alliance. Rather than using subjunctive clauses that suggest 

staying in at lunch time as a logical consequence of not doing work, Simon uses the phrase 

“sit down … and”. Simon uses the personal pronoun “I”, suggesting that helping is a 

personal choice and that he is choosing to express solidarity with Dean’s situation rather 

than an adversarial position of forcing Dean to stay in. Simon’s use of the phrase “give you 

a hand” reinforces this expressed choice and solidarity. In this way Simon’s conversation 

foregrounds a relational process. 

Yet at the same time Simon continues to use the word “do”, promoting mathematics as 

a material rather than a mental process. By audibly counting 12, 1pm, 2pm, he attempts to 

introduce Dean to the Discourse of school mathematics, yet he stresses a procedure rather 

than a relation. Dean is expected to become part of this Discourse by learning rather than 

by acquisition. Simon asks Dean if he can “do” the rest, to which Dean rapidly responds 

“Yeah”. Gee (1991) calls this an example of “mushfaking”, making do with a partial 

understanding through learning, rather than entering legitimately into the Discourse. 

In this exchange Simon uses a distributing strategy which constructs Dean as a 

dependent
1
. By spending 5 minutes with Dean and by writing on his page he limits Dean’s 

potential response to one of agreement with what Simon writes. There is no potential for 

Dean to realise his own voice. Simon maintains strong classification in that he maintains 

clear boundaries between his role and Dean’s. 

Stanza 3: Questioning and responding. This stanza is characterised by extremely strong 

classification and framing. Simon permits only single word or number answers to 

questions, and only those that relate to the questions on the worksheet. By rapidly asking 

questions of selected students in the class he is maintaining control over pacing. Voice is 

strictly limited, and the messaging strategies construct students as receivers. Simon selects 

only the boys at the back of the room, including Dean, and one girl as candidates to answer 

                                                 
1
 I asked Dean in a subsequent conversation if he could do the worksheet, and how often he needed help. He 

said he could do them now, but that he “always needed help in maths”. 
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questions. In this way he was using the question and response technique as a regulatory 

discourse, rather than as an instructional discourse.
2
 

In this stanza Simon is maintaining a hegemony of mathematics as being about correct 

answers. The pattern of response constructs the teacher as the arbiter of that correctness. He 

maintains strong boundaries between the roles of the teacher and the students, using 

appellation to add force to the discourse. Simon foregrounds the material process of getting 

correct answers, rather than a mental process of understanding. His use of the verb “go 

through” implies that correctness is a destination to be reached rather than a process of 

understanding. 

The strategy of singling out students by name introduces high cost failure to the 

exchange. Unlike video games in which players learn through failure and can recommence 

at the point of “death”, the students cannot redeem themselves. Dean reduces the risk of 

failure by repeating an answer given by James. 

Stanza 4: Eliciting and contributing. Stanza 4 is the only stanza in which classification 

is weakened. Simon asks students to draw on their primary Discourse to suggest everyday 

situations in which percentages are used. In this way he weakens the boundary marking 

what is permitted as legitimate content in the mathematics lesson, allowing the students a 

measure of power. However he maintains tight control of the pacing and sequencing of the 

discourse. At no stage do more than three students take turns to speak, and in almost every 

other case each student utterance is a direct response to a question asked by Simon. 

The discourse is marked by limited coherence. The three consecutive student utterances 

are disconnected examples of the use of percentages. With the exception of Simon’s 

follow-up questions on the meaning of 20% off and 97% fat free, there are no given/new 

structures in the discourse. Although Simon asks for the meaning of these phrases, students 

provide only simple answers. 

Simon’s use of the verb “mean” suggests that the discourse focuses on mental, rather 

than material processes. In the initial question he uses the verb “see”, which implies 

awareness rather than action. Simon’s conversation in this stanza is marked by significantly 

reduced modality. He uses the word “might” three times, and asks students what they 

“think”. In this way he permits a level of uncertainty and allows an apparent element of 

choice in how they answer. However the students make a succession of confident 

statements, and seem unable or unwilling to embrace that uncertainty or to exercise that 

choice. Dean’s statement “I don’t care” expresses his unwillingness to engage in a mental 

process. It is significant that this is the only example of a student using the personal 

pronoun in an utterance, again suggesting that students in the class are focused on the 

material process of giving answers rather than on mental processes such as thinking, which 

are more likely to be expressed using the personal pronoun I. 

In this stanza Simon foregrounds students’ primary Discourse of the real world. By 

linking mathematics and the real world he attempts to increase intertextuality and thus to 

construct an alliance with students, recruiting them into the Discourse of school 

                                                 
2
 I asked Dean why he thought Simon only asked the boys at the back questions, and especially why he asked 

Dean. He said it was because Simon knew he understood the work because he had helped him, so it was a 

strategy to give him confidence. I also asked Kath why she was the only girl to whom Simon had asked a 

question. She said it was to make sure she was paying attention, because she was often disruptive in class. My 

observation of Kath suggested that, unlike Dean, she was able to play the game of school by “switching on 

and off” at will. 
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mathematics. In contrast to students’ knowledge of the world, the Discourse of school 

mathematics remains learned rather than acquired
3
. The concept of 20% as a fraction is an 

isolated piece of knowledge, unconnected to James’ initial observation about a 20% sale as 

a use of percentages. 

Stanza 5: Summarising and copying. In stanza 5 Simon recontextualises everyday 

language into the formal symbols of mathematics. The possibility for change afforded by 

the weakened classification of stanza 4 is not realised. The messaging strategy of text 

privileges a particular form of knowledge and expression. The structure of the text 

valorises mathematical understanding as being on a higher plane than everyday language, 

propagating what Dowling (1998) terms the “myth of reference”. 

The text contains strong modality. Simon writes phrases such as “all the time” and 

“when(ever) you see” and adverbs such as “literally”, implying that the text contains 

universal truth. He uses verbs such as “write”, “take” and “put” as actions that “you” do. 

This use of personal active voice is in stark contrast to the impersonal “this” or the noun 

“percent” that precede the verb “means”. Meaning is thus cast as inherent in mathematics, 

but the role of the learner is to do things. 

The use of the word “simply” makes a strong statement about the relative positions of 

students in relation to teachers or to mathematics itself. It suggests that the word “per” 

requires recontextualisation to become “out of”. Thus students are cast as being incapable 

of accessing the strongly classified discourse of school mathematics. 

The structure of the text reinforces a hegemony that casts teachers as authors and 

students as copiers. The bold heading “percentages” draws attention to the presumed 

importance of the notes, giving them priority over student generated text. The everyday 

context is quickly replaced by mathematical symbols, reinforcing the priority of the 

academic over the everyday. The message is that reading notes will promote true 

understanding. Whether the teacher writing notes and students copying is an act of 

instructional or regulative discourse is open to question. 

Conclusions 

The above discussion draws on ideas from three sociolinguistic frameworks to look at 

some episodes in two mathematics lessons. The discussion is neither rigorous nor 

systematic, but paints a vivid picture of the struggle between the teacher, Simon, and one 

student, Dean, in the arena of a mathematics classroom. 

Critical discourse analysis shows a precarious equilibrium, with Simon alternately 

wielding power over Dean and constructing an uneasy alliance with him. Throughout the 

interchanges Simon emphasises mathematics as being a material rather than a mental 

process, in which correct answers are more valuable than thinking. The discursive practice 

casts the teacher as instigator and the students as responders. Classroom practices such as 

question and answer and writing notes are unquestioningly accepted by both the teacher 

and students as being an integral part of school mathematics. 

The classroom interchanges are generally marked by strong classification and framing. 

Simon permits only certain content and allows students a limited voice in the classroom. 

He maintains tight control over the sequencing, pacing and evaluation of the activities of 

                                                 
3
 I later asked Dean how he knew so much about percentages and how he knew that 97% fat free meant 3% 

fat. He said that he hadn’t learned it, he had just “picked it up”. 
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the classroom, using what appear to be instructional practices as regulatory devices. He 

valorises mathematics over the everyday, recontextualising intuitive knowledge into formal 

symbols, thus placing student knowledge as of lesser value than teacher knowledge. 

Students are invited or cajoled to learn the valued Discourse of school mathematics, 

rather than being permitted opportunities to acquire it. Within the classroom both the 

teacher and students take on clearly defined roles as members of a particular group. Yet 

this is also the site of struggle as Dean resists and expresses solidarity with another student 

rather than with the teacher. This resistance is also apparent when Dean claims that he 

“doesn’t care”. 

Throughout the exchanges Simon objectifies the students as little more than producers 

of work and objectifies mathematics as little more than something to be done. Students are 

positioned as dependent on the teacher, and their own knowledge is positioned as 

subservient to mathematics. In turn, Dean casts himself as a dependent in the classroom.  
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In this paper the pedagogical practices of practising teachers and pre-service teachers when 
using digital technologies are described and compared. Data were collected by observation 
of presentations about using digital technology in mathematics by teachers and pre-service 
teachers and practising teachers were interviewed. Teachers generally used pedagogical 
approaches involving student-centred activity whereas pre-service teachers were more likely 
to use technology to teach concepts by demonstration and were not inclined to use the more 
student-centred approaches, though many used guided tasks. The study enabled some 
analysis and reflection upon the promoted action in the learning environments of pre-service 
teachers.  

Numerous researchers have reported the limited use of digital technology in secondary 
and primary mathematics classrooms (Forgasz, 2006; Goos & Cretchly, 2004; Ruthven & 
Hennessy, 2002; Sinclair, 2006). The use of digital technology in senior secondary 
mathematics classrooms where the assessment of students permits or assumes the use of 
digital technology are notable exceptions around the world (Forgasz, Griffith, & Tan, 
2006). Responding to studies that suggest that pre-service teachers will have limited 
opportunity to develop innovative pedagogical practices that include the use of digital 
technology, mathematics teacher educators have developed and evaluated technology 
enriched programs and practices in the education of pre-service mathematics teachers (e.g., 
Goos, 2005; Sinclair, 2006). The research reported in this paper has a similar genesis and 
purpose. The pedagogical practices with respect to the use of digital technology of three 
cohorts of pre-service secondary mathematics teachers are compared with those of a small 
sample of secondary school teachers who use technology relatively frequently in junior 
secondary mathematics classrooms.   

                                    

Background 

Ruthven and Hennessy (2002) reported that mathematics teachers in the United 
Kingdom used computers in mathematics to enhance the classroom ambience, assist 
tinkering, facilitate routine processes, and accentuate features of mathematics. In 
Queensland, teachers agreed that technology enabled students to perform calculations more 
quickly, receive dynamic feedback, study real life applications, and make links between 
numeric, graphic, and algebraic representations (Goos, 2004). These positive affective and 
cognitive affects of the use of technology in mathematics learning contribute to teachers’ 
likelihood to use digital technology in their mathematics lessons (Forgasz, 2006; Norton & 
Cooper, 2001). Teachers’ knowledge of software and pedagogical approaches and their 
beliefs about mathematics and the teaching and learning of mathematics also influence 
their use digital technology (Forgasz, 2006; Norton & Cooper, 2001). Goos and Cretchley 
(2004) argued that theoretical frameworks that focussed on identifying factors that 
encourage or hinder teachers’ use of digital technology were too deterministic. 

Mathematics: Essential Research, Essential Practice — Volume 2

Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia
J. Watson & K. Beswick (Eds), © MERGA Inc. 2007

727



Using Valsiner’s zone theory, Goos (2005) theorised the development of professional 
identity of beginning mathematics teachers as the negotiation of the constraints and 
affordances of their learning and professional environment. She analysed the elements of 
the zones of proximal development (ZPD), promoted action (ZPA) and free movement 
(ZFM) of a pre-service teacher. Pre-service teachers’ skills in using digital technology, 
pedagogical knowledge using digital technology for teaching and pedagogical beliefs 
constituted their ZPD. They were influenced by two zones of promoted action, the first that 
of the university lecturer and program and the second created by the mentor or supervising 
teacher in the practical component of the training program. The university program was 
described as “technologically rich” as pre-service teachers had access to graphics 
calculators that could be readily used in university classroom settings, activities specifically 
devoted to develop technical and pedagogical skills with technology, and one assessment 
task that required students to work in pairs and present a technology-based activity for a 
secondary program. Goos also promoted “mathematical thinking, real world applications 
and collaborative inquiry” (p. 42). The ZFM included the resources available in the school, 
curriculum program requirements, and the students of the pre-service teacher’s classroom. 
The way in which this pre-service teacher negotiated this environment illustrated the 
dynamic nature of learning to teach mathematics.  

Sinclair (2006) on the other hand used an ecological framework of complexity theory to 
reflect upon her practices as a mathematics teacher educator. In this framework the 
systemic conditions for learning include internal diversity, internal redundancy, distributed 
control, organised randomness, and neighbour interactions. In her pre-service course rather 
than setting a specific assessment task on the use of technology, she left the range of tasks 
more open allowing pre-service teachers to take more responsibility for their learning. As 
well as specialised workshops she worked on illustrating the diversity of digital use and 
developing shared understandings for meaningful communication by imbedding 
technology in every session, thereby modelling the use of technology as “an extension of 
self” (Goos, Galbraith, Renshaw, & Geiger, 2003). She observed that her pre-service 
teachers initiated the use of technology in the various assessment and teaching activities of 
their program.  

Pre-service teachers’ pedagogical practices with technology was not the particular 
focus of either of these studies, though others have observed that teachers use technology 
in ways that are consistent with their pedagogical practices. For example, Ng and Teong 
(2003) observed that mathematics teachers in Singapore most frequently used digital 
technology for demonstration of mathematics. Teachers in Singapore who used dynamic 
geometry most often used the software to prepare worksheets and test papers and to use 
dragging and animation of pre-designed templates or sketches to show geometrical 
properties and aid students’ visualisation.  

Previous research shows digital technology is most effective when students are actively 
engaged in the constructing of meaning through and with the technology (Goos & 
Cretchley, 2004). Effective pedagogical approaches therefore involve students using 
technology as a “partner”, or as an “extension of self”, where students utilise the 
affordances of the technology to develop understanding of mathematical concepts and 
solve problems, rather than using technology as a “servant” to perform mathematical 
operations uncritically (Goos et al., 2003). 

Ng and Teong (2003) developed the framework shown in Table 1 as part of a 
professional development program for teachers on the use of Geometers’ Sketchpad. The 
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level of instruction in this framework varies from teacher demonstration, the most 
structured and teacher-centred activity, to student-centred open-ended tasks that Ng and 
Teong call “black box tasks”. They identified the alternate student learning objectives 
related to geometry as teaching (or learning) a concept, consolidating the concept, 
developing an informal proof of a geometric property or theorem, and problem solving. 
The consolidation of concepts could be interpreted as providing students with a range of 
other experiences of the particular concepts previously introduced or developed. 
Alternately it could be interpreted as practice exercises or the application of geometric 
skills and concepts to routine geometric problems.    

Table 1 
A Framework for Teaching Geometry with GSP (Ng & Teong, 2003) 

Level 
No. 

Purpose of 
instruction/Level 

Teach 
concept 

Consolidate 
concept 

Informal 
proof 

Problem 
solving 

1 Teacher demonstration 
    

2 Templates/pre-made 
sketches 

    

3 Guided 
exploration/construction 
tasks 

    

4 Black box tasks 
    

 
In this paper the pedagogical approaches developed by pre-service teachers and the 

learning purposes of using digital technology are investigated. These approaches are 
compared with teachers of mathematics. The aim of this study is to consider the way in 
which the promoted action of a pre-service teacher education program and that of teachers 
in schools is reflected in the pedagogical practices of pre-service teachers.  

Methods 

Eight teachers, ranging in experience from 1 year to 25 years, who teach in socially 
disadvantaged schools in the western region of Melbourne and who reported that they used 
digital technology regularly participated in the first study that is reported in this paper. 
These teachers were selected following telephone interviews of mathematics teachers to 
identify teachers who used technology in junior secondary mathematics more than twice 
per term. Four of these teachers had previously supervised or mentored a pre-service 
teacher. The practicing teachers were interviewed using as semi-structured interview 
protocol and their responses tape-recorded. During the interview the teachers were asked to 
describe a successful mathematics lesson that integrated the use of digital technology and 
to explain why they thought that it was successful. These teachers also participated in a 
whole day workshop on the use of digital technology and presented examples of 
mathematics lessons that they found to be successful to their peers as part of the workshop 
program. Field notes were taken of these presentations and digital copies of some of these 
activities were gathered later. 

In the second study, pre-service teachers who were enrolled in the mathematics 
pedagogy subject of a secondary teacher education program (Graduate Diploma of 
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Education (Secondary)) in the years from 2004–2006 were participants. The number of pre-
service teachers enrolled varied: 30 in 2004, 25 in 2005, and 10 in 2006. As part of the 
course pre-service teachers are required to work in schools under the supervision of an 
experienced teacher of mathematics. The pre-service teachers worked in one school for 1-
day per week throughout the year and for two 4-week periods during the year.    

During the course pre-service teachers participated in workshops on the use of digital 
technology. The purposes of these workshops were two-fold: firstly to provide pre-service 
teachers with the opportunity to develop some knowledge of the software and the technical 
skills to operate the software or hardware, and secondly to model innovative practices in 
the implementation of digital technology in the classroom. In each year students 
participated in a three-hour workshop on Geometer’s Sketchpad (dynamic geometry 
software) and another three-hour workshop on graphics calculators where the focus was on 
teaching and learning functions. In 2005 and 2006 students also participated in a three-hour 
workshop on a CAS (computer algebra system) calculator. Students in 2006 also used 
graphics calculators during a further session on senior secondary chance and data 
curriculum. Many students in each year of the course were mature age students or educated 
overseas and had not had an opportunity through their own secondary education to develop 
technical skills in the use of graphics calculators and other mathematics specific software. 
Furthermore, it cannot be assumed that all pre-service teachers in the course will have used 
computer algebra or statistical software in their undergraduate studies of mathematics 
(Lavicza, 2006). 

In each year students were required to complete a technology assignment to fulfil the 
assessment requirements for the mathematics curriculum and pedagogy subject. For this 
assignment pre-service teachers conducted some research into the use of digital technology 
in the teaching of mathematics and then presented a teaching and learning activity to the 
rest of the group. The specific requirements varied slightly from year to year. In 2004 and 
2005 students worked in pairs on this task, though some students chose to complete this 
assignment individually. In 2006 the students worked individually on the task and were 
required to evaluate the use of the resource based on their experience of observing or using 
it during the practical program of the course (partnership placement).    

Descriptive accounts (field notes) of the pre-service teachers’ presentations were kept 
by the researcher, who was also the lecturer for this subject, in each of these years. Digital 
copies of the materials that students’ presented were collected for most students, especially 
in 2005 and 2006. 

Data were analysed using an adapted version of the Ng and Teong’s (2003) Framework 
to apply more generally to other areas of the mathematics curriculum and the range of 
digital resources that teachers of mathematics may choose to use. The purposes and 
objectives of teaching and learning were redefined and expanded to include practise and 
the application of mathematics to real world situation. The levels of teacher direction in the 
design of instructional activities were also re-interpreted. The category “templates and pre-
made sketches” was modified to also include interactive learning objects. Many of the 
resources available on the Internet are in the form of interactive learning objects. “Black-
box” tasks were re-labelled as “open-ended tasks”. An additional category was added: 
“research project” for semi-structured tasks or assignments that involved student inquiry. 
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Findings  

The digital learning activities that teachers reported in the interview or presented to 
peers during the workshop are categorised in Table 2. A letter identifies each teacher in the 
study. These data show that each teacher used either one or two pedagogical approaches. 
They used approaches of varying levels of student-centredness: templates or learning 
objects, guided tasks, or research projects. Teachers also used digital technology for a range 
of learning purposes, though informal proof was the least likely to be reported. In a 
previous paper I presented a more detailed analysis of one of these teacher’s pedagogical 
practice (Vale, 2006). Here I provide a brief description of some of the activities reported 
by teachers.  

Table 2 
Teachers’ use of Digital Technology 

Purpose of 
instruction/Level 

Teach/learn 
concept 

Consolidate 
concept 

Informal 
proof 

Problem 
solving 

Application 

Teacher demonstration 
     

Templates/ interactive 
learning objects 

G, H A, E, F, H  A, C, F, G  

Guided exploration/ 
tasks 

A, B, F, H  H  A, E 

Research project 
C, D, G C, G   C, G 

Open-ended task 
     

 

Teachers prepared templates for students to record results of investigations and to learn 

concepts such as π, and they used games and online interactive learning objects to practice 
number skills, consolidate understanding of the relationship between algebraic and graphic 
representations of linear equation, and develop skills such as estimation. They claimed that 
these activities enabled students to work at their own pace. Templates and interactive 
learning objects were also used for problem solving.  

Guided tasks were also popular and used by teachers for exploring geometric properties 
and measurement concepts and learning about box-plots and statistics. At least two of the 
teachers who used this teaching approach were adamant these activities were most 
successful when students were provided very clear “step-by-step” instructions. These 
instructions were concerned with learning to use the tool but also helped students to focus 
on what to observe and scaffolded mathematical interpretation of dynamic visual media. 
Although two of these teachers preferred to provide students with guided tasks for the 
application of mathematically skills, such as presentation of data, others preferred to use 
integrated curriculum research projects where students worked collaboratively to use the 
Internet to gather data or information and to use digital tools to analyse or present their 
work. Teachers using this approach observed peer assistance, tutoring, and mentoring. 

Over the 3 years in which pre-service teachers completed the technology assignments 
35 presentations were analysed. In each year at least one pair of pre-service teachers chose 
to base their presentation on the use of technology to design assessment tasks and these 
presentations were not included in the data presented in Table 3. Also a few pre-service 
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teachers did not complete the task or records of their presentation were not retained. The 35 
presentations analysed and reported in Table 3 were the work of 53 pre-service teachers. 
Table 3 shows the percentage and number of pre-service teacher technology presentations 
in each category. Many of the activities presented by pre-service teachers were ones that 
they had used or observed during their practical experience in schools, though data on this 
was not always recorded for pre-service teachers in 2004 and 2005.  

Table 3 
Pre-service Teachers’ use of Digital Technology  

Purpose of 
instruction/Level 

Teach/ 

learn 
concept 

Consolid
ate 
concept 

Informal 
proof 

Problem 
solving 

Appl’n Total 

Teacher 
demonstration 

14 % (5) 6% (2)    20% (7) 

Templates/ ILOs 
6% (2) 11% (4)  3% (1) 3% (1) 23% (8) 

Guided 
exploration/ tasks 

31% (11) 6% (2)  6% (2) 9% (3) 51% 
(18) 

Research project 
    3% (1) 3% (1) 

Open-ended task 
    3% (1) 3% (1) 

Total 
51% (18) 23% (8)  9% (3) 17% (6) 100% 

(35) 

 

The data in Table 3 show that pre-service teachers were most likely to present a 
technology-based learning activity that was a guided exploration or task (51%) and they 
were also most likely to use digital technology to teach or learn a concept (51%). 
Moreover, the pre-service teachers were most likely to use a guided task to teach or learn a 
concept (31%). Typically these presentations involved the use of a function-grapher 
(graphics calculator, Excel, Geometers’ Sketchpad, or Graphmatica) to investigate the 
effect of parameters in symbolic expressions on the graphs of functions (such as linear, 
quadratic, or exponential functions). The pre-service teachers were thus focussed on the 
interaction of symbolic, graphic, and numeric representations of concepts and, in particular, 
the use of visualisation of graphic images or numeric patterns to learn about a 
mathematical concept. A closer analysis of materials presented however found that one-
third of these guided activities did not include questions that required students to compare 
and contrast graphic or numeric data or to require students to conduct further exploration 
through the use of “what if” type questions. The guided tasks were in essence designed for 
students to learn to use the tool to generate graphs or tables of data.    

Pre-service teachers also showed a propensity to use templates or interactive learning 
objects (23%) or incorporate the use of technology through teacher demonstration (20%). 
Pre-service teachers were also likely to use technology to consolidate concepts or practice 
skills (23%) and for application to real world situations (17%). Activities for consolidating 
concepts and practising skills included online quiz and game sites, game software, and 
teacher designed games using spreadsheets. One presentation involved the uncritical and 
routine use of spreadsheet templates for presenting data.  
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Most of the teacher-centred demonstration methods occurred in 2006. It is not clear 
why this was the case. These demonstrations typically concerned instruction on the 
technical skills needed to use software for a particular task. For example, one of these 
demonstrations involved teaching students to use Excel for the calculation of statistics 
(mean, mode, and median).  In other presentations pre-service teachers used software tools 
or authentic data to demonstrate a concept. For example one pre-service teacher used Excel 
to demonstrate an application in financial mathematics and another pre-service teacher 
used TinkerPlots as part of a PowerPoint presentation to demonstrate correlation. Perhaps 
because pre-service teachers worked individually they did not benefit from collaboration 
with peers that may have involved them in more pedagogical discussions of how to best 
use the material and resources available. In two of these cases, the presenters drew upon 
data and methods of using technology from their previous professional occupations.    

The use of digital technology for problem solving or applications was more likely to be 
the focus of the presentation for pre-service teachers in 2005 and 2006. Pre-service teachers 
typically made use of commercially available learning objects and template for problem 
solving. Student surveys and other forms of data collection were typical application tasks. 
The only open-ended task involved the use of drawing software to explore and create 
tessellated designs.    

Discussion and Conclusion 

 Pre-service teachers adopted the practice of guided tasks, popular with teachers to 
demonstrate their understanding of the role of technology in mathematic learning. 
However, the execution of these tasks indicated that rather than indicating a propensity to 
involve the use of technology as a “partner” for students in mathematics classrooms, the 
practice of pre-service teachers suggested they were more likely to use digital technology 
as a “servant” in mathematics classrooms. As the data gathered from practising teachers 
relied on self-report data that were not always accompanied by copies of material it is 
possible the pre-service teachers are observing guided instruction on the development of 
technical skills. This finding indicates that I need to work with pre-service teachers on 
planning structured inquiry with technology and in particular on the framing of questions 
that will scaffold and focus students’ learning. Some very good resources exist and these 
need to be shared with mentors and supervising teachers in partnership schools. 

Teachers in the study were more likely than pre-service teachers to use research 
projects as a way of integrating technology in mathematics learning. These tasks provided 
for internal diversity, meaningful communication among students, collaborative inquiry 
and shared responsibility for learning (Sinclair, 2006). It would seem however that this 
form of learning activity is not commonly modelled in the range of schools in which pre-
service teachers undertake their practical training. Effective models of this kind of task 
need to be incorporated into the pre-service program. 

Pre-service teachers used demonstration whereas the teachers in the study did not. 
Indisputably this is a common and successful element of teachers’ pedagogical practice and 
pre-service teachers need to develop the communication and instructional skills required to 
use technology successfully for demonstration in their teaching too. However this finding 
suggests that the teachers in the study are more amenable to innovative practices than many 
of the pre-service teachers, and probably many of their peers who use digital technology 
less regularly, or rarely, in their teaching of mathematics. It suggests some differences in 
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pedagogical beliefs or that pre-service teachers have not had sufficient opportunity to 
develop diverse pedagogical practices when using technology.  

This project has provided me with information about the nature of “promoted action” 
with respect to the use of technology in secondary mathematics classrooms and to analyse 
and reflect upon pre-service teachers’ developing pedagogical practice with technology. 
Although many pre-service teachers were afforded the opportunity to observe or practise 
the use of technology in mathematic teaching, others would appear to have less experience 
in classroom settings. Some mentor teachers encourage pre-service teachers to trial 
activities using digital tools and materials whereas others are constrained by the lack of 
encouragement or resources or by the curriculum requirements set by the supervising 
teacher. I need to model more regularly the various ways in which technology may be 
imbedded in mathematics teaching and to work with school colleagues to provide pre-
service teachers with further opportunities for collaborative inquiry in university or school 
settings.    
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This study examines the procedural complexity and mathematical solving processes 

required by problems on two topics in seven Year 8 textbooks from four Australian states. 

The study used definitions from the 1999 TIMSS Video Study. Although variation existed 

between textbooks, the majority of problems were of low procedural complexity, requiring 

only the practising of procedures. The general picture was consistent with that painted by 

the Video Study, with a somewhat stronger emphasis on procedural work. 

The 1999 Third International Mathematics and Science Study (TIMSS) Video Study 

described teaching practices in eighth-grade mathematics and science in the United States 

and in six countries where students performed well relative to the United States on the 

TIMSS 1995 assessments. Countries participating in the mathematics component of the 

TIMSS 1999 Video Study were: Australia, the Czech Republic, Hong Kong SAR, Japan, 

the Netherlands, Switzerland, and the United States.  

Many common features were apparent across the seven countries, for example, teachers 

in all seven countries talked more than the students, at a ratio of at least 8:1; mathematics 

teachers in all countries organised the average lesson to include some public whole-class 

work and some private individual or small-group work; and on average at least 80% of 

lesson time was spent in solving mathematical problems. Almost 15000 mathematics 

problems were analysed, with 82% of the problems focusing on number, geometry, and 

algebra.  

There were some features of the 87 randomly selected Australian mathematics lessons 

that many mathematics educators would find disturbing. Three quarters of the problems 

presented in the Australian lessons were repetitions of the preceding problems, the highest 

proportion of the seven countries. The Australian lessons also included the highest 

proportion of problems of low procedural complexity (77%) and virtually no Australian 

lessons included verification of results by logical reasoning (Hiebert et al., 2003). This 

cluster of features of Australian lessons – low complexity of problems, which are 

undertaken with excessive repetition, and absence of mathematical reasoning in classroom 

discourse – together constitute what we have termed the “shallow teaching syndrome”  

(Stacey, 2003).  

The Study 

This paper presents findings from an early stage of an investigation into the shallow 

teaching syndrome – whether it is a real pattern or just an artifact of the definitions and 

procedures of the Video Study, (if real) whether it is indeed undesirable, and (if real) 

whether it is most evident in “textbook teaching”. With this motivation, we set our first 

goal to compare “textbook teaching” with the findings of the Video Study, asking if the 

general picture revealed by the Video Study would arise if all lessons followed textbooks 
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exactly. This study is also intended to provide insight into the way in which the 

classifications of problems used for the Video Study operate in practice.  

Three Classifications of Problems 

Procedural complexity was defined in the Video Study in terms of the number of steps 

required to solve a problem by a standard method and whether the problem comprised sub-

problems. (Details are given in Methodology.) Table 1 shows the average percentage of 

problems at each level of procedural complexity for Australia, Japan and the Netherlands. 

Other countries had from 63% to 68% of problems of low complexity.  

Table 1 

Average Percentage of Problems per Eighth-grade Mathematics Lesson at each Level of 

Procedural Complexity for Australia, Japan and the Netherlands 

 Low Moderate High 

Australia 77 16 8 

Japan 17 45 39 

The Netherlands 69 25 6 

          Note: The percentages do not all sum to 100 because of rounding. 

Problems solved in the lessons were also classified according to the mathematical 

solving processes involved. Three categories were used: using procedures, stating 

mathematical concepts, and making connections (see Methodology for definitions). The 

majority of lessons in all countries except Japan were found to have a high proportion of 

problems per lesson that focused on using procedures, with smaller percentages of 

problems focusing on stating concepts or making connections. Table 2 gives the average 

percentage of problems per lesson in these three categories for Australia, Hong Kong SAR 

and The Netherlands (see Hiebert et al., 2003, p. 99). In addition to Japanese lessons 

having the highest percentage of problem statements focusing on making connections 

(54%), 39% of lessons contained a proof. Contrasting sharply with the Japanese lessons, 

virtually none of the lessons from Australia, the Netherlands, and the United States 

contained instances requiring verification or demonstration by reasoning that a result must 

be true (a sub-category of making connections problems). 

Table 2 

Average Percentage of Problem Statements per Eighth-grade Mathematics Lesson 

Focusing on Different Types of Mathematical Solving Processes for Three Countries 

 Using procedures Stating concepts Making connections 

Australia 61 24 15 

Hong Kong SAR 84 4 13 

The Netherlands 57 18 24 

Note: The percentages do not all sum to 100 because of rounding 

Where problems were solved publicly, the Video Study compared the implied solving 

process and the actual solving process. Problems that were intended to engage students in 

stating concepts or making connections frequently only exhibited using procedures when 

discussed publicly. In the Australian lessons, for only 8% of problems categorised as 

making connections did the public explanation explicitly draw attention to these 
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connections. Problems were also classified as either exercises or applications (see 

Methodology for definitions). In the Australian lessons, 45% of problems were 

applications, compared with 74% for Japan and 34% for the United States. 

Characteristics of Textbooks 

Textbooks or worksheets were used in at least 90% of the mathematics lessons in all 

countries (Hiebert et al., 2003). The analysis of textbook questions therefore provides a 

useful indication of the procedural complexity to which students are likely to be exposed 

and the extent to which the majority of students are being challenged beyond the 

application of procedures. In a study of the use of mathematics textbooks in English, 

French, and German classrooms, Pepin and Haggarty (2001) analysed how textbooks vary, 

how they were used by teachers in the classroom and how this influenced the culture of the 

mathematics classroom. They note that in some textbooks, exercises predominated, with 

few connections made between the concepts practised. In others, student exploration, 

questioning, and autonomy were encouraged, and the posing of problems motivated the 

acquisition of new knowledge. Pepin and Haggarty claim that in the English textbooks 

“questions were mostly straightforward applications of the worked examples provided. 

They were the routine-type where a ‘taught’ method was applied in relatively impoverished 

and non-real contexts and they only rarely required deeper levels of thinking from pupils” 

(p. 172). By contrast, they found that the French textbooks contained “graduated exercises 

with many demanding questions requiring insights and understanding from pupils” (p. 

173). In Germany, textbooks were differentiated for the perceived achievement level of 

students, with a relatively high level of complexity and coherence, particularly with respect 

to mathematical logic and structure.  

Brändström (2005) analysed three different Swedish seventh-grade mathematics 

textbooks, focusing on how the textbooks provided opportunities for all students to learn. 

Each book catered for different ability levels by means of two or three alternative strands 

within each chapter. Brändström’s analysis of the textbook tasks included a comparison of 

the number of operations, the cognitive processes involved (based on Bloom’s taxonomy), 

and the level of cognitive demand on a four-point scale. Brändström found that the lower 

strands focused predominantly on the lower two levels of cognitive demand (memorisation 

and applying a procedure). Even in the higher strands, more than 85% of tasks were at the 

lower two levels. Tasks at the top level were identified only in the strands for more able 

students in two of the three textbooks, approximately 5% and 10% respectively. It appears, 

then, that even when textbooks are written specifically for students of different ability 

levels, only a small proportion of textbook questions challenge students beyond the 

application of procedures. In view of this literature and the fact that Australian 

mathematics textbooks are generally written for mixed ability classrooms, the levels of 

procedural complexity in questions, and the different types of mathematical processes 

included are important issues.  

This paper focuses on the analysis of selected problem sets in a sample of Australian 

mathematics textbooks, addressing in particular the following research questions:  

1. to what extent are the Video Study criteria for procedural complexity, types of 

mathematical processes, and the exercise/application distinction useful in analysing 

problem sets and associated tasks in Australian mathematics textbooks?  

2. can differences between textbooks be identified using the Video Study criteria? 

3. does the analysis of textbook problems align with the findings of the Video Study?  
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Methodology 

In order to gain insight into the methods and findings of the Video Study, we needed to 

select problems that were typical of Year 8 work, and then analyse them using the Video 

Study criteria. In this study, we used three of the Video Study variables: procedural 

complexity, mathematical processes, and the exercise/application classification. Although 

the Video Study also classified aspects of lesson delivery, the selected variables were 

applicable to problem statements, and so could be used on textbook problems.  

Selecting the Textbooks and Problem Sets  

For this preliminary study, we investigated two topics from the 2006 best-selling Year 8 

textbooks (textbooks A, B, C, and D) in four Australian states. Each was a clear market-

leader. It should be kept in mind that for textbooks A and B, Year 8 is the first year of 

secondary school, whereas for textbooks C and D, Year 8 is the second year of secondary 

school. The best-selling textbooks were selected simply because this gave us the best “one 

book” picture of the problems that might be presented to Australian students. The same 

topics were also analysed in an additional sample of three different textbooks from one 

state for which Year 8 is the second year of secondary school (textbooks E, F and G). 

Because the results were limited to just two topics, and it is unclear whether these are 

representative, the textbooks are not named in this paper.  

All problem sets from two mathematical topics were chosen: addition and subtraction 

of fractions and solving linear equations. For solving linear equations, we selected material 

related to “doing the same to both sides” (not guess and check or graphical solving). These 

topics were common to all states at this level and were also representative of two of the 

three most prevalent topic areas in the Video Study – number, geometry and algebra. The 

problem sets were drawn from the part of the textbook dedicated to that topic. We did not 

search the rest of the books to find problems that used knowledge from these topics.  

Definitions from the Video Study 

In each of the selected problem sets, the problems were classified using the Video 

Study descriptors for procedural complexity, the mathematical processes required in the 

solution, and as either exercises or applications. Here we describe these classifications.  

In the Video Study lesson analysis, problems were defined in the following way: 

“Problems contain an explicit or implicit Problem Statement that includes an unknown 

aspect, something that must be determined by applying a mathematical operation, and they 

contain a Target Result”. The Target Result is the answer to the Problem Statement and 

“may be a number, an algebraic expression, a geometric object, a strategy for solving 

problems, and even the creation of a new problem” (TIMSS 1999 Video Study Math 

Coding Manual, pp. 20, 21). A mathematical operation or decision that occurs between the 

problem statement and the target result is referred to as a step. Problems involve one or 

more steps to reach the target result. Examples of problems provided in the Coding Manual 

are: 
1. Which of the following numbers is bigger? 

2. Solve the following equations:  (a) 3x + 1 = 8 (b) x – 7 = 42  (2 problems) 

3. Find the area of a parallelogram with a base of 8 cm and a height of 4 cm. 

4. Make a table of values and graph the equation 3x = 2y – 1  (problem with sub-problem) 
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Problems were categorised as either exercises, that is, practising a procedure on a set of 

similar problems, or applications, where students applied procedures they had learned in 

one context to solve problems about a different context. An example of an application 

problem based on the practised procedure of solving equations is: “The sum of three 

consecutive integers is 240. Find the integers.” (Hiebert et al., 2003, p. 90). Under this 

definition, applications do not necessarily have real-world references. Problems were 

classified as being of low, moderate, or high procedural complexity according to the 

number of steps and sub-problems. The criteria and an example for each level of 

procedural complexity are shown in Table 3.  

Table 3 

TIMSS Classification for Problem Complexity [from Hiebert et al., 2003, p. 71] 

Complexity Description 

Low Solving the problem, using conventional procedures, requires four or fewer decisions by 

the students (decisions to be considered small steps). The problem contains no sub-

problems or tasks embedded in larger problems that themselves could be coded as 

problems. 

Example: Solve the equation: 2 7 2x + =   

Moderate Solving the problem, using conventional procedures, requires more than four decisions 

by the students and can contain one sub-problem. 

Example: Solve the set of equations for x and y: 2 3  ;2 5y x x y= + =  

High Solving the problem, using conventional procedures, requires more than four decisions 

by the students and contains two or more sub-problems. 

Example: Graph the following linear inequalities and find the area of intersection: 
4 ;  2 ;  1y x x y≤ + ≤ ≥ −  

As a check that we were applying the criteria in the intended way, we classified 

examples including those in Table 3 according to the Video Study criteria. As shown in 

Tables 4a and 4b, our classifications of complexity coincided with that of the Video Study, 

although we do not know if steps we identified coincided precisely with those identified by 

the Video Study, as their steps were not made explicit in the examples.  

Table 4a 

Examples of Applying the Video Study Criteria for Procedural Complexity 

Example 1: Solve the set of equations for x and y: 2 3  ;2 5y x x y= + =  

2 3               (1) 

2 5           (2)

y x

x y

=

+ =

 

4 2 10    x y+ =    (3) 

Step 1: Decide on an appropriate strategy 

Step 2: Multiply equation (1) by 2 to get equation (3) 

4 3 10    7 10x x x+ = ∴ =  Step 3: Substitute equation (1) into equation (3)  

7 10 10
,  

7 7 7

x
x= =  Step 4: Divide both sides by 7 

2 3      

3 10 30
2  

7 7

y x

y

=

×
= =

 Step 5: Substitute 
10

7
x =  in equation (1) 

15

7
y =  

Step 6: Divide both sides by 2 

More than four steps, but no sub-problem, so moderate procedural complexity. 
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Table 4b 

Examples of Applying the Video Study Criteria for Procedural Complexity 

Example 2: Graph the following linear inequalities and find the area of intersection: 4 ;  2 ;  1y x x y≤ + ≤ ≥ −  

x-intercept (-4, 0), y-intercept (0, 4) Step 1: Find intercepts for 4 y x≤ +  

 

Steps 2- 4: Sketch graphs 

Sub-problem: 

Steps 5, 6: Find coordinates of intersections 

Step 7: Decide on required region 

Sub-problem: 

Steps 8, 9: Find base and height of right-angled triangle 

Step 10: Calculate area of triangle 

 

 

More than four steps, and two sub-problems, so high procedural complexity. 

Problem statements were also categorised according to the implied mathematical 

processes: using procedures, stating concepts, or making connections. The criteria and an 

example for each category are shown in Table 5. 

Table 5 

Defining the Types of Mathematical Processes Implied by Problem Statements [from 

Hiebert et al., 2003, p. 98] 

Mathematical process Description 

Using procedures Problem statements that suggested the problem was typically solved by applying a 

procedure or set of procedures. These include arithmetic with whole numbers, 

fractions, decimals, manipulating algebraic symbols to simplify expressions and 

solve equations, finding areas and perimeters of simple plane figures, and so on.  

Example:  

Solve for x in the equation  2x + 5 = 6 – x. 

Stating concepts Problem statements that called for a mathematical convention or an example of a 

mathematical concept. 

Examples:  

Plot the point (3, 2) on a coordinate plane. 

Draw an isosceles triangle. 

Making connections Problem statements that implied the problem would focus on constructing 

relationships among mathematical ideas, facts or procedures. Often, the problem 

statement suggested that students would engage in special forms of mathematical 

reasoning such as conjecturing, generalizing, and verifying.  

Examples:  

Graph the equations y = 2x + 3, 2y = x – 2 and y = -4x, and examine the role played 

by the numbers in determining the position and slope of the associated lines. 

Results 

Variations occurred in the way the fractions problems were organised, with some 

textbooks including addition and subtraction together in a single problem set, and others 

presenting addition and subtraction separately. In some books, simple fractions were placed 

in a separate problem set from mixed numbers. In one book, students were directed to use 
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calculators in the problems involving mixed number addition and subtraction. In states 

where Year 8 was the first year of secondary schooling, the Year 8 textbooks (A and B) 

included an extensive treatment of fractions, compared with the states where Year 8 was 

the second year of secondary schooling. Although textbook E provided substantial revision, 

textbooks C, D, and F included only a small number of problems and G had no fractions 

section. Textbook D focused only on very simple problems with no mixed numbers.  

Table 6 shows the number of problems, procedural complexity, and type of solving 

process for “Addition and subtraction of fractions” problems in the sample of seven 

textbooks. The majority of problems in all books were of low complexity. The data in 

Table 6 show a tendency for the textbooks that regarded this as a revision topic to have 

relatively more problems of moderate complexity, although textbook D is an exception. 

Almost all of the problems required only using procedures. Although the relatively high 

percentage of making connections problems in textbook C represents only four problems 

from a small revision set, it does indicate a different approach to this revision than in the 

other books.  

A similar pattern of procedural complexity was found in the problems relating to 

solving linear equations (see Table 7). One might expect that in states where Year 8 was 

the second year of secondary schooling a smaller percentage of low complexity problems 

would appear in the Year 8 textbooks. However, this was not the case. Textbook C, for 

example, contained the highest proportion of low complexity problems despite the 

inclusion of equation solving in the corresponding Year 7 book. All textbooks included at 

least some problems that required students to make connections (ranging from 2% for 

textbook A to 27% for textbook B) but the focus was still predominantly on using 

procedures. Wide variation in the number of problems was also evident, ranging from 87 

problems in textbook A to 337 problems in textbook D. The last line of Tables 6 and 7 

gives the Australian averages from the Video Study for comparison. The lessons of the 

Video Study had more problems of high complexity and more problems requiring stating 

concepts and making connections than these two sections of the textbooks.  

Table 6 

Procedural Complexity and Type of Solving Process for “Addition and Subtraction of 

Fractions” Problems for Sample of Australian Year 8 Mathematics Textbooks  

Textbook Number of 

problems 

Procedural complexity 

 (percentage of problems) 

Solving process 

(percentage of problems) 

  Low Moderate High Using 

procedures 

Stating 

concepts 

Making 

connections 

A 114 76 24 0 93 2 5 

B 116 76 24 0 95 0 5 

C 16 56 44 0 75 0 25 

D 12 83 17 0 100 0 0 

E 74 69 31 0 95 0 5 

F 18 61 39 0 100 0 0 

G no section - - - - - - 

Video 99 Australia 77 16 8 61 24 15 

Note: The percentages do not all sum to 100 because of rounding. 
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Table 7 

Procedural Complexity and Type of Solving Process for “Solving Linear Equations” 

Problems for Sample of Australian Year 8 Mathematics Textbooks  

Textbook Number of 

problems 

Procedural complexity  

(percentage of problems) 

Solving process  

(percentage of problems) 

  Low Moderate High Using 

procedures 

Stating 

concepts 

Making 

connections 

A 87 79 21 0 84 14 2 

B 132 85 15 0 64 9 27 

C 213 88 12 0 72 5 23 

D 337 85 15 0 91 1 8 

E 298 73 26 1 89 1 10 

F 172 62 38 0 77 7 16 

G 250 84 16 0 91 4 6 

Video 99 

Australia 

 77 16 8 61 24 15 

Classification of the problems as either exercises or applications indicated that the 

emphasis for both topics in all textbooks was on the practising of procedures (exercises) 

rather than on the application of those procedures (see Figure 1). This was particularly 

evident in the case of addition and subtraction of fractions, where only three books 

included application problems. Curiously, books C, D, and F, which were revising the topic 

from the previous year’s work (recall that G had no section on this topic), had no 

application problems. It will be interesting to check with other topics whether revision 

focuses more strongly on procedures than is the case when the topics are first introduced. 

(Note that there is a methodological difficulty here that urges caution: only problems in the 

designated chapters have been analysed, but there may be many applications in later 

chapters).  

For solving linear equations, the average proportion of application problems was higher 

(see Figure 1) with more variation. Textbook A had only exercises, but most books 

included a number of application word problems, sometimes in separate problem sets or as 

investigations. In textbook B (from a state where Year 8 is the first secondary school year) 

over 25% of the problems were applications involving the solving of word problems. 

However, when the total number of equation solving problems was considered, it could be 

seen that there was a high level of repetitive exercises. In textbook D, for example, there 

were only 43 application problems from a total of 337 problems. 

Two further observations are of interest. First, the relative proportions of applications 

and exercises in the books vary between the two topics. It does not appear that some books 

have more applications in all chapters. Second, the proportions of applications for all of 

these textbooks for both topics are substantially below the Australian average of 45% of 

problems being applications in the Video Study lessons.  

Discussion 

As in the Video Study, textbook problems were overwhelmingly low complexity 

problems and they focussed on using procedures. There was a broad similarity in the 

proportions of problems in each category in this and the Video Study, although it will be 
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useful to test this on a further sample of textbooks and topics. In fact, the results of the 

Video Study showed more variation than the textbook problems, having more problems of 

high complexity, more applications and fewer problems that only required using 

procedures. This may indicate that much of this variation in lessons came from resources 

other than textbooks, and the Video Study data can be examined in future to test this.  

Percentage of problems in sample of eighth-grade 

textbooks that were applications
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Figure 1. Percentage of problems in the sample of Year 8 textbooks that were applications.   

Choosing topics that were comparable across the different states was complicated by 

the slightly different curriculum emphases, and by whether Year 8 was the first or the 

second year of secondary schooling. Although addition and subtraction of fractions was a 

common curriculum element, in states where Year 8 was the second year of secondary 

school, most textbooks included only a brief revision set of problems. However, contrary to 

expectations, these revision problems were generally low complexity exercises, with few 

application problems or problems that required students to make connections or consider 

underlying mathematical concepts. Consequently, students with conceptual difficulties 

after first exposure to a topic are less likely to have them addressed in later years. 

A major aim of this study was to explore the use of the definitions and constructs of the 

Video Study, and their suitability for capturing the essence of the mathematical work on 

which students spend their time. In general, the classification procedures seemed 

reasonably robust. For example, in determining problem complexity, it was sometimes 

difficult to decide whether to count a particular operation as one or two steps. At Year 8 

level, students are likely to be still gaining confidence with addition and subtraction 

involving negative integers. Hence we classified solving the equation 2 5 11x− − = −  as 

requiring three steps: deciding to add 5 to both sides, calculating 11 5− + , and dividing both 

sides by 2− . However, the equation 2 5 11x + =  was classified as having only two steps: 

subtracting 5 from both sides to give 6 on the right side, and dividing both sides by 2. With 

either 2 or 3 steps, though, both these equations are classified as low complexity.  

Different types of problems play different pedagogical roles. It is important that 

textbooks provide students with sufficient exercises so that procedures may be practised 

and become a secure part of a student’s mathematical toolbox. Likewise there should be 

sufficient problems for students to learn to apply those practised skills, for making 
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connections between different aspects of mathematics, for recognising underlying 

mathematical concepts, and for reasoning. Having two classifications, one for complexity 

and one for mathematical processes, highlights the fact that higher procedural complexity 

does not indicate higher quality of problems in terms of challenging students to make 

connections or to reason. In the case of the equation solving problems, for example, many 

problems qualified as moderate complexity because the solving required more steps, for 

example, ( ) ( ) ( )7 3 2 5 25 4 3 8x x x− − − + = + − . However, apart from deciding upon the order of 

steps, the student simply repeats the same types of operations: expanding brackets, dealing 

with positive and negative signs, collecting like terms, etc. It is important that students 

should be able to solve equations involving multiple steps. Mathematicians have to be able 

to sustain a chain of reasoning without error. However, the textbooks tended to include 

these moderately complex equations at the expense of including high complexity problems, 

where students must plan a path through sub-problems in order to reach the target result. In 

several books, investigations were included that would have been classified as one high-

complexity problem, except that the investigation was broken down into a number of 

clearly stated sub-problems, each of which became a separate problem of generally low 

complexity.  

It was also evident during the classification process, that the classifications do not show 

which are “good” problems, and that there are problems that provoke and do not provoke 

mathematical thought in all categories. A problem such as “plot the point (3, 2)”, for 

example, is classified as “stating concepts”, but it may stimulate less learning than a simple 

“using procedures” problem. It is not that “using procedures” problems and problems of 

low complexity are “bad” of themselves, but that their dominance curtails the experiences 

that students have of mathematical thinking. It is also the case that using the percentage of 

problems in each category as the basic measure is problematic (providing a few more 

exercises will put up the percentage of low complexity problems), especially as problems 

of higher complexity and those requiring connections may each take more students’ time. 
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Drawing on a review conducted of the resources that the mathematics education research 

community has developed while learning to support teacher learning, I direct attention to 

researchers’ understanding of teachers’ current practices. In particular, I argue that 

designers, facilitators, and researchers of professional development alike would benefit 

from understanding teachers’ practices (a) as reasonable from teachers’ perspectives, (b) in 

a way that can directly feed into the efforts of supporting teacher learning, and (c) as shaped 

by the institutional context of teachers’ work.  

Introduction 

Designing effective professional development (PD) programs for mathematics teachers 

is a complex endeavour about which a lot remains to be learned (Borko, 2004). To 

explicate the complexity, I first discuss how it is deeply rooted in the demands related to 

teaching mathematics for understanding. I then argue that for PD interventions to be 

effective, the facilitators need to have both an understanding of teachers’ current 

instructional practices and a way to build on those PD designs. Lastly, I use illustrations 

from several PD research studies to build an image of what might be involved in 

understanding teachers’ practices in useful ways for the purposes of designing and 

facilitating effective PD programs.   

For the past 15 years, an important goal for mathematics educators in the US has been 

to change the nature of mathematics teaching and learning in classrooms. Reformers have 

proposed substantial changes in the content and pedagogy of the K–12 mathematics 

curriculum, so that all students have the opportunity to learn more intellectually demanding 

mathematics. Among the important contributions of the reform efforts to this point is that 

they “shed light on the vital role played by teachers in educational change” (Llinares & 

Krainer, 2006, p. 439). The broad consensus about the critical role of teachers fuelled 

studies of classroom instructional practices that would support all students’ development of 

the kinds of mathematical understanding that are the aim of the reform. A number of these 

studies suggest that the effective practices require that teachers build from their students’ 

current reasoning while, at the same time, keeping in mind significant mathematical ideas 

that are the goal of instruction (e.g., Ball, 1993; Gravemeijer, 2004; Hiebert et al., 1997; 

Lampert, 2001). The forms of the envisioned instructional practices emphasise students’ 

opportunities to engage in mathematically challenging tasks, maintaining the level of 

challenge as tasks are enacted in the classroom (e.g., Stein & Lane, 1996), and students’ 

opportunities to communicate their mathematical thinking (e.g., Lampert, 2001).  

The complexity of supporting mathematics teachers to develop such instructional 

practices has been documented by numerous investigations that focused on teacher PD 

(e.g., Cobb & McClain, 2001; Fennema, Carpenter, Franke, & Carey, 1993; Franke & 

Kazemi, 2001; Simon & Tzur, 1999). Researchers reported that even in cases when 

teachers were willing to collaborate and seemed engaged in the work-session setting, 

understanding children’s reasoning was not always easy (Ball, 2001; Schifter, 2001). In 
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addition, teachers did not always see the use of their new knowledge in their classrooms as 

immediately obvious (Fennema et al., 1993; Zhao, Visnovska, Cobb, & McClain, 2006). 

Part of this complexity resides in the nature of the required teacher learning that targets 

changes in what Elmore (1996) called “the core of educational practice” – that is, the ways 

teachers think about the nature of knowledge, the nature of mathematics that would be 

beneficial for students to learn, as well as about their own and their students’ roles in 

teaching and learning (cf. Carpenter et al., 2004). Those conducting PD thus face a 

challenge in finding ways to support the teachers to revise the core assumptions of their 

practice and help them develop a need to change their classroom instruction. This is where 

understanding teachers’ current practices in a useful way comes to the foreground in the 

process of designing effective PD.  

Intervening to Support Mathematics Teachers’ Learning 

Designing PD programs that build on and benefit from teachers’ current instructional 

practices and, at the same time, are effective in pursuing a PD agenda is important for 

reasons parallel to those of building on students’ reasoning towards an instructional agenda 

in mathematics classrooms. On the one hand, there is little doubt that PD interventions 

should pursue their agendas, such as to focus on the key learning goals for teachers. On the 

other hand, my experiences when working with a group of middle school mathematics 

teachers convinced me that linking these goals to the participating teachers’ current 

practices so that the teachers could come to see them as beneficial was as important (e.g., 

Zhao et al., 2006).  

The issues I discuss in this paper arose when I reviewed the research on teacher PD in 

mathematics, with a goal of gaining better insights into understanding teachers’ current 

practices and how they can be used effectively as a resource in designing and facilitating 

PD. Pragmatically, I concentrated on interventionist studies with the goal of supporting 

teachers to develop instructional practices centred in student’s mathematical reasoning. In 

particular, I tried to understand what guidance asking different questions and adopting 

different perspectives bring to an endeavour of supporting and understanding teacher 

learning. The studies I discuss in this paper are intended to serve as paradigmatic cases of 

pursuing specific types of research goals while drawing on a specific set of assumptions 

and perspectives. They enable me to raise issues of importance with respect to 

understanding teachers’ current practices, specifically understanding them (a) as 

reasonable from teachers’ perspective, (b) in a way that can directly feed into the efforts of 

supporting teacher learning, and (c) as shaped by institutional context of teachers’ work. 

Understanding Teachers’ Practices as Reasonable from their Perspective 

Although recommendations to view teachers’ instruction as reasonable are a repeating 

theme in teacher education literature (e.g., Leatham, 2006; McIntyre & Hagger, 1992; 

Thompson, 1992), developing such a view might often seem counterintuitive. This is true 

especially in cases when teachers’ instructional practices differ significantly from those 

advocated by the reform proponents. However, if we do not commit to see teachers’ 

current instruction as reasonable from their perspective we risk both (a) overlooking 

opportunities for supporting teachers in making their perspectives a worthwhile topic of 

guided reflection, and (b) positioning teachers as deficient, having little to bring to the new 

instructional practices they are expected to develop. The professional developers’ job then 

becomes filling the gaps between teachers’ current – “deficient” – instructional practices 
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and the envisioned ones. The problematic nature of this approach is well documented by 

the frustrations of both teachers who ended up participating in PD programs that were not 

justifiable within their current understanding of teaching and learning (e.g., Putnam & 

Borko, 2000), and professional developers who struggled to earn participating teachers’ 

compliance and enthusiasm (e.g., Franke, Kazemi, Carpenter, Battey, & Deneroff, 2002). 

The resulting mismatch in professional developers’ and participating teachers’ views of 

ways to improve classroom mathematics instruction has been discussed in terms of 

incongruence in beliefs (e.g., Tillema, 1995) and changing teachers’ beliefs has been 

repeatedly reported a challenging task (e.g., Thompson, 1992).  

Simon and colleagues (Simon, 2000; Simon, Tzur, Heinz, Kinzel, & Smith, 2000) 

illustrated that if we want to take teachers’ current instructional practices “as a valuable 

starting point, not as something to be replaced, but a useful platform on which to build” 

(McIntyre & Hagger, 1992, p. 271), understanding these practices as a coherent system, 

rather than a random conglomerate of teaching moves, is valuable. Their Mathematics 

Teacher Development (MTD) Project experiences suggest that approaches that succeed in 

taking teachers’ current instructional practices as a PD starting point might significantly 

reduce problematic mismatches between researchers’ expectations and teachers’ actual 

participation in PD activities. The phenomenon of teachers’ “constraining” beliefs might 

then be tackled by re-conceptualising the issue as a problem of PD design. To investigate 

whether this indeed is the case, two related issues arise for those interested in supporting 

teachers’ development of new instructional practices: (a) How to see and explain the 

teachers’ actions as reasonable from their perspective, and (b) How to design for PD that 

builds on teachers’ current instructional practices towards a PD agenda rather than 

pursuing a gap-filling approach. In the work I reviewed, Simon and colleagues 

productively contributed to addressing the first question by generating accounts of practice 

(Simon & Tzur, 1999) – an adaptation of a case study methodology tailored to yield 

insights into an individual teacher’s current perspective on teaching and learning while 

seeing this perspective as reasonable from the teacher’s point of view.  

Understanding Teachers’ Practices in order to Support Teacher Learning 

Simon and colleagues’ focus in their study was on documenting perspectives that 

mathematics teachers held about teaching and learning and theorising these perspectives 

developmentally. This focus, as any particular focus, highlighted some aspects of teacher 

learning while it chose not to address other aspects. My goal in this section is to discuss the 

guidance that MTD Project research provided for both the design of further intervention 

and analysis of actual teachers’ learning. As the researchers (Tzur, Simon, Heinz, & 

Kinzel, 2001) point out, we can think of guidance at three different levels. 

On the broad level, categorising teachers with respect to their perspective on learning 

can help to highlight some of the key characteristics of instructional practices, 

development of which might be worth supporting. In this sense, the distinction between 

perception-based and conception-based perspectives that the researchers explicated 

provided a general direction for teacher development. Specifically, conception-based 

perspective stands for a common core of emergent and constructivist perspectives and its 

development requires a difficult shift from “we understand what we see” to “we see what 
we understand” (Simon et al., 2000, p. 585), a shift that can be counterintuitive to many 

teachers. On the other hand, 

(a) perception-based perspective is grounded in a view of mathematics as a connected, logical, and 

universally accessible part of an ontological reality. From this perspective, learning mathematics 
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with understanding requires learner’s direct (firsthand) perception of relevant mathematical 

relationships. … teaching involves creating opportunities for students to apprehend (perceive) the 

mathematical relationships that exist around them (Simon et al., 2000, pp. 579, 594). 

This perspective is problematic in that the teachers often do not consider what students 

already have to know and be able to do in order to gain the valued insights. With respect to 

a perspective that underlies “traditional” teaching practices, developing a perception-based 

perspective suggests an important accomplishment. With respect to developing 

instructional practices that would support students’ learning mathematics with 

understanding, further support of teachers’ development of a conception-based perspective 

would be needed. 

Fine-grained understanding of teachers’ instruction as reasonable from teachers’ 

perspectives is especially useful in both anticipating and analysing teachers’ interpretations 

of designed activities. Explication of a perception-based perspective helped Simon and 

colleagues corroborate their observations. In the researchers’ view, the teachers were not 

inquiring into the nature of their students’ understanding in their daily instruction. 

Portraying teachers’ decisions as reasonable from their perspective, however, helped the 

researchers to understand that from the teachers’ perspective, they were basing their 

instruction on their students’ reasoning. However, they were only doing it as long as 

students’ reasoning corresponded – in teachers’ view – to observable mathematical reality. 

Simon and colleagues stressed that the sense that the teachers were making of 

opportunities to explore students’ reasoning both in their classrooms and in PD sessions 

was constrained by their current perspectives on teaching and learning. Promoting MTD 

Project teachers’ inquiry into their students’ reasoning would be likely interpreted by the 

teachers as something they already do in their classrooms and would therefore not lead to 

the envisioned changes in teachers’ instructional practices.  

In order to guide professional developers’ decisions when planning specific 

interventions in response to teachers’ actual participation a yet different grain-level of 

understanding teachers’ actions is beneficial. I will refer to this as a meso-level of PD 

design. To guide the design effectively, this meso-level should, in my view, be specific 

enough to help developers discern aspects of teachers’ current practices that might provide 

a springboard for further intervention. At the same time, it is an advantage if the grain size 

allows for consideration of how patterns in practices of the group, rather than individual 

teachers, are shaped. I now discuss each of these two points in more detail. 

First, researchers working within constructivist, emergent, and situated paradigms 

concur that teachers’ current instructional practices can and should serve as a basis on 

which to build in supporting teachers’ further learning (Ball & Cohen, 1999; Kazemi & 

Franke, 2004; McIntyre & Hagger, 1992; Simon et al., 2000; Wilson & Berne, 1999). 

Pragmatically, they aim to design PD activities to promote participation that both engages 

teachers’ current professional expertise and supports its transformation. MTD Project 

experiences illustrate that this is not a trivial task. For the teachers, further learning would 

involve a shift in paradigm with respect to development of mathematical knowledge. In 

what ways could teachers’ current practices, oriented by a paradigm we want them to 

overcome, serve as a leverage in supporting the envisioned shift? I suggest that as 

designers of teacher PD with an ultimate goal of improving students’ mathematical 

learning we need to understand teachers’ current practices in ways that will allow us to 

answer this question. A systematic view of teachers’ practices that would enable us to 

formulate revisable conjectures about ways of supporting teachers’ learning on an ongoing 

basis would be of both theoretical and pragmatic value.  
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Second, although the usefulness of researchers’ understanding was also a priority for 

Simon and colleagues, I would like to point to what I see as possible limitations of 

understanding teachers’ practices solely in terms of individual teachers’ underlying 

perspectives of mathematics teaching and learning. It has been documented that other 

aspects significantly influence teaching from teachers’ point of view, often by shaping the 

setting in which teachers work. Aspects of teaching, like available instructional resources 

for use in classrooms (Cobb, McClain, Lamberg, & Dean, 2003; Remillard, 2005), 

teachers’ views of student motivation and classroom misbehaviour (Dean, 2006; 

Visnovska, 2005; Zhao et al., 2006), and overall organizational aspects of the institutional 

contexts in which teachers work (Cobb et al., 2003; Elmore, 2000; Gamoran et al., 2003), 

all significantly shape how teachers approach teaching and learning. Each of these aspects 

constitutes a source of explanation to understand the rationality of teachers’ instructional 

practices (Zhao, 2005) that remain in the background when the focus is on teachers’ 

conceptions. More importantly, each of these may serve as a resource in designing starting 

points for PD that would capitalise on the teachers’ current instructional practices. Several 

of these aspects of teachers’ work point our attention to influences on teaching that are 

common across the participating teachers. From a perspective of a designer, this would 

allow for planning PD activities where current concerns of all teachers could become a 

topic of discussion. The teachers’ individual responses to these common concerns could 

then provide the facilitator with the diversity of ideas on which to build in supporting 

teacher learning. 

I would like to clarify that this broadening of the scope within which to understand 

teachers’ practices is not motivated by a quest for an ultimate theoretical account. Others’ 

PD experiences that I review suggest that we cannot expect that all teachers characterised 

as having developed a certain perspective on teaching and learning could be further 

supported in the same way. That is, in a way that would be independent of the institutional 

context of their work, instructional resources available in their schools, or major 

impediments to instruction as seen from teachers’ perspective. As I illustrate in the 

following discussion of the Cognitively Guided Instruction (CGI) project experiences, this 

broadening of the scope has long been implicitly present, across the spectrum of adopted 

theoretical perspectives, in the designs of PD that could be claimed effective in supporting 

teacher learning.   

Understanding Teachers’ Practices as Profoundly Shaped by Institutional 

Context of their Work 

I first introduce a CGI study (Fennema et al., 1996) conducted under a cognitive 

research paradigm. I chose the study based on a rich picture that the researchers provided 

of the concerns that played an important role in their design and research efforts. Concerns 

that related to the institutional context of teachers’ school were treated as background 

issues and were not accounted for within the cognitive framework adopted for the study. 

Nevertheless, it would be hard to overlook the design efforts explicitly devoted to shaping 

the institutional context in which the teachers worked. 

CGI: Research-based Knowledge for Teaching 

CGI researchers developed their program in the mid 1980s to investigate how 

mathematics teachers may capitalise upon research-based knowledge in their classroom 

instruction. In terms of content, most of the CGI research work was grounded in a 
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substantial body of research that provided a consistent and coherent picture of the 

development of basic number concepts (Carpenter, 1985; Carpenter, Fennema, Franke, 

Levi, & Empson, 1999; Fuson, 1992). Over the years, CGI researchers engaged in a 

number of research and PD projects in which they collaborated with a variety of 

mathematics teacher groups. The teachers’ active part in the PD was in deciding how to 

make use of the knowledge in the context of their own classroom instruction. The 

researchers conjectured that by providing teachers with an operationalised model of how 

children’s thinking develops the teachers would become competent in identifying different 

forms of students’ mathematical reasoning in their classrooms, as well as in planning 

appropriate follow up instruction that would capitalise on identified forms of reasoning.  

The success of the PD efforts was framed in terms of changes in the individual 

teachers’ beliefs and instruction. Findings from case studies led the researchers to conclude 

that “developing an understanding of children’s mathematical thinking can be a productive 

basis for helping teachers to make the fundamental changes called for in current reform 

recommendations” (p. 403, emphasis added). Such studies served as an existence proof of 

what could be achieved with teachers through focusing on a research-based framework of 

student thinking, and provided insights into the specifics of achieved instructional changes. 

Teachers’ knowledge of students’ developmental processes and their ability to understand 

their students’ reasoning were both framed as instrumental to the documented changes. 

In terms of means that supported the discussed developments, the early CGI reports 

accordingly focused on two issues (a) a research-based model of student thinking, and (b) 

teachers’ use of that model in their classrooms. It is important to clarify that supporting 
collaborating teachers’ learning also included the following.  

A CGI staff member and a mentor teacher were assigned to each school. Their responsibilities 

included participating in the workshops, visiting classrooms, engaging the teachers in discussions, 

and generally providing support as the teachers learned to base instruction on their students’ 

thinking. Both staff members and the mentor teachers were trained to focus most of their 

interactions with teachers directly on children’s thinking and its use. Insofar as possible, these 

interactions concerned specific children (Fennema et al., 1996, p. 409). 

In its plan of action, the CGI program did not focus solely on cognitive aspects of 

teachers’ learning. It involved significant interventions with both school principals and 

mathematics support staff based in the teachers’ schools. In order to generate the proof of 

the usefulness of research-based knowledge to teachers’ instruction, the researchers took 

seriously the institutional context within which teachers worked. In a very real sense, the 

CGI work involved designing for a particular institutional context that the researchers 

envisioned as supportive of teachers’ learning. Yet, at this point, these considerations were 

conceptualised as a background for the project, rather than as key support for teachers’ 

developing practices. The distinction is critical with respect to generalizability of the 

research findings, that is, with respect to the orientation the findings provide to designing 

and facilitating teacher PD programs. I clarify this issue when I discuss one of the more 

recent CGI studies, in which the researchers drew on situated theories of learning and used 

considerations related to institutional setting as resources for understanding teachers’ 

current instructional practices. I draw on this study to corroborate further what I mean by 

usefulness of understanding teachers’ practices on the meso-level of PD design. 

CGI: The Case of Algebraic Reasoning 

After years of experience with PD in context of early number concepts, Franke and 

colleagues (Franke, Carpenter, & Battey, in press; Franke et al., 2002) engaged in PD and 
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research efforts focusing on early algebraic thinking. Using their intimate understanding of 

CGI principles and findings, they aimed to support elementary teachers in enhancing 

students’ ability to generate, use, represent, and justify generalizations about fundamental 

properties of arithmetic. As in their previous work, the researchers intended to do this by 

both supporting teachers in developing a model of students’ development of algebraic 

reasoning, and by supporting teachers’ development of practices that place their students’ 

reasoning in the centre of classroom instruction. However, they came to view teachers’ 

cognition as being inherently social, inseparable from the cultural and institutional aspects 

of teachers’ work. 

The case I discuss comes from a CGI collaboration with a group of teachers in one of 

the lowest achieving elementary schools in the state of California (Franke et al., 2002). The 

researchers intended to use discussions of student work as leverage in supporting teachers’ 

appreciation of understanding students’ algebraic reasoning in instruction. To the 

researchers’ surprise and frustration, even after many work-sessions, student reasoning did 

not become something teachers wanted to learn about and use in their instruction: “All the 

teachers … see is the answer and while this occurred initially in our earlier work the 

teachers quickly began to see on the paper and in their questioning what students did to 

solve the problem” (p. 28). The teachers continued to check for correctness of responses 

and did not find it useful to discuss in classrooms how different students arrived at their 

solutions. Instead, they requested that the researchers provide them with more 

“worksheets” for students to practice until they ceased making mistakes.  

To support these teachers’ learning effectively, the researchers needed to understand 

why, despite CGI efforts, it continued to be reasonable from the teachers’ perspective to 

support their students’ learning of early algebra by providing them with abundant 

opportunities to practice, and by correcting their mistakes. Simon and colleagues’ focus on 

teachers’ conceptions locates the source of the reasonableness of teachers’ actions within 

individual teachers’ cognition. According to analysis from such a viewpoint, the California 

teachers could be characterised as making instructional decisions within a traditional 

perspective, based on a view of algebra as a collection of rules and facts that can be best 

learned by repetition. Although such characterization might capture quite accurately 

teachers’ actions at the time, it does not clarify why sustained efforts at supporting these 

teachers’ change were not viable. This point is critical because, according to Franke and 

colleagues (2002), teachers initially focused on correctness and practice in the earlier CGI 

collaborations as well. However, supported by the CGI team, they soon came to appreciate 

student reasoning as an instructional resource. It appears that although providing a useful 

and specific orientation in terms of goals for teacher learning, Simon and colleagues’ 

characterization of teachers’ perspectives is not specific enough to guide the ongoing 

process of designing for teacher learning. The exclusively cognitive focus of this 

characterization seems insufficient to explain why the means of support that had proven 

effective earlier were not effective with the California teachers.  

Franke and colleagues’ (in press) analysis instead located the encountered PD 

difficulties in both content-specific demands on teachers’ learning, and the institutional 

setting of teachers’ work. This allowed the researchers to propose specific adaptations to 

the PD design that took into account the unique characteristics of the PD context. As an 

example, consider the content-specific dimension related to the institutional setting of 

teachers’ work. It concerned the extent to which the content area in the focus of teachers’ 

PD was central (or peripheral) within the curriculum used in the teachers’ schools. The 

researchers documented that the emphasis that the curriculum put on a specific content 
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area had consequences for development of teacher’s expertise in that area. Specifically, the 

differences manifested in both (a) the resources for PD work available in form of the 

teachers’ current practices in the content area, and (b) the opportunities afforded for 

teachers’ further learning in that area in their classrooms. To elaborate the first point, the 

number development directly related to the early grades curricula that were in place in the 

collaborating schools. However, the ideas of relational thinking and formulating 

conjectures that were central to the CGI model of development of students’ early algebraic 

reasoning were not explicit aspects of the typical mathematics curricula. As such, these 

were not areas where teachers had many opportunities to hear their students work with the 

ideas, or to deepen their own algebraic understanding. Consequently, the teachers often 

lacked the confidence that they could master the content issues that might arise in their 

classrooms, and productively engage students in algebraic thinking.  

To address the second point, the central position of early number development content 

provided teachers with plenty of opportunities to pose CGI word problems and ponder 

student solutions. In contrast, to make seemingly “extracurricular” algebraic reasoning an 

instructional focus in their classrooms, the teachers would have to develop ways to 

coordinate the mathematical content addressed explicitly in the required curriculum with 

supporting students in making generalizations, noticing relations, and justifying 

conjectures. Not surprisingly, this presented additional challenges for teachers’ 

development of new instructional practices. 

Researchers’ understanding of critical content-related demands on teachers’ developing 

instructional practices and how they relate to the institutional context of teachers’ daily 

instruction oriented researchers’ conjectures about viable means of supporting teachers’ 

further learning. For example, the researchers reported that to help teachers develop 

knowledge about identifying opportunities for algebraic thinking, they brought examples 

of interactions they observed in teachers’ classrooms to the group for discussion. In 

addition, they started to create structured opportunities for teachers to reflect on “where 

their own students are in their understanding of the various ideas of algebraic thinking” 

(Franke et al., in press), as students’ progress in this content area did not feature on the 

district quarterly benchmark assessment. These adaptations, although open for further 

testing and modifications, serve as an example of the flexibility that understanding 

teachers’ practices as situated in the cultural and institutional aspects of teachers’ work 

affords those working with groups of mathematics teachers. Adopting this perspective 

seemed to enhance the CGI researchers’ capacity to manoeuvre on the meso-level of PD 

design, where pragmatic decisions of how to proceed are informed by systematic ongoing 

analyses.  

Summary 

Although developmental approaches can help us delineate worthwhile end points for 

teacher learning, it appears that studies conducted under a situated paradigm are especially 

well positioned to develop valuable means for supporting teacher learning on the meso-

level of design. On this level, understanding of teachers’ practices yields resources that can 

directly feed back to PD designs. In this paper, I outlined an argument for usefulness of 

this level of understanding teachers’ practices when designing and facilitating PD 

interventions. As an example, I discussed how CGI researchers adapted their PD design 

based on their ongoing analysis of the institutional context of teachers’ work. However, 

detailed analysis would be required to understand how means of support based on these 

design resources contribute to teachers’ development of new instructional practices. In 
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addition, understanding which aspects of teachers’ practices would be most useful in 

feeding back to designs is an important question to answer. 
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“Doing Maths”: Children Talk About Their Classroom Experiences  
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From their everyday experiences of life in classrooms, children develop understandings of 
what is meant by “doing maths”.  This paper draws on the findings of an ongoing 
longitudinal study following the mathematical learning careers of ten children from the 
beginning of their third year at primary school as seven-year-olds to the end of their 
eleventh year as sixteen-year-olds. Over this time, “doing maths” has changed remarkably 
little for these students. Using the children’s accounts of doing maths, the paper probes the 
connections among mathematical content, teaching, and learning, and considers the 
implications of their stories for teaching practice. 

Setting the Research Scene 

Researcher: So what things do you usually do in maths time? 
Georgina: Get out our maths books and do our maths. (Early Year 4) 

 

Over the past 20 years there has been a concerted effort on the part of curriculum 
designers and mathematics education researchers to describe and change the culture of 
teaching mathematics (e.g. Boaler, 1997; Davis, 1996; Yackel & Cobb, 1996).  
Transmission pedagogies in which the teacher positions her/himself in front of the class to 
explain new mathematical ideas followed by the children sitting at their desks completing 
written tasks from textbooks or worksheets, have been criticised for their failure to engage 
and motivate children, and their failure to invoke children’s powerful mathematical 
thinking, reasoning and working (e.g., Yackel, 2000). 

Eight-year-old Georgina’s response to my question (above) was typical of the children 
who were participating in a longitudinal study of children’s attitudes to mathematics. The 
study began in 1998 as the children were about to start their third year of primary schooling 
and followed their evolving relationships with mathematics and growing mathematical 
identities until the end of their fifth school year. The study asked,  “How, beginning from a 
young age, a significant proportion of children experience a loss of interest in mathematics 
with a concomitant decline in their achievement?”, a phenomenon revealed by research in 
many countries (Garden, 1997).  The study focused on ten 7-year-old children, randomly 
selected from ten different schools in the Wellington region of New Zealand.  It was hoped 
that a sample of young children of similar age from a range of school environments might 
provide a more complex understanding of how children experience mathematical learning 
and what features of their learning environments might be linked to the disaffection and 
alienation noted in large-scale quantitative studies such as TIMMS.  

An ethnographic case study approach was used in order to construct an intimate picture 
of the children’s lived experiences of learning mathematics, particularly through the words 
of child participants, their families and their teachers (Walls, 2001; Walls, 2003). In early 
2007, it was decided to extend the study.  These ten students, now 16 years old, were 
contacted again and asked to continue their case-narratives.  In addition to the earlier 
research question, I was interested to find out: (1) whether the children’s engagement in 
mathematics classrooms had changed over time (2) how the children’s experiences had 
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shaped their feelings about mathematics as a subject, and (3) whether these experiences 
had an impact on their feelings about and continuing participation in mathematics. 

The study draws on the theory of symbolic interactionism, which suggests that we 
make meaning about the world from the everyday rituals and routines we experience.  
Blumer (1969), a key proponent of this theory, described symbolic interactionism as being 
founded on a number of root images, the most important of which is social interaction. He 
contended that “societies” or “cultures” exist only in action, and must therefore be viewed 

in action.  By action he meant “the multitudinous activities that individuals perform in 
their life as they encounter one another and as they deal with the succession of situations 
confronting them” (p. 6). To reveal out how the children in the study might make meaning 
through everyday social interaction, data were gathered through a wide range of methods 
including classroom observations, interviews with the children, teachers and parents, 
informal discussion with classmates, questionnaire sheets, and examination of mathematics 
exercise books. Pictures began to emerge of how learning mathematics was typically 
experienced by these children.   

 “This is me Doing Maths”: Gathering Young Children’s Experiences 

During their first interviews in early Year 3, the children were provided with a blank 
page headed “This is a picture of me during maths time”. They were encouraged to draw 
themselves in any way that best showed what they usually did during this part of the school 
day. The drawings of these 7-year-olds revealed much about what they perceived as “doing 
maths” (Figures 1 to 10). Eight of the children drew themselves seated at a desk or table, 
pencil in hand and their maths book or worksheet in front of them. Liam was the only child 
to draw himself actively engaged with others.  He depicted himself with his friends, 
naming each one as he drew, constructing a tower of wooden blocks (Figure 10). Dominic 
drew himself at a table with other children, all working individually in their maths books 
(Figure 6). Toby drew other (childless) desks with worksheets to indicate classmates, but 
showed himself to be working alone (Figure 3). Mitchell was the only child who was not 
able to distinguish “maths” from the other activities he was expected to do at school. He 
drew himself skipping, the activity in which he had been engaged a short time before the 
interview, and drawing, the activity he said he most liked (Figure 9).  Jared’s drawing is 
notable for its action and movement (Figure 1). 

 

 

Figure 1. Jared (Early Year 3). 

 

Figure 2. Peter (Early Year 3). 

 

The children were asked to explain their drawings. 
Toby: This is the table and that on there is the worksheet. (Early Year 3) (Figure 3). 
Researcher: And what’s that you have just drawn? (Figure 4). 
Rochelle: It’s my desk. 
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Researcher: So what’s this here? 
Rochelle: Book. 
Researcher: Is that your maths book? (Rochelle nods) (Early Year 3) 

 

Figure 3.  Toby (Early Year 3). 

 

Figure 4.  Rochelle (Early Year 3). 

 

 

Figure 5.  Georgina  (Early Year 3). 

 

Figure 6.  Dominic (Early Year 3). 

 

 

Figure 7.  Fleur (Early Year 3). 

 
 

Figure 8.  Jessica (Early Year 3). 

 

 

Figure 9.  Mitchell (Early Year 3). 

 

Figure 10.  Liam (Early Year 3). 
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At the beginning of Year 4, the children were again asked to draw themselves during 

mathematics time (Figures 11 – 20).  By this time, Mitchell was able to talk about what 
happened at mathematics time and how to identify mathematics as a distinct subject as the 
following conversation shows: 

Researcher: How could you show me that you’re doing maths on your picture? 
Mitchell: I’ve got a desk. 
Researcher: And what’s that? 
Mitchell: My maths book. 
Researcher: And it’s got a tick on it, has it?  
Mitchell: No, it’s a ‘seven’ [See Figure 11] (Early Year 4)  

 

 
Figure 11.  Mitchell (Early Year 4). 

 
Figure 12.  Peter (Early Year 4). 

 

 
Figure 13.  Dominic (Early Year 4). 

  
 

Figure 14.  Liam (Early Year 4).  
 

 
Figure 15.  Fleur (Early Year 4). 

 
 

Figure 16.  Rochelle (Early Year 4). 

 

 
Figure 17.  Jared (Early Year 4). 

 
Figure 18.  Toby (Early Year 4). 
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Figure 19.  Georgina (Early Year 4). 

 
Figure 20.  Jessica (Early Year 4). 

 
Although nine of the ten children drew themselves engaged in a writing task, Georgina 

drew herself with a three-bar abacus, (Figure 19). Earlier in the interview she explained 
that using the abacus was one of the few mathematics activities she had really enjoyed. The 
fact that she drew this instead of what usually happened at mathematics time was the result 
of comments made during the drawing process: 

Researcher: Here’s a place for drawing a picture of yourself during maths time. So what would you 
usually do? 

Georgina: Shall I draw a table? 
Researcher: Yes. (After Georgina has drawn herself with a big smile) You’re looking pretty happy. (She 

has earlier rated herself at only 1.5 out of 10 on the self-rating scale for how happy she 

feels at maths time)  

Georgina: I’ll put the abacus.  
Researcher: So what things do you usually do in maths time? 
Georgina: Get out our maths books and do our maths. (Early Year 4) 

 
Jessica was not keen to draw herself so she drew her mathematics exercise book 
(Figure 20). 
Jessica: Do I have to do it of me?  Can I just do it of my maths book? 
Researcher: It’s hard drawing you is it? (Jessica nods) How would you want to draw yourself if you   
   could?  How would you imagine yourself, what would you be doing with the maths book? 
Jessica: Um, well, what I could do is I could do us standing looking at the maths book and then you 

could see a little bit of the writing. 
Researcher: Sounds great.  Away you go. 
Jessica: Then it would be the one we work out of. (Draws the her maths exercise book opened at a 

page of exercises) 
Researcher: What’s the book called? 
Jessica: We usually put the label, Signpost 1, Signpost 2. 
Researcher: Which one would you usually use? 
Jessica: Signpost 3. (Writes this label above her exercise book.) (Early Year 4) 
 

Liam’s Year 3 and Year 4 pictures differ markedly. Classroom observations revealed 
why. In Year 3, his teacher conducted an activity-based programme using Beginning 

School Mathematics. Discussion and direct experience with concrete materials were the 
norm in this classroom, with children recording as necessary on worksheets or paper, while 
the teacher recorded on a small blackboard. When Liam moved on to Years 4 and 5, 
mathematics exercise books were introduced and used almost daily, whereas peer 
collaboration and the use of equipment became less and less frequent.  

There was an overwhelming prevalence in the children’s representations of “doing 
maths” as solitary deskwork, with an emphasis on written number tasks, such as 
completing equations. This distinctive common feature of their drawings indicated that 
individual written work was repeatedly experienced by the children at maths time, and 
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what they most identified as “doing maths”. Observations of mathematics sessions, 
teachers’ and children’s descriptions of a typical lesson, and examination of children’s 
mathematics exercise books for evidence of frequency of written tasks, supported these 
suppositions. Written work as depicted in their drawings was the most common activity 
experienced by the children at mathematics time.  Because of this, the children attached the 
most significance to it, so that less frequent kinds of mathematics activities such as using 
equipment for measuring, or gathering statistical data, were considered by the children as 
less typically “maths”.  Although the children were regularly seated on the mat at 
mathematics time either as a whole class listening to the teacher, or in a teacher-guided 
group learning situation, this did not feature in their drawings, and seldom in their verbal 
descriptions of doing maths. The teacher is notably absent from all of the children’s 
drawings indicating that “doing maths” was not seen as a partnership between children and 
teachers. 

A cumulative picture of the everyday experience of mathematics was established 
through the children’s descriptions of typical lessons as the following excerpts show.  

   
Fleur: We go into our book.  Our green or red books. NCM[textbooks] (Mid Year 5) 
Researcher: Does she explain it first or do you just go and do it? 
Fleur: She explains it.  (Mid Year 5) 
 
Georgina: We get into our groups and do the worksheet. (Mid Year 4) 
 
Jessica: It would usually be out of a textbook and once we’ve finished that we would do a sheet. 

(Late Year 5) 
 
Rochelle: A group goes on the mat.  Then the group that was on the mat does the group sheet. (Late 

Year 3) 
Rochelle: We do these.(Shows exercises in her maths book) (Mid Year 5) 
 
Dominic: Then we do NCM.  Do you know what that is? 
Researcher: Yes, one of those textbooks. 
Dominic: Yeah, or Figure it Outs. (Late Year 5) 
Jared: The teacher says, ‘Go and get your maths books out.’ And she writes stuff on the board for 

maths. (Mid Year 4)  
 
Liam: We do sheets and we work with Miss Peake. (Early Year 3) 
 
Mitchell: You have to sit down and do some times tables or pluses or take away. (Late Year 5) 

 
Peter: Just do worksheets … finishing the worksheets and sticking it into your book. (Late year 4) 
 
Toby: Then we mostly turn to the front of our book and do proper maths. Mrs Kyle gets the 

questions out of a book, and we have to get the answers.   

 
Teachers’ descriptions of an everyday lesson, verified by classroom observation, were 

consistent with the children’s accounts as the following typical account illustrates: 
 

Ms Fell: I’ll bring everyone down on the mat and we’ll talk about what we’re doing that day.  If it’s 
something new, quite often we won’t be doing anything in our books, we’ll be talking about a lot of 
things, get in a circle, and you know, talk, and then send people off for ten or fifteen minutes to do 
some work in their books so I can get around and work with people individually … We’ve just 

Mathematics: Essential Research, Essential Practice — Volume 2

760



  

purchased halfway through last year, that AWS1 series of books where there’s one for every strand 
and they’ve been excellent … we’ve been able to photocopy off class sets. (Mid Year 4) 

 
From the children’s and teachers’ descriptions and 95 classroom observations over 3 years, 
it was found that a high proportion of mathematics time was spent on written tasks in the 
form of worksheets, textbook pages, or work from the board.  

The Typical Maths Lesson:  Stories from Secondary School 

Six years later in early 2007, having just completed 3 years of secondary schooling, 
their 11th year at school, and their first major national mathematics exams, the students 
were again asked to talk about their experiences of learning mathematics including 
describing a typical mathematics lesson.  

 
Dominic: Um, well, we sort of learn a new kind of variation of what we were doing like say if we were 

doing  linear equations another like step into it, like, adding brackets or that kind of thing, and then 
he’ll allocate us some questions to you know, and it just gets slightly harder and harder and as soon 
as you get through and once you’re done, usually that’s it for the class because it takes us … he’ll set 
about 10 or 15 questions, or so, it takes us the best part of half an hour. Yeah, out of a textbook 
usually, and whenever we come to a, you know, get stuck, Hans my teacher will go through it on the 
board and explain it and that kind of thing.  

 
Jessica:  We have a “notes” book and an “exercise” book and we’ll come into class and the teacher will 

be putting up the notes or we’ll write up the notes and we’ll copy down the notes … then you do a 
few exercises out of the book or whatever she’s set us, there might be like a sheet instead of the 
exercise book, and then, depending on how difficult it is and stuff like that, we’ll either keep doing it 
for the whole lesson and she’ll just write up exercise after exercise and we’ll have to do it, or we’ll 
move on and have to write up more notes. And throughout the notes she’ll sort of explain it to us and 
we’ll sort of, kinda discuss it and that’s where we’ll do the questioning and that, discussing and all 
that and then we do the work. … I’ve never really thought about it before but it seems like maths 
might be the one [subject] that’s sort of, every lesson’s the same, even though the work is different, 
every lesson’s  the same and because it’s like numbers it seems like it’s always the same and when 
you look at English or Economics or Science you’re always doing different topics, and to me maths, 
even though some of the topics are different is quite repetitive and stuff like that.  

 
Toby: The teacher gives us notes…if it gets dragged on for a long time it just gets boring. 
  
Georgina: I get bored having the same. It just gets so repetitive and boring, (I would like) going outside 

and something and diagrams not just notes all the time. 
 
Peter: We usually just do exercises and stuff and they tell us the formulas that we need to know and that 

doesn’t change much throughout the year for different things … we’ve got like a quite a big text 
book  and it just has all the exercises that we do in it and some, like, exam questions and stuff … 

  
Fleur:  Every day it was the textbook … our class is like, for the first like, 20 minutes you just write down 

notes and then you’d have 20 minutes of doing the work and then you do it at home…3rd and 4th 
form we did a bit more practical. 5th form was real textbook and notes. 

 
Rochelle: When we walk into maths it’s pretty much the work’s on the board or the teacher just says, 

“Right do this page and when you’re finished bring it up or go onto the next page,” and stuff like 
that. 

 

                                                 
1 AWS : A.W. Stark (1997 –2000) author of mathematics worksheets and teacher guides. 
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Mitchell: We just like get a bit of paper, a sheet of paper and like just write the answers on the piece of 
paper. 

 
Researcher:  If you drew a picture of yourself doing maths now, what would it look like do you think? 
Jared: Um me sleeping on my desk … we had heaps of textbooks and stuff like that … That was boring 

too. 
 
Liam: We’d just sit down and  this year there’d be like a starter on the board just like, 10 questions, not 

on the same topic, just reminds us... mark those, go over any problems,  if there’s any problems with 
homework, just start on the work that we’re doing that day and if it’s like, a new thing the teacher  
would explain it on the board and that, if it’s the same stuff just get the books out, the homework and 
work through them.  

 

The students’ verbal “pictures” once again placed them alone at desks engaged in 
written tasks such as taking notes, doing exercises from the textbook and answering and 
marking questions.  Once again, classmates and the teacher are remarkably absent from 
these pictures. When present in these accounts, teachers are positioned as the setter of 
work, explainer of rules, formulas and procedures, and the rescuer when students become 
stuck. Their accounts emphasise the disengagement and boredom created by an unrelenting 
diet of textbook based written work.  

It comes as little surprise then, that Fleur has already decided to drop mathematics as a 
subject in her penultimate year of schooling, and Jessica would have done so had there 
been an alternative option. Although Mitchell has been severely alienated and marginalized 
at school in general, he is continuing to take the Basic Maths option for Year 12, and 
Georgina the less demanding Mathematics Numeracy option. Rochelle explains that she is 
pursuing mathematics only as a means of entry into a nursing degree. Liam says he is 
taking General Maths rather than “higher maths” because his grades were too low. 
Dominic, who now lives in Melbourne, has decided to drop Maths A and Maths Methods 
along with his long-held dream of studying for a degree in aviation having been told by his 
teacher that Year 12 maths will be hard work for him because he lacks natural ability. Toby 
has made the cut for the “full Year 12 Maths with Algebra” but Peter has just missed out, 
much to his disappointment. Years of struggling to make sense of mathematics has taken 
its toll.  

Discussion 

For the children in this study whose school lives have spanned the years from 1996 to 
2007, most have experienced only traditional modes of teaching and learning mathematics. 
Oakes and Lipton (2003) describe such modes of classroom interaction as follows:  

Most teachers striving for quiet and efficient classrooms organize their instruction to control or 
minimize activity and social interactions … after a short time in school, students decide that real 
learning is what they do by themselves … traditional modes of classroom interaction are supported by 
beliefs that each student must do his or her own learning and that the benefits of education accrue 
through individual accomplishment. These individualistic practices and norms reflect powerful 
cultural traditions and learning theories (p. 228).  

Teachers are able to maintain tight control when teaching mathematics in this manner 
delivering powerful messages about what is meant by “doing maths”. This management of 
classroom work is consistent with the observations of Doyle (1988) who described work in 
mathematics classes as a process in which, “teachers affect tasks, and thus students’ 
learning, by defining and structuring the work that students do, that is, by setting 
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specifications for products and explaining processes that can be used to accomplish work” 
(p. 169). He argues that much classroom mathematics work is of the structured and familiar 
variety, and that, “such work creates only minimal demands for students to interpret 
situations or make decisions within the content domain” (p. 173). Doyle expresses concern 
about the meaning of the work students do in mathematics classrooms, by arguing that 
teachers often emphasise production at the expense of understanding, claiming that 
“meaning itself is seldom at the heart of the work they [students] accomplish” (p. 177).  In 
an earlier study Doyle (1983) explained “doing mathematics” as an induction into the 
world of academic work. He estimated that “in general, 60 to 70 percent of class time is 
spent in seatwork in which students complete assignments, check homework, or take tests” 
(p. 179). 

Repeated daily routines are the social means by which we construct our senses of 
“reality” (Berger & Luckman, 1966; Yackel, 2000).  When asked in their recent interviews 
how learning mathematics might be improved, the students in this study struggled to 
imagine alternative realities but pinpointed important features of lessons that they wished 
to change as the following comments illustrate:  
 

Toby: I’m not sure, I don’t think so, I think it’s pretty good how they teach it here already, it’s just a 
matter of having a good teacher really. 

 
Rochelle: Not old teachers, teaching the old way … they only think the old way’s easier because that’s 

the way they were taught it but I think that yeah, we need to know the easiest way. 

 
Jared: Make it more useful in life … then we’d have success because we wouldn’t spend so much time 

working on stuff we don’t need. 

 
Dominic: I reckon it’s probably smaller class sizes and sort of more emphasis on teacher-to-student 

relationship kind of thing, rather than just everything you can get your answers out of a textbook and 
you can get your questions out of a textbook and you can just live off a textbook because a textbook 
doesn’t tell you how to do it, it has a few steps in writing, you know, a textbook doesn’t talk back. 

 

Conclusion 

Starting from Year 3 of the children’s schooling, and increasingly through subsequent 
years, mathematics exercise books, worksheets, textbooks and questions on the board 
became the everyday tools of trade for teachers at mathematics time.  They represented to 
teachers and children alike, the solitary nature of “doing” of mathematics. Rather than 
fostering processes of exploration, experimentation and creativity as suggested in 
contemporary curricula, these tools obstructed such an approach to the teaching and 
learning of mathematics.  

The sociomathematical worlds of the ten study children were rarely places where 
mathematics was taught or learned as a process through which ideas and possible solutions 
might be brainstormed, explored, trialed, presented, evaluated and recorded in a variety of 
ways. Instead, they were places that fostered a belief that mathematical knowledge and 
competence was to be gained primarily through conscientious application to solitary 
written work as defined through the authoritative directives of teacher, textbook and 
worksheet. Teacher emphasis on desirable work habits such as setting out, neatness, 
completion, and working “independently” indicated that these skills were highly valued, 
establishing a work ethic within classroom environments that superseded concerns about 
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children’s mathematical understanding.  It was assumed that by a certain age, children 
would benefit from the “structure” of this kind of work. 

These taken-for-granted customary practices of teaching and learning mathematics 
have formed a significant part of the everyday worlds of the children. For them, there has 
been no other way of “doing maths”.  As the children have become older, written work has 
increased, while active exploration and the use of concrete materials all but disappeared.  
As early as Year 5 use of concrete materials had become largely confined to small group 
instruction time with the teacher, or abolished altogether for all but the most “needy” of 
learners.  Symbolic and abstract modes of working have been privileged over the use of 
real objects, working in silence over group discussion, and individual endeavour over 
collaboration.    

For most of these children, the isolation, tedium, and inaccessibility of written 
mathematics tasks experienced on a daily basis over a long period of time, have been 
sufficiently off-putting to produce profound feelings of alienation and inadequacy. By 
upper secondary school, mathematics has become a subject they have chosen to study only 
as a means to a vocational end.  If the experience of these children is typical, mathematics 
educators must be concerned.  Such findings indicate that for many of our young learners 
“doing mathematics” in the spirit of contemporary curriculum frameworks within which 
mathematical learning is portrayed as social, dynamic, active, meaningful and purposeful, 
has failed to become a reality enacted through classroom practice.  
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Current curriculum initiatives in mathematics call for the development of classroom 
communities in which communication about mathematics is a central focus. In these 
proposals, mathematical discourse involving explanation, argumentation, and defense of 
mathematical ideas, becomes a defining feature of a quality classroom experience. In this 
paper we provide a comprehensive and critical review of how mathematics teachers deal 
with classroom discourse. Synthesising the literature around a number of key themes, we 
critically assess the kinds of human and material infrastructure that promote mathematical 
discourse in the classroom and that allow students to achieve desirable outcomes.  

Introduction  

Classroom mathematical discourse plays a central role in shaping mathematical 
capability and disposition (Ball, Lubienski, & Mewborn, 2001; Shulman & Shulman, 2004; 
Stein, 2001). Carpenter, Franke, and Levi (2003) maintain that the very nature of 
mathematics presupposes that students cannot learn mathematics with understanding 
without engaging in discussion. Initiatives like Principles and Standards for School 
Mathematics (PSSM) (National Council of Teachers of Mathematics, 2000) and the 
Numeracy Development Project (Ministry of Education, 2006) have replaced traditional 
classrooms by “learners talking to each other, [and] by groups of students voicing their 
opinions in whole class discussions” (Sfard, Forman, & Kieran, 2001, p. 1). In such 
classrooms, talking about mathematics becomes acceptable, indeed essential, and 
mathematical discussion, explanations, and defense of ideas becomes a defining feature of 
a quality mathematical experience. 

In this paper we explore the sorts of pedagogies that, through classroom discourse, 
contribute to students’ active engagement with mathematics. Our starting point is in the 
acknowledgement that effective classroom discourse is not as easy to implement as is often 
assumed. Although new initiatives have urged teachers to invite students to “develop 
explanations, make predictions, debate alternatives approaches to problems … [and] clarify 
or justify their assertions” (Brophy, 2001, p. 13), implementing such proposals with 
positive effect is often fraught with problems.  

We look at what research has shown about effective classroom discourse and explore 
how those findings play out within mathematics pedagogy. We do this by critically 
investigating recent research on quality mathematics classroom pedagogy. Arguably, 
influences beyond the classroom also have a marked effect on teacher effectiveness and 
hence on learner outcomes. For example, a number of researchers (see McClain & Cobb, 
2004; Millett, Brown, & Askew, 2004) have demonstrated that what is done in classrooms 
can be attributed in no small way to the human resources provided by others in the school. 
Other researchers (e.g., Sheldon & Epstein, 2005) have found that effective and sustainable 
relationships between the home, community, and school, significantly influence classroom 
teachers’ enthusiasm for and success with enhancing learning. Findings, like these, that 
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point to shared responsibilities and mutual investment in students’ well-being, serve to 
underwrite our discussion on how teachers deal with classroom discourse in a way that 
enhances desirable student outcomes.  

In reporting on the work undertaken on mathematical discourse we have conceptualised 
teaching as nested within an evolving network of systems. The system itself functions like 
an ecology, in which the activities of the students and the teacher, as well as the school 
community, the home, the processes involving the mandated curriculum, and education-at-
large, are constituted mutually through their interactions with each other. From a bottom-up 
vantage point, the classroom is a central pivot within the system and, in this paper, creates 
the context for our discussion on discourse. 

In the next section we outline the method we used to access our data. We then 
synthesise the literature, organising the discussion around a number of key themes, through 
which we critically assess the kinds of human and material infrastructure that allow 
students to achieve mathematical and social outcomes.  

Method of Locating and Assembling Data 

In this paper our objective is to report findings from research about communication in 
mathematics classrooms. Our review looks at research that addresses the following 
question: What are the characteristics of pedagogical approaches to classroom discourse 
that produce desirable outcomes for diverse students? It draws on data from the Effective 
Pedagogy in Mathematics/P�ngarau: Best Evidence Synthesis Iteration [BES] (Anthony & 
Walshaw, 2007). Confining our search to studies undertaken in English-speaking countries, 
the search took into account relevant publications within the mathematics education 
literature, first and foremost, and was complemented by general and specialist education 
literature.  

In our first pass through the literature, we noted that many studies offered detailed 
explanations of student outcomes yet failed to draw conclusive evidence about how those 
outcomes related to specific teaching practices. Others provided detailed explanations of 
pedagogical practice yet made unsubstantiated claims about, or provided only inferential 
evidence for, how those practices connected with student outcomes. These particular 
studies did not satisfy our selection criteria, precisely because we were searching for 
studies that offered not just descriptions of pedagogy and outcomes but rigorous 
explanation for close associations between pedagogical practice and student academic and 
social outcomes.  

Decisions over outcomes were guided by the National Research Council’s (2001) 
understanding of mathematical proficiency. We included conceptual understanding, 
procedural fluency, strategic competence, adaptive reasoning, and productive disposition. 
We added to these specific academic outcomes a range of other outcomes that relate to 
affect, behaviour, communication, and participation.  

Included are many different kinds of evidence that take into account human volition, 
programme variability, cultural diversity, and multiple perspectives. Each study, 
characterised by its own way of looking at the world, has led to different kinds of truth 
claims and different ways of investigating the truth. Our assessments about the quality of 
research depended on the nature of the knowledge claims made and the degree of 
explanatory coherence between those claims and the evidence provided. 

In reviewing the work undertaken in this area, we found that a number of critical 
aspects of pedagogical practice came to the fore. These included: (a) articulating thinking, 
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(b) fine-tuning mathematical thinking through language, (c) communicating within 
multilingual contexts, and d) shaping mathematical argumentation. We use these themes to 
organise the literature on classroom discourse. Each theme serves as a point of discussion, 
providing insight into definitions of effective domain-specific pedagogy relating to 
classroom discourse in mathematics classrooms. 

Results 

Articulating Thinking 

There is now a large body of empirical and theoretical evidence that demonstrates the 
beneficial effects of participating in mathematical dialogue within the classroom (e.g., 
Clarke, Keitel, & Shimizu, 2006; Fraivillig, Murphy, & Fuson, 1999; Goos, 2004; Kazemi 
& Franke, 2004; McClain & Cobb, 2001; Mercer, 2000; O’Connor, 2001; Sfard & Kieran, 
2001; White, 2003; Wood, Williams, & McNeal, 2006). However, many of the same 
researchers who elevate student articulation of mathematics thinking have, simultaneously, 
cautioned that providing comprehensible explanations about mathematical concepts is 
essentially a learned strategy. Sfard and Kieran (2001) emphasise that “the art of 
communicating has to be taught” (p. 70). It is a major challenge to make discourse integral 
to an overall strategy of teaching and learning.  

A number of studies have found that, without pedagogical support, students are often 
not able to elaborate on their mathematical reasoning. Effective pedagogy focused on 
support, demands careful attention to students’ articulation of ideas. Franke and Kazemi 
(2001) make the important claim that an effective teacher tries to delve into the minds of 
students by noticing and listening carefully to what students have to say. Yackel, Cobb, and 
Wood (1990) provide evidence to substantiate the claim. They report on the ways in which 
one Year 2 teacher listened to, reflected upon, and learned from her students’ mathematical 
reasoning while they were involved in a discussion on relationships between numbers. 
Analyses of the discussion revealed that her mathematical subject knowledge and her focus 
on listening, observing, and questioning for understanding and clarification greatly 
enhanced her understanding of students’ thinking.  

Other researchers (e.g., Davies & Walker, 2005; Jaworski, 2004) have also drawn 
attention to the critical role of the teacher in listening to students and orchestrating 
mathematical discourse. In a study undertaken within a heterogeneously grouped seventh-
grade mathematics classroom, Manouchehri and Enderson (1999) found that the teacher 
provided responsive rather than directive support, all the while monitoring student 
engagement and understanding. She did this through careful questioning, purposeful 
interventions, and with a view towards shifting students’ reliance from her, towards the 
support and the challenge of peers. The teacher’s primary objectives were to facilitate the 
establishment of situations in which students had to share ideas and elaborate on their 
thinking, to help students expand the boundary of their exploration, and to invite multiple 
representations of ideas.  

Fraivillig, Murphy, and Fuson (1999) reported on the discursive exchange of ideas that 
took place within a Year 1/2 classroom. What was particularly effective was the way the 
teacher sustained the discussions. She developed a sensitivity about when to “step in and 
out” of the classroom interactions and had learned how to resolve competing student 
claims and address misunderstanding or confusion (theirs and hers). For their part, the 
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students listened to others’ ideas and participated in debates to establish common 
meanings.  

Knowing when to “step in” is important for teachers focused on making a difference to 
students’ learning. Turner and colleagues (2002) found that what distinguished high-
involvement Year 5 and 6 classrooms was the engagement of the teachers in forms of 
instruction that allowed them to “step in” at significant moments during classroom 
discussions. In particular, the teachers negotiated meaning through “telling” tailored to 
students’ current understandings. They shared and then transferred responsibility so that 
students could attain greater autonomy. In these classrooms, telling was followed by a 
pedagogical action that had the express intent of finding out students’ understandings and 
interpretations of the given information.  

Hill, Rowan, and Ball (2005) have found from observations in their Study of 
Instructional Improvement that effective practice requires a moment-by-moment synthesis 
of actions, thinking, theories, and principles. In their Leverhulme Numeracy Research 
Program, Askew and Millett (in press) observed that pedagogical practice that makes a 
difference for all learners requires professional reflecting-in-action. In particular, teachers 
who were able to develop student mathematical understanding applied sound subject 
knowledge to inform their on-the-spot decision making during classroom interactions. 
Subject knowledge informed decisions about the particular content that the students would 
learn, the activities they carried out, how they engaged with the content, and how they 
conveyed to the teacher their understanding of the content.  

Fine-tuning Mathematical Thinking Through Language 

Engagement in effective classroom discourse is “a complex process that combines 
doing, talking, thinking, feeling, and belonging” (Wenger, 1998, p. 56). As we have seen, 
engagement in discourse that successfully advances students’ understanding, demands a 
respectful exchange of ideas, teacher listening, attentiveness, and reflection-in-action. It 
also involves familiarising students into mathematical convention. Effective teachers are 
able to bridge students’ intuitive understandings with the mathematical understandings 
sanctioned by the world at large. Language plays a central role in building these bridges: it 
constructs meaning for students as they move towards modes of thinking and reasoning 
characterised by precision, brevity, and logical coherence (Marton & Tsui, 2004). In 
particular, the teacher who makes a difference for diverse learners is focused on shaping 
the development of novice mathematicians who speak the precise and generalisable 
language of mathematics. 

McChesney (2005) explored students’ contributions in low- and middle-band New 
Zealand classes at the junior secondary school level. She noted that teachers who 
established classroom communities, in which there was access to discursive resources, 
were able to support students’ mathematical activity significantly. Her research 
demonstrated a direct relationship between the quality of teacher/student interaction and 
students’ negotiation of mathematical meaning. The effective teachers in this research were 
able to set up an environment in which conventional mathematical language migrated from 
the teacher to the students. Over time, students’ contributions, which were initially marked 
by informal understandings, began to appropriate the language and the understandings of 
the wider mathematical community. It was through the take-up of conventional language 
that mathematical ideas were seeded. 

Mathematics: Essential Research, Essential Practice — Volume 2

768



  

Khisty and Chval (2002), among others, have reported that the language that students 
use derives from the language used by their teacher. Hence the meanings that students 
construct ultimately descends from those captured through the kind of language the teacher 
uses. In order to enculturate students into the mathematics community, effective teachers 
share with their students the conventions and meanings associated with mathematical 
discourse, representation, and forms of argument.  

Competency in mathematics demonstrates control over the specialised discourse (Gee 
& Clinton, 2000). But the specialised language of mathematics can be problematic for 
learners. Particular words, grammar, and vocabulary used in school mathematics can hinder 
access to the meaning sought and the objective for a given lesson. Words, phrases, and 
terms can take on completely different meanings from those that they have in the everyday 
context. Sullivan, Mousley, and Zevenbergen (2003) found that students with a familiarity 
of standard English (usually students from middle-class homes) had greater access to 
school mathematics. As the teachers in their study said, the students were able to “crack the 
code” of the language being spoken.  

Lubienski (2002), as teacher-researcher, compared the learning experiences of students 
of diverse socio-economic status (SES) in a seventh-grade classroom. She reported that 
higher SES students believed that the patterns of interaction and discourse established 
within the classroom helped them learn other ways of thinking about ideas. The discussions 
helped them reflect, clarify, and modify their own thinking, and construct convincing 
arguments. However, in Lubienski’s study, the lower SES students were reluctant to 
contribute because they lacked confidence in their ability. They claimed that the wide range 
of ideas contributed in the discussions confused their efforts to produce correct answers. 
Their difficulty in distinguishing between mathematically appropriate solutions and 
nonsensical solutions influenced their decisions to give up trying. Pedagogy, in Lubienski’s 
analysis, tended to privilege the ways of being and doing of high SES students.   

Communicating Within Multilingual Contexts 

Mathematical language presents difficulties to students, in general, and presents certain 
tensions in multilingual classrooms, in particular. In our reading of the literature we found 
a number of studies that had investigated the specific challenges of teaching mathematics 
in multilingual contexts (Adler, 2001; Khisty, 1995; Moschkovich, 1999). Neville-Barton 
and Barton (2005) looked at these tensions as experienced by Chinese Mandarin-speaking 
students in New Zealand schools. Their investigation focused on the difficulties that could 
be attributable to limited proficiency with the English language. It also sought to identify 
language features that might create difficulties for students. Two tests were administered, 
seven weeks apart. In each, one half of the students sat the English version and the other 
half sat the Mandarin version, ensuring that each student experienced both versions. There 
was a noticeable difference in their performances on the two versions. On average, the 
students were disadvantaged in the English test by 15%. What created problems for them 
was the syntax of mathematical discourse. In particular, prepositions, word order, and 
interpretation of difficulties arising out of the contexts. Vocabulary did not appear to 
disadvantage the students to the same extent. Importantly, Neville-Barton and Barton found 
that the teachers in their study had not been aware of some of the student 
misunderstandings.  

Similar difficulties were made evident in students from S�moa and Tonga, in Latu’s 
(2005) research. Latu noted that English words are sometimes phonetically translated into 
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Pasifika languages to express mathematical ideas when no suitable vocabulary is available 
in the home language. The same point was made by Fasi (1999) in his study with Tongan 
students. Concepts such as “absolute value”, “standard deviation”, and “simultaneous 
equations” and comparative terms like “very likely”, “probable”, and “almost certain” have 
no equivalent in Tongan culture, whereas some English words, such as “sikuea” (square), 
have multiple Tongan equivalents.   

Fasi (1999) investigated the discursive approaches of two teachers, one S�moan and the 
other Tongan, both of whom had been educated in their native country before moving to 
New Zealand to complete their higher education. He found that the teachers switched 
between the language of instruction and the learners’ main language in order to explain and 
clarify the concepts to students. Clarkson (1992) and Setati and Adler (2001) all found 
evidence of language switching (code switching) for bilingual students, particularly when 
students could not understand the mathematical concept or when the task level increased. 
Code switching involved words and phrases as well as sentences and tended to enhance 
student understanding. 

Shaping Mathematical Argumentation 

We have now looked at the approaches teachers take to fine tune thinking through 
language. But mathematical language involves more than technical vocabulary. It also 
encompasses the way it is used within mathematical argumentation. The positive effects of 
providing regular opportunities for students to engage in argumentation have been well 
documented (Carpenter & Lehrer, 1999; Cobb, Boufi, McClain, & Whitenack, 1997; 
Empson, 2003; Goos, 2004; Kazemi & Stipek, 2001; McClain & Cobb, 2001; O’Connor, 
2001; Wood & McNeal, 2003; Zack & Graves, 2002). These researchers have provided 
evidence that students should have the opportunity and space, for example, to interpret, 
generalise, justify, and prove their ideas, as well as critique the ideas of others in the class.  

Many researchers have found that pedagogical practices that allow students to engage 
in these activities greatly enhance the development of their mathematical thinking. Such 
practices also enhance the view that students hold of themselves as mathematics learners 
and doers. In particular, O’Connor and Michaels (1996) have highlighted the importance of 
shaping mathematical argumentation by fostering students’ involvement in taking and 
defending a particular position against the claims of other students. They point out that this 
instructional process depends upon the skilful orchestration of classroom discussion by the 
teacher. The skill “provides a site for aligning students with each other and with the content 
of the academic work while simultaneously socialising them into particular ways of 
speaking and thinking” (p. 65).  

As straightforward as it might seem, shaping students’ mathematical thinking is, in 
fact, a highly complex activity. It is complex because teachers and students are “negotiating 
more than conceptual differences … they are building an understanding of what it means to 
think and speak mathematically” (Meyer & Turner, 2002, p. 19). Watson (2002) reported 
that teaching mathematics to low-attaining students in secondary school often involved 
“simplification of the mathematics until it becomes a sequence of small smooth steps 
which can be easily traversed” (p. 462). Frequently teachers took the student through the 
chain of reasoning and students merely filled in the gaps with the arithmetical answer, or 
low-level recall of facts. This “path smoothing”, it was found, did not lead to sustained 
learning precisely because the strategy deliberately reduced a problem to what the learner 
could already do, with minimal opportunity for cognitive processing.  
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Fraivillig and colleagues (1999) observed teachers who did not simplify the task 
demands. Teachers in their research did more than sustain discussion – they moved 
conversations in mathematically enriching ways, they clarified mathematical conventions, 
and they arbitrated between competing conjectures. In short, they picked up on the critical 
moments in discursive interactions and took learning forward. Hiebert and colleagues 
(1997) have found that relevant and meaningful teacher responses to student talk involves 
drawing out the specific mathematical ideas set within students’ methods, sharing other 
methods, and advancing students’ understanding of appropriate mathematical conventions. 
Reframing student talk in mathematically acceptable language provides teachers with the 
opportunity to enhance connections between language and conceptual understanding. 

Zack and Graves (2002) have reported that teachers who develop student 
argumentation and enhance learning are themselves active searchers and enquirers into 
mathematics. O’Connor’s (2001) classroom research highlighted how one teacher, through 
purposeful listening, facilitated a group of students towards a mathematical solution. The 
research students took varying positions towards the solution and attempted to support 
those positions with evidence. The teacher made her contribution by challenging the 
students’ claims through the use of counter-examples.  

Goos (2004) described how a secondary school mathematics teacher developed his 
students’ mathematical thinking through scaffolding the processes of inquiry. The teacher 
“call[ed] on students to clarify, elaborate, critique, and justify their assertions. The teacher 
structured students’ thinking by leading them through strategic steps or linking ideas to 
previously or concurrently developed knowledge” (p. 269). In a series of lesson episodes, 
Goos provided evidence of how the teacher pulled learners “forward into mature 
participation in communities of mathematical practice” (p. 283), until they were able to 
engage independently with mathematical ideas.  

On other studies Stein, Grover, and Henningsen (1996) and Kazemi and Franke, (2004) 
have found that a sustained press for justifications, explanations, and meaning, 
significantly contributed to high-level cognitive activity. When a teacher “presses a student 
to elaborate on an idea, attempts to encourage students to make their reasoning explicit, or 
follows up on a student’s answer or question with encouragement to think more deeply” 
(Morrone, Harkness, D’Ambrosio, & Caulfield, 2004, p. 29), the teacher is not only 
providing an incentive for students to enrich their knowledge, but also socialising them into 
a larger mathematical world that honours standards of reasoning and rules of practice. In 
effect, by participating in a “microcosm of mathematical practice” (Schoenfeld, 1992), 
students are learning how to appropriate mathematical ideas, language, and methods and 
how to become apprentice mathematicians. 

Conclusion 

This review represents a systematic and credible evidence base about quality discourse 
in mathematics classrooms and explains the sort of pedagogical approaches that lead to 
improved engagement and desirable outcomes for learners from diverse social groups. Our 
search through the literature focused attention on different contexts, different communities, 
and to multiple ways of thinking and working. The evidence drew on the histories, cultures, 
language, and practices found in mathematics classroom contexts and considered a range of 
research evidence irrespective of regardless of methodological approaches. 

Our focus on classroom discourse and scaffolding of student engagement has revealed 
specific pedagogical skills, knowledges and dispositions that make a difference to all 
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students. These pedagogical factors shape how, and with what effect, mathematics is taught 
and learned. Student outcomes are contingent upon them, not as single entities, but as 
interrelated contingencies. Although our review has surveyed the literature on mathematics 
classroom discourse, it is important to note that classroom discourse will gain positive 
effect only when there is a strong cohesion between all the various elements of a teacher’s 
work. In other words, the facilitation of productive classroom discourse is part of a larger 
matrix of the effective teacher’s repertoire that allow students to develop habits of mind to 
engage with mathematics productively and to make use of appropriate mathematical tools 
to support understanding. 

Our review has deepened our understanding of mathematics discursive practices in 
many ways. Teachers who set up communities of practice that are conducive to classroom 
discussion, come to understand their students better. Students benefit too and the ideas put 
forward in the classroom become rich resources for knowledge. Through students’ 
purposeful involvement in discourse, through listening respectfully to other students’ ideas, 
through arguing and defending their own position, and through receiving and providing a 
critique of ideas, students enhance their own knowledge and develop their mathematical 
identities. Teachers who are able to provide such contexts simultaneously increase 
students’ sense of control, and develop valuable student mathematical dispositions. 
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This paper reports on a small pilot study conducted in an Indigenous P-13 school in North 
Queensland. This pilot study occurred over a two day period with the specific aim of 
exploring the role of oral language and representations in negotiating mathematical 
understanding. Implications are drawn for the implementation of a large study, commencing 
in 2007 with 4-year-old Indigenous students as they transition from home to school. All 
students in this context either speak Aboriginal English or Creole as their first language. 
The pilot study occurred in two classrooms, one with 15 Year 6/7 students and the other 
with fourteen Years 4/5/6 students. The preliminary results indicate that explicit 
consideration needs to be given to the development of precise mathematical language, 
strategies for linking school mathematics to home environments, the use of questioning in 
establishing classroom discourse, and the recognition that many of these classrooms are 
bilingual.  

Introduction 

This paper reports on a small pilot study that occurred at the commencement of a new 
project to be conducted in four schools in North Queensland. The main project, a 
longitudinal study, aims to explore the role that oral language and representations play in 
assisting Indigenous students reach an understanding of white mathematics, with a 
particular focus on Prep students as they transition into school from home. One of the 
schools, an Indigenous school has 465 students, with nearly all the students being either 
Indigenous Australians or from the Torres Strait Islands. The pilot study was conducted 
with older students and their teachers in this school with a specific aim of exploring oral 
language, representations and understanding mathematical concepts, drawing initial 
implications for the main project.  

Many researchers have found there is a mismatch of conditions for learning for young 
Indigenous Australian children as they enter school (Bliss, 2004; Dunn, 1999; Simpson & Clancy, 
2005; Simpson, Munns, & Clancy, 1999; Zevenbergen, 2000). Tension still exists between policy 
and suggested strategies for Indigenous students. The reality of responding to cultural  differences 
and practices and adjusting the interactions and strategies for teaching and learning in classrooms 
is still far from ideal (Simpson & Clancy, 2005). The use of spoken language in school and the 
types of interactions teachers utilize can either advantage or disadvantage Indigenous Australian 
students. Furthermore, the importance of spoken language as the foundation for all learning is 
often not fully recognized and many young Indigenous Australian children are not able to make a 
strong start in the early years of schooling as the discourses of the family often do not match that of 
the school (Cairney, 2003). This mismatch of home and school language has been shown to 
disadvantage Indigenous students’ achievements in literacy and numeracy in the long term 
(Dickinson, McCabe, & Essex, 2006; MCEETYA, 2004). Understanding and accepting 
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Aboriginal English (AE) as a dialect of spoken English used by most Aboriginal and Torres Strait 
Islander people is vital and knowing that there are variations across particular communities is 
important (Haig, Konisberg, & Collard, 2005). While Standard Australian English (SAE) is the 
discourse of the school, and it is conjectured that teachers need to create a bridge for young 
Indigenous students between AE and SAE as they grapple with both the new language and new 
concepts little is known about what this means in practice.  

Patterns of classroom interactions have been shown to disadvantage some students particularly 
the interaction of teacher questioning as Indigenous students do not commonly experience this 
type of interaction at home or within their community (Galloway, 2003; Haig, Konisberg, & 
Collard, 2005). Unjustified blame has been placed upon Indigenous students in the past and 
absenteeism, disadvantaged social background and culture have all been viewed as contributing 
factors (Bourke & Rigby, 2000). This is seen as irresponsible (Cooper, Baturo, Doig, & Warren, 
2004). Insufficient consideration has been given to the complexities that confront young 
Indigenous students as they enter school. Educators have not lifted the blame and given sufficient 
positive consideration to ways of adapting the conditions for learning for these students to prepare 
them for success rather than failure. Thus the dominant view of society in blaming aspects of 
culture, disadvantage and maintaining low expectations needs to be turned around so that a 
positive framework can be adopted in order to improve the educational outcomes for Indigenous 
Australian students (Matthews, Howard, & Perry, 2003; Sarra, 2003).  

Theoretical Frameworks 

Various broad theoretical fields are relevant in addressing the issues related to this 
research, for example, situated cognition (Kirshner & Whitson, 1997; Lave & Wenger, 
1991; Watson, 1998), and cultural models (Holland & Quinn, 1987). As the focus of this 
pilot study was on two particular aspects of classroom interactions, namely, oral language and 
mathematical representations, the frameworks chosen in this initial study reflect these dimensions. 
The initial lenses chosen to view the classroom discourse were Duval’s representations and 
Peirce’s semiotics.  

Duval (2002) argues that mathematics comprehension results from the coordination of 
at least two representational forms or registers; the multifunctional registers of natural 

language, and figures/diagrams, and the mono-functional registers of notation systems 
(symbols) and graphs. He contends that learning involves moving from treatments where 
students stay within one register (e.g., carrying out calculations while remaining strictly in 
the one notation system) to conversions where students change register without changing 
the objects being donated (e.g., passing from natural language of a relationship to using 
letters to represent it) and finally to coordination of registers. He argues that learning also 
requires building understanding of the mathematical processing performed in each register 
(Duval, 1999). One theory relating to communication in the classroom is semiotics.  

The epistemological stance taken in this analysis is the science of semiotics; a means of 
addressing signs, their connections and meanings. In this instance signs refer to external 
representations. Presmeg (1997) suggests that when one recognizes the structure of the 
system he or she engages in, explains this structure to others by such means as encoding it 
in a diagram or applying some overarching framework, then mathematics exists. So while 
semiotics is commonly used to construct links between cultural and historical practices and 
mathematics (Presmeg, 1997; Radford, 1997) it also assists us to understand classroom 
discourse in mathematics (Saenz-Ludlow, 2001; Warren, 2003). Sign interpretation is a 
personal process with some students being unable to move beyond the physical 
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characteristics of the sign (the external representation). Peirce (1960) believes that the sign 
relation is inherently triadic, linking an object, a representation and an interpretation so that 
the object determines the representation and in turn determines the interpretation. Semiosis 
involves the process of going beyond particular signs to more and more complex 
representations incorporating new signs and generalizations (Peirce, 1960); an evolving 
process. Vygotsky regarded signs as tools that were capable of influencing one’s inward 
behaviour and the behaviour of another. Thus the teaching and learning process can be seen 
as a process of semiosis where the teacher and students become both contributors and 
interpreters.  

Methods 

Participants 

This paper reports on how students and teachers use the language of mathematics and 
representations in their mathematical learning. The school chosen for this study is a P-13 
school; a large boarding school catering exclusively for Indigenous and Torres Strait 
students. This school prides itself in offering quality education for Indigenous students in 
far north Queensland. In 2006 47% of Year 3 students, 69% of Year 5 students, and 17% of 
Year 7 students achieved above the national benchmark for numeracy. In addition, 
approximately 30 students successfully completed Year 12. Two teachers, David and 
Melissa, volunteered to participate in this pilot study. David teaches 15 Year 6/7 students 
whose ages range from 10 years to 12 years with eight being Australian Indigenous, 6 from 
Torres Strait and 1 from Papua New Guinea. Melisa’s class consisted of 14 Year 3/4/5 
students, with eight being Australian Indigenous and six of Torres Strait Island origin. Both 
of these teachers had been working in these types of environments for up to 5 years and 
were perceived by both the school community and local educational consultants as 
exemplary teachers of Indigenous students.  

Data Sources and Analysis 

The data was gathered from three main sources, namely, (a) open ended interviews 
with the two teachers before the teaching began (Pre Interview), (b) videotapes of two 
lessons especially constructed by the teachers to illustrate the adaptations they made to 
their teaching in these environments when teaching mathematics, and (c) a reflective 
interview with each teacher at the end of the teaching episode (Post Interview). All lessons 
were videotaped and field notes were taken. At the completion of the lessons, the 
researcher and teacher reflected on the researcher’s field notes, endeavouring to minimise 
the distortions inherent in this form of data collection, and arrive at some common 
perspective of the instruction that occurred and the thinking exhibited by the students 
participating in the classroom discussions. The video-tapes were transcribed. The videos 
and participant observation scripts served to provide insights to the learning of the 
community and particularly identifying specific actions, specific use of representations and 
conversations that supported this learning.  
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Results and Discussion  

Pre-interview 

Both teachers commented on the difficulties they experienced on a day to day basis in 
these environments. These related to the language difficulties that they experienced, the 
need to relate all their examples to relevant real world contexts, the use of a variety of 
visual aides needed to allow access to the ideas, and the tension between what they 
perceived as “talking about mathematics in Australian Indigenous English” and precise 
mathematical language, for example, using “big” and “big up” for tall and taller, and the 
need to ensure that Indigenous Australian children had the opportunity to communicate in 
“proper mathematical language”. This last issue relates to a notion of empowerment. They 
believed that “setting the benchmarks” too low was in fact an act of “keeping Indigenous 
Australians in their own class, denying them the opportunity to move out of their low 
socioeconomic circumstances and act as “activists for real social change”. Both presented 
two lessons that they believed exhibited these characteristics. They perceived that teaching 
in these classrooms required a high use of oral language, hands on experiences, a range of 
representations and an ability to continually adapt the learning trajectory to maximise 
access of the participants to the mathematical concepts. The data reported in this paper is 
one excerpt from the Year 3/4/5 classroom and one short excerpt chosen from the Year 6/7 
classroom. The first illustrates the use of different representations and contexts to assist 
students solve a problem involving comparing the heights of two children, and the second 
illustrates students “code switching” as they engage in an activity involving calculating 
volumes of a variety of shapes made from blocks. Figure 1 illustrates the particular 
representations utilised by Melissa as she discussed the problem with the students.  

 
 
 
 
 
 
 
 
 
 
  (a)    (b)   (c) 

Figure 1. Diagrams drawn on the board at different stages during the discussion.  

Excerpts from the Year 3/4/5 Classroom (Melissa’s Classroom) 

T:  Wally was 120 cm tall. (Both Wally and Ado are children in the class). 
Children: OOOHH.  
T: Here is Wally. Now Ado, he’s a little bit younger so he is a little bit shorter. Ado was 100 cm tall. 

[Draws Figure 1 (a) on the Board] 
How much taller, listen carefully to the question. How much taller was Wally than Ado? How much 
taller was he than Ado? Think about it very very carefully. How much taller? [Paused] 

120 cm 

Wally 

100 cm 

Aldo 

120 cm 

100 cm   120 
- 100   
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T:  We sometimes say what is the difference between them. 
C1:  220cm. 
T:  That would be if he jumped up on his head.  

[Gesturing the action of one jumping up on top of the other] 
T:  That how much they would be altogether. How much taller?  
T: Here is 100cm which might be about here. [Marking off in the air 100cm with her left hand] 
T: Wally is 120cm tall which might be about here. How much taller? [Gesturing 120 cm as a point 

above 100 cm and using both hands to focus their attention on the gap].  
T: What is that difference between 100 and 120cm. What is that difference in there?  
 [Moving both hands backwards and forwards to emphasis the focus is on the gap between the two 

hands] Do you know? 
C2:  It could be 100 and something. 
T: No that is an excellent go though. What is the difference between 100 and 120? What is that 

difference in there? How much is it Do you know Marley? 
T:  Lets look at this way. We have 120 cm is up here and 100cm is to here?  

[Draws Figure 1 (b) on the board].  
What is that difference in there? This is 100cm. What is the difference in between there? 
[Pointing the difference between the two heights].  

T: What is the difference in there? How many marks are between there? 
C3:  50 
T:  No it’s not 50. 
C4:  100 
T: No it is not 100. Think about it carefully. How many points go in between there and there. Very, 

very tricky. Think it about carefully. 
C4:  10 
C5:  .8 
C6:   [shouted out] Miss 20 
T: This is an easy way of doing this. We can do the difference between something by doing a take 

away. 120 take away 100 
C7:  2 
C8:  200 
T: Lets think of it this way if you had 120 dollars and you took away 100 dollars how much is left. 120 

dollars and you gave away 100. How much is left?  
[Gestures with her closed fists the action of take away and then draws Figure 1 (c) on the board].  

C9:  120 
At this stage nearly all the class were whispering 20.  
Children in unison:  20  
Melissa then worked through the algorithm with them. 

From a semiotic perspective the object is considered to be the beginning task, namely, 
“If Wally is 120 cm tall and Ado is 100 cm tall, how much taller is Wally than Ado” and 
the signs are the various representations that assisted in understanding the object. The 
interpreters were the students themselves. Melissa continually adjusted her representations 
as a response to students/ interpretations. The first representation (Figure 1(a)) did not 
seem to be interpreted by students as a difference representation, hence the introduction of 
the gesture, showing that the focus was on the difference between the children’s two 
heights. This was further represented as a diagram with horizontal bars used to again focus 
attention on the difference (see Figure 1(b)). As Melissa proceeded along this trajectory she 
also changed the object itself from a comparison problem to a subtraction problem (by 
introducing the language of difference and then take away). Finally, she switched into the 
context of money thus the original object changed from how much taller is Wally than Ado 

to if you had 120 dollars  and gave away 100 dollars how much is left.  This process 
illustrates a common strategy used in many Indigenous classrooms, the context of money as 
a bridge to understanding mathematics. While the students successfully answered this 
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problem, does this assist them in reaching an understanding of the original problems and 
do they see the analogy between each? This needs further research. Also another common 
characteristic of this conversation was the lack of ongoing dialogue about the problem 
itself. The students volunteered answers (which were often incorrect) but there was no 
ongoing conversation about their thinking. One concern that these teachers had was the 
“shame factor”. Melissa was aware that Indigenous students do not like being asked 
questions in front of the whole class, and especially did not like their incorrect answers to 
be pursued, hence her continual positive reinforcing comments, such as, “good try” as the 
lesson proceeded. In some instances it appears that students are unable to go beyond the 
written mark; the literal interpretation.  

The inherent triadic nature of sign relations (object, representations and interpretation) 
are exhibited in this research. The tasks presented in this research induce an interaction 
between these three dimensions but in this instance whether the interplay between different 
signs and their interpretations bring deeper meaning to the object itself is the key question. 
The use of gesturing was also explicit throughout the lesson. In fact the role of gesturing 
within a culture with a strong oral history, may in fact prove to be an important 
representation in the interpretation process. Recent research has evidenced that children are 
significantly more likely to reiterate the teacher’s spoken strategy when it is produced in 
conjunction with gestures that conveyed the same strategy than when it is produced with no 
gestures at all (Goldin-Meadow, 2006). 

From Duval’s perspective, most of this lesson occurred within the mono-functional 
register, the use of language and diagrams to represent the problem at hand. This is 
considered to be an easier process than crossing across registers. While this framework 
indicated that the lesson was situated in a register which was considered to be “cognitively 
easier” the register gives little insight into how to work effectively within each or the role 
of gestures in creating meaning. This requires further research. 

Excerpt from the Year 6/7 Classroom 

The second expert was chosen for inclusion in this paper as it demonstrates students 
“code switching” as they interacted in the classroom context. The lesson began with a 
general discussion about what we mean by the term volume, how it differs from capacity, 
and the processes commonly used to calculate the volume of a three-dimensional cuboid. 
The students were then split into three rotational groups. The following except is from a 
conversation between an Australian Indigenous student and a Torres Strait Islander student.  

C1:   (Singing out loud in own language)  
C2:   You killed it 
C1:   You starting dissing each other 
C2:  You were going to start dissing, then they’re going to start dissing and then your going to 

diss them 
C1:   Hello, Miss where are you from? 
R:  I am from Brisbane and where are you from? 
C1:   No, I’m from, I’m born in Rockhampton but I rear up in Yarrabah 
C2:   How many are there? [referring to the diagram of cubes] 
C1: Twenty-four, yes that’s right. 1, 2, 3, 4, 5, 6, 7, is that seven? Yep, it’s seven. Twenty-four 

and I still need to do this one. [counting up the cubes in the diagram] 

This short extract illustrates a typical conversation that occurred in the classroom. As 
the students worked and conversed with each other they continually switched between their 
own languages, but when it came to discussing mathematical concepts they expressed their 
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ideas using the language of mathematics. It is conjectured that a possible reason for this is 
that their own language lacks the specific vocabulary needed to describe these 
mathematical situations.  

Post Interview 

The reflections at the end of the lessons between the teachers and the researcher 
focused on four broad themes, all of which impact on our main study. First, there are 
tensions between all the languages that exist in these situations and the need to pave the 
way to high levels of achievements in mathematics. There were at least two different 
languages in these classrooms, Australian Indigenous English and Creole. Both teachers, 
while they knew something about these languages felt that both languages lacked aspects 
that assisted them in working in a mathematical environment. For example, there appeared 
to be little attribute language in their home language. For length the predominant 
comparative words were “big”, “bigger up”, “small”, and “boney”. Hence, they felt a need 
to ensure that their lessons provided opportunities for Indigenous students to learn about 
and use the explicit language of mathematics. Second, there are culturally different styles in 
communication between home situations and school situations, especially when it came to 
direct questioning. Past research has evidenced that if an Indigenous student cannot answer 
the question then they experience a feeling of “shame”, especially if they are singled out in 
front of others. Hence in both instances classroom discourse tended to avoid probing 
“incorrect thinking”. Third, Indigenous students’ engagement increases if the examples are 
related to their world and the approach is very hands on. Melissa commented that she 
always endeavoured to use the students themselves as the context she used when discussing 
mathematical ideas, hence the choice of Wally and Aldo for her comparative measurement 
problem. Fourth, given that their culture’s communication is based on oral language there 
is a reluctance to “write” things down. All of these impacted on how both teachers 
conducted their lessons.  

Summary and Implications 

 This pilot study begins to tease out particular issues that need to be taken into 
consideration as young Indigenous students move from a home environment to a school 
environment. The first implication for the main project is the need to explicitly link home 
environment to school environment, with the specific aim of allowing young Indigenous 
students access to white mathematics. The theoretical frameworks provided for this 
analysis give some insights into the classroom discourse. In the case of Melissa’s class 
semiosis assisted in viewing the classroom interchange as consisting of three main 
dimensions, namely, object, representations, and interpretations. It also assisted in 
documenting how she changed the representations to assist the students reach some 
meaning about the object. But in this instance it was a backward mapping, starting with 
school and working back to home and the context of money. For the main project a more 
appropriate framework could be the notion of semiotic chaining, a means of building links 
between cultural practices and the teaching and learning of mathematics in school 
(Presmeg, 2005), an example of which was given by Walkerdine (1988) in her seminal 
work on mother – daughter relationships in the home environment. Semiotic chaining 
exemplifies the notion of layering to abstraction where the object and sign relationship 
build from the concrete to the abstract by the sign itself taking on the role of the “new 
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object” for each subsequent layer (Presmeg, 2005). In this instance the initial object is 
situated in the home environment (e.g., guests coming to visit) and the final object is in the 
school environment (e.g., whole number). The impact of this framework on Indigenous 
learning needs further investigation.  

The second implication is the recognition that Indigenous classrooms are bilingual and 
their home language, while sounding like English is in fact different from Australian 
Standard English. The two instances reported in this paper show that in their home 
language there is a lack of the vocabulary commonly used to describe mathematical 
situations (e.g., the lack of attribute language and the need to switch to mathematical code 
when describing mathematical situations). While this has been recognised as a problem in 
past research, there is a paucity of research focusing on the development of mathematical 
language with Indigenous students and its impact on mathematical achievement.  

The third issue relates to the type of classroom discourse and choice of representations 
used to explore mathematical concepts. In particular, what style of discourse encourages 
students to engage in classroom discussions about mathematics concepts? How do we walk 
between the idea of justification and cultural notion of shame? What role do gestures have 
in supporting a culture based on an oral language tradition?  

Although there is some recognition that many Indigenous students have English as a 
second language, their educational outcomes indicate there is still room for improvement. 
It is well recognised that oral communication is dominant in the lives of these students and 
that their experience with print and other literacies is often limited. By building on the oral 
language strengths of young Indigenous Australian students, the main study seeks to bridge 
the gap between home and school and assist students to enhance achievement in both 
literacy and numeracy. This pilot study reported in this paper begins to map the territory 
and provide indicators for the road ahead. As such, the research recognises the considerable 
capabilities of young Indigenous Australian students as they commence school and aims to 
assist them to engage in meaningful dialogue concerning literacy and numeracy in order to 
meet the challenge of improving long-term educational outcomes. 
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Teachers and students in nine rural Tasmanian schools have been associated with a research 

project providing professional learning for teachers in mathematics in a reform-based 

learning environment. Students completed surveys to measure attitudes and mathematics 

skills and understanding late in 2005 and late in 2006. Teachers completed profiles late in 

2005 and participated in professional learning activities from then throughout 2006. The 

professional learning program is described and change in student attitudes and performance 

reported. 

The MARBLE project began in mid-2005, the acronym standing for “Mathematics in 

Australian Reform-Based Learning Environments.” The aim of the project is to provide 

negotiated professional learning opportunities for a group of rural middle school teachers 

that will enhance the outcomes of their students in relation both to the quantitative literacy 

needs of today’s society and to the opportunity to study further mathematics and contribute 

to innovation in Australia. The project reported on initial data collected from teachers and 

students in relation to beliefs and attitudes (Beswick, Watson, & Brown, 2006) and to 

performance on a mathematical task (Watson, Beswick, & Brown, 2006). Brown, Watson, 

Beswick, and Fitzallen (2006) also provided details of the overall teacher profile outcomes. 

The purpose of this paper is to report on professional learning program and the resulting 

student change following the first year of the project.  

Professional learning program. All professional learning programs for teachers are 

limited to some extent by available resources and although this project was funded by the 

Australian Research Council, the Department of Education Tasmania (DoET), and the 

Catholic Education Office Hobart (CEO), care had to be taken to use resources carefully. 

Research elsewhere had suggested that important features of programs were: 

(a) ongoing (measured in years) collaboration of teachers for purposes of planning with (b) the 

explicit goal of improving students’ achievement of clear learning goals, (c) anchored by attention 

to students’ thinking, the curriculum, and pedagogy, with (d) access to alternative ideas and 

methods and opportunities to observe these in action and to reflect on the reasons for their 

effectiveness. (Hiebert, 1999, p. 15) 

These features are related to Shulman’s (1987a, b) seven types of teacher knowledge 

required for successful teaching – content knowledge, general pedagogical knowledge, 

curriculum knowledge, pedagogical content knowledge, knowledge of learners and their 

characteristics, knowledge of education contexts, and knowledge of education ends, 

purposes, and values – as well as to Hill, Rowan, and Ball’s (2005) more recent focus on 

“Teachers’ knowledge for teaching mathematics.” Fitting all of these aspects into the time 

and resources was the challenge faced. 

In particular in Tasmania, the Essential Learnings Framework (DoET, 2002; 2003) was 

the backdrop into which the professional learning was to fit in 2005. This curriculum 

framework, underpinned by a set of values and purposes, identified 18 Key elements 
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within five Essential Learnings (Thinking, Communicating, Social Responsibility, World 

Futures and Personal Futures). Although the position of traditional Key Learning Areas 

(KLAs) was not specifically addressed in the framework, “Being Numerate” was identified 

as a key element in the Communicating Essential. This shift in emphasis recognised 

“Being Numerate” as a cross-curricular understanding and coincided with an increased 

focus on pedagogy and collaborative practice across the curriculum. Contemporaneously, a 

set of defined outcomes and standards (DoET, 2003) was produced for each key element. 

“Being Numerate” was one of the first against which teachers reported, in 2005. 

Considerable professional learning to support teachers’ adoption of the reforms was 

provided through the Department of Education. This included appointment of curriculum 

and assessment leaders in schools/clusters, printed and on-line material (planning 

proformas, exemplar units, and work samples to guide assessment). Much of the 

professional learning was generic, with only three curriculum officers working with a 

“Being Numerate” focus across the state. Face-to-face professional learning in this element 

was therefore limited and dependent on individual schools or clusters adopting a numeracy 

focus. To assist in addressing this issue, the “Being Numerate” team developed an 

extensive on-line resource for teachers (DoET, 2007a).  

In 2006, amid controversy over the implementation of the Essential Learnings, the 

incoming Minister for Education announced that there would be a new curriculum in 

Tasmanian schools. The Tasmanian Curriculum would be a refinement to “make it easier 

to understand, and more manageable for teachers and principals” (DoET, 2007b, para 1). 

An initial draft was circulated to stakeholders and following a consultation period the 

refined framework consisting of eight areas was announced. Mathematics/Numeracy 

became a defined area against which both primary and secondary teachers are required to 

report. Information and Communications Technology (ICT) was embedded in all 

curriculum areas (DoET, 2007b).  

The MARBLE project provided an opportunity for two clusters of Tasmanian schools 

to have an intensive focus on numeracy in addition to the other professional learning that 

was taking place. Although this project was firmly grounded in the context of curriculum 

reform, specific content and pedagogical content knowledge in the area of numeracy were 

identified foci. Professional learning literature then informed the planning process. For 

example, Schifter (1998) found that engaging teachers with the content of the mathematics 

curriculum that they taught, in ways that challenged and deepened their own mathematical 

understandings, was effective in assisting them to make changes to their classroom 

practice. Hawley and Valli (1999) asserted that teachers should be involved in the 

identification of what they need to learn and the process to be used and that collaborative 

problem solving should be included.  

In December 2003, the Australian Councils of the Deans of Education and the Deans of 

Science issued a draft report on professional learning in science, mathematics, and 

technology in Australia. The report lamented the lack of systematic evaluation of student 

outcomes and of improvements in teacher confidence and knowledge as a result of 

professional learning experiences (p. 43). Burkhardt and Schoenfeld (2003) further made a 

direct call for more extensive, evidence-based measures of outcomes to be developed to 

satisfy stake-holders, including politicians. These evaluations became among the aims of 

the MARBLE project with a specific focus of the research to evaluate whether the 

professional learning made an impact on teachers and students with respect to teaching and 

learning of Mathematics. This paper reports on the results of student surveys that included 

Mathematics: Essential Research, Essential Practice — Volume 2

786



  

items to measure both attitude and mathematics performance, in terms of skills and 

understanding. 

Attitudes to mathematics. The term attitude is used to describe an evaluative response 

to a psychological object (Ajzen & Fishbein, 1980) and hence individuals’ attitudes to 

mathematics refer to their evaluation of mathematics. Hannula (2002) separated such 

evaluations of mathematics into four categories, namely: emotions experienced during 

mathematical activity; emotions triggered by the concept of mathematics; evaluations of 

the consequences of doing mathematics; and the perceived value of mathematics in terms 

of an individual’s overall goals. Of course, these are dependent upon such things as the 

nature of the mathematical activity engaged in at the time, the aspects of mathematics 

being considered or what is believed to comprise mathematics, and expectations for the 

future in terms of mathematics. This means that an individuals’ response to written items 

aimed at assessing their attitude to mathematics is likely to reflect rather transient states. 

Other authors have also described the multidimensionality of attitude in terms of 

dichotomous evaluations. These include: confidence or anxiety (Ernest, 1988); like or 

dislike; engagement or avoidance; high or low self efficacy; and beliefs that mathematics is 

important or not important, useful or useless, easy or difficult (Ma & Kishor, 1997), and 

interesting or not interesting (McLeod, 1992). There are connections between these eight 

dimensions and Hannula’s (2002) categories but they tend to emphasise emotional 

reactions less.  

The Program for International Student Assessment (PISA) (2003) incorporated 

measures of affect and their influence on mathematical literacy (Thomson, Creswell, &, De 

Bortoli, 2004). Thomson et al. (2004) found that for Australian 15-year-olds, mathematics 

self-efficacy and self-concept had the greatest impact on mathematical performance of all 

of the variables considered, and that anxiety about mathematics was negatively related to 

performance in the subject. In addition, students’ inclination to engage in mathematics is 

likely to influence their decisions about pursuing the subject beyond the school years in 

which it is compulsory and hence is a likely contributor to the declining enrolments in 

tertiary mathematics in many countries (Boaler & Greeno, 2000). A decline in attitude to 

mathematics with increasing grade level was also been noted by Boaler and Greeno, (2000) 

and some evidence suggesting that this might apply particularly to students’ inclination to 

engage with the subject, to like it, and to find it interesting was presented by Beswick et al. 

(2006). 

Mathematical performance of students. Analysis of curriculum documents and 

previous research highlighted the mathematical concepts associated with the middle school 

that are the foundation for the quantitative literacy skills needed by all students and for the 

formal mathematical content of algebra, geometry, probability, and statistics needed by 

innovators in mathematics science and technology. The five concepts identified as forming 

a foundation to these understanding were Number Sense, Proportional Reasoning, 

Measurement, Uncertainty, and Relationships. These dual purposes, everyday numeracy 

and formal mathematics that pose a challenge for teachers and curriculum designers, are 

recognised in the Essential Learnings framework:  

Being numerate involves having those concepts and skills of mathematics that are required to meet 

the demands of everyday life. It includes having the capacity to select and use them appropriately in 

real life settings. Being truly numerate requires the knowledge and disposition to think and act 

mathematically and the confidence and intuition to apply particular principles to everyday problems. 
… Access to higher levels of abstract symbolic operation opens new ways of thinking and future 

academic and vocational pathways. (DoET, 2002, p. 21) 
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This extract echoes the work of Steen (2001), who sees quantitative literacy as an integral 

component of all mathematics curricula. Appreciating the purposes and applications of the 

mathematical thinking they have developed within the formal mathematics curriculum is 

seen as a critical need for elite students as well as those who will not go on to study higher 

levels of mathematics.  

Methodology 

The research was conducted in two rural clusters in different parts of Tasmania,  

comprising eight DoET schools and one CEO school. The professional learning program 

involved middle years (grades 5-8) teachers.  

Sample. The survey was directed at students in Grades 5 to 8. Due to students entering 

and leaving schools, and progressing to higher grades in 2006, not all students had survey 

results for both years. Table 1 contains the number of students in each year and the number 

of repeating students. Although all schools were asked to administer surveys to all students 

whose teachers took part in the MARBLE project, there are some missing data from some 

schools. 

Table 1 

Number of Students in Each Grade Each Year (repeating student numbers in parenthesis) 

Year  Grade 5 Grade 6 Grade 7 Grade 8 

2005 182 220 181 128 

2006 138 168 (141) 154 (144) 102 (94) 
 

Survey items. The student surveys included items to measure both mathematical 

performance and attitude towards mathematics. In terms of mathematical performance, the 

survey was written to reflect the five foundation concepts identified in the literature. Of the 

35 distinct items forming 17 questions on the initial student survey, there was overlap in 

terms of items reflecting these concepts. Fifteen items had links to two concepts with the 

coverage being 15 items on Number Sense, 6 items on Proportional Reasoning, 7 items on 

Measurement, 10 items involving Uncertainty, and 12 involving Relationships. The items 

had various sources including Watson and Callingham (2003), Callingham and Griffin 

(2000) and Department of Education, Community and Cultural Development (1997). 

Student outcomes for one of the problems based on fractional parts of a nebulous whole 

were discussed in Watson et al. (2006). Items were scored using scoring rubrics adapted 

from the original sources. 

The subsequent student survey administered 12 months later contained eight items in 

common with the initial survey and 18 other items, providing a total of 13 items on 

Number Sense, 6 on Proportional Reasoning, 2 on Measurement, 7 on Uncertainty, and 5 

on Relationships. This included three items that linked to three concepts and one item that 

linked to two. The change in emphasis reflected student outcome levels from the initial 

surveys and teacher intervention (through the professional learning program) in 2006.  

Consistent with the study of Beswick et al. (2006) 16 items to measure attitude were 

included comprising two statements from each of the eight identified dimensions, to which 

respondents indicated the extent of their agreement on 5-point Likert scales ranging from 

Strongly agree to Strongly disagree. 

Procedure. The outcomes from the 2005 student survey were reported to the teachers 

in the project at the beginning of 2006 and specific interventions were initiated by the 

teachers working in school-based groupings. The disappointing survey outcomes related to 

number sense and basic proportional reasoning in 2005 led to adopting more work with 
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these concepts at the beginning of the year and less work with the other foundation 

concepts. Also relevant to these outcomes are the professional learning activities offered to 

the teachers during the final term of 2005 and throughout 2006. These are summarized 

briefly in Table 2. Professional learning was delivered in two ways. Whole of cluster 

sessions were combined with case studies, where each school was assigned a researcher to 

be involved in a project of its own choice. All schools except one completed a case study, 

which were reported to the Management Committee of the project at the end of 2006. 

These varied greatly in the degree of intervention by researchers and the quality of the 

outcomes. Brown, Rothwell, and Taylor (in press) reported on one case where teachers 

negotiated with researchers to develop a framework for the teaching of numeracy, drawing 

on curriculum support materials and teachers’ understanding of the school context. 

Table 2 

Summary of Professional Learning Activities for Teachers 

Focus of 

Professional 

Learning 

Mathematical 

content 

knowledge 

Pedagogical 

content 

knowledge 

Knowledge of 

students as 

learners 

Curriculum 

knowledge 

Whole of Cluster 

Professional 

Learning 

Fractions 

Measurement 

Ratio 

Problem solving 

Tinkerplots (Data 

collection, 

handling, 

representation, 

interpretation, 

evaluation) 

Mental 

computation 

Place value 

Accuracy 

Space 

Decimals 

Percentages 

Proportional 

reasoning 

Quantitative 

literacy (in media) 

Fractions 

Pi 

Chance and Data; 

(Designing 

surveys, 

collecting data, 

representing data, 

interpreting data)  

Problem solving 

Numerate 

language 

Mental 

computation 

strategies 

 

Division 

Fractions 

Applying rubrics 

to students’ 

responses 

Progression 

statements 

Coordinating the 

mathematics 

curriculum 

Assessment:  

Formative and 

summative 

including use 

design and use of 

rubrics 

Making inter-

disciplinary 

connections with 

science; SOSE 

Planning units of 

work – connecting 

understanding 

goals with 

teaching, learning 

and assessment  

School Case 

Studies  

Tinkerplots  

Constructing a 

school scope and 

sequence 

Student produced 

resource kits  

Mental 

computation 

strategies 

Tinkerplots 

Developing 

conceptual 

understanding of 

fractions 

Mental 

computation and 

problem solving 

strategies 

Implementing an 

Inquiry 

Whole-school 

numeracy audit 

Analysis of attitudes. The 16 items related to attitude to mathematics were common to 

the student surveys administered on both occasions. Paired sample t-tests were used to 

compare the responses of those students who completed the survey on both occasions. 

Effect sizes were also calculated as described by Burns (2000). The eight pairs of items 

relating to the each of the identified aspects of attitude in the literature were also combined 

and the totals similarly compared. In all cases scoring was reversed for negatively worded 

items so that a higher score represented a more positive response. 
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Analysis of mathematical thinking. The data from the mathematics tasks were analysed 

using the Rasch Partial Credit Model (Masters, 1982) with Quest computer software 

(Adams & Khoo, 1996). A set of 8 link items common to both administrations was 

identified, and these items provided an anchor set that established the difficulties of the 

items at each test administration relative to each other (Griffin & Callingham, 2006). 

Estimates of person ability were identified for each student in both 2005 and 2006, 

anchored to the same set of link item difficulties so that genuine comparisons could be 

made. The performance of students in each grade was summarised for each year of the 

project. These measures provided a comparison of performance by grade. Also, summaries 

from students who completed both tests provided a measure of growth across time.  

Results 

Attitudes to mathematics. Table 3 shows changes in the mean responses of students 

who responded to the 16 attitude items included in the survey in both 2005 and 2006. Five 

of the changes were statistically significant and in each case the change was negative and 

the effect size was very small. 

Table 3 
Changes in Responses to Attitude Items from 2005 to 2006 (Negative statements in italics) 

Attitude item 

Mean 

2005 

(n=378) 

Mean 

2006 

(n=378) 

Diff. 

2006-

2005 

Std 

Dev. 

Sig. (2-

tailed) 

Effect 

size 

1. I find maths an interesting subject. 3.56 3.39 -0.17 1.16 0.004** 0.15 

2. Other subjects are more important than 

maths. 

3.12 3.11 -0.01 1.32 0.866 0.00 

3. I plan to do as little maths as possible when 

I get the choice. 

3.45 3.54 0.09 1.37 0.202 0.07 

4. I really do not enjoy maths lessons. 3.49 3.46 -0.04 1.36 0.571 0.03 

5. I find most problems in maths fairly easy. 3.27 3.10 -0.17 1.20 0.005** 0.14 

6. Maths helps to develop my mind and 

teaches  me to think. 

3.94 3.92 -0.02 1.16 0.689 0.02 

7. Maths we learn at school is important in 

everyday life. 

4.20 4.26 0.06 1.09 0.256 0.06 

8. Maths makes me feel nervous and 

uncomfortable. 

3.62 3.58 -0.03 1.31 0.609 0.02 

9. Maths is a dull and uninteresting subject. 3.54 3.51 -0.04 1.35 0.594 0.03 

10. I enjoy attempting to solve maths 

problems. 

3.60 3.48 0.12 1.19 0.048* 0.10 

11. The problems in maths are nearly always 

 too difficult. 

3.60 3.55 -0.04 1.03 0.395 0.04 

12. I usually keep trying with a difficult 

problem until I have solved it. 

3.79 3.67 0.11 1.11 0.052 0.10 

13. I don’t do very well at maths. 3.43 3.19 -0.24 1.14 0.000** 0.21 

14. Having good maths skills will not help me 

get a job when I leave school. 

4.34 4.33 -0.01 1.35 0.849 0.01 

15. Most of the time I find maths problems 

too easy and unchallenging. 

2.65 2.37 -0.28 1.17 0.000** 0.24 

16. I don’t get upset when trying to work out 

maths problems. 

3.71 3.75 -0.03 1.54 0.665 0.02 

*p<0.05.     ** p<0.01. 
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Table 4 shows the changes in aggregated means for each of the eight aspects of attitude 

that underpinned the design of the items, and for total attitude. As expected on the basis of 

the individual items in Table 3, what statistically significant changes there were, were 

negative and effect sizes were again small.  

Table 4 

Changes in Responses to Attitude Dimensions and Total Attitude from 2005 to 2006 

Attitude dimension  

(Item numbers in Table 1) 

Mean 

2005 

(n=378) 

Mean 

2006 

(n=378) 

Diff. 

2006-

2005  

Std 

Dev. 

Sig. (2-

tailed) 

Effect 

size 

Mathematics is interesting (1& 9) 7.10 6.89 -0.20 2.08 0.051 0.10 

Mathematics is important (2 & 7) 7.31 7.37 0.05 1.74 0.555 0.03 

Inclination to engage with mathematics (3 & 12) 7.24 7.21 -0.21 1.91 0.830 0.11 

Liking for mathematics (4 & 10) 7.09 6.93 -0.16 2.11 0.137 0.08 

Self-efficacy in relation to mathematics (5 & 13) 6.69 6.29 -0.41 1.80 0.000** 0.23 

Mathematics is useful (6 & 14) 8.28 8.24 -0.37 1.90 0.705 0.19 

Confidence in relation to mathematics (8 & 16) 7.33 7.33 0.00 2.12 1.000 0.00 

Mathematics is easy (11 & 15) 6.24 5.92 -0.32 1.68 0.000** 0.19 

Total Attitude (all items) 57.29 56.18 -1.13 8.63 0.013* 0.13 

*p<0.05.     ** p<0.01. 

Mathematical thinking. Figure 1 shows the change in performance between like grades 

in each year of the project. The pattern of achievement across the grades is mixed. 

Although there is a general increase in performance as students move through school, 

within grades only Grade 7 shows a significant improvement from 2005 to 2006 (t = 2.01; 

df = 312; p = 0.045). It does seem that MARBLE has been somewhat more effective in 

addressing the primary/high school transition than at the other grade levels.  

Figure 2 shows the growth over time of students who entered MARBLE in Grades 5, 6 

and 7. When this growth was considered by comparing achievement in the lower grade 

with the same students’ achievement in the higher grade, all improvements were 

significant. This is not unexpected due to the general cognitive development as students 

move through school. In terms of the rate of growth, those students who began the project 

in Grade 5 had a higher growth rate than students who started in either Grade 6 or Grade 7, 

who showed a very similar trajectory. 
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Figure 1. Change in performance by grade over time. 
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Figure 2. Growth over time by start grade in 2005. 

Discussion 

Although small, the direction of the changes in students’ attitudes is disappointing. It 

seems likely that what we are observing is the previously noted deterioration of attitude to 

mathematics with year level (Beswick et al., 2006; Boaler & Greeno, 2000). Although 

linked (Thomson et al., 2004), the direction of causation between attitude towards, and 

achievement in mathematics is unclear with meta-analyses resulting in conflicting 

conclusions (compare Ma & Kishor, 1997 and Ma & Xu, 2004). In this study, the focus 

was very much upon improving teaching in the expectation that this would result in 

improved achievement and more positive attitudes to mathematics. A further possible 

explanation for these results lies in the transient and multifaceted nature of attitude to 

mathematics. In particular some aspects of attitude, particularly emotive responses 

(Hannula, 2002), are not readily accessible via written means. 

The mathematical thinking outcomes were also disappointing across cohorts in the 

same grades, except for Grade 7. It is interesting, however, to note that to some extent the 

lack of improvement of performance at the high school transition, as noted for example by 

Callingham and McIntosh (2002) and Watson and Kelly (2004), was tempered, with 

improvement from Grade 6 to Grade 7. The stationary level of performance in 2006, of 

Grade 7 and Grade 8, was disappointing but it reflected a similar relationship of the Grade 

6 and Grade 7 students in the previous year. This appears to reflect cohort differences in 

these grades. 

Limitations. Several issues may have had an impact on the follow-up surveying of 

MARBLE project students after one year. The uncertainty associated with the curriculum 

and eventual change was distracting for many teachers and this was expressed at several of 

the professional learning sessions. Although the feedback from teachers following the 

professional learning sessions was positive, at times it was the impression of the authors 

that teachers were challenged by the topics covered (see Table 2) and may have been 

hesitant to implement them fully in their classrooms. There was also concern expressed by 

some teachers that the students were reluctant to try to the best of their ability in 2006 

because the surveys did not count for their school assessment. 

Implications. The outcomes from the 2006 student surveys were reported to teachers 

representing each of the nine schools at the beginning of 2007. At the meetings teachers 
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were again, as in the previous year, asked to contribute to the planning in order to improve 

students’ outcomes at the end of 2007. They were positive about the influence of the 

individual school case studies and wished to continue them as well as to work across 

schools within the clusters on topics of special interest at various grade levels. Taking into 

account the comments of Hiebert (1999) on the importance of sustained professional 

learning for teachers over time, it is hoped that another year will produce the desired 

outcomes. 
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This study examines prospective “STEM” [Science, Technology, Engineering, and 
Mathematics] teachers’ motivations for undertaking a teaching career and their perceptions of 
the teaching profession, for undergraduate and graduate teacher education entrants from three 
major established urban teacher provider universities in the Australian States of New South 
Wales and Victoria (N=245). Motivations and perceptions were assessed using the recently 
developed and validated “FIT-Choice” [Factors Influencing Teaching Choice] Scale (Watt & 
Richardson, 2007). Differences are highlighted between males and females, and 
undergraduates and graduates, including switchers from previous careers. Demographic 
profiles for STEM teacher candidates are also provided. Findings provide important 
implications for enhancing the effectiveness of efforts to recruit mathematics, science, and 
ICT teachers.  

 
It is now commonplace for governments around the globe to affirm that science, 

technology, engineering and mathematics (“STEM”) disciplines are the drivers of 
technological advancement, innovation and provide the foundational infrastructure to secure a 
robust economic future (e.g., National Committee for the Mathematical Sciences of the 
Australian Academy of Science, 2006). The STEM disciplines are characterised as the 
engine-room of economic development in a world where the wealthiest nations secure their 
economic edge through increasingly knowledge-based economies. Advanced and developing 
economies alike seek to ensure that their education systems provide a sufficient number of 
tertiary educated people in STEM (Roeser, 2006). In some highly developed countries this 
avowed aim is not always easily achieved and is increasingly accompanied by tensions and 
problems when the education system is not able to fulfil the labour force demands for skilled 
and talented individuals (Jacobs, 2005). Other countries such as India and China are investing 
heavily to ensure that participation in these disciplines will result in sufficient numbers of 
people being prepared to pursue higher education and careers in STEM (Roeser, 2006). 

The United States of America secured a leading edge in science, technological, and 
engineering innovation and development in the decades following World War II and through 
until the 1990s, by welcoming and educating top scientists from around the world. Now they 
are concerned that trends in educational attainment in secondary schools and universities have 
undermined that edge (e.g., Jacobs, 2005). Participation in the sciences and mathematics in 
secondary and tertiary education has exponentially declined in the USA over the last two 
decades, to the point where there is grave concern about the viability of those disciplines to 
sustain economic growth and development (Jacobs, 2005). A similar concern exists in 
Australia where there is an increasing decline in STEM participation and educational 
attainment (Dow, 2003b).  

Not surprisingly, the Australian Government identifies the STEM disciplines as central to 
the critical infrastructure needed to secure economic success in an increasingly globally 
competitive and unpredictable world. Australia’s future is seen to lie in its potential as a 
knowledge-based economy and society – one built on the knowledge, intellectual capabilities, 
and creativity of its people (National Committee for the Mathematical Sciences of the 
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Australian Academy of Science, 2006). To achieve this potential, it will be necessary to raise 
the scientific, mathematical and technological literacy and the innovative capacity of students; 
strengthen the education system that provides the platform from which world class scientists 
and innovators emerge; and support the development of a new generation of excellent 
teachers of science, technology and mathematics (Dow, 2003a). 

Well educated university graduates in STEM are inexorably linked to the quality of 
education which children and adolescents receive at school. Clearly, well educated, specialist 
teachers of those disciplines are the critical link for the next STEM generation. Without 
proper planning and careful management to ensure the education system provides a sufficient 
flow of knowledge workers through the STEM “pipeline”, Australia could find itself in a 
similar situation to Norway where secondary schools can no longer offer science (Lyng & 
Blichfeldt, 2003), creating a downward spiral of suitably qualified STEM professionals – 
including teachers. Even now in Australia, while there are acknowledged and increasingly 
insistent teacher shortages in rural and remote areas, there is also a specific shortage of STEM 
qualified teachers (Harris & Jansz, 2006; National Committee for the Mathematical Sciences 
of the Australian Academy of Science, 2006). Similarly pronounced lack of supply in STEM 
teachers is evident in a number of OECD countries (Lawrance & Palmer, 2003) a situation 
that is all the more concerning, given the rapid escalation in the need for STEM-related skills 
in the modern world, both in careers and everyday life.  

 
Teacher Recruitment 

 

In Australia, recruitment efforts for teachers have included a strong focus on graduate-
level teacher preparation. Within this approach, individuals graduating from non-teaching 
university degrees as well as those working within other professions are eligible and 
encouraged to undertake a teaching qualification within a reduced timeframe. However, 
without well-educated teachers capable of drawing children and adolescents into a fascination 
with STEM fields, there will be little chance of sustaining the numbers who remain in the 
pipeline. The pipeline metaphor seems especially appropriate to STEM disciplines, in that 
later knowledge development is highly dependent on earlier knowledge frameworks. If 
children miss out earlier on, it will be all the more difficult for them to engage effectively 
with the higher levels of STEM study.  

To make teaching more attractive, it has been argued that increasing the salary and 
improving the working conditions should attract school leavers, university graduates, and 
people from out of other careers into teaching (Harris & Jansz, 2006). Unfortunately, 
Australian university graduates from the STEM disciplines are not particularly attracted to 
teaching as a career; and STEM disciplines are not popular among those already enrolled in 
teacher education (Lawrance & Palmer, 2003). A national study published in 2001 and 
commissioned by the Deans of Science found that among science and technology graduates 
there was very little interest at all in a teaching career (McInnes, Hartley, & Anderson, 2001). 
The lack of enthusiasm by STEM graduates for a teaching career may be a direct function of 
the general shortage in STEM professionals, increasing the number and type of high-status 
and lucrative career options available to graduates in those fields, thereby exacerbating the 
difficulties of attracting new graduates and career switchers into a career teaching in STEM 
(Harris & Jansz, 2006). Parenthetically, few of the science education graduates in the national 
study held degrees in mathematics (2%), life and physical sciences (4 to 7%), or computer 
science (0%); (McInnes, Hartley, & Anderson, 2001), signalling a need to examine profiles 
across the different STEM domains rather than shortages and solutions at an aggregate level. 
The present study consequently disaggregates and contrasts findings for mathematics, science 
and ICT teacher graduands. 
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The Teacher Shortage 
 

The teaching force is ageing in many of the OECD countries, with half the teaching force 
aged over 40 in some European countries (European Commission, 2000). In Australia the 
median age of teachers was 43 in 2001, with 44% older than age 45 (DEST, 2003). Australian 
mathematics teachers also appear older than the national average, signalling a particular 
imperative to encourage more people into mathematics teaching. Evidence from the Third 
International Mathematics and Science Study [TIMSS] further suggests that these teachers are 
not particularly happy with their jobs. Although the TIMSS study was designed to report on 
the learning of students aged 9, 13 and at the final year of secondary school from Africa, Asia, 
Europe, North America, South America, and Oceana (Australia and New Zealand), it also 
gathered fascinating data on the lives of teachers. Revealingly, it was the Australian and New 
Zealand teachers who represented the highest proportion who indicated they would “prefer to 
change to another career” (Lokan, Ford, & Greenwood, 1996, p.197). In mathematics in 
particular, 39% of teachers in a recent national study were undecided whether they would 
remain in teaching, and 16% actively planned to leave the profession (Harris & Jansz, 2006).  

The retirement-fuelled exodus of teachers from the “baby boom” generation, who through 
their superannuation retirement packages receive financial inducements to leave work at 55, 
will quickly escalate shortages in the STEM disciplines, creating more difficulties in already 
hard-to-staff schools in rural and urban areas. Even if this generation of teachers could be 
persuaded to stay on until they reached the retirement age of 65, this would only alleviate 
problems in the shorter term. Faced with these dilemmas Education departments, teacher 
recruitment authorities and organizations are not able to solve their staffing problems by 
bringing in teachers from other countries as they did 30 years ago. On the contrary, recruiting 
companies from the UK, USA, and Asia are siphoning off new Australian teacher graduates 
into appealing positions overseas, making them unavailable to the Australian labour market 
until when and if they return.   

A further deeply embedded problem is that males are heavily concentrated into the older 
age groups of teachers and that a “disproportionate number of male science, mathematics and 
technology teachers are aged over 45” (Dow, 2003b). Although teaching is increasingly a 
feminised profession in many OCED countries including Australia, fewer girls and women 
are retained in the STEM pipeline progressively through senior high school, university 
studies, and career choices; and women drop out of the STEM disciplines even when their 
achievement in those disciplines is equal to or higher than that of males (Jacobs, 2005). In 
Australia this has been well documented in the case of mathematics (see Watt 2005, 2006; 
Watt, Eccles, & Durik, 2006). In a highly competitive job market where Australia is facing a 
crisis in the availability of tertiary-trained workers (Birrell & Rapson, 2006), particularly in 
STEM, the women who do persist or excel in those domains can earn a higher salary and 
occupational status in careers other than teaching. The trend towards increasing numbers of 
women entering teaching, together with lower female participation in STEM disciplines, is 
likely to intensify the short-fall in STEM teachers.   

 

The Present Study 
 

We need first to be concerned about whether the shortage of STEM teachers can be met in 
the short and longer term; and secondly, whether those who are attracted into teaching in 
those disciplines have sufficient ability, personal interest in and enthusiasm for the sciences, 
mathematics and technology to enliven and sustain the interest of children and adolescents. 
Given the shortages of tertiary educated people across the labour market more generally, even 
those with low-level STEM skills may have attractive and lucrative career options. It is not 
desirable that 25% of mathematics and science teachers have no higher education in those 

Mthematics: Essential Research, Essential Practice — Volume 2

797



 

domains (National Committee for the Mathematical Sciences of the Australian Academy of 
Science, 2006). To engage children and adolescents in STEM requires teachers with 
pedagogical as well as content expertise.  

Given the potential for finding other more lucrative work, as well as the detractors we 
have outlined from teaching STEM, we ask the question why people still choose a teaching 
career in these domains. The purpose of our paper is to enquire into the profiles of 
characteristics, motivations, and perceptions of those who choose to pursue STEM 
qualifications with the intention of becoming teachers, including those who following a period 
of employment in another career have made the decision to become teachers. Our study 
makes two particularly important contributions to the existing literature. First, studies that 
have previously focused on teacher characteristics for specific discipline areas have tended to 
examine closely a particular group in isolation, with the consequence that it has not been 
possible to discover factors peculiar to those groups. A strength of our study is that the STEM 
teacher sample forms a subset of our larger sample of 1653 beginning secondary, primary, 
and early childhood teachers from across three major Australian universities. It is therefore 
possible to contrast characteristics and motivations for each of the mathematics, science and 
ICT subsamples, against the general profiles we have described previously (see Richardson & 
Watt, 2006). Second, although a recent influential national study focused on practising 
mathematics teachers (Harris & Jansz, 2006) has provided detailed statistics on their 
background characteristics and career intentions, we include additional information such as 
ethnic and socioeconomic backgrounds, and a stronger focus on motivations and perceptions. 
Teaching motivations were less rigorously investigated in the national study (via six “check-
boxes” with an “other” option). Elsewhere we have argued the need for drawing upon 
established motivational frameworks and utilising rigorous measures in assessing motivations 
(Watt & Richardson, 2007). The present study meets both these needs, through implementing 
a comprehensive, validated, reliable measure for teaching motivations and perceptions, and 
exploring differences between mathematics, science, and ICT prospective teachers.  

 

Method 
 

Sample and Setting 
 

Participants (N=245) were beginning teacher education candidates in STEM programs at 
three Australian universities, enrolled in either an undergraduate Bachelor of Education, or a 
graduate-entry 1- to 2-year teaching qualification. These participants comprise a subsample 
from our complete sample of teacher education candidates across those universities, for which 
demographic characteristics have been summarised by Richardson and Watt (2006). In the 
STEM subsample, both the proportion of women (53% vs. 67-84%), and of NESB [non-
English speaking background] individuals (78% vs. 81-90%), were substantially lower than in 
the full sample (Table 1). Because teacher education candidates can undertake more than one 
specialisation, we identified the combinations of specialisations studied by prospective STEM 
teachers. Relatively low proportions of candidates undertook only one of mathematics (21%) 
or ICT (28%), while about half undertook science only (52%). The other profiles are 
presented in Table 2: most involved various combinations of STEM domains, although it was 
also interesting to observe combinations with the humanities, visual and performing arts, 
social studies, and languages. All participants were either undertaking (undergraduates) or had 
previously completed (graduates) a major in their area/s of specialisation. 
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Measures 
 

Teacher education candidate characteristics. Participants stated their age in years, and 
checked boxes to indicate gender, undergraduate or graduate enrolment, and secondary 
teaching specialisation/s. Science specialisation was further disaggregated into general 
science, biology, chemistry, and physics at Monash university. 
 

Table 1 
STEM Representation Across University, Gender and ESB Groups  
 

 Mathematics n’s 
UG / grad 

ICT n’s 
UG / grad 

Science n’s 
UG / grad 

Totals 
† 

UG / grad 

USyd  12 / 13 2 / 2 23 / 20 29 / 26 
Monash 13 / 30 6 / 20 16 / 54 24 / 78 
UWS  11 / 33 3 / 17 14 / 38 20 / 68 
Totals 36 / 76 11 / 39 53 / 112 73 / 172 

% Female 42.9 44.0 55.2 52.7 
% ESB 70.5 70.0 85.5 78.0 

 
† 

Note. Totals for numbers of undergraduates and graduates within each university are not summed totals for 
mathematics, ICT, and science, because 82 individuals studied more than one STEM domain: 19 individuals are 
represented in each of mathematics and ICT, 62 in mathematics and science, and 1 in science and ICT. 
 

Table 2 
Teaching Specialisations 

 Mathematics 
(N = 112) 

ICT  
(N = 50) 

Science  
(N = 165) 

Mathematics 23† 19 62 

ICT 19 14† 1 

Science 62 1 86† 

Humanity 3 5 5 

Vis perf 1 2 0 

SocStud 5 5 12 

TESOL 0 4 0 

LOTE 3 2 0 
  

Note: 
† indicates number of students whose only method of study was mathematics, ICT or science. 

 

Prior career background. Participants who indicated they had previously pursued another 
career were asked to provide details of that career. These were then classified in terms of 
STEM-relatedness or not. 

Family background. Combined parental income from when participants were in high 
school was used as an indicative measure for background socioeconomic status (SES). 
Participants also nominated their parents’ occupations, which were coded as STEM-related or 
not, and as teaching or not. Home language was coded as ESB [English-speaking background] 
vs. NESB [non-English speaking background]. 

Motivations for teaching. Motivations for choosing teaching as a career were assessed 
using the FIT-Choice [Factors Influencing Teaching Choice] scale (full details and good 
construct reliability and validity with this sample are reported in Watt & Richardson, 2007). 
Measured motivations include intrinsic values, personal utility values (job security, time for 
family, job transferability), social utility values (shape future of children/adolescents, enhance 
social equity, make social contribution, work with children/adolescents), self perceptions of 
individuals’ own teaching abilities, the extent to which teaching had been a “fallback” career 
choice, social influences, and prior positive teaching and learning experiences. Each factor 
was measured by multiple item indicators with response options from 1 (not at all important) 
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through 7 (extremely important). A preface to all motivation items was “I chose to become a 
teacher because …”. 

Perceptions about the profession. Participants rated the extent of their agreement with 
propositions about the teaching profession, with response options again from 1 (not at all) 
through 7 (extremely). Multiple propositions comprised factors concerning to the extent to 
which respondents perceived teaching as high in task demand (expert career, difficulty), and 
task return (social status, salary).  

Career choice satisfaction. Participants’ career choice satisfaction was measured by three 
items with response options from 1 (not at all) through 7 (extremely). As part of this section, 
participants also rated the extent to which they had experienced social dissuasion from 
teaching as a career. 

 

Procedure 
 

Surveys were conducted early in the academic year in 2002 at the University of Sydney, 
and 2003 at Monash University and the University of Western Sydney (UWS). They were 
administered in tutorial class groups to enhance data integrity and allow respondent queries. 
Administration was by the researchers and two trained assistants, with University ethics 
approval, consent of program coordinators, and informed consent of all participants. It took 
approximately 20 minutes to complete the survey. 

 

Results 
 

Who Chooses STEM Teaching? 
 

Gender representation. Enrolments within each STEM strand were slightly more male 
dominated for mathematics and ICT, and conversely for science (Table 1). The mathematics 
statistics reflect the similar numbers of male and female practising teachers (Harris & Jansz, 
2006).  

Home language backgrounds. The majority of STEM teacher candidates were from ESB, 
and this was most pronounced for science (Table 1). Within disaggregated science strands at 
Monash, all teacher candidates studying biology, chemistry and general science were from 
ESB, compared with just under 85% studying physics. NESB concentrations among teacher 
candidates were higher in mathematics and ICT domains than across the full sample 
(Richardson & Watt, 2006). At the University of Sydney and UWS, NESB concentrations 
were higher than in the full sample (¼ NESB vs. 18% at USyd, 35% NESB vs. 19% at UWS), 
while the reverse was true at Monash (3% NESB vs. 10%).  

Age profiles. Age profiles tended to be slightly higher for ICT, followed by mathematics 
and then by science (Figure 1). Summary statistics for science reflected typical ages of 
graduates in the full sample, whereas ICT and mathematics teacher candidates were an 
average 4-5 years older. 

SES income backgrounds. Participant-reported combined parent income categories were 
somewhat lower on average for mathematics vs. science and ICT teacher candidates (Figure 
2). For all three STEM domains, SES backgrounds were below those from the full sample, in 
which the median and modal category was $60,001-$90,000.  
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Figure 1. Age profiles for beginning teacher education candidates in STEM disciplines.1 
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Figure 2. Combined parent income for beginning teacher education candidates in each STEM discipline 

(indicative SES).2 
 

 
 

Parental careers. A considerable number of preservice STEM teachers (105, 43%) had 
parents who worked in STEM related areas (25–30% of fathers, ¼ of mothers): for science, 
52 (31.5%) fathers and 43 (26.1%) mothers; for ICT, 11 (22%) fathers and 13 (26%) mothers; 
and for mathematics, 33 (29.5%) fathers and 27 (24.1%) mothers. Smaller proportions had 
teacher parents (25, 10%): for science, 25 (15%) had at least one parent who was a teacher 
(12% of mothers, 5% of fathers); for ICT, 6 (12%; 12% of mothers, 2% of fathers); and for 
mathematics, 10 (9%; 7% of mothers, 3% of fathers).  

 

                                                 
1 . Summary statistics for science: M=26.92 SD=9.55, ICT: M=30.26 SD=9.57, mathematics: M=29.23 

SD=10.62. 
 
2 . Summary statistics for science: M=2.96 SD=1.81, ICT: M=2.98 SD=2.07, mathematics: M=2.64 SD=1.64 

(Income values: 1: $0-30,000, 2: $30,001-60,000, 3: $60,001-90,000, 4: $90,001-120,000, 5: $120,001-150,000, 
6: $150,001-180,000, 7: $180,001-210,000, 8: $210,001-240,000, 9: $240,000 +) 
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“Career switcher” backgrounds. A large number of candidates in graduate programs in 
each of the STEM disciplines reported having pursued a prior career (46% in science, 55% in 
ICT, 47% in mathematics). Statistics for mathematics reflect those for early career teachers in 
the national study (Harris & Jansz, 2006). These proportions were considerably higher than 
the proportion of graduates in the full sample who had previously pursued other careers 
(Richardson & Watt, 2006). Of the STEM teacher candidates who had pursued a prior career, 
the proportion who had come from STEM-related occupations was very high. For 
mathematics and ICT teacher candidates who indicated they had pursued a prior career, over 
90% had previously pursued careers in STEM, and 86% for science.  

 

Why Choose Teaching? 
 

Motivations for teaching. In each of mathematics, science, and ICT, the highest rated 
motivations for choosing a teaching career were perceived teaching abilities, the desire to 
make a social contribution, to shape the future of students, and the intrinsic value of teaching 
as a career. Positive prior teaching and learning experiences were also quite high, resonating 
with the importance of attracting quality teachers in mathematics emphasised in recent reports 
(Harris & Jansz, 2006; National Committee for the Mathematical Sciences of the Australian 
Academy of Science, 2006). The lowest rated motivation was consistently choosing teaching 
as a “fallback” career, followed by the social influences of others encouraging them to 
undertake teaching. These patterns of motivations are similar to those previously documented 
for teachers across different domains and areas of teaching (Richardson & Watt, 2006). Few 
systematic differences were evident between teaching motivations for undergraduates vs. 
graduates and males vs. females across the STEM domains (Figure 3).  

 

• Male students studying to be mathematics teachers were more motivated than females by job 
transferability (F(1,99)=5.4, p=0.02; male M=4.4 SD 1.4, female M=3.8 SD 1.4), making a social 
contribution (F(1,99)=5.2, p=0.03; male M=3.7 SD 1.7, female M=3.3 SD 1.8), and choosing teaching 
as a fallback career (F(1,99)=5.0, p=0.03; male M=2.6 SD 1.4, female M=2.1 SD 1.4). 

• Prior teaching and learning experiences were more important to undergraduates training to be science 
teachers compared with graduates (F(1,142)=11.6, p=0.001; undergraduate M=5.4 SD 1.1, graduate 
M=4.6 SD 1.6).  

• Female students studying to be science teachers rated working with adolescents as a more important 
motivation than males (F(1,140)=3.9, p=0.05; male M=4.7 SD 1.4, female M=5.0 SD 1.6). However, 
there was also a significant interaction between gender and degree (F(1,140)=5.2, p=0.02), due to 
undergraduate males being more motivated by their desire to work with children than graduates, while 
graduate females were more motivated in this regard than undergraduates.  
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Figure3. Factors influencing teaching choice for teacher education candidates within STEM disciplines. 
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Perceptions about the profession. Participants generally perceived teaching as a career 
which is high in demand – and low in return. Participants rated teaching as a highly 
demanding career with a heavy workload that makes high emotional demands and requires 
considerable hard work; and as a highly expert career requiring specialised knowledge and 
abilities. At the same time, it was perceived to be relatively low in terms of salary and social 
status (Figure 4). Again, there were few differences by gender or undergraduate vs. graduate 
enrolment.  

 

� For both science and mathematics candidates, graduates rated teaching significantly higher in demand 
than undergraduates (science: F(1,140)=15.7, p=0.001; undergraduate M=5.6 SD 1.1, graduate M=6.2 
SD 0.8; mathematics: F(1,99)=7.3, p=.008; undergraduate M=5.5 SD 1.0, graduate M=6.0 SD 0.9).  

� Science graduates also perceived teaching to require a higher level of expertise than undergraduates 
(F(1,140)=4.1, p=0.05; undergraduate M=5.1 SD 1.2, graduate M=5.4 SD 1.0). However this main 
effect was modified by a significant interaction of gender and degree, wherein graduate males rated 
expertise higher than undergraduates, and conversely for females (F(1,140)=7.2, p=0.008). Female ICT 
teacher candidates rated the demands of teaching to be higher than males (F(1,45)=4.1, p=0.05; male 
M=5.9 SD 0.9, female M=6.5 SD 0.6).  

� Female science teacher candidates perceived teaching salaries as higher than males (F(1,140)=5.0, 
p=0.03; male M=3.0 SD 1.4, female M=3.6 SD 1.3).  

 

Career choice satisfaction. Similar to the full sample, mathematics, science and ICT 
teacher candidates reported moderate experiences of social dissuasion from a teaching career. 
Despite this, and despite perceptions of teaching as a career high in demand and low in return, 
mean satisfaction ratings for teaching as a career choice were uniformly high (see Figure 5).  
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Figure 4. Perceptions about teaching for candidates within STEM disciplines. 

 

Discussion 
 

Our study has provided a detailed portrait of who chooses to undertake a teaching career 
in each of mathematics, science and ICT using a subsample drawn from a large-scale sample, 
which permits comparisons between these and other beginning teachers. We identified low 
proportions of women entering mathematics and ICT teaching, and despite women 
comprising approximately half of the science teacher candidates, they were very poorly 
represented in physics. Higher proportions of NESB individuals undertook mathematics and 
ICT teacher education compared with our full sample of teacher candidates, and they also 
tended to be older and from lower socioeconomic backgrounds. Roughly half the STEM 
teacher candidates had parents from STEM-related careers, and roughly half themselves came 
from prior STEM-related careers. Few had parents who were teachers. STEM teacher 
candidates mostly undertook specialisations within STEM domains, although it was also 
interesting to observe combinations with social studies and to a lesser extent humanities. 

Teaching ability-related beliefs, personal (job security, time for family, job transferability) 
and social utility values (desire to shape the future, enhance social equity, make a social 
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contribution, work with children / adolescents), and positive prior experiences of teaching and 
learning were all important motivations. Participants perceived teaching as a career that is 
highly demanding, and low in return in terms of salary and social status. They also reported 
relatively strong experiences of social dissuasion. At the same time, they had high levels of 
satisfaction with their choice of a teaching career. Importantly, these motivations and 
perceptions from the separate groups of STEM teacher candidates reflected those from our 
full sample (Richardson & Watt, 2006), and were generally similar for undergraduates vs. 
graduates, and males vs. females. The implications are that recruitment campaigns targeting 
these motivations should be effective for STEM teachers too, and suggest older graduates 
working in STEM-related careers as a fruitful group to aim to attract into teaching careers. 
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Five practising teachers in regional NSW implemented Teaching for Abstraction for 
the Year 6 topic “Percentages”. The authors constructed materials for a unit in which 
students explored familiar percentage contexts, searched for similarities in their 
mathematical structures and then applied their learnings to more abstract situations. 
Particular emphasis was given to additive versus multiplicative approaches in 
different percentage situations. After an introductory workshop, teachers taught the 
topic in eight 40 minute lessons. The results show that even though this approach is 
radically different from that to which students and teachers are accustomed, it has the 
potential to benefit student engagement, learning, and attitudes for both students and 
teachers. The overall conclusions have implications for how professional 
development for Teaching for Abstraction is addressed.  

Mitchelmore and White (2004) outline an approach to teaching based on the fact 
that most elementary mathematical ideas are abstractions from experience. 
Emphasised is the importance of empirical abstraction in mathematics learning, 
focusing on an abstract concept as “the end-product of ... an activity by which we 
become aware of similarities ... among our experiences” (Skemp, 1986, p. 21). This 
view of abstraction leads to a theory for teaching early mathematical concepts called 
Teaching for Abstraction (Mitchelmore & White, 2000), where students engage in: 

• familiarising themselves with the structure of a variety of relevant contexts;  

• recognising the similarities between these different contexts; 

• reifying the similarities to form a general concept, and then 

• applying the concept in new situations. 

Much of the theory has been developed from investigations into young children’s 
understanding of the angle concept (Mitchelmore & White, 2000), but also from 
mathematical concepts involving rates of change (White & Mitchelmore, 1996), 
decimals (Mitchelmore, 2002), and percentages (White & Mitchelmore, 2005). Two 
further studies took place in 2006. The first was an extension of the earlier percentage 
study with Year 6, but in regional schools; the other was on rates and ratios with Year 
8. The Year 6 study is reported here, the Year 8 study elsewhere.  

Percentage as a Multiplicative Relation 

Percentage is a multiplicative relationship that causes students particular 

difficultiesit forms a bridge between real-world situations and mathematical 
concepts of multiplicative structures (Parker & Leinhardt, 1995). The concise, abstract 
language of percentages often uses misleading additive terminology with a 
multiplicative meaning. Misailidou and Williams (2003) showed that inappropriate 
additive strategies were the dominant errors made by students aged 10-13 years. On 
the other hand, Van Dooren and De Bock (2005) claim that extensive attention to 
proportional reasoning in school mathematics results in the misapplication of 
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proportional methods. Whatever the situation, a cursory look at the school 
mathematics curriculum shows that multiplicative relations underpin almost all 
number-related concepts studied in school (e.g., fractions, percentages, ratio, rates, 
similarity, trigonometry, rates of change). Hence, percentages and proportional 
reasoning in general are areas deserving research especially if a different methodology 
is adopted which goes beyond that in the research cited above. 

Aims of the Study 

The object of our research project was to build on the previous study (White & 
Mitchelmore, 2005) about how Year 5/6 classroom teachers adapt to using everyday 
situations and about how students abstract the multiplicative structure of percentages. 
That study developed a unit of work based on Teaching for Abstraction that 
emphasised underlying structure in percentage situations, including helping students 
to differentiate multiplicative from additive relations. The analysis showed that the 
approach was radically different to that which students and teachers are accustomed. 
Many students did learn to apply percentages even though the final level of 
achievement was not as high as had been expected. Two reasons for the lower than 
expected achievement were insufficient time to explore individual contexts in enough 
detail and inadequate attention to calculation skills. A new unit was developed which 
addressed fewer contexts and had a greater focus on calculating with percentages – 
using 10% as a base for calculations. 

Method 

Participants 

Participants were students and teachers of five Year 6 classes in three regional 
primary schools. In each class, five students were selected as a representative “target 
group” for closer study.   

Teaching Materials 

The four phases of the theoretical framework for Teaching for Abstraction were 
used in planning the activities for the experimental unit as follows. 

• Familiarising: Students explored individual, supposedly familiar contexts. 
Simple percentages were initially used (50%, 10%) but these increased in 
complexity to 25%, 75%, 20%, 30%, …, 90%, and 5%. 

• Recognising: Activities required students to compare and contrast the use of 
percentages in different contexts. Calculations were based on first 
calculating10% and then multiplying by the appropriate factor.  

• Reifying: Students were asked to make and explain generalisations based on 
the similarities found in the Recognising phase.  

• Application: Students created their own problems. 
The resulting lesson topics are shown in Table 1. The lesson titles used syllabus 

familiar terms, addressing the appropriate skills and outcomes. The lesson structure, 
however, followed the theory of abstraction: beginning with a context with embedded 
skills and concepts and leading on to discussion about the underlying abstract notions. 
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Table 1 
Topics for Percentage Lessons 

1. Thinking percent Students interpret percentages in situations involving bar models. 
The focus is on percent as a part of 100. 

2. Calculating percentages Students extend their previous experience of percentages to 
simple percentages (multiples of 10%) of 200, 300 and 50 
objects. 

3. Calculating more percentages Students further extend their previous experience of percentages 
to simple percentages (multiples of 10%) of any number of 
objects. 

4. Discounts  Students investigate discounts and compare percentage discounts 
with fixed discounts. 

5. How do I choose? Students compare the appropriateness of additive versus 
multiplicative strategies. 

6. Taxes Students compare different ways the GST could have been 
charged and decide on fair ways of doing so. 

7. What is the best way? Students investigate problems involving different comparisons 
and decide the best way to solve these problems. 

8. Summary Students bring together the main ideas and skills learnt in this 
unit. 

Procedure 

The study took place in Term 4, 2006. A one-day orientation workshop was held, 
in which teachers were introduced to Teaching for Abstraction and the proposed 
teaching unit. They then taught the unit over a period of 2 to 3 weeks, and returned for 
a second workshop for an assessment of the effectiveness of the unit. The first three 
authors visited schools to assess students’ understanding before and after the teaching, 
to observe lessons, and to interview teachers. Thus the following sources of data were 
generated. 

• A written pre and post test assessment of all students on their ability to 
calculate with percentages. 

• A 15-minute interview given before and after the teaching with the five 
targeted students in each class. 

• Worksheets completed by the targeted students. 

• Observations and subsequent interviews with the teachers. Each teacher 
was observed twice, once by the first author and once by the second or third 
author. 

• Teachers’ evaluations of each lesson and of the unit. 

Results 

Based on White and Mitchelmore (2005), the results are presented in two 
categories –calculating with percentages and interpretation of percentage contexts. 
The format centres on the pre and post quantitative data with support from qualitative 
data.  

Calculating with Percentages 

This section looks at the written pre/post test and the associated Lessons 1 – 3. 

Written Test. The written test consisted of six questions requiring calculations 
with percentages. Question 1 asked “percent means out of ___” (this was not scored). 
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Question 2 involved calculating 10%, 20%, 25%, 50%, 75%, and 90% of 100 jelly 
beans in a jar. Question 3 asked for the same percentages of 200, and Question 4, the 
same percentages of 50. Question 5 required students to colour in 50% of a bar that 
was (a) 10 boxes, (b) 8 boxes long. Question 6 required colouring 25% of the same 
bars. The combined results for each question from the 5 classes are shown in Figure 1. 
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Figure 1. Aggregated percentage correct before and after teaching.  

The results indicate no apparent change in Question 2 (percentage calculation out 
of 100) and Question 5 (colour in 50% of a bar). The scores were 94% and 98%, 
respectively. The consistently high scores can be attributed to the familiarity of 
students with calculating 50% and percentages out of 100. Question 6 (colour in 25% 
of a bar) also shows no change, with a pre and post result of about 80%. The lower 
score for Question 6 can be attributed to the less familiar 25% and the fact that in part 
(a) 25% of 10 required two and a half boxes to be coloured.  

Questions 3 and 4 showed increases from 80% to 89% and 67% to 78% 
respectively. A closer look shows that the most common error in the pre test was 
calculating as if there were 100 jelly beans – that is, treating the percentage as always 
out of 100. This error did not occur in the post test. The overall lower facility of 
Question 4 arose because parts (c) and (e) involved fractional answers. In these 
calculations, only about 50% of students were able to respond correctly in the post test 
compared to about 43% in the post test. Also in Question 4, part (f) (find 90% of 50) 
correct responses rose from 60% to 81%. 

In summary, the results indicate that 50%, 10%, and percentages out of 100 are 
familiar to students entering Year 6 and that the teaching here improved calculation 
facility for examples like 20%, 25%, 75% and 90% of numbers other than 100 except 
where fractional answers were involved.  

Lesson Analysis. The first three lessons related to the written test as they focused 
on calculating percentages, beginning with 50% and 10% of 100 and moving on to 
more complex examples. 

Teachers brought in food containers with percentages on them to introduce their 
early lessons. They discovered that students had an understanding of the difference 
between “percent fat” and “percent fat free” and that for any product, the two values 
added to 100%. They also discussed the use of these percentages as a marketing ploy. 
The contexts employed here clearly assisted students clarify their understanding of 
percentage. Similarly, little difficulty was found with Question 2 on the worksheet for 
Lesson 1 – colouring in 50% of a 14 cm bar with no box markings – because of the 
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“half” connection. However, colouring in 10% and 90% proved more troublesome. A 
common mistake was to colour in 1 cm for 10% and 13 cm (14 cm – 1cm) for 90%.  

Teachers’ feedback indicated that these colouring activities and the discussion of 
errors like above helped students think beyond 50% and out of 100. This is consistent 
with the results of the quantitative analysis reported above. The observations suggest 
that using unmarked bars was an effective strategy and question the sense of only 
using marked bars in the written tests.  The presence of markings goes some way to 
explaining why students had little difficulty with Question 5 of that test.  

The 10% approach used in these lessons was given positive feedback by teachers 
and adopted by the majority of students. For a few students, however, the 10% 
approach conflicted with other rote learnt procedures. For example, although most 
students knew that you divide by ten to find 10% of something, one student wrote: I 
take the first number if it’s a 2 digit number or if it’s a number greater than 100 I get 

rid of one zero; Move the decimal point forward once. One author observed that in 
one class the “10% method” was effectively one recipe replacing another.  

In conclusion, improvement in calculation facility where fractional answers were 
not involved is supported, but in some instances rote learning may have been the 
likely reason.  Calculations resulting in fractional answers received no attention in the 
teaching. 

Interpretation of Percentage Contexts  

This section looks at the pre and post interviews and the associated Lessons 4 – 7. 

Table 2 
Interview Questions 

Question 

1. Two basketball players compare their shooting from the free throw line. The first player has 
scored 20 goals from 40 shots. The second player has scored 25 goals from 50 shots. Which player 
is the better shooter? Why? 

2.  Meg is 10 years old. Her little sister Lisa is 5 years old. How much older is Meg than Lisa? How 
old will Meg be when she is double her now? How old will Lisa be when Meg is double her age 
now? Explain your answer. 

3. (a) Marcos purchases a new Mobile Phone. The original cost is $100. Marcos is offered a choice 
of the cost being reduced by a 10% discount or having $10 taken off the price. Which should 
Marcos choose? Explain your answer. 

    (b) Pam purchases a TV. The original cost is $200. Pam is offered a choice of the cost being 
reduced by a 10% discount or having $10 taken of the price. Which should Pam choose? 
Explain your answer. 

    (c) Does a 10% reduction or a $10 reduction always give more off the price? 

    (d) Give some examples to explain your answer. 

4. (a) At one store, new joggers have a price of $80, but because it is ‘Cheap Tuesday’, the price is 
reduced by 10%. How much do they cost on Cheap Tuesday?  

    (b) At another store the same joggers have a price of $100, but the store has a sale on and the price 
is reduced by 20%. What is the sale price? 

    (c) Does a bigger percentage reduction always mean the price is cheaper? 

    (d) Explain your answer. 

Assessment Interviews. The interviews contained the four questions shown in 
Table 2. All questions were presented orally and in writing. They were administered 
to 21 of the 25 target students before and after the teaching. (The others were absent 
on one or both occasions.)  
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The overall performance on these questions went from 60% correct to 90% 
correct. Figure 2 shows the breakdown across the questions.  

 
Figure 2. Aggregated percentage correct before and after teaching. 

The correct responses to Question 1 included the expected assertions that each 
player scored 50%, but also scored as correct were arguments like: The 25 was better 

because they were the same but kept it up longer. The few errors fell into two 
categories: additive strategies (First player because I took 10 away from the 50 and 

that equalled 40, so then I had to take 10 away from the 25 and that gave me the 

answer) and incorrect multiplicative strategies (First player because he got half. The 

other one got 25 out of 50 so he only got a quarter). All errors disappeared after the 
teaching. 

In Question 2, an additive response was required. For example: 15. She’s 15 

because it’s only 5 years. They are 5 years apart. 20-5 would be 15. Before the 
teaching, 48% used a correct strategy, rising to 67% afterwards. A few students 
attempted to use an additive strategy but made an arithmetical error. The major error, 
however, was the inappropriate use of a multiplicative strategy (43% before and 24% 
after) such as: 10. If I double Meg, I’ll have to double Lisa because it will be the same 

time. 

In Question 3(a) and (b), improved arithmetic accounted for the improvement in 

facility. In 3(c), one third of students opted for the 10%a response that virtually 
disappeared in the post test.  For example: 10% gives more off the price because if the 

price was $100 and you take off $10 it would be $90, but if you take off 10% it would 

be $80; 10% gives more off the price. $10 reduction is just $10 but 10% depends on 

how much money you had. In the pre interview, some reasons incorrectly relied on 
one example whereas others were basically sound but failed to come to the correct 
conclusion. In the post interview, the 95% facility for Question 3(d) shows that 
students’ reasoning was clearer. For example: It depends what the price is. If it is a 

higher number then $100 it is always a bit more than $10. If it is lower than $100, it 

is less. 

Like Question 3, improved facility in responses to Question 4 (a) and (b) was a 
result of improved arithmetic. In 4(c), the choice of the “bigger percentage reduction 
means a cheaper price” option fell from 52% to 14%. Like Question 3, pre interview 
conclusions were often based on a single example but also included some percentage 
misconceptions. For example: Yes. Because the % usually means the same as the 

dollar amount so you take that off and Yes. The bigger the percent off, the less money 
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you pay. Of note is that in the pre interview only half of the 38% who said that the 
bigger percentage does not always give a cheaper price could give a valid reason, 
whereas in the post interview all could. 

In summary, after the teaching, the number of students who could both calculate 
with percentages like 10% and 20% and use these percentages appropriately in 
context doubled. This included explaining why they came to the answers they did, in 
particular identifying percentage as a relative comparison and the need to identify 
“percentage of what”. Question 2 seemed the most problematic. Of course, we would 
expect to see improvements after a teaching episode no matter what the approach was, 
especially when the same questions were used. But here the improvement in the 
students’ explanation is striking and transcends what could be expected from either 
memory of questions or just currency of the concepts following teaching. The move 
from inappropriate additive strategies highlighted in the literature is particularly 
encouraging, whereas the issues with Question 2 could support the arguments of Van 
Doren and De Bock (2005) about over-use of proportional strategies or could also be 
attributed to the multiplicative language being misleading. 

Lesson Analysis. Lessons 4 – 7 focused on using percentages in contexts like 
discounts, comparing discounts, and taxation, and investigations of when to use 
additive strategies and when to use multiplicative strategies. The overwhelming 
response here was that the extended discussion generated by the lesson materials was 
a great success and promoted student engagement and learning.  For example, 
feedback from both teachers and students indicated that the time spent talking about 
what a discount is with examples from real life was particularly valuable. One teacher 
described Lesson 6 as “the epiphany lesson” where the students realised why they 
needed to be able to calculate percentages. The opportunity for students to elaborate 
their thinking was the main reason for the positive response to this aspect of the 
lessons. Students embraced the approach. Another teacher comment was: The high 

point of the whole thing was that they did have to nut things out, discuss. 
In Lesson 4, students compared a fixed discount of $1 off meals deals for “math 

burgers” and whether it was better to buy two $5 deals (Nell) or one $10 deal (Grace). 
A typical answer was: Nell, because she would get a $2 discount whereas Grace only 

gets a $1 discount. 
Using percentages to compare discounts was common in two classes at different 

schools but not mentioned in the other three classes. In one school a student came up 
with the idea (Nell gets 20% discount, Grace only 10%); it spread among more 
students and finally the teacher caught on and used it with other students. 

When a comparison of a fixed tax of $10 over the 10% GST was discussed, 
students’ reactions were mixed as to whether the GST was fairer. Yes, because 

otherwise you could buy a $1 lollypop and the tax would come in and it would cost 

you $11 which is a rip off. No, it’s not fair because if you get something that’s 

expensive, you pay a lot of tax. 

In other questions where differing discounts of different amounts occurred, nearly 
everyone stated that a bigger percentage reduction does not always mean a cheaper 

buy because it depends on the original pricethey observed that both the discount 
and “percent of what” were relevant. Some students gave a couple of examples to 
illustrate this point. However, the notion of “best” could still have different 
interpretations, with one student thinking the best deal was the lower cost not the 
bigger discount. 

When asked which is a better result, 60 merit certificates in a school of 500 or 80 
in a school of 800,  most students compared the results of the two schools using 
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percentages – one having 10% of students awarded certificates and the other school 
having a higher percentage. Only a couple of students tried to calculate what the other 
percentage was. One calculated it as being 15% and the other calculated it as 16% (the 
correct percentage being 12%), but their reasoning was correct.  

Not all of the lessons were received positively. Lesson 5, which focused on the 
fact that additive comparisons are sometimes more appropriate (as with ages in 
interview Question 2), was seen as problematic.  This lesson also involved answers 
which were value judgments (e.g., Which is worse: losing 50% of $1, $10, or $100?). 
Teachers reported being very uncomfortable with this lesson and, in fact, in one 
school the teacher handed over the teaching to one of the authors who was present. 

Although the teachers agreed about the benefits of the open discussion, it was also 
a challenge because it went beyond what was their normal practice. Time was a factor 
especially when students got carried away with a digression like the size of a burger. 
With respect to tax, some thought GST is fair because the money comes back to you 
but one student was adamant that the government should not take 10% because they 
did not make the things. 

Another aspect is that teachers differed in the way in which they marked 
worksheets. 

• One teacher simply checked the worksheets for completeness and ticked 
once on the front page. 

• Students marked each other’s work. Every answer was ticked, even when 
the explanations showed that an answer was wrong.  

• Students marked each other’s work, but afterwards the worksheets were 
marked by the teacher. The teacher crossed out ticks and wrote specific 
comments such as “50% of what?” and “It should be split into 10 parts!”  

Students’ marking of each others work is a useful practice commonly followed in 
primary schools. However, marking an explanation is much more difficult than 
marking numerical answers and clearly requires a greater level of supervision by the 
teacher. 

The other challenge brought forward by the teachers was the suggested order 
within the lessons. The materials began with contextual investigations without a great 
deal of scaffolding, and left discussion of the general principles to the end. Two 
teachers changed the sequence of this lesson by moving the final discussion (Step 4) 
to the beginning of the lesson.  They then had little or no closing time in which 
students could discuss what they had learnt from the lesson. Another teacher agreed 
with these two, saying she had followed the prescribed order but in retrospect would 
choose to do it their way. In an observed “mathsburger” lesson, the teacher began by 
modeling a similar context where pets were sold for varying fixed discounts and 
talking extensively about what a fixed discount was. The teachers generally felt that 
the students needed more guidance before starting on the worksheet. There was the 
natural feeling, perhaps arising from traditional practice, that it is important for 
students to get worksheet answers correct. This is not likely to happen when 
worksheets are used to pose challenging problems for children to consider and learn 
from and to form the basis for later class discussion. Only one teacher said starting 
with the worksheet was a good way to proceed. 

In conclusion, both qualitative and quantitative data support the claim that the 
extended discussion generated by the lesson materials was generally successful.  The 
exception is Lesson 5, where the need for additive strategies and value judgements 
seemed too unusual for most teachers. 
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Conclusions 

The results are consistent with White and Mitchelmore (2005) in showing that the 
approach taken has the potential to benefit student engagement, learning, and attitudes 
for both students and teachers. The regional setting did not seem to provide any 
different results to the previous study, except that the teachers indicated they did not 
normally have opportunities for such professional development. The decision to 
reduce the content of the unit does seem to have given sufficient time. Further 
development of the unit appears to be worth pursuing, with perhaps a further look at 
Lesson 5. What, however, do the results show about the theoretical model of Teaching 

for Abstraction?  
We recall that Teaching for Abstraction consists of four stages: 

• familiarising oneself with the structure of a variety of relevant contexts; 

• recognising the similarities between these different contexts; 

• reifying the similarities to form a general concept; and then 

• applying the concept in new situations. 

The familiarizing stage in the previous study showed a need to explore separate 
contexts in more detail. This aspect was successfully adopted here, with the choice of 
context exploration and discussion being strongly supported by teachers and students. 
A possibly negative aspect was that context discussion in areas like tax and discount 
was enriching but time consuming, and could provide different answers to the 
anticipated mathematical one. One need (expressed by teachers in the final workshop) 
was to learn more of the teaching approach adopted in the materials, especially the 
strategy of allowing the children to explore ideas and problems before the teacher 
telling them. 

In the previous study, the recognising stage in calculation skills was identified as 
requiring attention. This extra attention was given here and the results indicate success 
apart from where fractional answers resulted. More contexts involving fractions are 
indicated as desirable. 

The assessment of reification in the previous study indicated more emphasis 
needed to be put on explaining when and why percentages “work”. This unit actually 
showed explaining was a strength and the learning here is considered most valuable. 
The post interview analysis shows the students readily applied their knowledge to 
new situations and so, again, the discussion/investigation aspect of the unit was shown 
to be successful. 

White and Mitchelmore (2005) emphasised that preparation for Teaching for 
Abstraction needs to be carefully thought out. It is again evident that this approach is 
radically different from that which students and teachers are accustomed to. In 
particular, the teachers’ inclination to reorder lessons to provide the general principle 
before immersion in the contexts shows a lack of comfort with or understanding of the 
Teaching for Abstraction approach. A possible conclusion is that the approach is too 
radical. It could be argued that the positive outcomes were simply the result of 
establishing interactive classrooms. However, we claim that the true cause was the 
context-based learning which is a feature of our theory. Our conclusion, therefore, is 
that the theoretical model (even if it was not followed rigorously) resulted in new 
directions for teachers and improved learning for students. The teachers involved 
were in fact extremely positive about the approach, and have asked for further 
professional development in this area. The challenges for them, though, are 

clearaddressing and assessing generalisations and when these are introduced in a 
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lesson; accepting multiple answers and methods of doing calculations; and coping 
with a lack of confidence in working with new ideas. Teachers need more support in 
terms of both content and pedagogy. A project where teachers are assisted to develop 
their own materials following the Teaching for Abstraction model would seem an 
appropriate next step. 
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My Struggle with Maths May Not Have Been a Lonely One: 
Bibliotherapy in a Teacher Education Number Theory Unit 
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Bibliotherapy provides a new approach to eliciting and understanding the affective 
responses of pre-service primary teachers. This paper further explores bibliotherapy as a 
reflective tool in teacher education by analysing affective responses of pre-service primary 
teachers studying an elective number theory unit. Pre-service teachers voluntarily wrote 
responses to readings about school students’ learning, discussed their understanding of their 
own experiences in the light of the readings, and identified readings that impacted most on 
them. The paper describes the responses using the five stages of the bibliotherapy and 
identifies some factors which affect levels of engagement with the process.  

We read to know 
we are not alone 

C S Lewis (in Attenborough, 1993) 

Introduction 

Bibliotherapy is a technique that was developed in psychology and library science.  It 
aims to use guided reading and discussion to assist individuals to overcome negative 
emotions related to their real-life problems. Hendricks, Hendricks, and Cochran (1999) 
trace the development of the process and discusses its applications. Bibliotherapy has been 
used in preparing pre-service teachers to teach students with emotional and behavioural 
disorders (Marlowe & Maycock, 2000) and students with special needs (Morawski, 1997) 
by encouraging pre-service teachers to identify with the teachers in the readings. 
Bibliotherapy has also been used to help secondary students overcome mathematics anxiety 
(Furner & Duffy 2002; Hebert & Furner, 1997). Taken together, these studies suggest that 
bibliotherapy has potential as a technique to address mathematics anxiety in pre-service 
primary teachers. 

Previous research of pre-service teachers in a unit focusing on mathematics and 
learning difficulties (Wilson & Thornton, 2005; 2006) suggested bibliotherapy as a 
promising new tool for eliciting and understanding pre-service teachers’ affective 
responses and providing a framework and language for educators to understand and 
communicate about the reflective process. In that research, pre-service teachers reflected on 
their perception of themselves as learners of mathematics, identifying with students in case 
studies and re-evaluating their own experiences, developing a more positive self-image as 
learners of mathematics and gaining insight into how children’s anxiety about mathematics 
can be minimised (Wilson & Thornton, 2005). These reflections had a dual nature, 
showing both affective and cognitive elements.  

Not all pre-service teachers have the opportunity to participate in a unit focusing on 
students’ learning difficulties in mathematics. This study extends the conversations about 
the use of bibliotherapy in mathematics teacher education by exploring its use in a unit that 
had a mathematics content focus, in this case an elective number theory unit. It describes a 
pilot study of the responses of students to the bibliotherapy process in the context of a unit 
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where the readings were not part of the unit content nor set as an assessment task. A 
smaller selection of the readings from the previous study (Wilson & Thornton, 2006) was 
used, and a modified process of writing about a critical incident, followed by weekly 
reflections, was followed.  This study will be used to inform further research investigating 
how bibliotherapy might be used during mathematics units for pre-service teachers to 
examine their attitudes towards themselves as learners and teachers of mathematics.  

Theoretical Framework  

The theoretical framework is based on research on three components: bibliotherapy; 
pre-service teachers’ beliefs, attitudes and emotions; and mathematics anxiety. 

Bibliotherapy 

Bibliotherapy can be defined as “the guided reading of written materials in gaining 
understanding or solving problems relevant to a person’s therapeutic needs” (Riordan & 
Wilson, 1989, p. 506, quoted in Myracle, 1995). It is a technique that aims to assist 
individuals to overcome negative emotions related to their real-life problem by guided 
reading about another person’s problem.  The readers identify with the protagonist in the 
story, but feel safe because they are not the one experiencing the crisis. Readers interpret 
through the lens of their own experiences. Reading is followed by discussion in a non-
threatening environment (Aiex, 1996).  

Clinical bibliotherapy involves a therapist working with individuals with serious 
emotional or behavioural problems.  Developmental bibliotherapy, as in this study, is used 
to refer to the use of guided reading with students (Hebert & Furner, 1997, p. 170). 

The stages of bibliotherapy can be summarised as:    
 

identification - the reader identifies with and relates to the protagonist. 
catharsis - the reader becomes emotionally involved and releases pent-up emotions.   
insight - the reader learns through the experiences of the character and becomes aware that their 
problems might also be addressed or solved. 
universalization – the recognition that we are not alone in having these problems, we “are in this 
together” (Slavson, 1950, quoted in Hebert & Furner, 1997, p. 170).  
projection – the reader can envisage having a different concept of their professional identity.   

 

Wilson and Thornton (in press) identified this fifth stage in their study of pre-service 
teachers, and describe it in terms of the literature on projective identity (2007). The process 
of bibliotherapy “requires a meaningful follow-up discussion” (Hebert & Furner, 1997, p. 
169). Participants become involved in discussions and follow-up activities such as journal 
writing (Flores & Brittain, 2003).   

Pre-service Teachers’ Beliefs, Attitudes and Emotions  

Thompson’s (1992) review into affective elements of mathematics education concluded 
that teachers’ beliefs limit their openness to change. In addition, Pajares (1992) noted that 
pre-service teacher beliefs about mathematics and mathematics teaching are established as 
a result of their own school experiences, and resist change.  He used the metaphor for pre-
service teachers as “insiders in a strange land”. Unlike medical or law students, they enter a 
familiar environment and thus changing their conceptions of teaching can be particularly 
difficult. Buerk (1982, p.19), identified students who believed that “mathematics is only a 
collection of correct answers and proper methods”, and whose views about mathematics 
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knowledge conflicted with their general view of knowledge, and suggested that identifying 
and overcoming the disparity may address their negative feelings about mathematics. In a 
similar study, Seaman, Szydlik, Szydlik, and Beam (2005) identified contradictions in pre-
service teachers’ beliefs about the nature of mathematical behaviour that persisted 
throughout their program, and concluded that teacher education programs should 
encourage students to reflect on their existing beliefs. Borasi (1990, p. 179) emphasised the 
importance of students identifying their beliefs. Beliefs have both a cognitive and an 
affective aspect (Grootenboer, 2006). A significant number of primary school teachers 
identified their school experiences as a factor in their beliefs about mathematics (Carroll, 
2005).   

A number of studies have reported on the benefits of reflection in pre-service teacher 
education courses. Mathematical autobiographies have been used to encourage reflection 
by pre-service teachers (Ellsworth & Buss, 2000; Sliva & Roddick, 2001). Flores and 
Brittain (2003, p. 112) describe the use of writing “as a tool to help pre-service teachers 
reflect on their growth as they learn to teach mathematics”. Ambrose (2004) states that 
reflection alone may not change pre-service teachers’ belief systems and describes 
mechanisms that have potential for changing beliefs: providing emotion-packed, vivid 
experiences; becoming immersed in a community; reflecting on beliefs; and developing 
attitudes that help connect beliefs. Taken together, these studies provide a compelling case 
for focusing on pre-service teachers’ perceptions of their own mathematics learning as an 
important strategy in addressing their attitudes about teaching mathematics. 

Mathematics Anxiety 

Mathematics anxiety has been identified as a learning difficulty for many children 
(Dossel, 1993). In addition, Hembree (1990) found that the level of mathematics anxiety of 
pre-service elementary teachers was the highest of any major on university campuses. 
Trujillo and Hadfield (1999) discussed the roots of mathematics anxiety in American pre-
service primary teachers. Similarly, Haylock (2001) presented further evidence that many 
pre-service primary or early childhood teachers have anxiety about mathematics.   

Research into primary teachers’ effectiveness has emphasised deep and connected 
knowledge and a positive view of themselves as learners of mathematics (Askew, Brown, 
Rhodes, Johnson, & Wiliam, 1997; Ma, 1999), suggesting that pre-service teachers’ 
mathematics anxiety is detrimental to their ability to teach mathematics effectively. As 
Wolodko, Willson, and Johnson (2003, p. 224) state:   

Our challenge is to help preservice teachers confront their past experiences and anxieties about 
teaching and learning of mathematics. If these are openly dealt with during their university 
education, fewer teachers may be content to teach just as they have been taught.  

Recent studies of pre-service teachers with high levels of mathematics anxiety have 
shown low confidence levels to teach elementary mathematics (Bursal & Paznokas, 2006) 
and low mathematics teacher efficacy (Swars, Daane, & Giesen, 2006).  The latter study 
concluded that “results of the interviews in this study seem to suggest that preservice 
teachers need experiences within mathematics methods courses which address their past 
experiences with mathematics” (p. 311). 

Research investigating how university study might address this anxiety has focused on 
teaching mathematics to develop deeper knowledge (Chick, 2002) or on the impact of 
studying mathematics teaching strategies on pre-service teachers’ beliefs and attitudes 
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(Frid, 2000). Wilson and Thornton (2005; 2006) concluded that enhancing pre-service self-
image as learners and practitioners of mathematics using the bibliotherapy process may 
help them see mathematics as making connections and to encourage the view that all 
students can learn mathematics (Australian Association of Mathematics Teachers, 2002) as 
well as help them address their own mathematics anxiety. 

Methodology 

Research Context 

The setting for this study was an elective number theory unit, at an Australian urban 
university in 2006. The unit explored aspects of number theory such as the historical 
development of the idea of number and number patterns. In addition, pre-service teachers 
wrote reflections on and discussed research papers that reported how school children feel 
about mathematics and about themselves as they learn mathematics and gave a broad 
overview of the difficulties that primary school students have in learning mathematics. The 
research papers included readings about mathematics anxiety (Dossel, 1993), 
understanding in mathematics (Skemp, 1976), how children learn mathematics, multiple 
approaches to learning mathematics, and children’s beliefs about mathematics. The 
readings considered psychological and sociocultural aspects of learning mathematics, 
addressing both the affective and the cognitive domain. Readings were chosen for their 
potential to invoke an emotional response in the reader. 

Data Sources and Collection Methods  

In the first workshop, pre-service teachers were asked to describe a critical incident in 
their school mathematics education that impacted on their image of themselves as learners 
of mathematics. During the semester pre-service teachers wrote guided reflections on eight 
readings and wrote two in-class reflections, discussing these and their personal 
observations from schools. Suggested prompts such as: “What did you learn that was 
new?”, “Something I disagreed with”, “Something that surprised me”, and “Something that 
confirmed what I thought”, were used by some students while others wrote open-ended 
reflections. Pre-service teachers voluntarily agreed to participate in the study and chose 
which of the reflections they would complete. The students were aware that reflections 
submitted for the pilot study were not part of the content of the unit or its assessment, but 
had discussed the rationale for completing the readings as a valuable contribution to their 
professional learning.  

Research Sample  

The research sample for this study was a class of eleven (seven female and four male) 
pre-service primary teachers. The students were either in the second year of a four year 
education degree or the first year of a two year graduate entry education degree and hence 
differed in the amount of professional experience that they had completed. All had studied 
or were currently completing a unit focused on mathematical content. All 11 pre-service 
teachers agreed to participate in the study. 
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Data Analysis Methods 

When the unit was completed, the critical incidents and journals were analysed for 
evidence of the stages of bibliotherapy. The quotations in this paper have been selected to 
provide an insight into the thinking of those who identified strongly with the readings, 
rather than as a representative sample from all pre-service teachers. This paper focuses on 
the extent that the bibliotherapy process was taken up by pre-service teachers in this 
context.   Fictitious female names were assigned to all students to preserve anonymity.  

Results and Discussion 

Critical Incidents 

The critical incidents indicated the pre-service teachers’ initial feelings. As might be 
expected from a group of pre-service teachers who had chosen a mathematics elective, 
most (seven of the eleven) reported positive experiences of mathematics. Faith expressed it 
thus, “I am a huge maths lover”. In the description of the critical incident several 
mentioned the positive and lasting influence that an individual teacher had on their attitude 
towards mathematics.  

Hilary professed positive attitudes, “At a basic level, I love maths.  I love that there is 
an absolute right or wrong answer” but then described her reactions to her year 11 
experiences, “I didn’t understand and everything began to move away too quickly. I 
questioned and questioned but still couldn’t come to an understanding, so I quit.” This 
avoidance exemplified the coping mechanisms that some pre-service teachers use in 
situations that they find stressful (Sliva & Roddick, 2001) and is similar to the pre-service 
teachers whose written critical incidents reflections highlighted a cycle of fear, failure and 
avoidance reported in previous research (Wilson & Thornton, 2005). 

Four pre-service teachers who expressed disquiet about their mathematical experiences 
at school reported struggling with a lack of understanding. “We never understood what the 
formulas were or why they worked” (Joyce). “If I did finally work out how, as soon as the 
question changed slightly, I wouldn’t be able to do them” (Christine).   

Journal Reflections 

All participants submitted the critical incident and at least one of the in-class 
reflections.  All except one person submitted reflections on at least one of the eight articles, 
with almost half the class submitting reflections on four or more articles. The two pre-
service teachers who identified themselves as having more issues with anxiety submitted 
the most reflections. In the first half of the semester more than half the class submitted 
reflections, with numbers diminishing towards the end of the semester.  The researcher 
attempted to gauge which readings had the most impact by asking students to select three 
of the readings that had resonated most with them for the final in-class reflection.  All 
participants except one chose the Dossel (1993) article about mathematics anxiety, even 
though it was some ten weeks since they had written the reflection on this article.  

Using readings to clarify pre-service teachers’ understanding of their own learning was 
central to the bibliotherapy technique. An important part of the pre-service teachers’ 
reflections revolved around the view of mathematics that they had developed during their 
schooling.  I “was able to retain the formula, and put the correct variable in it but I did not 
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really understand the concept” (Debbie). These views are consistent with those reported in 
the research literature. Taylor (2003, p. 333) investigated the common misconception 
among United States students “about the nature of mathematics as being built on 
remembered procedures”. The study presented an alternate conception of the nature of 
mathematics as making connections.  

Although the commitment to doing the weekly writing seemed to vary inversely with 
the pre-service teachers’ perceptions of themselves as mathematics learners, most 
described the experience as useful, although one student expressed some disquiet about 
taking time from the unit to discuss the readings in the anonymous student evaluations. 
Two students responded to the readings by undertaking further research on mathematics 
anxiety for assessment tasks in other units that did not have a curriculum focus. One chose 
it as the topic for an assignment for another unit and the second convinced the two team 
members in her group to use mathematics anxiety as the focus of their group presentation. 
One of the members of the class for this presentation described the panic she felt when 
suddenly presented with questions about mathematics in a context where she was not 
expecting them. 

The journal entries provided evidence that some students had shown an emotional 
response to the readings, had reflected on their own experiences and had engaged in the 
stages of bibliotherapy. 

Identification. The pre-service teachers’ reflections showed that they identified with the 
character (in this case the students in the articles) and the situation in which they found 
themselves. “I have struggled with maths anxiety without being aware that I had it” 
(Debbie). The use of bibliotherapy encouraged pre-service teachers to reflect on themselves 
as learners of mathematics: “I have connected with the articles as a learner of maths too” 
(Bev). 

Catharsis. Through their reading of the articles the pre-service teachers became 
emotionally involved and released pent-up emotion. “As soon as new maths concepts were 
presented I would get very panicky” (Debbie).  Joyce felt the article (Dossel, 1993) 
confirmed a lot of her own experiences of high school, “Can anyone blame a girl for 
wanting to stick to what they feel they can cope with – rather than risking the humiliation 
of tackling the unknown connections between big ideas” and included a quotation 
attributed to Edward E. David Jr “mathematics courses are chiefly designed to winnow out 
the weak and grind down the ungifted”. These students responded emotionally and 
connected with the readings. 

Insight. Through their readings and discussion the pre-service teachers gained a 
different perspective from the experiences of others and became aware that their problems 
might also be addressed. “I had never heard of maths anxiety prior to this.  It pieced many 
pieces together in this puzzle of mine” (Faith). “I have taken in as a learner that it is ok to 
get an answer that is different from everyone else” (Bev). Difficulties from school were 
because “the teacher hadn’t explained in the class in a way that I understood, or was 
relevant to me” (Christine). Realising this was a valuable part of the process. 

  

Universalisation. Reflecting on the readings and sharing of their experiences pre-
service teachers were able to connect with each other and find that they were not alone in 
their feelings and experiences. Stories show that others have the same issues and one is not 
alone (Rizza, 1997). Joyce wrote: “I can see evidence of ‘maths anxiety’ every time I tell 
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someone I am doing a subject called number theory”. Debbie saw the process as 
incomplete, “I still feel that I have maths anxiety and it would take a while before I can 
overcome these feelings.” 
 

Projection. Their reflection on their own circumstances was followed by a 
consideration of what it could mean for the future and the implications of their insights for 
their teaching. “Reading about maths anxiety made me reflect on my own experiences as a 
child. It also made me think towards the future” (Alison). These pre-service teachers 
questioned not only the views that they had developed of themselves as learners of 
mathematics, but also the image that they had previously held of themselves as teachers of 
mathematics.  

 
Bibliotherapy addresses Ambrose’s (2004) criteria for mechanisms that have potential 

for changing beliefs, as it provides emotion-packed, vivid experiences, encourages pre-
service teachers to become immersed in a reflective community, and connects beliefs and 
emotions. Pre-service teachers are thus able to modify their self-concept as “insiders” as 
identified by Pajares (1992) and re-image themselves as teachers who do not only teach 
“just as they have been taught” (Wolodko et al., 2003). This has important implications for 
developing pre-service teachers’ ability to write reflectively. Askew, Brown, Rhodes, 
Johnson, and Wiliam (1997) found evidence that teachers’ perceptions of mathematics and 
how it is learned were more important in promoting positive outcomes for students than 
different teaching methods or ways of organising classrooms. 

Conclusion and Implications 

The juxtaposition of bibliotherapy with mathematics teacher education units has proved 
to be a powerful strategy to address mathematics anxiety in pre-service teachers. Although 
teaching mathematics units well to pre-service primary teachers is important in their 
teacher education, a focus on learning (or learned) difficulties is necessary to address some 
of the anxiety felt. The strength of the bibliotherapy technique is that the identification, 
catharsis, insight, universalisation, and projection allow the pre-service teachers to reflect 
more coherently on their beliefs about mathematics learning and teaching. The special 
feature of the bibliotherapy approach of eliciting pre-service teacher reflections stems from 
its ability to call forth cognitive responses paralleled by emotional responses. In 
comparison to other reflective practices, the potential of bibliotherapy lies in opportunity to 
change the way pre-service teachers feel. The unique feature of using bibliotherapy to 
address mathematics anxiety is that, unlike other studies where pre-service teachers 
identify with teachers in the readings, the pre-service teachers in this study identify with the 
students.  

This study investigated the extent to which the bibliotherapy process was taken up in a 
unit where readings were presented to the students as a valuable contribution to their 
professional learning rather than the content of the unit, and the reflections did not form 
part of an assessment item. These results and observations have implications for the way 
the bibliotherapy process could be incorporated into other teacher education courses.  It 
might take more time to go through the final stages of the process in units such as these, 
although it is important to realise that everyone is unique and there is no schedule for 
recovery.  From the responses of the pre-service teachers, it is apparent that the stages of 
bibliotherapy are not linear and do not only happen once. Each reading has the potential to 
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stimulate a new cycle of responses which can be described as identification, catharsis, and 
universalisation. With each cycle pre-service teachers develop greater insight eventually 
leading to a robust projection into their future as teachers. 

It would be valuable in future research to identify useful articles or readings that impact 
on the majority of pre-service teachers and to investigate successful ways of integrating 
bibliotherapy into a range mathematics teacher education courses in ways that benefit all 
students, not only those who suffer from mathematics anxiety.  

The pre-service teachers’ comments give voice to the concern that negative learning 
experiences will not reinforce negative beliefs and feelings about mathematics in the 
students they will teach and echo the concerns of teacher educators who identify this as an 
issue. “It is definitely worth the effort to free our students” (Debbie). 
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This paper investigates students’ conceptual understanding of equivalent fractions by 

examining their responses to questions using symbolic and pictorial representations. Two 

hundred and thirteen students in Years 3 to 5 from three Sydney primary schools were 

administered a general mathematics achievement test and a fraction assessment. Five 

questions from this fraction assessment instrument were analysed. The different types of 

knowledge used to answer each question were examined and common misconceptions 

identified. The responses of students with limited general mathematics achievement were 

compared to those of their more competent peers. The differences that emerged between the 

two groups in their conceptual understanding of equivalent fractions, were highlighted. 

The development of conceptual understanding involves seeing the connections between 

concepts and procedures, and being able to apply mathematical principles in a variety of 

contexts. It is a central focus of the NSW Mathematics curriculum (Board of Studies NSW 

(BOS NSW), 2002). Considering the difficulties experienced by students in mastering 

equivalent fractions and the many misconceptions they hold (e.g., Gould, 2005a, 2005b; 

National Research Council (NRC), 2001; Pearn, Stephens, & Lewis, 2003), identifying the 

nature of the differences in conceptual understanding between students of varying levels of 

general mathematical proficiency provides a mechanism to inform the teaching of this 

particular concept (NRC, 2001). 

As part of a larger study which examined students’ conceptual understanding of 

equivalent fractions, an Assessment of Fraction Understanding (AFU) instrument was 

developed. The pencil and paper test contained 34 questions that were used to measure 

students’ conceptual understanding, their ability to solve routine problems and to adapt 

their understanding to non-routine problems (NRC, 2001; Shannon, 1999). Three schools 

participated in this phase of the study. All students were administered the AFU instrument 

and some students also participated in semi-structured interviews.  

This paper focuses specifically on five fraction questions from the AFU and their 

diagnostic potential in identifying students’ misconceptions. Comparisons between the 

responses of students with naïve and with more advanced mathematical understanding 

assist in defining the progressive learning sequences followed by students to master and 

understand equivalent fractions. 

Theoretical Perspective 

Systems of Knowledge 

Mathematics is a reasoning activity that involves observing, representing and 

investigating relationships in the social and physical world, or between mathematical 

concepts themselves (BOS NSW, 2002). A mathematical concept is not a single isolated 

idea but one idea in a structured system of knowledge or schemata (Anderson, 2000; Lesh, 

Landau, & Hamilton, 1983). Information-processing models of cognitive development 

suggest that within these structured systems of knowledge, information stored in memory 

can be categorised into declarative and procedural knowledge (Anderson, 2000).  
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Declarative knowledge is knowledge of specific facts and ideas (Anderson, 2000). 

Mathematical definitions of procedural knowledge assume a foundation of declarative 

knowledge: “a familiarity with the individual symbols of the system and with the syntactic 

conventions for acceptable configurations of symbols” (Hiebert & Lefevre, 1986, p. 7). 

Procedural knowledge also incorporates the awareness of how to approach a task and its 

related steps or algorithms (Anderson, 2000). 

Conceptual understanding in mathematics develops when students “see the connections 

among concepts and procedures and can give arguments to explain why some facts are 

consequences of others” (NRC, 2001, p. 119). Facts are no longer isolated but become 

organised in coherent structures based on relationships, generalisations and patterns, 

Conceptual understanding has also been described as “conceptual knowledge” (Anderson, 

2000; Rittle-Johnson, Siegler, & Alibali, 2001) and “relational understanding” (Skemp, 

1986). Rittle-Johnson et al. (2001) found that developing students’ procedural knowledge 

had positive effects on their conceptual understanding, and conceptual understanding was a 

prerequisite for the students’ ability to generate and select appropriate procedures.  

Thus, conceptual understanding is intertwined with procedural knowledge. This makes 

the isolated study of either difficult, requiring more than the determination of the 

correctness/incorrectness of a student’s answer. It requires further investigation into the 

response, which can provide valuable insight into the thinking (Gould, 2005a; 2005b).  

Fraction Knowledge 

A common fraction (fraction) is often described as the ratio or quotient of two whole 

numbers, a and b, expressed in symbolic form a
b

, where b is not zero (BOS NSW, 2002). It 

is a symbol that has meaning and can be interpreted and manipulated. The fraction 

schemata includes five interconnected, yet distinct interpretations (Lamon, 2001), as 

shown in Table 1. Using these interpretations, one can explore the various characteristics 

and manipulations of fractions (such as proper and improper fractions, mixed numerals, 

fraction equivalence, comparison, addition, multiplication and division). The concept of 

fractions is also linked to other mathematical concepts such as geometry, number-lines, 

and whole number multiplication and division.  

 

Table 1 

Different Fraction Interpretations for the fraction 
3

4
 

Interpretations Example 

Part/whole 3 out of 4 equal parts of a whole or set of objects or collection 

Measure 3

4
 means a distance of 3 ( 1

4
units) from 0 on the number line  

Operator 3

4
 of something, stretching or shrinking 

Quotient 3 divided by 4, 3
4

 is the amount each person receives 

Ratio 3 parts cement to 4 parts sand  

 

Fraction concepts can be explained by teachers and students using a combination of 

external representations such as written symbols, spoken language, concrete materials, 

pictures, and real world examples (Lesh et al., 1983).  
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Conceptual Understanding of Fraction Equivalence 

Fraction equivalence is one concept within the extensive fraction schemata. 

Equivalence implies similar worth. Thus two common fractions are considered equivalent 

when they have the same value (BOS NSW, 2002; Skemp, 1986). A fraction represents a 

number with an infinite number of names. Listing some of these names makes it apparent 

that each individual fraction is part of an “equivalence set”. For example, the equivalence 

set for the fraction
2
1 can be represented as ,...],,,[

8
4

6
3

4
2

2
1 . Implicit in the concept of 

equivalence is the knowledge that each fraction in the set is interchangeable with the 

others.  

Conceptual understanding of equivalent fractions involves more than remembering a 

fact or applying a procedure. It is based on an intricate relationship between declarative 

and procedural knowledge; between fraction interpretation and representation. Students 

should able to: (a) make connections between fraction models by understanding the 

sameness and distinctness within these interpretations (Lesh et al., 1983; NRC, 2001); (b) 

make connections between the different representations (Lesh et al., 1983), and (c) show 

that a fraction represents a number with many names. The present study examines a small 

portion of the large body of knowledge associated with fractions. 

Figure 1 depicts the scope of the questions used to identify students’ conceptual 

understanding of equivalent fractions. At the lowest level, knowledge is declarative and 

procedural, loosely linked to specific examples of equivalent fractions (NRC, 2001) and 

not generalised across representations or interpretations. As students develop 

understanding, their knowledge becomes generalised and applied more broadly. 

Symbolic

Pictorial

Measure

Numberline

Part /Whole

Area

Symbolic

Pictorial

Procedural

Declarative

Procedural

Declarative

Procedural

Declarative

Procedural

Declarative

Conceptual

Understanding

Of
Equivalence Sets

(one whole, three quarters )

 

Figure 1. Model used to develop equivalent fraction questions (Adapted from Lamon (2001, p.151)). 

In this study, students were presented with tasks that aimed to elucidate their level of 

thinking. The demands of the tasks were restricted to identifying symbolic and pictorial 

representations and representing fractions using part/whole area and measure models. They 

incorporated “skill” questions that required the recall of a practised routine or procedure, 

and “conceptual” questions that required students to apply their knowledge and explain 

their actions (Shannon, 1999).  

Tasks that incorporate pictorial representations with visual distractors provide one 

method of measuring students’ conceptual understanding of equivalent fractions. Such 

tasks have been found to highlight the unstable nature of a student’s fraction knowledge 

Mathematics: Essential Research, Essential Practice — Volume 2

826



  

(Ni, 2001; Niemi, 1996). Pictorial representations of part/whole area and measure models 

can be described as “simple representations” when the total number of equal parts in the 

shape matches the fraction denominator. They allow students to count the parts (see Figure 

2a). The shaded part is associated with the numerator and the entire shape is associated 

with the denominator. Equivalent pictorial representations are visually challenging. They 

occur when the number of equal parts of the whole is a multiplicative factor less or greater 

than the denominator (Niemi, 1996), as shown in Figures 2b and 2c. The areas of the 

whole and shaded part never change, but the number of equal parts into which the whole is 

divided can alter dramatically. Thus different fraction names can be offered for the shaded 

area and an equivalence set identified. Simple and equivalent representations for a measure 

model appear in Figure 3.  

 

 

 

 

 
Figure 2. Part/whole area model simple and equivalent representations for two quarters. 

 
 

(a) simple 

   

(b) equivalent - 8 equal parts 

Figure 3. Measure model simple and equivalent representations for two quarters. 

Equivalent fraction tasks using symbolic notation (see Figure 4) are more cognitively 

demanding as up to four dimensions need to be simultaneously co-ordinated: the original 

two-dimensional fraction, 3

8
 and its equivalent, 

32
12  (English & Halford, 1995). Questions 

that incorporate the interpretation and manipulation of symbolic notation are ideal for 

identifying the levels of students’ conceptual understanding of equivalent fractions. 

Evaluation of their responses provides an insight into the students’ thought patterns, 

conceptual understanding and procedural knowledge. Teachers who understand how 

students develop this knowledge, and are able to help them to see the links between various 

representations are providing the most effective fraction programs for students.

(a) 3

8
=
32

 (b) 3

8
= 12  (c) 3

8
=  Answer for a and b: 3

8
= 12

32

Figure 4. Typical equivalent fraction question and answer employing symbolic representations only. 

 

The purpose of this study was to evaluate students’ understanding of equivalent 

fractions through their responses to questions that incorporated symbolic and pictorial 

representations, and required them to identify measure and part/whole interpretations. 

Firstly, the types of knowledge used by students to answer these questions were 

investigated. Secondly, responses by students of varying general mathematical 

achievement were compared to examine the differences evident in their developing 

mastery of equivalent fractions.

                

               

(a) simple   (b) equivalent - 2 equal parts (c) 8 equal parts 
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Methodology 

Participants 

Two hundred and thirteen students from Years 3 to 5 from three Sydney primary 

schools participated in the study. Their details appear in Table 2. 

Table 2 

Participant Details 

Age (years) GenderGrade

level 

Sample

size (n) Range Avg. % Boys % Girls 

3 64 8.15-10.21 8.84 48.4 51.6

4 80 7.97-11.08 9.84 50.0 50.0 

5 69 10.02-12.75 10.81 37.7 62.3 

Instruments 

The Progressive Achievement Tests in Mathematics (PATMaths) was used to measure 

students’ general mathematics achievement (Australian Council for Educational Research 

[ACER], 2005). As recommended by ACER, different tests were used for grades 3 to 5.  

All tests were norm referenced and scores calibrated on a common scale. The questions for 

the Assessment of Fraction Understanding (AFU) were derived and adapted from various 

assessment instruments including the Trends in Mathematics and Science Study, the North 

Carolina Testing Program, the California Standards Test and the Success in Numeracy 

Education program (Catholic Education Office, 2005). The questions analysed in this 

paper related to the fraction “one whole” and “three quarters” and appear in Table 3, along 

with the representation mapping used for each question.  

Table 3 

Questions Analysed 

Fraction Symbolic to Pictorial Symbolic to Symbolic  

One

whole 
14. Shade in 

2
2  of the shape below? 

 

Can you think of another name for the fraction 

shaded? 

29. Circle the fractions that are equal to 1?

8

8                                
1
1

100  

 

1

1  

9

10   

4

4  

1
1

8                

7

8           

10

9                

9

8   
How did you work this out? 

Three 

quarters 

13. In the figure, how many small squares need 

to be shaded so that 
4
3  of the small squares are 

shaded? 

 

 

28 (b). 

 

6

8
=
......

 

 

Pictorial to Symbolic  

Three 

quarters

18. What fraction is best represented by point P on this number line? _____ 

 

What other fraction does it represent? 

 at frff action is best represented by point P on thtt is n

thtt er frff action does it represent?
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The questions were linked to the Mathematics K-6 Syllabus, as shown in Table 4.  

Stage 2 (NS2.4) knowledge and skills are generally taught in years 3 to 4, whereas Stage 3 

(NS3.4) skills are taught in years 5 to 6. All questions were open-ended, which allowed for 

students’ understanding to be examined more effectively. Part/whole area questions used 

an equivalent area representation, and the measure question used a simple number-line 

representation. Questions 29 and 14 examined the concept of one whole, whereas questions 

13, 28b, and 18 examined three quarters. Question 18 further illuminated the sophistication 

of the students’ connections between measure and part/whole interpretations. 

Table 4 

Mathematics K-6 Syllabus Reference (BOS NSW, 2002) 

Question Syllabus Reference (knowledge and skills) 

14, 29 NS2.4 (1) 
Renaming 

2

2
,
4

4
,
8

8  as 1 

13 NS2.4 (2) Finding equivalence between halves, quarters and eighths using concrete materials 

and diagrams, by re-dividing the unit 

28(b) NS3.4 (2) Developing a mental strategy for finding equivalent fractions, e.g., multiply/divide 

the numerator and the denominator by the same number  

18 NS2.4 (2) Placing halves, quarters and eighths on a number line between 0 and 1 to further 

develop equivalence 

Procedure 

All participants were tested during term three, 2006, over two consecutive days. The 

PATMaths test was administered on the first day and the AFU the following day. Both 

tests were administered following standardised protocols. Each pencil and paper test was 

of 45 minutes duration. Calculators were not permitted. Participants were asked to show all 

working for the AFU in their test booklet. 

Results 

Most Australian states and territories identify students “at risk” as the lowest achieving 

20 percent of students (Doig, McCrae, & Rowe, 2003). Participants with limited general 

mathematics achievement (GMA) are identified as those students who score below the 20th 

percentile on their particular PATMaths test, when compared with the norming data 

(ACER, 2006). Students scoring in the middle 60% are considered to be developing 

mathematical knowledge at an appropriate level, whilst the upper most 20% are identified 

as more competent. Participants were categorised into achievement levels (see Table 5).  

Table 5 

Student Achievement 

 General Mathematics Achievement (GMA)   

 Limited (N = 28) Avg. (N = 152) High (N = 33) Total (N = 213) 

Grade n % of Grade n % of Grade n % of Grade n % of Total 

3 6  9.4 45 70.3 13 20.3 64 30.0 

4 8 10.0 61 76.3 11 13.8 80 37.6 

5 14 20.3 46 66.7 9 13.0 69 32.4 

Total 28 13.1 152 71.4 33 15.5 213 100.0 
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A Rasch analysis was conducted to determine the difficulty of each question used in 

the AFU. The relative difficulty of each item and other associated Rasch statistics are 

shown in Table 6. The ‘fit residual’ statistic confirms whether the item is over or under-

discriminating in comparison to the theoretical dichotomous Rasch model (which has an 

acceptable fit statistic between -2 and 2) (Bond & Fox, 2001). The chi-square probability 

statistic verifies whether there is a statistically significant difference between the 

theoretical and observed item discrimination for each question (RUMM Laboratory, 2004). 

There were no significant deviations from the theoretical Rasch model for any of the five 

questions analysed in this study.  

Table 6 

Item Difficulty 

Question  Difficulty SE Fit Residual Chi-square p 

29. Circle fractions equal to 1 -0.691 0.150 -1.851 9.359 0.052 

14. Shade in 2/2 of the shape 0.061 0.141 0.533 5.484 0.241 

13. Shading 3/4 of small squares 0.211 0.141 -1.145 6.917 0.140 

28 (b) 6/8 =  0.611 0.145 -0.564 2.729 0.604 

18. Fraction represented on a number-line 1.821 0.157 -0.291 4.875 0.300 

 

The easiest questions (i.e., 29 and 14) required students to identify one whole. Students 

were more able to identify three quarters of an equivalent area model than 1) to determine 

an equivalent fraction for three quarters using only symbolic representation or 2) to 

identify a fraction using a measure model. 

Further question analysis identified the knowledge structures participants employed to 

solve these equivalent fraction problems. Commencing with the easiest question (29), 

Table 7 shows the percentages of students who answered the question correctly and 

incorrectly. Eighty percent of students who answered the question justified their response 

by stating that the top number and bottom number were the same. Participants explained 

their thinking by using procedural knowledge, which does not exclude conceptual 

understanding. The participants who provided an incorrect response provided no 

observable pattern of reasoning. From the incorrect responses given, many students 

selected fractions that contained the number 1 as part of the fraction (either 1/1 or mixed 

numerals containing the whole number 1).  

Table 7 

Responses to Question 29: Circle the Fractions that are Equal to 1 (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

Answer selected n % n % 

CORRECT:1/1, 4/4 and 8/8 selected 10 35.7 25 75.8 

1/1 only 5 17.9 3 9.1 

Two or more of the following selected: 1/1, 1 1/8, 1 1/00 7 25.0 1 3.0 

Other 4 14.3 2 6.0 

No response 2 7.1 2 6.0 

 

The application of students’ knowledge in linking symbolic to pictorial representations 

of “one whole” was tested in question 14 using an equivalent pictorial representation. 

Responses are tabulated in Table 8. Nearly all the participants who were able to answer the 

question correctly were also able to give another name for the fraction shaded. Only 10.7% 

(n = 3) of participants with limited GMA and 54.5% (n = 18) of participants with high 
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GMA were able to answer questions 29 and 14 correctly. Thus, these participants were 

able to show greater conceptual understanding as they applied their symbolic 

understanding of one whole to an equivalent pictorial representation. For those participants 

who answered the question incorrectly (shading 2 small squares), approximately half wrote 

“1/2” for the fraction shaded. 

Table 8 

Responses to Question 14: Shade in 2/2 of the Shape (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

Number of small squares shaded n % n % 

CORRECT: 4 5 17.9 22 66.7 

Participants are able think of another name for the fraction shaded 4 14.3 20 60.1 

2 22 78.6 10 30.3 

Participants gave response 1/2 for fraction shaded 9 32.1 5 15.2 

Other or Missing 1 3.6 1 3.0 

 

Although 3/4 is a commonly presented fraction, low GMA participants had difficulty 

representing the fraction using an equivalent part/whole area diagram. Responses from all 

participants for question 13 are shown in Table 9. Their most common incorrect response 

was to shade three small squares. Six of these participants also shaded 2 squares in 

question 14, suggesting they used the value of the numerator in both questions to 

determine the number of squares to shade.  

Table 9 

Responses to Question 13: How Many Small Squares Need to be Shaded (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

Number of small squared shaded n % n % 

CORRECT: 6 4 14.3 23 69.7 

2 5 17.9 1 3.0 

3 12 42.9 8 24.2 

1, 4, 5 4 14.3 0 0.0 

Missing 2 7.1 1 3.0 

 

Question 28b presented a symbolic to symbolic equivalent fraction question and 

participant responses are shown in Table 10. This question can be solved procedurally by 

multiplying the top and bottom by the same number. Some participants gave either the 

response 4/6 or 8/10, indicating that they may have separated the fraction into two 

components, with the bottom number being two greater than the top one. An equivalent 

fraction was then constructed with a similar pattern. Three limited GMA students answered 

questions 13 and question 28b correctly. For the high GMA group, 14 participants 

answered questions 13 and 28b correctly. Only 2 limited GMA students answered all four 

questions 29, 14, 13, and 28 correctly compared to 11 from the high GMA group. 

The number of participants who were able to identify point P on the number line is 

shown in Table 11. Only 33.3% (n = 11) of the high GMA group answered the question 

correctly. Only seven of these participants were able to list another name for the fraction. 

These seven participants answered all three “3/4” questions and question 29 (identifying 

symbolic representations of one whole) correctly. Only four of these seven participants 

answered all five questions correctly. It was these four participants who showed the 
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greatest conceptual understanding of equivalent fractions, as they were not only able to 

link symbolic and pictorial representations but also offer another name for a specific 

fraction and apply their knowledge across different fraction representations consistently. 

No participants in the low GMA group were able to answer all questions correctly. They 

did not apply their knowledge consistently across representations and were unable to 

transfer their knowledge to the measure interpretation. 

Table 10 

Responses to Question 28b: 6/8 = __/__ (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

 n % n % 

CORRECT equivalent fraction given 7 25.0 18 54.5 

4/6 or 8/10 2 7.1 4 12.1 

Other  8 26.6 7 21.2 

Missing 11 39.3 4 12.1 

Table 11 

Responses to Question 18: Identify point P on the number line (n=61) 

 Limited GMA (N = 28) High GMA (N = 33) 

 n % n % 

CORRECT: 6/8 1 3.6 8 24.2 

CORRECT: 3/4 1 3.6 3 9.1 

6/10  0 0.0 3 9.1 

6 3 10.7 2 6.1 

Other 15 53.6 9 27.2 

Missing 8 26.8 8 24.2 

Discussion 

Students’ conceptual understanding of equivalent fractions was examined in this study 

through their responses to mathematical problems that required them to make connections 

between equivalent pictorial and symbolic representations incorporating measure and 

part/whole area interpretations.  

Students demonstrated the use of procedural knowledge when answering equivalent 

fraction problems presented in symbolic form. In some instances, whole number reasoning 

was exhibited in the procedures they used. Many students were unable to represent a 

symbolic fraction using an equivalent area diagram. Students who successfully linked 

symbolic and pictorial part/whole area interpretations for one whole and three quarters 

showed their knowledge was more generalised and were more able to apply their 

understanding to pictorial representations using a number-line (measure interpretation). 

However, the difference between the students in the limited and the high general 

mathematics achievement groups seems to lie not in the errors they made as similar types 

of errors were observed. Rather, the depth of their procedural and declarative knowledge 

and the strength of their connections between procedures and concepts varied as shown in 

the percentage of questions answered correctly and the types of questions answered 

correctly.   

Conceptual understanding and procedural knowledge are delicately intertwined. The 

analysis of additional questions or the interview data may assist in clarifying students’ 
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level of conceptual understanding. It may also corroborate the findings of Siemon, Izard, 

Breed, and Virgona (2006) who demonstrated that students with developing fraction 

knowledge were able to perform simple fraction tasks, but were unable to explain or justify 

their thinking in writing.  
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When Year 10 students are introduced to reasoning from box plots the type of classroom 
discourse that will lead them to understand statistical inferential argumentation is unknown. 
In this paper the discourse of one teacher and her class is analysed. Although the teacher 
required evidence for claims and introduced statistical vocabulary, she argued with the 
medians, lacked uncertainty, did not answer the original question or make sense of the 
conclusion. The implications for teaching are discussed. 

According to Tukey (1977) statisticians are like detectives since they need to unlock 
stories in data. But they also need to be narrators of the stories they discover and excellent 
lawyers presenting reasoned arguments (Abelson, 1995). Little research has been done on 
the way teachers communicate inferences from data and yet this is critical for student 
learning (Rubin, Hammerman, & Konold, 2006). The teacher, as the master of statistical 
discourse, provides the accepted vocabulary, language structure, and behaviour, guiding 
and scaffolding the students to attend to the correct features of graphical representations 
and to build meanings recognised by the statistics community. This paper considers the 
language of one Year 10 teacher as she formulates inferences from box plots in the 
conclusion step of one investigation to discover how closely her argument models that of a 
statistician. Particular attention is given to whether the teacher displays her statistical 
thinking as reasoned arguments. In other words, is this teacher enculturating her students 
into a community of statistical practice with argumentative skills equal to a lawyer, or a 
community where statistical thinking is not present? 

Background 

Tukey’s (1977) focus on discovery of stories in data using innovative visual 
representations was revolutionary. His quick pencil and paper methods of graph 
construction, such as the box plot, summarised the data in a more succinct way. The 
strength of the box plot, however, is also one of its weaknesses since students tend to 
reason solely using the five-number summary values, the cut-off points, rather than seeing 
the box plot as representing a distribution (Biehler, 2004). Such deficient inferential 
reasoning may result in shaky conclusions and give students the idea that statistics is 
deterministic (Ben-Zvi, 2006). In Year 10 students are expected to make informal 
inferences about populations by comparing samples displayed as box plots, that is, 
informally draw inferences by mainly looking at, comparing, and reasoning with box plots 
(Pfannkuch, 2006). Information represented in a box plot is dense, which makes it 
conceptually demanding (Bakker, 2004). There is limited research, however, on how 
students and teachers reason with and draw inferences from box plots and on describing 
how teachers guide and model to students the process of informal inference. 

In the conclusion step of the investigative process, the need for inference is most 
obvious as in this step all the evidence must be presented and weighed. This involves 
interpretation of the results of analysis, bringing in new ideas, and communicating them in 
an appropriate format for the audience. Interrogation of the results is also present in the 
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drawing of conclusions – possibilities for explanations are generated within the context, 
more information is sought, interpretations are critiqued, and unrealistic explanations are 
discarded whereas support is given for plausible ones (Wild & Pfannkuch, 1999). This 
interrogation process is very similar to a lawyer developing and presenting an argument.  

Krummheuer (1995) considers classroom interaction as collective argumentation to 
develop working interims, which eventually become accepted knowledge. He describes 
argumentation as consisting of four elements: claims, grounds, warrants, and backings. In 
his scheme claims are usually the postulated solution to the problem, grounds are the facts 
to support the claim, warrants are the information joining the claims and grounds, whereas 
the backings are the global contexts, which give the warrants authority. Lampert (1990) 
describes a zig-zag process for the formation of conclusions that begins with conjecture, 
examines premises, and proposes counter arguments before agreement is reached, whereas 
Bakker, Derry, and Konold (2006) describe an inferential view of data as being a social 
exchange of questions, explanations, and justifications. Social interaction is also an 
important part of learning. Sfard (2000) likens discourse to playing a game. If the teacher is 
doing all the thinking then effectively the teacher is playing the game in her head. By 
verbalising her thoughts the teacher is inviting the students to play the game, which is 
important as in order to develop shared statistical meanings both the teacher and the 
students need to participate. Learning how to argue with data is the result of wanting to 
play the game, or in other words to communicate more effectively and recognise the 
superior discourse of the master, the teacher (Ben-Yehuda, Lavy, Linchevski, & Sfard, 
2005).  

Informal inference is a complex process, one in which researchers are still defining the 
rules of the game about how to talk about box plots (Pfannkuch, 2006). Even if all the rules 
of the game were understood, it would be impossible to make them all explicit. Instead the 
students need to experience thinking about data displayed in box plots and presenting 
inferences as reasoned arguments through interacting first with the teacher’s thoughts.  

Method 

Two teachers and their Year 10 classes of students participated in a case study, which 
considered the language used during six classroom lessons on informal inference. Both 
teachers taught at the same urban girls’ school and both classes were in the average ability 
stream. The majority of the girls were of Pacific Island ethnicity, many of whom speak 
English as their second or third language.  

The first researcher wrote three class activity outlines, which included student 
worksheets, overhead transparencies, and teachers’ notes. The teachers participating in the 
study and those teaching at their school were consulted in the development of the 
resources. The activities encouraged students to act as statisticians unlocking the story in 
the data and learning in the spirit of Tukey (1977) through exploratory data analysis. Wild 
and Pfannkuch (1999) found practicing statisticians use an investigative cycle of defining 
the problem, planning, data management, analysis, and formulating conclusions. To 
emphasise this cycle the steps were used as section headings on the teacher’s notes. The 
conclusion step was written by completing two statements, I notice… and I wonder…, as 
these were found to provide a useful structure to overcome the initial inertia students 
experience in writing conclusions (Pfannkuch & Horring, 2005). 

The lessons were videoed and transcribed. To illustrate key findings about the language 
used by both teachers when formulating conclusions in investigations, this paper uses one 
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of the teachers, a female with 6 years teaching experience, and one lesson, the sixth and 
last lesson on an activity called Big Foot.  

Analysis 

Informal inference has only recently been recognised as an important step to develop 
more formal inference concepts. The definition and concepts of informal inference are still 
being developed and so the tools to analyse the language of inference are also being 
created. A micro-analysis of the language used was based on an adaptation of Cadzen’s 
(2001) initiation, response, and evaluation model for discourse analysis. Krummheuer’s 
(1995) argumentation categories and the question categories of explanation, justification, 
noticing, wondering, and closed were added to her model to reflect the data captured better. 

The fictional context for the Big Foot activity was provided as a story in the teacher’s 
notes. The teacher read the story to the class about Alice and her twin brother going to their 
cousin’s farm for a holiday. Normally Alice fits into bigger gumboots than her twin 
brother, but this year she notices that he has bigger gumboots. She wonders whether he has 
thick socks on or whether his feet are actually bigger than her feet. The problem to 
investigate is: Who have bigger feet, girls or boys? To answer this question a sample of 
real data from New Zealand CensusAtSchool was provided on the right foot length of 9, 
11, and 13 year old male and female students. The sample size for each of the six groups 
was 24. Each group of students received data on one of the three age groups. Figure 1 
shows box plots of the data but note that the students’ graphs did not show outliers. 

 

13yr_B

13yr_G

11yr_B

11yr_G

9yr_B

9yr_G

FootLength

10 12 14 16 18 20 22 24 26 28 30

Collection 1 Box Plot

 
 

Figure 1. Box plots of the data provided for the Big Foot activity. 

After the students drew their box plots and formulated their conclusions the teacher had 
a class discussion. From a detailed analysis of her argumentation language four main 
themes emerged, explaining the evidence, justifying the evidence, drawing conclusions 
from the evidence, and making sense of the conclusion.  

Explaining the Evidence 

During the discussion of the conclusion, the teacher required the students to explain the 
claims they made and she emphasised selected evidence to support her arguments. Features 
of the teacher’s language were requesting explanations, using statistical terms, using 
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gestures, and using quantitative measures as she supported and guided the students to 
develop more complete arguments in their conclusions. The following excerpt, which 
illustrates some of these language features, occurred during the formulation of the 
conclusion from the foot length data for 11-year-olds.  

 
T: These two sets of data here now are 11 year olds. The groups have done their own “I notice” 

“I wonder” but what do the rest of you think about 11 year old boys’ and girls’ foot size? 

S: They're very similar. 

T: Thank you, okay, they're very similar. What tells you that? Because. They're very similar 
because what? 

S: They're both like. 

S: The range. 

T: The spread’s similar, similar range. 

S: The boxes is similar. 

T: The boxes are similar, the interquartile range is similar, real similar (measures them with her 
fingers on the overheads) the interquartile range.  

S: The medians. 

T: The medians are the same now. Do you know, did you notice that before they were one 
centimetre apart. Now at 11 years old what's happened? 

S: They're the same. 

T: They're the same. Great. Okay. At 11 year old, at 11 years old the girls from these data values 
have the same foot lengths.  

 
The teacher often asked students to explain their observations either by asking directly 

“what are you looking at?” or by rewording the student’s answer as a clarification type 
question. A feature of her language that can be noted in the excerpt above is her use of 
closed questioning, which was often used to ask the students to explain their claims. She 
supplies another word such as “because” using a raised intonation and by revoicing the 
student’s response with the additional words, “What tells you that? Because. They're very 
similar because what?” Another feature of the teacher’s language was to revoice the 
students’ responses using statistical vocabulary so that rather than using the term boxes, the 
teacher uses the term interquartile range and then reinforces this substitute term, thereby 
implying that these are right words with which to argue. Further reinforcement is through 
hand gestures, pointing to or measuring the differences between the interquartile ranges. 
Another strong feature of her language for explaining the evidence, which is not illustrated 
in the excerpt, was her requirement for quantitative measures. A student would say, “the 
box is bigger” to which she would reply, “by how much?” To the student’s response 
“bigger by 5” she would revoice and typically add the measure of centimetres to the 
student’s response, thereby referencing and reinforcing the context. These quantitative 
measures, however, were not used as evidence for her argument but rather were 
observations. 

The excerpt above also demonstrates how she typically guided the students to see the 
median as the most important feature. The students offered a variety of views to support 
the claim that the foot sizes for 11-year-old boys and girls are similar. They suggest the 
range, boxes, and the medians are the same. Although the teacher provided a visual 
explanation by drawing along the length of the boxes to highlight the range and the boxes, 
the median received the most attention from the teacher and appeared to be the answer she 
was requiring. In an earlier lesson she explicitly stated that the median was the most 
important feature of a box plot. So although the teacher did require explanations, these 
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tended to focus on only one feature of the box plot, the median. The only time she used 
numbers to support the argument was when she reasoned with the median. 

Justifying the Evidence 

Although the teacher provided the backing for the claim that “girls have a larger foot 
length than the boys” using the values of the medians, the teacher did not provide any 
warrants for using the median.  For example: “so what we’re saying girls is the median 
value is 21 and here it’s 20. So for year 9 [9-year-old] girls the average, typical value of 
their right foot is one centimetre bigger than for the boys”. The concept of using the median 
as a representation of the data set was not used to support the teacher’s arguments in the 
conclusion, instead the use of the medians was presented in a way that suggested 
representativeness was a ground, an understood and accepted concept in the classroom.  

Drawing Conclusions from the Evidence 

Several features of the teacher’s language may have conveyed a sense of certainty about 
the conclusion that was drawn from the evidence. One feature was the way the conclusion 
was reached. The teacher focused on a single statistic, the median to compare the data sets. 
This may have communicated to the students that only the median should be attended to 
and the rest of the information in the graph could be ignored. The teacher described the 
boxes as being at the median, as if the whole box was just a single line: “See this little box 
for boys is at 25 and this one’s at 23”. Reasoning with only one feature of the data also 
suggested there was a single procedure to follow to formulate a conclusion, rather than a 
weighing of the evidence. If the boys’ median foot length was numerically larger than the 
girls’ median foot length then the boys had a larger foot length, and vice versa. A sense of 
finality may have been communicated to the students, which could have prevented them 
from exploring the data any further.  

Definite language was often used rather than expressing uncertainty by using phrases 
such as tends to or could show and so students may have assumed there was a single right 
answer. The teacher did occasionally use informal variable language; for example, she 
described the 13-year-old boys’ foot length as being “on average, two centimetres bigger 
than girls’ foot length”. Usually, however, the teacher used exact language such as, “at 11 
years old the girls from these data values have the same foot lengths”.  

The Big Foot activity was introduced by a story about Alice and her twin brother. 
Although the teacher did answer the statistical question, about whether boys or girls had 
bigger feet, the purpose for the investigation, to tell Alice whether her brother’s feet had 
grown or whether he was just wearing thicker socks was not part of the conclusion drawn. 
Therefore the hallmarks of the teacher’s drawing of conclusions from data were certainty 
and a lack of reference to the original problem under consideration. 

Making Sense of the Conclusion 

For the conclusion the teacher did not discuss the significance of the differences in the 
box plots in terms of the context, that is, age and foot length. The difference between the 
boys’ and girls’ foot length was simply stated as “1 centimetre”, “the same”, and “2 
centimetres”.  

Often the I wonders came from students’ personal opinions or experience of the 
context rather than the data. This is evident when the students suggested growth spurts 

Mathematics: Essential Research, Essential Practice — Volume 2

838



occurred when they were 14 years old, for which they did not have data, or for years the 
data showed the opposite. 

 
T: Alright girls, very quickly, people over at this table were talking about growth spurts, lovely, I 

wonder if boys undergo a growth spurt between the ages of … 

S: 9. 

S: 13 and… 

S: 14 (several students). 

T: 11 and 13. 

S: Between 9 and 13. 

S: I reckon 10 and 14. 

T: Shh, S10's saying she did the year 9s but she said she found out the boys had smaller feet, year 
9 boys had smaller feet. She said actually that’s probably not true because she knows that her 
Dad's got bigger feet than her Mum, probably. 

 
As shown in the excerpt, the teacher engaged with these personally-based wonders but 

did nor challenge them and hence lost an opportunity to explore the difference between 
evidence-based statistical reasoning and personal experience. Although her words reflected 
the data she did not explicitly redirect students’ attention back to the box plots and data.  

Discussion and Conclusion 

Informal inference is a recent introduction into the curriculum. In this study the teacher 
was learning a new way of teaching statistics but more importantly she had not experienced 
or been enculturated into the discourse of informal inference. To expect to see a perfect 
statistical discourse modelled in a real classroom is unrealistic. However, there are some 
issues that arise from the analysis that need to be considered.  

Abelson (1995) identified two facets of argumentation: inference, which is the process 
of deriving logical conclusions from data, and providing persuasive arguments based on the 
analysis. Students enter a classroom expecting the teacher knows and will provide the 
correct answers. They also expect there is a single correct answer. Yet this is not the case in 
statistical investigations. Analysis of data usually provides a multiplicity of results rather 
than one clear answer and some are contradictory (Biehler, 1997). The teacher in this study 
presented only one interpretation of the data and did not request alternative interpretations 
from the students. The argument was one sided, with the teacher developing her stance 
only. Her conclusion was certain, resulting in a deterministic rather than a probabilistic 
stance. Perhaps the teacher focused on simplifying her process of reasoning with the data 
and so she removed the arguments she was having in her head and only verbalised the 
winning argument. 

The teacher also tended to reduce the complex relationships in the box plots by only 
using the medians as evidence for the arguments and by not linking her observations back 
to the context or the problem under investigation. The teacher did not verbalise her 
thinking or reasoning process, nor did she justify the use of the median by providing a 
warrant, instead she used a series of questions to funnel the students to focus on the 
median. Although the students could answer the questions, they were not learning about 
how to think about the box plot or the reasoning process. If this is not occurring while the 
teacher is present then the students are unlikely to think for themselves when the teacher is 
gone (Mason, 2000). Wild and Pfannkuch (1999) call for statistical thinking to be 
articulated: in a classroom this call surely should be louder. The verbalisation of the inner 
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dialogue alerts the student to its existence; noticing features on a graph becomes a process 
rather than a plucking of ideas from the air. Thinking is learnt in the same way knowledge 
is learnt, through interaction with a knowledgeable other (Perkins, Jay, & Tshman, 1993) 
or as Mason (2000, p. 97) states “a student learns to think mathematically by being in the 
presence of a relative expert who makes their thinking processes explicit”. When students 
interact with the thinking of teachers they have a model for thinking and the experience of 
thinking. Modelling also provides a way for students to hear how the language and 
discourse is used in the context, and how it is structured.  

Increasing the fluency of students’ discourse will mirror an increased understanding of 
graphs (Ainley, Nardi, & Pratt, 2000). If understanding emerges in use (Bakker et al., 2006) 
then teachers need to invite the students to participate in a learning dialogue. The teacher in 
this study did ask the students to offer their opinions but rather than exploring the students’ 
stances by asking them for the basis of their claims, as Bakker et al., (2006) suggest, the 
teacher evaluated them. The teacher did invite the students to support their views by 
explaining them, but the judgement still rested with the teacher rather than inviting the 
other students to agree or disagree.  

Formulating thoughts into words helps clarify students’ thinking. Words can act as a 
pump for statistical ideas that do not yet exist for students (Sfard, 2000). When the teacher 
introduced the terms spread, range, and interquartile range the students then had the words 
to argue with and new referents for exploration and elaboration. Technical knowledge, 
however, is not sufficient to interpret graphs to provide a meaningful answer in terms of 
the problem being investigated. To synthesise an answer the evidence needs to be weighed 
(Pfannkuch, 2006). The teacher in this study did not explicitly model this process although 
there were periods of silence where she may have been thinking through the evidence. In 
particular she did not challenge the students when they were attempting to make sense of 
the conclusion. Critical thinking is required during the evaluation process, and includes 
weighing the quantitative evidence and contextual knowledge. In real investigations 
correct solutions do not occur, instead statisticians must present their best conclusion fully 
supported. Abelson (1995) describes statisticians as requiring the narrative and 
argumentative skills equal to lawyers. Statisticians may require these skills but unlike 
lawyers their arguments seek to find the truth from the story in the data, not to present one 
side of a story or a winning argument. Also statisticians’ language is tempered by 
uncertainty whereas lawyers argue with certainty. Hence statisticians’ argumentative skills 
are those of scientific lawyers. 

If teachers want to encourage students to engage in argumentation then it is their 
responsibility to initiate and guide students towards a shared understanding of how the 
discourse is structured. By presenting and allowing only a single interpretation of the data, 
which is evaluated only by the teacher, as was the case in this study, the statistical process 
of inference is not being modelled (Figure 2). Teachers instead need to use questioning and 
revoicing to support the development and structuring of alternative views and to model 
critical thinking when evaluating the stances and presenting the argument just as a 
scientific lawyer would (Figure 2). 
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Argumentation of teacher studied Proposed argumentation for teacher 

 
 
 
 
 
 
 
 
 
 
 
While the teacher did notice some features of the 
box plot and did require an explanation for claims 
made [shown by presence of feature on scale], she 
only used the median as evidence in the conclusion. 
No justification was given for using the median. The 
conclusion was expressed with certainty and not 
discussed in terms of the problem. 
 

 
 
 
 
 
 
 
 
 
 
 
Features of the box plot are weighed as evidence in 
the conclusion. Inclusion of features is justified 
[shown by presence of contexualised features on 
both sides of scale]. Features are contextualised in 
order to determine the meaning of the findings. The 
evidence is discussed and weighed in terms of the 
problem, its context, and statistical issues such as 
sampling variability and quality of data. The 
conclusion is expressed in terms of uncertainty. 

Legend:      
 
Represents that feature such as the median is 
discussed quantitatively. 

Legend:  
 
Represents that feature such as the median is 
discussed within the context. 

 

Figure 2. Summary of argumentation used and proposed. 

The teacher was beginning to enculturate her students into a statistical community of 
practice but her focus on the production of box plots and the formulation of the correct 
conclusion obscured the investigative process and statistical thought, a facet of pedagogic 
purpose that Mason (2000) has also found. Several researchers (e.g., Biehler, 1997) have 
found teachers are unsure about how to talk about graphs and so the findings of this study 
are not unique but contribute to the growing call to discover ways of developing teachers’ 
talk. Statistical thinking is complex and involves searching for the story in the data. 
Statistics teachers as scientific lawyers need to narrate their thinking, providing an account 
of how they are reasoning, arguing, and weighing the evidence for the story that they have 
unlocked, in order to answer the problem posed at the beginning of the investigation. 
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This paper reports on a project aimed at developing pedagogical tools for intervention 

in the number learning of low-attaining 3rd- and 4th-graders. Approaches to 

instructional design and intervention are described, and the use of the design research 

methodology is outlined. A major outcome of the project, an experimental framework 

for instruction, is described. The framework consists of five aspects: number words 

and numerals, structuring numbers to 20, conceptual place value, addition and 

subtraction to 100, and early multiplication and division. The descriptions of aspects 

include a discussion of low-attaining students’ knowledge and difficulties, and details 

of instructional approaches developed in the project. 

The Numeracy Intervention Research Project (NIRP) has the goal of developing 

pedagogical tools for intervention in the number learning of low-attaining third- and 

fourth-graders (8- to 10-year-olds). This paper reports on the NIRP by providing 

overviews of (a) the approach to intervention, (b) the use of a design research 

methodology, and (c) an experimental instructional framework consisting of five key 

aspects. 

Approach to Intervention 

A significant proportion of students have difficulties learning basic arithmetic 

(Louden et al., 2000). This limits their development of numeracy (McIntosh, Reys, & 

Reys, 1992; Yackel, 2001). Low-attainment is of particular concern in the context of 

the emphasis on numeracy, both nationally and internationally (e.g. The national 

numeracy project: An HMI evaluation, 1998; Numeracy, a priority for all, 2000). 

Furthermore, there are very few instructional programs to address numeracy 

difficulties and very few Australian schools systematically address this problem 

(Louden et al., 2000). Hence there are calls “to identify effective remedial approaches 

for the various identified weaknesses” (Bryant, Bryant, & Hammill, 2000, p. 174) and 

to develop approaches from the research-based reforms recommended for general 

mathematics education (Rivera, 1998). Researchers have developed programs of 

intervention in early number learning (Dowker, 2004; Gervasoni, 2005; Pearn & 

Hunting, 1995; Wright, Martland, Stafford, & Stanger, 2006; Young-Loveridge, 

1991) focusing on topics such as counting and early addition and subtraction. The 

NIRP aims to extend this work with a focus on basic whole number arithmetic 

including reasoning with numbers in the hundreds and thousands, multidigit addition 

and subtraction, and early multiplication and division. 

Organising by key aspects. Recent intervention programs have described early 

number knowledge in terms of components (Dowker, 2004) and domains (Clarke, 

McDonough, & Sullivan, 2002). These descriptions highlight the idiosyncratic nature 

of students’ number knowledge (Gervasoni, 2005) and learning paths (Denvir & 

Brown, 1986). In this paper we use a framework approach (Wright et al., 2006) to set 

Mathematics: Essential Research, Essential Practice — Volume 2

Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia
J. Watson & K. Beswick (Eds), © MERGA Inc. 2007

843



out five key aspects of number learning that we regard as important for intervention 

with 3rd- and 4th-graders. Our approach involves developing instructional activities 

relevant to each of these key aspects. In this approach, constructing a framework of 

key aspects is important in developing a domain-specific theory for intervention 

instruction. Further, this framework can be applied to all students and can inform 

classroom instruction. 

Instructional design. Progressive mathematisation refers to the development from 

informal, context-bound thinking to more formal thinking (Beishuizen & Anghileri, 

1998; Gravemeijer, 1997; Treffers, 1991). As in the emergent modelling heuristic 

(Gravemeijer, Cobb, Bowers, & Whitenack, 2000), instructional design involves 

anticipating a potential learning trajectory, and devising an instructional sequence of 

tasks which foster students’ progressive mathematisation along the trajectory, through 

levels of thinking from informal to formal. Particular settings, such as manipulative 

equipment or notation systems, can have an important role in an instructional 

sequence. A setting can be established as a context for students’ initial context-

dependent thinking, and then become a model for more independent numerical 

reasoning, thus mediating the crucial development from concrete toward more 

abstract thinking (Gravemeijer, 1997). An instructional sequence consists of 

instructional procedures, each of which serves to incrementally distance the student 

from the materials, advance the complexity of the task, and potentially raise the 

sophistication of the student’s thinking. Detailed assessment of the student’s 

knowledge informs the teacher’s selection of instructional procedures. Instruction 

focuses on engaging the student in independent, sustained thinking, and observational 

assessment enables tuning instruction to the cutting edge of the student’s knowledge 

(Wright et al., 2006). 

Approach to number instruction. Our approach to instruction emphasises flexible, 

efficient computation, and strong numerical reasoning (Beishuizen & Anghileri, 1998; 

Heirdsfield, 2001; Yackel, 2001). Mental computation, in particular, is foundational 

for efficient computation, numerical reasoning, and number sense (McIntosh et al., 

1992; Treffers, 1991). Learning builds from students’ own informal mental strategies 

(Beishuizen & Anghileri, 1998; Gravemeijer, 1997). However, students need to 

develop flexible, efficient, mathematically sophisticated strategies. Low-attaining 

students often use inefficient count-by-ones strategies, and error-prone rote 

procedures, and depend on supporting materials or fingers (Gray, Pitta, & Tall, 2000; 

Wright, 2001). Hence, intervention instruction needs to develop students’ number 

knowledge to support non-count-by-ones strategies, and to move students to 

independence from materials. 

Methodology 

The NIRP adopted a methodology based on design research (Cobb, 2003; 

Gravemeijer, 1994), consisting of three one-year design cycles. The NIRP aimed to 

develop pedagogical tools for intervention, consisting of a framework, assessment 

tasks, and instructional sequences. Each design cycle consisted of (a) initial 

development of the pedagogical tools, (b) use of the tools in an intervention program 

with teachers and students, (c) analysis of the learning and teaching in the program, 

and (d) refinement of the tools based on the analysis. Within each cycle, analysis and 

development were on-going, in meetings of the researchers and project teachers, in 

analysis of assessments, and in teachers’ daily lesson planning. The analysis of the 

learning and teaching in the intervention program is informed by a teaching 
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experiment methodology (Steffe & Thompson, 2000). Interview assessments and 

instructional sessions were videotaped, providing an extensive empirical base for 

analysis. The approach to the development of intervention programs described in this 

paper is an appropriate response to Ginsburg’s (1998) call for teaching experiments 

focusing on students with learning difficulties. 

The Study 

The intervention program for each year involved eight or nine teachers, each from 

a different school, across the state of Victoria. In each school, 12 students were 

identified as low-attaining in arithmetic, based on screening tests administered to all 

third- and fourth-graders. In each school (a) in term 2, these 12 students were assessed 

in individual interviews; (b) in term 3, eight of the low-attaining students participated 

in intervention teaching cycles; and (c) in term 4, the 12 students were again assessed 

in individual interviews. The teaching cycles involved teaching sessions of 30 minutes 

duration, for four days per week, for 10 weeks. Two students were taught as 

singletons and six as trios, and all of the instructional sessions with singletons were 

videotaped. Across the three years of the project, in each of 25 schools, the project 

teacher assessed 300 low-attaining students, each on two occasions, taught 50 students 

individually and 150 students in trios. 

Development of the Instructional Framework 

Through the cycles of design research, the framework of key aspects of 

knowledge developed from four considerations. Firstly, areas of significance were 

identified in our analysis of low-attaining students’ number knowledge and 

difficulties, areas that seem to be characteristic of what successful students can do and 

what low-attaining students cannot do. Secondly, these areas were clarified in making 

a coherent framework for teachers to use for analysing assessments and profiling 

students’ learning needs. Thirdly, the key aspects became further defined as the key 

instructional sequences and their associated settings emerged. Fourthly, the key 

aspects were refined in articulating a coherent framework for instruction. The 

framework is experimental in the design research sense – it is intended to be further 

trialled, analysed, and developed. 

The resulting instructional framework consists of the following five aspects: (A) 

Number Words and Numerals; (B) Structuring Numbers 1 to 20; (C) Conceptual 

Place Value; (D) Addition and Subtraction 1 to 100; and (E) Early Multiplication and 

Division. 

Experimental Instructional Framework 

For each of aspects A to D, we describe (a) the significance of the aspect; (b) low-

attaining students’ knowledge and difficulties; and (c) instructional sequences. Due to 

space limitations, aspect E is not described in this paper. 

Aspect A: Number Words and Numerals 

Low-attaining students’ knowledge and difficulties. Early number curricula focus 

on number word sequences (NWS) to 20, and to 100, and learning to read and write 2-

digit numerals. Students’ early difficulties are well-documented (e.g., Fuson, 

Richards, & Briars, 1982). Classroom instruction on NWSs and numerals tends to 

decrease as students progress through school. However, low-attaining third- and 
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fourth-graders have significant difficulties with these areas (Hewitt & Brown, 1998). 

Errors with NWSs in the range 1 to 100 include: (a) “52, 51, 40, 49, 48…” and (b) 

“52, 51, 49, 48…”. Students are aware of the chains of number words in each decade 

– 41 to 49 and 51 to 59, and link these chains incorrectly when going backwards 

(Skwarchuk & Anglin, 2002). Errors with NWSs in the range 100 to 1000 occur at 

decade and hundred numbers, for example: (a) “108, 109, 200, 201, 202…”; (b) “198, 

199, 1000, 1001…”; and (c) “202, 201, 199, 198…” (Ellemor-Collins & Wright, in 

press). When students respond correctly on these tasks, in many cases they lack 

certitude. Knowledge of sequences of tens off the decade is an important part of 

knowledge of base-ten structures (Ellemor-Collins & Wright, in press), and is a 

prerequisite for mental jump strategies (Fuson et al., 1997; Menne, 2001). Some low-

attainers cannot skip count by tens off the decade. Given the task “Count by tens from 

24”, responses included: (a) “24, 25, 20”; (b) “24, 30, 34, 40”; (c) “24…34…44” with 

each ten counted by ones subvocally; and (d) “I can’t do that”. As well, there is a 

range of significant errors with sequences of tens beyond 100 (Ellemor-Collins & 

Wright, in press). Some 3rd- and 4th-graders make errors with 3-digit and 4-digit 

numerals involving zeros (Hewitt & Brown, 1998): 306 is identified as “360”; 6032 is 

identified as “6 hundred and 32”, or "60 thousand and 32”; and 1005 is written “10 

005”. 

Instruction in number words and numerals. Facility with number word sequences 

and numerals is important, and requires explicit attention for low-attainers (Menne, 

2001; Wright et al., 2006). This aspect includes identifying and writing numerals to 

1000 and beyond. Instruction focuses on reciting and reasoning with number word 

sequences and numeral sequences, without structured settings such as number lines or 

base-ten materials. Students develop knowledge of the auditory and visual patterns, 

somewhat separate from numerical reasoning about quantity and position (Hewitt & 

Brown, 1998; Skwarchuk & Anglin, 2002). We have found that explicit instruction 

focusing on bridging 10s, 100s and 1000s, forwards and backwards, is productive. 

Saying sequences by tens and hundreds, on and off the decade, supports development 

of place value knowledge. Saying sequences by 2s, 3s, and 5s, on and off the multiple, 

supports development of multiplicative knowledge. Students can and should learn 

number word sequences and numerals in a number range well in advance of learning 

to add and subtract in that range because familiarity with a range of numbers 

establishes a basis for meaningful arithmetic (Wigley, 1997). 

Exemplar instructional sequence: the numeral track. The numeral track is an 

instructional device consisting of a sequence of ten numerals, each of which is 

adjacent to a lid which can be used to conceal the numeral (Wright et al., 2006). In the 

instructional sequence, first the lids are opened sequentially, and the student names 

each numeral in turn, after seeing the numeral. Second, when the sequence is familiar, 

the student’s task is to name each numeral in turn, before seeing the numeral. In this 

case, the opening lids enable self-verification. Third, the number sequence can be 

worked backwards. Finally, more advanced tasks can be used. For example, one lid is 

opened and the teacher points to other lids for the student to name: the number before, 

the number two after, and so on. In this setting, learning about NWSs supports and is 

supported by learning about sequences of numerals. The teacher selects the sequence: 

bridging 110, a tens sequence off the decade, a 2s sequence, and so on. The teacher 

can observe a student’s specific difficulty, and finely adjust the instructional tasks. 

The lids allow incremental distancing from the material and internalisation of the 

sequence.  
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Aspect B: Structuring Numbers 1 to 20 

Facile calculation in the range 1 to 20. Learning arithmetic begins with learning 

to add and subtract in the range 1 to 20. Students’ initial strategies involve counting-

by-ones (Fuson, 1988; Steffe & Cobb, 1988) and developing this facility is an 

important aspect of early number learning. Students can then develop strategies more 

sophisticated than counting by ones, such as adding through ten (eg., 6 + 8 = 8 + 2 + 

4), using fives (6 + 7 = 5 + 5 + 1 + 2), and near-doubles (eg., 6 + 7 = 6 + 6 + 1). 

Developing these strategies builds on knowledge of combining and partitioning 

numbers (Bobis, 1996; Gravemeijer et al., 2000; Treffers, 1991). Efficient calculation 

also involves knowledge of additive number relations, such as commutativity (8 + 9 = 

9 + 8), and inversion (15 + 2 = 17 implies that 17 – 15 = 2). The development of 

efficient, non-count-by-ones calculation in the range 1 to 20 is important. Counting-

by-ones can be slow, and error-prone. Further, facile calculation promotes number 

sense and numerical reasoning (Treffers, 1991), and develops a part-whole conception 

of numbers (Steffe & Cobb, 1988), providing a basis for further learning such as the 

construction of units of 10 and multiplicative units (Cobb & Wheatley, 1988). 

Low-attaining students’ knowledge and difficulties. Low-attaining 3rd- and 4th-

graders typically will solve addition and subtraction tasks in the range 1 to 20 by 

counting on and counting back (Gray et al., 2000; Wright, 2001). As well, they will 

not necessarily use the more efficient counting strategy, solving 17 – 15 for example, 

by making 15 counts back from 17 and keeping track on their fingers. They do not 

seem to partition numbers spontaneously when attempting to add or subtract. These 

students typically have difficulty with tasks such as stating two numbers that add up 

to 19. They might know all or most doubles in the range 1 to 20, but will not use a 

double to work out a near-double addition (6 + 7). As well, they might solve without 

counting, addition tasks with 10 as the first addend (10 + 5) but will not apply the ten 

structure of teen numbers (14 is 10 + 4) to solve addition (14 + 4) or subtraction (15 – 

4), and will not use adding through 10 to solve tasks such as 9 + 5. This preference for 

counting-by-ones has been explained as a preference to think procedurally (Gray et 

al., 2000). 

Instruction in structuring numbers 1 to 20. The arithmetic rack (Treffers, 1991) is 

an important instructional device, enabling flexible patterning of the numbers 1 to 20 

in terms of doubles, five, and ten. Instruction proceeds in three phases: (a) making and 

reading numbers; (b) addition involving two numbers; and (c) subtraction involving 

two numbers (Wright et al., 2006). In each phase, the teacher advances the 

complexity, from tasks with smaller numbers and more familiar structures, to tasks 

with larger numbers and less familiar structures. In each phase, the teacher also uses 

screening and flashing to progressively distance the student from the setting. The 

student is actively reasoning, in the context of the structured patterns. The intention is 

that activity with the rack is increasingly internalised and the student shifts from 

reasoning with numbers as referents-to-the-beads, to numbers as independent entities 

(Gravemeijer et al., 2000). Instruction with the arithmetic rack can overcome low-

attainers’ reticence to relinquish counting-by-one strategies. 

Aspect C: Conceptual Place Value 

Multidigit knowledge. Research evidence supports building multidigit arithmetic 

on students’ informal understandings of number, and emphasizing mental strategies 

with 2-digit numbers (Beishuizen & Anghileri, 1998; Fuson et al., 1997; Yackel, 
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2001). Efficient mental strategies require sound knowledge of structures in multidigit 

numbers such as: (a) additive place value (25 is 20 and 5); (b) jumping by ten, on and 

off the decade (40 + 20 = 60, 48 + 20 = 68);  (c) jumping within and across decades  

(68 + 5 = 68 + 2 + 3 = 73); and (d) locating neighbouring decuples (linking 48 + 25 to 

50 + 25) (Ellemor-Collins & Wright, in press; Heirdsfield, 2001; Menne, 2001; 

Yackel, 2001). These structures are based on the decade patterns and units of ten. 

Other important structures include doubles and halves: double 25 is 50, double 50 is 

100. Together these structures form a rich network of number relations, the basis of 

flexible and efficient computation (Foxman & Beishuizen, 2002; Heirdsfield, 2001; 

Threlfall, 2002). Instruction on these multidigit structures can be distinguished from 

formal place value instruction. Thompson and Bramald (2002), for example, observe 

that students’ intuitive strategies depend on quantity value, the informal additive 

aspect of place value, which they distinguish from column value, the formal written 

aspect of place value. Place value tasks involving manipulation of numerals and 

knowing column value are problematic for many students, especially low-attainers 

(Beishuizen & Anghileri, 1998; Thompson & Bramald, 2002). Younger students 

reason about numbers first in terms of verbal sequences and quantities, rather than 

written symbols, so addition by formal manipulations of symbols is not necessarily 

meaningful for these students (Cobb & Wheatley, 1988; Treffers, 1991). For example, 

a student might understand the result of jumping by ten, but not of adding one in the 

tens column. Where regular place value instruction is intended to support the 

development of standard, written algorithms, we propose conceptual place value as an 

approach to support the development of students’ intuitive arithmetical strategies. 

Low-attaining students’ knowledge and difficulties. Low-attaining third- and 

fourth-graders typically will not increment or decrement by ten off the decade when 

solving 2-digit  addition  and  subtraction  tasks.  In  a  task  presenting,  with  base-

ten  materials, 48 + 2 tens and 5 ones, some low-attainers find the total by counting by 

ones from 48. Other students will attempt to use a split strategy (40 + 20 and 8 + 5) to 

solve these tasks but will have difficulty recombining tens and ones (Cobb & 

Wheatley, 1988). These students either lack place value knowledge or are unable to 

use place value knowledge in dynamic situations, that is, situations that involve 

increasing or decreasing numbers by ones, tens or hundreds. We regard these 

difficulties as symptomatic of a lack of important knowledge about multidigit 

numbers (Ellemor-Collins & Wright, in press). 

Instruction in conceptual place value. Conceptual place value encompasses 

instructional sequences that develop knowledge of the structure of multidigit numbers, 

as a foundation for mental computation. The main instructional sequence involves 

flexibly incrementing and decrementing by ones and tens, and later hundreds and 

thousands, in the context of base-ten materials. Two important settings are: (a) 

bundling sticks and (b) dots on laminated card organised into ten strips and hundred 

squares. These seem to be more authentic and hence more useful than MAB blocks. 

Instructional tasks include firstly, building 2-digit numbers, and then incrementing 

and decrementing by one ten, two tens, one ten and two ones, and so on. The teacher 

incrementally distances the student from the setting. Initially, the material is visible. 

The student answers, and then might reorganise the tens and ones to verify their 

answer. As the instructional sequence develops, the material is screened and the 

screens are removed to enable verification. This instruction elicits reasoning about 

quantities in the range 1 to 100, thus providing a basis for 2-digit addition and 

subtraction using jump strategies (aspect D). As well, this instruction is extended to 
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flexibly incrementing and decrementing 3- and 4-digit numbers, by ones, tens and 

hundreds. In this way, students’ first learning of place value is strongly verbal and 

occurs in an additive sense. We have also found that Arrow Cards (Hewitt & Brown, 

1998; Wigley, 1997) can be very useful in further supporting this learning. 

Aspect D: Addition and Subtraction to 100 

Flexible, efficient multidigit computation. Developing facile mental strategies for 

addition and subtraction involving two 2-digit numbers is a critically important goal 

of arithmetic learning in the first three or four years of school. This lays a strong 

foundation for all further learning of arithmetic, including multiplication and division, 

fractions and decimals, and so on. As well, strong mental strategies will support 

learning of the standard written algorithms and efficient use of calculators in 

mathematical problem solving (Beishuizen & Anghileri, 1998). Two main categories 

of efficient strategies are jump strategies and split strategies. Variations and 

alternatives abound. (Foxman & Beishuizen, 2002; Fuson et al., 1997; Klein, 

Beishuizen, & Treffers, 1998; Thompson & Bramald, 2002). All these strategies 

involve jumping in tens and jumping through ten. Jumping through ten can be used 

for example, to solve 68 + 7 as 68 + 2 + 5, and more generally involves  adding and  

subtracting to and from a decuple  (60 + 8, 47 + x = 50, 74 – x = 70, 60 – 4). 

Low-attaining students’ knowledge and difficulties. As with tasks involving base-

ten materials described in aspect C above, some low-attaining third- and fourth-

graders seem to interpret written tasks such as 38 + 24 and 63 – 24 as an instruction to 

make 24 counts forwards or backwards respectively (Wright, 2001). Also, low-

attainers frequently try to use a split strategy for written tasks, but have difficulty 

recombining tens and ones (Beishuizen, Van Putten, & Van Mulken, 1997; Fuson et 

al., 1997). As well, when solving a task such as 46 + 53, by adding 40 and 50 and 6 

and 3 (split strategy), they will typically count-on to work out each of the two sums 

(40 + 50 and 6 + 3). These students do not know about jumping in tens and jumping 

through ten to add or subtract in the range 1 to 100 (Menne, 2001). Research suggests 

that most successful students use jump strategies, whereas most low-attainers use split 

strategies; further, low-attainers who do use jump have more success and flexibility 

than those who use split (Beishuizen et al., 1997; Foxman & Beishuizen, 2002; Klein 

et al., 1998). As well, students who have been taught place value in the traditional 

way, are likely to have a preference for split strategies. 

Instruction in addition and subtraction to 100. Incrementing and decrementing by 

ten is one important prerequisite for learning to use jump strategies in the range 1 to 

100. A second is having facile strategies for addition and subtraction in the range 1 to 

20 (Menne, 2001). Our experience is that low-attainers who are facile in the range 1 to 

20 require explicit instruction in applying this knowledge when adding and 

subtracting two 2-digit numbers. For this instruction we have found it useful to use ten 

frame cards in two forms – a ten frame card for each of the numbers 1 to 9, and full 

ten frame cards for the decuples. In this setting, 38 can be shown using 3 ten-cards 

and one eight-card. The ten frame cards used in this way, can supports students’ 

reasoning about adding and subtracting to and from a decuple. This approach can be 

extended firstly to addition and subtraction involving a 1-digit and a 2-digit number 

(64 + 3, 78 + 6, 47 – 4, 82 – 7) and finally to addition and subtraction involving two 

2-digit numbers. We use a notation system in conjunction with mental strategies. The 

notation is used to record the mental strategy rather than providing a means of solving 

the task. Notation supports reflection and communication, and is important for 
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increasing robustness, curtailment and flexibility (Gravemeijer et al., 2000; Klein et 

al., 1998). We have found four notation systems useful. The empty number line 

notation (Klein et al., 1998) is used for jump and related strategies. Also used for 

jump strategies is the simple arrow notation (48 + 25, 48�50, 50�70, 70�73). The 

so-called drop-down notation is used for split strategies and notation involving a 

progression of number sentences (arithmetical equations) can be used for either jump 

or split strategies. 

Conclusion 

An important intention of the framework is to bring together aspects of number 

variously identified as areas where low-attaining students do not progress. A second 

important intention is to bring together powerful instructional sequences specific to 

each of those aspects. The consistent approach to instructional design in terms of 

progressive mathematisation promotes coherence across the framework. Further, by 

and large, instruction in the aspects proceeds concurrently, and the teacher makes 

connections between the aspects (Treffers, 1991). The goal, overall, is the coherent 

development of students’ facility with whole number arithmetic. 

The experimental framework initiates further lines of inquiry at four levels: (a) 

analyse further, low-attaining students’ learning within each aspect; (b) refine the 

instructional sequences and their connections; (c) assess students’ and teachers’ 

responses to intervention programs based on the framework; (d) Clarify the design 

research approach to developing pedagogical materials for intervention. 
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In studying the use of Interactive Whiteboards (IWBs) we have observed that there are 

concerns in relation to measures of pedagogy. Using a productive pedagogies framework to 

analyse the use of IWBs in middle school classrooms, we found very low rating on aspects 

of pedagogy related to intellectual quality. Using an activity theory framework, and drawing 

on observations and interview data, we theorise the tensions in the uptake and use of IWBs 

to support mathematics learning. 

Promoters of IWBs have been very strategic in the use of case studies to illustrate the 

novelty and support that can be achieved through the clever use of the tool (Edwards, 

Hartnell, & Martin, 2002). However, as reported elsewhere (Zevenbergen & Lerman, 

2006), there are notable concerns in terms of how the IWBs are used in Australian 

classrooms. In this paper, we draw on these contradictions with the use of IWBs to theorise 

the use of IWBs. Drawing on the principles of activity theory to frame the analysis, we 

draw particularly on the notion of tools, in this case IWBs, which mediate pedagogic 

relationships. Within activity theory, tools can refer to both concrete and semiotic tools. As 

such, we draw on a range of tools that can be used to explain the complex milieu of 

classrooms and the uptake of IWBs. The values and beliefs that teachers hold about 

pedagogy and/or technology mediate the ways in which they will use such technologies. 

The beliefs and values may relate to the pedagogical approaches that are adopted or to the 

technological tools themselves. Where teachers hold particular views about how children 

best learn mathematics, then they are most likely to employ strategies that align with those 

beliefs. Similarly, if they see technology as a tool that can undertake particular functions 

(such as a calculator can be used for working out arithmetic tasks), then the technology will 

be used in that fashion. In exploring computer-mediated learning using activity theory, 

Waycott, Jones, and Scanlon (2005, p. 107) reported that there is a reciprocity between the 

tools and the learner where “the user adapts the tools they use according to their everyday 

practice and preferences in order to carry out their activities; and how, in turn, the tools 

themselves also modify the activities that the user is engaged in.” Drawing on activity 

theory, we explore the ways in which IWBs were used in a number of classrooms, provide 

an evaluation of the approaches being used by teachers, and then seek to explain the 

observations that were made in these classrooms.  

Interactive Whiteboards as Mediating Tools: A Background 

The implementation of interactive whiteboards in schools in the UK has been strongly 

supported by the government (Beauchamp, 2005) with over £50m being spent on their 

implementation in primary and secondary schools (Armstrong et al., 2005). However, it has 

not received the same fiscal support in Australian schools. Many schools are supporting the 

implementation of these devices through various means but without systematic support. In 

most cases, the implementation of IWBs is a school-based decision and as such is 

supported by funds raised by the schools. How the IWBs are implemented within a given 
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school is dependent upon the resources of the school to provide the equipment and the 

beliefs of the teaching staff as to the value of the tool. As such, there is considerable 

variation across Australia as to their uptake and implementation. This can range from how 

IWBs are placed in classrooms (who has them and where they are physically located), how 

teachers use them, and access to professional development. 

 In taking up new forms of technology Glover and Miller (2002) reported that their 

experienced teachers were skeptical of these new forms of pedagogy whereas, in contrast, 

preservice teachers saw these new technologies as an integral and valued component of 

their future practice. In the process of moving from the novice user to one who integrates 

the IWB into their repertoire of pedagogic skills, Beauchamp (2005) contends that there 

needs to be a considerable investment for teachers to learn to develop their technical 

competence alongside their pedagogical skills. In terms of how the IWB is used in the 

classroom, Glover and Millar (2002) contend that teachers need to recognize that there is 

considerable interactivity associated with the use of IWBs. They argue that the IWB can 

engender an approach that fails to radicalize pedagogy and where the IWB is used to 

enhance students’ motivation rather than become a catalyst for changing pedagogy. To be 

competent with the use of IWBs, it was recommended that teachers need daily access to 

such tools (Armstrong et al., 2005) so that teachers are able to develop their repertoire of 

skills and to integrate it into practice (Glover & Miller, 2001). Greiffenhagen (2000) 

argued that the availability of IWBs as a teaching aid is only of value where it becomes part 

of the regular pattern of classroom life. Others argue that teachers also need to have access 

to a wide range of software and applications that are subject specific (Armstrong et al., 

2005) and that on-going training with the use of IWBs helps teachers develop their skills 

and knowledges with regard to the affordances of these tools.  

Changing Technology, Changing Pedagogy? 

In considering the impact of IWBs on classroom practice, Smith, Hardman, and 

Higgins (2006) reported that there is a faster pace in lessons using IWBs than non-IWB 

lessons, that answers took up considerably more of the overall duration of a lesson, and that 

pauses in lessons were briefer in IWB lessons compared with non-IWB lessons. They also 

reported a faster pace in numeracy lessons than in literacy lessons. Although they reported 

some support for the potential of IWBs, they concluded that overall the use of IWBs was 

not significantly changing teachers’ underlying pedagogy. The majority of teacher time was 

still spent on explanation and that recitation-type scripts were even more evident in IWB 

lessons. They found that although the pace of the lessons increased, there had been a 

decline in protracted answers from students and that there were fewer episodes of teachers 

making connections or extensions to students’ responses. 

Although there is a suggestion that IWBs have considerable potential to change 

interactions and modes of teaching, this has not been found to the case in practice (Smith, 

Hardman, & Higgins, 2006). These authors claim that there is a faster pace in lessons but 

less time is being spent in group work. There is a tendency for teachers to assume a 

position at the front of the class when using IWBs (Maor, 2003). Similarly Latane (2002) 

suggests that there needs to be a move from teacher-pupil interaction to one of pupil-pupil 

interaction. In studying mathematics classrooms, Jones and Tanner (2002) reported that 

interactivity can be enhanced through quality questioning where the quality of the questions 

posed and the breadth of questioning need to be developed to ensure interactivity in 

mathematics teaching when using IWBs. 
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IWBs and Activity Theory 

The literature alerts us to the affordances and constraints of this new technology. In 

considering this within the context of activity theory, we are particularly drawn to third 

generation activity theory Engeström’s third generation framework (e.g., 2000, p. 31), 

where the mediating tools were extended and elaborated substantially to identify the 

participants and resources present in an activity, and their different roles and 

responsibilities. His elaborate representation of these elements and their connections 

enables an identification of tensions and contradictions in activity systems and hence the 

potential for development. His model of activity is represented in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Engeström’s third generation activity theory. 

 

The model proposed by Engeström extends the work of Leont’ev so as to consider not 

only the tension and contradiction between points in the framework but also the context 

within which learning occurs. For us, the theory allows us consider the results we have 

observed as being related to these tensions. We draw on this model to understand better the 

outcomes of this research. It allows us to theorise more constructively the analysis made 

possible through the analytic lens which we applied to the classroom videos. Rather than 

explain our outcomes in some deficit framing, Engeström’s proposition allows the tensions 

within the activity system – in this case, classrooms – to be understood more holistically. 

Data Collection 

The research reported here is drawn from a much larger study where we were 

concerned with the ways in which technology (ICTs) were being used to support 

mathematical learning in the middle years of school. As this larger project unfolded over 

the four years of data collection, we were fortunate to see the introduction of IWBs into 

some of our participating schools. This provided an intended aspect to the project. The 

process for data collection involved teachers or someone from the research team taking 

video of lesson where teachers used ICTs or, more specifically for this paper, IWBs. These 

tapes were subsequently analysed using a productive pedagogies framework.  

When using this well documented framework on the IWB lessons, there were many 

worrisome scores when teachers used IWBs in mathematics lessons. To better understand 

this outcome, we returned to the schools to interview teachers, and returned to the tapes to 

undertake observations of those lessons. For the IWB aspect of the project, we had two 

Outcome 

Tools & signs 

Rules           Community          Division of labour 

Subject Object 
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schools using the tools – one in Queensland and one in Victoria. Across these schools, five 

classrooms were using IWBs.  

Descriptive Overview of Pedagogy 

In viewing the tapes, a number of commonalities were evident in the observed lessons. 

Our data confirmed the research of Smith, Hardman, and Higgins (2006) where we 

observed the level of questioning being used by teachers in these lessons. There were more 

recall questions than those requiring deeper levels of understanding. This type of 

questioning also allowed for a quicker pacing of the lesson since teachers were able to ask 

quick fire questions where there was little depth in the responses required. The 

predominant approach used by teachers when using the IWBs was that of whole class 

teaching. In these settings, the teacher controlled the lesson, inviting students to participate 

in manipulating the objects. In all cases, the teachers used the IWBs as the introduction to 

the lesson. Once the students had been involved in the introductory component of the 

lesson, they returned to their desks to work on activities related to the topic being 

introduced. Depending on the resources used by the teacher, there were instances where the 

IWB made possible a rich introduction to aspects of mathematical language.  

Productive Pedagogies Analysis 

Although the observations provided us with some indicators of how the IWBs were 

being used in the classroom, we also employed a quantitative measure to document the use 

of IWBs. This measure allows us to analyse the lessons more rigorously. We have used this 

approach in analyzing the use of ICTs in classrooms so were able to compare those data 

against the use of IWBs. The process involves three observers observing the lessons that 

had been videotaped. Each observer rates the lesson against nominated criteria on a scale of 

0-5 where 0 indicates that there was no evidence of that criterion in the lesson and 5 

indicates that it was a strong feature that was consistent throughout the lesson. The ratings 

are made at the completion of the lesson and the score is for the overall lesson. If there is 

some evidence of a criterion in the opening phase of the lesson but does not appear again, 

then this means that it was not a strong feature of the overall lesson. The three observers 

rate their observations independently and then come together to come up with a common 

score. This involves a process of negotiation to arrive at the common outcome. In most 

cases, there was usually a difference of 1 between the ratings and the ensuing discussion 

meant that the observers needed to negotiate their ratings with the other two. The 

framework we have used come from the work of the Queensland Schools Longitudinal 

Reform Study (Education Queensland, 2001) in which the researchers analysed one 

thousand lessons in terms of the pedagogies being used by teachers. The method was that 

described above and where the criterion for each rating was based on the Productive 

Pedagogies. There are four dimensions within the framework – Intellectual Quality, 

Relevance, Supportive School Environment, and Recognition of Difference – in which 

there are a number of pedagogies that are evident of that theme. The Productive Pedagogies 

are outlined in Table 1.  
 

Mathematics: Essential Research, Essential Practice — Volume 2

856



  

Table 1 

Productive Pedagogy Dimensions, Items and Key Questions (from Gore, Griffiths, & 

Ladwig, 2006) 
 

 Productive Pedagogy Key question 

Higher order thinking Are higher order thinking and critical analysis occurring? Intellectual quality 

Deep knowledge Does the lesson cover operational fields in any depth detail 

or level of specificity? 

 
Deep understanding Do the work and response of the students provide evident of 

understanding concepts and ideas? 

 

Substantive 

conversation 

Does the classroom talk break out of the 

initiation/response/evaluation pattern and lead to sustained 

dialogue between students, and between students and 

teachers? 

 
Knowledge as 

problematic 

Are students critiquing and second guessing texts, ideas, and 

knowledge? 

 
Metalanguage Are aspects of language, grammar and technical vocabulary 

being foregrounded? 

Knowledge integration Does the lesson range across diverse fields, disciplines and 

paradigms? 

Relevance 

Background knowledge Is there an attempt to connect with students’ background 

knowledge? 

 
Connectedness to the 

world 

Do lessons and assigned work have any resemblance or 

connection to real life contexts? 

 
Problem based 

curriculum 

Is there a focus on identifying and solving intellectual and/or 

real world problems? 

Student control Do students have any say in the pace, direction or outcome 

of the lesson? 

Supportive School 

Environment  

Social support Is the classroom a socially supportive, positive environment? 

 Engagement Are students engaged and on-task 

 Explicit Criteria Are criteria for student performance made explicit? 

 
Self regulation Is the direction of students’ behaviour implicit and self-

regulatory? 

Cultural knowledges Are diverse knowledges brought into play? 

Inclusivity Are deliberate attempts made to increase participation of all 

students from different backgrounds? 

Narrative Is the teaching principally narrative or expository? 

Recognition of 

difference 

Group Identity Does teaching build a sense of community and identity? 

 Citizenship Are attempts made to foster active citizenship? 

 

Gore et al. (2006) argue that the productive pedagogies framework is most useful as a 

tool for reflecting on practice. In analysing the classroom video, two or three researchers 

observed the lesson using the categories to rate the overall lesson. A scale of 0
1
 (not a 

feature of this lesson) through to 5 (an integral part of the lesson) were scored for each 

lesson. These were undertaken independently by the members of the research team. Once 

the lesson had been completed, the team met to view their ratings and to come to a 

                                                 
1
 This model has been validated by the QSLRS team and where each score is more clearly articulated than is 

possible within this paper. 
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consensus on the score. In most cases, the scores were very similar so there was little 

negotiation. However, there were a number of instances where there was considerable 

debate but this was often centred on clarification of the definitions and the perceptions 

around whether the score could be applied to the full lesson.   

Within the Productive Pedagogy approach, there is a strong emphasis on raising the 

quality of teaching in terms of the intellectual experiences and the social learning. The 

outcomes of the Queensland study (Education Queensland, 2001) indicated that teachers 

were very good at providing a supportive learning environment but that the intellectual 

quality was quite poor. When the analysis was undertaken across key learning areas, it was 

reported that the learning environments in mathematics scored the least favourably 

suggesting that the intellectual quality in mathematics (across all years of schooling) was 

poor. 

Scoring IWBs – New Pedagogy or Problematic Pedagogy? 

In seeking to explore the use of IWBs in mathematics classroom, we undertook the 

same analysis of the classroom videos. As can be seen in Table 2, the scores are low in 

most areas. We have included the analysis of classroom data where ICTs were used in 

mathematics classrooms as a comparison.  
 

Table 2 

 Productive Pedagogy Analysis of IWB use in Upper Primary Classrooms. 
 

 ICTs IWBs 
Dimension of Productive Pedagogy Mean SD Mean SD 
Depth of knowledge 1.64 1.36 1.5 1.46 
Problem based curriculum 2.19 1.38 0.92 0.83 
Meta language 1.69 1.07 1.25 1.87 
Background knowledge 1.76 1.16 1.67 1.63 
Knowledge integration 1.48 1.27 0.42 0.45 
Connectedness to the world 1.38 1.44 0.42 0.45 
Exposition 1.19 1.64 0.83 0.82 
Narrative 0.31 0.78 0.17 0.18 
Description 2.24 1.02 1.42 1.25 
Deep understanding 1.43 1.47 1.25 1.19 
Knowledge as Problematic 1.14 1.47 1.33 1.36 
Substantive conversation 1.26 1.40 0.5 0.46 
Higher order thinking 1.31 1.55 1.33 1.36 
Academic engagement 2.23 1.38 1.5 1.46 
Student direction 0.79 0.92 0.33 0.28 
Self regulation 3.24 1.12 2.5 2.45 
Active citizenship 0.30 0.78 0 0 
Explicit criteria 2.83 1.17 1.33 1.28 
Inclusivity 0.33 0.75 0 0 
Social support 2.51 0.25 1.25 0.62 

 

These data indicate that when using the IWBs as a pedagogical device, their 

effectiveness may be somewhat limited. We have reported the data for when teachers used 

ICTs to support numeracy learning elsewhere (Lerman & Zevenbergen, 2006) and this 

showed very low levels of quality learning potential. However, when using the same 

framework to analyse the use of IWBs, the results are even lower. Nine out of the twenty 

pedagogies (those in italics) scored substantially lower when using IWBs. Most of the 
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lower scores were in those two dimensions that relate to the intellectual aspects of 

mathematics learning. From these data we can conclude that the use of IWBs actually 

reduces the quality of mathematical learning opportunities, provides fewer opportunities 

for connecting to the world beyond schools, and offers little autonomous/independent 

learning opportunities for students. Because these data are alarming in terms of their low 

scores, we sought to understand the phenomenon noted earlier in this paper. Whereas the 

low scores would suggest that there was potential for low levels of mathematical learning, 

our observations of the lessons indicated that despite these perceived low scores, there 

were few behaviour problems with students.  

Activity Theory: Coming to Understand the Use of IWBs  

In this final section, we analyse, using Activity Theory, the outcomes in the productive 

pedagogies table alongside interview data and classroom observations. We focus on the 

notion of the artifact mediating learning. Within activity theory, signs and tools mediate 

learning so, in our case, the IWBs were seen as artifacts that shape the ways in which 

learning can occur. The teachers found the resources that were available through the IWB – 

such as pre-planned lessons and digital tools (protractors, rulers, etc.) – offered different 

ways of working with the students. Not only were the resources shaping the ways in which 

teachers taught and planned, but also they impacted on other aspects of their work. 

Shane: I find that there are a whole lot of really good lessons that I can just use. If I am doing 

something on area for example, there are lessons already made up. Some other teachers have 

developed them so they have to be good ones. I am sure that the company only puts up the best 

examples. I have found these to be very handy and they save me doing the preparation work. I guess 

I change them a bit to suit me and the kids but they are pretty much there. 

Most of the teachers had some comment about the time factor in the use of IWBs. It 

was seen to save preparation time in two different ways. As evident in the comment by 

Shane he drew on the resources that had been made by other teachers as these were “tried 

and proven” examples of lessons that worked. In observing his lessons, he would select 

from the databank and then implement the lesson. Another teacher commented on how, 

when using the IWB, the toolkit meant that the resources were all in the one place so she 

did not have to hunt around for them. Knowing that the protractor, ruler, clock, calculator 

were all on the screen and at the touch of the board, was seen to be a considerable 

timesaver. Other teachers made similar comments about the tools that were available on the 

IWB. 

Sarah: I think that the tools on the whiteboard are just great. They are done in a way that the children 

like them. When I pull up the calculator, for example, it looks exciting. It is much more interesting 

than the overhead projector type. I think that these kids expect a bit more from their computers and 

this is possible with the interactive whiteboard.  

These built-in tools were seen to help teaching by reducing time spent not only on 

preparation of lessons but also within the lesson. This helped to make for a quicker pacing 

of lessons. The quicker pace was seen to enhance learning opportunities by engaging 

students. When using the IWBs, it would appear that the teachers were aware of the faster 

pace of the lessons. Having the ready-made resources available meant that little time was 

“wasted” moving from one site to another or drawing representations on the traditional 

boards or papers. They articulated that they posed a lot more questions and the students had 

greater opportunities for participating in the lessons due to the increased questioning.  
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Maxine: One of the things that I like about the whiteboards is that I can ask a lot more questions. 

You just have to click on the menu and there is the lesson or the things you need so you are not 

wasting a lot of time putting up overheads or drawing things on the board. I can ask more questions 

to the kids to see what they know and to get them to think about things. Like when we did the lesson 

with the clocks. You just click on the clock and there it is. You can just move the time around as 

quick as they kids respond. I think they like the quicker speed. They seem to enjoy the race of the 

lesson. If they answer quickly, then we can do another one or something a bit different 

The IWB offers other potentials that were not possible in previous media. In the 

following observation of a lesson, we were able to see how the accuracy of the IWB makes 

the teaching of fractions possible in new and novel ways.  

While the teacher poses the questions, these are teacher-initiated questions and tend to be of a low 

level- that is, recall-type questions. Observing a lesson on fractions, the teacher had used the fraction 

creator. In this, the teacher used the circle and made various numbers of segments. With each new 

model of fractions, she posed questions including “How many pieces are there?” "What fraction is 

that?" The pacing of questions was faster than would be possible if the teacher were to draw the 

objects on the board and then create sections. What was possible in this format was that the accuracy 

of the sections made for less confusion as to the size (and hence equality in those sizes) but also 

made possible the more difficult representations (such as sevenths or fifths). (Lesson Observation) 

However, although the accuracy of representation was a strength of the IWB, it is noted 

that the overall pedagogy remained similar to most lessons we have observed in the more 

traditional modes of teaching. The depth of questioning remained at a relatively superficial 

level where low levels of questions were posed. Thus there remained considerable tension 

in what was offered and what could have been asked. While some aspects of pedagogy had 

changed, others had remained in place. 

One of the observations in the use of IWBs was that it seemed to be used for the 

introduction to the lessons. In following this observation, teachers were asked if this were 

the case and if so, why. In the interviews, it was confirmed that the teachers tended to use 

the IWB to orientate the lesson and to motivate the students. 

Heidi: I use it to get the lesson started. The kids are all together, there are all on the one task, they 

know what we are doing. That is a good way to start the lesson. It is also good as the kids are very 

motivated by the boards so they are keen to get into the lesson.  

In examining the role of the artifact one must also ask what it is replacing, both 

physically and in how it used during teaching. The IWB largely replaces the standard 

whiteboard in that whilst it is also available for pupils to be called to the board to present 

their ideas, proposals, and outcomes of their problem solving, it can also be used to present 

content previously prepared and it enables the teacher to choose high quality accurate 

representations as they are called for during the progress of the lesson. The IWB enables 

the same variety of font formats and other visual effects as word processing packages too. 

In most classrooms the whiteboard remains on the wall alongside the IWB. There is some 

sense that the students in classrooms expect a higher level of digital media in their lives. 

Following one lesson where the teacher had been working with some number work and 

using the calculator, we discussed the approach and what was offered through the IWB 

environment that would not be possible with the non-digital environments. In the case 

being observed, it was posed that the same learning could have occurred had the teacher 

used the traditional whiteboard and an overhead projector, which would have been a 

substantially cheaper option. The teacher commented as follows. 

Marcie: What I think is the key to this is that the calculator is already there. I click it on and there it 

is. I don’t have to walk to the OHP and use that medium. There is no time being wasted. The 
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calculator (on the IWB) is a neat one and the kids like it. I think that they are so savvy with 

technology that they come to expect that, you know, the instant appearance of things – like the 

calculator. They get turned off by wasting time moving around, they like things to come up at the 

touch of a key. They just expect it, they have grown up with computers and they just expect that that 

is the way the world is. 

The overhead projector (OHP) can be used to project pre-prepared transparencies onto 

the whiteboard but in our experience in these schools the OHP is rarely used. Our 

observations indicate the predominance of the latter two uses of the IWB, pre-prepared 

materials and impressive formats, causing some frustration amongst pupils as they want to 

“have a go” at using the IWB themselves. Writing on the whiteboard is a slow process, 

calling for the teacher to be turned away from the pupils. Projecting PowerPoint work or 

other resources sets up fast paced lessons and greater control of pupils’ behaviour.  

Thus the key tension here appears to be between the artefact and the division of labour. 

Although it is clear that the IWB offers great potential for higher level interactions between 

teacher and pupils, the need to be in control of the class and in this case the artefact 

militates against any pedagogic shift towards greater intellectual challenge. The 

identification of this tension also opens up the possibility for development with teachers; 

the specific focus offers a way in to engagement with what is blocking a positive move. 

Conclusion 

There is little doubt that IWBs have the potential to enhance learners’ opportunities to 

experience mathematical representations and develop their mathematical thinking. As with 

all resources, mathematical or other, internalising a tool, be it the number line or a 

calculator, LOGO, dynamic geometry or Graphic Calculus, or presentation tools such as 

overhead projectors or IWBs, transforms the world, in this case of mathematical pedagogy 

for the teacher. That transformation is always mediated by other experiences; however by 

themselves they will not transform pedagogy, no matter what their potential. Indeed, as we 

have reported in this paper, the technologically impressive features of the IWB can lead to 

it being used to close down further the possibility of rich communications and interactions 

in the classroom as teachers are seduced by the IWB’s ability to capture pupils’ attention. 

We suspect, also, that teachers’ advance preparation for using the IWB, often via the 

ubiquitous PowerPoint package or pre-prepared lessons for the IWB, are leading to a 

decreased likelihood that teachers will deviate in response to pupils’ needs and indeed 

might notice pupils’ needs less frequently through the possibility to increase the pacing of 

mathematics lessons.  
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In recent decades the development of mathematical proficiency has been recognised 

as a key issue for children and their education. The purpose of this paper is to identify 

key international perspectives that influence Australian mathematics education in the 

early years especially those that are in a similar state of technological development to 

Australia. There are four key trends deserving of discussion: (1) development in the 

early years, (2) mathematical proficiency in the early years, (3) mathematics policy 

and curriculum designed for young children, and (4) the existing research evidence-

base. 

In recent decades there has been universal interest in the benefits surrounding 

early childhood education and the crucial role early childhood development plays in 

societies economic and social growth has been internationally recognized and 

acknowledged (Dodge, 2004).  This commitment to early childhood education and 

care is evident in the report Starting strong: Early childhood education and care 

(OECD, 2001, 2006). Policy-makers have “recognised that equitable access to quality 

early childhood education and care can strengthen the foundations of lifelong learning 

for all children” (OECD, 2001, p. 7). Correspondingly, the importance of mathematics 

in the lives of young children has been recognised (Ginsburg, Cannon, Eisenband, & 

Pappas, in press).  

The past few decades have seen substantial changes in thinking about young 

children’s ability to reason mathematically and their propensity to learn mathematical 

concepts and acquire associated skills (e.g., Baroody, 2000; Clements & Sarama, in 

press; Ginsburg, Balfanz, & Greenes, 2000). The development of mathematical 

proficiency has been recognised as a key issue for children and their education. In 

recent years it has also been acknowledged that the advances in technology have 

influenced the need for increased and enhanced numeracy practices. Steen (2001) 

credits the rise in the use of quantitative data, numbers, and information to the 

universal increase in the usage of technology, computer, and the internet. Our very 

young children are born into a world that is built on digital technology and a world 

where having competence and dispositions to use mathematics in context is essential. 

The importance of a numerate society in a technological age is recognized globally 

(Her Majesty’s Inspectorate, 1998; National Council of Teachers of Mathematics 

(NCTM), 2000).  

The coalescence of contemporary understandings (i.e., early learning, 

mathematical proficiency, technology) has created a juncture in the field of early 

childhood mathematics. The purpose of this paper is to identify key international 

influences on Australian mathematics education in the early years, especially those 

from countries that are in a similar state of technological development to Australia. 

There are currently four international trends guiding early childhood mathematics – 

the nature of early years development, the mathematical capabilities of young children, 

early childhood policy and curricula to inform practices, and the call for evidence-

based research. 
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The Early Years of Development 

The internationally defined period of early childhood spans the years from birth to 

eight years (Bredekamp & Copple, 1997). These first eight years of life constitute two 

distinct learning periods: first, the development that occurs prior-to-school in informal 

learning situations, and second, the development that occurs in the first three years of 

schooling, which is often regarded as formal learning. High quality educational 

programs in the prior-to-school years facilitate the development of the child in all its 

dimensions and have considerable long-lasting effects on the child’s life (OECD, 

2001, 2006).  Perry (2000) argues that during this period the growth of fine and gross 

motor skills, understanding and expression of emotional and social competence, 

cognitive changes, and the development of language are extensive.  Contributing to 

the current perceptions of young children and their learning capabilities are the 

findings of neuroscience research.  

Neuroscience research findings confirm the connection between young children’s 

experiences and achievements later in life (Bruer, 1999). These studies have 

suggested that brain growth is highly dependent upon children’s early experiences. 

Original research by Chugani (1998) provides evidence that “environmental 

enrichment” stimulates brain development. Worldwide, there has been excitement 

about the potential of the studies from neuroscience to inform early childhood 

education (e.g., Meade, 2000). Consequently, it has been widely accepted that early 

childhood development prior to school helps prepare young children to succeed in 

school (Bowman, 1999) and that long-term success in learning requires quality 

experiences during the “early years of promise” (Carnegie Corporation, 1998).  

Mathematical Proficiency in the Early Years 

International research provides evidence advocating the salient nature of early 

childhood development and mathematical growth. An increased recognition of the 

importance of mathematics (Kilpatrick, Swafford, & Findell, 2001) coupled with 

research findings has confirmed that mathematical development occurs in the early 

years and is critical to success and achievement in both school and life pursuits.  

Studies have shed light on the many general and specific mathematical skills, abilities, 

knowledge, and dispositions acquired by young children. For example, Hughes’ (1986) 

research clearly showed that children exhibit knowledge of subtraction before 

attending school, while Carpenter and Moser (1984) noted children use informal 

knowledge to solve simple addition problems. Feeney and Stiles (1996) produced 

research findings that describe children’s spatial ideas. Measurement, data, and 

probability have also been identified as features in early childhood learning (Perry & 

Docket, 2002). Other studies have reported on problem solving (Cobb et al., 1991), 

data sense (Jones, Langrall, Thornton, & Nisbet, 2002), numerical competence (Wynn, 

1998), and counting (Sophian, 2004). Research findings on children’s early 

mathematical growth together with the growing number of children who spend time in 

early childhood programs has created an impetus for the creation of policies and 

curricula that support the development of early years care and education.  In the 

digital age with the vast majority of jobs requiring more sophisticated skills than in 

the past, mathematical proficiency has become as important a gatekeeper as literacy 

(Baroody, Lai, & Mix, in press).  
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Mathematics Position Statements and Curriculum in the Early Years 

Position statements and curricula advocating mathematics education in the early 

years recognises young children’s mathematical potential. A position statement 

developed by the National Association for the Education of Young Children (NAEYC, 

2002), and NCTM (2002) have affirmed that high-quality, challenging, and accessible 

mathematics education for 3- 6-year-old children is a vital foundation for future 

mathematics learning. Besides advocating a robust mathematical base for these young 

members of society, the position statement acknowledges that higher levels of 

mathematical proficiency are required in the 21
st
 century (NAEYC, 2002; NCTM, 

2002). However, none of the ten research-based recommendations designed to guide 

classroom practice discusses the role of technology on young children’s mathematical 

development.  

Curriculum documents create the foundation for much that happens in compulsory 

and pre-compulsory settings. The NCTM (2000) proposes that mathematics is a way 

of thinking about relationships, quantity, and pattern via the processes of modelling, 

inference, analysis, symbolism, and abstraction (NCTM, 2000). They stipulate that, 

“the foundation for children’s mathematical development is established in the earliest 

years” (p. 73) and have created principles and standards that promote this viewpoint. 

American researchers involved in early childhood mathematics have made a 

concerted effort to foster curriculum reform informed by the mathematics standards. 

Clements, Sarama, and Di Biase (2003) have compiled a list of assumptions, themes, 

and recommendations that evolved from the conference on Standards for Pre-

Kindergarten and Kindergarten Mathematics Education (NCTM, 2000). Clements et 

al. (2003) emphasise that the guidelines for developing standards and curricula should 

be based on available research and inform practice.  

Evidence-based Practice 

The belief that mathematical capabilities and competencies of young children are 

extensive and impressive (Clements & Sarama, in press) is validated by contemporary 

research findings. Yet a dearth of research on early childhood mathematics especially 

in the years prior-to-school has been reported (Perry, 2000).  Hiebert (1999) cautions 

that an adequate evidence base is essential to inform teachers who are trying to 

improve children’s achievement in mathematics. In a recent study, I reviewed 208 

articles on early childhood mathematics education sourced from the ERIC database 

that were published between 2000 and 2005 in order to determine the adequacy of the 

literature.  Overall, this study revealed: (1) a lack of peer-reviewed articles that 

discuss, investigate, examine, or debate early childhood mathematics; (2) a limited 

emphasis in the prior-to-school years; and (3) a paucity of literature on technology 

and problem solving. Traditional mathematical topics are represented in the research, 

such as mathematical concepts and instruction, but the literature was limited in other 

significant ways. For example, scant research on technology use by young children 

was reported. When considering the mathematical proficiency to be developed by 

young children to function effectively in everyday life, technology plays an important 

role.  

A further consideration in the adequacy of the literature base is the rigour of the 

research. The requirement for evidence-based policy and curricula in the USA has 

drawn attention to the quality of the research base from which policy and curricula are 

developed in other countries. In the United States landmark legislation titled, No 

Child Left Behind (NCLB) (U.S. Department of Education, 2001) aims to improve the 
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performance of school students by increasing the standards of accountability as well 

as providing parents more flexibility in choosing which schools their children will 

attend. This act specifically calls for scientifically-based research to inform education 

policy and practice and that decisions regarding policy and practice be evidence-based. 

Thus, not only is there a need for more early childhood research on contemporary 

topics such as technology, but there is a corresponding need for this research to be 

rigorous.    

Conclusion 

Four international trends influence contemporary early childhood mathematics: (1) 

world wide beliefs about the salient nature of early years’ development, (2) the 

mathematical capabilities of young children, (3) the development of position 

statements and curricula to inform early childhood practices, and (4) the evidence 

base. However, some essential areas remain under-researched. For example, the 

influence of technology on human life in the new millennium has created a world 

characterized by diverse and energetic communication, vast amounts of information, 

rapid change, and high levels of numeracy. Technology affects the daily lives of every 

person, directly or indirectly (Williams, 2002) yet currently it is featuring little in the 

early childhood mathematics research literature. The research base providing evidence 

of the salient nature of prior-to-school years and mathematical development is also 

lacking. These first years of life should not be overlooked due to their important role 

in brain development, lifelong learning, and life chances.   

This paper has identified some of the international perspectives influencing early 

childhood mathematics education and some of the areas in need of research. These 

international perspectives contribute to the research agendas and directions in 

Australian early childhood. 
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In the last four years there have been a number of calls for research into many aspects 
of early childhood mathematics education. As well, there has been an unprecedented 
increase in Australasian research in this field. How have these two factors matched? 
That is, are mathematics education researchers studying the aspects of the field that 
have been identified for further research? This paper provides the beginnings of a 
discussion around this question by highlighting particular Australasian early 
childhood mathematics education research endeavours and linking them to recent 
statements calling for further research in the field. 

In our chapter for the recent MERGA review of research in mathematics 
education research in Australasia (Perry & Dockett, 2004), we concluded with the 
following statement on future research in early childhood mathematics education. 

From this critique of early childhood mathematics education research in Australasia in the 
period 2000 – 2003, fruitful areas for future research would seem to include: 

• approaches to assessment and teaching / learning in numeracy and possible 
mismatches between these; 

• successful approaches to the mathematics education of young Indigenous students;  

• successful approaches to the mathematics education of young children from 
culturally and linguistically diverse backgrounds; 

• technology in the mathematics education of young children; 

• play in the mathematics education of young children; 

• development of mathematical concepts among children before they start school; 

• continuities and discontinuities of learning in children as they move from prior-to-
school to school settings, and 

• recognition of young children as capable learners of mathematics and the results of 
such recognition in their mathematical outcomes in the first years of school. 

The field of early childhood mathematics education research beckons as an exciting forum in 
which committed researchers can make a difference. While a lot has already been done, there 
is still much to do in an area which has been neglected to some extent but which is now 
enjoying a resurgence of interest. (pp. 119-120) 

Similar statements have been made in other contexts. For example, Ginsburg and 
Golbeck (2004, p. 190) 

argue that researchers and practitioners should examine carefully not only the possibility of 
unexpected competence in young children, but also its complexity and the limits on it;  
investigate the socio-emotional context of learning and teaching; attend closely to those 
children in need of extra help, including low-socio-economic status (SES) children, children 
with disabilities, and children who receive schooling in an unfamiliar language; create 
sensitive evaluation strategies that examine program quality, the effectiveness of teachers and 
administrators, and children’s achievement; develop creative and enjoyable curricula that 
stress thinking as well as content and integrate an organized subject matter with projects and 
the thoughtful use of manipulatives; investigate the complex processes of teaching in various 
contexts; and investigate the possible benefits and disadvantages of parental involvement in 
early mathematics and science education. 
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Clearly, there are many similarities in these two statements. Together, they can be 
taken to articulate an agenda for further early childhood mathematics education 
research. 

The latest comprehensive review of this research in Australasia (Perry & Dockett, 
2004, p. 119) suggests that 

there is a vibrant and important early childhood mathematics research agenda in Australasia. 
Growing worldwide recognition of the importance of the early childhood years – both in and 
of themselves and in preparation for future learning experiences – and of the valuable, 
innovative and critical research being undertaken in Australasia augurs well for growth and 
continued influence. 

How are we Travelling? 

It is particularly gratifying to be able to report that, over the last 4 years since this 
statement was made, the quantity and quality of early childhood mathematics 
education research in Australasia have both moved in very positive directions. Much 
of this research has been stimulated by large systemic numeracy programs.  Bobis, 
Clarke, Clarke, Thomas, Young-Loveridge, & Gould (2005) provide a comprehensive 
comparison of these programs) such as Count Me In Too (Bobis & Gould, 2000), 
Early Numeracy Research Project (Clarke & Clarke, 2004; Clarke, Clarke, & 
Cheeseman, 2006), and First Steps (Willis, Devlin, Jacob, Treacy, Tomazos, & 
Powell, 2004) in Australia and the Early Numeracy Project in New Zealand (Thomas, 
Tagg, & Ward, 2003). Based on the pioneering work of Bob Wright (e.g., Wright, 
1994; Wright, Martland, Stafford, & Stanger, 2002), these programs have 
revolutionised early numeracy teaching and learning in Australia and provided a great 
deal of stimulus for further research in early childhood mathematics education.  

The lists of “needed” research compiled by Ginsburg and Golbeck (2004) and 
Perry and Dockett (2004) are extensive. It is well beyond the scope of this paper to 
report on achievements in each of the areas listed. Rather, as examples, we choose 
two areas in which a great deal of work has been done by Australasian mathematics 
education researchers. These promote the central tenet of this paper that much has 
been done but that there is still much to do. 

Young Children are Capable Mathematics Learners 

One area identified above in terms of further research that has been carefully 
considered by these systemic programs has been that of recognition of young children 
as capable learners of mathematics and how this recognition impacts on the 
curriculum and pedagogy of the first years of school. The notion that children come to 
school able to access powerful mathematical ideas is not new but has received 
renewed emphasis through several initiatives in Australasia and beyond. For example, 
the recently published Position Paper on Early Childhood Mathematics (Australian 
Association of Mathematics Teachers and Early Childhood Australia (AAMT/ECA), 
2006, p. 2) states that:  

The Australian Association of Mathematics Teachers and Early Childhood Australia believe 
that all children in their early childhood years are capable of accessing powerful mathematical 
ideas that are both relevant to their current lives and form a critical foundation for their future 
mathematical and other learning. Children should be given the opportunity to access these 
ideas through high quality child-centred activities in their homes, communities, prior-to-
school settings and schools. 

Research in Australasia (Clarke et al., 2006; Perry, Dockett, Harley, & Hentschke, 
2006; Thomson, Rowe, Underwood, & Peck, 2005; Young-Loveridge, 2004) and 
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beyond (Aubrey, 1993; Aubrey, Dahl, & Godfrey, 2006; Sarama & Clements, 2004; 
Seo & Ginsburg, 2004) provides backing for this profoundly important statement. 
Many of the systemic numeracy programs mentioned earlier in this paper adhere to 
this position and reflect it in the ways that they assess their participants in order to 
ascertain the extent to which the powerful ideas are present. 

Assessment in Early Childhood Mathematics Education 

Prior to the publication of the Australian position statement on early childhood 
mathematics education (AAMT/ECA, 2006), the peak professional bodies in 
mathematics and early childhood education in the United States of America had 
published their own position statement (National Association for the Education of 
Young Children and National Council of Teachers of Mathematics (NAEYC/NCTM), 
2002). Assessment of young children’s mathematical learning features as one of the 
critical elements of high quality mathematics education. The following statement is 
included: 

Assessment is crucial to effective teaching. Early childhood mathematics assessment is most 
useful when it aims to help young children by identifying their unique strengths and needs so 
as to inform teacher planning. Beginning with careful observation, assessment uses multiple 
sources of information gathered systematically over time. … Mathematics assessment should 
follow widely accepted principles for varied and authentic early childhood assessment. For 
instance, the teacher needs to use multiple assessment approaches to find out what each child 
understands--and may misunderstand. Child observation, documentation of children's talk, 
interviews, collections of children's work over time, and the use of open-ended questions and 
appropriate performance assessments to illuminate children's thinking are positive approaches 
to assessing mathematical strengths and needs. (NAEYC/NCTM, 2002, pp. 12-13). 

The Australian position statement suggests that 

Early childhood educators should adopt pedagogical practices that assess young children’s 
mathematical development through means such as observations, learning stories, discussions, 
etc. that are sensitive to the general development of the child, their mathematical development, 
their cultural and linguistic backgrounds, and the nature of mathematics as an investigative, 
problem solving and sustained endeavour. (AAMT/ECA, 2006, p. 3) 

Clearly, assessment of mathematics learning is an important part of early 
childhood mathematics education. There has been and continues to be a great deal of 
work in Australasia in this area. For example, the work of Doig and his colleagues 
(Doig, 2005; Thomson et al., 2005) has developed and used standardised approaches 
to assessment that are claimed to have highly valid and reliable statistical 
characteristics, making them very useful in large scale reporting. Mulligan and her 
colleagues (Mulligan, Prescott, Papic, & Mitchelmore, 2006) have developed a 
particular assessment approach, based on those used in Count Me In Too and other 
systemic numeracy projects, to assess the development of pattern and structure in 
young children. Fox (2006) has used extensive structured observations to study 
possible links between patterning activities and the development of algebraic 
reasoning in preschool children. Young-Loveridge and her colleagues (Young-
Loveridge, 2004; Young-Loveridge & Peters, 2005) have used individual task-based 
interviews to assess the numeracy development of children across the early childhood 
years and to evaluate the effectiveness of many different teaching approaches. Perry 
and his colleagues (Perry et al., 2006; Perry, Dockett, & Harley, in press) have used 
the learning stories approach developed by Carr (2001) and linked it to an extensive 
numeracy matrix constructed jointly by researchers and practitioners to assess and 
plan for preschool children’s mathematical learning within the context of a mandatory 
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reporting regime. All of these approaches to assessment show great potential to 
further enhance young children’s mathematical learning and the teaching that will 
facilitate this. 

Conclusion 

There are many further examples where Australasian early childhood mathematics 
education researchers have taken up the challenge to undertake research that has been 
identified through the literature as ‘needed’. More needs to be done but much has 
been achieved. For example, there is a particular need for practice-based research on 
ways in which culturally and linguistically diverse learners might better engage with 
mathematics education in both prior-to-school and school settings. One possible 
approach that could be applied to mathematics education has been documented by 
Fleer and Kennedy-Williams (2002). Much has been done in the area of technology 
use in early childhood mathematics education (Kilderry & Yelland, 2005) and the 
importance of continuity in approaches to mathematics learning and teaching as 
children make the transition to school has been recognised, although there is still a 
long way to go before this recognition results in practical changes (Thomson et al., 
2005). The advent of documents such as the Australian position statement on early 
childhood mathematics education (AAMT/ECA, 2006) shows that the professions 
relevant to early childhood mathematics education are taking notice of the advances 
being made and the avenues being opened by this research. This recognition provides 
the early childhood mathematics education research community with strong 
motivation to continue its work. 
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In prior-to-school early childhood settings mathematical play can occur in a natural 

and unstructured manner. This paper describes the findings of a case study of children 

in an urban Auckland early childhood centre engaging in socio-dramatic play in the 

family corner. This data gives rise to the notion that foundational mathematical 

knowledge can, and does, develop in very young children.  

The socio-constructivist approach and theoretical framework as espoused within 

the New Zealand early childhood curriculum framework Te Whãriki (Ministry of 

Education, (MoE) 1996) implies that children are gaining experiences, which relate to 

future academic learning, while they play, in natural and in institutional environments. 

Within Te Whãriki (MoE, 1996) curriculum is defined as “the sum total of the 

experiences, activities, and events … which occur within an environment designed to 

foster children’s learning and development” (p. 10). It is these experiences, activities 

and events that can contain rich mathematical activities and in turn form the 

foundation of future mathematical skill (Babbington, 2003). This paper highlights 

some of the key findings of a recently conducted case study, focussing on children’s 

natural mathematical play, which was observed in a prior-to-school, early childhood 

setting. 

 

Method 

This case study investigation included observation of a family play area (family 

corner) incorporating voice recording of children’s conversations. The data collected 

included a combination of photographs of the physical layout, researcher journal, and 

voice recording in order to record the language children used while playing. 

Participants included all children who chose to enter the family play corner during the 

periods of observation. The age range of these participants was between 18 months 

and 4 years of age, although the main players throughout the observational period of 

two weeks were all over 2 years of age.  

Results and Discussion  

 

On the first morning of the case study data collection the children were 

rearranging the family play corner equipment within the setting. During this time 

several significant mathematical aspects occurred. Two children carried a child-sized 

bed into the new area and placed it along one wall in the room, however, 

approximately 30cm of the bed was jutting into a doorway. The children noticed this 

and one child stated that it did not fit and they would have to find another place for it. 

After several minutes of trying a variety of places they decided to move a set of 

drawers so that the bed could fit in, and it did. The practical measurement and 

geometrical knowledge (spatial rearrangement) evident in this anecdote is supported 

by the work of Giglio-Andrews (1996) where she states that actions such as these 

Mathematics: Essential Research, Essential Practice — Volume 2

Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia
J. Watson & K. Beswick (Eds), © MERGA Inc. 2007

875



build the foundations upon which children learn about formal geometric concepts. 

Once most of the furniture was in place an adult placed a basket of plastic 

cutlery into the centre of the table. A child (4 years) tipped it out and sorted the 

cutlery into categories by colour; “red ones here, white ones here” as he placed them 

into a cutlery tray.  

Classification of this type is also seen in the work of Kirova and Bhargava (2002) 

where they researched mathematics within a play-based curriculum and found 

evidence that mathematical understanding can be observed in children’s socio-

dramatic play. Their findings described a variety of early concepts specifically those 

of one to one correspondence, classification and seriation. This anecdote shows 

evidence of classification by attribute (colour and shape) and occurred in a variety of 

play episodes recorded over subsequent observations.  

 Another example of this was when some plastic crockery and cutlery had just 

come out of the dishwasher and was placed onto the table in the family corner. A 4-

year-old child immediately sat down and started to dry this equipment with a tea 

towel, as they were still wet. As she dried each piece she placed them carefully into 

discrete groups of plates, cups, knives, spoons, forks, and bowls. The actions of this 

child showed her knowledge of hygiene practices and routines in the home and at the 

centre and an understanding that objects can be categorised into groups showing 

further evidence of this young child’s classification skills.  

Intellectualising about number knowledge was observed. A group of children 

were sitting at a table, one 4-year-old child had a plastic “play” biscuit and was 

pretending to cut it down the centre with a knife. As she did this she stated “half for 

you and half for me”.  

The concept of halves was also discussed at other times. A 3-year-old child had 

placed a small amount of play dough onto a plate “Toast is on the plate but I still need 

more honey, not enough, I going to cut it in half”, as she cut the play dough into two 

pieces. This demonstrated an understanding of the concept that one half is one of two 

pieces regardless of whether she understood the equivalent nature of fractions. These 

two anecdotes support the work of Smith (1998),  “It is important that teachers and 

parents realise that when children play imaginatively they are not being frivolous but 

are practicing important intellectual and social skills, which will help them develop in 

many areas” (p. 27). The intellectual skills that children exhibited while engaged in 

the play described above were observed in further episodes. 

Birthdays as an aspect of number were a recurring theme particularly when play 

dough was available in the area. For example, a 3-year-old child said “look at my 

cakes, ‘tis for you (looking at researcher) you are four, gonna be four.” She then 

pushed three small forks into her play dough “cake”. At this point another child (4 

years) at the table stated, “no that’s three you need another candle.”  The cake was 

then cut into six small pieces as the 3-year-old counted, “one, two, one, two, one, 

two.” The second child in this anecdote displayed the skill of subitising, as she 

immediately knew how many “candles” were on the play dough cake without needing 

to count them. She was also able to show her knowledge of simple addition when she 

recognised the first child’s mistake. The patterns of counting were beginning to be 

explored here by the 3-year-old as she counted six pieces of “cake” in twos. Carr, 

Peters, and Young-Loveridge (1991) described this clearly in their work with 4-year-

olds where children could count in twos and in fives when prompted. This early 

mathematical conceptual understanding is the foundation for future mathematical skill 

and understanding in a wide range of mathematical areas such as addition, subtraction, 

and multiplication (Maclellan, 2000).  
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Other aspects of number that were observed were those of simple addition and 

subtraction. In a recurring and very popular game of “mum and the kittens”, three 

girls (3 years, 3 years, and 4 years of age respectively) were approached by a fourth 

child to join their game. When he stated that he wanted to be a kitten too, the “mum”, 

a human mother character, responded that there were not three kittens only two but he 

could be a dog if he wanted to. When one of the “kittens” left the play area “mum” 

then shouted out “hey there’s only one kitten now!” The inherent knowledge that two 

plus one more makes three, and that two minus one equals one, was clearly part of 

this child’s experience. This simple addition and subtraction is one of the major 

aspects of mathematical relationships as it eventually leads to the child’s 

understanding of quantification (Geist, 2001).  

 Counting as a measure of time was observed alongside geometrical shape 

knowledge. A 3-year-old child at the play dough table had cut a small piece of dough 

into an equilateral triangle,” here’s your trimangle [sic] cake, it’s your favourite, 

vamilla [sic].” She took the play dough “cake” to the play oven and placed it inside 

saying, “1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ready now.” Children may use counting as a way 

to measure time, length, weight, distance, speed, or volume (Maclellan, 1998) and this 

anecdote clearly supports this claim. Identification of common geometrical shapes is a 

natural experience and in the anecdote above the child describes a play dough creation 

as a triangle. This is supported by the work of Oberdorf and Taylor-Cox (1999) where 

they describe children’s geometry as the way in which they make sense of their world.  

These findings give strong evidence to the tenet that very young children have 

complex mathematical knowledge. Unless children’s play is viewed with a 

mathematical lens the mathematics can go unnoticed and seem frivolous (Pound, 

1999). Of course not all play is mathematical or has mathematical components but 

there are obvious examples as discussed in this paper. Within this study children 

exhibited clear knowledge and understanding of classification, geometrical shapes, 

counting as a measure of time, patterns in numbers and routines or rituals, passage of 

time in relation to age, spatial awareness, simple fractions, and addition and 

subtraction. These mathematical experiences and conceptual understandings will 

provide the basis upon which future mathematics can be built (Babbington, 2003; 

Dockett & Perry, 2002; Hedges, 2003; Geist, 2001).  

Conclusion 

The findings of this study have shown that the young children within this setting 

performed mathematical inquiry naturally and without adult interaction or 

intervention. Ginsberg (2006) further supports the key findings of this investigation 

and refers to children’s everyday mathematics as a natural and fundamental aspect of 

all children’s learning: “children have the capacity, opportunity, and motive to acquire 

basic mathematical knowledge” (p.148).  Ginsberg goes on to claim that early 

mathematics is the foundation for learning in many other subject areas such as reading, 

scientific knowledge, and construction.  

The notion of play as the catalyst for children’s learning (Dockett & Perry, 2002) 

will continue to be explored through gathering further empirical evidence of the ways 

in which mathematical exploration occurs in early childhood and will continue to 

inform research in, and about, early childhood education. This could include 

considering the importance of listening to children and carefully observing their play 

in order to identify mathematical knowledge. This is highlighted strongly within the 

examples in this paper but much more data could be gathered and analysed to find out 

what children know and can do. It is also important to remember that any learning and 
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teaching should be enjoyable for all involved. As Te Whãriki states, it is expected that 

mathematical ideas will amuse, inform, delight, and excite (MoE, 1996) for all those 

who engage with early childhood education. 
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This paper explores the number knowledge of 1015 children who began school in 

2006 and of a further 3000 children in Grades 1-3. The data show that number 

knowledge varies considerably when children begin school, and that this variation 

extends as schooling proceeds. Teachers need to be aware of each child’s current 

knowledge and ways to customise learning experiences if they are to meet each 

child’s learning needs.  

Introduction 

Every child arrives at school on the first day with lots of number knowledge. Each 

child constructed this knowledge throughout their first 5 years of life as they 

interacted with their families, friends and environment. Because children’s 

experiences and interests vary so much, then the number knowledge of children 

within a class is likely to vary, even when they first begin school. To examine this 

premise, this paper explores the number knowledge of children throughout the first 3 

years of schooling. 

Assessing Children’s Number Knowledge 

The data presented in this paper was collected in 2006 from over 4000 children 

attending 52 primary schools in the Ballarat Diocese of western Victoria, enabling a 

rich picture of children’s number knowledge in this region to be formed. The practice 

in these schools is for teachers to assess each student in the first week of school using 

the Early Years Interview (Department of Education Employment and Training, 2001) 

for the purpose of gaining insight about each child’s current mathematical knowledge.  

Such assessment interviews are now widely used by teachers in Australia and 

New Zealand, due to the experience of three large-scale projects that informed policy 

formation (e.g., Gould, 2000; Clarke et al., 2002; Higgins, Parsons, & Hyland, 2003). 

A common feature of these projects was the use of a one-to-one interview and a 

research-based framework to describe progressions in mathematics learning (Bobis et 

al., 2005).  

The development of the Early Years Interview and the associated framework of 

growth points are reported in detail elsewhere (e.g., Clarke, 2001; and Clarke, 

Sullivan, & McDonough, 2002), but it is important to note that the growth points 

describe major learning along a hypothesised learning trajectory (e.g., Cobb & 

McClain, 1999) and formed the basis for the development of assessment items. In the 

Ballarat Diocese, children’s responses were analysed by the teacher to determine the 

growth points children reached in Counting, Place Value, Addition and Subtraction, 

and Multiplication and Division. To increase the validity and reliability of the data, 

teachers followed a detailed interview script, recorded answers and strategies on a 

detailed record sheet, and used clearly defined rules for assigning growth points. 

Children’s growth points were entered into an excel spreadsheet and each school’s 

data was aggregated to form the data set reported on here. The region’s Numeracy 

Advisors and School Co-ordinators managed this process.  
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Children’s Number Knowledge 

The Place Value growth points associated with the Early Numeracy Interview 

describe children’s knowledge of reading, writing, ordering, and interpreting numbers 

for one-digit to four-digit numbers and beyond. The assessment tasks provide insight 

about concepts of quantity, number partitioning, use of a mental number line, and 

application of place value conventions for reading and writing numerals. Figure 1 

describes the highest Place Value growth points reached by Prep to Grade 3 children 

in the Ballarat Diocese in 2006.  

Figure 1. Percentage of Prep to Grade 3 children in 2006 reaching each of the place value growth 

points. 

The data indicate that children’s knowledge develops significantly during the first 

3 years of school. Further, the complexity of the teaching process is highlighted by the 

spread of growth points within each grade. This spread of knowledge within one 

grade level has been noted in many previous students (e.g., Bobis et al., 2005).  

Examination of the Prep data suggests that the children beginning school formed 

two distinct groups: those who knew how to read, write, and order all 1-digit numbers 

and who therefore required opportunities to explore 2-digit numbers, and those who 

did not. It is important to note that some children beginning school could already read, 

write, order, and interpret 2-digit numbers and thus required opportunities to explore 

at least 3-digit numbers. Similar to the findings of Wright (1992) this challenges a 

curriculum that typically focuses on numbers ranging from 1-20 when children begin 

school. 

The data also suggest that for many children beginning Grade 1, a key issue was 

learning to interpret 2-digit and 3-digit numbers, although some needed opportunities 

to extend their number knowledge to at least 4-digit numbers. The issue for most 

children beginning Grade 2 was exploring 3-digit and 4-digit numbers. However, 20 

percent of children beginning Grade 2 were not yet able to interpret 2-digit numbers, 

and it can be argued that these children would benefit from assistance to accelerate 

their learning. By the beginning of Grade 3, children’s knowledge was spread from 

GP1-GP5. The extent of this range is highlighted by the fact that one-quarter of 

students were able to interpret 4-digit numbers, whereas another quarter were still 

learning to interpret 2-digit and 3-digit numbers.  

The growth points reached by children in the Place Value domain provide an 

indication for teachers of the range of numbers that children may be expected to use 
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for calculations and problem solving. The relevance of this becomes apparent when 

children are introduced to conventional written algorithms for calculations involving 

2- and 3-digit numbers. Given that one quarter of Grade 3 children in this study were 

still learning to interpret 2- and 3-digit numbers, these children may be unlikely to 

understand the place value concepts underpinning formal algorithms, and this 

situation may impede their development of powerful mental reasoning strategies for 

calculating (Narode, Board, & Davenport, 1993). Indeed, data compiled for the 

Addition and Subtraction and Multiplication and Division Domains, but not shown 

here due to space constraints, show that 39% of Grade 3 children still used counting-

based strategies for addition and subtraction calculations, and 47% needed to use 

models to solve multiplication and division problems. These children are unlikely to 

understand the abstract ideas associated with conventional algorithms and may focus 

only on the procedural knowledge associated with conventional algorithms.  

Number Knowledge of Children Beginning School 

When children first begin school, the data presented in Figure 1 show that that 

their ability to read, write, order, and interpret numbers varies considerably. It is 

useful to know if this finding extends to the other number domains also. For this 

purpose, Table 1 shows the percentage of Prep children who reached each Growth 

Point in the domains of Counting, Addition and Subtraction Strategies, and 

Multiplication and Division Strategies.  

Table 1 

Percentage of Prep Children in February 2006 Who Reached Each of the Counting, 

Addition and Subtraction and Multiplication and Division Growth Points 

Counting Growth Points Percent 

n=1015 

Addition & 

Subtraction 

Strategies Growth 

Points 

Percent 

n=925 

Multiplication & 

Division Strategies 

Growth Points 

Percent 

n=923 

0. Knows some 

number names & 

sequences 

46 0. Not Yet 59 0. Not Yet 67 

1. Rote Counting (to 

at least 20) 
19 1. Count all 34 1. Count all 28 

2. Collections (at least 

20 items) 
32 2. Count on 6 

2. Modelling when 

groups are 

perceived 

5 

3. Forward/backward 

(to at least 110) 
2 3. Count down to 1 

3. Modelling when 

groups not 

perceived 

 0 

4. Skip counting (by 

2s, 5s, 10s) 
1 4. Basic strategies 0 

4. Multiplication 

strategies 
 0 

5. Skip counting from 

x (by 2s, 5s, 10s) 
0 

5. Derived 

Strategies  0 
5. Division 

Strategies 
 0 

The major issue to emerge from these data is the spread of growth points in every 

domain, right from the time children begin school, a finding noted in previous studies 

(e.g., Bobis et al., 2005). In Counting, just over half of the group knew the number 

word sequence to 20, and many of these children could count a collection of 20 items. 

The remaining children were still becoming familiar with number names and 

sequences to 20. However, some children counted beyond 110, and others skip 

counted by 10s, 5s, and 2s.  
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In Addition and Substraction, 7% of the children used the count-on strategy when 

asked to find the total of two collections (with nine items screened and another four 

items unscreened). In contrast, 34% used the count-all strategy, whereas the 

remaining children, on this occasion, were not able to solve the problem. 

In the Multiplication and Division Domain, the data show that one-third of 

children beginning school solved the initial task that involved finding the total of 4 

groups of two items. The others were not successful, and it is likely that the greatest 

factor in the task’s difficulty was being able to interpret the demands of the task. In 

contrast, 5% of children on GP2 required learning opportunities focusing on 

developing mental images associated with groups and arrays in order to prompt the 

use of abstract multiplicative strategies.  

In summary, the range of number knowledge in all domains for children 

beginning school is striking and highlights the importance of teachers identifying 

children’s current knowledge and customising learning experiences to meet the 

individual learning needs. 

Discussion and Conclusion 

The data presented in this paper confirm the finding of previous studies that 

highlight the extent and diversity of children’s number knowledge when they begin 

school and throughout the first three years of schooling. Teachers need to respond to 

this situation with ongoing monitoring and assessment to identify children’s current 

number knowledge and customise learning experiences that cater for the range of 

learning needs.  

Clearly, some children lag behind or stride ahead of their peers. These children 

may not always receive the opportunities needed to extend their knowledge further. 

For example, the Victorian Prep curriculum focuses on numbers ranging from 1-20, 

but many students have this knowledge when they first arrive at school. This 

highlights the fact that curriculum guidelines do not always match the learning needs 

of children and need to be refined by teachers if all children are to have the 

opportunity to thrive mathematically. 
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The essence of the demand for freedom is the need of conditions which will enable an individual to 

make his own special contribution to a group interest, and to partake of its activities in such ways 

that social guidance shall be a matter of his own mental attitude, and not a mere authoritative 

dictation of his acts. (John Dewey)  

In many tertiary institutions, mathematics education staff teach courses from early 

childhood education through to professional development courses at Masters level. 

Similarly, research into teacher education processes spans these contexts. Common 

principles that underpin this work include staff willingness to be responsive to students’ 

needs. This symposium focuses on the importance of listening to students’ voices in 

mathematics teaching and research – no matter how old students are.  

The “voices” (Belenky, Clinchy, Goldberger, & Tarule, 1986, p. 7) in the 3 following 

papers are those of primary, secondary, and tertiary students. “Listening”, here, includes a 

range of research activities, including interviews, stimulated recall discussions, and written 

surveys. Doig and Groves interviewed a group of Year 5 and 6 students, seeking their 

thoughts on effective teaching practices in mathematics. Williams’ interview with a Year 8 

student threw light on the reasons for what seemed to be low-level engagement as well as 

barriers that he overcame. The students surveyed by Mousley and Campbell provided 

opinions about a new form of assessment. In each case, the student voices make available 

information about teaching and learning that would otherwise be inaccessible to 

mathematics educators.  

The symposium as a whole draws on the fact that students have more experience of 

teaching practices than any other group of people. Listening to their voices is educative. 

Robinson and Taylor (2007) describe four values related to the notion of student voice: a 

conception of communication as dialogue, potential for participation and democratic 

inclusivity, recognition that power relations are unequal and problematic, and possibilities 

for transformation. In the following set of three papers, one sees evidence of how each of 

these components plays out in research that aims to support educational change by 

capturing students’ ideas in primary, secondary, and tertiary mathematics education 

contexts. 
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This paper presents the results of interviews with Year 5 and 6 students about their views of 

effective teaching practices in mathematics. The students interviewed were part of a large-

scale study into improving middle years mathematics and science. Their views confirm 

findings from the literature and other data sources from the project, and provide valuable 

insights into student perceptions of effective teaching practice in middle years mathematics.  

In our efforts at “school improvement” we need to tune into what pupils can tell us about their 

experiences and what they think will make a difference to their commitment to learning, and, in turn, 

to their progress and achievement. (Rudduck & Flutter, 2000, p. 75) 

A fact we often forget is that students have more experience of teaching practices than 

any other group. In other words, their fund of knowledge (Moll & Greenberg, 1990) of 

teaching practice is extensive. However, whether they are able to articulate their knowledge 

to assist teachers make teaching practices more effective is an open question.  

This present research was stimulated, in part, by van den Heuvel-Panhuizen (2005). In 

the research reported at the International Symposium Elementary Maths Teaching (SEMT), 

van den Heuvel-Panhuizen interviewed two very articulate students. These girls had a clear 

idea of what they saw as good teaching practice, and what was not. This appeared to come 

from the professional background of their parents; they knew and used educational jargon. 

Examples of their insights included those related to explaining: that teachers should use 

visuals to aid their explanations, and that the “why” should be explained as well as the 

“how”.  

This paper presents the results of interviews with four Year 5 and 6 students about their 

views of effective teaching practices in mathematics.  

Background 

The student interviews were conducted as part of the Improving Middle Years 

Mathematics and Science: The role of subject cultures in school and teacher change 

(IMYMS) project, which investigated the role of subject knowledge and cultures in 

mediating change processes in the middle years of schooling. The project worked with 5 

secondary and 27 primary schools located in urban, regional, and rural areas of Victoria. 

The project had its roots in the Science in Schools research project, which developed a 

successful strategy for improving teaching and learning science (Gough & Tytler, 2001). 

IMYMS is based on an action planning process that involves auditing the practice of 

mathematics and science in schools. The major foci of the audit are teacher practice and 

beliefs, and student perceptions and learning preferences (e.g., Doig, Groves, Tytler, & 

Gough, 2005). Students also took part in written and performance assessments.  
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Methodology 

At the end of the 2005 school year, four students who were part of the IMYMS project 

sample at one urban primary school were selected for a group interview. As Osborne and 

Collins (2001, p. 443) point out, (focus) group interviews offer “a means of exploring the 

principal issues of interest in a dynamic manner which utilizes the group interaction to 

challenge, and probe, the views and positions espoused by individual members in a non-

threatening, relatively neutralized social setting”. As in van den Heuvel-Panhuizen’s (2005) 

student consultancy study, students were selected on the basis of their likelihood to be able 

to give informed advice on effective teaching. In this case, the students were chosen based 

on their results on the IMYMS written mathematics assessment, and their teachers’ 

assessment that these four students were very capable in mathematics and likely to be 

articulate in an interview situation.  

Two boys, Ian (Year 5) and Nick (Year 6), and two girls, Ursula and Eve (Year 6), 

were interviewed by the authors. A semi-structured interview protocol was used, with most 

subsidiary questions following up students’ responses to the main questions. As with the 

IMYMS survey, the emphasis was on how students believe they best learn mathematics 

and hence how it should be taught. Students were told at the start of the interview that they 

were regarded “as consultants about good ways of teaching and learning and your thoughts 

about teaching and learning maths and science”. The five “main questions” were: 

1 The first question for us is just your thoughts on – well  let’s say do you enjoy maths  … why do 

you like it?  

2 So if you were going to be the maths teacher for next year, for Year 6 somewhere, how would  

you make things different? What would you do?   

3 How do you think you actually learn maths best? What’s the best way of learning maths? 

4 What about the kids who are not doing so well or find it harder? … What’s the best thing for the 

teacher to do to help those kids?   

5 Any other suggestions for us? Things you would recommend, like to see, or think would help?  

The interview was audio-taped and transcribed. The authors examined the transcript of 

the interview and identified phrases in the students’ comments that were qualitatively and 

substantively different from one another. Phrases with like focus were then placed into 

categories that then formed the basis for this paper.  

Results and Discussion 

Only data relating to mathematics are reported here, with the three major themes 

emerging for mathematics being discussed below.  

Challenging but Accessible Content 

Due to the way students were chosen for the interview, it was not surprising that they 

all liked mathematics. However, a frequent complaint was that the way it was taught was 

boring. For example, Nick, the most articulate of the four students, commented:  

Nick: Well I like maths just full stop, but I don’t really like the way we do it. … [it’s] boring, that’s 

the word. … [they make] us do really easy things over and over and over again. 

While the students were very aware that they were not typical in their mathematics 

classes and were “probably the wrong people to ask” about students who are weak at 

maths, they demonstrated a great deal of insight into the problems teachers face: 
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Nick: The teacher’s trying to teach the whole class … It’s a bit hard ’cos there’s a massive range of 

abilities in maths and … people who understand it as soon as they saw it would get really bored.  

When Australian teachers are faced with a wide range of mathematical abilities, their 

most likely strategy is to use groups – in most cases heterogeneous groups. However, all 

the students advocated the use of ability grouping, although they had some reservations: 

Nick: The problem [is] the people who aren’t so good at maths … don’t like being put in a group by 

themselves … Even if they probably learn better that way, they’re not happy doing it that way. 

Eve: Yeah so it’s hard to make them feel good. 

Ursula: But some people like just accept the fact that they’re not so good at maths and they want to learn 

more. Different people’s personalities. 

The strength of feeling was evident by the fact that when asked at the end of the 

interview what advice they would give to trainee teachers, three of the students responded:  

Ursula: Put your students into groups. Different working groups.  

Eve: And make sure that the people who are better at maths don’t get put [into] like easier maths. 

They sort of need to be challenged more. 

Ursula: And yeah other way round. The people who aren’t so good at maths don’t get really hard work 

that they can’t even do or understand because that doesn’t do anything.  

Eve: We don’t really get challenged. … 

Ian: Instead of easy maths all the time for the people who aren’t so good [need] different levels. 

Teaching Strategies to Support Learning 

Mirroring the IMYMS student survey, the students were asked how they best learn 

mathematics. There were divergent views on the role of teacher explanation: 

Eve: I like the teachers sort of explaining how you do it and then just doing it. I think the worksheet 

helps you and then she’ll come around and if you don’t understand something she can tell you.  

Ursula: I don’t really like it when they explain ’cos they go on for hours and hours and you kind of lose 

concentration.  

Eve: Well she just sort of explains it on the floor and then we go to our desks. But the people that still 

don’t understand it, they go back on the mat to do it again. So maybe get them back on the mat 

and explain it more than what she’s explaining.  

However, except for the social aspects, the use of worksheets was, by and large, 

condemned by the students: 

Nick: They make photocopies of text books.  

Ursula: Yeah, and they give us a sheet and we stick it in the maths book. … [but mainly] she’ll put up 

lots of sums on the board ... which is all right because I work with my friends … [that’s] fun 

’cos we sort of talk and do it as well instead of just sitting at your desk and not talking. 

Ian: Yeah, we get lots of work sheets every time we have maths, yeah.  

Nick’s single piece of advice to trainee teachers was: 
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Nick: Don’t take the easy way out by just giving us just tons of worksheets! 

Students also advocated teachers probing student understanding to avoid repetition: 

Nick: I’d probably find out who needs to like revise something ’cos if the whole class knows it there’s 

no point going over it. But if only one or two people need to revise it, you could just work with 

those one or two people while the others can do something. So instead of going over it for the 

whole class, just go over it for a few people … Wouldn’t it be better to give them like a one 

page test at the start of the year … just to see where you’re at? 

Linking Mathematics to Students’ Interests 

While condemning worksheets, students were in favour of more “hands-on” work: 

Nick: It would be better if we could do more hands-on things. Actually instead of just getting a 

worksheet and have to do sums … it would be better if we could actually like – this is just an 

example to teach you how to multiple and minus and stuff – pretend to run your own shop or 

something and people would come and buy things, just pretend. …  

Ursula: Going outside measuring the basketball court. Like finding the area, perimeter, and so on. 

The three Year 6 students, who were in extension classes for a while, particularly 

appreciated the project work they did: 

Ursula: That was like going around the school plotting things in a project. 

Nick: Well some of it was hands-on and the rest of it was boring like normal maths. … Oh yeah, the 

projects were good.  

Ursula: Like water usage and we made a ramp, did actions for a ramp. 

Nick: And you were allowed to do … choose what you wanted … and how much solar panels cost and 

things like that. … Actually doing things. Like you’re never just going … like once you go from 

high school, if you go to uni and stuff, you’re never just going to get a sheet, you won’t probably 

just get a sheet of sums for no reason whatsoever. It would be better if we actually used them in 

context of what we’re actually going to use them for. 

Conclusion 

The high-achieving students interviewed felt frustrated by the repetition of 

mathematical content they felt that they had already mastered. They did not believe that the 

mathematics they were doing provided them with sufficient challenge, nor that lower-

achieving student were being well served by the strategies their teachers were employing. 

Moreover, students maintained that applying mathematics to real situations was better than 

completing many, similar, context-free, arithmetic exercises. This, of course, resonates 

with the literature on effective mathematics teaching (e.g., Doig, 2005; Department of 

Education, Science and Training, et al., 2004).  

These results also confirm those from the IMYMS student surveys, where the four 

items (of the 24) that most primary students found “very helpful” for learning mathematics 

were: “Being able to choose how I present things”; “Doing hands-on activities”; “Doing 

investigations or projects of my own choice”; and “Doing activities that challenge me to 

think”. “Doing worksheets” only rated fifteenth. The results align with the IMYMS 

Components of Effective Teaching and Learning that focus on conceptual challenge, 
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supporting meaningful understanding, and linking with students’ lives and interests (Doig, 

et al., 2005).  

The reactions of pupils to what occurs in the classroom has been identified, by teachers 

themselves, as one of the most important determinants of their practice in several studies, 

with the influence that pupils exert on teachers being seen by Bishop and Nickson (1983) 

as stemming from “the part they play in the social arena of the classrooms” (p. 15). 

Although the results from the interviews may be seen as only confirming other data, these 

students’ comments provide richer insights for teachers and researchers than would 

otherwise be available. As in McIntyre, Pedder, and Rudduck’s (2005) study, students 

provided constructive advice on what helps their own and other students’ learning. 

However, unlike that study, the timing of our interview meant that there was no 

opportunity for teachers to act on these views. Although teachers in the IMYMS project 

were provided with summaries of the student responses to the written surveys, based on our 

experience with the interview we would recommend that projects focusing on improving 

classroom practice consider the incorporation of student interviews at an early stage. 
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This paper illustrates the enriched understanding of classroom activity that can occur when 

the student voice is included in the research design and valid data is generated. It presents 

interpretations of classroom activity based solely on lesson video, and the same activity 

interpreted though video stimulated post lesson student interviews. It draws attention to the 

need to synthesize data from complementary sources.  

This paper discusses data collected through student interviews, and identifies the 

problematic nature of research designs that do not include the student voice. A Year 8 

student’s observed classroom behaviour as visible on video was initially examined. This 

was compared with interpretations based on student reconstruction of lesson activity in 

post lesson video-stimulated interviews. Differences in interpretations are considered.  

Literature Review  

Clarke’s (Clarke, Keitel, & Shimizu, 2006) use of video-stimulated recall enabled 

students to view their classroom activity and to become involved in listening to, discussing, 

and writing about their mathematical experiences. Clarke (2001) had previously found that 

observational data alone had led to misinterpretation of the activity of a particular student. 

The teacher’s characterisation of this student as inattentive was consistent with the video 

record and the student herself, on viewing the videotape, commented that it did not look as 

though she was paying attention. During her post-lesson video-stimulated interview, this 

student provided convincing evidence that she had been engaged with the lesson content. 

Clarke has found that considering the data from all three sources (lesson video, teacher 

interview, and student interview) reduced the potential for such misinterpretation. This 

example illustrated that student behaviour needs to be well grounded in the individual’s 

documented statements or actions, and, where possible, corroborated by other data sources 

such as post-lesson interviews (Clarke, Keitel, & Shimizu, 2006). This paper demonstrates 

that valuable data can be lost without attention to the student voice, and illustrates 

inconsistencies between complementary interpretations and synthesis of these 

interpretations.  

Limitations to using students interviews as a data source have been identified (e.g., 

Krutetskii, 1976; Fine & Sandstrom, 1988; Barnes, Williams, & Clarke, 2001) and 

strategies to overcome these limitations have been developed (e.g., Ericsson & Simons, 

1980; Fine & Sandstrom, 1988; Williams, 2005). Krutetskii found students did not always 

share unproductive pathways and Ericsson & Simons suggest the use of salient stimuli (like 

video) in post-task interviews to reduce this occurrence. Where a subject can spontaneously 

“describe one or more specific sub-goals, … [that] were both relevant to the problem and 

consistent  with  other  evidence  of  the  solution  process, …”  (Ericsson & Simons,  

1980,  p. 217) the validity of the student reconstruction increases. On the other hand, if the 

interviewer asked questions that included constructs the subject had not identified in the 

interview, the subject could “generate answers without consulting memory traces” 

(Ericsson & Simons, 1980, p. 217). Descriptions of grounded theory approaches to 
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interviews illustrate how to generate data by letting the subject focus the content and select 

the language, and the researcher probe to identify the meaning the subject intended for the 

language used (e.g., Bowers, 1989).  

In addition to the ethical issues associated with student unease during interviews (Fine 

and Sandstrom, 1988; Barnes, Williams, & Clarke, 2001) the validity of data can also be 

affected by such unease if the student responds, as they perceive the interviewer expects 

rather than through reconstructing their experiences. 

We believe that ethical behaviour when interviewing children includes a requirement for the 

researcher to help child informants to feel comfortable and at ease, and as far as possible to avoid 

placing them under stress. To achieve this, every effort must be made to minimise the negative 

effects of the inevitable power imbalance. … [this also] helps to ensure that the resulting data are 

meaningful and valid. (Barnes, Williams, & Clarke, 2001) 

The interviews undertaken in this study took into account limitations identified herein. 

The intention of this paper is to draw attention to the problematic nature of interpreting 

student activity from video observation alone, and draw attention to how valid data can be 

collected through the student voice when complementary accounts are synthesised.  

Research Design and Mathematical Setting 

The Year 8 lesson from which the data were drawn was the twelfth lesson in a 

sequence of 14 lessons in one set of the Australian data within the broader Learners’ 

Perspective Study, designed to explore the teaching and learning of mathematics as viewed 

from the perspective of the learner. The methodology included videotaping a sequence of 

lessons, post-lesson video-stimulated student and teacher interviews, collection of student 

work and lesson tasks, and teacher questionnaires (Clarke, Keitel, & Shimizu, 2006). The 

primary data were collected by three video cameras that operated simultaneously in the 

classroom to display the actions of (a) the whole class; (b) the teacher; and (c) a pair of 

focus students. Following the lesson, the focus students took part in individual audio-taped 

interviews stimulated by a mixed image of the video of themselves (large image) and the 

teacher (small insert). During the interview after Lesson 12, the student (Leon) controlled 

the video remote and fast-forwarded to the parts of the lesson that were important to him 

and talked about what was happening, what he was thinking, and what he was feeling. By 

asking Leon to find and discuss what was important to him, he had opportunity to discuss 

the lesson without the interviewer imposing language and ideas. The following type of 

statement at the start of the interview was intended to put students at ease:  

I [interviewer] just wanted to say is there is nothing right or wrong about anything you say ‘cause 

what we are interested in is how the maths classroom looks to you when you’re in it and the sort of 

thinking that you are doing in the class. We are not really concerned about whether the things that 

you are saying about the maths are exactly right or- or [pause] wrong or [pause] in the middle or 

whatever, … [the interviewer then explained the purpose of the research, and added we wanted to 

know what the student was thinking and feeling] and you know and we don’t. 

Like other students, Leon smiled, and his body language indicated he was more 

relaxed. By undertaking non-judgemental interviews, some ethical considerations raised by 

Fine and Sandstrom (1988) and Barnes, Williams, and Clarke (2001) were addressed. In 

addition, attention was paid to the ‘equality of interaction’ (Alro & Skosmove, 2004) to 

reduce power differentials and increase the richness of the data. This type of interaction, 

identified in classroom interactions, was adapted to the interview process by Williams 

(2005). 
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A dialogue maintains equality including a respect for diversity. This does not mean that a dialogue 

presupposes similarity or symmetry. We are speaking of interpersonal equality and human respect. 

In dialogue there should be no use of power or force, no persuasion of the other and no winning. ... 

to be productive, a dialogue develops as a dynamic process between equal communicating partners. 

… Even when the teacher is a more knowing or competent party to the dialogue, classroom 

conversations can be dialogic. The roles can be different and so can the competencies. (Alro & 

Skovsmose, 2004, p. 41) 

Mutual respect was built by: reinforcing the value of student responses to the research 

team, the absence of coercion to respond in certain ways, and the demonstrated fallibility of 

the interviewer as a person: “Now I wonder have I remembered to turn on the tape?” and 

“Yes- I sometimes make that mistake too” – [pointing remote control at monitor not video 

recorder]. Leon’s interview resulted in a collaborative interaction. As interviewer, I was 

unable to decipher a comment made by Leon early in the interview as we watched the 

video. I commented as a matter-of-fact “out loud” reflection: “well sometime I am going to 

have to transcribe that and what you were saying there so eventually I’ll know, I’ll go back 

over it a hundred times [laugh] till I find it [laugh]”. This changed the interview dynamics. 

Leon responded: “I can rewin- can I rewind it? … I can tell you what I was saying if I 

rewind it”. My casual sharing of the work involved in deciphering almost inaudible 

statements led to Leon volunteering assistance and continuing to do so throughout the 

interview. He even deciphered the talk of students laughing at a question he had asked.  

Lesson Context 

Students worked in pairs to find the area of one triangle (see Figure 1). Leon and his 

partner Pepe worked with Triangle 1. The measurements of side lengths of each triangle 

were written on the diagrams on the board. Pepe began trying to represent Triangle 1 on the 

A3 sheet provided. He did not know how to construct triangles when three sides are given 

and did not ask anyone for assistance.  

 

 

 

 

 
 

Figure 1. The three triangles on the board in Lesson 12 

Pepe remained focused on finding his own way to construct this triangle over the next 

five and a half minutes. He no longer engaged in off-task activity, he requested various 

implements from students seated around him, and leant over his page using pencil, 

compass, and ruler. When Leon began to ask Pepe questions about what he was doing, he 

did not explain. If he responded to Leon’s queries at all, these responses were generally 

short and/or abrupt. Pepe demanded that Leon watch and work it out himself, or explained 

the problem but not how it was overcome. On occasions, Pepe enlisted Leon’s assistance. 

For example, when he found the compass span insufficient for the length required, he 

directed Leon to hold the end of the ruler as a pivot so the ruler could act as a compass. 

30 cm 30 cm 

     28 cm 
    23 cm 

30 cm 

Red Green Black 

21 cm 21 cm 21 cm 

Mathematics: Essential Research, Essential Practice — Volume 2

892



 

Video Record of Leon’s Practice in the Classroom 

From the video record of the lesson, the following observations about Leon’s activity 

were considered indicators of his inattentiveness (Williams & Clarke, 2002): 
• Whispered prompt from Pepe, prompting an answer about homework (~ 4 min) 

• Whispered prompt from Earl, prompting answer to a teacher question (~ 12 min) 

• Question to Elena regarding the triangle the pair should be working on (~24 min) 

• Question to Pepe regarding which triangle they were working on (~32 min) 

• Pepe’s attempts to get Leon on task, which included slapping his face (~35 min) 

• Question to Pepe, prompted frustrated “If you’ve been listening, Leon” (~37 min) 
 

Observations of Leon’s activity in class (without access to the interview data) 

suggested a student whose level of engagement with the mathematics fluctuated frequently 

during the course of the lesson and a student not inclined to precise work. For example, 

when Pepe was attempting to construct Triangle 1, Leon stated, “Go twenty-one 

centimetres straight up, go in a little bit.” Pepe demanded to be left to do it his own way. 

Pepe appeared committed to a careful construction, and was annoyed with Leon’s lack of 

care. Pepe’s insistent repeated comment to Leon “Leon. Make sure that, make sure that 

twenty-eight always stays on … look it idiot (hits Leon’s face)” appeared to indicate 

Leon’s lack of care in holding the ruler as a pivot while Pepe made an arc.  

The Post-lesson Video-stimulated Reconstruction of Leon’s Classroom Practice 

These interpretations arise from Leon’s video-stimulated post-lesson interview. Table 1 

includes excerpts of lesson transcript and Leon’s interview reconstruction.  

Table 1 

Leon’s Reconstructions Lesson Activity 

Lesson Transcript Interview Reconstruction 

Leon [to Pepe]: What are you doing? Leon: He’s got the compass and I didn’t know 

what he was doing [laugh in voice] with the 

compass because he was supposed to be ruling 

straight lines. 

Pepe: Ah, watch yourself. [Pepe stretched the compass 

along the ruler and Leon watched. Pepe kept his eyes on 

the equipment and the page] 

Leon: Sometimes Pepe is a better teacher than 

the teacher. 

Pepe [to self]: It doesn’t make like twenty-eight 

centimetres [returns ruler, hesitates, extends hand]. Wait 

wait wait wait wait, I still need it. 

 

Leon: What the hell are you doing Pepe? Are we actually 

going to do any work or not? [Pepe has drawn a line and 

started using the ruler for something else.] 

He was doing the circle thing and I didn’t know 

why he was doing the circle thing … that sort 

of threw me off course. 

Leon’s interview (see Table 1) showed he was unaware of the process for constructing 

triangles and did not recognise the compass’ possible purpose when he saw Pepe using it. 

After the interaction in Table 1, Leon continued to challenge what Pepe was doing. Pepe 

became frustrated and used expletives and a sharp, voice to clarify the problem:  

We don’t know how … bloody … ooh, twenty eight centimetres is. We don’t know where the 

fucking measurement is [slapped hands down on the page indicating both ends of the line]. Think 

about it. [Leon looked at the triangle on the board for a short period of time remaining motionless].  

Leon then suggested his approximate way to replicate the triangle. His interview 

comments (Table 1) show he was not aware of Pepe’s more precise way. Pepe responded: 
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“Let me do it my way” and Leon returned to teasing the girls beside him. When Pepe hit 

Leon, it was to regain his attention. Pepe’s intense repeating of how Leon needed to hold 

the ruler occurred when he was trying to regain Leon’s attention not because Leon was 

holding the ruler inappropriately. As Leon held the pivot, his new realisation about Pepe’s 

activity occurred:  
and he’s [Pepe] gone all the way around it [compass arc] “What are you doing that for?” and he’s 

gone “Just watch” and I’ve gone “Oh, so you can get the angle that is sloping down?” and Pepe has 

gone “Yes exactly”. That was where I understood it. 
 

Analysis, Discussion and Conclusions 

Pepe’s frustrated outburst triggered a short burst of intense focus by Leon that resulted 

in his realising there was a problem. Leon’s suggested way of overcoming this problem 

was initial thinking about a newly discovered complexity. His rudimentary method is 

consistent with him being unaware of other methods at that stage. Pepe’s request to 

proceed alone led to Leon’s subsequent inattention. Later, Pepe repeated his instructions 

about how to hold the pivot to regain Leon's attention rather than because Leon was not 

holding the pivot appropriately. Once Pepe had gained his attention, Leon leant over and 

concentrated intently on holding the pivot. This was when Leon reported realising the 

relationship between the position of the side of the triangle and the angle formed. This 

illustration emphasises the need to include the student voice in classroom research to add to 

the validity of interpretations. What on the surface appeared to be lack of care and an 

inattention to detail was at least partly due to a lack of understanding of the mathematics 

involved. Williams and Clarke (2002) provide another example of synthesis of 

complementary interpretations in other activity of these students. Including the student 

voice increases the need to develop strategies to synthesise complementary interpretations. 
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This paper illustrates the way two teacher-researchers are listening to mathematics 

education students’ voices in a Masters course. Group assignments have their advantages 

but it is difficult to ensure strong collaboration, high-level analysis and discussion, a good 

spread of work between group members, and positive social interactions. This research set 

out to explore one way of attending to these problems in a mathematics education Masters 

unit. Students submitted (unmarked) individual essays before combining them to create 

(graded) group assignments. They completed surveys about group work before and after this 

activity, and some were interviewed. Expecting individual work before group work led to 

increased levels of engagement, very high quality work, use of skills in analysis and 

critique, and good levels of student satisfaction.  

Introduction 

Assessment is an important part of any educational process. Accomplishment is not 

signalled only by the completion of a unit of work, but also by the extent to which students 

have engaged with the topic at hand. Further, generic skills including effective 

communication, information seeking, analysis, and critique are being valued increasingly. 

Therefore, assessment must fulfil a number of different purposes.  

In teachers’ professional development courses, the most common form of assessment is 

formative, using feedback that identifies potential for improvement (Falchikov, 2005). 

Formative tasks are also used as the basis for teaching and learning when assessment tasks 

emphasise the student’s role in coming to understand content. It is also a common part of 

mathematics teacher and teacher education rhetoric that group learning situations provide 

educational advantages for students and develop learning that is a mix of knowledge 

acquisition and collaborative skills. Through participating in group learning, students 

(whether children or teachers) should develop improved communication and negotiation 

skills, and better understanding as well as critical thought and deeper learning through 

debate. Supposedly, students working in groups reflect on their learning and are more able 

to externalise their thought processes as well as helping others to understand the content.  

However, research on group assessment has shown that many group tasks fail to deliver 

on these skills, in particular the opportunity for the development of active debate and 

critical reflection. Too often, both mathematics education and teacher education tasks allow 

for inequitable contributions and for dominance by one or two individuals to occur 

(Nightingale et al., 1996; Ramsden, 2003).  

The research reported in this paper aimed to investigate and respond to students’ voices 

about group work. We sought to find out what Masters mathematics education students 

saw as advantages and disadvantages of group assignments, and to change our practices 

accordingly. A new approach was developed, and again student voices were captured in the 

evaluation of this change. 
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Methodology 

Students enrolled in the wholly-online 2006 Masters unit entitled Teaching 

Mathematics Successfully were sent an initial survey on-line, together with ethics forms. 

The survey question requested their opinions of the advantages and disadvantages of group 

work in mathematics classrooms as well as group assignments in their own studies. (This 

paper focuses on the teachers’ opinions about a change made in their group assignment.) 

The survey data were grouped into three categories related to group assignments: perceived 

advantages, perceived problems, and advice to lecturers. Each of these categories was 

divided into subgroups of types of advantage, problem, or advice.  

After completing the initial survey, the students completed the same group assignment 

that had been set in 2005. However, given negative 2005 student feedback on the group 

assignment, and consequent discussion amongst the lecturers about this, it had been 

decided that the group assignment would be completed in two stages. Thus the students 

completed and submitted the assessment task individually before working together as a 

group of 3 or 4 to produce and submit a group assignment, drawing on the best features of 

their efforts. Only the group assignments were graded. The initial, individual assignments 

were filed as a record of students’ efforts, but not marked. 

We had been satisfied with the previous year’s group assignment. It involved writing a 

literature review, analysis and critique of relevant, common practices, and action research 

in a mathematics classroom leading to the writing of a report. Student feedback on the 

assessment task itself, an inquiry into one of the “6 components of quality mathematics 

teaching” identified by Sullivan and Mousley (1996), had been very positive. In addition, 

while allowing for some student choice it was inquiry-based and had the potential to seek 

evidence of extensive research and reflection. It also had seemed to meet many 

characteristics of good higher education assessment practice. For example, our review of 

research by Biggs (2003), James, McKinnis, and Devlin (2002), Nightingale et al. (1996), 

Ramsden (2003), and Nulty and Kift (2003) suggested that effective assessment: 
 

• is closely aligned with course content and expected outcomes; 

• is valid, reliable, and ethical in nature and free of cultural bias; 

• requires completion of authentic activities with emphasis on promoting learning;  

• focuses on eliciting student understandings and demonstration of higher order skills; 

• provides constructive, diagnostic feedback; 

• utilises a variety of methods across assessment tasks; 

• allows for some student choice and caters for different learning styles; and 

• is cognisant of staff and student workloads. 
 

However, the feedback indicated that the 2005 students (practising mathematics teachers in 

primary and secondary schools) did not like the fact that it was a group assignment. It 

seemed ironic that mathematics teachers who generally praise and use group work with 

their own students objected to group assignments, and this contradiction stimulated this 

research. Our primary aim was to find a way to listen to students’ voices in a way that 

respected their views about group work but responded to their criticisms of it. 

After submitting the group assignment then receiving their grades and feedback, the 

students who had responded to the first survey were sent a second one. Those who 

responded and indicated a willingness to be interviewed were later telephoned. Again they 

were asked for their opinions and advice about the use of group assignments.  
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Forty-four students responded to the first survey, 38 to the second, and 26 were 

interviewed by telephone. To meet ethics guidelines, the surveys and interviews were 

implemented by Coral Campbell, who did not teach the unit. 

Results 

Data from the initial survey showed that the teachers used group work in their 

classrooms and they described many reasons for this. Overall, the idea of group work in 

classrooms was received positively, with no respondent citing problems other than 

classroom management issues such as children’s off-task chatter. The most common 

advantage cited was the development of mathematical understanding resulting from 

children sharing of ideas and procedures, peer explanations, and combinations of 

individual expertise (40 responses, 90%). The most common responses are shown in Table 

1. 

Table 1 

Teachers’ Views of Group Tasks in Mathematics Classrooms 

Advantage/Disadvantage n=44 % 

Sharing of ideas, explanations, and expertise 40 90 

Development of social skills 33 75 

Peer support and tutoring, modelling 29 65 

Children’s off-task chatter 28 63 

 

It is recognised that assessment of group products is different from merely working in 

groups in class, but the teachers’ responses in the initial survey were quite different from 

the above when it came to their own assessment. Lesser numbers of students listed 

advantages, and they listed many disadvantages, as exemplified in Table 2, the primary one 

being “Others always share the marks I alone should have earned”. Advantages still 

included sharing of knowledge where “the sum is more than the parts”, and peer support 

was mentioned as “helpful in distance education”. 

Table 2 

Teachers’ Views of Group Assignments in Masters Courses (pre group assignment) 

Advantage/Disadvantage n=44 % 

Sharing of knowledge 9 20 

Peer support 5 11 

“Free riders” sharing equal marks 32 70 

Poor distribution of responsibilities (18, 41%) 18 41 

Time management (getting others to complete their sections on time) 12 27 

 

After completion and submission of the individual assignment, then working together 

to write and submit a group assignment that drew on the best elements of each, and after all 

students’ work had been returned, the second survey was administered. The results were 

quite different. Students listed many more advantages for group work this time, especially 

in relation to the teacher education context (Table 3). 
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Table 3 

Teachers’ Views of Group Assignments in Masters Courses (post group assignment) 

Advantage/Disadvantage n=38 % 

More ideas/insights 28 73 

Each person bringing their own strengths 22 57 

Wider range of resources 12 31 

Sharing or reading/workload 5 13 

Rich discussion / alternative views 5 13 

 

Students contacted by telephone mainly talked about social and academic support 

available to them working on line as off-campus students (50%), learning about different 

ways of responding to the assessment criteria (42%), and learning academic skills such as 

structuring and presentation of essays (19%). It was clear that some students had been 

stretched by the group’s analysis of their individual work. 
 

It takes you out of your comfort area. Having your ideas challenged, engaging with others’ ideas. 

It forces you to look outside your line of thought. 

Primary, secondary, adult, and special ed. all talking about the same issue. It was SO enlightening. 
 

Collis (1998) and Reeves (2000) write about the importance of collaborative group 

work to set the context for on-line students’ support. There were a few complaints during 

the interviews about the logistics of on-line group work including multiple versions (15%), 

about “different ideas and ideologies” (1%), and the “need to agree on a common 

structure” and “melding of writing styles” (1%).  

However, in both the interview and the students’ later formal evaluations of the unit 

and its teaching, there were no complaints about the primary disadvantages cited before 

undertaking the new version of his assignment: uneven input or difficulties getting group 

members to communicate and contribute. On the contrary, it was surprising how many 

groups commented that they “must have been lucky being in a group where everyone 

contributed heaps”. Two students “felt pressure to continue” despite family problems but 

received “much-needed support”. One student in Hong Kong wrote, “I met people!” 

However, there were also hints of the usual group conflicts when a student mentioned that 

a member of her group had “dominated all maths discussions”, and another felt that her 

“assignment contributions were not included well”. 

One student felt that 10 to 20% of the marks should be given to the individual drafts, 

but other students did not mention spontaneously the fact that it was not marked; and when 

asked, made comments like “It worked well that way and we knew you had it there if there 

were any arguments”. When asked what advice they had for lecturers, students advised that 

less time was needed for individual essays and more for group improvements. Three 

friends suggested that “geography could be considered to allow face-to-face and telephone 

exchanges”, echoing the advice of Herrington, Oliver, and Reeves (2003) who encouraged 

lecturers involved in distance to consider how students can arrange occasional face-to-face 

meetings. 

In summary, it is clear that the students – teachers who generally valued group work in 

their own mathematics classroom – felt more positive about group assessment after 

undertaking the two-step process. While the “think, pair, share” process is commonly used 
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in primary classrooms, it would be useful to try this process for group work and assessed 

tasks in secondary mathematics classrooms. We will continue to use it in teacher education. 

Conclusion 

Despite these suggestions for minor improvements, the idea of unassessed individual 

essays becoming the basis for an assessed group assignment was very well received. A few 

of the teachers commented that they were going to try this idea in mathematics classes; and 

indeed, this would be a worthy topic for further research.  

When the research was introduced to students, they were told that the lecturers were 

interested in their ideas and perceptions of the assignment experiences. Many of them 

commented in the interviews about their interest in the research process and expressed their 

appreciation of “an opportunity to try new learning methods”.  

This is the first time that anyone has asked me what I think about assignments. It is surprising that 

it’s a maths unit, but it has me thinking about ways of listening to my own maths students. I wonder 

if they like group work and see advantages. I am going to ask them. We are going to keep studying 

the same units and critiquing each others’ work even if we can’t do group assignments. 

It has been exciting to find a way of organising group work that requires but values the 

contributions of individuals. We will continue to research other aspects our teaching in 

both pre-service and postgraduate mathematics education, and to listen to students’ voices. 
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