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Chapter 1: Introduction 
The National Mathematics Advisory Panel 

The President established the Panel via Executive Order 13398 (Appendix A), in which 
he also assigned responsibility to the U.S. Secretary of Education for appointment of members 
and for oversight of the Panel. While the presidential charge contains many explicit elements, 
there is a clear emphasis on the preparation of students for entry into, and success in, algebra.  

 
Over a period of 20 months, the Panel received public testimony as a committee of the 

whole but worked largely in task groups and subcommittees dedicated to major components of 
the presidential charge. Questions like the following illustrate the scope of the Panel’s inquiry:  

 
• What is the essential content of school algebra and what do children need to know 

before starting to study it?  
• What is known from research about how children learn mathematics?  
• What is known about the effectiveness of instructional practices and materials?  
• How can we best recruit, prepare, and retain effective teachers of mathematics? 
• How can we make assessments of mathematical knowledge more accurate and more 

useful?  
• What do practicing teachers of algebra say about the preparation of students whom 

they receive into their classrooms and about other relevant matters?  
• What are the appropriate standards of evidence for the Panel to use in drawing 

conclusions from the research base? 

Each of five task groups carried out a detailed analysis of the available evidence in a 
major area of the Panel’s responsibility: Conceptual Knowledge and Skills, Learning 
Processes, Instructional Practices, Teachers and Teacher Education, and Assessment. Each of 
three subcommittees was charged with completion of a particular advisory function for the 
Panel: Standards of Evidence, Instructional Materials, and the Panel-commissioned National 
Survey of Algebra Teachers. Each task group and subcommittee produced a report, all of 
which are compiled here in this document.  

 
The Panel took consistent note of the President’s emphasis on “the best available 

scientific evidence” and set a high bar for admitting research results into consideration. In 
essence, the Panel required the work to have been carried out in a way that manifested rigor 
and could support generalization at the level of significance to policy. One of the 
subcommittee reports covers global considerations relating to standards of evidence, while 
individual task group reports amplify the standards in the particular context of each task 
group’s work. In all, the Panel reviewed more than 16,000 research publications and policy 
reports and received public testimony from 110 individuals, of whom 69 appeared before the 
Panel on their own and 41 others were invited on the basis of expertise to cover particular 
topics. In addition, the Panel reviewed written commentary from 160 organizations and 
individuals, and analyzed survey results from 743 active teachers of algebra. 
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In late 2007, the Panel synthesized the Final Report by drawing together the most 
important findings and recommendations, which were issued with the Panel’s full voice. The 
task group and subcommittee reports in this volume carry the detailed analyses of research 
literature and other relevant materials from which the Panel synthesized its major findings. 
These supporting reports cover work carried out as part of the Panel’s overall mission, but 
they are presented by only those members who participated in creating them. The Final 
Report represents findings and recommendations of the Panel as a whole. 
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I. Introduction 

The President’s Executive Order calls for the National Mathematics Advisory Panel 
(Panel) to marshal the best available scientific evidence and offer advice on the effective use 
of the results of research related to proven, effective, and evidence-based mathematics 
instruction. The Panel’s assertions and recommendations, therefore, need to be grounded in 
the highest quality evidence available from scientific studies. The highest-quality evidence 
that is actually available on some key topics, however, may not be of sufficiently high quality 
to support confident conclusions. So that the Panel may be systematic in identifying the 
quality of evidence on which its assertions and recommendations are based, criteria such as 
the following will be applied during the preparation and review of the final report.  

II. Background: Categories of Internal and External Validity 

There are three broad categories into which one can categorize research and the 
corresponding claims based on that research. First, there is the highest-quality scientific 
evidence, based on such considerations as the quality of the design, the validity and 
reliability of measures, the size and diversity of subject samples, and similar considerations 
of internal (scientific rigor and soundness) and external validity (generalizability to different 
circumstances and students). Hypothesis testing, especially the active search for 
disconfirmation, is a hallmark of high-quality research (e.g., Lewin, 1951; Platt, 1964). 
Hence, the Panel’s strongest confidence will be reserved for studies that test hypotheses, 
meet the highest methodological standards (internal validity), and have been replicated with 
diverse samples of students under conditions that warrant generalization (external validity).  

 
In addition to reviewing the best scientific evidence, the Panel is also charged with 

considering promising or suggestive findings that should be the subject of future research. 
Promising or suggestive studies do not meet the highest standards of scientific evidence, but 
they represent sound, scientific research that needs to be further investigated or extended. For 
example, laboratory studies showing significant effects of “desirable difficulties” (i.e., 
difficulties produced by challenging to-be-learned material) or of repeated testing on long-
term retention could be extended to actual classrooms or existing curricula (e.g., Bjork, 1994; 
Roediger & Karpicke, 2006; see Cook & Campbell, 1979). The final category corresponds to 
statements based on values, impressions, or weak evidence; these are essentially opinions as 
opposed to scientifically justified conclusions. Issues such as what constitutes algebra are 
matters of expert opinion rather than of scientific evidence. 
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III. Quantity, Quality, and Balance of Evidence 

A. Strong Evidence 

All of the applicable high-quality studies support a conclusion (statistically significant 
individual effects, significant positive mean effect size, or equivalent consistent positive 
findings), and they include at least three independent studies with different relevant samples 
and settings, or one large high-quality multisite study. Any applicable studies of less than 
high quality show either a preponderance of evidence consistent with the high-quality studies 
(e.g., mean positive effect size) or such methodological weaknesses that they do not provide 
credible contrary evidence. Factors, such as error variance and measurement sensitivity, 
clearly influence the number of studies needed to support a conclusion (reflected in such 
statistics as p-rep, the probability of replicating an effect; Killeen, 2005); the number and 
balance of studies that are indicated above are, therefore, rules of thumb (e.g., see evidence 
standards applied by the What Works Clearinghouse at http://ies.ed.gov/). 

B. Moderately Strong Evidence 

Criteria for moderately strong evidence are the same as that for strong evidence, but 
with one of the following exceptions: there are only one or two high-quality studies, the 
effects have not been independently replicated by different researchers, or they do not 
involve different samples (i.e., diversity of characteristics) and settings.  

C. Suggestive Evidence 

Suggestive evidence is based on one of the following criteria: 
 

a) There are some high-quality studies that support the conclusion (statistically 
significant effects, significant mean effects) but others that do not (nonsignificant). 
Those that do not are null, not negative (nonsignificant effect or mean effects, but not 
a significant negative effect). Any applicable moderate quality studies show a 
comparable pattern or better. 

b) There are no high-quality studies, but all the applicable moderate-quality studies 
support the conclusion (statistically significant individual effects, significant positive 
mean effect size, or equivalent consistent positive findings), and there are at least 
three such studies. 
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D. Inconsistent Evidence 

The evaluation of mixed evidence depends crucially on the quality of the designs and 
methods of each study. The results of high-quality designs trump inconsistent or null results 
of low-quality designs. Mixed results of high-quality studies, moderate-quality studies, or 
both, that are not consistent enough to fall into any of the previously described categories, 
and cannot be adjudicated by methodological criteria, are inconclusive.  

E. Weak Evidence 

Evidence is considered weak when only low-quality studies are available. 

IV. Applying the Criteria 

To apply such criteria, each study on which an assertion or recommendation is based 
must be characterized as “high quality,” “moderate quality,” or “low quality.”  The standards 
for those designations will necessarily differ for the different kinds of research that are 
applicable to different issues and inferences (Shavelson & Towne, 2002). The primary interest 
of the Panel is experimental and quasi-experimental research designed to investigate the effects 
of programs, practices, and approaches on students’ mathematics learning and achievement. On 
some matters, however, the relevant studies are surveys (e.g., of students’ mathematical 
knowledge). On yet other matters, by necessity, the relevant sources represent compilations of 
practice and informed opinion (e.g., regarding the mathematical concepts essential to algebra). 
The methodological quality of individual studies will be categorized as part of the 
documentation for the database for the Panel’s work, using such definitions as the following. 

 
For studies of the effects of interventions: 
 
High quality. Random assignment to conditions; low attrition; valid and reliable 

measures. 
 
Moderate quality. Nonrandom assignment to conditions with matching, statistical 

controls, or a demonstration of baseline equivalence on important variables; low attrition or 
evidence that attrition effects are small; valid and reliable measures. Correlational modeling 
with instrumental variables and strong statistical controls. Random assignment studies with 
high attrition. 

 
Low quality. Nonrandom assignment without matching or statistical controls. Pre-

post studies. Correlational modeling without strong statistical controls. Quasi-experimental 
studies with high attrition. 

 
For descriptive surveys of population characteristics: 
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High quality. Probability sampling of a defined population; low nonresponse rate or 
evidence that nonresponse is not biasing; large sample (achieved sample size gives adequate 
error of estimate for the study purposes); valid and reliable measures. 

 
Moderate quality. Purposive sampling from a defined population; face valid for 

representativeness; low nonresponse rate; moderate to large sample size; valid and reliable 
measures. Probability sample with high nonresponse rate, but evidence that nonresponse is 
not biasing. 

 
Low quality. Convenience sample; high nonresponse rate or evidence that it is 

biasing; small sample size; invalid or unreliable measures. 
 
For studies of tests and assessments: 
 
Psychometric standards such as measures of validity, reliability, and sensitivity will 

be used to evaluate tests and assessments (e.g., Anastasi, 1968; Cronbach & Meehl, 1955).  

V. Task Group Guidelines 

To ensure identification of the best available evidence in the research literature, each 
task group has developed guidelines for the literature search that identify the relevant topics 
and the screening criteria to be used to select the studies the task group will consider for 
review. These criteria are designed to produce full or representative coverage of the highest 
quality and the most relevant studies in a relatively efficient manner. 

A. Learning Processes Task Group 

1. Topics and Content 

a) Research linking mathematical content and children’s learning, and cognitive 
processes. Focus on children’s solving or understanding of mathematics in specific 
content areas (see key words) with measures of children’s learning, problem solving, 
or understanding that are more precisely defined than is typically found with 
achievement measures, e.g., trial-by-trial assessment of problem-solving strategy. 
 

2. Coverage 

a) Emphasis on the literature found in a designated set of core journals supplemented 
with studies on specific topics of interest (e.g., whole number division) from other 
peer-reviewed journals.  

b) Reviews of empirical research in books or annual reviews (e.g., Annual Review of 
Psychology, Handbook of Child Psychology). 

c) Published in English, 1990 or after; supplemented with earlier, high-citation impact 
work, where available. 
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3. Study Samples 

a) Children 3 years of age to young adult. 
 

4. Study Methods 

a) Randomized experiments. 
b) Quasi-experiments with nonrandom assignment to conditions. 
c) Correlational studies with a measure of math processes that is predicted by or predicts 

some other achievement outcome or process measures. 

B. Conceptual Knowledge and Skills Task Group 

1. Topics and Content 

a) Topics taught and assessed in mathematics, preschool to eighth grade and algebra, in 
the United States and internationally. 

b) The relationship between math concepts and skills learned or taught at elementary 
and middle school levels, and later success in algebra (achievement). 

 
2. Coverage 

a) State and international curriculum frameworks for preschool to Grade 8 mathematics 
topics. 

b) Course-level expectations in state-based curriculum frameworks for the algebra topics 
[synthesized by Institute for Defense Analyses Science and Technology Policy 
Institute (STPI) for 22 states]. 

c) Contents of algebra textbooks with particular attention to current and historic (1913) 
algebra topics (synthesized by STPI for 27 textbooks). 

d) Pre-algebra (kindergarten through eighth grade) and algebra topics represented in the 
National Assessment of Educational Progress (NAEP), the Advanced Diploma 
Project (ADP), and the Singapore Curriculum. 

 
3. Study Samples 

a) Students from elementary through high school grades. 
 
4. Study Methods 

a) Descriptive (frequency) analysis from representative sets of materials nationally and 
internationally. 

b) Criteria established by manuscript authors (e.g., Fordham report) for state 
mathematics frameworks. 



Task Group Reports of the National Mathematics Advisory Panel 

 

2. REPORT OF THE SUBCOMMITTEE ON STANDARDS OF EVIDENCE 

2-6 

C. Instructional Practices Task Group 

1. Topics and Content 

a) Effects of instructional practice, teaching strategies, and instructional materials on 
mathematics achievement. 
 

2. Coverage 

a) Published in a peer-reviewed journal or government report. 
b) Published in English, 1976 or after. 

 
3. Study Samples 

a) Children, kindergarten through high school level. 
 

4. Study Methods 

a) Randomized experiments or quasi-experiments with techniques to control for bias 
(matching, statistical control) or demonstration of initial equivalence on important 
pretest variables. 

b) Attrition of less than 30% or evidence that the remaining sample is equivalent to the 
original sample on important variables. 

D. Teachers Task Group 

1. Topics and Content 

a) Relationship between teacher content knowledge and student achievement. 
b) Programs of teacher education and professional development, and their effects on 

teacher knowledge, instructional practice, and student achievement. 
c) Programs of mathematics specialist teachers at the elementary level, and effects on 

instruction and student achievement. 
d) Programs to recruit and retain qualified teachers, and their effects on teacher quality. 

 
2. Coverage 

a) Published in a peer-reviewed journal or government report. 
b) Books and book chapters. 
c) Selected reports relevant to key topics. 
d) Published in English. 

 
3. Study Samples 

a) Teachers of preschool through high school students. 
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4. Study Methods 

a) Randomized experiments. 
b) Quasi-experiments with techniques to control for bias (e.g., matching, statistical 

control) or demonstration of initial equivalence. 
c) Correlational studies of natural variation with statistical controls. 

VI. Procedures 

A. Screening Criteria for the Literature Search 

As described in the previous section, each task group has developed specific criteria 
for identifying and screening the research literature pertinent to its task. Those criteria give 
priority to high-quality scientific research but also include weaker evidence where it may be 
promising or suggestive, and when limited high-quality research is available. As such, the 
search and screening criteria do not provide an assessment of methodological quality per se; 
they only describe the studies each task group wishes to consider in preparing its review. 

B. Documenting the Quality of the Evidence Used in the Report 

The individual research studies that are considered part of the relevant research base 
by each task group will be evaluated as presenting high-, moderate-, or low-quality scientific 
evidence using the standards appropriate to the nature of the research. For some task groups, 
this coding will be done by Abt Associates Inc. as part of their documentation of the database 
of research studies on which the Panel’s review is based. The body of research on which each 
significant claim, conclusion, and recommendation in the report is based will be 
characterized as strong, suggestive, or weak according to the quality, quantity, and 
generalizability of the collective evidence across studies. This information will guide the 
wording of the Final Report with regard to the confidence with which conclusions and 
recommendations are presented. 

VII. Recommendations 

The Panel’s systematic reviews have yielded hundreds of studies on important topics, 
but only a small proportion of those studies have met methodological standards. Most studies 
have failed to meet standards of quality because they do not permit strong inferences about 
causation or causal mechanisms (Mosteller & Boruch, 2002; Platt, 1964). Many studies rely 
on self-report, introspection about what has been learned or about learning processes, and 
open-ended interviewing techniques, despite well-known limitations of such methods (e.g., 
Brainerd, 1973; Nisbett & Ross, 1980; Woodworth, 1948). Therefore, the Subcommittee on 
Standards of Evidence recommends that the rigor and amount of course work in statistics and 
experimental design be increased in graduate training in education. Such knowledge is 
essential to produce and to evaluate scientific research in crucial areas of national need, 
including mathematics education.  
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Executive Summary 

Introduction 

The National Mathematics Advisory Panel was asked to make recommendations on 
“the critical skills and skill progressions for students to acquire competence in algebra and 
readiness for higher-level mathematics.” To address this particular charge, the Panel 
established a Task Group on Conceptual Knowledge and Skills (CKS). To guide its inquiry, 
deliberations, and recommendations, CKS formulated three major questions: 

 
1) What are the major topics of school algebra?  
2) What are the essential mathematical concepts and skills that lead to success in 

Algebra and that should be learned as preparation for Algebra?1  
3) Does the sequence of topics prior to algebra course work or for algebra course work 

affect achievement in Algebra? 

Methodology 

The Panel was charged with determining how to use “the results of research relating to 
proven-effective and evidence-based mathematics instruction” and making recommendations 
“based on the best available scientific evidence.” The Panel contracted with Abt Associates 
Inc. to survey the research literature for studies that addressed each task group’s major 
questions and met standards of methodological quality.  

 
The Task Group’s literature review yielded some peer-reviewed and published studies 

that met standards of methodological quality and were relevant to the work of this Task Group, 
especially with respect to its third question.  However, because of the small number of such 
studies, the Task Group decided to include reports that presented the best available evidence on 
the topic of the conceptual knowledge and skills needed for success in Algebra. Thus it 
supplemented the literature review with reports by national organizations and government 
agencies, and with analyses and comparisons of state curriculum frameworks and school 
textbooks developed for the Task Group by the Institute for Defense Analyses Science and 
Technology Policy Institute. Where there may be differences among these reports, studies, or 
analyses, the differences are so noted. The Task Group’s recommendations on matters of 
definition and mathematical content were also guided by professional judgment. 

                                                
1 Algebra will be capitalized when it is referred to as a course. 
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Results and Conclusions 

The Major Topics in School Algebra 

The Major Topics in School Algebra that were developed by the Task Group on 
Conceptual Knowledge and Skills are shown in this section. The teaching of Algebra, like the 
teaching of all of school mathematics, must ensure that students are proficient in 
computational procedures, can reason logically and clearly, and can formulate and solve 
problems. For this reason, the topics listed below should not be regarded as a sequence of 
disjointed items, simply to be committed to memory. On the contrary, teachers and textbook 
writers should emphasize the connections as well as the logical progression among these 
topics. The topics comprise both core and foundational elements of school algebra—those 
elements needed for study of school algebra itself and those elements needed for study of 
more advanced mathematics courses. The total amount of time spent on covering them in 
single-subject courses is normally about 2 years, although algebra content may be and is 
often structured in other ways in the secondary grades. What is usually called Algebra I 
would, in most cases, cover the topics in Symbols and Expressions, and Linear Equations, 
and at least the first two topics in Quadratic Equations. The typical Algebra II course would 
cover the other topics, although the last topic in Functions (Fitting Simple Mathematical 
Models to Data), the last two topics in Algebra of Polynomials (Binomial Coefficients and 
the Binomial Theorem), and Combinatorics and Finite Probability are sometimes left out and 
then included in a precalculus course. It should be stressed that this list of topics reflects 
professional judgment as well as a review of other sources.  

 
Symbols and Expressions 

• Polynomial expressions 
• Rational expressions 
• Arithmetic and finite geometric series 
 

Linear Equations 
• Real numbers as points on the number line 
• Linear equations and their graphs 
• Solving problems with linear equations 
• Linear inequalities and their graphs 
• Graphing and solving systems of simultaneous linear equations 
 

Quadratic Equations 
• Factors and factoring of quadratic polynomials with integer coefficients 
• Completing the square in quadratic expressions 
• Quadratic formula and factoring of general quadratic polynomials 
• Using the quadratic formula to solve equations 
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Functions 
• Linear functions 
• Quadratic functions—word problems involving quadratic functions 
• Graphs of quadratic functions and completing the square 
• Polynomial functions (including graphs of basic functions) 
• Simple nonlinear functions (e.g., square and cube root functions; absolute value; 

rational functions; step functions) 
• Rational exponents, radical expressions, and exponential functions 
• Logarithmic functions 
• Trigonometric functions 
• Fitting simple mathematical models to data 
 

Algebra of Polynomials 
• Roots and factorization of polynomials 
• Complex numbers and operations 
• Fundamental theorem of algebra 
• Binomial coefficients (and Pascal’s Triangle) 
• Mathematical induction and the binomial theorem 
 

Combinatorics and Finite Probability  
• Combinations and permutations, as applications of the binomial theorem and 

Pascal’s Triangle 
 

Critical Foundations of Algebra 

The Task Group also presents three clusters of concepts and skills that it considers 
foundational for formal algebra course work:  

 
1) Fluency With Whole Numbers,  
2) Fluency With Fractions, and  
3) Particular Aspects of Geometry and Measurement.  

 
To prepare students for Algebra, the curriculum must simultaneously develop 

conceptual understanding, computational fluency, and problem-solving skills. These three 
aspects of learning are mutually reinforcing and should not be seen as competing for class 
time. The Critical Foundations identified and discussed below are not at all meant to 
comprise a complete preschool-to-algebra curriculum; the Task Group merely aims to 
recognize the Critical Foundations for the study of Algebra, whether as part of a dedicated 
algebra course in the seventh, eighth, or ninth grade, or within an integrated mathematics 
sequence in the middle and high school grades. However, these Critical Foundations do 
deserve ample time in any mathematics curriculum. The foundations are presented in three 
distinct clusters of concepts and skills, each of which should incorporate the three aspects of 
learning noted here. 
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Fluency With Whole Numbers 

By the end of the elementary grades, children should have a robust sense of number. 
This sense of number must include understanding place value, and the ability to compose and 
decompose whole numbers. It must clearly include a grasp of the meaning of the basic 
operations of addition, subtraction, multiplication, and division, including use of the 
commutative, associative, and distributive properties; the ability to perform these operations 
efficiently; and the knowledge of how to apply the operations to problem solving. 
Computational facility rests on the automatic recall of addition and related subtraction facts, 
and of multiplication and related division facts. It requires fluency with the standard 
algorithms for addition, subtraction, multiplication, and division. Fluent use of the algorithms 
not only depends on the automatic recall of number facts but also reinforces it. A strong 
sense of number also includes the ability to estimate the results of computations and thereby 
to estimate orders of magnitude, e.g., how many people fit into a stadium, or how many 
gallons of water are needed to fill a pool. 

 
Fluency With Fractions 

Before they begin algebra course work, middle school students should have a 
thorough understanding of positive as well as negative fractions. They should be able to 
locate both positive and negative fractions on the number line; represent and compare 
fractions, decimals, and related percents; and estimate their size. They need to know that 
sums, differences, products, and quotients (with nonzero denominators) of fractions are 
fractions, and they need to be able to carry out these operations confidently and efficiently. 
They should understand why and how (finite) decimal numbers are fractions and know the 
meaning of percentages. They should encounter fractions in problems in the many contexts in 
which they arise naturally, for example, to describe rates, proportionality, and probability. 
Beyond computational facility with specific numbers, the subject of fractions, when properly 
taught, introduces students to the use of symbolic notation and the concept of generality, both 
being integral parts of Algebra. 

 
Particular Aspects of Geometry and Measurement 

Middle-grade experience with similar triangles is most directly relevant for the study of 
Algebra: Sound treatments of the slope of a straight line and of linear functions depend logically 
on the properties of similar triangles. Furthermore, students should be able to analyze the 
properties of two- and three-dimensional shapes using formulas to determine perimeter, area, 
volume, and surface area.  They should also be able to find unknown lengths, angles, and areas. 

 
Benchmarks for the Critical Foundations 

In view of the sequential nature of mathematics, the Critical Foundations of Algebra 
described in the previous section require judicious placement in the grades leading up to 
Algebra. For this purpose, the Task Group suggests the following benchmarks as guideposts for 
state frameworks for school districts. There is no empirical research on the placement of these 
benchmarks, but they find justification in a comparison of national and international curricula. 
The benchmarks should be interpreted flexibly, to allow for the needs of students and teachers.  
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Fluency With Whole Numbers 

1) By the end of Grade 3, students should be proficient with the addition and subtraction 
of whole numbers.   

2) By the end of Grade 5, students should be proficient with multiplication and division 
of whole numbers.   
 

Fluency With Fractions 

1) By the end of Grade 4, students should be able to identify and represent fractions and 
decimals, and compare them on a number line or with other common representations 
of fractions and decimals. 

2) By the end of Grade 5, students should be proficient with comparing fractions and 
decimals and common percents, and with the addition and subtraction of fractions and 
decimals.   

3) By the end of Grade 6, students should be proficient with multiplication and division 
of fractions and decimals.  

4) By the end of Grade 6, students should be proficient with all operations involving 
positive and negative integers.  

5) By the end of Grade 7, students should be proficient with all operations involving 
positive and negative fractions. 

6) By the end of Grade 7, students should be able to solve problems involving percent, 
ratio, and rate, and extend this work to proportionality.    
 

Particular Aspects of Geometry and Measurement 

1) By the end of Grade 5, students should be able to solve problems involving perimeter 
and area of triangles, and all quadrilaterals having at least one pair of parallel sides 
(i.e., trapezoids). 

2) By the end of Grade 6, students should be able to analyze the properties of two-
dimensional shapes and solve problems involving perimeter and area. They should 
also be able analyze the properties of three-dimensional shapes and solve problems 
involving surface area and volume. 

3) By the end of Grade 7, students should understand relationships involving similar 
triangles.  
 
To address the question of whether the sequence of topics prior to formal algebra 

course work or how formal algebra course work affects achievement in algebra, the Task 
Group examined three related sub-questions. It first looked for evidence on the effectiveness 
of currently used elementary and middle school mathematics curricula (including their 
sequence of topics) for achievement in Algebra. It found no research demonstrating that a 
specific multigrade sequence of mathematics topics assures success in Algebra.  

 
The Task Group also sought evidence on whether an integrated approach or a single-

subject sequence might be more effective for formal algebra course work and more advanced 
mathematics course work. It found no clear body of research from which one may draw 
conclusions.   
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Finally, the Task Group sought to locate evidence on the benefits or disadvantages of 
teaching the content of an Algebra I course to a broad range of students before Grade 9. The 
Task Group found a positive relationship between taking Algebra in Grade 7 or 8 and later 
high school mathematics achievement, regardless of students’ prior achievement and school 
and student characteristics.  

 
Recommendations 

This Task Group affirms that Algebra is the gateway to more advanced mathematics 
and to most postsecondary education. All schools and teachers of mathematics must 
concentrate on providing a solid mathematics education to all elementary and middle school 
students so that all of them can enroll and succeed in Algebra. Students need to be soundly 
prepared for Algebra and then well taught in Algebra, regardless of the grade level at which 
they study it. To improve the teaching of Algebra, the Task Group proposes the following 
eight recommendations: 

 
1) The Task Group recommends that school algebra be consistently understood in terms 

of the Major Topics of School Algebra given in this report.     

2) The Major Topics of School Algebra in this report, accompanied by a thorough 
elucidation of the mathematical connections among these topics, should be the main 
focus of Algebra I and Algebra II standards in state curriculum frameworks, in 
Algebra I and Algebra II courses, in textbooks for these two levels of Algebra 
whether for integrated curricula or otherwise, and in end-of-course assessments of 
these two levels of Algebra. The Task Group also recommends use of the Major 
Topics of School Algebra in revisions of mathematics standards at the high school 
level in state curriculum frameworks, in high school textbooks organized by an 
integrated approach, and in grade-level state assessments using an integrated 
approach at the high school, by Grade 11 at the latest.  

3) Proficiency with whole numbers, fractions, and particular aspects of geometry and 
measurement are the Critical Foundation of Algebra. Emphasis on these essential 
concepts and skills must be provided at the elementary- and middle-grade levels. 
The coherence and sequential nature of mathematics dictate the foundational skills 
that are necessary for the learning of algebra. By the nature of algebra, the most 
important foundational skill is proficiency with fractions (including decimals, 
percent, and negative fractions). The teaching of fractions must be acknowledged as 
critically important and improved before an increase in student achievement in 
Algebra can be expected.  

4) The Benchmarks proposed by the Task Group should be used to guide classroom 
curricula, mathematics instruction, and state assessments. They should be interpreted 
flexibly, to allow for the needs of students and teachers. 
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5) International studies show that high-achieving nations teach for mastery in a few 
topics, in comparison with the U.S. mile-wide-inch-deep curriculum. A coherent 
progression, with an emphasis on mastery of key topics, should become the norm in 
elementary and middle school mathematics curricula. There should be a de-emphasis 
on a spiral approach in mathematics that continually revisits topics year after year 
without closure.    

6) Federal and state policies should give incentives to schools to offer an authentic 
Algebra I course in Grade 8, and to prepare a higher percentage of students to study 
the content of such a course by the beginning of Grade 8. The word “authentic” is 
used here as a descriptor of a course that addresses algebra in the manner of 
Recommendation 2. Students must be prepared with the mathematical prerequisites 
for this course in the sense of Recommendation 3. 

7) Publishers must ensure the mathematical accuracy of their materials. Those involved 
with developing mathematics textbooks and related instructional materials need to 
engage mathematicians, as well as mathematics educators, in writing, editing, and 
reviewing these materials.   

8) Adequate preparation of students for Algebra requires their teachers to have a strong 
mathematics background. To this end, the Major Topics of School Algebra and the 
Critical Foundations of Algebra must be fundamental in the mathematics preparation 
of elementary and middle school teachers. Teacher education programs and licensure 
tests for early childhood teachers (preschool–Grade 3) should focus on the Critical 
Foundations of Algebra; for elementary teachers (Grades 1–5), on the Critical 
Foundations of Algebra and those algebra topics typically covered in an introductory 
Algebra course; and for middle school teachers (Grades 5–8), on the Critical 
Foundations of Algebra and all of the Major Topics of School Algebra. 
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I. Introduction 

The learning of mathematics at the elementary- and middle-grade levels forms the 
basis for achievement in high school, college mathematics, and college courses using 
mathematics, and for the broad range of mathematical skills used in the workplace. Yet, on 
average, American students do not do as well on international mathematics tests as their 
peers in many developed countries. And while scores on the National Assessment of 
Educational Progress (NAEP) mathematics tests at Grades 4 and 8 are higher than they have 
ever been, a large majority of students do not score at the “proficient” and “advanced” levels 
(U.S. Department of Education, 2007). Nor are American students uniformly taught 
mathematics by teachers with an adequate grasp of the mathematics they teach (e.g., 
Loveless, 2004). There is broad agreement that mathematics education in the schools needs 
to be strengthened.  

 
One of the major charges to the National Mathematics Advisory Panel concerned 

preparation for course work in algebra. A strong grasp of algebra is essential for successful 
participation in the contemporary American workforce; it is also necessary for entry into 
higher education and for the pursuit of advanced mathematics in general (e.g., Business 
Roundtable, 2006). The Panel was asked to make recommendations on “the critical skills and 
skill progressions for students to acquire competence in algebra and readiness for higher 
level mathematics” (Executive Order No. 13398). To address this particular charge, the Panel 
established a Task Group on Conceptual Knowledge and Skills. This report is the Task 
Group’s response to this charge and describes the essential mathematical concepts and skills 
that students should acquire prior to and during the study of algebra. 

  
To guide its inquiry and deliberations, the Task Group formulated three major questions: 

 
1) What are the major topics of school algebra?2 
2) What are the essential mathematical concepts and skills that lead to success in 

Algebra and that should be learned as preparation for Algebra?3  
3) Does the sequence of topics prior to algebra course work or for algebra course work 

affect achievement in Algebra? 

II. Methodology 
The Panel was charged with determining how to use “the results of research relating to 

proven-effective and evidence-based mathematics instruction” and making recommendations 
“based on the best available scientific evidence.” The Panel contracted with Abt Associates 
Inc. to survey the research literature for studies that addressed each task group’s major 
questions and met standards of methodological quality.  

                                                
2 “School algebra” is a term chosen to encompass the full body of algebraic material that the Task Group 
expects to be covered through high school, regardless of its organization into courses and levels.   
3 Algebra will be capitalized when it is referred to as a course. 
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The Task Group’s literature review yielded some peer-reviewed and published studies 
that met standards of methodological quality and were relevant to the work of this Task 
Group, especially with respect to its third question. However, because of the small number of 
such studies, the Task Group decided to include other types of reports that presented the best 
available evidence on the topic of the conceptual knowledge and skills needed for success in 
Algebra. Thus it supplemented the review of research literature with reports by national 
organizations and government agencies, and with analyses and comparisons of state 
curriculum frameworks and school textbooks developed for the Task Group by the Institute 
for Defense Analyses Science and Technology Policy Institute (henceforth STPI).4 Where 
there may be differences among these reports, studies, or analyses, the differences are so 
noted. The Task Group’s recommendations on matters of definition and mathematical content 
were also guided by professional judgment. 

III. Student Achievement in Mathematics 

During a time of decline in test scores on the Scholastic Achievement Test (SAT) in 
the 1960s, Congress legislated for the creation of NAEP. It has been the only nationally 
representative and continuing assessment of what American students, through high school, 
know and can do in all major subject areas: reading, mathematics, science, writing, U.S. 
history, civics, geography, and the arts. Using nationally representative samples, NAEP 
provides information on the academic achievement of nationwide and state populations and 
subpopulations, not on individual students or schools.   

 
There are two types of NAEP tests. The long-term trend NAEP tests, which have 

been given since the late 1960s and early 1970s, assess students by age (9, 13, and 17). The 
main NAEP tests, which have been given since 1990, assess students in Grades 4, 8, and 12, 
instead of by age. For the long-term trend assessments, the same tests have been given under 
the same conditions since 1978.  The main tests have been used since 1990 to create a second 
trend line that reflects more current practices in mathematics curriculum and assessment. The 
main NAEP tests in mathematics assess five areas: numbers and operations, measurement, 
geometry, data analysis and probability, and algebra; these tests have been governed by a 
framework that parallels the content strands in Curriculum and Evaluation Standards for 
School Mathematics, issued by the National Council of Teachers of Mathematics (NCTM) in 
1989. The long-term trend NAEP tests in mathematics focus on essential concepts and skills 
in four areas: numbers and operations, measurement, geometry, and algebra. On both types 
of tests, students respond to questions of three types: multiple choice, short answer, and 
extended answer. However, on the long-term trend tests, most of the items are multiple 
choice. There is greater emphasis on extended responses on the main tests. 

 
Student scores on both types of tests present a mixed picture of national achievement 

in mathematics, although the results in Grade 4 seem to allow for some optimism. As 
Figure 1 shows, average student scores on the main NAEP tests have increased considerably 

                                                
4 The Institute for Defense Analyses Science and Technology Policy Institute provided technical support to the 
National Mathematics Advisory Panel through a task order contract initiated in August 2006, Contract Number 
OIA-0408601 and Task Order OSTP-20-0001.   
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since 1990 at Grade 4 and to a lesser extent at Grade 8.5 There have been increases at both 
grade levels on the long-term trend tests as well—not to the same extent as the increases on 
the main NAEP tests, but corroborating the trend. However, for Grade 4, U.S. results on the 
1995 and 2003 Trends in International Math and Science Study (TIMSS) tests are exactly the 
same, raising questions about the large increase from 1990 to 2007 on the main NAEP tests 
(Mullis, Martin, Gonzalez, & Chrostowski, 2004).6 Moreover, the percentage of students 
scoring at the proficient or advanced levels at Grade 4 and Grade 8 on the 2003 NAEP tests 
is well below 40%; at Grade 12, it is below 20%.7 Not only is it not clear how valid the terms 
“proficient” and “advanced” are, it is also not clear how academically significant the gains 
are. Loveless (2004) conducted two analyses of the “arithmetic load” of 512 released items 
from NAEP’s mathematics tests to determine their level of difficulty. Among items assessing 
“problem solving,” he found that Grade 8 items were only slightly more difficult than the 
Grade 4 items, with many items testing arithmetic skills typically taught in Grades 1 and 2. 
He further noted that for these same items the algebra strand is the least-challenging content 
strand at both grades.  In an analysis of calculator use on all released items in the number 
sense and algebra strands, he found that students are allowed to use calculators on items 
involving anything more difficult than whole numbers. 

 
Figure 1: Percentage of Students At or Above Proficient in Mathematics Achievement 
On Main NAEP Test: 1990, 2003, and 2007 

 
Source: Institute for Defense Analyses Science and Technology Policy Institute tabulations 
using the NAEP Data Explorer, available at: http://nces.ed.gov/nationsreportcard/nde/.   

 
                                                
5 See http://nces.ed.gov/nationsreportcard/nde/.   
6 The average was 518 in both years and the average age was 10.2 in both.  
7 Figure 1 shows the percent of students at or above proficient in mathematics achievement on the main NAEP 
test in 1990, 2003, and 2007 for Grade 4 and Grade 8.  The percents in Grade 4 go from 13% in 1990, to 32% in 
2003, to 39% in 2007. The percents in Grade 8 go from 15% in 1990, to 29% in 2003, to 32% in 2007. Grade 
12 data are not available for 2007 as that grade was not tested that year. 
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It is also not clear that increased enrollment in advanced mathematics courses at the 
high school level is as academically significant as it appears. According to the U.S. 
Department of Education, the percentage of high school graduates completing Algebra II or 
higher rose from 39% in 1990 to 49% in 2005, with the number of students completing 
Calculus doubling from 1990 to 2005 (U.S. Department of Education, 1990–2005).  Yet, 
test scores for high school students are flat on both the main and long-term trend NAEP 
tests, and there is no evidence that high school students are beginning their freshman year 
in college with stronger preparation for mathematics courses. In fact, almost one-fourth of 
the students enrolled in postsecondary education nationwide require placement in remedial 
mathematics courses, with the percentage varying by state and according to whether 
students are enrolled in 2-year or 4-year postsecondary institutions (U.S. Department of 
Education, 2004).  

IV. What Are the Major Topics of School Algebra? 
In response to this question, the Task Group reviewed the algebra topics addressed in 

several sources. They examined the algebra topics 1) in current state standards for Algebra I 
and Algebra II courses and for integrated curricula, 2) in current textbooks for school algebra 
and integrated mathematics, 3) in the algebra objectives in NAEP’s 2005 Grade 12 
mathematics assessment, 4) in the American Diploma Project’s benchmarks for a high school 
exit test and its forthcoming Algebra II end-of-course test, and 5) in the algebra standards in 
Singapore’s mathematics curriculum for Grades 7 through 10.  The Task Group also 
developed its own list of major topics of school algebra. The Task Group presents its list 
first, together with a brief explanation of the logical connections among these topics, and 
then shows how this list compares with the algebra topics in these other sources.  

A. The Major Topics of School Algebra 

1. Introduction to the Topics 

The Major Topics of School Algebra that were developed by the Task Group on 
Conceptual Knowledge and Skills are shown in this section. The teaching of Algebra, like the 
teaching of all school mathematics, must ensure that students are proficient in computational 
procedures, can reason logically and clearly, and can formulate and solve problems. For this 
reason, the topics listed below should not be regarded as a sequence of disjointed items, 
simply to be committed to memory. On the contrary, teachers and textbook writers should 
emphasize the connections as well as the logical progression among these topics. They 
comprise both core and foundational elements of school algebra—those elements needed for 
study of school algebra itself and those elements needed for study of more advanced 
mathematics courses. The total amount of time spent on covering them in single-subject 
courses is normally about 2 years, although algebra content may be and is often structured in 
other ways in the secondary grades. What is usually called Algebra I would, in most cases, 
cover the topics in Symbols and Expressions and Linear Equations and at least the first two 
topics in Quadratic Equations. The typical Algebra II course would cover the other topics, 
although the last topic in Functions (Fitting Simple Mathematical Models to Data), the last 
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two topics in Algebra of Polynomials (Binomial Coefficients and the Binomial Theorem), 
and Combinatorics and Finite Probability are sometimes left out and then included in a 
precalculus course. It should be stressed that this list of topics reflects professional judgment 
as well as a review of what is in other sources.8   

 
The Major Topics of School Algebra  

Symbols and Expressions 
• Polynomial expressions 
• Rational expressions 
• Arithmetic and finite geometric series 

Linear Equations 
• Real numbers as points on the number line 
• Linear equations and their graphs 
• Solving problems with linear equations 
• Linear inequalities and their graphs  
• Graphing and solving systems of simultaneous linear equations  

Quadratic Equations 
• Factors and factoring of quadratic polynomials with integer coefficients 
• Completing the square in quadratic expressions  
• Quadratic formula and factoring of general quadratic polynomials 
• Using the quadratic formula to solve equations  

Functions 
• Linear functions  
• Quadratic functions—word problems involving quadratic functions 
• Graphs of quadratic functions and completing the square 
• Polynomial functions (including graphs of basic functions)   
• Simple nonlinear functions (e.g., square and cube root functions; absolute 

value; rational functions; step functions) 
• Rational exponents, radical expressions, and exponential functions 
• Logarithmic functions 
• Trigonometric functions 
• Fitting simple mathematical models to data 

Algebra of Polynomials 
• Roots and factorization of polynomials 
• Complex numbers and operations  
• Fundamental theorem of algebra 
• Binomial coefficients (and Pascal’s Triangle) 
• Mathematical induction and the binomial theorem 

Combinatorics and Finite Probability 
• Combinations and permutations as applications of the binomial theorem and 

Pascal’s Triangle 
 

                                                
8 An expanded version of this overview can be found in an article, The Major Topics of School Algebra at 
http://math.berkeley.edu/~wu/ and http://math.harvard.edu/~schmid/.  
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2. Overview of School Algebra 

Although the general reader may also find the following overview useful, the Task 
Group briefly explains in this section the major concepts of school algebra primarily for 
mathematics teachers and textbook publishers. Some common pitfalls in the classroom are 
also pointed out. Because textbooks often omit the mathematical connections between basic 
concepts and skills, a good part of the discussion is devoted to these connections. The Task 
Group believes that it is impossible to attain a basic understanding of algebra without a grasp 
of such connections. One consequence of this focus is that the discussion of word problems 
will be somewhat abbreviated. In no way, however, should this emphasis be interpreted to 
mean that problem solving is considered to be less important than these connections. Indeed, 
the solution of multistep word problems should be part of students’ routine.  

 
a. Symbols and Expressions 

Without any doubt, the foundational skill of algebra is fluency in the use of symbols. 
A letter or symbol, e.g., x, is used to represent a number in the same way that the pronoun 
“she” is used to stand for a female. Unless the context makes it absolutely clear, it is 
necessary in each situation to state what kind of number x represents, e.g., a positive integer 
or a rational number. The importance of clearly specifying what each letter stands for cannot 
be overemphasized. For example, the commutative law of multiplication for whole numbers 
can be stated as follows: for any two whole numbers m and n, mn = nm. As is customary, we 
omit the multiplication symbol x when letters are being multiplied. The truth of this 
statement is easily verified by noting that a rectangular array of m rows of n dots has the 
same number of dots as an array of n rows of m dots. However, if one now allows m and n to 
stand for any two real numbers, then the truth of the same equality would be far less simple. 
It would depend on a precise definition of what a real number is.9 Thus the meaning of a 
symbolic statement such as mn = nm depends strongly on what the symbols m and n stand 
for. A symbolic statement in which the meaning of the symbols is not explained is not 
acceptable in mathematics. This is perhaps the most basic protocol in the use of symbols: 
Always specify precisely what each symbol stands for.   

 

                                                
9 In school mathematics, defining a real number as a point on the number line is a workable compromise. This 
is, in fact, one argument for emphasizing the importance of the number line in the school mathematics 
curriculum.  For example, it is far from clear why 2332 = , because it is difficult to claim that one knows 
what these numbers 2  and 3  are. To say that 2  is the number whose square is 2 is to beg the question of 
how one can be sure there is such a number. If one tries to write down 2  by giving its decimal expansion, then 
one can give no more than its initial segment, e.g., 1.414213562373, but not the complete expansion. The same 
remark applies to 3 . Such being the case, what does it mean to “multiply” these two numbers when one cannot 
even be certain of their very existence? And why are 2 3  and 3 2  equal? 
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A slightly different example in the use of symbols is the following. Suppose a student 

tries to solve the simple linear equation 2x = 3 in x.10 The solution, as is well known, is 
2
3 . If 

the equation is 2x = 5, then the solution is 
2
5 . If the equation is 7x = 3, then the solution is 

7
3 . 

And so on. Students soon notice that, regardless of the specific numbers 2 and 3 used in the 
first equation, the numbers 2 and 5 in the second equation, or the numbers 7 and 3 used in the 
third equation, the solution is always the quotient of the second number by the first. This 
suggests the following symbolic presentation for presenting this idea succinctly and 

correctly: Given fixed numbers a and b, with a 0, the solution to the equation ax = b is 
a
b .  

Note that the number a in the equation ax = b is the same number in the solution 
a
b . The 

same is true for the number b. When a symbol stands for exactly the same number 
throughout a discussion, it is called a constant. If a symbol is allowed to stand for a 
collection of numbers in a given discussion, such as the whole numbers or the rational 
numbers, that symbol is called a variable. For example, the m and n in the statement 
mn = nm, of the commutative law of multiplication for whole numbers, are variables. 

  
When teaching introductory Algebra, it is important to give students the correct 

concept of a variable as a symbol used in the way described above; the common but 
misleading concept of a variable as “a quantity that varies” should be avoided. Unfortunately, 
the incorrect definition of a variable as “a quantity that varies” is usually presented right at 
the beginning of school algebra. 

 
The following are some of the standard concepts associated with the use of symbols. 

Let x be any number. The number obtained by performing repeated arithmetic operations and 

taking roots, e.g., )5(
7

1 2xx+ , is usually called a symbolic expression in x. Two of the 

most common kinds of symbolic expression are polynomials and rational expressions. An 
expression in x of the form 01

4
4

5
5 axaxaxa ++++ K  where the a5, a4, ..., a0 are constants, is 

called a polynomial of degree 5 in x with coefficients a5, ..., a0. A rational expression in x is 

a quotient of two polynomials in x, e.g., 
2

7
4

36

++ xx
xx . If an equality between two symbolic 

expressions in x is valid for all possible values of x under discussion, then the equality is 
called an identity. For example, the first of the following is an identity for all positive 
integers n and the second is an identity for all numbers x, y:  

)1(
2
1321 +=++++ nnnK  for all positive integers n, 

(x + y)(x - y) = x2 – y2  for all numbers x and y. 
 

                                                
10 The concept of  “solving an equation,” which is explained later, is used only to illustrate one aspect of the use 
of symbols. 
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To verify these and other identities, one must remember that they are, above all, 
statements about numbers and, as such, all the knowledge about numbers that students bring 
to Algebra can be put to use for their verification. There is one caveat, however. Because 
students generally no longer have specific values of numbers for explicit arithmetic 
calculations (e.g., 15  4 = 60), all the calculations must now be carried out using only what 
is true for all numbers, regardless of what they are, i.e., the associative laws and commutative 
laws of addition and multiplication, and the distributive law.  

 
One of the most important identities in introductory Algebra is  

1111 ))(( ++
=++++

nnnnnn yxyxyyxxyx K  

for all numbers x and y, and for all positive integers n. (This is a generalization of the second 
identity above.) The verification of this identity is a straightforward calculation. When 
students let x = 1, they get  

112 1)1)(1( +
=+++++

nnn yyyyyy L  

so that 

1
11

1
12

=+++++
+

y
yyyyy

n
nn

L , 

which is valid for all numbers y not equal to 1 and for all positive integers n. This is the 
summation formula for finite geometric series. This summation formula is important in 
mathematics and in both the natural and social sciences. The fact that it is an elementary 
result that can be taught at the beginning of school algebra is not generally recognized. It 
should be taught early because, when it is relegated to the end of Algebra II, as is done in the 
standard curriculum, it does not receive enough attention and is often omitted. The result is 
that many students go to college missing a critical piece of information. 

 
b. Linear and Quadratic Equations 

The most immediate application of the use of symbols is the solution of equations, 
usually linear and quadratic ones at the beginning, but more complicated ones as more 
sophisticated functions are defined. This discussion begins with equations in one variable, i.e., 
considering first those equations involving only one variable. The usual terminology of 
“solving” 3x – 1 = 4 + x, for example, is an abbreviation of the longer statement of “determining 
for which numbers x the equality 3x – 1 = 4 + x is valid.” Any such values of x are then called 
the solutions of the equation 3x – 1 = 4 + x. For example, 5 is not a solution of 3x – 1 = 4 + x, as 

14 9, but 
2
5  is a solution. Students will soon learn that the latter is the only solution possible. 

 
Note that the equation 3x – 1 = 4 + x arises naturally if students try to answer the 

question: “What is the number if 1 less than 3 times the number is equal to 4 more than 
itself?” If students let x be this unknown number, then a direct symbolic transcription of the 
verbal data leads directly to 3x – 1 = 4 + x. For this reason, the symbol x in an equation is 
sometimes called an unknown. In school algebra, it is therefore important to learn not only 
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how to solve equations, but also to correctly transcribe verbal information into symbolic 
information. If standard textbooks on algebra serve as any indication, the latter objective has 
perhaps not been given the attention it deserves in the algebra classroom.   

 
It is common for students to be taught to solve an equation by manipulating the 

symbolic expressions, where a symbolic expression is regarded as something distinct from 
anything they have ever encountered. A consequence is that ad hoc concepts, such as 
balancing an equation in x, have to be introduced to justify the method of solution. This line 
of thinking is not correct from a mathematical standpoint. The correct way to solve the 
equation 3x – 1 = 4 + x, for example, involves nothing more than the consideration of 
numbers. The principle underlying the following solution method is applicable, not just to a 
linear equation, but to all equations. As a first step, students should begin by assuming that 
there is a solution to the equation. If the equation turns out to have no solution, then one 
would arrive at a contradiction and would know it had no solution. But if it does have a 
solution, one would be able to see what this solution must be. Therefore, one can call this 
putative solution 'x . Then 3 'x   1 = 4 + 'x ; note that this is an equality of two numbers and 
is therefore something with which students are completely familiar. What they do next is to 
try to deduce, under the assumption that they already have such a solution x', what this 
number x' has to be. Adding -x' + 1 to both sides of 3x' – 1 = 4 + x' to bring both terms 
involving x' to the left and the constants to the right, we obtain (3x' – 1) + (-x' + 1) = (4 + x') 

+ (-x' + 1), so that 2x' = 5 and therefore  x' = 
2
5 .    

 
Students have proved, by using facts about numbers and nothing else, that if there is a 

solution x', then it must be 
2
5 . Notice that this does not say, as yet, that 

5
2 is a solution of  

3x – 1 = 4 + x. However, by verifying directly that 
2
541)

2
5(3 += , students reach the 

desired conclusion that, indeed, 
2
5  is a solution. It follows that 

2
5  is the only solution 

because students have already shown that any solution has to be 
2
5

. The same reasoning 

shows why the solution of a general linear equation, ax + b = cx + d (a, b, c, d being 

constants, and a c), is the number 
ca
bd . 

 
This method of solution is applicable to any equation, and, in particular, to a quadratic 

equation of one variable 02
=++ cbxax  (a, b, c are constants and a 0). Thus, assuming 

there is a solution (which is often called a root), students deduce what it must be, and then 
verify directly that any such possibility (depending on the values of the constants a, b, c, there 
may be one or two solutions) is indeed a solution. One particular detail of the solution is, 
however, of great interest, and it is the use of the technique of completing the square. This 
reduces the quadratic polynomial cbxax ++

2  to a simple form, from which the equation 
02

=++ cbxax  can be readily solved. The well-known quadratic formula is the result.  



Task Group Reports of the National Mathematics Advisory Panel 

 

3. REPORT OF THE TASK GROUP ON CONCEPTUAL KNOWLEDGE AND SKILLS  

3-10 

The skill of completing the square can be traced back to the Babylonians of 4,000 
years ago. It is a useful skill in its own right and is the key idea that will lead to a complete 
clarification of the graph of a quadratic function, to be taken up in the section in this report 
on functions.  

 
In the event that the quadratic polynomial ax 2

+ bx + c  can be factored as a product, 
))(( 21

2 rxrxacbxax =++  for some numbers 1r  and 2r , then it is clear that 1r  and 2r  are 
the solutions of 02

=++ cbxax . Less well known and less obvious is the converse of this 
statement, namely the fact that if r1, r2 are the solutions of ax 2

+ bx + c = 0 , then 

))(( 21
2 rxrxacbxax =++ . This fact can be proven by using the quadratic formula, 

although it is not always done in textbooks. Of greater importance is the light this fact throws 
on the issue of factoring quadratic polynomials. When the coefficients a, b, c of cbxax +

2  
are integers, factoring such polynomials is sometimes elevated to an important skill in 
introductory Algebra. While some skill along this line is desirable, what this discussion has 
shown is that it is not necessary to emphasize it, because all such factoring can be done easily 
by using the quadratic formula to first locate the roots.  

 
Next for consideration is the case of a linear equation of two variables, ax + by = c 

where a, b, c are constants, and both a and b are not 0. A solution of the equation is by 
definition an ordered pair of numbers ),( 00 yx , so that they satisfy the equation in the sense 
that cbyax =+ 00 . This definition of a solution suggests that the collection of all solutions of 
ax + by = c should be identified with a subset of the coordinate plane. Indeed, the graph of 
ax + by + c = 0 is defined to be the subset of the plane consisting of all solutions of the 
equation. One then proves that the graph is a straight line (or more simply, a line), and 
conversely, every straight line is the graph of an (essentially unique) linear equation of two 
variables. In the latter case, the equation is referred to as the equation of the line. The key 
ingredient in the proof of both facts is the concept of the slope of a line: Given a line L in the 

coordinate plane, its slope is the quotient 
12

12

xx
yy  where ),( 11 yx  and ),( 22 yx  are any two 

points on the straight line L. The fact that this quotient remains the same no matter which two 
points, ),( 11 yx or ),( 22 yx , are chosen is stated with not a hint of justification in almost all 
algebra textbooks currently in use. When students are denied access to this reasoning, it is 
difficult, if not impossible, for them to understand the relationship between a linear equation 
of two variables and its graph. The result is that many students consider the different forms 
of the equation of a line (e.g., point-slope form, two-point form) a mystery and are confused 
by related computations.  

 
The proof that the definition of a slope of a line is independent of the choice of the 

two points depends on considerations of similar triangles. It is therefore vitally important that 
students be given the opportunity to become familiar with the basic facts of similar triangles 
before studying algebra. This should include the fact that corresponding sides of similar 
triangles are in proportion, or that if two triangles have two pairs of equal angles, they are 
similar. Students can defer the proofs of these theorems to a later course on Euclidean 
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geometry, but they need to be comfortable using them. Students will commonly be asked to 
use certain theorems before they learn why the theorems are true, (e.g., lessons on the 
Pythagorean Theorem or the sum of angles of a triangle as 180 degrees). Mathematics 
learning does not have to be formally linear.  

 
With the correct definition of slope available, students are in a position to understand 

the relationship between slopes of lines, and the concepts of parallelism and perpendicularity. 
This understanding has a strong bearing on the study of simultaneous linear equations in two 
variables. Using the precise definition of the graph of a linear equation of two variables, one 
can prove that the solution of a pair of simultaneous linear equations is the point of 
intersection of the graphs of the two equations. If the graphs are parallel, they do not 
intersect, and therefore there is no solution to the simultaneous equations. When the 
parallelism of the graphs is translated into the language of slope, students arrive at the 
criterion for the solvability of simultaneous equations in terms of the determinant of the 
system of equations.  

 
Associated with a linear equation in two variables, ax + by = c, are the linear 

inequalities ax + by  c and ax + by  c. It suffices to discuss one of them, say ax + by c. 
Again, the need for the definition of the graph of a linear inequality should be emphasized: 
the graph of ax + by c  is the collection of all points ),( 00 yx  in the coordinate plane so that 
ax0 + by0 c . Excluding the case that b = 0 (which can be handled easily), the graph of 
ax + by = c  is then a non-vertical line, and one can then prove that the graph of ax + by  c is 
all the points in the plane on or below the line ax + by = c if b > 0 and on or above the line ax 
+ by = c if b < 0. Either of the latter is called a half plane. The fact that the graphs of linear 
inequalities are half planes of straight lines is needed for the solution of problems related to 
linear programming.  

 
c. Functions  

The concept of a function is a major building block of mathematics as a whole. Like 
most useful skills and concepts in mathematics, functions arise from the need for solving 
problems, more specifically, from the need for a tool to describe natural phenomena. For 
example, to arrive at a complete description of the temperature of a cup of freshly brewed 
coffee for the first 10 minutes after it has been poured, there is no alternative except to use a 
function f defined on the segment [0,10] from 0 to 10 on the number line, where the unit 1 
represents 1 minute, so that for each t satisfying 0  t  10,  f(t) gives the temperature of the 
coffee t minutes later. Many similar examples can be given so that students get to see the 
need for functions.  

 
Given a function f of one variable, the graph of f is the collection of all the points in 

the plane of the form (x, f(x)) whenever f(x) makes sense. Linear functions (of one variable) 
are those of the form f(x) = cx + k, where c and k are constants, and x is any number. Clearly 
the graph of f is the same as the graph of the linear equation in two variables cx - y = -k. It 
follows from the earlier discussion on page 10 that the graph of a linear function is a line. 
The linear functions of the form f(x) = cx, so-called linear functions without constant term, 
occupy a special place in school mathematics. It is only through the use of such functions 
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that students can understand the usual discussion of so-called proportional reasoning. To 
see the relevance, notice that one can express f(x) = cx in an equivalent way, as follows: for 

any two nonzero numbers 1x  and 2x , one has the proportional relationship 
2

2

1

1 )()(
x
xf

x
xf

=  

(and the common value is c). Whenever proportional reasoning is called for, it means only 
one thing: A certain function turns out to be a linear function without constant term. A 
common flaw in the presentation of proportional reasoning is that certain functions that come 
up in such problems are assumed automatically to be linear functions without constant term. 
Unfortunately, such an assumption is sometimes not warranted.  For example, the reasoning 
that “if five people need 12.5 liters of water for a camping trip, then eight people need 
20 liters” would be accepted as a sensible rule of thumb in everyday life. In a classroom, 
however, it should be pointed out that the argument implicitly depends, in mathematical 
terms, on the assumption that every person needs exactly the same amount of water for the 
camping trip. Such an assumption, though unreasonable in other contexts, is necessary for the 
translation of the given data (“five people need 12.5 liters of water”) into a mathematically 
solvable problem. The need for simplifying assumptions of this type must be explicitly 
pointed out to students. 

 
After teaching linear functions, quadratic functions are next. These are functions f of 

the form cbxaxxf ++=
2)( , where a, b, c are constants and x is any number. The zeros of f, 

i.e., the numbers x' so that f(x') = 0, are exactly the solutions of the quadratic equation 
02

=++ cbxax , which students will know are given by the quadratic formula. For more 
detailed information about f, one should consider the case of a positive a, as the case of a 
negative a is similar. By completing the square, one can rewrite f as qpxaxf ++=

2)()( , 
where p and q are constants, which can be explicitly determined in terms of a, b and c. In this 
form, one sees that (because a square is never negative) f(x)  q, and f(x) = q exactly when 
x = -p. Thus the minimum value of f is q, and this happens exactly when x = -p. Another 
simple argument using qpxaxf ++=

2)()(  also shows that the graph of f is congruent to 
the graph of 2ax , and that the axis of (reflection) symmetry of the graph of f is the vertical 
line passing through (-p, 0). Thus one can obtain all the essential information about f by 
simply applying the technique of completing the square. 

 
The new information about quadratic functions greatly enlarges for students the scope 

of word problems. It is now relatively simple to find out among rectangles with a fixed 
perimeter, which has the biggest area. Word problems of the following type also become 
accessible: Two workmen, painting at a constant rate, can paint a house together in six days. 
In how many days can each paint it alone if it takes one of them three days longer than the 
other to get it done?   

 
Beyond quadratic functions, there are not too many things one can say about 

polynomial functions [functions f so that f(x) is a fixed polynomial in x] in general without 
first acquiring more advanced tools. For rational functions (quotients of polynomial 
functions), a new phenomenon is the emergence of the concept of an asymptote of its graph.  
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The next major classes of functions to be considered in school algebra are the 
exponential functions and the associated logarithmic functions. To solve a > 0 but a  1, 
students have to make sense of the exponential function xaxh =)(  for all numbers x. If x is 
a positive integer such as 7, the meaning of 7)7( ah =  is clear: h(7) = aaaaaaa. If x is a 

rational number, the meaning of ax will have to be carefully defined, first for x = 0, then for x 
a fraction, and then for x a negative fraction. In school mathematics, all these considerations 
fall under the headings of rational exponents and laws of exponents. What needs to be 
pointed out is that the consideration of exponential functions is the main justification for 
teaching these topics. Once students know the meaning of h(x) for all rational numbers x, in 
the context of school mathematics, this knowledge is already sufficient, and h is then known 
for all numbers x, rational or not. From the basic properties of rational exponents, it can be 
concluded that h(x + x') = h(x)h(x') for all numbers x, x'. It is more common to express the 

last property directly as 
'' xxxx aaa =

+ . 
 
Suppose now a > 1. (One has to consider separately the case of an a so that 0 < a < 1, 

but the reasoning is similar.) These same basic properties of rational exponents show that 
xaxh =)( is an increasing positive function. One can also present heuristic arguments as to 

why h(x) goes to infinity as x goes to positive infinity, and h(x) goes to 0 as x goes to 
negative infinity. In particular, h(x) can be any positive number. Because the exponential 
function h is increasing and takes all positive values, it has an inverse function logas, called 

the logarithm with base a, which is defined for all positive values s. Precisely, logas is the 

number x so that sa x
=  (i.e., h(x) = s). The fact that h(x + x') = h(x)h(x') for all numbers x, x' 

now becomes 'loglog'log ssss aaa +=  for all positive numbers s, s'. The graph of loga is 

obtained from the graph of ax by reflecting across the line y = x, but the proof of this fact 
requires some geometry. 

 
Historically, the logarithmic functions were discovered before the exponential 

functions. Because 'loglog'log ssss aaa += , the multiplication ss' becomes (under loga) a 

sum, and with the compilation of so-called log tables, the computation of products of 
numbers becomes much more manageable. This was one reason that made the logarithm 
important before the advent of computers. Nowadays, of course, the logarithm is important 
for quite different reasons: loga and the exponential function appear in nature in innumerable 
ways, and there is no way to avoid these two functions. 

 
A final class of functions to be considered in school algebra is the set of periodic 

functions in general and the trigonometric functions—especially sine and cosine—in 
particular. A function f defined on the number line is periodic of period k for some positive 
number k if f(x + k) = f(x) for all numbers x. The importance of such functions is clear once 
the periodic nature of many natural phenomena is realized. 
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d. Algebra of Polynomials  

Thus far, a polynomial in a number x is a special kind of symbolic expression in x. 
One may therefore regard a polynomial as a function which assigns to each x the number 
given by that symbolic expression. At a more advanced level, a polynomial is a purely formal 
object and not a function. This is because algebra at an advanced level is an abstract study of 
structure and ceases being generalized arithmetic. School mathematics should introduce 
students to such abstract considerations at some point. 

 
This introduction can include the following:  Let X be a symbol, i.e., it no longer 

stands for a number. We will now prescribe how X should behave under addition and 
multiplication. Consider all sums of the form o

n
n

n
n aXaXaXaXf +++= 1

1
1)( L where 

n is a whole number, the ai’s are constants (i = 0,1, ... , n), and 0na . To avoid confusion 

with polynomials, such an f(X) is called a polynomial form, but n will continue to be 
referred to as its degree and the an, ... 0a  as its coefficients.  Now define the addition and 
multiplication of polynomial forms by requiring that the sum or product of any two 
polynomial forms should be equal to the polynomial form normally obtained if X were an 
ordinary number. Thus, for polynomial forms, addition and multiplication are associative, 
commutative, and distributive.  

 
Introducing polynomial forms rather than just polynomials offers additional clarity by 

separating considerations of the coefficients ai from those of the symbol X. As far as the 

arithmetic operations on polynomial forms are concerned, the preceding definitions imply 
that addition and multiplication will continue to be associative, commutative, and distributive 
if one replaces the real number coefficients by, for example, complex number coefficients. 
By doing that, the two kinds of polynomial forms are denoted by R[X] and C[X], where R 
and C denote, for obvious reasons, the real and complex numbers, respectively. On the other 
hand, X is now free to assume an existence of its own, and can now take on values other than 
real or complex numbers. In more advanced courses, for instance, X can be a square matrix, 
and polynomials of a square matrix are an integral component of linear algebra.  

 
R and C share an important property, which is that in each case, every nonzero number 

has a multiplicative inverse, i.e., if a  0, there is a b so that ab = ba = 1. Therefore the 
important division algorithm, which is the exact analog among polynomial forms of division 
with remainder among whole numbers, in either R[X] or C[X], is valid. Consequently, the 
factor theorem for real or complex polynomial forms is valid, which can be explained as 
follows. First, we say a number c (whether real or complex) is a root of a polynomial form f(X) 
if the number f(c) obtained by replacing X with c in f(X) is equal to 0. Then the factor theorem 
states that given an f(X) in R[X] (respectively, C[X]), a number c in R (respectively, C) is a root 
of f(X) if and only if the linear polynomial form (X-c) in R[X] (respectively, C[X]) divides f(X). 

 
Having emphasized the formal similarity between R[X] and C[X], students can now 

be pointed to an essential difference between the two as a consequence of the difference 
between real and complex numbers. For complex numbers, the fundamental theorem of 
algebra applies: Every complex polynomial form of positive degree has a complex root. The 
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proof of this theorem requires some advanced ideas, but as previously referenced in 
connection with similar triangles, the importance of the theorem justifies that school students 
learn it and use it even if they will not see how it is proved.11 By repeated application of the 
factor theorem, students will see that every complex polynomial form of degree n, where n is 
a positive integer, is equal to the product of n linear complex polynomial forms. If f(X) is a 
real polynomial form, i.e., f(X) is an element in R[X], it can be regarded as a complex 
polynomial form and therefore is also the product of  n  linear complex polynomial forms [n 
is the degree of f(X)]. However, since f(X) is a real polynomial form, one may wish to have a 
conclusion involving only real polynomial forms rather than complex ones. With this in 
mind, one applies the fundamental theorem of algebra with more care and concludes that 
every polynomial form with real coefficients is the product of real linear polynomial forms 
and real quadratic polynomial forms without real roots. The reasoning is very instructive.  

 
So far, polynomial forms with one symbol X has been the focus, but there is no reason 

not to consider polynomial forms in more than one symbol. A case in point is the very natural 
question of whether there is a formula for nYX )( + , where X and Y are two symbols and n is a 
positive integer. The main impetus behind this question is the simple identity 

222 2)( YXYXYX ++=+ , which answers the question for n = 2. Additional effort by the 
students reveals that 32233 33)( YXYYXXYX +++=+ . If one is persistent and computes 
the 4th, 5th, and even 6th powers, one would perceive a certain pattern and come up with a 
guess that the expansion of nYX )( +  must involve the so-called binomial coefficients. The 
precise result is the binomial theorem, and a common proof of this theorem uses the 
technique of mathematical induction. The latter is an integral part of school algebra.  

 
e. Combinatorics and Finite Probability 

In the process of proving the binomial theorem, one comes into contact with the basic 
properties of the binomial coefficients, the Pascal Triangle, and, consequently, simple facts 
about finite probability. Indeed, finite probability is fertile ground for applications of ideas in 
algebra as well as a rich source of problems.  

B. Algebra Topics in Curriculum Sources 

As mentioned in the introduction to Section V, the Task Group’s judgment in 
formulating the Major Topics of School Algebra was informed by careful examinations of 
relevant source material. Now that the list itself has been presented and amplified by a 
discussion of important linkages among topics, the discussion returns to the various 
categories of source material. The following sections will show how the Task Group’s Major 
Topics of School Algebra align with the actual content of current standards, teaching 
materials, and assessment tools. 

 

                                                
11 Students who take a college course in complex analysis will see then how it is proved. 
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1. State Standards for Algebra I and Algebra II 

Because the responsibility for public education rests mainly with the states (and with 
local communities), requirements for the number of years of study in high school 
mathematics vary by state and across local communities within a state. Most states require 
3 years or units of mathematics, a few require 2, and a small but growing number require 4 
(Newton, Larnell, & Lappan, 2006). In addition, each state (except for Iowa, which has a 
draft of its secondary standards out for review) has its own mathematics standards or 
guidelines for Grades preschool through 8 or higher, as well as its own state tests. In the 
name of local control, local school districts also have their own curriculum standards or 
expectations, identifying what they believe to be the essential elements of mathematics 
content and instruction.   

 
To determine common elements in algebra education across the states, the Task Group 

analyzed the content of state-based curriculum frameworks with specific attention to their 
standards, objectives, or course level expectations (CLEs). As of June 2006, the 22 states in 
Figure 2 provided standards for Algebra I and II courses.  (A few other states provided only 
integrated curriculum standards at the high school level, while most states at that time did not 
provide any standards in high school mathematics.) However, in some of these states, (e.g., 
North Carolina) algebra standards are also offered as part of an integrated approach in the high 
school mathematics curriculum and may differ in coverage and level of difficulty from the 
algebra standards in their single-subject courses. An integrated approach may be generally 
defined as one in which the topics of high school mathematics are presented in some order 
other than the customary sequence in the Unites States of yearlong courses in Algebra I, 
Geometry, Algebra II, and Precalculus. In some states, algebra standards are offered only as 
part of an integrated approach rather than for single-subject courses. 

 
Figure 2: States With Standards for Algebra I and II Courses  

Alabama Michigan 
Arkansas Mississippi 
California North Carolina 
District of Columbia (counted as a state in NAEP) Oklahoma 
Florida Oregon 
Georgia South Carolina 
Hawaii Tennessee 
Indiana Texas 
Kentucky Utah 
Maryland Virginia 
Massachusetts West Virginia 

Source: The algebra curriculum of each state is available to the public on each state’s department of education 
Web site.  This figure was prepared for the Task Group by Institute for Defense Analyses Science and 
Technology Policy Institute in June 2006.   

 
The frameworks for the Algebra I and Algebra II standards in these 22 states contain 

300 different course level expectations (CLEs), which were organized into 31 major topics 
(Institute for Defense Analyses Science and Technology Policy Institute, in press, a).  After 
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tallying the frequency with which the CLEs occurred under each topic on a state-by-state 
basis, the Task Group found 13 broad topics included by at least 15 of these 22 states (see 
Table 1). Results for Algebra I and II were combined for this analysis.  

 
Table 1: Frequency Counts for Broad Topics in 22 States’ Standards for  
Algebra I and II Courses  

Topic Number of States (n = 22) 
Linear equations and slope  21 
Systems of equations  20 
Evaluating, interpreting and representing data  19 
Analyzing, interpreting and representing functions and relations  19 
Inequalities  19 
Real number operations  19 
Solving quadratic problems  18 
Exponents, roots, radicals, and absolute values  17 
Operations with polynomials  16 
Exponential functions and equations  16 
Probability  16 
Complex number operations  15 
Rational equations and functions  15 

Source: Institute for Defense Analyses Science and Technology Policy Institute, Brief Number 2, in press, a. 
Note: Twenty-two states are shown, which represents the available information at the time. 

 
Table 2 compares the Major Topics of School Algebra with the algebra topics in 20 

Algebra I and Algebra II mathematics frameworks and in 3 high school integrated 
mathematics frameworks. These 23 sets of algebra topics come from 21 states that had 
content expectations of Algebra I or II, or an integrated math curriculum in Algebra I or II, or 
both. The Algebra I or II topics are in the 20 states from which the Task Group was able to 
obtain frameworks explicitly for Algebra. The algebra topics in the 3 sets of integrated 
mathematics frameworks come from 3 randomly selected states with integrated mathematics 
frameworks: Florida, North Carolina, and Georgia (Georgia no longer has standards for 
Algebra I and Algebra II courses). The comparisons do not reflect depth of treatment in the 
frameworks or the classroom. Nor do they necessarily reflect actual classroom content. 
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Table 2: Major Topics of School Algebra Covered by State Algebra or Integrated 
Mathematics Frameworks, by State and Two-Thirds Composite* 

Major Topics of School Algebra C
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Symbols and Expressions 
Polynomial expressions                         
Rational expressions                         
Arithmetic and geometric sequences and series                          
Linear Relations 
Real numbers as points on the number line                         
Linear equations and their graphs                         
Solving problems with linear equations                         
Linear inequalities and their graphs                          
Graphing and solving systems of simultaneous 
linear equations  

                        

Quadratic Relations 
Factors and factoring of quadratic polynomials 
with integer coefficients 

                        

Completing the square in quadratic expressions                          
Quadratic formula and factoring of general 
quadratic polynomials 

                        

Using the quadratic formula to solve equations                          
Functions 
Linear functions                          
Quadratic functions – word problems involving 
quadratic functions 

                        

Graphs of quadratic functions and completing 
the square 

                        

Polynomial functions (including graphs of basic 
functions)   

                        

Simple nonlinear functions (e.g., square and cube 
root functions; absolute value; rational functions; 
step functions) 

                        

Rational exponents, radical expressions, and 
exponential functions 

                        

Logarithmic functions                         
Trigonometric functions                         
Fitting simple mathematical models to data                         
Algebra of Polynomials 
Roots and factorization of polynomial forms                         
Complex numbers and operations                          
Fundamental theorem of algebra                         
Binomial coefficients (and Pascal’s Triangle)                         
Mathematical induction and the binomial theorem                         
Combinatorics and finite probability                         

 
Composite Key 

   Explicit    Not Found    Implicit/Incomplete    2/3 of States 

*Integrated mathematics frameworks are identified as (int). 

Source: Table created for the Task Group by Institute for Defense Analyses Science and Technology Policy 
Institute in June 2007. 

Note: In this analysis, two-thirds of states included algebra as a single subject course or as integrated in the 
states’ algebra framework. 
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2. Algebra I and Algebra II Textbooks  

The Task Group examined an older algebra textbook as well as a number of current 
textbooks for Algebra I and II. Four of the five sets of Algebra I and II textbooks were national 
editions published by several major textbook publishers; a fifth set was the California edition 
published by Holt, Rinehart and Winston. The goal was to determine if there were any 
substantive differences between the content of a California edition and national editions. In 
addition, the Task Group also wanted to find out how an edition of the Algebra I and II 
textbooks authored by Mary Dolciani, dominant in the American market for many years, 
compared with current textbooks as well as with the Major Topics of School Algebra.  

 
The Task Group’s comparison of the major algebra topics in these five sets of 

Algebra I and Algebra II textbooks with the Major Topics of School Algebra appears in 
Appendix A. The Task Group’s analysis of a textbook used in 1913 (see Figure 3) shows that 
the major topics, as derived from the table of contents, have remained much the same since 
the early 1900s except for the addition of material to modern textbooks addressing 
trigonometry, probability, and statistics (Institute for Defense Analyses Science and 
Technology Policy Institute, in press, a).  

 
Figure 3: Topics in a 1913 High School Algebra Textbook  

1. Definitions of Elementary Terms 14. Factors and Multiples 
2. The Equation 15. Fractions 
3. Addition 16. Ratio, Proportion, and Variation 
4. Subtraction 17. Graphs of Linear Equations 
5. Factoring 18. Systems of Linear Equations 
6. Multiplication 19. Involution and Evolution 
7. Division 20. Radicals and Exponents 
8. Equations 21. Quadratic Equations 
9. Type Products* 22. Systems of Quadratic Equations 
10. Review and Extension of Processes 23. Graphs of Quadratic Equations 
11. Exponents and Roots 24. Proportion, Variation and Limits 
12. Logarithms 25. Series 
13. Imaginary and Complex Numbers 26. Geometric Problems for Algebraic Solutions 

*This chapter treats the identities ( a ± b) 2  = 2222 ))((,2 bababababa =++±  and related third-
order identities, which are organized into “types.” 

Source: Young, 1913.  
 

3. Singapore’s Mathematics Curriculum for Grades 7–10 

Singapore’s fourth- and eighth-graders have consistently outperformed all other 
countries’ students on the mathematics portion of the TIMSS (Gonzales et al., 2004). 
Singapore’s compulsory secondary curriculum begins in Grade 7 and extends through the 
10th year of schooling. Figure 4 shows the algebra standards addressed in Grades 7 through 
10 (Singapore Ministry of Education, 2006). Table 3 shows the comparison of the list of 
Major Topics of School Algebra with the topics in Singapore’s secondary curriculum. 
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Figure 4: Singapore’s 2007 Algebra Standards for Grades 7–10  
Algebraic Representation and Formulae 
Using letters to represent numbers 

Interpreting notations such as 3 ± y

5
 as (3 ± y) ÷ 5 or 1

5 (3 ± y)
 

Evaluation of algebraic expressions and formulae 
Translation of simple “real-world” situations into algebraic expressions 
Recognizing and representing number patterns (including finding an algebraic expression for the nth term) 
Algebraic Manipulation 
Addition and subtraction of linear algebraic expressions 
Simplification of linear algebraic expressions, e.g.,  2(3x  5) + 4x 
Factorization of linear algebraic expressions of the form: ax + ay (where a is a constant) and 
ax + bx + kay + kby (where a, b and k are constants) 
Expansion of the product of algebraic expressions 
Changing the subject of a formula 
Finding the value of an unknown quantity in a given formula 
Recognizing and applying the special products 
Factorization of algebraic expressions 
Multiplication and division of simple algebraic fractions 
Addition and subtraction of algebraic fractions with linear or quadratic denominator 
Functions and Graphs 
Cartesian coordinates in two dimensions 
Graph of a set of ordered pairs 
Linear relationships between two variables (linear functions) 
Gradient of a linear graph as the ratio of the vertical change to the horizontal change (positive and negative 
gradients) 
Graphs of linear equations in two unknowns 
Graphs of quadratic functions and their properties: positive or negative coefficient of x2, maximum and 
minimum points and symmetry 
Sketching of the graphs of quadratic functions given in the form y = ± (x  p)2 + q and  
y = ± (x  a)(x  b) 
Graphs of functions of the form y = axn  where n = 2, 1, 0, 1, 2, 3, and simple sums of no more than three 
of these 
Graphs of exponential functions y = kax where a is a positive integer 
Estimation of gradients of curves by drawing tangents 
Solutions of Equations and Inequalities 
Solving linear equations of one unknown (including fractional coefficients) 
Solving simple inequalities (e.g., 3x  5) 
Solving simple fractional equations that can be reduced to linear equations 
Formulating a linear equation in one unknown to solve problems 
Solving simultaneous linear equations in two unknowns by substitution and elimination methods, and 
graphical method 
Solving quadratic equations in one unknown by factorization 
Formulating a pair of linear equations in two unknowns or a quadratic equation in one unknown to solve 
problems 
Solving quadratic equations in one unknown by: use of formula, completing the square for  
y = x 2 + px + q, or graphical methods 
Solving fractional equations that can be reduced to quadratic equations 
Solving linear inequalities in one unknown and representing the solution set on the number line 

Continued on p. 3-21 
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Figure 4: Singapore’s 2007 Algebra Standards for Grades 7–10, continued 
Matrices 
Display of information in the form of a matrix of any order 
Interpreting the data in a given matrix 
Product of a scalar quantity and a matrix 
Problems involving the calculation of the sum and product (where appropriate) of two matrices 
Ratio, Rate, and Proportion 
Map scales (distance and area) 
Direct and inverse proportion 
Set Language and Notation 
Use of set language 
Union and intersection of two sets 
Venn diagrams 
Numbers and the Four Operations 
Positive, negative, zero, and fractional indices 
Laws of indices 
Quadratic Equations and Inequalities 
Conditions for a quadratic equation to have: two real roots, two equal roots, and no real roots 
Related conditions for a given line to: intersect a given curve, be a tangent to a given curve, and not intersect 
a given curve 
Solution of quadratic inequalities, and the representation of the solution set on the number line 
Conditions for r ax2 + bx + c to be always positive (or always negative) 
Relationships between the roots and coefficients of the quadratic equation ax2 + bx + c = 0 
Indices and Surds 
Four operations on indices and surds 
Rationalizing the denominator 
Solving equations involving indices and surds 
Polynomials 
Multiplication and division of polynomials 
Use of remainder and factor theorems 
Factorization of polynomials 
Solving cubic equations 
Simultaneous Equations in Two Unknowns 
Solving simultaneous equations with at least one linear equation, by substitution 
Expressing a pair of linear equations in matrix form and solving the equations by inverse matrix method 
Partial Fractions 
Partial fractions including cases where the denominator is no more complicated than: (ax + b) (cx + d),  
(ax +b) (cx + d)2, and (ax +b) (x2 + c2)  
Binomial Expansions 
Use of the binomial theorem for positive integer n 
Use of the notations n! and (n

r) 
Use of the general term (n

r) an-rbr, 0 < r  n 
Exponential, Logarithmic, and Modulus Functions 
Functions ax, ex, logax, in x, and their graphs 
Laws of logarithms 

Equivalence of y = ax and x = logay 
Change of base of logarithms 
Function x and graph of f(x) , where f(x) is linear, quadratic, or trigonometric 
Solving simple equations involving exponential, logarithmic, and modulus functions 

Source: Singapore Ministry of Education, 2006. 
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Table 3: Comparison of Major Topics of School Algebra With  
Singapore’s Secondary Mathematics Curriculum  

Major Topics of School Algebra 
Singapore’s 
Secondary 

Curriculum 
Symbols and Expressions  
Polynomial expressions   
Rational expressions   
Arithmetic and finite geometric series    
Linear Equations   
Real numbers as points on the number line   
Linear equations and their graphs   
Solving problems with linear equations   
Linear inequalities and their graphs    
Graphing and solving systems of simultaneous linear equations    
Quadratic Equations  
Factors and factoring of quadratic polynomials with integer coefficients   
Completing the square in quadratic expressions    
Quadratic formula and factoring of general quadratic polynomials   
Using the quadratic formula to solve equations    
Functions  
Linear functions    
Quadratic functions and word problems involving quadratic functions   
Graphs of quadratic functions and completing the square   
Polynomial functions, including graphs of basic functions   
Simple nonlinear functions (e.g., square and cube root functions, absolute value, 
rational functions, step functions) 

  

Rational exponents, radical expressions, and exponential functions   
Logarithmic functions   
Trigonometric functions   
Fitting simple mathematical models to data   
Algebra of Polynomials  
Roots and factorization of polynomials   
Complex numbers and operations    
Fundamental theorem of algebra   
Binomial coefficients (and Pascal’s Triangle)   
Mathematical induction and the binomial theorem   
Combinatorics and Finite Probability  
Combinations and permutations as applications of the binomial theorem and 
Pascal’s Triangle 

 

Note: A shaded cell shows agreement among the Major Topics of School Algebra and Singapore’s  
secondary mathematics curriculum.  

Source: The data in this table are STPI tabulations using data available from the Singapore Ministry of 
Education, 2007. 
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C. Algebra Topics in Assessment Sources  

1. National Assessment of Educational Progress Test Objectives 

NAEP developed two sets of mathematics objectives of interest to this Task Group, 
one for Grade 8 and one for Grade 12. The 2005 NAEP Mathematics Framework for the 
2005 National Assessment of Educational Progress report describes a proposed special 
study at Grade 8 to “examine the breadth and depth of Grade 8 students’ understanding of 
proportionality and other fundamental topics in algebra” (National Assessment Governing 
Board, 2004). This document includes a list of objectives for Algebra and a list of 
objectives for proportionality that are to be used for this special assessment. However, 
because this assessment has not yet been scheduled, the Task Group did not examine its 
objectives. Figure 5 shows the algebra objectives addressed in NAEP’s Grade 12 
assessment based on its 2005 assessment framework. Table 4 shows the comparison of the 
algebra topics in this set of objectives with the Major Topics of School Algebra.  
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Figure 5: Algebra Objectives for National Assessment of Educational Progress’ 
Grade 12 Mathematics Assessment  

Patterns, relations, and functions 
Recognize, describe, or extend arithmetic, geometric progressions, or patterns using words or symbols 
Express the function in general terms (either recursively or explicitly), given a table, verbal description, or 
some terms of a sequence 
Identify or analyze distinguishing properties of linear, quadratic, inverse (y = k/x), or exponential functions 
from tables, graphs, or equations 
Determine the domain and range of functions given various contexts 
Recognize and analyze the general forms of linear, quadratic, inverse, or exponential functions (e.g.,  
in y = ax + b, recognize the roles of a and b) 
Express linear and exponential functions in recursive and explicit form given a table or verbal description 
Algebraic representations 
Translate between different representations of algebraic expressions using symbols, graphs, tables, diagrams, 
or written descriptions 
Analyze or interpret relationships expressed in symbols, graphs, tables, diagrams, or written descriptions 
Graph or interpret points that are represented by one or more ordered pairs of numbers on a rectangular 
coordinate system 
Perform or interpret transformations on the graphs of linear and quadratic functions 
Use algebraic properties to develop a valid mathematical argument 
Use an algebraic model of a situation to make inferences or predictions 
Given a “real-world” situation, determine if a linear, quadratic, inverse, or exponential function fits the 
situation (e.g., half-life bacterial growth) 
Solve problems involving exponential growth and decay 
Variables, expressions, and operations 
Write algebraic expressions, equations, or inequalities to represent a situation 
Perform basic operations, using appropriate tools, on algebraic expressions (including grouping and order of 
multiple operations involving basic operations, exponents, roots, simplifying, and expanding) 
Write equivalent forms of algebraic expressions, equations, or inequalities to represent and explain 
mathematical relationships 
Equations and inequalities 
Solve linear, rational, or quadratic equations or inequalities 
Analyze situations or solve problems using linear or quadratic equations, or inequalities symbolically or 
graphically 
Recognize the relationship between the solution of a system of linear equations and its graph 
Solve problems involving more advanced formulas [e.g., the volumes and surface areas of three-dimensional 
solids; or such formulas as: A = P(1+r)t, A = Pert]  
Given a familiar formula, solve for one of the variables 
Solve or interpret systems of equations or inequalities 

Source: The data in this figure are Institute for Defense Analyses Science and Technology Policy Institute 
tabulations based on information from National Assessment Governing Board (2004). 
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Table 4: Comparison of the Major Topics of School Algebra With the 2005 NAEP 
Grade 12 Algebra Topics  

Major Topics of School Algebra  NAEP Grade 12 
Algebra Topics 

Symbols and Expressions  
Polynomial expressions   
Rational expressions   
Arithmetic and finite geometric series    
Linear Equations  
Real numbers as points on the number line   
Linear equations and their graphs   
Solving problems with linear equations   
Linear inequalities and their graphs    
Graphing and solving systems of simultaneous linear equations    
Quadratic Equations  
Factors and factoring of quadratic polynomials with integer coefficients 
Completing the square in quadratic expressions  
Quadratic formula and factoring of general quadratic polynomials 
Using the quadratic formula to solve equations  

(see note) 

Functions  
Linear functions    
Quadratic functions and word problems involving quadratic functions   
Graphs of quadratic functions and completing the square   
Polynomial functions, including graphs of basic functions   
Simple nonlinear functions (e.g., square and cube root functions, absolute  
value, rational functions, step functions)   

Rational exponents, radical expressions, and exponential functions   
Logarithmic functions   
Trigonometric functions   
Fitting simple mathematical models to data   
Algebra of Polynomials  
Roots and factorization of polynomials   
Complex numbers and operations    
Fundamental theorem of algebra   
Binomial coefficients (and Pascal’s Triangle)   
Mathematical induction and the binomial theorem   
Combinatorics and Finite Probability  
Combinations and permutations as applications of the binomial theorem and 
Pascal’s Triangle  

Note: A shaded cell shows agreement among the Major Topics of School Algebra and 2005 NAEP.  

 “Factors and factoring of quadratic polynomials with integer coefficients” is subsumed under one of the Grade 
12 objectives in the 2005 NAEP assessment framework. “Completing the square in quadratic expressions” is 
not explicitly a part of the 2005 framework at Grade 12. “Quadratic formula and factoring of general quadratic 
polynomials” appears partially in the 2005 Grade 12 framework. “Using the quadratic formula to solve 
equations” is not explicitly included as an objective at Grade 12. However, since there is an objective at Grade 
12 on solving quadratic equations, students would have to utilize the quadratic formula or complete the square 
to solve a quadratic equation (P. Carr, personal communication, May 25, 2007).  

Source: The data in this table are Institute for Defense Analyses Science and Technology Policy Institute 
tabulations using data available from National Assessment Governing Board, 2004.  
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2. American Diploma Project Benchmarks and Test Objectives 

The American Diploma Project (ADP) Benchmarks describe the mathematics content 
and skills that ADP suggests all students should master by the time they leave high school if 
they are to be successful in college and work. Achieve Inc. developed these benchmarks 
based on research in colleges, universities, and high-performance workplaces across the 
country (Achieve Inc., 2007). The ADP benchmarks include five strands. The algebra strand 
is subdivided into six clusters, most of which include a number of benchmarks (up to eight). 
The six cluster headings are as follows:  

 
1) Perform basic operations on algebraic expressions fluently and accurately. 

2) Understand functions, their representations, and their properties. 

3) Apply basic algebraic operations to solve equations and inequalities. 

4) Graph a variety of equations and inequalities in two variables, demonstrate 
understanding of the relationships between the algebraic properties of an equation and 
the geometric properties of its graph, and interpret a graph. 

5) Solve problems by converting the verbal information given into an appropriate 
mathematical model involving equations or systems of equations, apply appropriate 
mathematical techniques to analyze these mathematical models, and interpret the 
solution obtained in written form using appropriate units of measurement. 

6) Understand the binomial theorem and its connections to combinatorics, Pascal’s 
Triangle, and probability. 
 
Currently, 30 states are working with Achieve Inc. to align their standards with the 

needs of college and work, as represented by the ADP Benchmarks. Thirteen of these states are 
also collaborating on an end-of-course Algebra II test that is based on the ADP Benchmarks 
and can serve as an indicator of readiness for credit-bearing college mathematics courses.  
Figure 6 shows the core algebra topics and the topics in the optional modules for this test.  
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Figure 6: Topics to Be Assessed in the American Diploma Project Algebra II  
End-of-Course Test  
Topics in Core Test Modules Topics in Optional Test Modules 
Operations on Numbers and Expressions Data and Statistics 

Real numbers Summarization and comparison of data sets  
Complex numbers Interpretation and communications through data 
Algebraic expressions Probability 

Equations and Inequalities Permutations, combinations, and probability  
Linear equations and inequalities Probability distributions  
Nonlinear equations and inequalities Logarithmic Functions 

Polynomial and Rational Functions Logarithmic expressions and equations 
Quadratic functions Logarithmic functions 
Higher-order polynomial and rational functions Trigonometric Functions 

Exponential Functions Trigonometric functions  
Exponential functions Matrices 

Function Operations and Inverses  Matrix arithmetic  
Function operations and composition  Solving systems of equations using matrices 
Inverse functions Matrix transformations 
Piecewise functions Vectors 

 Conic Sections 
 Conic sections 
 Sequences and Series  
 Arithmetic and geometric sequences and series 
 Other types of iteration and recursion 

Source: Achieve Inc., 2007. 
 
Table 5 shows how ADP’s high school benchmarks, the core topics in its Algebra II 

end-of-course test, and the topics in the optional modules for this Algebra II test compare with 
the Major Topics of School Algebra. There are three topic areas that require additional 
explanation. While the Major Topics of School Algebra lists these topics as algebra, the ADP 
addresses them in their Benchmarks as categories outside of algebra. Specifically, these areas 
include the following: 1) under the category of Linear Equations, real numbers as points on the 
number line are categorized by ADP as part of the Number Sense and Numerical Operations 
strand, and not in algebra as categorized by the Major Topics of School Algebra, 2) under the 
category of Functions, trigonometric functions are considered by ADP to be in the Geometry 
strand rather than algebra, and 3) under the category of Algebra of Polynomials, complex 
numbers are categorized as Number Sense and Numerical Operations (while operations are not 
in the Number Sense and Numerical Operations category) and not as algebra. Therefore, the 
lack of shading to represent agreement in these cases on what is considered algebra simply 
means that the ADP addresses them at other places in their Benchmarks.   

 
Also of note, under the category of Algebra of Polynomials, the matching for those 

topics only refers to that fact the binomial theorem is discussed in ADP, but no proof by 
mathematical induction is required.   
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Table 5: Comparison of Major Topics of School Algebra With American Diploma 
Project’s High School Algebra Benchmarks, Core Topics in Its Algebra II Test, and the 
Topics in the Optional Modules for Its Algebra II Test  

Major Topics of School Algebra ADP Algebra 
Benchmarks 

ADP 
Algebra II 

Core 

ADP 
Algebra II 
Optional 

Symbols and Expressions  
Polynomial expressions       
Rational expressions       
Arithmetic and finite geometric series        
Linear Equations  
Real numbers as points on the number line       
Linear equations and their graphs       
Solving problems with linear equations       
Linear inequalities and their graphs        
Graphing and solving systems of simultaneous linear equations        
Quadratic Equations 
Factors and factoring of quadratic polynomials with integer 
coefficients 

      

Completing the square in quadratic expressions        
Quadratic formula and factoring of general quadratic 
polynomials 

      

Using the quadratic formula to solve equations        
Functions 
Linear functions        
Quadratic functions, word problems involving quadratic 
functions 

      

Graphs of quadratic functions and completing the square       
Polynomial functions, including graphs of basic functions        
Simple nonlinear functions (e.g., square and cube root 
functions, absolute value, rational functions, step functions) 

      

Rational exponents, radical expressions, and exponential 
functions 

      

Logarithmic functions       
Trigonometric functions          
Fitting simple mathematical models to data       
Algebra of Polynomials  
Roots and factorization of polynomials       
Complex numbers and operations          
Fundamental theorem of algebra       
Binomial coefficients and Pascal’s Triangle       
Mathematical induction and the binomial theorem       
Combinatorics and Finite Probability  
Combinations and permutations as applications of the binomial 
theorem and Pascal’s Triangle 

   

Note: A shaded cell shows agreement among the Major Topics of School Algebra and the three ADP categories. 

Source: Table created for the Task Group by Institute for Defense Analyses Science and Technology Policy 
Institute from information available from Achieve Inc., 2007. 
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D. Comparisons 

To show how the 27 Major Topics of School Algebra first listed on page 5 compare 
with current practices, they were matched against algebra topics listed in 1) U.S. state 
standards for Algebra I and Algebra II courses, 2) current algebra textbooks, 3) Singapore’s 
2007 algebra standards for Grades 7 through 10, 4) NAEP’s assessment objectives for its 
2005 Grade 12 test, and 5) the ADP benchmarks for a high school exit test, its core Algebra 
II end-of-course test and its optional modules for this test. In Tables 2, 3, 4, and 5, the Major 
Topics of School Algebra served as row headings and the comparison sources served as 
column headings. The corresponding cell was shaded or filled in when a comparison source 
clearly included that specific Major Topic of School Algebra. It is important to note that a 
shaded cell simply means coverage, not extent of coverage. 

   
Potential sources of error in this analysis are the different ways in which the 27 topics 

may be worded in each document. Some topics do not appear to be covered in a comparison 
source, but they may be covered under another topic in the comparison source. For example, 
although none of the comparison sources explicitly covers polynomial functions, some 
sources include these functions under such headings as rational equations and functions or 
operations with polynomials. The level of detail possible for this analysis did not allow for 
reconciliation of misalignments of this type. 

 
As Tables 2 and 3, and Appendix A show, the three comparison sources providing 

topics for algebra course work (state algebra standards, algebra textbooks, and Singapore’s 
secondary mathematics curriculum) include most, if not all, of the Major Topics in School 
Algebra. Overall, almost all the Major Topics of School Algebra can be found in the state 
standards for Algebra I and II; moreover, a majority of the topics appear in at least two-thirds 
of the available frameworks examined. In Singapore’s secondary mathematics curriculum, only 
two topics do not appear to be covered, and they are the fundamental theorem of algebra, and 
combinatorics and finite probability (Table 3), although it is possible that these topics are 
covered after Grade 10. All the Major Topics of School Algebra appear in almost every set of 
Algebra I and II textbooks that the Task Group examined (Appendix A), whether national or 
state editions. In addition, all the Major Topics of School Algebra were addressed in the 
Dolciani-authored Algebra I and II textbooks (Dolciani, Swanson, & Graham, 1986; Dolciani, 
Sorgenfrey, Brown, & Kane, 1988). A striking and significant difference lies in the number of 
topics and page length of all current Algebra I textbooks, each of which has close to 1,000 
pages and attempts to address far more topics than the more focused and much slimmer texts of 
20 years ago. For example, the now out-of-print Dolciani algebra textbooks, which were 
among the most widely used textbooks of their day, had far fewer pages and focused on far 
fewer topics. It is not clear how many of the topics in current Algebra I and II textbooks 
students can realistically study in the course of one year, and, more importantly, to what depth 
they study the major algebra topics. 

 
On the other hand, comparisons with sources that provide assessment standards or 

objectives show gaps. The NAEP algebra objectives for its current Grade 12 test do not include 
many of the Major Topics of School Algebra, such as real numbers as points on a number line, 
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all the topics listed under the algebra of polynomials, and combinatorics and finite probability 
(Table 4). However, the National Assessment Governing Board has revised the Grade 12 
objectives for the mathematics test to be administered in 2009. Several of the Major Topics of 
School Algebra not included on the 2005 NAEP test will be assessed on the 2009 test, 
including arithmetic and finite geometric series, logarithmic functions, trigonometric functions, 
binomial coefficients (and Pascal’s Triangle), and mathematical induction and the binomial 
theorem (P. Carr, personal communication, May 24, 2007). It is important to remember that 
these assessment objectives were designed, as are all NAEP assessment objectives, expressly 
for the purpose of assessment (in this case, of high school mathematics), not for the 
development of curriculum frameworks. 

 
A comparison with the ADP’s core topics for its Algebra II end-of-course test (Table 5) 

also shows gaps. The ADP’s list of core topics for its Algebra II end-of-course test does not 
explicitly include such subjects as arithmetic and finite geometric series or linear equations 
and their graphs, which are typically taught prior to Algebra II. But the list also omits some 
traditional Algebra II topics, such as logarithmic functions, the binomial theorem and 
Pascal’s Triangle, and mathematical induction. The gaps are fewer when the topics in the 
optional modules for this test are included. In particular, the optional modules do cover 
arithmetic logarithmic functions, fitting simple mathematical models to data, the binomial 
theorem and Pascal’s Triangle, mathematical induction, and combinatorics and finite 
probability. However, these topics will be assessed only if a state chooses to test the module 
in which they appear. 

 
In sum, most of the Major Topics in School Algebra are addressed in state algebra 

standards for Algebra I and Algebra II, albeit inconsistently across the 21 states. They are all 
addressed in almost all the algebra textbooks that were examined. And they are addressed 
almost completely in Singapore’s algebra standards for Grades 7 through 10. The Major 
Topics of School Algebra have the least amount of coverage in assessment objectives, for 
NAEP’s current Grade 12 test and for ADP’s forthcoming Algebra II end-of-course test of 
core topics. 

E. Observations Regarding Rigor in Algebra Textbooks 

The Task Group commissioned a systematic examination of leading Algebra I and 
Algebra II textbooks for mathematical accuracy. The results of the survey are described in 
Appendix B. They reveal a systemic problem: Textbook publishers, their authors, and 
editorial staff do not pay sufficient attention to mathematical accuracy. It should be 
emphasized that the Task Group is not asking for rigor in a formal mathematical sense. The 
mathematics should be presented in an age-appropriate fashion, yet be clear and accurate. 
Circular definitions or the omission of a definition of an important notion being introduced 
must be avoided, and can be avoided without making the material less accessible.  

 
Many of the problems uncovered by the textbook examination will not be apparent to 

most students, or even to their teachers. However, such problems tend to affect students’ 
learning in both overt and subtle ways. Mathematical reasoning, accuracy, and clarity of 
thought are learned by example. Mathematically flawed textbooks hinder this learning process. 
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V. What Are the Essential Mathematical Concepts and Skills  
That Lead to Success in Algebra and Should Be Learned  

As Preparation for Algebra?  

The mathematics that children learn from preschool through the middle grades 
provide the basic foundation for Algebra and more advanced mathematics course work. What 
is taught at particular grade levels is determined at the local and state level, and reflects the 
interests of a variety of national, state, and local agencies and organizations, as well as 
parents and the general public. In the past, there has been no research base to guide them. 
However, the results of TIMSS and other international tests showing student achievement 
across the participating countries have led to international comparisons of curricula and 
provided much information on what high-achieving countries teach their students in 
elementary and middle school.  

 
To suggest what essential concepts and skills should be learned as preparation for 

algebra course work, the Task Group reviewed the skills and concepts listed 1) in the 
Grades 1 through 8 curricula of the highest-performing countries on TIMSS, 2) in NCTM’s 
Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics: A Quest for 
Coherence (National Council of Teachers Mathematics, 2006), 3) in Grades K through 8 in 
the six highest-rated state curriculum frameworks in mathematics, 4) in a 2007 American 
College Testing (ACT) survey (American College Testing, 2007), and 5) in a Panel-
sponsored survey of 743 teachers of introductory Algebra across the country who were asked 
what students need to learn to be prepared for success in Algebra (Hoffer, Venkataraman, 
Hedburg, & Shagel, 2007). The Task Group also took into consideration the structure of 
mathematics itself, which requires teaching a sequence of major topics. Based on these 
sources and considerations, the Task Group proposes three clusters of concepts and skills, 
defined later as the Critical Foundations on page 40, reflecting their judgment about the most 
essential mathematics for students to learn thoroughly prior to algebra course work. It should 
be noted that there is no direct empirical evidence to support the effectiveness of any lists 
discussed in this section for success in algebra course work.  

A. International Approaches to Pre-Algebra Education 

1. Mathematics Topics Taught in Grades 1 Through 8 in the TIMSS 
Top-Performing Countries 

One of the richest sources of information on mathematics curricula in other countries 
is the work of William Schmidt and his colleagues, who used data drawn from TIMSS. 
Schmidt, Houang, and Cogan (2002) compared the mathematics topics and the grade levels 
at which they were taught in the six highest-performing countries (Singapore, Japan, Korea, 
Hong Kong, Flemish Belgium, and the Czech Republic), which they called the “A+ 
countries.”  Figure 7 shows the composite mathematics curriculum profile for Grades 1 
through 8 from a paper that is slightly revised from 2002 (Schmidt et al., 2002; Schmidt & 
Houang, 2007).   
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Figure 7: Mathematics Topics Intended From Grade 1 to Grade 8 by a Majority of 
TIMSS 1995 Top-Performing Countries  

Note:  
  Individual topics intended by more than half of the top-achieving countries: Singapore, Japan, Korea, Hong 

Kong, Flemish Belgium, and the Czech Republic. 

 Collection of topics intended by more than half of top-achieving countries. 

Source: Schmidt & Houang, 2007.  

Grade 
   Mathematics Topics Intended 1 2 3 4 5 6 7 8 

1.   Whole Number: Meaning                             
2.   Whole Number: Operations                             
3.   Measurement Units                         
4.   Common Fractions               
5.   Equations & Formulas       
6.   Data Representation and Analysis      
7.   2-D Geometry: Basics       
8.   2-D Geometry: Polygons and Circles      
9.   Measurement: Perimeter, Area and Volume      
10. Rounding and Significant Figures   
11. Estimating Computations         
12. Whole Numbers: Properties of Operations   
13. Estimating Quantity and Size   
14. Decimal Fractions    
15. Relation of Common and Decimal Fractions    
16. Properties of Common and Decimal Fractions   
17. Percentages    
18. Proportionality Concepts     
19. Proportionality Problems     
20. 2-D Geometry: Coordinate Geometry       
21. Geometry: Transformations         
22. Negative Numbers, Integers, and Their Properties   
23. Number Theory    
24. Exponents, Roots and Radicals    
25. Exponents and Orders of Magnitude     
26. Measurement: Estimation and Errors    
27. Constructions Using Straightedge and Compass     
28. 3-D Geometry        
29. Geometry: Congruence and Similarity     
30. Rational Numbers and Their Properties    
31. Patterns, Relations and Functions    
32. Proportionality: Slope and Trigonometry   
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2. Differences in Curriculum Approaches Between TIMSS Top-Performing 
Countries and the United States 

In 2003, the International Association for the Evaluation of Educational Achievement 
reported on its survey of educators in Singapore, Japan, Flemish Belgium, Chinese Taipei, 
and Korea to learn more about their mathematics curriculum in Grades 4 and 8 (Mullis et al., 
2004). The mathematics curricula in these countries show different entry and exit points for 
many topics. That is, they introduce and complete the study of many topics at different grade 
levels. For example, patterns of numbers or shapes is taught between Grades 1 and 5 in 
Singapore, followed by missing numbers in an equation between Grades 2 and 5.  In contrast, 
these concepts are generally not studied until Grade 4 in Japan or Chinese Taipei, and even 
later in Flemish Belgium. 

 
There seem to be two major differences between the curricula in top-performing 

countries and U.S. curricula: in the number of mathematical concepts or topics presented at 
each grade level and in the expectations for learning. U.S. curricula typically include many 
topics at each grade level, with each receiving relatively light development, while top-
performing countries present fewer topics at each grade level but in greater depth. In 
addition, U.S. curricula generally review and extend at successive grade levels many (if not 
most) topics already presented at earlier grade levels, while the TIMSS top-performing 
countries are more prone to expect proficiency in what is taught at each grade level. These 
critical differences distinguish a spiral curriculum (common in many subjects in U.S. 
curricula) from one built on proficiency—a curriculum that expects proficiency in the topics 
that are presented before more complex or difficult topics are introduced.   

 
In addition, the mathematics curricula in these top-performing countries show study of 

topics that are not in many U.S. curricula for these grade levels. For example, simple linear 
equations and simultaneous linear equations are taught in Grades 7 through 8 in the Singapore 
curriculum, Grades 7 through 9 in Japan, and Grade 8 in Chinese Taipei. A majority of U.S. 
state curriculum frameworks do not present these algebra concepts in Grades 7 and 8, 
although other algebra topics are taught in some states before Grade 9 (Newton et al., 2006).12  

 
It is important to note that these A+ countries, as well as many other countries, teach 

Algebra in Grade 8, if not earlier. For example, Singapore begins study of Algebra in Grade 
7.  Schmidt et al. (2002) note that the “A+ composite curriculum portrays an evolution from 
an early emphasis on arithmetic in Grades 1 through 4 to more advanced Algebra and 
Geometry beginning in Grades 7 and 8. Grades 5 and 6 serve as a transitioned stage in which 
such topics as proportionality and coordinate geometry are taught, providing a bridge to the 
study of Algebra and Geometry” (p. 5). 

                                                
12 According to Newton et al.’s analysis of state frameworks in 2006, 12 states specify two-step equations as a 
grade-level expectation in Grade 7, and 16 do so in Grade 8.  It is not clear what the overlap is among states.   
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B. National Approaches to Pre-Algebra Education 

1. National Council of Teachers of Mathematics Curriculum Focal Points 

In September 2006, NCTM released Curriculum Focal Points for Prekindergarten 
through Grade 8 Mathematics: A Quest for Coherence (Focal Points), a document that drew 
on an analysis of national and international programs to respond to a need for coherence in 
U.S. mathematics curricula and to offer direction for teachers. The Focal Points are 
suggested grade-level areas of emphasis—the concepts, skills, and procedures that connect 
important mathematics topics from grade to grade, and form the foundation for more 
advanced mathematics, beginning with Algebra. NCTM’s Web site13 provides a description 
of the purposes for the Focal Points, their grade-level connections, and the mathematics 
defining them.  

 
Figure 8 shows a comparison of the Focal Points with the composite curriculum of 

the A+ countries (Schmidt & Houang, 2007). After comparing NCTM’s 1989 standards with 
this composite curriculum, Schmidt and Houang (2007) judge the Focal Points as 
representing a “movement toward more coherent standards.” However, as Figure 8 shows, 
the Focal Points recommends study in the primary grades of much more than arithmetic 
topics (e.g., 2-D and 3-D geometry; transformations; and patterns, relations, and functions). 
As noted earlier, and as the composite curriculum in Figure 7 shows, the A+ countries 
concentrate on arithmetic topics in Grades 1 and 2.   

 

                                                
13 http://www.nctm.org/standards/focalpoints.aspx?id=282 
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Figure 8: Mathematics Topics Intended From Grade 1 to Grade 8 in the 2006 NCTM 
Focal Points Compared With the Topics Intended by a Majority of TIMSS 1995  
Top-Achieving Countries  

Note:  
 Collection of topics intended by more than half of top-achieving countries 

   2006 NCTM Focal Points (Curriculum Focal Points for Prekindergarten through Grade 8 Mathematics: 
A Quest for Coherence) 

Source: Schmidt & Houang, 2007.  

Grade 
Mathematics Topics Intended 1 2 3 4 5 6 7 8 
1.   Whole Numbers: Meaning       
2.   Whole Numbers: Operations      
3.   Measurement: Units         
4.   Common Fractions      
5.   Equations & Formulas      
6.   Data Representation & Analysis       
7.   2-D Geometry: Basics    
8.   2-D Geometry: Polygons & Circles        
9.   Perimeter, Area & Volume       
10. Rounding and Significant Figures 
11. Estimating Computations     
12. Properties of Operations      
13. Estimating Quantity and Size  
14. Decimal Fractions    
15. Relationships of Common & Decimal Fractions     
16. Properties of Common and Decimal Fractions   
17. Percentages  
18. Proportionality Concepts     
19. Proportionality Problems    
20. 2-D Coordinate Geometry   
21. Transformations    
22. Negative Numbers, Integers and Their Properties   
23. Number Theory    
24. Exponents, Roots and Radicals  
25. Exponents and Orders of Magnitude  
26. Estimation and Errors    
27. Constructions w/ Straightedge and Compass 
28. 3-D Geometry      
29. Congruence and Similarity    
30. Rational Numbers and Their Properties  
31. Patterns, Relations and Functions        
32. Slope and Trigonometry   
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2. Skills and Concepts in the Six Highest-Rated State Curriculum 
Frameworks   

Also compared were the mathematics topics in the six highest-rated state curriculum 
frameworks, as judged by Klein et al. (2005), with the curriculum profile of the A+ countries 
(Schmidt & Houang, 2007). The Task Group used the highest-rated frameworks as noted in 
Klein et al. because this evaluation is the most comprehensive and in-depth review of state 
mathematics frameworks to date. The reviewers rated each state’s standards for content, 
clarity, reason, and negative qualities, assigning different weights to each criterion for the 
overall assessment. The six highest-rated states are, in rank order, California, Indiana, 
Massachusetts, Alabama, New Mexico, and Georgia. A shaded cell in Table 6 indicates that 
the topic in the left-hand column appears in the mathematics standards of at least one of the 
six states at the given grade level. The 27 topics in Table 6 were among the 30 developed by 
the Task Group for examining state curriculum frameworks in mathematics and reflect the 
topics in the Schmidt et al. analysis (Institute for Defense Analyses Science and Technology 
Policy Institute, in press, b). They have been placed as closely as possible in the order in 
which the mathematics topics in the composite curriculum for the A+ countries first appear 
(Figure 7), an order that presumably reflects increasing difficulty or complexity.  
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Table 6: K Through 8 Grade-Level Expectations in the Six Highest-Rated State 
Curriculum Frameworks in Mathematics Compared With the Topics Intended by a 
Majority of TIMSS 1995 Top-Performing Countries* 

Grade 
Topics K 1 2 3 4 5 6 7 8 

1 Whole Number Meaning 6 5 5 4 6 2    
2 Whole Number Operations 3 4 5 6 3     
3 Measuring and Units of Measurement 6 6 2 3 4 2 6   
4 Common Fractions 3 1 4 4 5 3    
5 Equations and Formulas    2 2 2 4 6 6 

6 

Collecting, Evaluating, Interpreting, 
and Representing Data 4 5 5 3 4 5 5 3 4 

7 2-D Geometry Basics  4 5 5 4 2 3   
8 Polygons and Circles 6 6  1 1 2 2  1 
9 Perimeter, Area, and Volume    2 2 5 4 5 4 

10 Rounding    4 5 4    

11 

Estimating Computations and 
Determine Reasonableness    3 3 3 3 1  

12 

Properties of Whole Number 
Operations    5 2 1 3 5 4 

13 Decimal Fractions and Decimals   6 2 4 1 1 2 4 
14 Percentages      5 4 2 1 
15 Ratios and Proportions       2 1 2 
16 2-D Coordinate Geometry    3 4 2 4 2  
17 Geometric Transformation    1 3 1 1 3 3 
18 Integers & Their Properties      4 4   
19 Number Theory      5 3 1 1 

20 

Exponents, Roots, Radicals, and 
Absolute Values       3 5 6 

21 3-D Geometry    6 2 2 1 3 1 
22 Congruence and Similarity  1 2 2 5 2 2 4 3 

23 

Rational Numbers and Their 
Properties       2 6 5 

24 Patterns 6 3 3 3 3 4 4 4 2 
25 Functions and Relations       2 2 4 
26 Slope and Rates of Change       1 2 3 
27 Probability  1 3 3 3 3 5 1 4 

Note: A shaded cell indicates that at least one state specified an objective in this area at the given grade level. 

STPI used 30 topics for its original analysis of these six state frameworks. Twenty-five of these topics agree 
with the TIMSS topics in Figure 7.  Three of the remaining five topics were eliminated chiefly because they 
appeared to overlap with existing TIMSS topics.  It is important to note that how STPI defined its 30 topics may 
differ from how these topics were defined by Schmidt et al. (2002) since it is not completely clear from the 
latter’s writings how the 30 topics in Figure 7 were defined.  A shaded cell indicates that at least one state 
specified an objective in this area at the given grade level. 

The numbers in the shaded cells refer to the number of states within the six states that list that topic in their 
curriculum expectations. 

Source: Institute for Defense Analyses Science and Technology Policy Institute, in press, b. 
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As Table 6 shows, there are wide variations across these six states in grade-level 
placement for these 27 topics. When the grade-level placement of the topics in these six 
highest-rated states is compared with the order of topics in Figure 7, there appears to be a 
relationship between the increasing complexity of the topics classified by TIMSS under 
numbers (Items 1, 2, 4, 10, 11, 12, 13, 14, 15, 18, 19, and 23) and under algebra (Items 5, 20, 
25, and 26) and their introduction at increasingly higher grade levels. Nevertheless, Table 6 
suggests that these six states (and probably most, if not all, of the others) spend a great deal 
of time in the primary grades on topics other than arithmetic (in the case of these six states, 
patterns, probability, and data analysis).  

 
Patterns are labeled as an “algebra topic” in elementary and middle school mathematics 

curricula and assessments in this country; yet patterns are not emphasized in the curriculum of 
the high-performing countries in TIMSS; nor are patterns a topic of major importance in the 
Major Topics of School Algebra. The prominence given to patterns in K through 8 
mathematics education in the U.S. is thus not supported by either the mathematical 
considerations or the data from TIMSS.  

 
There is yet another striking difference with Figure 7. Not only do the A+ countries 

concentrate on arithmetic in the early grades, they also introduce geometry topics gradually 
from Grades 3 to 8, for the most part adding only one new geometry topic at each grade 
level. The seven geometry topics for the TIMSS high-performing countries in Figure 7 (Items 
7, 8, 9, 16, 17, 21, and 22) first appear in Grades 3, 4, 4, 5, 6, 7, and 8, respectively. In 
contrast, in Table 6, in one or more of the highest-rated sets of state mathematics standards, 
geometry topics first appear in Grades 1, K/1, 3, 3, 3, 3, and 1 respectively. Indeed in these 
six states, there is little resemblance to the order of difficulty suggested in the composite 
curriculum of the A+ countries.    

 
This comparison speaks to the reality of the spiral curriculum and the excessive 

number of topics taught at the elementary grades, even in the state frameworks that many 
consider as models for other states. Table 6 also helps make the point that a state’s 
mathematics standards, however highly their quality may be judged, do not necessarily 
correlate with student achievement in the state. These six states exhibit a wide range of 
student achievement on the 2007 NAEP mathematics tests for Grades 4 and 8. The quality of 
a state’s assessments and the extent to which its standards drive sound school curricula, as 
well as appropriate programs for teacher preparation and professional development, are 
intervening variables that strongly influence achievement. They may well override the 
quality of its standards. 
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C. Surveys of What College and Secondary Teachers See as  

Essential Concepts and Skills 

1. Findings From the ACT Curriculum Survey 

In 2007, ACT issued a report containing the results of its 2005–06 curriculum survey 
of a nationally representative sample of middle and high school teachers, high school 
counselors, and postsecondary regular and remedial course instructors in four major subjects 
(ACT, 2007). The survey indicates what instructors at postsecondary institutions believe is 
important and necessary for their entering students to know, and what middle and high 
school teachers are teaching. It therefore identifies the gap between postsecondary 
expectations and secondary school practice. For mathematics, ACT received responses from 
about 2,400 teachers, instructors, and counselors for an average response rate of 17%, with 
categorical response rates ranging from 11% (middle or junior high school teachers) to 26% 
(postsecondary instructors).   

 
The responses of the instructors of postsecondary mathematics remedial courses were 

closer to the ratings of postsecondary mathematics entry-level-course instructors than to the 
ratings of high school mathematics teachers. On ratings of individual skills by mathematics 
strand on a 1 through 5 scale, postsecondary instructors for both regular and remedial 
mathematics courses rated the “4 skills that make up basic operations and applications” as 
most important (4.15) and the “12 skills that make up probability, statistics, and data 
analysis” as least important (1.76). On their rank ordering of eight mathematics strands in 
terms of importance, the postsecondary instructors rated basic operations and applications 
first and probability, statistics, and data analysis last. With respect to the course work needed 
for success in postsecondary mathematics, the content that both sets of postsecondary 
instructors rated the highest and that was being covered the least in instruction in arithmetic 
or in Algebra I courses was “solving quadratic equations and factoring (80%), working with 
rational exponents (41%), and using the quadratic formula (68%)” (ACT, 2007, p. 19). 

 
2. Findings From the National Mathematics Advisory Panel Survey 

As part of its deliberations in 2006, the Panel set as a priority a process to obtain 
information from a large national sample of teachers of introductory Algebra on, among 
other things, their views on their students’ mathematics preparation. The Panel developed a 
survey and gathered comments from 743 teachers (Hoffer, Venkataraman, Hedburg, & 
Shagle, 2007). About 28% of the Algebra I teachers were teaching at the middle or junior 
high school level, while almost all of the others were teaching in high schools.   

 
The survey findings show that these algebra teachers generally describe their students’ 

backgrounds for Algebra I as weak. The two areas in which teachers report their students 
having the poorest preparation are 1) rational numbers and operations involving fractions and 
decimals and 2) solving word problems. The most frequent type of suggestion among the 578 
teachers who responded in writing to an open-ended question was a greater focus in the 
elementary grades on proficiency with basic mathematics concepts and skills (Hoffer et al., 
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2007, p. 13). To a question on students using calculators in the early grades, those who wrote 
in a response specifically mentioned that they would like to see less use of calculators before 
students take their Algebra I class (p. 13). A number of teachers (n = 46) also mentioned 
student success in a “pre-Algebra” curriculum in the middle school as a requirement before 
they are allowed to take Algebra I (p. 14). In response to 10 options describing the challenges 
they face, a majority of the teachers (62%) saw “working with unmotivated students” as the 
“single most challenging aspect of teaching Algebra I successfully” (p. 23). The written-in 
responses, however, most frequently mentioned handling different skill levels in a single 
classroom (p. 23). In fact, a substantial number of teachers consider mixed-ability groupings 
to be a “moderate” (30%) or “serious” (23%) problem, an item with a combined rating of 53% 
for “moderate” and “serious” second only to the combined rating of 64% for “too little 
parent/family support” (p. 25). Finally, a majority of teachers favorably rated their Algebra I 
textbooks, with 90% agreeing or agreeing strongly that “the textbook includes the appropriate 
topics and content to teach the course” (Hoffer et al., 2007, Appendix D: Means and 
Confidence Intervals for Items in the National Survey of Algebra Teachers, p. 9-64).   

D. Critical Foundations for Success in Algebra  

The Task Group reviewed the concepts and skills indicated for teaching and learning 
in the elementary and middle grades 1) in the national curricula of the highest-performing 
countries on the TIMSS tests, 2) in the highest-rated U.S. state standards, 3) in NCTM’s 
Focal Points, 4) in the 2007 ACT curriculum survey, and 5) in the compiled ratings of the 
743 algebra teachers surveyed for the Panel. The Task Group also took into consideration the 
structure of mathematics itself. Its structure requires teaching a sequence of major topics 
(from whole numbers to fractions, from positive numbers to negative numbers, and from the 
arithmetic of rational numbers to algebra) and an increasingly complex progression from 
explicit number computations to symbolic computations. The structural reasons for this 
sequence and its increasing complexity dictate what must be taught and learned before 
students take course work in Algebra. Based on all these considerations, the Task Group 
proposes the following three clusters of concepts and skills. The clusters reflect their 
judgment about what students need to learn thoroughly prior to algebra course work. 

 
To prepare students for Algebra, the curriculum must simultaneously develop 

conceptual understanding, computational fluency, and problem-solving skills. These three 
aspects of learning are mutually reinforcing and should not be seen as competing for class 
time. The Critical Foundations identified and discussed below are not meant to comprise a 
complete preschool-to-algebra curriculum. However, the Task Group aims to recognize the 
Critical Foundations for the study of Algebra, whether as part of a dedicated algebra course 
in the seventh, eighth, or ninth grade, or within an integrated mathematics sequence in the 
middle and high school grades. These Critical Foundations deserve ample time in any 
mathematics curriculum. The foundations are presented in three distinct clusters of concepts 
and skills, each of which should incorporate the three aspects of learning noted here. 
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1. Fluency With Whole Numbers 

By the end of the elementary grades, children should have a robust sense of number. 
This sense of number must include understanding place value, and the ability to compose and 
decompose whole numbers. It must clearly include a grasp of the meaning of the basic 
operations of addition, subtraction, multiplication, and division, including use of the 
commutative, associate, and distributive properties; the ability to perform these operations 
efficiently; and the knowledge of how to apply the operations to problem solving. 
Computational facility rests on the automatic recall of addition and related subtraction facts, 
and of multiplication and related division facts. It requires fluency with the standard 
algorithms for addition, subtraction, multiplication, and division. Fluent use of the algorithms 
not only depends on the automatic recall of number facts but also reinforces it. A strong 
sense of number also includes the ability to estimate the results of computations and thereby 
to estimate orders of magnitude, e.g., how many people fit into a stadium, or how many 
gallons of water are needed to fill a pool. 

 
2. Fluency With Fractions 

Before they begin algebra course work, middle school students should have a 
thorough understanding of positive as well as negative fractions. They should be able to 
locate both positive and negative fractions on the number line; represent and compare 
fractions, decimals, and related percents; and estimate their size. They need to know that 
sums, differences, products, and quotients (with nonzero denominators) of fractions are 
fractions, and they need to be able to carry out these operations confidently and efficiently. 
They should understand why and how (finite) decimal numbers are fractions and know the 
meaning of percentages. They should encounter fractions in problems in the many contexts in 
which they arise naturally, for example, to describe rates, proportionality, and probability. 
Beyond computational facility with specific numbers, the subject of fractions, when properly 
taught, introduces students to the use of symbolic notation and the concept of generality, both 
being an integral part of Algebra (Wu, 2001). 

 
3. Particular Aspects of Geometry and Measurement 

Middle-grade experience with similar triangles is most directly relevant for the study 
of algebra: Sound treatments of the slope of a straight line and of linear functions depend 
logically on the properties of similar triangles. Furthermore, students should be able to 
analyze the properties of two- and three-dimensional shapes using formulas to determine 
perimeter, area, volume, and surface area. They should also be able to find unknown lengths, 
angles, and areas. 
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E. Benchmarks for the Critical Foundations 

In view of the sequential nature of mathematics, the Critical Foundations of Algebra 
described in the previous section require judicious placement in the grades leading up to 
Algebra. For this purpose, the Task Group suggests the following benchmarks as guideposts 
for state frameworks, for state assessments, and for school districts. There is no empirical 
research on the placement of these benchmarks, but they find justification in a comparison of 
national and international curricula. The benchmarks should be interpreted flexibly, to allow 
for the needs of students and teachers.  

  
Fluency With Whole Numbers 

1. By the end of Grade 3, students should be proficient with the addition and subtraction of 
whole numbers.   

2. By the end of Grade 5, students should be proficient with multiplication and division of 
whole numbers.   

Fluency With Fractions 

1. By the end of Grade 4, students should be able to identify and represent fractions and 
decimals, and compare them on a number line or with other common representations of 
fractions and decimals. 

2. By the end of Grade 5, students should be proficient with comparing fractions and decimals 
and common percents, and with the addition and subtraction of fractions and decimals.   

3. By the end of Grade 6, students should be proficient with multiplication and division of 
fractions and decimals.  

4. By the end of Grade 6, students should be proficient with all operations involving positive 
and negative integers.  

5. By the end of Grade 7, students should be proficient with all operations involving positive 
and negative fractions. 

6. By the end of Grade 7, students should be able to solve problems involving percent, ratio, and 
rate, and extend this work to proportionality.   

Particular Aspects of Geometry and Measurement 

1. By the end of Grade 5, students should be able to solve problems involving perimeter and 
area of triangles all quadrilaterals having at least one pair of parallel sides (i.e., trapezoids). 

2. By the end of Grade 6, students should be able to analyze the properties of two-dimensional 
shapes and solve problems involving perimeter and area, and analyze the properties of three-
dimensional shapes and solve problems involving surface area and volume. 

3. By the end of Grade 7, students should be familiar with the relationship between similar 
triangles and the concept of the slope of a line. 
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VI. Does the Sequence of Mathematics Topics Prior to and 
During Algebra Course Work Affect Algebra Achievement? 

As Schmidt et al. (2002) point out, the highest-performing countries in the TIMSS 
study employ somewhat differing curricula in the elementary grades. They conclude that a 
coherent, focused, and effective mathematics curriculum can be achieved in different ways. 
Over the past 15 years, many studies in the United States have examined the effects of 
recently developed mathematics curricula on student achievement at or across various grade 
levels. However, a search of the literature did not turn up any studies that sought to provide 
evidence on the effectiveness of these curricula (including their sequence of topics) for 
achievement in Algebra. A committee authorized by the National Academy of Sciences 
reviewed nearly 700 evaluations of 13 National Science Foundation-sponsored kindergarten 
through 12 mathematics curricula and 6 commercially developed mathematics curricula. Of 
these 700 evaluations, 147 met the committee’s minimum criteria for scientific effectiveness 
and relevance, but they “did not permit one to determine the effectiveness of individual 
programs with a high degree of certainty, due to the restricted number of studies for any 
particular curriculum, limitations in the array of methods used, and the uneven quality of the 
studies” (Confrey & Stohl, 2004, p. 189).  

 
There is no body of sound evidence showing particular multiyear mathematics 

curricula as more effective than others in preparing students in algebra course work. Thus, 
there is no basis in research for preferring a particular sequence.14 

 
Beyond this central question are two related matters: a) whether an integrated 

approach or a single-subject sequence might be more effective for algebra course work and 
more advanced mathematics course work, and b) whether there are benefits to teaching the 
content of an Algebra I course before Grade 9. The next two subsections cover these issues. 

A. Benefits of an Integrated or Single-Subject Approach  

For the Study of Algebra 

The Task Group sought to examine if the differences in the way in which topics are 
sequenced in an integrated and single-subject approach for the study of Algebra lead to 
differences in algebra achievement. An integrated approach is defined as one in which the topics 
of high school mathematics are presented in some order other than the customary sequence in 
the United States of year-long courses in Algebra I, Geometry, Algebra II, and Precalculus.  
                                                
14 It should be noted that the What Works Clearinghouse (WWC), managed by the U.S. Department of 
Education, reviews studies evaluating the effectiveness of current mathematics (and other) programs as part of 
an ongoing process, using standards that it formulated to rate the quality of the studies it reviews. WWC has 
found five middle school mathematics curricula supported by what it rated as high-quality research (see 
http://www.whatworks.ed.gov/).  It is not clear how much weight should be attached to the ratings for these five 
curricula because for most of these curricula there are, so far, only one to three studies in all contributing to the 
ratings, and some of the studies contributing to the ratings did not find statistically significant results.  None of 
these studies sought to determine the effectiveness of a particular multiyear mathematics curriculum 
implemented prior to formal algebra course work for success in Algebra. 
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The curricula of most higher-performing nations in the TIMSS study do not follow the 
single-subject sequence of Algebra I, Geometry, and Algebra II, but they also differ from the 
approach used in most U.S. integrated curricula. Instead, Algebra, Geometry, and Trigonometry 
are divided into blocks. The teaching of each block typically extends over several months and 
aims for mathematical closure. As a result, the need to revisit essentially the same material over 
several years, often referred to as “spiraling,” is avoided. For an example, interested readers may 
consult the following Japanese textbooks for mathematics in Grades 9–11: The University of 
Chicago Mathematics Project, 1992; Kodaira, 1996, 1997. 

 
The Task Group reviewed the most relevant studies to determine differences in 

achievement between curricular approaches that differentially shape the sequence of topics 
prior to or during the study of Algebra. They uncovered no research that clearly compared the 
use of textbooks featuring an integrated approach to the use of textbooks reflecting more of a 
single-subject approach. Nor did the researchers at the GE Foundation’s Urban Institute, who 
found 156 comparison studies of 18 middle and high school mathematics curricula that met 
their criteria for inclusion (Clewell et al., 2004). Their criteria included 1) an experimental or 
quasi-experimental design, 2) comparison groups, and 3) measures of student achievement 
that included but were not limited to test scores. Although the researchers found that students 
using six of the curricula scored higher than comparison students on both a majority of the 
standardized, state tests used, or both, and on a majority of the curriculum-based tests used, 
the reviewers stress that only 3 of the 156 studies they examined provided details on what was 
in the comparison curricula. Thus, it is not clear with what these six significantly more 
effective curricula were being compared in the other 153 studies, and there is no clear body of 
research from which conclusions on this question can be drawn. 

 
There is no basis in research for preferring either a single-subject sequence or an 

integrated sequence for the teaching of school mathematics at the level of Algebra or above.   
 
Although there seems to be little descriptive material on the differences in 

mathematical content between integrated and single-subject approaches for high school 
algebra, the differences may be striking. STPI compared North Carolina’s 2003 standards for 
an integrated approach to high school mathematics with the state’s standards for the single-
subject sequence in high school (North Carolina State Board of Education, 2003; Institute for 
Defense Analyses Science and Technology Policy Institute, in press, c). It found that the 
integrated mathematics sequence for Grades 9 through 12 includes 1) all of the course 
objectives for the Algebra I course, 2) 7 out of 8 of the course objectives for the geometry 
course, and 3) 9 of the 15 course objectives for the Algebra II course. The comparison 
determined that North Carolina students completing 4 years of the integrated mathematics 
sequence would not complete all the course objectives addressed by students in the 3-year 
Algebra I, Geometry, and Algebra II sequence. In this case, at least, high school students 
enrolled in mathematics courses using textbooks featuring an integrated approach may not be 
in a position to take more advanced mathematics course work in their senior year, as can high 
school students at present who are able to enroll in an Algebra II course in their sophomore 
or junior year.   
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B. Research on the Timing of Algebra Course Work 

The final question the Task Group addressed concerns the benefits of teaching the 
content of an Algebra I course before Grade 9, that is, of giving students an opportunity to 
learn more mathematics before Grade 9 than is expected in many, if not most, state 
curriculum frameworks. This specific question is relevant to the Task Group’s broader 
question of the math necessary prior to algebra because the content of Algebra I is provided 
to some or all students in Grade 8 or even Grade 7 in many other countries (as well as to 
many students in this country), and the specific grade at which it is offered may well affect 
the grade-by-grade sequence of topics in a school’s curriculum prior to algebra course work. 
The Task Group does not indicate specific grade levels for teaching or learning the essential 
concepts and skills in the three clusters proposed in the previous section, to allow schools the 
option of working out a coherent sequence of these concepts and skills at differing 
elementary grade levels, depending on when they choose to provide the content of an 
Algebra I course.   

 
According to information gathered for the 2005 Grade 8 NAEP tests, about 39% of U.S. 

students have completed a 1- or 2-year Algebra I course in Grade 8 or have taken Algebra I in 
Grade 7.15 Although clear and current international data across a wide range of countries on the 
timing of algebra course work cannot be located, it is clear from TIMSS data and the work of 
Schmidt et al. (2002) that students in the A+ countries study Algebra as well as Geometry in 
Grades 7 and 8. In contrast, in a large number of U.S. schools, an algebra course is not available 
in those grades. Schmidt et al. determined that “while 80% of eighth-graders had access to a 
‘regular’ math course, only 66.5% of eighth-graders attend schools that even offer an algebra 
course. That is, a full third of eighth-graders don’t even have such a course as an option” (p. 14).  

 
Yet, a report from the U.S. Department of Education (1997) articulated the need to 

“provide all students the opportunity to take Algebra I or a similarly demanding course that 
includes fundamental algebraic concepts in the 8th grade and more advanced math and 
science courses in all four years of high school.”  It urged schools to “build the groundwork 
for success in algebra by providing a rigorous curriculum in grades K–7 that moves beyond 
arithmetic and prepares students for the transition to algebra.” 

 
The U.S. Department of Education report (1997) was the background for the Task 

Group’s interest in finding research evidence on the long-term benefits of completing Algebra I 
before Grade 9. A search of the literature produced six studies that met the Panel’s design 
criteria and included Algebra or mathematics achievement as an outcome (Jones, Davenport, 
Bryson, Bekhuis, & Zwick, 1986; Lee, Burkam, Chow-Hoy, Smerdon, & Geverdt, 1998; Ma, 
2000, 2005; Smith, 1996; and Wilkins & Ma, 2002). Smith’s study used algebra achievement 
as an outcome, but the others used general tests that measured student performance on a variety 
of mathematical concepts and skills. All of the studies were analyses of large national data sets 
[High School and Beyond (HS&B), Longitudinal Survey of American Youth (LSAY), 
National Education Longitudinal Study (NELS): 88, and the High School Effectiveness Study] 
and all examined the relationships between high school mathematics achievement and 

                                                
15 See http://nces.ed.gov/nationsreportcard/nde/viewresults.asp.  
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students’ course-taking patterns in mathematics. Because students are never randomly assigned 
to specific course-taking patterns in mathematics in any school, one cannot definitively 
determine whether student achievement is the result of the courses that students take, whether 
their course-taking patterns result from their achievement, or if both their course-taking 
patterns and their achievement are the result of other, unmeasured factors.  Nevertheless, these 
six studies are informative and appear to have used rigorous methods to analyze the course-
taking patterns in mathematics that students chose. They all controlled for important school and 
student characteristics, including prior achievement, although they did not control for exactly 
the same variables, and some studies controlled for more variables than others.  

 
Four of the six studies highlight the relationship between the timing of Algebra I and 

mathematics achievement (Ma, 2000, 2005; Smith, 1996; and Wilkins & Ma, 2002). Three of 
the four (two of which used the same LSAY data set) found that students who took Algebra 
prior to starting high school tended to have higher mathematics achievement in high school 
(Ma, 2000, 2005; Smith) than those who did not. Ma (2000) examined the effect of course 
taking in one year on achievement in the following year. Controlling for socioeconomic status 
(SES), gender, age, and prior mathematics achievement, he found that students who took Pre-
Algebra or Algebra I in Grade 7 had higher average mathematics achievement in Grade 8 than 
those who did not take these courses in Grade 7; in addition, taking Pre-Algebra in Grade 7 
had a greater effect on Grade 8 achievement than taking Algebra I in Grade 7. Those who took 
Pre-Algebra, Algebra I, Algebra I Honors, or Geometry in Grade 8 had higher average 
mathematics achievement in Grade 9 than those who did not take one of these courses; in 
addition, boys did better than girls. Of these four courses, taking Algebra I in Grade 8 had the 
largest impact on Grade 9 achievement, followed by Pre-Algebra, Algebra I Honors, then 
Geometry. However, the mathematics courses that students took in Grade 9 did not predict 
Grade 10 achievement.  

 
Smith’s study (1996) compared students who took Algebra prior to starting high school 

with those who took it at the beginning of high school (Grade 9). She, too, found that students 
who took Algebra early had higher mathematics achievement scores in Grade 12, even after 
controlling for background characteristics and mathematics achievement in Grade 10. Smith 
also found that students who took Algebra early, on average, took more advanced mathematics 
courses in high school. 

  
The final two studies (Jones et al., 1986; Lee et al., 1998) also highlight the relationship 

between the number of mathematics courses taken in high school and students’ mathematics 
achievement. Controlling for prior mathematics achievement, verbal ability, and SES, Jones et 
al. found that, on average, students who took a larger number of advanced mathematics courses 
in high school (Algebra I or higher) had higher mathematics achievement in Grade 12 than 
students who took fewer courses. Conversely, Lee et al. found that, after controlling for 
characteristics of students and schools, students who took more low-level courses (lower than 
Algebra I), on average, had low mathematics achievement scores in Grade 12 and reached 
lower levels of mathematics course work by Grade 12 than students who took more high-level 
courses. Together, findings from these three studies (Smith, 1996; Jones et al.; and Lee et al.) 
suggest that students who take more mathematics courses at the level of Algebra 1 or higher 
have, on average, higher mathematics achievement in high school than students who take fewer 
courses, controlling for background characteristics.   
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It is important to note that these six studies drew on four national data sets. Three 
analyzed LSAY data (Ma, 2000, 2005; Wilkins & Ma, 2002), two used HS&B data (Smith, 
1996; Jones et al., 1986), and one used data from NELS: 88 and the High School Effectiveness 
Study (Lee et al., 1998). The consistency of their findings is striking. The studies by Ma and 
others provide some evidence that there are long-term benefits for Grade 7 or 8 students with 
the requisite mathematical background for algebra if they can take an authentic Algebra course 
in Grade 7 or 8: higher mathematics achievement in high school and the opportunity to take 
advanced mathematics course work in Grade 11 or 12.   

 
If students have the opportunity to take Algebra I in Grade 7 or 8, they will be able to 

enroll in precalculus, calculus, or other advanced mathematics courses in Grade 11 or 12. 
The importance of being able to take a calculus course before graduation, or at the least a 
precalculus course (or a post-Algebra II course that includes trigonometry), is underscored by 
a 2003 survey of admission requirements for Massachusetts public and private institutions of 
higher education offering 4-year engineering programs (Massachusetts Department of 
Education, 2003). 

 
In sum, there is no research demonstrating that a specific multigrade sequence of 

mathematics topics assures success in Algebra. Nor is there a body of research from which 
one may draw conclusions about the relative effectiveness of either an integrated or a single-
subject approach to the study of Algebra and more advanced mathematics. However, 
research evidence, as well as the experience of other countries, supports the value of 
preparing a higher percentage of students than the U.S. does at present to complete an 
Algebra I course or its equivalent by Grade 7 or 8, and of providing such course work in 
Grade 7 or 8. 

VII. Recommendations  

This Task Group affirms that Algebra is the gateway to more advanced mathematics 
and to most postsecondary education. All schools and teachers of mathematics must 
concentrate on providing a solid mathematics education to all elementary and middle school 
students so that all of them can enroll and succeed in Algebra. Students need to be soundly 
prepared for Algebra and then well taught in Algebra, regardless of the grade level at which 
they study it. To improve the teaching of Algebra, the Task Group proposes the following 
eight recommendations: 

 
1) The Task Group recommends that school algebra be consistently understood in terms 

of the Major Topics of School Algebra given in this report on page 5.   

2) The Major Topics of School Algebra, accompanied by a thorough elucidation of the 
mathematical connections among these topics, should be the main focus of Algebra 
I and Algebra II standards in state curriculum frameworks, in Algebra I and Algebra 
II courses, in textbooks for these two levels of Algebra whether for integrated 
curricula or otherwise, and in end-of-course assessments of these two levels of 
Algebra. The Task Group also recommends use of the Major Topics of School 
Algebra in revisions of mathematics standards at the high school level in state 
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curriculum frameworks, in high school textbooks organized by an integrated 
approach, and in grade-level state assessments using an integrated approach at the 
high school level, by Grade 11 at the latest.  

3) Proficiency with whole numbers, fractions, and particular aspects of geometry and 
measurement are the Critical Foundations of Algebra (p. 40). Emphasis on these 
essential concepts and skills must be provided at the elementary- and middle-grade 
levels. The coherence and sequential nature of mathematics dictate the foundational 
skills that are necessary for the learning of algebra. By the nature of algebra, the 
most important foundational skill is proficiency with fractions (including decimals, 
percent, and negative fractions). The teaching of fractions must be acknowledged as 
critically important and improved before an increase in student achievement in 
Algebra can be expected.  

4) The Benchmarks proposed by the Task Group on page 42 should be used to guide 
classroom curricula, mathematics instruction, and state assessments. They should be 
interpreted flexibly, to allow for the needs of students and teachers. 

5) International studies show that high-achieving nations teach for proficiency in a few 
topics, in comparison with the U.S. mile-wide-inch-deep curriculum. A coherent 
progression, with an emphasis on proficiency in key topics, should become the 
norm in elementary and middle school mathematics curricula. What should be 
avoided in mathematics is an approach that continually revisits topics year after 
year without closure.    

6) All school districts should ensure that all prepared students have access to an authentic 
algebra course—and should prepare more students than at present to enroll in such a 
course by Grade 8. The word “authentic” is used here as a descriptor of a course that 
addresses algebra consistently with the Major Topics of School Algebra.  Students must 
be prepared with the mathematical prerequisites for this course according to the Critical 
Foundations and the Benchmarks. 

7) Publishers must ensure the mathematical accuracy of their materials. Those involved 
with developing mathematics textbooks and related instructional materials need to 
engage mathematicians, as well as mathematics educators, in writing, editing, and 
reviewing these materials.   

8) Teacher education programs and licensure tests for early childhood teachers, 
including all special education teachers at this level, should fully address the topics on 
whole numbers, fractions, and the appropriate geometry and measurement topics in 
the Critical Foundations of Algebra, as well as the concepts and skills leading to 
them; for elementary teachers, including elementary-level special education teachers, 
all topics in the Critical Foundations of Algebra and those topics typically covered in 
an introductory Algebra course; and for middle school teachers, including middle 
school special education teachers, the Critical Foundations of Algebra and all of the 
Major Topics of School Algebra. 
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APPENDIX A 

Table A-1: Comparison of the Major Algebra Topics in Five Sets of Algebra I and 
Algebra II Textbooks With the List of Major Topics of School Algebra 
Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Variables and 
Expressions 

Variables and 
Expressions Using Variables Variables and 

Expressions 
Variables and 
Equations 

Writing Equations Expressions and Formulas Properties of Numbers Simplifying Expressions 
Solving Equations by 
Using Addition and 
Subtraction 

Commutative and 
Associative Properties 

Adding Rational 
Numbers Order of Operations 

Expressions and 
Formulas The Distributive Property Subtracting Rational 

Numbers 
Adding and Subtracting 
Polynomials 

Order of Operations Adding and Subtracting 
Rational Numbers 

Multiplying and 
Dividing Rational 
Numbers 

  

The Distributive Property Multiplying Rational 
Numbers 

Exponents and Order 
of Operations   

Commutative and 
Associative Properties 

Dividing Rational 
Numbers 

The Distributive 
Property   

Multiplying Monomials Operations With 
Polynomials 

Adding and 
Subtracting 
Polynomials 

  

Adding and Subtracting 
Polynomials       

Polynomial 
Expressions 

Identity and Equality 
Properties Order of Operations     

  

Dividing Monomials Rational Expressions Solving Rational 
Equations 

Simplifying Algebraic 
Expressions Algebraic Fractions 

Rational Expressions Multiplying Rational 
Expressions 

Algebraic 
Expressions 

Simplifying Rational 
Expressions 

Adding and 
Subtracting Fractions 

Multiplying Rational 
Expressions 

Dividing Rational 
Expressions Rational Expressions Multiplying and Dividing 

Rational Expressions 
Working With 
Rational Expressions 

Rational Expressions 
With Like Denominators Dividing Polynomials 

Adding and 
Subtracting Rational 
Expressions 

Adding and Subtracting 
Rational Expressions Fractional Equations 

Rational Expressions With 
Unlike Denominators 

Rational Expressions 
With Like Denominators 

Solving Rational 
Equations  

Solving Rational 
Equations 

Polynomial Long 
Division 

Rational Equations and 
Functions 

Rational Expressions With 
Unlike Denominators Dividing Polynomials Multiplying and Dividing 

Rational Expressions Mixed Expressions 

Dividing Rational 
Expressions 

Mixed Expressions and 
Complex Fractions 

Simplifying Rational 
Expressions 

Adding and Subtracting 
Rational Expressions 

Rational Algebraic 
Expressions 

Mixed Expressions and 
Complex Fractions 

Solving Rational 
Equations 

Multiplying and 
Dividing Rational 
Expressions 

Adding and Subtracting 
Polynomials 

Multiplying and Dividing 
Rational Expressions  

Solving Rational 
Equations and Inequalities 

Adding and Subtracting 
Rational Expressions 

Multiplying and Dividing 
Rational Expressions 

Dividing Polynomials Adding and Subtracting 
Rational Expressions 

Sy
m

bo
ls

 a
nd

 E
xp
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ss
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Rational 
Expressions 

 Operations With 
Polynomials     
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Arithmetic Sequences Arithmetic Sequences Arithmetic Sequences Arithmetic Sequences Arithmetic and 
Geometric Series 

Arithmetic Series Geometric Sequences Geometric Sequences Geometric Sequences Sequences 

Geometric Series Arithmetic Series Geometric Series Introduction to 
Sequences 

Infinite Geometric Series Infinite Geometric Series Arithmetic Series Series and Summation 
Notation 

Recursion and Special 
Sequences 

Recursion and Special 
Sequences 

Arithmetic Sequences 
and Series 

Geometric Sequences Geometric Series Geometric Sequences and 
Series Sy

m
bo

ls
 a

nd
 E

xp
re

ss
io

ns
 

Arithmetic  
and Geometric 
Sequences and 
Series 

   

  
Mathematical Induction 
and Infinite Geometric 
Series 

  

Properties of Real 
Numbers 

Rational Numbers on the 
Number Line 

Exploring Real 
Numbers 

Adding and Subtracting 
Real Numbers Numbers on a line 

Properties of Real 
Numbers 

Properties of Real 
Numbers 

Multiplying and Dividing 
Real Numbers 

Operating With Real 
Numbers 

Properties of Real 
Numbers Rational Numbers 

Irrational Numbers 
Working With Real 
Numbers: Addition 
and Subtraction 

Real Numbers 
as Points on 
the Number 
Line   

    
  

Dividing Real 
Numbers 

Solving Equations With 
the Variable on Each Side 

Writing Equations in 
Slope-Intercept Form 

Point-Slope Form and 
Writing Linear 
Equations 

The Slope Formula Linear Equations 

Geometry: Parallel and 
Perpendicular Lines Writing Equations Slope-Intercept Form Slope-Intercept Form Linear Equations 

and Their Graphs 

Graphing Equations in 
Slope-Intercept Form 

Identity and Equality 
Properties 

Parallel and 
Perpendicular Lines 

Rate of Change and 
Slope   

Solving for a Specific 
Variable Relations Linear Equations Point-Slope Form Solving Equations and 

Solving Problems 
Solving Equations by 
Using Multiplication and 
Division 

Solving Equations by 
Using Addition and 
Subtraction 

Solving Equations Using Intercepts 
Transforming 
Equations: Addition 
and Subtraction 

Solving Multistep 
Equations 

Geometry: Parallel and 
Perpendicular Lines 

Equations With 
Variables on Both 
Sides 

Slopes of Parallel and 
Perpendicular Lines 

Transforming 
Equations: 
Multiplication and 
Division 

Linear Equations Graphing Linear 
Equations 

Solving Two-Step 
Equations 

Solving Linear Equations 
and Inequalities Slope of a Line 

Writing Linear Equations Slope-Intercept Form Solving Multistep 
Equations Solving for a Variable 

Slope-Intercept 
Form of a Linear 
Equation 

Writing Point-Slope 
Form Solving Equations Equations and 

Problem Solving 
Solving Equations by 
Adding or Subtracting 

Determining an 
Equation of a Line 

Similar Triangles 
Solving Equations by 
Using Multiplication and 
Division 

Proportions and 
Similar Figures 

Solving Equations by 
Multiplying or Dividing   

Rate of Change and Slope Solving Multistep 
Equations 

Solving Two-Step and 
Multistep Equations 

L
in

ea
r 

E
qu
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ns
 

Linear 
Equations and 
Their Graphs 

Writing Equations in 
Slope-Intercept Form 

Solving Equations With 
the Variable on Each Side 

  
Solving Equations With 
Variables on Both Sides 
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Slope Solving Equations and 
Formulas 

Square Roots and Real 
Numbers 

Linear Graphs Equations as Relations 
Writing Equations in 
Point-Slope Form 
Linear Equations 
Similar Triangles 
Slope 

Linear 
Equations 
and their 
Graphs   

Writing Linear Equations 

 
  

 

Weighted Averages Percent of Change Percent of Change Applications of 
Proportions Ratio and Proportion 

Weighted Averages Weighted Averages Rate of Change and 
Slope Percent Problems 

      Variation and 
Proportion 

Solving 
Problems 
With Linear 
Equations 

Percent of Change     

  

Mixture and Work 
Problems 

Solving Compound 
Inequalities 

Solving Inequalities by 
Addition and Subtraction 

Solving Inequalities 
Using Multiplication 
and Division 

Solving Linear 
Inequalities 

Inequalities in One 
Variable 

Graphing Inequalities in 
Two Variables 

Solving Inequalities by 
Multiplication and 
Division 

Inequalities and Their 
Graphs 

Graphing and Writing 
Inequalities 

Inequalities in Two 
Variables 

Solving Inequalities Solving Multistep 
Inequalities 

Solving Inequalities 
Using Addition and 
Subtraction 

Solving Inequalities by 
Adding or Subtracting 

Working With 
Inequalities 

Graphing Inequalities Solving Compound 
Inequalities Linear Inequalities Solving Inequalities by 

Multiplying or Dividing 
Working With 
Absolute Value 

Solving Equations Graphing Inequalities in 
Two Variables 

Solving Multistep 
Inequalities 

Solving Two-Step and 
Multistep Inequalities Solving Inequalities 

Solving Inequalities by 
Addition and Subtraction Solving Inequalities Compound 

Inequalities 
Solving Inequalities With 
Variables on Both Sides 

Graphing Linear 
Inequalities 

Solving Inequalities by 
Multiplication and 
Division 

Graphing Inequalities Two-Variable 
Inequalities 

Solving Compound 
Inequalities 

Solving Systems of 
Linear Inequalities. 

Solving Inequalities 
Involving Absolute Value 

Graphing Systems of 
Inequalities Solving Inequalities Linear Inequalities in 

Two Variables 

Solving Multistep 
Inequalities Linear Programming 

Absolute Value 
Equations and 
Inequalities 

Solving Systems of 
Linear Inequalities 

Solving Compound and 
Absolute Value 
Inequalities 

Solving Systems of 
Inequalities by Graphing Linear Programming Linear Programming 

Linear Programming Systems of 
Inequalities 

Solving Systems of 
Inequalities by Graphing  

Linear 
Inequalities 
and Their 
Graphs 

Graphing Systems of 
Inequalities 

  
  

  

  

Elimination Using 
Addition and Subtraction 

Graphing Systems of 
Equations 

Solving Systems by 
Graphing 

Solving Systems by 
Graphing 

Using Two 
Variables 

Solving Systems of 
Equations Algebraically Substitution Solving Systems 

Using Substitution 
Solving Systems by 
Substitution 

Solving Systems of 
Linear Equations 

L
in

ea
r 

E
qu
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Graphing 
and Solving 
Systems of 
Simultaneous 
Linear 
Equations Graphing Systems of 

Equations 
Elimination Using 
Addition and Subtraction 

Solving Systems 
Using Elimination 

Solving Systems by 
Elimination Linear Systems 

Continued on p. 3-56 
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Solving Systems of 
Equations in Three 
Variables 

Elimination Using 
Multiplication 

Applications of 
Linear Systems Solving Special Systems Systems of 

Equations 

Applying Systems of 
Linear Equations 

Solving Systems of 
Equations by Graphing 

Systems of Linear 
Inequalities 

Using Graphs and Tables 
to Solve Linear Systems 

Systems of Linear 
Equations in Three 
Variables 

Elimination Using 
Multiplication 

Solving Systems of 
Equations Algebraically 

Graphing Systems of 
Equations 

Using Algebraic Methods 
to Solve Linear Systems 

Solving Systems of 
Equations by Graphing 

Solving Systems of 
Equations in Three 
Variables 

Solving Systems 
Algebraically 

Solving Linear Systems 
in Three Variables 

L
in

ea
r 

E
qu

at
io

ns
 

Graphing 
and Solving 
Systems of 
Simultaneous 
Linear 
Equations 

    Systems With Three 
Variables 

Linear Equations in 
Three Dimensions 

  

Substitution Factors and Greatest 
Common Factors 

Solving Quadratic 
Equations 

Factors and Greatest 
Common Factors Factoring Integers  

Monomials and Factoring Factoring Using the 
Distributive Property 

Factoring to Solve 
Quadratic Equations 

Factoring by Greatest 
Common Factors 

Monomial Factors of 
Polynomials 

Factoring Trinomials: 
x2+bx+c 

Factoring Trinomials: 
x2+bx+c 

Multiplying and 
Factoring Factoring x2+bx+c Multiplying 

Binomials Mentally 
Factoring Trinomials: 
ax2+bx+c 

Factoring Trinomials: 
ax2+bx+c 

Multiplying 
Binomials Factoring ax2+bx+c Differences of 

Squares 
Factoring Using the 
Distributive Property 

Factoring Differences of 
Squares 

Factoring Trinomials 
of the Type x2+bx+c 

Factoring Special 
Products 

Squares of 
Binomials 

Solving Quadratic 
Equations by Factoring 

Perfect Squares and 
Factoring 

Factoring Trinomials 
of the Type ax2+bx+c 

Choosing a Factoring 
Method 

Factoring Pattern for 
x2+bx+c, c positive 

Factoring Differences of 
Squares 

Solving Quadratic 
Equations by Graphing 

Factoring by 
Grouping 

Solving Quadratic 
Equations by Graphing 
and Factoring 

Factoring Pattern for 
x2+bx+c, c negative 

Perfect Squares and 
Factoring 

Solving Quadratic 
Equations by Factoring 

Solving Quadratic 
Equations by Factoring 

Factoring Pattern for 
ax2+bx+c 

 Factoring by 
Grouping 

Solving Quadratic 
Equations by Using 
Square Roots 

Using More Than 
One Method of 
Factoring 
Solving Equations 
by Factoring 
Solving Problems by 
Factoring 

Factors and 
Factoring of 
Quadratic 
Polynomials 
with Integer 
Coefficients 

    
  

  

Quadratic Equations 
With Perfect Squares 

Completing the Square 
Solving Quadratic 
Equations by Completing 
the Square 

Completing the 
Square Completing the Square Completing the 

Square 

Solving Quadratic 
Equations by Completing 
the Square  

Completing the Square Factoring Quadratic 
Expressions 

Q
ua

dr
at
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 E

qu
at

io
ns

 

Completing 
the Square in 
Quadratic 
Expressions 

    Completing the 
Square 

    

Continued on p. 3-57  
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

The Quadratic Formula 
and the Discriminant 

The Quadratic Formula 
and the Discriminant  

The Quadratic 
Formula 

The Quadratic Formula 
and the Discriminant  

Quotients and 
Factoring 

Using the 
Discriminant The Quadratic Formula Products and Factors 

The Quadratic 
Formula 

Quadratic 
Formula and 
Factoring of 
General 
Quadratic 
Polynomials 

    
    The Quadratic 

Formula and the 
Discriminant 

Solving Quadratic 
Equations by Using the 
Quadratic Formula 

Solving Quadratic 
Equations by Using the 
Quadratic Formula 

Solving Quadratic 
Equations 

Solving Equations Using 
Quadratic Techniques Quadratic Equations 

Roots of Quadratic 
Equations 

Q
ua

dr
at

ic
 E

qu
at

io
ns

 

Using the 
Quadratic 
Formula 
to Solve 
Equations   

  

Not Available Not Available 

Using Quadratic 
Equations 

Representing Relations Graphs and Functions Patterns and 
Functions 

Identifying Linear 
Functions 

Functions and 
Relations 

Proportional and 
Nonproportional 
Relationships 

Ratios and Proportions Ratio and Proportion Transforming Linear 
Functions Functions 

Relations and Functions Functions Relations and 
Functions Writing Function Functions and 

Relations 

Functions and Graphs Writing Equations from 
Patterns 

Relating Graphs to 
Events 

Introduction to Parent 
Functions 

Functions Defined 
by Equations 

Linear Functions Classes of Functions Functions Rules, 
Tables, and Graphs Graphing Relationships 

Functions Defined 
by Tables and 
Graphs 

Operations on Functions Relations and Functions Writing a Function 
Rule Relations and Functions Direct Variation 

Representing Functions Operations on Functions Describing Number 
Patterns Introduction to Function   

Direct, Joint, and Inverse 
Variation 

Slope and Direct 
Variation 

Relations and 
Functions Relations and Functions 

Direct and Inverse 
Variation Involving 
Squares 

 Families of Functions Rates, Ratios, and 
Proportions 

Joint and Combined 
Variation 

Mathematical 
Patterns 

Graphing Linear 
Functions 

Direct Variation Writing Linear Functions 
Applying Linear 
Functions Function Notations 

Standard Form Direct Variation 
Variation Functions 
Operations With 
Functions 
Multiple Representations 
of Functions 

Transforming Quadratic 
Functions 
Using Transformations to 
Graph Quadratic 
Functions 
Transforming Linear 
Functions 

Fu
nc

tio
ns

 

Linear 
Functions 

  
  

  

Proportional Reasoning 
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Quadratic Functions 
Properties of Quadratic 
Functions in Standard 
Form 

Quadratic 
Functions – 
Word 
Problems 
Involving 
Quadratic 
Functions 

Not Available Not Available 

Quadratic Functions Characteristics of 
Quadratic Functions 

Not Available 

Graphing Quadratic 
Functions Circles Properties of 

Parabolas Graphing Functions Quadratic Functions 
and Their Graphs 

Parabolas Analyzing Graphs of 
Quadratic Functions 

Transforming 
Parabolas Parabolas 

Conic Sections: 
Circles and 
Parabolas 

Analyzing Graphs of 
Quadratic Functions Parabolas Parabolas Graphing Quadratic 

Functions 
Linear and Quadratic 
Functions 

Circles Graphing Quadratic 
Functions Circles Solving Quadratic 

Equations by Graphing 

Solving Quadratic 
Equations by Graphing 

Solving Quadratic 
Equations by Graphing 

Exploring Quadratic 
Graphs Circles 

Graphing Quadratic 
Functions 

Graphing Quadratic 
Functions   Identifying Quadratic 

Functions 
 Classes of Functions 
Solving Quadratic 
Equations by Graphing 

Graphs of 
Quadratic 
Functions 

  
  

    

  

Analyzing Graphs of 
Polynomials Functions Polynomial Functions Polynomial Functions Investigating Graphs of 

Polynomial Functions 
Products of 
Polynomials 

Polynomial Functions Analyzing Graphs of 
Polynomial Functions 

Transforming Polynomial 
Functions Polynomial Division 

Polynomial 
Functions 
(including 
graphs of  
basic 
functions)  Graphing Polynomial 

Functions 

  
    

  Square Roots and Real 
Numbers 

Graphing Rational 
Functions Transforming Functions Applying Fractional 

Equations 

Inverse Variation   
Finding and 
Estimating  
Square Roots 

Rational Functions Inverse Functions 
and Equations 

Special Functions Graphing Rational 
Functions 

Graphing Absolute 
Value Equations  

Solving Absolute-Value 
Equations and 
Inequalities 

The Reciprocal of a 
Number 

Square Root Functions 
and Inequalities 

Solving Absolute Value 
Equations 

Absolute Value 
Equations and 
Inequalities 

Absolute-Value 
Functions Inverse Variation 

nth Roots 
Solving Compound and 
Absolute Value 
Inequalities 

Absolute Value 
Functions and Graphs Rational Functions   

Solving Absolute Value 
Equations 

Square Root Functions 
and Inequalities 

Inverse Relations and 
Functions 

Solving Rational 
Equations and 
Inequalities 

  

Inverse Functions and 
Relations 

Direct, Joint, and Inverse 
Variation Inverse Variation Radical Functions   

Direct, Joint, and Inverse 
Variation 

Inverse Functions and 
Relations 

Rational Functions 
and Their Graphs 

Solving Radical 
Equations and 
Inequalities 

  

Fu
nc

tio
ns

 

Simple 
Nonlinear 
Functions 
Simple 
Nonlinear 
Functions  
(e.g., square 
and cube root 
functions; 
absolute  
value; rational 
functions;  
step functions) 

Solving Rational 
Equations and 
Inequalities 

Classes of Functions The Reciprocal 
Function Family Inverse Variation   

Continued on p. 3-59 
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Graphing Rational 
Functions Inverse Variation 

Graphing Square 
Root and Other 
Radical Functions 

Inverses of relations and 
Functions   

  Graphing Square 
Root Functions Piecewise Functions   

  Functions and Their 
Inverses   

  Square-Root  
Functions   

  Solving Nonlinear 
Systems   

Simple 
Nonlinear 
Functions 
Simple 
Nonlinear 
Functions  
(e.g., square 
and cube root 
functions; 
absolute  
value; rational 
functions; step 
functions) 

  

  

  

Square Roots    
Exponential Growth  
and Decay Exponential Functions Zero and Negative 

Exponents Integer Exponents Radical Expressions 

Rational Exponents Growth and Decay 
Multiplication 
Properties of 
Exponents 

Multiplication Properties 
of Exponents 

Problems Involving 
Exponents 

Simplifying Radical 
Expressions 

Simplifying Radical 
Expressions 

More Multiplication 
Properties of 
Exponents 

Division Properties of 
Exponents 

Using the Laws of 
Exponents 

Operations With Radical 
Expressions 

Operations With Radical 
Expressions 

Division Properties of 
Exponents Radical Expressions Exponential 

Functions 

Growth and Decay Radical Equations Exponential 
Functions 

Adding and Subtracting 
Radical Expressions Negative Exponents 

Properties of Exponents Radical Expressions Exponential Growth 
and Decay 

Multiplying and Dividing 
Radical Expressions Roots and Radicals 

Exponential Functions Exponential Growth and 
Decay Simplifying Radicals Powers and Exponents Powers of 

Monomials 
Operations With Radical 
Expressions Exponential Functions Operations With 

Radical Expressions Exponential Functions Rational exponents 

Solving Radical 
Equations and 
Inequalities 

Rational Exponents Solving Radical 
Equations 

Exponential Growth and 
Decay 

Exponential Growth 
and Decay 

Classes of Functions Radical Equations and 
Inequalities Rational Exponents Linear, Quadratic, and 

Exponential Models 
Roots of Real 
Numbers 

Radical Equations Properties of Exponents 
Properties of 
Exponential 
Functions 

Solving Radical 
Equations 

Exponential Functions Roots of Real Numbers 
Multiplying and 
Dividing Radical 
Expressions 

Exponential Functions, 
Growth, and Decay 

nth Roots Binomial Radical 
Expressions 

Radical Expressions and 
Rational Exponents 

  
Solving Square Root 
and Other Radical 
Equations 

Properties of Exponents 

  Roots and Radical 
Expressions Rational Exponents 

  
Choosing a Linear, 
Quadratic, or 
Exponential Model 

Rational 
Exponents, 
Radical 
Expressions, 
and 
Exponential 
Functions 

  

  Function Operations 

  

  

Logarithms and 
Logarithmic Functions 

Logarithms and 
Logarithmic Functions 

Logarithmic 
Functions as Inverses Logarithmic Functions Logarithmic 

Functions 

Fu
nc

tio
ns

 

Logarithmic 
Functions 

Properties of Logarithms Properties of Logarithms Properties of 
Logarithms Properties of Logarithms The Natural 

Logarithm Function 
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Common Logarithms Common Logarithms 
Exponential and 
Logarithmic 
Equations 

Exponential and 
Logarithmic Equations 
and Inequalities 

Base e and Natural 
Logarithms  

Base e and Natural 
Logarithms Natural Logarithms The Natural Base, e Logarithmic 

Functions 

      
Transforming 
Exponential and 
Logarithmic Functions 

  

Graphing Trigonometric 
Functions Trigonometric Ratios Trigonometric Ratios Trigonometric Ratios Trigonometric 

Functions 

Trigonometric Functions 
of General Angles 

Graphing Trigonometric 
Functions 

Angles of Elevation 
and Depression 

Graphs of Sine and 
Cosine 

Triangle 
Trigonometry 

Circular Functions Translations of 
Trigonometric Graphs 

Solving 
Trigonometric 
Equations Using 
Inverses 

Graphs of Other 
Trigonometric Functions 

Circular Functions 
and Their Graphs 

Inverse Trigonometric 
Functions Circular Functions Right Triangle and 

Trigonometric Ratios  
Solving Trigonometric 
Equations 

Translations of 
Trigonometric Graphs 

Inverse Trigonometric 
Functions Radian Measure Inverses of 

Trigonometric Functions 
Solving Trigonometric 
Equations 

Solving Trigonometric 
Equations The Tangent Function 

Verify Trigonometric 
Functions   The Sine Function 

The Cosine Function 
Translating Sine and 
Cosine Function 
Exploring Periodic 
Data 
Reciprocal 
Trigonometric 
Functions 

Trigonometric 
Functions 

    

  

  

  

Scatter Plots and  
Lines of Fit 

Modeling “Real-World” 
Data: Using Scatter Plots Scatter Plots Scatter Plots and Trend 

Lines 

Statistics: Displaying and 
Analyzing Data 

Scatter Plots and 
Equations of Lines 

Curve Fitting With 
Linear Models  

Statistics: Analyzing 
Data by Using Tables 
and Graphs 

Using Linear Models Modeling “Real-World” 
Data 

Statistics: Scatter Plots 
and Lines of Fit 

Fitting Simple 
Mathematical 
Models to 
Data   

Statistics: Using Scatter 
Plots 

    

  

The Remainder and 
Factor Theorems Factoring Polynomials 

Theorems About 
Roots of Polynomial 
Equations 

Factoring Polynomials Factors of 
Polynomials 

Polynomials The Remainder and 
Factor Theorems 

Polynomials and 
Linear Factors Polynomials 

Theory of 
Polynomial 
Equations 

Adding and Subtracting 
Polynomials Multiplying Monomials Multiplying Special 

Cases 
Adding and Subtracting 
Polynomials 

Solving Polynomial 
Equation 

Fu
nc

tio
ns

 

Roots and 
Factorization 
of Polynomial 
Forms 

Multiplying a Polynomial 
by a Monomial Dividing Monomials Dividing Polynomials Special Products of 

Binomials 

Adding and 
Subtracting 
Polynomials 

Continued on p. 3-61 
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Table A-1, continued 

Major Topics of 
School Algebra 

Glencoe  
McGraw-Hill 2008 

Glencoe McGraw-Hill: 
Calif. Edition 2005 

Prentice Hall  
2007 

Holt, Rinehart and 
Winston 2007 

Houghton Mifflin 
1988 

Operations with 
Polynomials Polynomials Solving Polynomial 

Equations Multiplying Polynomials Multiplying 
Monomials 

Solving Polynomial 
Equations 

Adding and Subtractions 
Polynomials 

Factoring Special 
Cases  Dividing Polynomials 

Multiplying a 
Polynomial by a 
Monomial 

Multiplying Polynomials 
Multiplying a 
Polynomial by a 
Monomial 

Adding and 
Subtracting 
Polynomials 

Multiplying Two 
Polynomials 

Dividing Polynomials Multiplying Polynomials  The Remainder and 
Factor Theorems 

Rational Zero Theorem Monomials 
Polynomials 
Rational Zero Theorem 

Roots and 
Factorization 
of Polynomial 
Forms 

  
Dividing Polynomials 

  

  

  

Complex Numbers Complex Numbers Complex Numbers Operations With 
Complex Numbers 

Polar Coordinates 
and Complex 
Numbers 

Complex 
Numbers and 
Operations 

      Complex Numbers and 
Roots 

Real Numbers and 
Complex Numbers 

Roots and Zeros Roots and Zeros The Fundamental 
Theorem of Algebra 

Finding Real Roots of 
Polynomial Equations 

Theory of 
Polynomial 
Equations 

Fundamental 
Theorem of 
Algebra 

      Fundamental Theorem of 
Algebra   

Binomial 
Coefficients 
(and Pascal’s 
Triangle) 

The Binomial Theorem The Binomial Theorem The Binomial 
Theorem   Binomial Expansion 

The Binomial Theorem The Binomial Theorem The Binomial 
Theorem 

Mathematical Induction 
and Infinite Geometric 
Series 

Binomial Expansion 

Proof and Mathematical 
Induction 

Exponential and 
Binomial Distribution   Binomial Distributions   

Fu
nc

tio
ns

 

Mathematical 
Induction and 
the Binomial 
Theorem 

 Proof and Mathematical 
Induction      

Probability of Compound 
Events 

Permutations and 
Combinations 

Probability of 
Compound Events  

Combinations and 
Permutations Probability 

Probability Simulations Probability of 
Compound Events 

Counting Methods 
and Permutations Compound Events Permutations and 

Combinations 

Probability Probability: Simple 
Probability and Odds Combinations Permutations and 

Combinations 
Fundamental 
Counting Principles 

Multiplying Probabilities Probability Simulations Probability Independent and 
Dependent Events 

Adding Probabilities Multiplying Probabilities   

Counting Outcomes The Counting Principle 
Conditional 
Probability 

The Counting Principle 
Permutations and 
Combinations 

Permutations and 
Combinations 

Permutations and 
Combinations Counting Outcomes 

Probability of 
Multiple Events 

Probability 

C
om

bi
na

to
ri

cs
 a

nd
 F

in
ite

 P
ro

ba
bi

lit
y 

Combinatorics 
and Finite 
Probability 

  Adding Probabilities     

  

Note: The Major Topics of School Algebra can be found on page 5. The chapter headings of each textbook reviewed are sorted into each Major 
Topic of School Algebra category as applicable. If a column only has one box under each Major Topic of School Algebra, it means that that 
particular textbook had only one chapter or section that was applicable to the specific Major Topic of School Algebra. If a column is empty, that 
book did not have a chapter or section that fit. 
Source: Institute for Defense Analysis Science and Technology Policy. 
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APPENDIX B: Errors in Algebra Textbooks 

The National Mathematics Advisory Panel commissioned a mathematician to look 
systematically for mathematical errors in 

 
A.  two widely used algebra textbooks, one Algebra I and one Algebra II, and  
B.  a chapter on linear equations in each of three other popular Algebra I textbooks. 
 
A summary of the results is provided below. 
 
(A) Error density of an Algebra I and Algebra II textbook is defined to be the 

following quotient expressed as a percent: 
 

the total number of errors 
the total number of pages in the book 

 
It was found that for the review noted above: 

• Algebra I book has error density 50.2%, and 
• Algebra II book has error density 41%. 
 
This means that, for the Algebra I book, there is on average at least one error every 

two pages. The Algebra II book is slightly better in this regard, with about four errors in 
every 10 pages on average. 

 
The analysis also provides additional information regarding the errors found within 

the Algebra I and Algebra II books. There are three types: 
 
Type I: lack of clarity, minor errors, or misprints. 
Type III: a gap in a logical argument or an error on a conceptual level. 
Type II: an error that falls between those two types of errors. 
 
The following table summarizes the error densities of these errors in both books: 
 

Table B-1: Error Densities of Errors in Algebra I and Algebra II Textbooks 

Book Type I Type II Type III 
Algebra I 20.4% 19.5% 10.3% 
Algebra II 12.1% 19.4% 9.6% 
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An example of a Type I error is the statement that all lines with the same slope are 
parallel; the correct statement  should be: two distinct lines with the same slope are parallel. 
Two examples of a Type II error are: 

 
pointing out that the method of solving a radical equation leads to 
an extraneous solution but without explaining exactly how or 
why, and stating that two functions are inverse functions of each 
other (e.g., exp and log) without giving their precise domains of 
definition. 

 
Several examples of Type III errors are provided here; these are more serious errors: 
 
• Graphing a function with a discrete domain of definition (e.g., the price of n 

articles) as a (continuous) straight line; 
• Interpreting an event with a probability of 0 as an impossible event, and an event 

with a probability 1 as one that will definitely occur without specifying that this 
holds only for a finite sample space; 

• Giving the first few terms of a pattern and extending it to the n-th terms as if the 
extension is unique; 

• Using technical terms (e.g., linear regression) in a problem without giving their 
definitions; 

• Conflating the definition of the negative powers and rational powers of a 
number with a theorem; 

• Defining the slope of a line using two points on the line without pointing out the 
independence of the choice of the two points used, and later on; 

• Pointing out such an independence without indicating that there is an explanation; 
• Proving a general theorem (e.g., a law of exponents) by use of only two or three 

examples; and 
• Giving the procedure of the long division of polynomials without explaining what 

it is about, i.e., never defining division with a remainder. 
 
Readers should keep in mind that the error density of Type III errors is about 10% in 

these two Algebra books, i.e., students are going to find one such error every ten pages on 
average.  This is definitely a cause for concern for both students and teachers. 
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(B) In this portion of the analysis, one chapter on linear equations in each of three 
other Algebra I textbooks is analyzed. These three books are referred to as b1, b2, and b3. 
Because the corresponding chapter in the Algebra I textbook in (A) is also reviewed, this 
book is referred to as a. Here are the findings of the error densities in the chapter on linear 
equations in these four books: 

 
Table B-2: Error Densities in Chapters on Linear Equations 

Book Type I Type II Type III Overall 
a 21.7% 16.7% 6.7% 45% 
b1 21.2% 6% 6% 33.3% 
b2 14.9% 9.2% 3.5% 27.6% 
b3 2.9% 2.9% 4.4% 10.3% 

 
Note that two errors of Type III in the book b3 were inadvertently left out by the 

contractor, but the above computations of error densities did take these overlooked errors into 
account. The Type III errors involved are the following: One is on not mentioning the fact 
that the definition of slope of a line is independent of the choice of the two points in the 
definition, and the other is on not giving an explanation when this independence is mentioned 
in an example. 

 
This table leaves open the question of whether the book b3, is in fact, significantly 

better than the rest of the available texts, regarding errors. An independent careful reading of 
this book suggests that, like the others, there is a concern relative to error frequency. This 
analysis again raises concern for teachers, students and all others using textbooks. It is 
imperative that authors, editors and publishers produce mathematically accurate textbooks.  
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Executive Summary 

The charge of the Learning Processes Task Group is to address what is known about 
how children learn and understand areas of mathematics related to algebra and preparation 
for algebra. This summary provides brief overviews of and recommendations from the 
corresponding in-depth reviews provided later in the report. The reviews cover the areas of 1) 
General Principles of Cognition and Learning; 2) Social, Motivational, and Affective 
Influences on Learning; 3) What Children Bring to School; 4) Mathematical Development in 
Content Areas of a) Whole Number Arithmetic; b) Fractions; c) Estimation; d) Geometry; 
and e) Algebra; 5) Differences Among Individuals and Groups; and 6) The Brain Sciences 
and Mathematics Learning. For the mathematical content areas included in the reviews, the 
recommendations are organized around classroom practices, training of teachers and 
researchers, curriculum, and future research efforts.  

General Principles: From Cognitive Processes to  

Learning Outcomes 

Cognitive science is the study of the processes that underlie learning and cognition 
and is a foundational component of scientifically informed educational practice. There is a 
large body of high-quality research on learning mechanisms that can be directly applied to 
the classroom to improve student learning and achievement; however, this research at present 
is not being optimally used. 

 
The two main classes of cognitive mechanism that control learning are information 

processing operations and mental representations. Students also engage in metacognitive 
processing, which controls information-processing operations such as selecting strategies for 
effective problem solving.  

 
Information processing begins when a student encounters information and lasts until 

that information is acted upon and a response is made. The process starts with attention, 
without which information is lost. Information that is the focus of attention becomes 
available to learners’ working memory, and with practice the information can be transferred 
to long-term memory. Deficiencies or superiorities in working memory capacities are major 
contributors to learning disabilities or accelerated learning, respectively. Improving the 
effectiveness of working memory can be assisted by achieving automaticity. 

 
Mental representations are represented in different ways in the brain, including 

declarative knowledge, procedural knowledge, and conceptual knowledge.  
 
The number line is a core tool in modern mathematics and is used in many contexts. 

One important cognitive mechanism in mathematics learning is the so-called mental 
number line. 
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Memories occur in either verbatim or gist form. Verbatim recall of math knowledge is 
an essential feature of math education, and it requires a great deal of time, effort, and 
practice. Gist memory is the form of memory that is typically relied on in reasoning. 
A combination of gist knowledge and verbatim knowledge is critical for success in math. 

Social, Motivational, and Affective Influences on Learning 

Children’s goals and beliefs about learning are related to their mathematics 
performance. Mastery-oriented students are focused on learning the material and show better 
long-term academic development in mathematics and the pursuit of difficult academic tasks. 
Performance-oriented students are focused on grades and show less persistence on complex 
tasks. When students are told that beliefs about effort and ability can be changed, they are 
shown to undergo a significant rebound in their mathematics grades.  

 
Young children’s intrinsic motivation to learn is positively correlated with academic 

outcomes in mathematics and other domains and is related to mastery goals. Extrinsic 
motivation is related to performance goals.  

 
Students’ attributions or beliefs about the causes of their success and failure have 

been repeatedly linked to their engaging and persisting in learning activities. Students’ self-
regulation improves math learning.  

 
Anxiety is an emotional reaction that is related to low math achievement, failure to 

enroll in advanced mathematics courses, and poor scores on standardized tests of math 
achievement. Math anxiety creates a focus of limited working memory on managing anxiety 
reaction rather than on solving the math problem, but it can be reduced by therapeutic 
interventions. 

 

Vygotsky’s characterization of the learning process as one of social induction may be 
applicable to the sharing of informal mathematics knowledge when it is embedded in 
everyday practices.    

 
Recommendations 

The Task Group recommends extension of experimental studies that have 
demonstrated that: 1) children’s beliefs about the relative importance of effort and ability can 
be changed; 2) increased emphasis on the importance of effort is related to greater 
engagement and persistence on mathematics tasks; and 3) improved mathematics grades result 
from these changed beliefs.  

 
The Task Group recommends studies that experimentally assess the implications of 

the relation between intrinsic motivation and mathematics learning. 
 
The Task Group recommends experimental and longitudinal studies that assess the 

relative contributions of self-efficacy (i.e., the belief that one has the specific skills needed to 
be successful, which differs from self-esteem) factors to mathematics learning.   
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Although self-regulation (i.e., making goals, planning, monitoring, and self evaluating 
progress) appears promising, research is needed to establish the causal relation between these 
processes and the ability to learn a wider range of mathematics knowledge and skills.  

 
The Task Group recommends research that assesses the potential risk factors of 

anxiety; it also recommends development of promising interventions for reducing debilitating 
mathematics anxiety. 

 
A shortage of controlled experiments makes the usefulness of Vygotsky’s approach 

for improving mathematics learning difficult to evaluate, and thus its utility in mathematics 
classrooms and mathematics curricula needs to be scientifically tested.  

What Children Bring to School 

Mathematical learning begins at birth and continues through the time children first 
arrive at school. The amount of mathematical knowledge students bring to school has 
important consequences for their long-term learning, as children who start kindergarten 
behind their peers tend to stay behind throughout their schooling.  

 
Mathematical development begins in the first months of infancy, as people posses 

an innate nonverbal sense of number that provides a foundation for learning the verbal 
number system.  

 
While 3- and 4-year old children may be able to count from 1 to 10, many have only 

mastered the superficial form of counting without understanding counting’s purpose. By 
kindergarten, most children begin to understand the magnitudes of the numbers from 1 to 10.  

 
By the start of kindergarten, most children also can retrieve from memory answers to 

a few basic addition and subtraction facts, know a variety of other procedures for solving 
simple addition and subtraction problems, and show some understanding of basic arithmetic 
concepts. Children of this age also choose effectively among strategies; use measurement 
strategies that reflect basic understanding of more than, less than, and equal to; and show 
basic geometrical knowledge of simple shapes.  

 
Mathematical knowledge during preschool and kindergarten is predictive of 

mathematical knowledge in third, fifth, and eighth grade. Students who are at risk for low 
mathematics achievement tend to come from single-parent families with low-parental 
education levels, families where English is not the primary language, and families living in 
poverty. African-American and Hispanic children are more likely than other children to enter 
kindergarten with poor mathematical knowledge.  

 
Effective instructional programs designed to improve mathematical knowledge of 

preschool children focus on forming mental representations of numbers, such as the mental 
number line, the language of numbers, and tools found through computer software programs. 
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Recommendations 

Research that scales up interventions to improve the mathematical knowledge of 
preschoolers and kindergartners, especially those from at-risk backgrounds, and research that 
evaluates the utility of these interventions in classroom settings are urgently needed. 

Mathematical Development in Content Areas 

Whole Number Arithmetic 

The mastery of whole number arithmetic is a critical step in children’s mathematical 
education. The road to mastery involves learning arithmetic facts, algorithms, and concepts.  

 
The quick and efficient solving of simple arithmetic problems is achieved when 

children retrieve answers from long-term memory or retrieve related information that allows 
them to quickly reconstruct the answer. Retention of these facts requires repeated practice.  

 
Research indicates that learning of addition and multiplication facts is easier to 

achieve than learning of subtraction and division facts, due to the commuted relation within 
addition and multiplication pairs. Children and many adults in the United States have not 
reached the point of fast and efficient recall of simple arithmetic problems.  

 
Algorithms range in complexity from counting as a way to solve simple addition 

problems to the lengthy sequence of steps involved in solving division problems. Learning of 
complex algorithms is highly dependent on working memory resources and requires repeated 
use of the algorithm extended over time. Mastery of standard algorithms is dependent on 
committing these problem-solving steps to long-term procedural memory, at which point the 
algorithm can be executed automatically with little demand on working memory resources. 
Algorithms that are mastered are less prone to disruption due to anxiety or in contexts such as 
high-stakes testing. 

 
The core concepts that children should understand and use when solving arithmetic 

problems include mathematical equality, the commutative and associative properties of 
addition and multiplication, the distributive property of multiplication, identity elements for 
addition and multiplication, the composition of numbers, connections between arithmetic and 
counting, and the inverse relation between addition and subtraction and between 
multiplication and division.  

 
Conceptual understanding is critical for children’s ability to identify and correct 

errors, for appropriately transferring algorithms to solve novel problems, and for 
understanding novel problems in general.  
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Recommendations 

Training 
For teachers to take full advantage of formative assessments, they must have a better 

understanding of children’s learning and the sources of children’s conceptual and procedural 
errors in the content areas they are teaching. The development of courses in mathematical 
cognition for inclusion in teacher training programs will be necessary to address this goal. 

 
Programs that support cross-disciplinary pre-doctoral and post-doctoral training in 

cognition, education, and mathematics are needed to ensure that a sufficient number of 
researchers study children’s mathematical learning, and have the background needed to 
bridge the gap between laboratory studies and classroom practice. 

 

Curricula 
Although definitive conclusions cannot be drawn at this time due to lack of relevant, 

large-scale experimental studies, the research that has been conducted suggest that effective 
practice should: 1) present more difficult problems more frequently than less difficult 
problems, 2) highlight the relations among problems, 3) order practice problems in ways that 
reinforce core concepts, and 4) include key problems that support formative assessments. 

Research 
Although much is known about some areas of children’s arithmetical cognition and 

learning, further research is needed in the areas of children’s learning of complex algorithms; 
the relation between conceptual knowledge and procedural learning; and on the learning of 
core concepts, including the base-10 number system, the distributive property of 
multiplication, and identity elements, among others.  

 
Studies that focus on the translation of cognitive measures of children’s learning 

into formative assessments that are easily understood by teachers and easily used in the 
classroom are needed. 

 
Funding priorities that target areas of deficit in children’s arithmetical cognition and 

learning are recommended, along with priorities that encourage projects that bridge the gap 
between basic research and classroom practice. 

 
Fractions 

Fractions, decimals, and proportions are introduced into the mathematics curriculum 
as early as elementary school, and yet solving problems with these quantities remains 
difficult for many adults. Understanding and manipulating fractions is crucial for further 
progress in mathematics and for tasks of everyday life.  

 
A fraction is defined as a point on the number line, based on the concept of a part-

whole relation, with the unit segment [0,1] (the segment from 0 to 1) serving as a whole. 
From this mathematical definition of a fraction, other definitions can be derived, such as the 
division interpretation.    
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Difficulties with fractions extend beyond those with learning disabilities in 
mathematics. The failure to attain basic facility with fractions constitutes an obstacle to 
progress to more advanced topics in mathematics, including algebra and, presumably, to 
career paths that require mathematical proficiency, as well as interfering with potential life-
and-death aspects of daily functioning (e.g., understanding and adhering to medical regimen).  

 
To accurately assess competence, it is important to separate children’s understanding 

of formal fractional notation from their intuitive ability to understand fractional relations 
and perform calculations using fractional quantities. Young children reveal a nascent ability 
to understand ratios, and preschool children’s experiences with and understanding of part-
whole relations among sets of physical objects may contribute to an early understanding of 
simple ratios.  

 
Similarly, the ability to manipulate fractions is also present early. Research shows 

that sharing forms the basis for preschool age children’s ability to partition a quantity into 
roughly equal parts through a process of distributive counting. This does not mean that they 
understand the inverse relation among quantities, but with a few lessons they are able to 
appreciate and generalize the inverse relation.    

 
Studies of elementary and middle school-aged children have focused on the 

acquisition of conceptual knowledge, computational skills, and the ability to use both of 
these abilities in conjunction with reading comprehension to solve word problems involving 
fractional quantities. Scores on items assessing conceptual knowledge have consistently been 
shown to explain unique variance (beyond general intellectual and reading abilities) in 
performance on computational fraction problems, word problems that include fractions, and 
estimation tasks with fractional quantities. 

 
Many errors on fraction computation problems could be classified as involving a 

faulty procedure. Children’s accuracy at recognizing formal procedural rules for fractions 
and automatic retrieval of basic arithmetic facts predicts computational skills, above and 
beyond the influence of intelligence, reading skills, and conceptual knowledge. Research also 
shows that on-task time influences performance through its effect on conceptual knowledge.  

 
Motivation also has positive effects on fraction learning. Learning goals rather than 

performance goals may produce higher self-efficacy, skill, and other achievement outcomes 
in students. Performance goals with self-evaluation components may be more effective than 
without. Early levels of basic arithmetic skills may predict those children who will later have 
difficulty with fractions, and building such skills may enhance performance on fraction 
computation problems. 

 
Proportional reasoning involves the coordination of two ratio quantities, and early, 

informal competence can be detected if children are able to use perceptual cues to judge 
relative numerosity.  
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A fraction’s lack of fit with properties of counting adds to the relative difficulty of 
learning the concept. Because of the property of infinite divisibility, fractions, unlike 
counting numbers, do not form a sequence in which each number has a fixed successor. 
Therefore, it has been argued that the one-to-one and stable-order principles that are 
important to counting are misleading when children attempt to generalize from whole 
numbers to fractions. 

 
Pictorial representations, without sufficient emphasis on the nature of wholes in part-

whole relations and the importance of equal-sized parts, also may be an obstacle to learning 
fractions. Number line representation may be more effective. Words also seem to influence 
the mental representations that children form concerning fractions, particularly when 
language demarcates parts and wholes in fraction names.  

 
Research on working-memory demands of different tasks shows that different fraction 

interpretations entail different information-processing demands. Quotient interpretations of 
fractions are more demanding of memory resources than part-whole interpretations because 
they involve a more complex series of mappings.  

 
Individual differences in working memory have been associated with performance on 

fraction tasks; and effects of working memory were independent of effects of conceptual 
knowledge. While conceptual knowledge carries the greatest weight in predicting 
performance on all three outcome measures (computation, estimation, and word problems), 
working memory affected only word problems and only indirectly affected computation 
through knowledge of basic arithmetic facts.  

 
Recommendations 

Classroom 
Children should begin fraction instruction with the ability to quickly and easily 

retrieve basic arithmetic facts. Instruction focusing on conceptual knowledge of fractions is 
likely to have the broadest and largest impact on problem-solving performance. Procedural 
knowledge is also essential, however, and although it must be learned separately, it is likely 
to enhance conceptual knowledge and vice versa.  

 
Successful interventions should include the use of fraction names that demarcate parts 

and wholes, the use of pictorial representations that are mapped onto the number line, and 
composite representations of fractions that are linked to representations of the number line. 
Conceptual and procedural knowledge about fractions less than one do not necessarily 
transfer to fractions greater than one, and must be taught separately. Appropriate intuitions 
about sharing, part-whole relations, and proportional relations can be built on in classrooms 
to support acquisition of conceptual and procedural knowledge of fractions. 
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Training 
Training of teachers should include sufficient coverage of the scientific method so 

that teachers are able to critically evaluate the evidence for proposed pedagogical approaches 
and to be informed consumers of the scientific literature. Teachers should be aware of 
common conceptions and misconceptions involving fractions and of effective interventions 
involving fractions.  

 
New funding should be provided to train future researchers, to begin new 

interdisciplinary degree programs with rigorous quantitative training, and to establish 
support mechanisms for career shifts that encourage rigorous researchers in related fields to 
focus on education.  

Curriculum 
The curriculum should allow for sufficient time on task to ensure acquisition of 

conceptual and procedural knowledge of fractions and of proportional reasoning, with the 
goal for students being one of learning rather than performance. However, there should be 
ample opportunity in the curriculum for accurate self-evaluation. The curriculum should 
include representational supports that have been shown to be effective and tap the full range 
of conceptual and procedural knowledge. 

Research 
An area for future study is the relation between the rudimentary understanding of very 

simple fractional relations and the learning of formal mathematical fractional concepts and 
procedures.  In addition, research is needed to uncover the mechanisms that contribute to the 
emergence of formal competencies. Research on understanding and learning of fractions should 
be integrated with what is known and with emerging knowledge in other areas of basic research, 
such as neuroscience, cognition, motivation, and social psychology. The absence of a coherent 
and empirically supported theory of fraction tasks is a major stumbling block to developing 
practical interventions to improve performance in this crucial domain of mathematics.  

 
Classroom-relevant research need not be conducted physically in classrooms, and 

constraints on funding that require that relevant research be performed in classrooms should 
be removed. Conversely, many interventions demonstrated to be effective in experiments 
should be scaled up and evaluated in classrooms.  

 
Estimation 

Estimation may be used more often in everyday life than any other quantification 
process. It is also quite strongly related to other aspects of mathematical ability, such as 
arithmetic skill and conceptual understanding of computational procedures, and to overall 
math achievement test scores. It usually requires going beyond rote application of procedures 
and applying mathematical knowledge in flexible ways.  
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The Task Group focuses on numerical estimation, the process of translating between 
alternative quantitative representations, at least one of which is inexact and at least one of 
which is numerical. This category includes many prototypic forms of estimation, including 
computational, number line, and numerosity.    

 
Many children have highly distorted impressions of the goals of estimation, especially 

the goals of computational estimation. Accurate computational estimation requires 
understanding of the simplification principle and the proximity principle. Research shows that 
students understand the principle of simplification, but they show little if any understanding of 
the importance of generating an estimate close in magnitude to the correct answer.  

 
Development of computational estimation skills begins surprisingly late and proceeds 

slowly but does improve considerably with age and experience. From early in the 
development of computational estimation, individual children use a variety of strategies 
including rounding, truncating, prior compensation, post-compensation, decomposition, 
translation, and guessing. Rounding is the most common approach and compensation tends to 
be among the least common, although it is among the most useful.  

 
Both children and adults adapt their strategy choices to problem characteristics. The 

range and appropriateness of computational estimation strategies increase with age and 
mathematical experience. The sophistication of strategies used also changes, and in 
particular, compensation shows especially substantial growth with age and experience.  

 
The number line task has proved highly informative, not only for improving 

understanding of estimation but also for providing useful information about children’s 
understanding of the decimal number system more generally.  

 
Children use two primary mental representations of numerical magnitude on number 

line estimation tasks, including linear representation and logarithmic representation. With age 
and experience, children progress from using the less accurate logarithmic representation to 
the more accurate linear one on the number line task.  

 
Both children and adults show substantial individual differences in skill at 

computational estimation that are associated with broader individual differences in 
mathematical understanding and general mathematical ability.  

 
Playing board games with linearly arranged, consecutively numbered, equal-size 

spaces leads children to shift from logarithmic to linear representations of numerical 
magnitude. These games are particularly effective in improving low-income preschoolers’ 
numerical knowledge and reducing disparities in the numerical knowledge brought to school 
by children from low-income homes and those from middle-income homes. 

 
Another procedure that is effective for improving elementary school children’s 

number line estimation is to provide students with feedback on their estimates.   
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Recommendations 

Classroom 
Teachers should broaden instruction in computational estimation beyond rounding. 

They should insure that students understand that the purpose of estimation is to approximate 
the correct value and that rounding is only one of several means for accomplishing this goal.  

 
Teachers should provide examples of alternative procedures for compensating for the 

distortions introduced by rounding, emphasize that there are many reasonable procedures for 
estimating rather than just a single correct one, and discuss reasons why some procedures are 
reasonable and others are not. 

 
Teachers in facilities serving preschoolers from low-income backgrounds should be 

made aware of the usefulness of numerical board games for improving the children’s knowledge 
of numbers and of the importance of such early knowledge for long-term educational success. 

 
Teachers should not assume that children understand the magnitudes represented by 

fractions even if the children can perform arithmetic operations with them. Examining 
children’s ability to perform novel estimation tasks, such as estimating the positions of 
fractions on number lines, can provide a useful tool for assessing children’s knowledge of 
fractions. Providing feedback on such number line estimates can improve children’s 
knowledge of the fractions’ magnitudes. 

Training 
Teachers in preservice and in-service programs should be informed of the tendency of 

elementary school students to not fully understand the magnitude of large whole numbers, 
and they should be taught how to assess individual students’ understanding and research-
based techniques for improving the children’s understanding.  

 
Teachers should be made aware of the inadequate understanding by elementary 

school, middle school, and high school students of the magnitudes of fractions. Teachers also 
should be familiarized with the usefulness of feedback on number line estimates of the 
magnitudes of fractions for overcoming these difficulties. 

Curriculum 
Textbooks need to explicitly explain that the purpose of estimation is to produce 

accurate approximations. Illustrating multiple useful estimation procedures for a single 
problem and explaining how each procedure achieves the goal of accurate estimation are 
useful means for achieving this goal. Contrasting these procedures with others that produce 
less accurate estimates and explaining why the one set of procedures produces more accurate 
estimates than the other are also likely to be helpful. 

Research 
Research is needed regarding simple instruments that teachers can use in the 

classroom for assessing children’s estimation skills, and regarding instruction that can 
efficiently improve children’s estimation. 

 



 Task Group Reports of the National Mathematics Advisory Panel 

 4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES 

4-xxi 

Research is needed on how the inadequate representations of whole number 
numerical magnitudes that have been identified by studies of estimation influence learning of 
other mathematical skills, such as arithmetic.  

 
Research is needed on how children can be taught to accurately estimate the 

magnitudes of fractions and on how learning to estimate those magnitudes influences 
acquisition of other numerical skills involving fractions, such as arithmetic and algebra.  

 
Research is needed on how estimation is used by students (e.g., to solve complex 

problems) and by adults in everyday life and in professional tasks (e.g., to rule out 
implausible answers). 

 
Geometry  

Geometry is the branch of mathematics concerned with properties of space, and of 
figures and shapes in space. Euclidean geometry is the domain typically covered in 
mathematics curricula in the United States, although a separate year-long course is not 
usually taught until high school. Units on geometry as well as measurement are frequently 
included in middle school mathematics classes, whereas only the latter tends to be 
emphasized in the elementary grades.  

 
The Conceptual Knowledge and Skills Task Group found that the single aspect of 

geometry that is most directly relevant for early learning of algebra is that of similar 
triangles. NCTM’s Focal Points and some state frameworks also underscore the importance 
of this aspect of geometry. 

 
To understand the mathematics underlying the proof that the slope of a straight line 

is independent of the choice of the points selected, students must successfully develop a 
conceptual understanding of the following: points, lines, length, angle, right triangle, 
correspondence, ratio, proportion, translation, reflection, rotation, dilation, congruence, 
and similarity.  

 
One of the earliest and most influential theories of the development of spatial and 

geometric concepts was put forth by Piaget and Inhelder, who proposed that young children 
initially conceptualize space and spatial relations topologically as characterized by the 
following properties: proximity, order, separation, and enclosure. With development, children 
subsequently begin to represent space in relation to different points of view, and then 
sometime between middle and late childhood the Euclidean conceptual system emerges 
permitting preservation of metric relationships such as proportion and distance. The consensus 
of research is that evidence supporting this developmental model is comparatively weak.  

 
 The van Hiele model (1986) has been the dominant theory of geometric reasoning in 

mathematics education for the past several decades. According to this model the learner moves 
sequentially through five levels of understanding: Level 0: Visualization/Recognition, Level 1: 
Description/Analysis, Level 2: Informal Deduction or Ordering, Level 3: Formal Deduction, 
and Level 4: Rigor. The majority of high school geometry courses are taught at Level 3. 
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Research shows that the van Hiele theory provides a generally valid description of the 
development of students’ geometric reasoning, yet this area of research is still in its infancy. 

 
A common misconception that impedes learning includes the belief that shapes with 

the same perimeter must have the same area. Initial formal instruction may inadvertently 
promote this misconception as a consequence of students being presented with the concepts 
of perimeter and area pertaining to the same shapes and kinds of problems. 

 
In addition, there is a common misconception that the linear (or proportional) model 

can pertain to situations where it is, in fact, not applicable. Research has found that only a 
long-term classroom intervention can produce a positive effect in overcoming the illusion 
of linearity. 

 
Recommendations 

Classroom 
Teachers should recognize that from early childhood through the elementary school 

years, the spatial visualization skills needed for learning geometry have already begun to 
develop. Proper instruction is needed to ensure that children adequately build upon and make 
explicit this core knowledge for subsequent learning of formal geometry. 

Training 
Teachers need to learn more about the latest research concerning the development of 

children’s spatial abilities, in general, and their geometric conceptions and misconceptions, in 
particular, to capitalize on their strengths and aid them in overcoming their weaknesses. 

 
Researchers investigating geometry learning need to have a firm grounding in 

cognitive development and spatial information processing, in addition to having a 
background in mathematics education. 

Curriculum 
Early exposure to common shapes, their names, and so forth appears to be beneficial 

for developing young children’s basic geometric knowledge and skills. While reliance on 
manipulatives may enhance the initial acquisition of some concepts under specified 
conditions, students must eventually transition from concrete or visual representations to 
internalized abstract representations. The crucial steps in making such transitions are not 
clearly understood at present. 

Research 
Longitudinal studies are needed to assess more directly how developmental changes 

in spatial cognition can inform the design of instructional units in geometry. Studies are 
needed to demonstrate whether and to what extent knowledge about similar triangles 
enhances the understanding that the slope of a straight line is the same regardless of the two 
points chosen, thus leading to a more thorough understanding of linearity.  
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More research is needed that specifically links cognitive, theory-driven research to 
classroom contexts. At the same time, cognitive theorizing pertaining to geometry learning 
needs to take into account more facets of classroom settings if it is to eventually have a large 
impact on the design of instructional approaches. 

 
Algebra 

Because it is not known if the early algebra achievement of elementary school children 
reflects an actual implicit understanding of aspects of algebra, the Task Group focuses on 
explicit algebra content typically encountered in middle school to high school algebra courses.  

 
Studies of skilled adults and high school students who have taken several mathematics 

courses reveal that the processing of algebraic expressions is guided by an underlying syntax 
or system of implicit rules that guides the parsing and processing of the expressions.  

 
Research shows that skilled problem solvers scan and process basic subexpressions in 

these equations in a fraction of a second, or have automaticity.  There are substantial benefits 
to cumulative practice, which results in better short-term and long-term retention of individual 
rules and a better ability to apply rules to solve problems that involve the integration of 
multiple rules and to discriminate between rules that might otherwise be used inappropriately. 

 
Students who are first learning algebra and adults who are not skilled in mathematics 

do not have long-term memory representations of basic forms of linear equations, but this 
does not prevent the solving of linear equations as long as they understand the general 
arithmetical and algebraic concepts and rules. Research shows that diagnostic tests in which 
individual problems varied systematically in terms of the knowledge needed for correct 
solution can identify sources of common errors, such as those that reflect a poor conceptual 
understanding of the syntax of algebraic expressions.  

 
A poor understanding of the concept of mathematical equality and the meaning of the 

“=” is common for elementary school children in the United States, and continues for many 
children into the learning of algebra.  

 
Errors in the solving of algebraic equations are sometimes classified as procedural 

bugs. These errors can occur due to overgeneralized use of procedures that are correct for 
some problems or from a misunderstanding of the procedure itself. Preliminary studies 
suggest that remediation that focuses on these specific bugs can reduce their frequency.   

 
Research shows that the solution of algebraic word problems requires two general 

sets of processes: problem translation and problem solution. Problem translation requires an 
understanding of the meaning and implications of the text within which the problem is 
embedded. The same potential sources of error described for solving of linear equations can 
occur during the problem solution stage of word problems.  
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An analysis of word problems presented in algebra textbooks found that most 
problems included four types of statements: assignment statements, relational statements, 
questions, and relevant facts. Problem translation involves taking each of these forms of 
information and using them to develop corresponding algebraic equations. Translation errors 
most frequently occur during the processing of relational statements, which specify a single 
relationship between two variables. Errors also occur in problems where the statement could 
be directly translated into an equation, but the direct translation is incorrect for the problem 
as a whole (e.g., “z is equal to the sum of 3 and y”). In addition, relational information can 
sometimes aid problem solving if the information is consistent with students’ previous out-
of-classroom experiences and if these experiences can be used to create non-algebraic 
solution strategies.   

 
Abstract problems are more difficult to solve than concrete problems, but the largest 

effect on students’ problem-solving skill is their familiarity with solving the class of word-
problem (e.g., interest, rate). 

 
Successful translation of algebraic word problems, as well as the solution of algebraic 

equations and many other problem types, is guided by schemas including the syntax of 
equations. Research on children’s conceptual knowledge, which was inferred based on how 
they sorted word problems into categories, shows that the ability to categorize word problems 
based on the underlying concept and the corresponding reduction in problem solving errors is 
consistent with development of category-specific schemas. 

 
Researchers have demonstrated that one way in which schema development can occur 

is the use of worked examples. These provide students with a sequence of steps that can be 
used to solve problems. The students then solve a series of related problems that are in the 
same category and involve a very similar series of problem-solving steps. Worked examples 
are more effective than simply providing students with the procedural steps, as they may 
promote the automatization and transfer of procedures used across classes of problems.    

 
The best predictors of the ability to solve word problems are computational skills and 

knowledge of mathematical concepts, as well as intelligence, reading ability, and vocabulary. 
Students who struggle with algebraic equations also make factoring errors and use algebraic 
procedures incorrectly. At a cognitive level, problem-solving errors and learning the syntax 
of algebraic expressions and algebraic schemas are influenced by working memory. 
Accuracy at solving various forms of mathematics word problems is also related to spatial 
abilities. It is also very likely that other factors, including motivation, self-efficacy, and 
anxiety, contribute to skill development in algebra.    

 
Research on learning in general indicates a benefit for practice that is distributed 

across time, as contrasted with the same amount of practice massed in a single session. 
Algebraic skills decline steadily over time, and the best predictor of long-term retention of 
competencies in algebra is the number of mathematics courses taken beyond Algebra I.  
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Recommendations 

Classroom 
Teachers should not assume that all students understand even basic concepts, such as 

equality. Many students will not have a sufficient understanding of the commutative and 
distributive properties, exponents, and so forth to take full advantage of instruction in algebra.  

 
Many students will likely need extensive practice at basic transformations of 

algebraic equations and explanation as to why the transformations are done the way they 
are.  The combination of explanation of problem-solving steps combined with associated 
concepts is critically important for students to effectively solve word problems. For both 
equations and word problems, it is important that students correctly solve problems before 
given seatwork or homework.  

Training 
Teachers should understand how students learn to solve equations and word 

problems, and causes of common errors and conceptual misunderstandings. This training will 
better prepare them for dealing with the deficiencies students bring to the classroom, and for 
anticipating and responding to procedural and conceptual errors during instruction.  

 
The next generation of researchers to study algebra learning will need multi-

disciplinary training in mathematics, experimental cognitive psychology, and education. This 
can be achieved through interdisciplinary doctoral programs or, at a federal level, 
postdoctoral fellowships that involve work across these disciplines. 

Curriculum 
There are aspects of many current textbook series in the United States that contribute 

to the poor preparation and background of algebra students. Presenting operations on both 
sides of the equation; and showing worked-out examples that include conceptual explanation, 
procedural steps, and multiple examples are ways in which textbooks can be improved.   

 
Distributed practice should naturally occur as students progress to more complex 

topics. However, if basic skills are not well learned and understood, the natural progression 
to complex topics is impeded.  

Research 
The development of assessment measures that teachers can use to identify core 

deficiencies in arithmetic (whole number, fractions, and decimals) and likely sources of 
procedural and conceptual errors in algebra are needed.  

 
Research that explicitly explores the relation between conceptual understanding and 

procedural skills in solving algebraic equations is needed. Research on how students solve 
linear equations, and where and why they make mistakes needs to be extended to more 
complex equations and other key topic areas of Algebra identified by the Conceptual 
Knowledge and Skills Task Group.  
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The issue of transfer needs considerable attention, particularly determining the 
parameters that impede or facilitate transfer. Research on instructional methods that will 
reduce the working memory demands associated with learning algebra is needed. 
Longitudinal research is needed to identify the early predictors of later success in algebra.  

 
A mechanism is needed for fostering translation of basic research findings into 

potential classroom practices and for scientifically assessing their effectiveness in the 
classroom. Equally important, mechanisms need to be developed for reducing the lag time 
between basic findings and assessment in classroom settings. 

Differences Among Individuals and Groups 

For large, nationally representative samples, the average mathematics scores of boys 
and girls are very similar; when differences are found they are small and typically favor boys.  

 
From preschool to college, there is a mathematics performance gap between black 

and Hispanic students to their white and Asian counterparts. It is often proposed that 
socioeconomic status differences account for these disparities, but the research indicates that 
this is not a sufficient explanation. Other factors include attitudes, beliefs, motivation, and 
school-based factors such as features of teaching and learning contexts.  

 
Stereotype threat, cognitive load, and strategy use are all potential mechanisms 

contributing to existing differences, and work in those areas holds promise as a means to 
improve the mathematics performance of black and Hispanic students. There is not, however, 
sufficient research to fully evaluate this promise.  

 
There is strong support for a relation between motivational and attitudinal factors, 

especially task engagement and self-efficacy, and the mathematics outcomes for black and 
Hispanic students. Recent research also documents that social and intellectual support from 
peers and teachers is associated with higher mathematics performance for all students and 
that such support is especially important for black and Hispanic students.  

 
At least 5% of students will experience a significant learning disability in 

mathematics before completing high school, and many more children will show learning 
difficulties in specific mathematical content areas. 

 
There are only a few cognitive studies of the sources of the accelerated learning of 

mathematically gifted students, but those that have been conducted suggest an enhanced 
ability to remember and process numerical and spatial information. Quasi-experimental and 
longitudinal studies consistently reveal that accelerated and demanding instruction is needed 
for these students to reach their full potential in mathematics. 

 



 Task Group Reports of the National Mathematics Advisory Panel 

 4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES 

4-xxvii 

Recommendations 

Research efforts are needed in areas that assess the effectiveness of interventions 
designed to: 1) reduce the vulnerability of black and Hispanic students to negative stereotypes 
about their academic abilities, 2) functionally improve working memory capacity, and 3) 
provide explicit instruction on how to use strategies for effective and efficient problem solving.  

 
More experimental work is needed to specify the underlying processes that link task 

engagement and self-efficacy, and the mathematics outcomes for black and Hispanic 
students. Urgently needed are a scaling-up and experimental evaluation of the interventions 
that have been found to be effective in enhancing engagement and self-efficacy for black and 
Hispanic students.  

 
Intervention studies of students with a mathematics learning disability (MLD) are in 

the early stages and should be a focus of future research efforts. Further research also is 
needed to identify the sources of MLD and learning difficulties in the areas of fractions, 
geometry, and algebra.  

Brain Sciences and Mathematics Learning 

Brain sciences research has the potential to contribute to knowledge of mathematical 
learning and eventually educational practices, yet attempts to make these connections to the 
classroom are premature. Instructional programs in mathematics that claim to be based on 
brain sciences research remain to be validated. Yet, promising research emerging from the 
field of cognitive neuroscience is permitting investigators to begin forging links between 
neurobiological functions and mathematical cognition. 

 
Most research making use of brain imaging and related techniques has focused on 

basic mental representations of number and quantity, with a few studies exploring problem 
solving in arithmetic and simple algebra. In most of these studies, researchers have contrasted, 
mapped, and differentiated the brain regions active during mathematical activities. It has been 
repeatedly found that comparisons of number magnitudes, quantitative estimation, use of a 
mental number line, and problem solving in arithmetic and algebra activate several areas of 
the parietal cortex. The intraparietal sulcus is also active when nonhuman animals engage in 
numerical activities, and it has been proposed that a segment of this sulcus, particularly in the 
left hemisphere, may support an inherent number representational system.  

 
Research also shows that the hippocampus, which supports the formation of declarative 

memories, is active when involved in the learning of basic arithmetic facts. Other studies 
suggest the parietal cortex in the adolescent brain may be more responsive than the same 
regions in the adult brain when individuals are learning to solve simple algebraic equations. 
Another study suggests differences in the brain regions that contribute to success at solving 
algebraic word problems and algebraic equations. In addition, research shows there may be 
differences in the network of posterior brain regions engaged during the learning of different 
arithmetical operations.  
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In coming years, brain imaging and related methodologies will almost certainly help 
answer core questions associated with mathematical learning, such as the sources of learning 
disabilities and the effects of different forms of instruction on the acquisition of declarative, 
conceptual, and procedural competencies.  

 
Recommendations 

Brain sciences research has a unique potential for contributing to knowledge of 
mathematical learning and cognition and eventually educational practices. Nevertheless, 
attempts to connect research in the brain sciences to classroom teaching and student learning 
in mathematics should not be made until instructional programs in mathematics based on 
brain sciences research are created and validated. 
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I. Introduction 

This report reflects the work of the Task Group on Learning Processes and addresses 
what is known about how children learn mathematical concepts and skills. The discussion 
begins with an introduction to the basic principles of learning and cognition, as well as the 
social and motivational factors that are relevant to educational practices, and to skill 
development in the focal mathematical domains addressed. The focus then moves to a review 
of the mathematical competencies that many children bring to school, followed by reviews of 
research on conceptual and procedural learning in the core content areas of whole number 
arithmetic, fractions, estimation, geometry, and algebra. These reviews summarize the 
scientific literature on what is known about learning within each of these areas and identify 
areas in which future study is needed before definitive conclusions can be made. Next, the 
report addresses individual and group differences in achievement in these core domains or in 
mathematics achievement up to and including algebra; the Task Group addresses mathematics 
achievement as related to race and ethnicity, gender, learning disabilities, and giftedness. The 
Task Group report closes with a discussion of future directions, specifically the implications 
of recent advances in the brain sciences for understanding mathematical learning. 

II. Methodology 

For all areas and to the extent that high-quality literature was available, the reviews 
and conclusions of the Task Group are based primarily on studies that test explicit 
hypotheses about the mechanisms promoting the learning of declarative knowledge 
(arithmetic facts), procedural knowledge, and conceptual knowledge. The evidence regarded 
as strongest for this purpose is that which shows convergent results across procedures and 
study types. When the evidence is not as strong, conclusions are qualified and suggestions 
are provided for research that will strengthen the ability to draw conclusions. 

 
The multiple approaches, procedures, and study types reviewed and assessed with 

regard to convergent results include the following: 
 

• Verbal report (e.g., of problem solving approaches). 
• Reaction time and error patterns. 
• Priming and implicit measures. 
• Experimental manipulation of process mechanisms (e.g., random assignment to dual 

task, or practice conditions). 
• Computer simulations of learning and cognition. 
• Studies using brain imaging and related technologies. 
• Large-scale longitudinal studies. 
• International comparisons of math achievement. 
• Process-oriented intervention studies. 
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A. Procedures 

1. Literature Search and Study Inclusion 

Literature searches were based on key terms linking mathematical content, and 
learning and cognitive processes (Appendix B). The first search focused on core peer-
reviewed learning, cognition, and developmental journals (see Appendix A). A second search 
supplemented the first and included other empirical journals indexed in PsychInfo and the 
Web of Science. 

 
2. Criteria for Inclusion 

• Published in English. 
• Participants are age 3 years to young adult. 
• Published in a peer-reviewed empirical journal, or a review of empirical research in 

books or annual reviews. 
• Experimental, quasi-experimental, or correlational methods. 

III. Reviews and Findings 

A. General Principles: From Cognitive Processes to  

Learning Outcomes 

Cognitive science is the basic discipline that underlies studies of human learning, 
including learning of academic material, just as biology is the basic discipline that underlies 
medical practice and physics is the basic discipline that underlies engineering. In all three 
cases, the basic science identifies the causal pathways to successful outcomes. The next few 
pages describe the key cognitive processes that control learning: information processing 
operations (attention, working memory, retrieval, transfer, and retention; Section 1), and 
mental representations (declarative, procedural, and conceptual knowledge; verbatim and gist 
memories; Section 2). Students also engage in metacognitive processes, which are processes 
that control cognitive operations, such as explicitly selecting and monitoring strategies for 
effective problem solving (Section 1). Students’ ability to orchestrate these various cognitive 
and metacognitive operations depends on the maturity of their prefrontal cortex, which 
controls attention and working memory, as well as on specific brain regions engaged in the 
representation of concepts or procedures. Examples of how these cognitive and 
metacognitive processes affect mathematics learning are presented, as are research-based 
methods of enhancing each process and thereby potentially improving mathematics learning.  
These examples and others in the sections that follow illustrate the utility of cognitive 
research for understanding learning, and suggest that teachers, superintendents, policy 
makers, curriculum developers, and anyone else whose goal is to increase student 
achievement, would advance that goal by having at least a rudimentary knowledge of the 
basic science of cognition.  
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There is a great deal of scientific knowledge that could be applied today to improve 

learning and student achievement. Much of that knowledge is currently not used in the 

nation’s classrooms. 

 
The concepts, principles, and processes of cognition presented here are supported by 

high-quality scientific research. This research provides insights, and sometimes immediate 
applications, to how student learning can be improved. There is much scientific knowledge that 
could be applied today to improve learning and student achievement (e.g., Cepeda et al., 2006). 
However, much of that knowledge is not currently being applied in the nation’s classrooms. 
The following sections provide a review of scientific evidence about topics ranging from 
simple information processing to complex problem solving. Even creativity has been studied 
scientifically; excellent work on this topic was conducted in the 1950s and continues to the 
present day (e.g., Holyoak & Thagard, 1995; Sternberg, 1999). Therefore, this report proceeds 
through each of the cognitive building blocks to student achievement, to informed citizenship, 
and to career development in fields that require mathematical proficiency.  

 
Basic research in cognitive science, especially research on the factors that promote 

learning, provides an essential grounding for the development and evaluation of effective 

educational practices. 

 
What is cognition? Cognition encompasses attention, learning, memory, conceptual 

understanding, and problem solving, among other “higher” mental processes. General 
principles of cognition underlie learning and achievement in mathematics, and other 
academic domains. Test performance in mathematics, for example, is the end product of 
cognitive processes that include encoding and storing what has been taught, and retrieving it 
in response to test questions.  Because achievement outcomes are critically dependent on the 
proper sequencing and execution of multiple cognitive operations, obtaining appropriate 
outcomes requires instruction to be based on a sound scientific foundation. The analogy to 
medicine is direct: Understanding the causal pathways that produce healthy outcomes (or go 
awry and result in disease) allows medical researchers to fashion drugs and therapies to 
achieve better outcomes. Understanding causal pathways in education works the same way as 
in medicine as it identifies the steps in the learning process that lead to successful outcomes, 
as well as missteps in the process and how these can be fixed.  Just as in medicine, however, 
interventions derived from basic science about causal pathways must be tested for practical 
efficacy in educational settings (much like Phase III clinical trials in medicine). 

 
Cognitive factors are not the only causal factors that have been linked to 

achievement outcomes. Nevertheless, all factors eventually have their effect via cognition. 

 
Cognitive factors are not the only causal factors that have been linked to achievement 

outcomes; motivation, anxiety, nutrition, stereotypes, brain functioning, and tangible 
resources, such as availability of quality teachers and textbooks, are among other factors also 
relevant to achievement (e.g., Ashcraft, 2002; Cadinu et al., 2005; see following sections in 
this report). Nevertheless, these factors influence learning outcomes by virtue of their effects 
on cognitive processing. As an illustration, individuals who are anxious about mathematics 
perform worse on mathematics tests and on other mathematics tasks than their less anxious 
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peers. The finding that interventions, such as cognitive behavioral therapy, can substantially 
improve the mathematical performance of many of these individuals indicates that their 
initial deficit is not related to the ability to learn mathematics (Hembree, 1990). Cognitive 
studies have identified working memory as one source of the lower mathematics achievement 
of individuals with mathematics anxiety; while performing math tasks, these anxious 
individuals have thoughts related to their competence intrude into working memory 
(described below), which disrupts their problem solving (Ashcraft & Kirk, 2001; Ashcraft, & 
Krause, 2007). Beilock, Kulp, Holt, & Carr (2004) demonstrated that similar intrusions into 
working memory can disrupt arithmetical problem solving in high-pressure testing situations 
but only when the procedures are not well learned; the execution of procedures committed to 
long-term memory was not disrupted by high-pressure testing.  Hence, anxiety disrupts 
performance by affecting cognitive processing (i.e., by overloading working memory) and 
interventions to reduce that disruption have been shown to be effective.  A goal of the present 
report is to identify such relevant findings and principles that have emerged from cognitive 
research and to suggest how they could be used to improve educational practice. 

 
1. Information Processing 

Attention is the gateway to the mind and, thus, to learning. 

 
Information processing begins when the student first encounters information and 

extends until that information is operated on (or transformed) and a response is made, such as 
when a solution to a problem is produced. The first step in information processing is attention 
(e.g., Cowan, 1995; Pashler, 1999). Attention is a limited capacity faculty, often described as 
a bottleneck in information processing. Thus, only a portion of information in the environment 
can be attended to at any one time. Attention is crucial to learning; information that is 
unattended is lost to the learner. Distractions, such as noise, further limit the ability to pay 
attention. In addition, attention changes developmentally: Younger children are less attentive 
than older children (and adults), and distractions are more costly to younger children.  

 
The ability to pay attention should not be confused with the motivation or desire to 

pay attention. No matter how much younger children may wish to pay attention, their ability 
to do so is lower than that of older children (Cowan, Saults, & Elliott, 2002). However, 
specific practices and environmental supports can enhance younger children’s ability to 
attend (described below).  

 
Because attention is the first step in information processing on which all subsequent 

steps depend, deficits in attention necessarily influence learning. Educational practices and 
environmental accommodations can improve children’s ability to pay attention, such as by 
limiting irrelevant distractions (especially in the early phases of learning). For example, 
guiding children’s attention to where the 0 is in comparing .03 to .30 has been shown to be 
effective in improving performance on judgments of relative magnitude (Rittle-Johnson et 
al., 2001). Recent evidence also suggests that self-regulation—intentional efforts to control 
attention and behavior—can be improved with practice (Baumeister, 2005; Gailliot, Plant, 
Butz, & Baumeister, 2007; Muraven, Baumeister, & Tice, 1999). 
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Working-memory capacity limits mathematical performance, but practice can 

overcome this limitation by achieving automaticity. 

 
Once information is attended to, it can be encoded into working memory. Working 

memory is the ability to hold a mental representation of information in mind while 
simultaneously engaging in other mental processes. Working memory is composed of a 
central executive that is expressed as attention-driven control of information represented in 
one of three content-specific systems (Baddeley, 1986, 2000; Engle, Conway, Tuholski, & 
Shisler, 1995). These systems are a language-based phonetic buffer, a visuospatial sketch 
pad, and an episodic buffer (i.e., memories of personal experiences). The workings of these 
systems can be illustrated in a simple arithmetic context. Students initially solve simple 
addition problems, such as 3 + 4, by means of counting fingers or manipulatives. The child’s 
ability to control the counting process is influenced by the central executive; if the counting 
process is not well controlled by the central executive, the child may skip a finger or 
manipulative, or count a single object twice. The representation of the spoken numbers is in 
the phonetic buffer; if the phonetic buffer is insufficient, the child may need to repeat a 
number that has already been stated or may skip a number. The visuospatial sketch pad 
would come into play if the child were counting imagined objects; insufficiencies here might 
lead to too few or too many objects being imagined, and therefore to inaccurate counts. 

 
With practice, the addends and answers on problems that have been solved are 

transferred from working memory into more permanent long-term memory. As illustrated in 
later sections, deficient working memory is a major contributor to the learning problems 
encountered by children with mathematical learning disabilities and superior working 
memory is a major contributor to the accelerated learning shown by gifted children.  

 
Working memory capacity increases as children grow older, due to improvements in 

their ability to control attention and to increases in the fundamental capacity of the content-
specific systems (Cowan et al., 2002). At all ages, there are several ways to improve the 
functional capacity of working memory. The most central of these is the achievement of 
automaticity, that is, the fast, implicit, and automatic retrieval of a fact or a procedure from 
long-term memory (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). Some types of 
information, such as facial features, are processed automatically and without the need for any 
type of instruction (Schyns, Bonnar, & Gosselin, 2002). For other types of information, 
including much of mathematics that is taught in school, automaticity is achieved only with 
specific types of experiences, including practice that is distributed across time (e.g., Cooper 
& Sweller, 1987).  

 
For example, repeated practice with addition facts, such as 3 + 4 = 7, eventually 

transforms addition from a conscious resource-demanding process (e.g., counting on one’s 
fingers) to an automatic process, freeing up much-needed mental resources for other aspects 
of problem solving (Groen & Parkman, 1972; Siegler & Shrager, 1984). The ability to 
efficiently retrieve basic arithmetic facts has been shown to be integral to more complex, 
conceptual mathematical thinking and problem solving (Geary & Widaman, 1992). As 
Gersten and Chard (2001) state, “if too much energy goes into figuring out what 9 plus 8 
equals, little is left over to understand the concepts underlying multi-digit subtraction, 
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division, or complex multiplication.” As discussed below research has demonstrated that 
declarative knowledge (e.g., memory for addition facts), procedural knowledge (or skills), 
and conceptual knowledge are mutually reinforcing, as opposed to being pedagogical 
alternatives. As discussed in greater detail in later sections, to obtain the maximal benefits of 
automaticity in support of complex problem solving, arithmetic facts and fundamental 
algorithms should be thoroughly mastered, and indeed, over-learned, rather than merely 
learned to a moderate degree of proficiency.  

 
Young children are capable of far greater learning of mathematics than those in 

the United States typically attain.  

 
Learning and development are incremental processes that occur gradually and 

continuously over many years (Siegler, 1996). Even during the preschool period, children have 
considerably greater reasoning and problem solving ability than was suspected until recently 
(Gelman, 2003; Gopnik, Meltzoff, & Kuhl, 1999). As stated in a recent report on the teaching 
and learning of science, “What children are capable of at a particular age is the result of a 
complex interplay among maturation, experience, and instruction. What is developmentally 
appropriate is not a simple function of age or grade, but rather is largely contingent on prior 
opportunities to learn” (Duschl, Schweingruber, & Shouse, 2007, p. 2). Claims based, in part, 
on Piaget’s highly influential theory that children of particular ages cannot learn certain content 
because they are “too young,” “not in the appropriate stage,” or “not ready” have consistently 
been shown to be wrong (Gelman & Williams, 1998). Nor are claims justified that children 
cannot learn particular ideas because their brains are insufficiently developed, even if they 
possess the prerequisite knowledge for learning the ideas. As noted by Bruer (2002), research 
on brain development simply does not support such claims.  

 
These findings have special relevance to mathematics learning. Research on students 

in East Asia and Europe show that children are capable of learning far more advanced math 
than those in the United States typically are taught (Geary, 2006). There is no reason to think 
that children in the United States are less capable of learning relatively advanced 
mathematical concepts and procedures than are their peers in other countries. 

 
Practice retrieving information from memory can improve learning more than 

another opportunity to study. 

 
Attending to information, encoding it into working memory, and eventually transferring 

it into long-term memory are only the initial steps in learning. The learner must also be able to 
retain the information in long-term memory storage until needed (e.g., on tests or on the job), 
sometimes over long periods of time, and be able to retrieve it from storage. One 
counterintuitive finding from these studies is that testing, which allows the learner to practice 
retrieving information from storage, has been found to improve performance more than the 
opportunity to study the material again. Such testing enhances both initial acquisition and long-
term retention (Halff, 1977; Kinstch, 1968; Roediger & Karpicke, 2006a, 2006b; Runquist, 
1983; Underwood, 1964). A key aspect of retrieval is the overlap between cues present at study 
and at test (the encoding specificity principle; Tulving & Thomson, 1973). For example, if 
variables within algebra problems are always stated in textbooks using x and y, but are then 
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tested using other labels such as j and k, test performance will be reduced. Once information is 
stored, students must learn to recognize sometimes subtle cues (and to ignore irrelevant cues) 
in order to draw on the right knowledge in the right context.  

 
Conceptual understanding promotes transfer of learning to new problems and 

better long-term retention. 

 
Research has demonstrated that factors that enhance initial acquisition are not 

necessarily the same as those that maximize long-term retention (i.e., that minimize 
forgetting). For example, material that is too easy to understand can promote initial 
acquisition or learning, but it leads to lower retention than material that is harder to 
understand initially (e.g., Bjork, 1994). Challenging material causes the learner to exert more 
attentional effort and to actively process information, leading to superior retention.  
Similarly, transfer of learning is promoted by deeper conceptual understanding of learned 
material. Although this phenomenon was demonstrated in the early work of Gestalt 
psychologists (e.g., Wertheimer, 1959), it has since been verified repeatedly (for illustrative 
empirical studies on transfer and reviews of such studies, see Bassok & Holyoak, 1989; 
Reed, 1993; Wolfe, Reyna, & Brainerd, 2005). Transfer of learning refers to the ability to 
correctly apply one’s learning beyond the exact examples studied to superficially similar 
problems (near transfer) or to superficially dissimilar problems (far transfer). Surprisingly, 
instruction using more abstract representations has been shown in some instances to benefit 
learning and transfer more than concrete examples (e.g., physical representations, such as 
manipulatives) (e.g., Sloutsky, Kaminski, & Heckler, 2005; Uttal, 2003). Thus, the cognitive 
processes that facilitate rote retention (e.g., of over-learned arithmetic facts), such as repeated 
practice, can differ from the processes that facilitate transfer and long-term retention, such as 
conceptual understanding. People’s knowledge of how such factors affect cognition and thus 
how they can better monitor and control their learning—metacognition—also has been the 
subject of extensive research (e.g., Koriat & Goldsmith, 1996; Metcalfe, 2002; Nelson & 
Narens, 1990; Reder, 1987). Research has shown that there is much room for improvement in 
students’ metacognitive judgments because they rely on misleading assumptions about their 
learning (e.g., using misleading cues such as retrieval fluency and familiarity, which are not 
perfectly correlated with strength of learning; see Benjamin, Bjork, & Schwartz, 1998).  

 
2. Mental Representations 

Although laws of memory apply to different kinds of content, just as the laws of 
physics apply to different kinds of objects, memories take different forms depending on their 
content. Declarative knowledge is explicit memory for specific events and information; 
procedural knowledge refers to implicit memory for cognitive (e.g., algorithms) and motor 
sequences and skills; and conceptual knowledge refers to general knowledge and 
understanding stored in long-term memory (see Hunt & Ellis, 2004, for further distinctions). 
Declarative, procedural, and conceptual knowledge seem to be represented in different ways in 
the brain (e.g., Schacter, Wagner, & Buckner, 2000). For example, a patient with brain damage 
can have amnesia for declarative knowledge, failing to remember his name and not recognizing 
his loved ones, but retain procedural skills such as piano playing or mathematical computation.  
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Using the mental number line: Counting supports learning addition. 

 
One important mental representation in mathematics learning is the number line. The 

acquisition of counting, which forms the basis for arithmetic learning, is eventually mapped 
for successful learners onto an internal number line. One key use of this internal 
representation is for understanding the meaning of basic arithmetic operations. Counting, 
conceived as proceeding in steps up and down such an internal linear representation, provides 
a transition to learning arithmetic.  Addition and subtraction can then be analogously 
conceived as proceeding in steps up and down that internal number line. The mental number 
line also plays a role in estimating the magnitudes of numbers in situations in which precise 
calculation is impossible (Siegler & Booth, 2005). For example, providing low-income 
children who attend Head Start centers an hour of practice playing numerical board games 
using consecutively numbered, linearly arrayed squares, dramatically improves their 
understanding of the mental number line and their estimation of numerical magnitudes 
(Siegler & Ramani, in press). In addition, explicitly instructing children from low-income 
backgrounds in number line skills using linearly organized board games (i.e., practicing with 
increments of only one step up or down) improves their procedural and conceptual arithmetic 
skills more than a year after this instruction, demonstrating both near and far transfer (e.g., 
Griffin, Case, & Siegler, 1994).  

 
Mental models guide the acquisition of cognitive skills and the development of 

strategies, improving mathematics performance. 

 
Mental models are ways of internally representing problems, often in the form of 

specific images. A mental number line is an example of a mental model (Case & Okamoto, 
1996).  The application of these mental models can be illustrated by thinking about 
fractions. A physical model, which can be internalized with practice and be used to think 
about fractions, is the familiar pie diagram; for example, 

4
3  might be represented by 

thinking of a pie cut into four equal pieces, three of which are highlighted. Analogous 
physical models can be constructed using folded paper, chips, and other physical objects. 
An alternative mental model for thinking about 

4
3  would be imagining two children who 

wanted to build a tower from their collection of Legos®. If one child supplied three of the 
Legos® and the other child a single Lego®, the first child would have supplied 

4
3  of the 

Legos®. Similarly, the ways in which children physically, and then mentally, represent the 
relation between divisors and quotients influence their skill at solving simple division 
problems (Squire & Bryant, 2003). For example, mentally picturing two sets of six objects 
helps children solve such problems as 

! 

12

2
= 6.  As Halford (1993) has pointed out, 

appropriate mental models—a mental picture of the concepts underlying the problem—
provide a framework for problem solving that improves performance.   
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Verbatim memories of problem details are encoded separately from gist 

memories of the meaning of problem information; thinking in terms of gist often 

produces superior reasoning. 

 
Experimentation on the relations between memory and reasoning has addressed how 

memory controls reasoning, why some forms of such reasoning are easier and more accurate 
than others, and what sorts of instruction benefit reasoning (e.g., Reyna & Brainerd, 1991).  
The most basic finding from this research is that there are two main types of memory, 
namely verbatim memory and gist memory (Brainerd & Reyna, 1993; Reyna & Brainerd, 
1993). The importance of this distinction can be illustrated by a study of children’s memory 
for numerical information within stories (Brainerd & Gordon, 1994). The verbatim level 
consisted of the actual numbers within the stories; the gist level consisted of various 
numerical relations, such as “more,” “less,” “most,” “least,” and “between.”  When told, for 
example, that Farmer Brown owned 3 dogs, 5 sheep, 7 chickens, 9 horses, and 11 cows, 
children accurately remembered that he had fewer dogs and more cows than any other 
animal. They were considerably less accurate in remembering how many of each type of 
animal he had (Brainerd & Gordon).   

 
In some contexts, less precise gist memories are more important to performance than 

verbatim memories of the actual numbers and operations (Reyna & Brainerd, 1993). Many 
other features of these problems can be answered accurately and effortlessly by one or 
another type of gist knowledge. Estimation provides one such context. The late physicist 
Richard Feynman, for instance, argued that solving complex problems depends on seeing 
where solutions must lie–getting the gist of problems–more than on verbatim calculation 
(Leighton, 2006). Thus, being able to estimate that 74 !  97 must equal a little less than 7400 
and thus cannot equal either 718 or 71,780, can help children recognize that they have made 
a mistake if they obtain either of those answers.  

 
Psychological theory explains why ratio concepts, such as fractions, probabilities, 

and proportions, are especially difficult; this theory also provides straightforward ways to 

improve performance. 

 
The importance of memory for gist extends to more complex mathematical relations as 

well, such as ratios, fractions, and probabilities (e.g., Hecht, Close, & Santisi, 2003; Reyna, 
2004).  For instance, in probability judgments, making accurate forecasts about the relative 
likelihood of occurrence of a set of events is usually quite difficult (Reyna & Brainerd, 1994), 
but it becomes much easier when gists are used (e.g., expressing the probabilities of the 
individual events in terms such as more than half or less than half (e.g., Brainerd & Reyna, 
1995; Spinillo & Bryant, 1991). Based on these findings, interventions have been designed and 
tested with students ranging from young children to medical residents, and found to virtually 
eliminate common errors (e.g., Brainerd & Reyna, 1990, 1995; Lloyd & Reyna, 2001). 

 
One reason why mathematics is so difficult to master is that it requires the accumulation 

of considerable verbatim knowledge, which often requires more effort to learn than the gist. 
Nonetheless, verbatim recall of facts, concepts, postulates, and other knowledge is an essential 
feature of a strong mathematics education, despite its often requiring a great deal of time, effort, 
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and practice. Gist memory, or less precise, conceptual memory traces, has broad implications 
for learning because it is the form of memory that is typically relied on in reasoning. In short, a 
strong mathematics background requires a combination of gist and verbatim representations, 
with the importance of one or the other dependent on the goal at hand.  

B. Social, Motivational, and Affective Influences on Learning 

Research has shown that motivation enhances learning—and that some kinds of motivation 
are more effective than others. Motivation to persevere when intrinsic enjoyment is low 
should be distinguished from making learning enjoyable; the former may be especially 
important in sustaining the effortful learning needed to master difficult content. Perceived 
utility and willingness to engage in difficult learning is influenced by beliefs about the 
contributions of ability versus effort in learning, self efficacy (i.e., the belief that one has the 
specific skills needed to be successful, which differs from self esteem), and an array of other 
intrapersonal and social factors. In the following sections, the Task Group reviews major 
theories and findings related to these factors and how they influence learning mathematics 
and student achievement. Theoretical frameworks are reviewed that focus on learning goals, 
motivation to learn, attributions and beliefs about learning outcomes, mathematics anxiety, 
and sociocultural considerations. For more comprehensive coverage of theories and empirical 
data in this area, see Ames and Archer (1988), Barron and Harackiewicz (2001), Eccles and 
Wigfield (2002), Grant and Dweck (2003), Meece, Anderman, and Anderman (2006), 
Bandura (1993), Ellis, Varner, and Becker (1993), and Rieber and Carton (1987). 
 
1. Goals and Beliefs About Learning 

Children’s goals and beliefs about learning are related to their mathematics 
performance. Children who adopt mastery-oriented goals show better long-term academic 
development in mathematics than do their peers whose main goals are to get good grades or 
outperform other children. They also are more likely to pursue difficult academic tasks. 
Students who believe that learning mathematics is strongly related to innate ability show less 
persistence on complex tasks than peers who believe that effort is more important. 
Experimental studies have demonstrated that children’s beliefs about the relative importance 
of effort and ability can be changed, and that increased emphasis on the importance of effort 
is related to improved mathematics grades. The Task Group recommends extension of these 
types of studies. 

 
Children’s learning goals vary along several dimensions. One important dimension is 

whether the goals emphasize accomplishing a task or enhancing one’s ego (Nicholls, 1984). 
Another important distinction is whether the goals emphasize mastery of the material or 
outperforming other students (Ames, 1990; Dweck & Leggett, 1988). Yet another important 
distinction is between performance approach goals (i.e., striving to surpass the performance of 
others) and performance avoidance goals (i.e., trying to avoid looking less knowledgeable or 
inferior) (Elliott & Harackiwiez, 1996; Midgley, Kaplan, Middleton, Maehr, & Urban, 1998). 
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Mastery and performance goals have received the most empirical attention. When 
pursuing mastery goals, students tend to choose tasks that are challenging and concern 
themselves more with their own progress than with outperforming peers. Mastery goal 
orientation should not be confused with Bloom’s (1971; 1981) notion of mastery learning. 
The latter refers to an instructional approach whereby teachers lead students through a 
discrete set of stair step learning units with the progression predicated on pre-established 
criteria for proficiency at each step. When pursuing performance goals, students focus on 
outperforming others and thus prefer and seek tasks in which they are already competent 
(i.e., “easy,” less challenging tasks). In the face of failure or incorrect performance, mastery-
oriented students are likely to attribute the result to their own lack of effort or insufficient 
opportunities for mastery rather than to lack of ability; children who emphasize their lack of 
effort or opportunities are more likely to redouble their levels of effort when faced with later 
challenging problems (Ames, 1992; Ames & Archer, 1988). In contrast, when faced with 
demanding problems, performance-oriented students often conclude that they do not have the 
ability to do well in the domain, and thus tend to avoid challenging material when they begin 
to experience failure.  

 
With respect to math outcomes, Wolters (2004) for example has shown that among 

middle school students a mastery orientation was positively related to engagement in learning 
and math grades, but this was not the case for a performance goal orientation. Elsewhere, 
Linnenbrink (2005) found that among fifth- and sixth-grade students working on a five-week 
math unit on statistics and graphing, those pre-tested as high in mastery orientation reported 
greater self-efficacy, personal interest in math, and more adaptive help seeking. These 
students performed significantly better on the math unit exam than those who were pretested 
as high in performance goal orientation.  

 
In high school, children who tend to have mastery goals also tend to be high in self-

efficacy. Such children also tend to obtain high grades in mathematics courses (Gutman, 
2006). Moreover, parents’ mastery goals are associated with better grades in mathematics 
courses by their children. Graham and Golan (1991) have shown that instructions that prompt 
a mastery orientation lead to higher academic outcomes than do performance-based 
instructions, when the task calls for deep processing of complex concepts. 

 
Ames (1992) reviewed several types of academic contexts likely to foster mastery 

goal orientations in school. These include contexts that 1) provide meaningful reasons (e.g., 
personal relevance) for task engagement or developing understanding of content; 2) promote 
high interest and intermediate challenge; 3) emphasize gradual skill improvement; and 4) 
promote novelty, variety, and diversity. 

 
Beliefs about learning and intelligence also influence mathematics performance. 

When faced with challenging problems, children who believe that intelligence is in large part 
created by their efforts to learn tend to do better than children who believe that intelligence is 
a fixed quality that cannot be changed (Dweck, 1999). Looking more specifically at 
mathematics achievement, Dweck and her colleagues recently showed that students who 
viewed their intelligence as a fixed trait fared more poorly across the transition to junior high 
than did their peers who believed that their intelligence was malleable and could be 
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developed (Blackwell, Trzesniewski, & Dweck, 2007). Although both groups began junior 
high with equivalent mathematics achievement, their mathematics grades diverged by the end 
of the first semester of seventh grade and continued to move apart over the next two years. 
The superior performance of students who believed that intelligence is malleable was 
mediated by their greater emphasis on learning, their greater belief in the importance of 
effort, and their more mastery-oriented reactions to setbacks. 

 
Blackwell et al. (2007) also conducted an intervention with a different group of 

seventh-graders with declining mathematics grades. Both the experimental and control 
groups received an eight-session workshop that taught them useful study skills. However, for 
the experimental group, several of the sessions also taught them a malleable theory of 
intelligence. (These sessions began with the article You Can Grow Your Intelligence, which 
likened the brain to a muscle; the article also described how neurons in the brain were 
transformed through learning. Students then learned how to apply this idea to their 
schoolwork.) Whereas the control group continued its downward grade trajectory, the 
experimental group showed a significant rebound in mathematics grades. Moreover, teachers 
(blind to condition) singled out three times as many students in the experimental group as 
having shown marked changed in motivation to learn mathematics. 

 
2. Intrinsic and Extrinsic Motivation  

Young children’s intrinsic motivation to learn (i.e., desire to learn for its own sake) is 
positively correlated with academic outcomes in mathematics and other domains. However, 
intrinsic motivation declines across grades, especially in mathematics and the sciences, as 
material becomes increasingly complex and as instructional formats change. The complexity 
of the material being learned reflects demands of the modern workforce that may not be fully 
reconcilable with intrinsic motivation—the latter should not be used as the sole gauge of 
what is appropriate academic content. At the same time, correlational evidence suggests that 
the educational environment can influence students’ intrinsic motivation to learn in later 
grades. The Task Group recommends studies that experimentally assess the implications of 
these correlational results, that is, studies aimed at more fully understanding the relation 
between intrinsic motivation and mathematics learning. 

 
Intrinsic motivation to learn is the desire to learn for no reason other than the sheer 

enjoyment, challenge, pleasure, or interest of the activity (Berlyne, 1960; Hunt, 1965; Lepper 
et al., 2005; Walker, 1980). It is often contrasted to extrinsic motivation, in which the 
motivation to learn is to gain an external reward, such as the approval of parents and others, 
or the respect of peers. Thus, intrinsic motivation is related to mastery goals and extrinsic 
motivation to performance goals.  

 
Several studies have shown that learning and academic achievement are positively 

correlated with intrinsic motivation (Lepper et al., 2005). For example, in a recent study by 
Lepper et al., it was found that across a sample of third- to eighth-grade students, an intrinsic 
motivation orientation was positively correlated with mathematics grade point average 
(GPA) and with performance on a mathematics achievement test, whereas an extrinsic 
motivation orientation was negatively correlated to these outcomes. However, there is 
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evidence that intrinsic motivation declines as children progress through school and as 
material becomes more challenging (Gottfried et al., 2001). For example, Gottfried et al. 
found that from the ages of 9 to 16 years (although there was a slight increase for 17-year-
olds), children’s overall intrinsic motivation for academic learning declined, with particularly 
marked decreases in mathematics and the sciences. Findings like these have led some to 
propose that such a reduction in intrinsic motivation over time may compromise engagement 
in mathematics learning in the upper grades.  

 
3. Attributions 

Student beliefs about the causes of their success and failure have been repeatedly 
linked to their engaging and persisting in learning activities. Self-efficacy—a central concept 
in attributional theories—has emerged as a significant correlate of academic outcomes. 
However, the cause-effect relation between self-efficacy and mathematics learning remains 
to be fully determined, as does the relative importance of self-efficacy versus ability in 
moderating these outcomes. The Task Group recommends experimental and longitudinal 
studies that assess the relative contributions of these factors to mathematics learning.  

 
Students can attribute their successes and failures to ability in (e.g., I’m just good/bad 

at) mathematics, effort (e.g., I worked/did-not-work hard enough), luck, or powerful people 
(e.g., the teacher loves/hates me). These attributions influence students’ subsequent 
engagement in learning.  

 
Self-efficacy can be defined as beliefs about one’s ability to succeed at difficult tasks 

(Bandura, 1997). Mathematics self-efficacy moderates the effect of ability on performance. 
In other words, ability is important for mathematics learning but is not sufficient; self-
efficacy or confidence in one’s mathematics ability is also crucial for high levels of 
achievement. At times, self-efficacy is more influential than general mental ability in 
predicting high school mathematics performance (Stevens, Olivarez, & Hamman, 2006), 
although other studies suggest that ability may be more important than motivational 
influences in general (Gagné & St Père, 2002). Studies that simultaneously assess ability, 
prior content knowledge, motivation, and efficacy beliefs are needed to more firmly establish 
the relative contributions of these factors to mathematics learning and achievement. 

 
4. Self-Regulation 

Self-regulation is a mix of motivational and cognitive processes. It includes setting 
goals, planning, monitoring, evaluating, making necessary adjustments in one’s own 
learning process, and choosing appropriate strategies. Self-regulation has emerged as a 
significant influence on some aspects of mathematics learning. Although the concept 
appears promising, research is needed to establish the relation for a wider range of 
mathematics knowledge and skills.  

 
The concept of self-regulation includes aspects of both motivation and cognition. 

Among the processes that are associated with self-regulation are monitoring one’s own actions, 
evaluating one’s success, and reacting to discrepancies between one’s outcomes and one’s goals. 
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Fuchs et al. (2003), deploying an experimental design, provided evidence for the 
effectiveness of self-regulated learning strategies in enhancing mathematics problem solving. 
They focused on elementary school students’ application of knowledge, skills, and strategies 
to novel mathematics problems. In the self-regulation condition, students were prompted to 
engage in self-regulated strategies by being required to check their answers, set goals of 
improvement, and chart their daily progress. These efforts to improve self-regulation 
improved the children’s mathematics learning. 

 
Another form of self-regulation involves choosing which strategy to use to solve 

problems. Children know and use a variety of strategies for solving mathematics problems. 
For example, to solve simple addition problems, elementary school children sometimes count 
from one, count from the larger addend, decompose the problem into two simpler problems, 
or retrieve the answer from memory. Individual differences in children’s arithmetic strategy 
choices reflect differences in knowledge of answers to problems and also in degree of 
perfectionism. One group of children—labeled good students by Siegler (1988a)—has high 
knowledge and usually retrieves answers to problems. Another group of children—labeled 
perfectionists—has comparable knowledge but prefers to double-check their retrieved 
answers via counting strategies. A third group of children—labeled not-so-good students—
has poor knowledge and often guesses at the answer. Perfectionists are toward the high end 
of self-regulation and not-so-good students are toward the low end. Children who fall into the 
not-so-good student group are more likely than the others to subsequently be labeled as 
mathematics disabled or not promoted to the next grade (Kerkman & Siegler, 1993). 

 
5. Mathematics Anxiety 

Anxiety about mathematics performance is related to low mathematics grades, failure 
to enroll in advanced mathematics courses, and poor scores on standardized tests of 
mathematics achievement. It also may be related to failure to graduate from high school. At 
present, however, little is known about its onset or the factors responsible for it. Potential risk 
factors include low mathematics aptitude, low working memory capacity, vulnerability to 
public embarrassment, and negative teacher and parent attitudes. The Task Group 
recommends research that assesses these potential risk factors; it also recommends 
development of promising interventions for reducing debilitating mathematics anxiety. 

 
Mathematics anxiety refers to an emotional reaction, ranging from mild apprehension 

up through genuine fear or dread, in academic and everyday situations that deal with 
numbers, for instance taking a standardized achievement test, or figuring out a restaurant bill 
or change. Considerable research was done in the 1970s and 1980s on the relationships 
between mathematics anxiety, personality characteristics, and aspects of academic 
achievement, yielding a rather bleak picture (see Hembree, 1990). In brief, individuals with 
high mathematics anxiety perform poorly in school math, earn poor grades in math classes, 
take fewer elective mathematics courses in high school and college, and avoid college majors 
that rely on mathematics (e.g., mathematics, science, and engineering fields). There is a 
tendency, although weak, for women to exhibit higher levels of mathematics anxiety.  
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Mathematics anxiety research beginning in the 1990s has taken a more process-
oriented approach to understanding the phenomenon, asking, “What are the cognitive 
consequences of mathematics anxiety?” The major discovery from this work is that during 
mathematics performance, those with mathematics anxiety focus many of their limited 
working memory resources on managing their anxiety reaction rather than on the execution 
of the mathematics procedures and processes necessary for successful performance (Ashcraft 
& Kirk, 2001). Difficult mathematics problems require considerable working memory 
resources for keeping track of intermediate solutions, retrieving facts and procedures, and so 
forth (LeFevre, DeStefano, Coleman, & Shanahan, 2005). These resources are limited to 
begin with, and thus are seriously compromised when the individual devotes substantial 
portions of them to the worry and negative thoughts associated with mathematics anxiety. 
This research aligns with other contemporary research on factors such as stress and 
stereotype threat (e.g., Beilock, Rydell, & McConnell, 2007), and their negative effects on 
high-stakes testing outcomes. As such, mathematics anxiety may be yet another factor 
leading to poorer-than-expected performance on proficiency and standardized tests of 
mathematics achievement (Ashcraft, Krause, & Hopko, 2007). 

 
Interestingly, the research shows that highly math anxious individuals who undergo 

successful therapeutic interventions, especially cognitive-behavioral therapies, then show 
math achievement scores approaching the normal range. This suggests that their original 
math learning was not as deficient as originally believed, but instead that their math 
achievement scores had been depressed by their math anxiety during achievement testing 
itself. More precisely, in a meta-analysis, Hembree (1990) found that reductions in 
mathematics anxiety can result in significant (~ .5 standard deviations) improvements in 
mathematical test scores and in grade point average in mathematics courses. However, not all 
treatments are equally effective. Traditional individual or group counseling techniques 
appear to be relatively ineffective in reducing mathematics anxiety or improving 
mathematical performance. Similarly, changes in classroom mathematics curriculum, such as 
providing calculators or microcomputers to aid in problem solving, appear to be largely 
ineffective in reducing mathematics anxiety. A promising exception appears to be curricular 
changes that increase student’s mathematical competence. Hutton and Levitt (1987) 
improved feelings of competence, or self-efficacy, by focusing on the relation between 
mathematical performance and good study habits, and by improving basic skills. These goals 
were achieved, in the context of an algebra class, through the use of a specially designed 
textbook. For each algebraic topic, the textbook presented a review of the basic arithmetic 
skills needed to solve the associated algebra problems. These basic skills were then practiced. 
Lectures and the text material were synchronized, such that the basic foundation of each 
lecture was presented as “skeletal notes” in the textbook.  This feature was designed to 
improve students’ note taking, and to focus them on essential features of the lecture. The 
intervention resulted in significant reductions in mathematics anxiety and was associated 
with algebraic skills that did not differ from those of children without mathematics anxiety; 
as noted, these two groups typically differ and thus no difference suggests a gain on the part 
of the students with mathematics anxiety. 
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Cognitive therapies that focus on the worry component of mathematics anxiety are also 
promising (Ellis et al., 1993). They are associated with moderate declines (~ .5 standard 
deviations) in mathematics anxiety, as well as modest (~ .3 standard deviations) improvements 
in mathematical performance (Hembree, 1990). These therapies focus on reducing the 
frequency of intrusive thoughts during mathematical activities, and on changing the 
individual's attributions about their performance. Poor performance that is attributed to a lack 
of ability will often result in avoidance of and lack of persistence on difficult mathematical 
tasks, as noted above. Changing attributions so that they focus on more controllable factors, 
such as preparation and hard work, often results in more persistent task-related behaviors and 
improvements in performance (Dweck, 1975). Ellis et al. argued that the treatment of 
mathematics anxiety should include building the student's basic competencies, knowledge, and 
skills. Increasing the competencies of students appears to reduce both the emotionality and 
worry components of mathematics anxiety, in addition to being an important goal in and of 
itself (e.g., Randhawa, Beamer, & Lundberg, 1993). 

 

6. Vygotsky’s Sociocultural Perspective 

The sociocultural perspective of Vygotsky has been influential in education and 
characterizes learning as a social induction process through which learners become 
increasingly able to function independently through the guidance of more knowledgeable 
peers and adults. Aspects of this approach may add to the understanding of mathematics 
learning. However, a shortage of controlled experiments makes the usefulness of this 
approach for improving mathematics learning difficult to evaluate, and thus its utility in 
mathematics classrooms and mathematics curricula remains to be scientifically tested.  

 
Vygotsky’s sociocultural perspective posits that knowledge is first acquired in the 

interaction between the learner and other people, and that the knowledge is later internalized 
so that the learner can act on the knowledge in increasingly independent ways (see Rieber & 
Carton, 1987). Through this process of internalization, learners gain the knowledge and skills 
necessary for adequate functioning in their society (Wertsch, 1985).  

 
From a sociocultural perspective, the most useful unit of analysis is not the child per 

se, but rather the child performing an activity in context. From this analytical frame, it is 
undesirable if not impossible to separate who the child is, from what the child does, from 
where the child does it. This framework calls for distinctive ways of construing learning 
processes, where notions such as zone of proximal development (the gap between what a 
learner can achieve independently and what the learner can achieve under the guidance of 
others), scaffolding (support from other people for problem solving activity), 
intersubjectivity (establishing a shared focus of attention), and apprenticeship (learning from 
more knowledgeable others) hold sway. Knowledge is not viewed as residing inside the 
child’s head but rather as being distributed across the collectively held understandings of 
groups of people interacting with books, computers, worksheets, and other cultural tools. 
Knowledge acquisition is viewed as arising from participation in successful practices within 
a community of practice.  
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The evidence presented by socioculturalist scholars for their educational claims is not 
typically in the form of experiments or systematic empirical studies. Instead, detailed 
descriptions of people’s everyday experiences in various contexts are provided and used to 
argue for particular educational arrangements. For example, Gonzales, Andrade, Civil, and 
Moll (2001) examined the informal mathematics knowledge shared among a group of 
community participants that was embedded in the everyday practical activity of sewing. It 
was demonstrated that through guided group discussions, the participants were able to link 
their informal mathematics knowledge to formal mathematics concepts and processes such as 
measurement, symmetry, geometric shapes, and angles, and to addition, subtraction, 
percentages, and proportions. Likewise, Kahn and Civil (2001) described how fourth- and 
fifth-grade children gained insight into domains like measurement (in this case the relation 
between area and perimeter) and graphing in the course of participating in a class-wide 
gardening project. The students’ insights were said to be mediated by factors akin to guided 
participation and scaffolding. In addition, Gauvain (1993) has written extensively concerning 
how spatial thinking grows through participation in everyday practices. Although these 
descriptions are intriguing, lack of experimental studies makes it impossible to evaluate at 
present whether widespread adoption of such approaches would help or hinder mathematics 
learning and, if helpful, what specific areas of mathematics.  

 
All told, concepts and processes such as zone of proximal development, scaffolding, 

and guided participation reflect core aspects of Vygotsky’s sociocultural theory as related to 
instruction, and may hold important heuristic value. Yet to date, they have eluded 
measurement specificity and proven difficult to reliably quantify. Their ultimate utility in 
promoting effective evidence-based mathematics learning must await such specification and 
experimental validation.  

 
7. Conclusions and Recommendations 

Children’s goals and beliefs about learning are related to their mathematics performance. 
Children who adopt mastery-oriented goals show better long-term academic development in 
mathematics than do their peers whose main goals are to get good grades or outperform other 
children. They also are more likely to pursue difficult academic tasks. Students who believe that 
learning mathematics is strongly related to innate ability show less persistence on complex tasks 
than peers who believe that effort is more important. Experimental studies have demonstrated 
that children’s beliefs about the relative importance of effort and ability can be changed, and 
that increased emphasis on the importance of effort is related to improved mathematics grades. 
The Task Group recommends extension of these types of studies. 

 
Young children’s intrinsic motivation to learn (desire to learn for its own sake) is 

positively correlated with academic outcomes in mathematics and other domains. However, 
intrinsic motivation declines across grades, especially in mathematics and the sciences, as 
material becomes increasingly complex and as instructional formats change. The complexity 
of the material being learned reflects demands of a modern workforce that may not be fully 
reconcilable with intrinsic motivation. The latter should not be used as the sole gauge of what 
is appropriate academic content. At the same time, correlational evidence suggests that the 
educational environment can influence students’ intrinsic motivation to learn in later grades. 
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The Task Group recommends studies that experimentally assess the implications of these 
correlational results, that is, studies aimed at more fully understanding the relation between 
intrinsic motivation and mathematics learning. 

 
Student beliefs about the causes of their success and failure have been repeatedly 

linked to their engaging and persisting in learning activities. Self-efficacy has emerged as a 
significant correlate of academic outcomes. However, the cause and effect relation between 
self-efficacy and mathematics learning remains to be fully determined, as does the relative 
importance of self-efficacy versus ability in moderating these outcomes. The Task Group 
recommends experimental and longitudinal studies that assess the relative contributions of 
these factors to mathematics learning.   

 
Self-regulation is a mix of motivational and cognitive processes. It includes setting 

goals, planning, monitoring, evaluating, and making necessary adjustments in one’s own 
learning process; and choosing appropriate strategies. Self-regulation has emerged as a 
significant influence on some aspects of mathematics learning. Although the concept appears 
promising, research is needed to establish the relation for a wider range of mathematics 
knowledge and skills.  

 
Anxiety about mathematics performance is related to low mathematics grades, failure 

to enroll in advanced mathematics courses, and poor scores on standardized tests of 
mathematics achievement. It also may be related to failure to graduate from high school. At 
present, however, little is known about its onset or the factors responsible for it. Potential risk 
factors include low mathematics aptitude, low working memory capacity, vulnerability to 
public embarrassment, and negative teacher and parent attitudes. The Task Group 
recommends research that assesses these potential risk factors; it also recommends 
development of promising interventions for reducing debilitating mathematics anxiety. 

 
The socio-cultural perspective of Vygotsky has been influential in education and 

places learning as a social induction process through which learners become increasingly 
able to function independently through the guidance of more knowledgeable peers and 
adults. Aspects of this approach may add to our understanding of mathematics learning. 
However, a shortage of controlled experiments makes the usefulness of this approach for 
improving mathematics learning difficult to evaluate, and thus its utility in mathematics 
classrooms and mathematics curricula remains to be scientifically tested.  

 
Despite all that has been learned about the relation between these social/motivational 

goal orientations, attitudes, and beliefs and mathematics grades and achievement, too little is 
known about whether these influences reflect stable dispositions of students, or reflect teacher 
or peer influences in certain learning settings (Meece et al., 2006). The question of whether 
students in classroom settings have multiple goals or beliefs related to academic goals remains 
to be fully answered (Harackiewicz, Barron, Pintrich, Elliott, & Thrash, 2002; Brophy, 2005). 
In any case, the Blackwell et al. (2007) investigation, among others, indicates that beliefs 
about mathematics learning can be adaptively changed through targeted interventions. The 
Task Group recommends development and elaboration of these forms of intervention and 
assessment of ease with which they can be implemented by classroom teachers.  
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C. What Children Bring to School  

Mathematical development begins in infancy, long before children go to school, and 
continues through the toddler and preschool years. The amount of mathematical knowledge 
that children bring with them when they begin school has large, long-term consequences for 
their further learning in this area. Thus, it is important to understand how mathematical 
knowledge typically develops before children start school, how children from different 
backgrounds and cultures vary in this knowledge, and how early mathematical learning can 
be improved.  

 
1. Roots of Numerical Understanding 

Mathematical development starts in infancy. Even infants between 1 and 4 months of 
age form nonverbal representations of the number of objects in very small sets. For example, 
when repeatedly shown two objects—two dots, two stars, two triangles—infants of this age 
gradually lose interest, and look for shorter and shorter times. However, when the number of 
objects is switched to one or three, they look longer, thus indicating that they noted the 
difference between sets with two objects and sets with one or three (e.g., Antell & Keating, 
1983). This evidence suggests that sensitivity to number is innate to human beings. 

 
Infants’ surprising early numerical ability extends to a kind of nonverbal arithmetic. 

When 5-month-olds see a doll hidden behind a screen, and then see a second doll also placed 
behind the screen, they seem surprised and look longer when, through a trick, lifting the 
screen reveals one or three objects rather than two (Wynn, 1992). Presumably, they expected 
1 + 1 to equal 2, and were surprised when it did not. A similar nonverbal form of subtraction 
is evident at the same age; when two objects are placed behind a screen and one object is 
removed, 5-month-olds look longer when lifting the screen reveals two objects rather than 
one. Whether these competencies are inherently numerical or not is debated (Cohen & Marks, 
2002), but the basic finding has been replicated many times (e.g., Kobayashi, Hiraki, 
Mugitani, & Hasegawa, 2004).  

 
In addition to these relatively precise nonverbal representations of very small 

numbers of objects, infants also display rudimentary estimation skills that allow them to 
discriminate between more and less numerous sets when the more numerous set has at least 
twice as many objects as the less numerous one. For example, they discriminate between sets 
of 16 and 8 objects, seeming to know that the set of 16 has more objects (Brannon, 2002; Xu 
& Spelke, 2000). These remarkable early nonverbal numerical abilities provide the 
foundation for learning about the verbal number system, including the number words, 
counting, numerical comparison, and more formal addition and subtraction.  
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2. Mathematical Understanding in the Preschool Period 

a. Acquisition of Number Words and Counting 

Many 2-year-olds in the United States know some number words, by age 3 or 4 years 
of age, many children can count (in the sense of accurately reciting the number words) from 1 
to 10, and by the time they enter school, many children can count to 100 (U.S. Department of 
Education, NCES, 2001; Fuson, 1988; Miller, Smith, Zhu, & Zhang, 1995; Siegler & 
Robinson, 1982). Children also begin to learn to count objects at age 2 and a half or 3 years. 
At first, however, they acquire the superficial form of counting objects without understanding 
its purpose. Thus, when presented five objects and asked, “How many are there,” many 2 and 
a half- and 3-year-olds will count to five but not answer the question. When again asked, “So 
how many are there,” they will either again count to 5 without saying “There are 5” or say, “I 
don’t know” (Le Corre, Van de Walle, Brannon, & Carey, 2006; Schaeffer, Eggleston, & 
Scott, 1974). This difficulty in connecting procedures with their goals and underlying 
principles is a persistent problem at all ages.  

 
By age 4 or 5, when most children have had a reasonable amount of counting 

experience, they also come to understand the principles underlying the counting procedure: 
that each object must be labeled by one and only one number word, that counting requires 
the numbers to be recited in a constant order, and that the final word in the count indicates 
the number of objects in the set that has been counted (Gelman & Gallistel, 1978). 
Understanding these principles allows children to count in flexible ways, including, for 
example, starting the counting in the middle or at the right end of a row of objects if asked 
to do so, and to reject counts that skip an object or count an object twice (Frye, Braisby, 
Love, Maroudas, & Nicholls, 1989). 

 
b. Ordering Numbers 

Although it may seem surprising, being able to count from 1 to10 does not guarantee 
knowledge of the relative magnitudes of the numbers. Many 3- and 4-year-olds can count 
flawlessly to 10, but do not know that 8 is larger than 7 or that 7 is larger than 6 (Siegler & 
Robinson, 1982). By the time they enter kindergarten, however, most children know the 
relative magnitudes of numbers in this 1 to 10 range very well.  Most children from middle-
income backgrounds also have some knowledge of the order of numbers up to 100 when they 
enter school. When kindergartners are presented a number line with 0 at one end and 100 at 
the other end and asked to estimate the locations of numbers between 0 and 100 on the line, 
their estimates reflect the ordering of the numbers quite well, though not perfectly (Siegler & 
Booth, 2004). 

 
c. Arithmetic 

As with other numerical skills, children first show competence on addition 
problems with one to three objects. For example, if the experimenter asks a child to put 
three balls in an opaque tube, removes one of them, and then asks the child to remove the 
remaining balls, most 2 and a half- and 3-year-olds will reach into the tube exactly twice to 
pull out the remaining balls (Starkey, 1992). Children of this age usually fail, however, if 
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the experimenter has the child put in four balls, removes one, and then makes the same 
request. The difficulty appears to involve limited ability to represent numbers precisely. 
Very young children show much greater ability to represent numbers approximately 
(Huttenlocher, Jordan, & Levine, 1994).  

 
Most 4- and 5-year-olds can retrieve from memory the answers to at least a few basic 

addition and subtraction facts, such as 2 + 2 = 4, and also know a variety of other procedures 
for solving simple addition and subtraction problems. These include using fingers or objects 
to represent each addend and then counting them from one, representing the problem with 
fingers or objects and then recognizing how many of these are present, and counting from 
one without using objects or putting up fingers (Siegler & Shrager, 1984). 

 
Even in the preschool period, children use these strategies in surprisingly adaptive 

ways. The harder the problem, the more likely 4- to 6-year-olds are to rely on counting or 
finger recognition strategies (Siegler & Shrager, 1984). This approach allows children to 
solve the easiest problems, such as 2 + 2, by using the fast approach of retrieving the answer 
from memory, and to solve problems that are too difficult to retrieve from memory via the 
slower but accurate alternative approaches of counting fingers or objects. The use of counting 
strategies on hard problems helps children generate the correct answer on those problems, 
which improves their likelihood of remembering it when the problem is presented later 
(Siegler, 1996). 

 
Preschoolers also show some understanding of arithmetic concepts. For example, 

many 4- and 5-year-olds recognize that addition and subtraction are inverse operations. Thus, 
if presented problems of the form A + B - B, many preschoolers quickly answer “A” 
(Rasmussen, Ho, & Bisanz, 2003).  

 
d. Measurement 

During the preschool period, children acquire measurement strategies that are greatly 
oversimplified but that nonetheless reflect basic understanding of relations of equality, more 
than, and less than (Geary, 1994). When asked to divide up candies among friends, 2- and 3-
year-olds typically give everyone some, without regard for whether each child receives the 
same number. In contrast, most 5-year-olds maintain exact numerical equivalence by using a 
“one for you, one for me, one for him, one for her” approach. They take this counting strategy 
too far, however, and use it even if one pile includes more large pieces of food than the other 
(Miller, 1984). Even 7- and 9-year-olds often use this strategy. Learning to restrict procedures 
to situations where they fit is another persistent challenge in mathematics learning. 

 
e. Geometric Knowledge 

During the preschool period, children also acquire rudimentary geometric knowledge. 
The large majority of 4- and 5-year-olds accurately identify circles and squares, and many 
also can identify triangles; by age 5, most also discriminate between squares and rectangles, 
and can describe some geometric attributes of those shapes (Clements, Swaminathan, 
Hannibal, & Sarama, 1999). Most children of these ages also have some skill in judging 
whether these basic figures are congruent; they usually adopt a strategy of comparing 
corresponding edges to do so (Clements, 2004).  
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Children’s spatial knowledge also develops considerably in the preschool years. Most 
5-year-olds can represent a location in terms of multiple landmarks, and from 5 to 7 years of 
age develop in their ability to maintain locations in challenging circumstances such as open 
areas (Newcombe & Huttenlocher, 2000). They use, implicitly, two coordinates in 
remembering direction, either polar or Cartesian, and can use simple external representation 
systems such as maps (Clements & Sarama, 2007b). 

 
f. Number Sense 

Through engaging in a variety of numerical activities, preschoolers, at least those 
from middle-income backgrounds, begin to develop number sense (Berch, 2005; Case & 
Sowder, 1990; Gersten & Chard, 1999; Jordan, Kaplan, Olah, & Locuniak, 2006). Number 
sense is the ability to approximate numerical magnitudes. The approximations can involve 
the numerical magnitude of specific dimensions of objects, events, or sets (e.g., “About how 
long is this line?” “About how many times have you been to New York?” “About how many 
people were at the play?”), or they can involve the results of numerical operations (“About 
how much is 24 !  94?”). Number line estimation tasks have proved particularly useful for 
investigating number sense. Such tasks involve presenting lines with a number at each end 
(e.g., 0 and 10) and no other numbers or marks in-between, and asking participants to locate 
a third number on the line (e. g., “Where does 7 go?”). 

 
Performance on this and other tasks used to measure number sense show that even 

before children enter school, children from middle-income backgrounds are developing a good 
sense of numerical magnitudes, whereas children from lower-income backgrounds have little 
sense of the numbers’ magnitudes (Ramani & Siegler, 2008). This difference is important, 
because early number sense predicts subsequent ability to learn arithmetic in elementary 
school, above and beyond other important characteristics such as working memory (Locuniak 
& Jordan, in press). Measures of number sense also are strongly related to overall mathematics 
achievement (Booth & Siegler, 2006; Siegler & Booth, 2004). Although the number sense of 
children from low-income backgrounds typically lags behind that of peers from more affluent 
families, low-income children’s number sense can be improved through playing linearly 
arranged numerical board games (Ramani & Siegler, 2008; Siegler & Ramani, in press).  

 
3. Differences Among Individuals and Groups 

Clear and systematic differences in children’s mathematical competence emerge in 
the preschool period. The differences are present in counting, comparing magnitudes, adding, 
subtracting, and other aspects of numerical knowledge. These early-emerging differences 
among children appear to have important long-term consequences. A study that followed 
over many years large, nationally representative samples of U.S. children, as well as children 
from Canada and Great Britain, showed that mathematical knowledge during preschool and 
kindergarten is strongly predictive of mathematical knowledge in third grade, fifth grade, and 
eighth grade (Duncan et al., 2007). The relation is similarly strong for boys and girls and for 
children from low-income and middle-income backgrounds. It also is apparent in both math 
achievement test scores and teacher ratings of children’s mathematical competence. Thus, 
children’s mathematical knowledge differs substantially by the time they enter school and in 
ways that predict their mathematics achievement at least through middle school. 
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Differences in mathematical knowledge of U.S. children at the beginning of 
kindergarten reflect many aspects of the children’s background. The Early Childhood 
Longitudinal Study (ECLS), which examined a large, representative sample of U.S. children, 
revealed several factors that predict children’s mathematical knowledge when they enter 
kindergarten (U.S. Department of Education, NCES, 2001). One predictor is a mother’s 
education; children of mothers with at least some college education usually have more 
knowledge of numbers and shapes than children whose mothers did not graduate high school. 
Another group of predictors involves risk factors such as single-parent families, families in 
which English is not the primary language spoken in the home, and families living in poverty. 
Children from families with fewer risk factors usually enter kindergarten with greater 
knowledge of numbers and shapes than children from families with more risk factors. A third 
predictor is race and ethnicity: white, non-Hispanic children and Asian children usually enter 
kindergarten with greater mathematical knowledge than black and Hispanic children.  

 
The mathematical knowledge that children bring to school also varies with the 

country in which the child was raised. Children from East Asia generally have more 
mathematical knowledge when they enter school than do children in the United States. This 
superior knowledge seems to reflect the greater cultural emphasis on math learning within 
East Asian cultures. As the Japanese psychologist Giyoo Hatano commented, “Asian culture 
emphasizes and gives priority to mathematical learning; high achievement in mathematics is 
taken by mature members of the culture to be an important goal for its less mature members” 
(1990, pp. 110–111). Consistent with this observation, mothers in China rate doing well at 
math as being just as important for their children as doing well at reading, whereas mothers 
in the United States rate learning math as considerably less important (Miller, Kelly, & Zhou, 
2005). Also reflecting the greater East Asian emphasis on math, in one study that compared 
Chinese and U.S. children from similar backgrounds who were just beginning kindergarten, 
the Chinese children generated three times as many correct answers to addition problems 
(Geary, Bow-Thomas, Fan, & Siegler, 1993). The difference was due to the Chinese children 
having memorized more correct answers to problems and to their using more advanced 
strategies when they could not retrieve the answer from memory. Preschoolers in China also 
count much higher, aided by the greater regularity of number words in their language (Miller 
et al.). Knowledge of shapes and other geometric information, memory for numbers, and 
other mathematical skills are also more advanced for Chinese than for U.S. preschoolers 
(Starkey et al., 1999). Although almost all studies show this pattern, a few have not; for 
example, Song and Ginsburg (1987) found that U.S. preschoolers outperformed Korean 
preschoolers in informal math knowledge. 

 
4. Improving Early Mathematical Knowledge 

A variety of instructional programs have been developed to improve the mathematical 
knowledge of U.S. preschoolers, especially preschoolers from low-income backgrounds. 
Several of these programs have met with considerable success. Project Rightstart and its 
successor Number Worlds (Griffin, 2004) focus on helping young children form an 
appropriate mental representation of numbers, akin to a mental number line; on using this 
mental representation to think about sets of real-world objects and arithmetic operations on 
those sets; and on familiarizing children with the language of numbers and mathematics. The 
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Berkeley Math Readiness Project (Klein & Starkey, 2004; Starkey, Klein, & Wakeley, 2004) 
provides preschool children with experience in counting and numerical estimation; 
arithmetic, spatial, geometric, and logical reasoning; measurement; and other aspects of 
mathematics. The Building Blocks program (Clements, 2002; Sarama, 2004; Sarama & 
Clements, 2004) uses computer software tools to help preschoolers acquire geometric and 
numerical ideas and skills. All of these produce substantial positive effects on children’s 
mathematical knowledge. For example, in one study, Griffin’s Number Worlds curriculum 
produced median effect sizes (Cox Index for standardized mean differences between 
experimental and control group) of 1.79 for 6 measures on the posttest and 1.40 for 13 
measures on a later follow-up. The Berkeley Math Readiness curriculum produced an overall 
effect size of .96 (Hedges’ g) among low-income children, and the Building Blocks program 
produced an overall effect size of .77 (Hedges’ g) on 9 measures of numerical understanding 
and 1.44 on 8 measures of geometrical understanding. These are not the only programs that 
have been shown to increase preschoolers’ mathematical competence, but they are good 
examples of the types of promising efforts that are being made in this direction (for a more 
comprehensive review of these and other programs aimed at enhancing preschoolers’ 
mathematical competence, see Sarama & Clements). Research is needed to establish the 
longer-term effects of these programs. 

 
5. Conclusions and Recommendations 

Most children develop considerable knowledge of numbers and other aspects of 
mathematics before they begin kindergarten. Even in kindergarten, children from single- 
parent families with low-parental education levels and low incomes have less mathematical 
knowledge than do children from more advantaged backgrounds. The mathematical 
knowledge that children from both low- and middle-income families bring to school 
influences their learning for many years thereafter, probably throughout their education. A 
variety of promising instructional programs have been developed to improve the mathematical 
knowledge of preschoolers’ and kindergartners, especially those from at-risk backgrounds. 
Research that scales up these interventions and evaluates their utility in preschool and early 
kindergarten settings is urgently needed, with a particular focus on at-risk children. 

D. Mathematical Development in Content Areas 

This section provides a review of the cognition literature as related to learning in the 
core mathematical content areas identified in the Report of the Task Group on Conceptual 
Knowledge and Skills. At the most general level, these include whole number arithmetic, 
fractions, estimation, geometry, and algebra. The quantity and quality of research on this 
learning differs considerably across the mathematical content areas. The Task Group notes 
areas in which substantive conclusions about learning or obstacles to learning can be drawn, 
and key mathematical areas in which a better understanding of learning is needed but for 
which the research base does not allow strong conclusions to be drawn. At the end of the 
review for each content area, the Task Group presents Conclusions and Recommendations.  
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Due to limited time, space, and resources, the coverage in this review is far from 
exhaustive. Nonetheless, the literature was thoroughly reviewed across all theoretical 
perspectives on mathematics learning. The studies included in the review were the ones that 
met the highest criteria of methodological rigor, as documented in Section IV, Methodology, 
in this report. 

 
1. Whole Number Arithmetic  

Children’s learning of whole number arithmetic is a critical step in their mathematics 
education and a complex undertaking that extends for many years and engages multiple 
memory and cognitive systems. Core areas of competency include knowledge of basic 
arithmetic facts, skill at using standard procedures or algorithms for solving complex 
problems, estimating answers, and knowledge of key concepts (National Council of Teachers 
of Mathematics, 2006). For some of these core areas, such as simple addition, there is a 
substantive research base from which reliable descriptions of skill development can be 
provided, and inferences regarding at least some of the factors that facilitate or impede this 
development can be drawn. At the same time, there are other core areas, such as division 
algorithms, for which there is comparatively little empirical research, and thus the Task 
Group cannot make strong statements regarding the progression of skill development or the 
factors that influence this development.  

 
Debate is common regarding whether mathematics education and related research 

studies should focus on conceptual knowledge or procedural skills (Baroody, Feil, & 
Johnson, 2007; Star, 2005, 2007). Empirical studies that have simultaneously assessed both 
of these aspects of mathematical competency reveal interdependence in children’s 
development of declarative knowledge (e.g., addition facts), procedural knowledge (e.g., 
arithmetical algorithms), and conceptual knowledge (e.g., understanding the base-10 system). 
Aspects of skill development for each of these different types of competencies may require 
different prior knowledge, different instructional techniques, and different patterns of 
practice for mastery (Cooper & Sweller, 1987; Kalyuga, Chandler, Tuovinen, & Sweller, 
2001; Sweller, Mawer, & Ward, 1983), yet their development is often interrelated (Rittle-
Johnson et al., 2001). Children’s use of one algorithm or another, or the detection of a 
computational error can be influenced by their understanding of related concepts, and the 
execution of algorithms can provide a context for their conceptual learning (Geary, Bow-
Thomas, & Yao, 1992; Fuson & Kwon, 1992b). Children’s skill at estimating is firmly linked 
to their computational skills (Dowker, 2003), and their ability to solve different types of 
complex word problems is dependent on different mixes of declarative, procedural, and 
conceptual competencies (Fuchs et al., 2006; Hecht et al., 2003).  

 
For ease of presentation, the Task Group covers skill progression separately for these 

different competencies; nonetheless, it includes a few explicit examples of their 
interrelationships. The associated cognitive studies involve a detailed and time-intensive 
assessment of children’s problem solving and learning and thus do not typically include 
large, nationally representative samples. The smaller-scale cognitive studies have, 
nevertheless, produced findings that have been replicated by many research groups and 
oftentimes in many nations. The Task Group’s focus is on these replicated outcomes.  
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a. Acquisition of Arithmetic Facts 

Addition and subtraction 
One of the most thoroughly studied areas in children’s mathematical learning 

involves descriptive assessments of developmental and schooling-based changes in the ways 
children solve simple addition and subtraction problems (Ashcraft, 1982; Carpenter & 
Moser, 1984; Geary, 2006; Geary, Bow-Thomas et al., 1996), as well as theoretical (e.g., 
computer simulations) and quantitative studies of the cognitive mechanisms underlying these 
changes (Shrager, & Siegler, 1998; Siegler, 1987; Siegler, 1988a). These studies and studies 
in other domains have clearly indicated that children’s problem solving does not involve a 
step-by-step progression from use of one procedure to the next, but rather involves a mix of 
procedures and memory-based processes (e.g., direct retrieval of a fact) at most ages (Siegler, 
1996). Learning involves a change in the mix of strategies used during problem solving, as 
well as improvement in the speed and accuracy with which individual procedures and 
memory-based processes are executed (Delaney, Reder, Staszewski, & Ritter, 1998; Geary, 
Bow-Thomas et al.). The focus here is on the mix of procedures and processes children use 
when they solve simple addition and subtraction problems and on their progression toward 
the learning of basic facts.  

 
The Task Group notes that the learning and subsequent retrieval of basic facts does not 

involve the representation of isolated problem-answer combinations in long-term memory. 
Rather, this knowledge is embedded in a network of number- and arithmetic-related 
information. The use of the term fact retrieval simply refers to the goal of remembering the 
correct answer; it does not imply that associated problems, numbers, and answers are unrelated 
to other forms of knowledge, such as knowledge of general magnitude of the answer.  

 
Paths of acquisition 

Concepts. Young children’s ability to solve formal addition and subtraction problems, 
such as 5 + 3 =  ; or 7 – 2 =  , requires an integration of their emerging knowledge of the 
properties of associativity and commutativity (described below) with their counting knowledge 
and counting procedures (Ohlsson & Rees, 1991; Rittle-Johnson, & Siegler, 1998). Although 
there is some evidence for such an integration, the relation between these conceptual and 
procedural aspects of children’s arithmetical learning has not been as thoroughly studied as the 
independent development of these competencies. For instance, there are many studies of 
children’s emerging counting procedures and concepts (e.g., Briars, & Siegler, 1984; Fuson, 
1988; Gelman, & Meck, 1983; LeFevre et al., 2006) and many studies of children’s procedural 
development in addition and subtraction (described below), but only a few studies that have 
explicitly attempted to examine the link between these competencies (e.g., Geary et al., 1992). 

 
Procedures. By the time children in the United States enter kindergarten, the most 

common procedures used to solve simple addition problems involve finger counting; some 
problems will be solved by counting out loud or mentally, and some children will know a 
few basic facts (Siegler, & Shrager, 1984). Counting procedures vary in sophistication—in 
terms of supporting conceptual knowledge and working memory demands—and kindergarten 
children typically rely on the least sophisticated of these procedures, referred to as counting-
all, whereby children count both addends starting from 1. With the more sophisticated 
procedure called counting-on, children state the value of one addend (suggesting they 
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understand the cardinality principle) and then count a number of times equal to the value of 
the other addend, counting 5, 6, 7, 8 to solve 5 + 3 =  (Fuson, 1982; Groen & Parkman, 
1972). Preliminary studies suggest that children’s shift from counting-all to counting-on is 
related, in part, to improvements in their understanding of counting concepts (Fuson; Geary 
et al., 1992; Geary et al., 2004). 

 
The frequent use of counting procedures results in the development of memory 

representations of basic facts (Siegler & Shrager, 1984); the act of counting 5, 6, 7, 8 to solve 
5 + 3 facilitates the formation of an association in declarative memory between the addends 
and the answer generated by the counting. Once formed, these representations support the 
use of memory-based problem-solving processes. The most common of these are direct 
retrieval of arithmetic facts and decomposition. The latter involves reconstructing the answer 
based on the retrieval of a partial sum; for example, the problem 6 + 7 might be solved by 
retrieving the answer to 6 + 6 and then adding 1 to this partial sum (Siegler, 1987). A similar 
pattern is evident with children’s skill progression in subtraction (Carpenter & Moser, 1983, 
1984; Siegler, 1989). As with addition, children initially use a mix of strategies but largely 
count, often using their fingers or physical objects (i.e., manipulatives) to help them represent 
the problem and keep track of the counting. Children also rely on their knowledge of addition 
facts to solve subtraction problems, which is called addition reference (9  –  7  =  2, because 7 
+ 2 = 9) or use other related information (see Thornton, 1990). The most sophisticated 
processes involve decomposing the problems into a series of simpler problems and directly 
retrieving the answer (Fuson & Kwon, 1992a).  

 
Declarative information. The primary declarative information contributing to the fast 

and efficient solving of simple addition and subtraction problems is knowledge of basic facts. 
The representation of these facts in long-term memory enables the use of direct retrieval and 
decomposition to solve these problems. Cognitive studies indicate that, unlike their peers in 
East Asian countries (), many college students in the United States have not memorized all of 
the basic addition and subtraction facts and thus often resort to use of backup strategies 
(Campbell & Xue, 2001; Geary, 1996; Geary & Wiley, 1991; Geary, Frensch, et al., 1993). 

Multiplication and division 
Paths of acquisition 

Concepts. The core associative, commutative, distributive, and identity concepts as 
related to multiplication are described in a separate section below.  

 
Procedures. Trends in children’s ability to solve simple multiplication problems 

mirror those described for addition and subtraction, although formal skill acquisition begins 
in the second or third grade, at least in the United States. The initial mix of strategies is 
grounded in children’s knowledge of addition and counting, including use of repeated 
addition and counting by n (e.g., Campbell & Graham, 1985; Mabbott & Bisanz, 2003; 
Siegler, 1988b; Thornton, 1978, 1990). Repeated addition involves representing the 
multiplicand, the number of times indicated by the multiplier, and then successively adding 
these values; when presented with 2 !  3, the child adds 2 + 2 + 2. The counting by n strategy 
is based on the child’s ability to count by 2s, 3s, 5s, and thus is dependent on memorization 
of these counting sequences. Somewhat more sophisticated strategies involve the use of rules 
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(identity element in this example; see below), such as n × 0 = 0, and decomposition (e.g., 12 
× 2 = 10 × 2 + 2 × 2). As with addition and subtraction, the use of these procedures appears 
to result in the formation of problem and answer associations in long-term memory (Miller & 
Paredes, 1990). 

 
In comparison with the other operations, considerably less research has been 

conducted on skill progression in division. The research that has been conducted indicates 
that children rely heavily on their knowledge of addition and multiplication (Ilg & Ames, 
1951; Robinson, Arbuthnott, et al., 2006). Robinson, Arbuthnott, et al. found that fourth-
graders solved more than half of simple division problems by means of an addition-based 
procedure; to solve 

4
20 , they repeatedly added the divisor until the dividend was reached, 4 + 

4 + 4 + 4 + 4 = 20, and then counted the divisors. Fourth-graders will sometimes solve the 
problem through reference to the corresponding multiplication problem (5 × 4 = 20 for this 

example) or retrieve a division fact (e.g., 
3
6  = 2). By seventh grade, the majority of the 

problems are solved by multiplication reference, although retrieval and the addition-based 
procedure are still used to solve some problems. Unlike the three other operations, use of 
direct retrieval did not increase across grade level; about 15% of division problems were 
solved by direct retrieval in grades 4 through 7.  

 
Declarative information. As with addition and subtraction, the primary declarative 

information contributing to the fast and efficient solving of simple multiplication and 
division problems is knowledge of basic facts, that is, the representation of these facts in 
long-term memory. Studies of college students in the U.S. and Canada [computational skills 
are similar for students from these countries (Tatsuoka, Corter, & Tatsuoka, 2004)] suggest 
that many of these adults have not mastered all basic multiplication facts (LeFevre et al., 
1996), and may continue to rely on multiplication reference to solve larger division problems 
(e.g., 

9
72 ) (Campbell, 1999; LeFevre & Morris, 1999; Robinson, Arbuthnott, & Gibbons, 

2002). In contrast, college students who received their primary education in China can 
quickly and accurately retrieve the answers to all multiplications problems—though they rely 
on the commutative relation between problems to facilitate retrieval of some problems (e.g., 
9 × 6 is retrieved based on 6 × 9)—and most simple division problems (Campbell & Xue, 
2001; LeFevre & Liu, 1997). The implication is that many, perhaps most, U.S. children have 
not achieved fluency with simple multiplication and division. 

Obstacles to mastery 
In keeping with the broader methods and literature described in the section in this 

report entitled General Principles: From Cognitive Processes to Learning Outcomes (e.g., 
Ericsson, Krampe, & Tesch-Römer, 1993; Newell & Rosenbloom, 1981), the learning of 
simple and complex arithmetic has been studied using a variety of speed-of-processing, 
behavioral, and brain imaging methods (Charness & Campbell, 1988; Frensch & Geary, 
1993; Klapp, Boches, Trabert, & Logan, 1991; Rickard, Healy, & Bourne, 1994; Royer, 
Tronsky, Chan, Jackson, & Marchant, 1999). These studies consistently find that practice 
results in faster solutions to basic problems and fewer errors, as well as related reductions in 
the working memory resources needed for problem solving and changes in the brain regions 
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supporting this problem solving (described in Brain Sciences and Mathematical Learning, 
Section F in this report). The cognitive mechanisms underlying these changes include 
increased use of memory-based processes, more rapid execution of problem-solving 
procedures, and faster retrieval of relevant information from long-term memory (e.g., 
Delaney et al., 1998; Rickard, 1997). Skilled use of procedures also appears to require an 
understanding of associated concepts (Geary et al., 1992; Ohlsson & Rees, 1991). 

 
The experimental studies have revealed that for most individuals, the ease of learning 

and retrieving arithmetic facts varies by the type of operation. The learning of addition and 
multiplication facts occurs with less practice than the learning of subtraction and division facts 
(Campbell & Xue, 2001; Rickard, 2004, 2005; Rickard et al., 1994). One reason for this 
operation effect is that the commutative principle for addition and multiplication (i.e., a  +  b = 
b + a; a × b = b × a) facilitates the learning of the associated facts; the learning of one 
combination of addition (e.g., 3 + 4) or multiplication pairs (e.g., 7 × 2) contributes to the 
learning of the commuted pair (i.e., 4 + 3, 2 × 7); but this relation does not hold for subtraction 
and division. Graduate students educated in China directly retrieve answers to smaller-valued 

subtraction and division (e.g., 
4
28 ) problems, but often solve larger-valued problems (e.g., 

8
56 ) 

through reference to the corresponding addition or multiplication problem, respectively 
(Campbell & Xue). A similar pattern is found for North American (Canada and United States) 
college students, but often extends to smaller-valued subtraction and division problems 
(LeFevre & Morris, 1999; Mauro, LeFevre, & Morris, 2003). This type of “mediated” retrieval 
is faster and more efficient than the use of procedures but still requires more time and an 
additional cognitive step—thus increased opportunity to commit an error—than direct retrieval 
of the answer. Finally, Rickard (2005) found that skill at factoring is related to knowledge of 
multiplication facts and that the practice of factoring (e.g., when presented with 21, the 
participant produces 7, 3) speeds subsequent retrieval of multiplication facts. 

 
In studying the cognitive bases of children’s arithmetic learning, researchers have 

not only examined how problem-solving approaches change with practice but also how 
these approaches vary across grade level and follow introduction of the operation (e.g., 
multiplication) in the school curriculum (Geary, 1996; Geary, Bow-Thomas, et al., 1996; 
Lemaire & Siegler, 1995; Miller & Paredes, 1990; Royer et al., 1999; Siegler, 1988b, 1989; 
Siegler & Jenkins, 1989; Steel & Funnell, 2001). The results of such studies are consistent 
with the experimental research: Fast and efficient problem solving is achieved with shifts 
from frequent use of counting or other procedures to direct retrieval of basic facts or use of 
decomposition. As with the experimental studies, children appear to learn addition and 
multiplication facts more easily than they learn subtraction and division facts, although 
comparatively little is known about children’s learning of division.  

 
Studies of children in the United States, comparisons of these children with children 

from some other nations, and even cross-generational changes within the United States 
indicate that many contemporary U.S. children do not reach the point of fast and efficient 
solving of basic arithmetic problems (Fuson & Kwon, 1992a; Koshmider & Ashcraft, 1991; 
Geary, Salthouse, et al., 1996; Geary et al., 1997; Schaie, 1996; Stevenson et al., 1985; 
Stevenson, Lee, Chen, Lummis, et al., 1990; for discussion see Loveless & Coughlan, 2004). 
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This point is particularly evident with comparisons of U.S. children to children educated in 
East Asia. Stevenson, Lee, Chen, Lummis, et al. (1990) assessed the speed and accuracy with 
which 480 first- or fifth-grade children from the United States and 264 same-grade children 
from China solved simple addition problems (e.g., 5 + 9), and found first-graders from China 
accurately solved three times as many problems (in 1 minute) than their U.S. peers (d = 
2.97). The difference was smaller (1.6:1, d = 1.69) but still substantial for fifth-graders. The 
pattern was replicated for the basic subtraction skills of children from China and the U.S. for 
6th- (d = 2.05) and 12th- (d = 2.05) graders matched or equated on cognitive ability (Geary et 
al., 1997). Although cognitive studies of how the children solved the problems have not been 
conducted for all arithmetical operations, the available evidence for addition suggests the 
differences in efficiency are related to less frequent use of retrieval by U.S. children, use of 
less sophisticated counting procedures, and slower retrieval and procedural execution when 
the problems are solved the same way (Geary, Bow-Thomas, et al., 1996).  

 
The reasons for these differences are likely to be multifaceted, including language-

related differences in the structure of number words, parental involvement in mathematics 
learning, and curricula (Miller et al., 1995; Miura, Okamoto, Kim, Steere, & Fayol, 1993; 
Steel & Funnell, 2001; Stevenson, Lee, Chen, Stiegler, et al., 1990). For instance, the 
structure of Asian-language number words where the teen values are stated as ten one, ten 
two, may facilitate, with teachers’ guidance, the use of decomposition strategies to solve 
simple addition and subtraction problems (Fuson & Kwon, 1992a). Cross-national 
differences in mathematics curricula have not been directly tied to the cognitive studies of 
children’s arithmetic learning. Nonetheless, results from several smaller-scale studies suggest 
such a link: In a review of the frequency of presentation of simple addition problems in first- 
to third-grade mathematics textbooks in the United States, Hamann and Ashcraft (1986) 
found that easier problems (e.g., 3 + 4) were presented much more frequently than harder 
problems (e.g., 8 + 7). In contrast, Geary (1996) found the opposite pattern in workbooks 
used to learn addition in China; a similar pattern of easier mathematics problems being 
presented in U.S. textbooks relative to same-grade textbooks from other nations has been 
reported by other researchers (Fuson, Stigler, & Bartsch, 1988). For third-grade children 
from the United States and China, the speed with which individual addition facts were 
retrieved from long-term memory was correlated (r’s = .34 to .49;  d’s = 0.74, 1.12) with the 
cumulative (first- to third-grade) frequency with which the problems were presented in their 
respective countries. Whether children are learning addition in China or the United States, 
fast and efficient problem solving is related to frequency of prior exposure to the problem. 

 
b. Learning Arithmetical Algorithms 

Addition, subtraction, multiplication, and division 
In this section, the four arithmetic operations are considered together because so little 

is known about children’s learning of multiplication algorithms and division, and because 
what is known suggests similar obstacles to mastery across operations. The learning of 
algorithms requires a combination of an explicit conceptual understanding of related 
concepts (e.g., base-10); an understanding of when the algorithm should and should not be 
used; and, eventually, the ability to use the algorithm quickly and efficiently.  

 



 Task Group Reports of the National Mathematics Advisory Panel 

 4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES 

4-31 

Paths of acquisition 

Concepts. A central concept related to the use of arithmetical algorithms is the base-
10 system and the corresponding understanding of place value and “trading” across 
columns (Blöte et al., 2001; Fuson & Kwon, 1992b). Coming to understand the base-10 
system and place value is highly dependent on instruction (Hiebert & Wearne, 1996). 
Studies conducted in the United States have repeatedly demonstrated that many 
elementary-school children do not fully understand the base-10 structure of multidigit 
written numerals (e.g., understanding the place value meaning of the numeral) or number 
words (Fuson, 1990). As a result, many of these children are unable to effectively use this 
system when attempting to solve complex arithmetic problems. It appears that many 
children require instructional techniques that explicitly focus on the specifics of the 
repeating decade structure of the base-10 system and that focus on clarifying often 
confusing features of the associated notational system (Fuson & Briars, 1990; Varelas & 
Becker, 1997). An example of the latter is that sometimes “2” represents two units; other 
times it represents two tens; and, still other times it represents two hundreds (Varelas & 
Becker). Unlike East Asian languages where the base-10 structure is transparently 
represented in the associated number words (e.g., 21 is stated as two ten one), the English 
language number word system may actually lead to confusions about this relation (Miura et 
al., 1993). The development of base-10 knowledge is also facilitated by understanding that 
basic units (“ones”) can be aggregated to form higher-order ones (“tens”), and prior 
understanding of cardinality, min counting, (i.e., stating the value of the larger addend and 
counting a number of times equal to the value of the smaller addend) and skill at 
decomposing numbers (Saxton & Cakir, 2006). 

 
Procedures. The solving of arithmetic problems that are more complex than the 

simple problems described above, such as 23 + 6 or 12 × 73, involves the application of prior 
arithmetical skills and knowledge, the incorporation of new knowledge, and the learning of 
new procedures or algorithms.  

 
When learning complex addition problems, children initially rely on the knowledge 

and skills acquired for solving simple addition problems, as reviewed in Siegler (1983); 
problems can be solved by means of counting, decomposition, or regrouping, as well as the 
formally taught columnar procedure (Ginsburg, 1977; Reys, Reys, Nohda, & Emori, 1995; 
Siegler & Jenkins, 1989). The decomposition or regrouping strategy involves adding the tens 
values and the units values separately; the problem 23 + 45 would involve the steps 20 + 40, 
3 + 5, and then 60 + 8 (Fuson & Kwon, 1992b). The most difficult process in terms of time 
needed to solve the problem and frequency of errors involves regrouping or “trading”, as in 
the problem 46 + 58. As described in the Obstacles to Mastery section in this section, several 
factors contribute to the difficulty of regrouping. 

 
A similar pattern is found when children are first learning to solve complex 

subtraction problems; they rely on their knowledge of simple subtraction and addition when 
using counting or decomposition to solve the problem (Siegler, 1989). As with complex 
addition, the process of regrouping, as with 33 - 17, is the most common source of difficulty 
(Fuson & Kwon, 1992b). There are comparatively few cognitive studies of children’s 
learning of the algorithms for solving complex multiplication and division problems, as 
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noted. Studies of adults reveal they solve most complex multiplication problems by using the 
standard algorithm and partial products (Figure 1), and that the carry operation is the most 
time-consuming process (Geary, Widaman, & Little, 1986; Tronsky, 2005). 
 
Figure 1: Multiplication Algorithms 
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Although they did not provide detailed results on the problem-solving steps children 

use to solve division problems (e.g.,
23
345 ), Pratt and Savoy-Levine’s (1998) study of 

contingent tutoring (i.e., providing different levels of support ranging from hints to explicit 
demonstration) is insightful. In one component of this study, fourth- and fifth-grade children 
from Canada—recall that the computational skills of U.S. and Canadian children are 
comparable (Tatsuoka et al., 2004)—solved four division problems and were scored on the 
accuracy of executing four problem solving steps: estimating the quotient; multiplying the 
divisor and the quotient; subtracting the product from the dividend; and obtaining the 
remainder. Before tutoring, these children correctly executed less than four of 32 problem-
solving steps across four problems (there were eight steps/problem); one type of tutoring 
substantially increased accuracy but other types did not. The overall pre-tutoring accuracy 
rate of 12% is substantially lower than the 25% to 72% correct found for fourth-graders from 
Japan for problems of similar complexity (Reys et al., 1995).   

 
Declarative information. Adults who are skilled at using arithmetical algorithms can 

describe the steps they used in the execution of the algorithms (Tronsky, 2005). Mastery of 
algorithms, however, may involve commitment of the associated steps to procedural 
memory, rather than to explicit declarative memory. With mastery, it is expected—based on 
studies of procedural learning in other domains and the studies that have been conducted in 
arithmetic (Delazer et al., 2003; Pauli et al., 1994; Tronsky)—that the algorithms can be 
executed automatically and without need for explicit recall and representation of each 
problem-solving step in working memory. 

Obstacles to mastery 
As the complexity of the arithmetical problem increases, the number of potential 

obstacles to mastery increases. The learning of arithmetical algorithms and their fluent 
execution once learned are influenced by process constraints, conceptual knowledge, errors 
of induction, and current context. Process constraints include the individuals’ working 
memory capacity (DeStefano & LeFevre, 2004; Hitch, 1978), and the fluency with which 
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component skills embedded within the algorithm can be executed (e.g., ease of retrieving 
basic facts) (Fuchs et al., 2006; Royer et al., 1999; Starch, 1911). Conceptual knowledge, 
especially an understanding of the base-10 system and place value, influences how the 
individual organizes the component processes that compose the algorithm, and facilitates the 
flexible use of alternative algorithms and the transfer of algorithms to the solving of novel 
problems (Blöte et al., 2001; Fuson & Kwon, 1992b; Hiebert & Wearne, 1996). During 
algorithmic learning, children and adults often make errors of induction based on prior 
learning of related algorithms or related concepts (Ben-Zeev, 1995; VanLehn, 1990). 
Contextual factors vary from external factors that reduce process limitations (e.g., scratch 
paper) or that exacerbate (e.g., high-stakes testing) these limitations, as well as factors (e.g., 
teacher, worked examples) that may help the individual recall relevant concepts (Beilock et 
al., 2004; Cary & Carlson, 1999). 

 
The solving of complex arithmetic problems, especially during the early phases of 

learning, requires the retention of intermediate results in working memory while the 
individual processes the next problem-solving step. These demands require attentional 
control and working memory resources, and are a potential source of problem solving failure 
(e.g., Ashcraft & Kirk, 2001; DeStefano & LeFevre, 2004; Hitch, 1978; Logie, Gilhooly, & 
Wynn, 1994).  Experimental manipulations of problem complexity and results from the use 
of dual-task procedures—asking the individual to engage in an activity that occupies one 
component of working memory (e.g., repeating nouns) during arithmetical problem 
solving—suggest the central executive component of working memory is a core source of 
processing limitations.  The phonological loop and visuospatial sketch pad also can pose 
limitations for some aspects of problem solving (DeStefano & LeFevre); the execution of the 
carry or borrow procedure is particularly time consuming, and places added demands on the 
central executive and phonological loop. Working memory resources improve as children 
mature (Cowan et al., 2002), and can be functionally improved at any age with practice of the 
algorithm (Beilock et al., 2004; Tronsky, 2005) and with use of external memory aids (e.g., 
scratch paper) (Cary & Carlson, 1999). 

 
Practice reduces the working memory demands of the problem because it results in the 

formation of procedural memories, such that the algorithm can be executed without the need 
to explicitly recreate and represent the sequence of steps in working memory. External aids 
reduce these demands because intermediate steps can be noted externally (e.g., on scratch 
paper or with a worked example) rather than in working memory. Practice to the point of 
automaticity reduces the disruptive effects of anxiety on problem-solving performance. In 
high-stakes situations, as when performance will be evaluated by others, anxious individuals 
tend to have thoughts regarding their competency intrude into working memory (Ashcraft & 
Kirk, 2001; Beilock et al., 2004); these intrusions functionally lower working memory 
capacity and thus increase the likelihood of committing an error. Beilock et al. experimentally 
demonstrated that this “choking under pressure” occurs much more often when problem 
solving requires use of infrequently practiced algorithms; in their studies, errors were rare for 
frequently practiced algorithms in both low-pressure and high-pressure situations. 
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Although practicing algorithms has the benefit of eventual automatic execution and 
reduced working memory demands, practice without conceptual knowledge can result in 
reduced flexibility in use of alternative algorithms (Blöte et al., 2001; Hiebert & Wearne, 
1996). In an experimental study of algorithmic learning in second-graders in the Netherlands, 
Blöte et al. found that the combination of direct instruction of algorithms in the context of 
learning associated concepts resulted in a better ability to flexibly use one algorithm or 
another, depending on the structure of the problem, than did direct instruction of algorithms 
without a conceptual context. The Task Group discusses the importance of conceptual 
knowledge in more depth in the next section, Core Arithmetical Concepts; it is noted here 
that conceptual understanding in one area of arithmetic can sometimes facilitate transfer of 
algorithms to related problems but at other times can interfere with algorithmic learning 
(Ben-Zeev, 1995; VanLehn, 1990). For instance, learning the commutative property for 
addition can lead to the overgeneralization of this property to subtraction; leading students to 
infer that since 92 – 17 = 75, 17 – 92 = 75. 

 
At other times, errors in executing algorithms are related to a poor understanding of 

the base-10 system and place value (Fuson & Briars, 1990; Fuson & Kwon, 1992b). Because 
they do not understand the base-10 concept and place value, many children do not understand 
that the 1 traded from the units- to the tens-column, for instance when solving 24 + 38, 
actually represents 10 and not 1; in this case, they write 52 as the answer, instead of 62. 
Children may not execute the carry procedure at all (leading to answers such as 24 + 38 = 
512), or they may ignore place holding 0 values and carry across columns (e.g., 407 + 309 = 
806). A similar type of algorithmic error has been found with complex subtraction (VanLehn, 
1990; Young & O’Shea, 1981), but much less is known about algorithmic development in 
complex multiplication and division. 

 
In the earlier mentioned assessment of the speed and accuracy of the arithmetical 

problem solving of first- and fifth-grade children from the United States and China, 
Stevenson, Lee, Chen, Lummis, et al. (1990) found that fifth-graders from China solved more 
than twice as many multidigit (e.g., 34 + 86) addition problems in 1 minute as did their U.S. 
peers (d = 1.91). A similar pattern was found comparing multidigit subtraction skills of 
children from China and the United States for 6th- (d = 1.89) and 12th- (d = 1.82) graders 
that matched or equated on general cognitive ability (Geary et al., 1997). The latter study 
found a smaller gap for multidigit addition than that found by Stevenson et al., but the 
differences were still substantial in both 6th- (d = 1.22) and 12th- (d = 1.30) grades. The 
same pattern was found for multidigit multiplication problems (e.g., 23 x 6), whereby fifth-
graders from China solved more than twice as many problems in 1 minute as did their U.S. 
peers (d = 1.57; Stevenson, Lee, Chen, Lummis, et al.).  The source of these fluency 
differences is not entirely understood but is related at least in part to a better understanding of 
the base-10 system and place value in East Asian than in U.S. students. It also is likely 
related to differences in the grade placement, the quantity and quality of algorithmic practice, 
and the extent to which this practice is integrated with concept learning (Fuson & Kwon, 
1992b; Fuson et al., 1988). 
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c. Core Arithmetical Concepts 

The core arithmetical concepts that children should come to understand and apply 
during problem solving are the associative and commutative properties of addition and 
multiplication (described below), the distributive property of multiplication [e.g., a × (b + c) 
= (a × b) + (a × c)], identity elements for addition (a + 0 = a) and multiplication (b × 1 = 
b), and the inverse relation between addition and subtraction, and between multiplication and 
division. The availability of research on children’s understanding and skill at using these 
concepts is quite variable across these topics. There is, for instance, considerable work on 
children’s understanding of commutativity as related to addition, but comparatively little 
work on children’s understanding of identity elements and the inverse relation between 
multiplication and division. 

Associativity and commutativity 
The commutativity property concerns the addition or multiplication of two numbers, 

and states that the order in which the numbers are added or multiplied does not affect the sum 
or product (a + b = b + a; a × b = b × a). The associativity property concerns the addition or 
multiplication of three numbers, and again states that the order in which the numbers are 
added or multiplied does not affect the sum or product [(a + b) + c = a + (b + c); (a × b) × c = 
a × (b × c)]. Empirical research on children’s understanding of these concepts has focused on 
the commutative property of addition (Baroody, Ginsburg, & Waxman, 1983; for review see 
Resnick, 1992), although some research has been conducted on associativity (Canobi et al., 
1998, 2002). Different approaches have been used in this research: 

 
A. An informal understanding is sometimes inferred when preschool children’s physical 

manipulation of sets of objects or responses to such manipulations is consistent with 
these concepts (for review, see Resnick, 1992). A child might watch as sets of 
different objects (e.g., red candy, blue candy) are given to different dolls in different 
orders. Implicit knowledge of commutativity is inferred if the child indicates the dolls 
received the same amount. 

B. A formal understanding is inferred when the child can explicitly state that answers to 
problems are equal (e.g., 14 + 78 = 78 + 14) and can justify his or her answer using 
the appropriate concept, that is, that number order does not affect the answer. 

C. An intermediate level of knowledge is inferred when a child’s solving of formal 
problems is consistent with an implicit understanding of the concept or the child 
provides a partial explicit justification (Baroody et al., 1983).  If the problems 3 + 14 
and 14 + 3 are presented one after the other, and the child counts to solve the first 
problem (e.g., 14, 15, 16, 17) and quickly states the same answer without counting to 
solve the second problem, an implicit understanding of commutativity is inferred. A 
partial justification might involve the child stating that the problems are the same, but 
does not include statements regarding number order. 
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Paths of acquisition 

Concepts. By 4 to 5 years of age, many children understand that sets of physical objects 
can be decomposed and recombined into smaller and larger sets, and that the order of these 
manipulations is not important; that is, they implicitly understand commutativity in this context 
(Klein & Bisanz, 2000; Sophian, Harley, & Martin, 1995; Sophian & McCorgray, 1994; 
Canobi et al., 2002). This implicit knowledge is limited to two sets of objects, indicating that 
most children of this age do not implicitly understand associativity. Moreover, many of these 
children may not link commutativity, as expressed in manipulation of physical sets, to addition 
of specific quantities. About half of kindergartners implicitly recognize commutative relations 
in simple addition problems (e.g., 3 + 2  =  3 + 2), as do the majority of first-graders (Baroody 
et al., 1983; Baroody & Gannon, 1984). Many second- and third-graders will begin to provide 
partial explicit explanations of commutative relations, but it is not well understood when and 
under what instructional conditions children come to explicitly understand commutativity as a 
formal arithmetical principle. Some kindergarten children recognize associative relations when 
presented with sets of physical objects, and many first- and second-graders implicitly 
understand associative relations when they are presented as addition problems (Canobi et al., 
1998, 2002). These studies have also demonstrated that an implicit understanding of 
associativity does not emerge until after children implicitly understand commutativity. 

 
In comparison to addition, much less is known about children’s implicit and explicit 

knowledge of commutativity and associativity as related to multiplication. In a study with 
third-graders who were just being introduced to multiplication, Baroody (1999) found that 
practice at solving multiplication problems (e.g., 3 × 4) made the solving of unfamiliar 
commuted problems (e.g., 4 × 3) faster and less error prone than other unfamiliar problems. 
This type of finding is consistent with the adult studies on retrieval of multiplication facts but 
is not sufficient to demonstrate an explicit conceptual understanding of the commutative 
property as related to multiplication. 

 
Declarative information. The core concept of commutativity and associativity is that 

the order in which two (commutativity) or three (associativity) numbers are added or 
multiplied does not affect the result. Although elementary school children’s justifications for 
a problem-solving approach often reflect a partial understanding of this equivalence 
(Baroody et al., 1983), many children do not explicitly state this core concept as a 
justification. It is not known when and under what instructional conditions children can 
express these concepts algebraically (e.g., a !  b = b !  a). It is also important for children to 
come to understand that commutativity and associativity do not apply to subtraction and 
division; children’s problem-solving errors in subtraction suggest they often draw the 
incorrect inference that the principles apply to these operations as well (VanLehn, 1990). 

Obstacles to mastery 
The relation between children’s implicit and explicit knowledge of commutativity and 

associativity is not fully understood. Resnick (1992) proposed that children’s implicit 
understanding of commutativity and associativity provides the foundation for their explicit 
understanding of these concepts, but evidence for such a relation is mixed (Baroody et al., 
1983). Many children implicitly or explicitly infer that commutativity applies to subtraction 
and thus often make errors; since 7 – 3 = 4, it is inferred that 3 – 7 = 4 (Young & O’Shea, 
1981); the use of these “buggy rules” (i.e., use of a procedure that is correct for one type of 
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problem to solve another type of problem for which the procedure is not appropriate) varies, 
however, as children may use them to solve one problem and then use a correct procedure to 
solve another (Hatano, Amaiwa, & Inagaki, 1996). These forms of error have not been as 
extensively studied for associativity with subtraction or to the misapplication of these 
principles to division, but similar confusions are likely. 

 
Distributive property, identity properties, and inversion 
There is not a sufficient amount of research on children’s understanding of the 

distributive property of multiplication to draw conclusions at this time; e.g., a (b + c) = ab + 
ac. In one of the few studies of children’s understanding of the distributive property 
(conducted in the United Kingdom), Squire, Davies, and Bryant (2004) found that less than 
5% of fifth-graders could solve various forms of distributive property problems at above 
chance levels, as compared to 44% to 52% solving similar forms of commutative problems at 
above chance levels. The majority (> 74%) of sixth-graders correctly solved various forms of 
commutative principle problems, but only 22% to 44% of these children correctly solved 
various forms of distributive property problems. 

 
Error patterns were systematic and suggested that the children confused addition and 

multiplication when solving distributive problems. Some of the distributive items were 
presented as word problems with an underlying form of if a x b = c, then (a + 1) x b = c + b. 
The first statement in a corresponding word problem item might be presented as 67 candies 
in each of 25 bags = 1675 candies. The next statement might then be presented as 68 candies 
in each of 25 bags = M candies. Children were provided with six potential answers and were 
given a limited amount of time to choose one of these. If the children understood the 
distributive property then they would choose the answer that is 1675 + 25, or 1700. If they 
approached the problem as an addition of 1 to both sides of the equation, then they would 
choose 1675 + 1 or 1676. Nearly all of the fifth-graders and the majority of sixth-graders 
committed this type of error. 

 
As with the distributive property, there is not enough research to draw firm 

conclusions about children’s understanding of identity elements. Studies of adults’ mental 
arithmetic indicate that identity problems in addition (a + 0 = a) and multiplication (b × 1 = 
b) are solved more quickly and accurately than are other problems, suggesting these may be 
solved by means of a rule (Miller, Perlmutter, & Keating, 1984). These findings, however, do 
not address the issue of whether these adults explicitly understand the mathematical concept 
of an identity element nor do they address the more focal issue of how children come to 
understand this concept. Studies of children’s conceptual understanding of and ability to 
apply the distributive property and identity elements are clearly a priority for future research. 

 
Inverse relations are an integral part of many aspects of mathematics. Children’s first 

encounter with such a relation is with addition and subtraction; e.g., a + b = c, c – b = a.  
Studies of knowledge of the inverse relation between addition and subtraction have revealed 
an implicit understanding for many children by the time they enter kindergarten (Baroody, & 
Lai, 2007; Klein, & Bisanz, 2000; Vilette, 2002), and a growing implicit use of this relation 
with schooling, as reflected in problem-solving performance (Bryant, Christie, & Rendu, 
1999; Gilmore & Bryant, 2006; Siegler & Stern, 1998). Developmental and experimental 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-38 

studies indicate that the majority of children implicitly use addition and subtraction inversion 
in their problem solving (as measured by a shorter time needed to solve inversion problems 
as compared to similar problems that cannot be solved with inversion) before they can 
explicitly state this relation. This pattern is common in many areas (Siegler, & Araya, 2005). 
An ability to explicitly state some aspect of this relation is found in many children by the end 
of the elementary school years (Robinson, Ninowski, & Gray, 2006). 

 
However, many weaknesses in children’s and even adults’ (Robinson, & Ninowski, 

2003) understanding of inverse relations are evident; many adults and most children do not 
have a firm grasp of the inverse relation between multiplication and division, nor do they 
appear to understand the concept of inversion at an abstract mathematical level. For instance, 
Robinson, Ninowski et al. (2006) found that knowledge of the inverse relation between 
addition and subtraction in sixth- and eighth-graders did not transfer to multiplication and 
division; they seemed to understand these relations separately for addition and subtraction 
and multiplication and division but did not link them together through the more general 
concept of inverse relations in mathematics. 

 
d. Conclusions and Recommendations 

American students do not meet the goal of fast and efficient solving of basic arithmetic 
combinations or execution of standard algorithms, and their competence in these areas is well 
below that of students in many other countries. American students have a poor grasp of most 
core arithmetical concepts; most American students do not understand the distributive 
property of multiplication, and they do not know identity elements or the inverse relation 
between division and multiplication, among other deficits. Mastery of these core concepts is a 
necessary component of learning arithmetic and is needed to understand novel problems and 
to use previously learned procedures to solve novel problems. Debates regarding the relative 
importance of conceptual knowledge, procedural skills, and the commitment of arithmetical 
facts to long-term memory are misguided. The development of conceptual knowledge and 
procedural skills is intertwined, each supporting the other. Fast access to number 
combinations, prime numbers, and so forth supports problem solving because it frees working 
memory resources that can then be focused on other aspects of problem solving. 

Classroom 
The development of measures that support the teacher’s ability to make formative 

assessments of children’s procedural and conceptual competencies in all key areas of whole 
number arithmetic should be a research priority.  

Training 
Teachers. For teachers to take full advantage of the above noted types of formative 

assessments, they must have a better understanding of children’s learning and the sources of 
children’s conceptual and procedural errors in the content areas they are teaching. As an 
example, many errors on conceptual tasks are systematic and can provide information on 
how students are misunderstanding the concept. These errors can be used in formative 
assessments and to focus instruction. However, as noted, for teachers to make full use of 
these common errors in children’s arithmetic learning, they must understand how children 
learn arithmetic and how children conceptualize and misconceptualize core concepts.  
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The development of courses in mathematical cognition for inclusion in teacher 
training programs will be necessary to address this goal. 

 
Researchers. Programs that support cross-disciplinary pre-doctoral and postdoctoral 

training in cognition, education, and mathematics are needed to ensure a sufficient number of 
researchers that study children’s mathematical learning, and have the background needed to 
bridge the gap between laboratory studies and classroom practice. 

Curricula 
The fast and efficient solving of arithmetic combinations and execution of procedures 

requires considerable practice that is distributed over time. The consistent failure of 
American children to achieve mastery of these topics is a strong indication that most current 
curricula in the United States do not provide these experiences. Although definitive 
conclusions cannot be drawn at this time due to lack of relevant, large-scale experimental 
studies, the research that has been conducted suggests that effective practice should include a 
conceptually rich and varied mix of problems, with several features: 

 
1) Present more difficult problems (e.g., 9 + 7) more frequently than less difficult 

problems (e.g., 3 + 1); this is because long-term retention of difficult problems 
requires more practice. 

2) Highlight the relations among problems. 
For example, the inverse relation between addition and subtraction: 

 4 + 7 = 
 11 - 4 = 

3) Order practice problems in ways that reinforce core concepts. 
 For example, identity elements: 

 3 x 0 = 
 0 x 8 = 
 6 x 0 = 

4) Include key problems that support formative assessments. 
Such problems can reveal students’ misconceptions and problem-solving errors: 

 7 - 4 = 
 4 - 7 = 

Errors on the second problem (i.e., 4 - 7 = 3) are common because children infer that 
the commutative relation they learned for addition also applies to subtraction. 
Errors on these types of problems may be diagnostic of this incorrect inference, which 
can then be addressed as part of classroom instruction. 
 
U.S. students’ poor knowledge of core arithmetical concepts—the distributive 

property, identity elements, the inverse relation between division and multiplication, among 
others—is unacceptable and indicates a substantive gap in the mathematics curricula that 
must be addressed.  
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Research 
Although much is known about some areas of children’s arithmetical cognition and 

learning, further research is needed in the areas of children’s learning of complex algorithms 
(e.g., division algorithm); the relation between conceptual knowledge and procedural 
learning; and on the learning of core concepts, including the base-10 number system, the 
distributive property of multiplication, and identity elements, among others.  

 
Studies are needed that focus on the translation of cognitive measures of children’s 

learning into formative assessments that are easily understood by teachers and used in the 
classroom.  

 
Funding priorities that target areas of deficit in children’s arithmetical cognition and 

learning are recommended, along with priorities that encourage projects that bridge the gap 
between basic research and classroom practice. 

 
2. Fractions, Decimals, and Proportions 

Fractions, decimals, and proportions are introduced into the mathematics curriculum 
as early as elementary school or its equivalent in different countries, and yet solving 
problems with these quantities remains difficult for many adults. Nevertheless, understanding 
and manipulating fractions is crucial for further progress in mathematics and for tasks of 
everyday life, such as computing interest on a loan or deciding among risky medical 
treatments (e.g., Kutner, Greenburg, & Baer, 2006; Reyna & Brainerd, 2007; Wu, 2006). 
Central to the charge of this Panel, knowledge of fractions and related concepts has been 
described as “fundamental to the learning of algebra” (p. 1; Wu, 2007).  In a nationally 
representative sample, teachers of Algebra I rated students as having the poorest preparation 
in “rational numbers and operations involving fractions and decimals” among 15 areas of 
mathematics, surpassed only by “solving word problems” (Hoffer, Venkataraman, Hedberg, 
& Shagle, 2007, Table 3). 

 
a. Definitions and Interpretations 

Mathematically, the definition of a fraction begins with the concept of a number line 
(Wu, 2007). A fraction is defined as a point on the number line, based on the concept of a 
part-whole relation, with the unit segment [0,1] (the segment from 0 to 1) serving as the 
whole. The fraction 

3
1 , for example, is obtained by dividing [0,1] into three equal parts. 

Every segment on the number line, not just the unit segment, can be similarly divided into 
three equal parts. More generally, m/n consists of m adjoining short segments of 

n
1  each 

(e.g., thirds). The example of m = 10 and 
n
1  = 

3
1  is shown below: 

      0    1   2    3   4 

|_|_|_|_|_|_|_|_|_|_|_|_|_ 

    10 
     3 
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From this mathematical definition of a fraction, other definitions can be derived, such as the 

division interpretation (i.e., 
n
m  = m ÷ n).  

 
Psychologically, however, there are at least five interpretations or “subconstructs” of 

fractions (Kieren, 1988), defined as follows by Sophian (2007, pp. 114–115): 
 

• measure, as representing magnitudes that can be intermediate between whole 
numbers of units (e.g., magnitudes between 0 and 1); 

• quotient, as numerical values obtained by dividing one whole number by another; 
• ratio number, as representing the relative magnitude of two non-overlapping 

quantities (as in a recipe that calls for 3 eggs for every 2 cups of flour); 
• multiplicative operator, as representing an extending/contracting or stretching/shrinking 

function applied to some object, set, or number (so that, e.g., taking 
3
2 of a quantity 

stretches that quantity by a factor of 2 but then shrinks the “stretched” quantity by a 
factor of 3 so that the end result is smaller than the original quantity); and 

• part-whole, as representing one or more parts of a whole, where the parts are formed 
by partitioning the whole into a number of equal units (see Behr, Harel, Post, & Lesh, 
1992). 
 
There are a number of properties of fractions that are related to one or more of these 

interpretations, such as inversion (that fractions become smaller as denominators become 
larger, assuming that the numerator is held constant; (Sophian, Garyantes, & Chang, 1997), 
that the effect of denominator magnitude is multiplicative (e.g., Thompson & Saldanha, 
2003), that segments are infinitely divisible or dense (that there are infinite fractions between 
two endpoints on a number line; e.g., Smith, Solomon, & Carey, 2005), and others. Unlike 
mathematical definitions, which can be explained, derived, or, with the help of theorems, 
proved to be related to one another in precise ways, the relations among different 
psychological interpretations or properties are unclear. Mathematically, although a precise 
definition of fractions using the number line makes it possible to derive other properties of 
fractions, empirically, a student might successfully perform tasks that fit one psychological 
interpretation of fractions but fail others that are mathematically equivalent (or derivable). 
How interpretations relate is a question that can be answered empirically; a taxonomy of 
interpretations based on a process model of underlying causal mechanisms could be produced 
through hypothesis-driven experimentation (see Platt, 1964). However, current scientific 
theory is not sufficiently developed to fully answer this important question of how the 
understanding of different properties and interpretations of fractions are related to one another. 

 
Furthermore, because of the lack of clarity concerning how psychological 

interpretations of fractions relate to one another, scholars frequently differ in the meanings 
they attach to such terms as conceptual knowledge of fractions, emphasizing varied 
interpretations and properties. Fortunately, researchers generally provide operational 
definitions of conceptual knowledge (as well as of computational facility) by precisely 
specifying the tasks that subjects are asked to perform. For example, subjects might be asked 
to judge the relative magnitude of two fractions with identical denominators but different 
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numerators, or vice versa. Other tasks include judging equivalence of fractions, translation of 
pictures (e.g., of pizzas with different portions shaded) into numerically expressed fractions, 
ordering fractions according to magnitude, judging which of two pairs of fractions are closer 
in magnitude, and computation (e.g., adding, subtracting, multiplying or dividing fractions).  

 
Certain tasks are more diagnostic than others with respect to assessing specific 

aspects of conceptual knowledge of fractions. For example, if subjects judge 
3
2  and 

5
4  to be 

equivalent they likely do not understand that the relation between numerator and 
denominator is multiplicative rather than additive (Sophian, 2007). Similarly, if subjects 
select a container with 3 winning chips out of 7 chips rather than a container with 1 winning 
chip out of 2 chips (the so-called numerosity effect or ratio bias), they are failing to take the 
magnitude of the denominator into full account (e.g., Acredolo, O’Connor, Banks, & 
Horobin, 1989; Hoemann & Ross, 1982; Reyna & Brainerd, 1994, 2008).  Although no task 
is process pure in the sense that it cleanly measures one and only one psychological process, 
specific empirical tests have been devised to identify processes that underlie judgments 
involving fractions, decimals, and proportions (see Kerkman & Wright, 1988; Siegler, 1981, 
1991; Surber & Haines, 1987). Therefore, in the remainder of this review, conceptual 
knowledge is identified with respect to performance on specific tasks that are designed to 
diagnose comprehension of aspects of knowledge about fractions, decimals, or proportions. 
Psychometric studies have distinguished computational ability from conceptual knowledge 
and, thus, research concerning the former is also reviewed by the Task Group. 

 
b. Extent of the Problem 

Computations involving fractions and decimals have proved challenging for every 
group that has been tested in the U.S. Difficulties emerge when such concepts are introduced 
in elementary school, and they persist through middle school, high school, and into adulthood, 
extending beyond those with learning disabilities in mathematics (e.g., Hecht et al., 2007; 
Mazzocco & Devlin, in press; U.S. Department of Education, NCES, 2003; Sophian, 2007; 
Stafylidou & Vosniadou, 2004). The percentage of middle school students who have 
difficulties with fractions and decimals, which has been estimated at 40%, far exceeds the 
cumulative incidence of MLD, as the Task Group reviews in the section on Learning 
Disabilities (Barbaresi et al., 2005; Hope & Owens, 1987; U.S. Department of Education, 
NCES, 1990; Smith, 1995). To illustrate, the 1990 National Assessment of Educational 
Progress documented that only 53% of 7th-graders and only 71% of 11th-graders could 
correctly subtract two mixed fractions with unlike denominators, despite the fact that such 
content is typically taught in elementary school (U.S. Department of Education, NCES, 1990). 
Recent assessments paint a similar picture. On the 1996 and 2005 NAEP tests, only 65% and 
73% of eighth-graders, respectively, were able to correctly shade 

3
1  of a rectangle; on the 

2004 NAEP test, only 55% of eighth-graders could correctly solve a word problem involving 
dividing one fraction by another.   

 
Adults also perform poorly on problems involving fractions, decimals, and proportions. 

The most recent report of the National Assessment of Adult Literacy (NAAL) assessed literacy 
and numeracy in 2003 for 19,000 U.S. adults, who completed realistic tasks (Kutner et al., 
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2006). More adults scored in the Below Basic level on the quantitative scale (22%) of the 
NAAL than on any other scale, such as those measuring document or prose literacy (Kutner et 
al.). Most studies of adult “numeracy” assess the ability to perform simple computations or 
quantitative judgments concerning decimals, probabilities, percentages, and frequencies (e.g., 
Fagerlin, Zikmund-Fisher, & Ubel, 2005; Lipkus, Samsa, & Rimer, 2001; Schwartz, Woloshin, 
Black, & Welch, 1997; Woloshin, Schwartz, Byram, Fischhoff, & Welch, 2000; for a review, 
see Reyna & Brainerd, 2007). For example, one question from the Newest Vital Sign (NVS) 
test assesses the ability to calculate percentages of ingredients based on information from a 
nutrition label for ice cream (Weiss et al., 2005). Another well-known numeracy scale includes 
11 questions, all of which pertain to fractions, decimals, and percentages (Lipkus et al.). Only 
46% of adults in one sample and 24% in another were able to answer a question from this scale 
correctly that involved converting frequencies to percentages (i.e., In the Acme Publishing 
Sweepstakes, the chance of winning a car is 1 in 1,000. What percent of tickets win a car?). 
The percentage of adults who answered three such questions correctly ranged from 15% or 
16% (Lipkus et al.; Schwartz et al.) to 38% (Black, Nease, & Tosteson, 1995; Woloshin et al.), 
including samples that were mostly college-educated. Scores on these tests have been found to 
relate to important real-world outcomes, such as patients’ knowledge, health behaviors, health 
outcomes, and medical costs (American Medical Association Ad Hoc Committee on Health 
Literacy, 1999; Baker, 2006; Berkman et al., 2004; Estrada, Martin-Hryniewicz, Peek, Collins, 
& Byrd, 2004; Institute of Medicine, 2004).  

 
In sum, it is clear that a broad range of students have difficulties with fractions, and 

these problems continue after graduation for many adults (e.g., Hecht et al., 2007; Mazzocco 
& Devlin, in press). The failure to attain basic facility with fractions constitutes an obstacle to 
progress to more advanced topics in mathematics, including algebra (although direct evidence 
for this link is lacking, but see e.g., Hecht, 1998; Hecht et al., 2003; Heller, Post, Behr, & 
Lesh, 1990; Loveless, 2003) and, presumably, to career paths that require mathematical 
proficiency (e.g., National Science Board Commission on 21st Century Education in Science, 
Technology, Engineering, and Mathematics (STEM, 2006)), as well as potentially interfering 
with life-and-death aspects of daily functioning, such as compliance with medication.   

 
c. Paths of Acquisition 

Informal, implicit knowledge 
In order to assess competence accurately, it is important to separate children’s 

understanding of formal fractional notation (i.e., what the line between two numbers in a 
fraction such as 

3
1  means) from their intuitive ability to understand fractional relations and 

perform calculations using fractional quantities (e.g., Mix et al., 1999). Illustrating the 
difficulty in understanding notation, children frequently add numerators and denominators 
together without regard for the notational convention that each numerator-denominator 
combination refers to a single quantity (e.g., 

4
3  + 

2
1  = 

6
4 ) (Carpenter et al., 1978; see also 

Silver, 1986; Resnick & Ford, 1981). When such notational constraints are removed, young 
children reveal a nascent ability to understand ratios (Geary, 2006; Mix et al.; Sophian, 
2000). Preschool children’s experiences with and understanding of part-whole relations 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-44 

among sets of physical objects, such as receiving 
2
1  of a cookie or having to share 1 of their 

2 toys, may contribute to an early understanding of simple ratios (Correa, Nunes, & Bryant, 
1998; Geary; Mix et al.). 

 
For example, avoiding the use of conventional notation, Goswami (1989) gave 4-, 6-, 

and 7-year-olds a series of analogy problems using shaded portions of geometric shapes such 
as 

2
1  of a circle: 

2
1  of a rectangle: 

4
1  of a circle: ?, and the children selected an answer from 

among five alternatives. A simpler version of the task was also presented in which proportions 
did not change across shapes (e.g., 

2
1  of a diamond: 

2
1  of a circle: 

2
1  of a square: ?) and 

children selected from among four alternatives. Four-year-olds performed significantly above 
the chance level of 25% correct in the simpler task (56% correct), and 6- and 7-year-olds 
performed nearly perfectly (86% and 91% correct, respectively). However, performance for 4-
year-olds was only 31% correct in the harder version of the task, though significantly above 
chance-level performance, and 6-year-olds remained far from perfect at 74% correct. Thus, 
the ability to recognize equivalent fractions undergoes significant development in early 
childhood, but basic competence emerges before children enter formal schooling.  

 
Similarly, the ability to manipulate fractions—to engage in a kind of informal 

computation with fractions that does not involve conventional notation—is also present early. 
In a study of simple part-whole relations, Mix et al. (1999) administered a nonverbal task that 

assessed children’s ability to mentally represent and manipulate 
4
1  segments of a whole circle. 

The results indicated that children as young as 4-years-old could calculate with fractional 
amounts of less than or equal to one, as shown by their ability to recognize fractional 
manipulations. For instance, if 

4
3  of a circle was placed under a mat and 

4
1  of the circle was 

removed, the children recognized that 
2
1  of a circle remained under the mat. However, it was 

not until 6 years of age that children began to understand manipulations that were analogous 

to mixed numbers; for instance, placing 1
4
3  circles under the mat and removing 

2
1  a circle. 

These results suggest that about the time children begin to show an understanding of part-
whole relations in other contexts (Sophian et al., 1995; Sophian & McCorgray, 1994; Resnick, 
1992), they demonstrate a rudimentary understanding of fractional relations. Although it is 
possible that children in the Mix et al. study represented the 

4
1  sections of the circles as single 

units and not as parts of a whole, this seems unlikely because solution of whole number and 
fraction problems differs in important ways.  

 
Correa et al. (1998) argue that sharing forms the basis for preschool age children’s 

ability to partition a quantity into roughly equal parts through a process of distributive 
counting (see also Hunting & Davis, 1991; Miller, 1984). Preschoolers also know that the 
term half refers to one of two parts (Hunting & Davis) and can use the notions of greater than 
half versus less than half to recognize which of two proportions are closer to a target 
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proportion (Spinillo & Bryant, 1991; see also Singer-Freeman & Goswami, 2001; Spinillo & 
Bryant, 1999). However, knowing how to share equal amounts or that some fractions are 
greater or lesser than half is not the same as understanding the inverse relation among 
quantities (e.g., between numerator and denominator in a fraction when the value of the 
fraction is held constant or between terms in division).  

 
For example, Sophian et al. (1997) asked 5- and 7-year-old children to determine 

which of two sharing scenarios would yield a larger portion for a recipient. Consistent with 
the idea that sharing forms an early basis for understanding fractions, children understood 
that if different total quantities were shared among the same number of recipients, the 
recipients who shared the larger total quantity would get larger portions than those who 
shared the smaller total quantity. However, the children also expected that sharing equal total 
quantities among different numbers of recipients would result in larger portions when shared 
with a larger number of recipients, compared to fewer recipients. The latter expectation 
violates the inverse rule that the larger the number of shares, the smaller the size of each 
share, or vice versa, when total amounts are held constant. About half of 6-year-olds were 
able to understand the inverse relation between divisor and quotient in Correa et al.’s (1998) 
sharing task, which is well below the age at which division is formally taught in schools.  

 
Acredolo et al. (1989), Schlottman (2001), and others using sensitive techniques that 

do not require explicit numerical computation have also shown an early appreciation for the 
inverse relation between numerators and denominators in probability and other ratio concepts 
(e.g., Hoemann & Ross, 1982; Reyna & Brainerd, 1994; Reyna & Ellis, 1994). These 
techniques, such as functional measurement, make it possible to discern whether the perceived 
relation between numerator and denominator is multiplicative rather than additive; by first 
grade, most students correctly perceived the relation to be inverse and multiplicative (see also 
Jacobs & Potenza, 1991). Notably, Sophian et al. (1997) found that in a study subsequent to 
the one reported above, children were able to appreciate and generalize the inverse relation 
after just a few trials demonstrating how changes in the denominator affected the size of each 
share, suggesting that some level of competence was already present to build on. 

 
In sum, studies of nonverbal or implicit knowledge of fractions show an intuitive 

awareness of fractions based on part-whole relations, notions of sharing, and a limited 
conception of inverse, multiplicative relations between numerators and denominators (or 
divisors and quotients) in the preschool years. Like place value in decimals (e.g., .1 vs. 
.0001), the symbolic notation for fractions is not yet correctly interpreted and must be 
explicitly taught. Despite evidence of early basic competence, these studies show 
considerable change in performance between ages 4 and 7 (and beyond, in some studies) and 
significant differences between performance with whole numbers and fractions, with 
competence with fractions lagging substantially behind competence with whole numbers 
even on relatively simple tasks (e.g., Mix et al., 1999).  
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Formal, mathematical knowledge 
Studies of elementary and middle school-aged children have focused on the acquisition 

of conceptual knowledge, computational skills (e.g., multiplying fractions), and the ability to 
use both of these abilities in conjunction with reading comprehension to solve word problems 
involving fractional quantities (Byrnes & Wasik, 1991; Hecht et al., 2007; Rittle-Johnson et al., 
2001). Conceptual knowledge tasks have included identifying which of several fractions is 
largest, judging relative magnitude (e.g., 21/18 > 1), translating pictorial representations into 
equivalent formal fractional representations, and vice versa. Computational tasks have involved 
adding, subtracting, multiplying and (rarely) dividing fractions using pictures (e.g., providing 
pictorial representations of answers to pictorial problems), numbers, and verbal descriptions, as 
in word problems (e.g., Hecht et al.). Scores on items assessing conceptual knowledge have 
consistently been shown to explain unique variance (beyond general intellectual and reading 
abilities) in performance on computational fraction problems, word problems that include 
fractions, and estimation tasks with fractional quantities (e.g., Byrnes & Wasik; Hecht, 1998; 
Hecht et al., 2003; Sophian, 2007; Hecht et al., 2007). 

 
Consistent with these findings and illustrating the close connection between 

conceptual and procedural (computational) abilities, Hecht (1998) reported that fully 82% of 
1,474 errors on fraction computation problems could be classified as involving a faulty 
procedure, as opposed to wild guesses, no attempt, or calculation errors. Children’s accuracy 
at recognizing formal procedural rules for fractions (e.g., when multiplying, that both 
numerators and denominators are multiplied) and automatic retrieval of basic arithmetic facts 
also predicted computational skills (i.e., accuracy in adding, multiplying, and dividing proper 
and mixed fractions), above and beyond the influence of intelligence, reading skills, and 
conceptual knowledge (see Hecht et al., 2007 for a review). 

 
In a follow up study, Hecht et al. (2003) investigated effects of conceptual knowledge 

of fractions, basic arithmetic skills, working memory capacity, and on-task time in 
mathematics class. Outcome measures included the computation of fraction sums and 
products; the estimation of fraction sums; and the solution of one-step word problems 
involving fraction addition, multiplication, or division. On-task time referred to paying 
attention to instruction or engaging in other forms of on-task behaviors in the mathematics 
classroom, which other studies have shown correlates with the acquisition of academic skills 
(Bennett, Gottesman, Rock, & Cerullo, 1993 in two of six samples; McKinney & Speece, 
1986; Wentzel, 1991); for example, Chen, Rubin, and Li (1997) reported a correlation of .52 
for sixth- and eighth-graders between on-task time and academic achievement (.52 is the 
concurrent simple correlation at Time 2; a cross-lagged correlation of .47 was also reported). 
For fraction problems, Hecht et al. found that on-task time influenced performance through 
its effect on conceptual knowledge. Presumably, children who engaged in more on-task 
behavior in class were better able to acquire and practice conceptual understanding of 
fractions that then contributed to their ability to solve fraction computation, estimation, and 
word problems. For fraction computation, on-task time influenced performance through its 
effect on simple arithmetic knowledge as well. That is, on-task time was associated with 
better knowledge of simple arithmetic, and this arithmetic knowledge contributed to better 
performance on fraction computation problems. 
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Note that on-task time refers to focused attention and practice, rather than motivation. 
Motivation also has positive effects on fraction learning. Schunk (1996) showed that fourth- 
graders who had a learning goal (trying to learn how to solve fraction problems) rather than a 
performance goal (trying to solve fraction problems) had higher self-efficacy, skill, and other 
achievement outcomes, such as number of fraction problems solved. Children in the first of 
Schunk’s experiments were also assigned either to a self-evaluation condition (they judged 
their fraction capabilities at the end of each of six learning sessions) or they did not engage in 
self-evaluation (instead answering an attitudes question at the end of the six sessions). In the 
second experiment, all children engaged in self-evaluation. In both experiments, the learning 
goal with or without self-evaluation led to higher motivation and achievement outcomes than 
the performance goal. Performance goals with self-evaluation were more effective than 
without self-evaluation.  

 
Taken together, these studies suggest that motivation and on-task time contribute to 

superior conceptual knowledge of fractions, which broadly benefits computation, estimation, 
and skill at solving word problems (see Hecht et al. 2003 for detailed models). Basic skills 
(i.e., arithmetic knowledge, reflected in rapid retrieval of basic arithmetic facts) were also 
important, but they more narrowly benefited the solution of fraction computation problems. 
Basic skills were related to fraction computation even when other factors were controlled for, 
such as conceptual knowledge, reading ability, on-task time, and working memory. 
Therefore, early levels of basic arithmetic skills may predict those children who will later 
have difficulty with fractions, and building such skills (e.g., Goldman, Mertz, & Pellegrino, 
1989; Jordan, Hanich, & Kaplan, 2003) may enhance performance on fraction computation 
problems. 

 
Several studies have examined the relation between conceptual and procedural 

knowledge (computational ability), and their results echo findings in other domains of 
mathematics learning (e.g., Hecht et al., 2003; Rittle-Johnson & Alibali, 1999; Rittle-Johnson 
& Siegler, 1998). Rittle-Johnson et al. (2001) demonstrated that children’s skill at solving 
decimal fractions was related to both their conceptual and procedural knowledge of fractions 
and that learning conceptual and procedural knowledge occurred iteratively. That is, 
conceptual knowledge predicted gains in procedural skills, and vice versa (Rittle-Johnson et 
al.; Sophian, 1997); Byrnes and Wasik (1991), in contrast, did not find that procedural 
knowledge affected conceptual knowledge, but failure to detect an effect is not evidence 
against it. Specifically, in two experiments with fifth- and sixth-graders, Rittle-Johnson et al. 
found that conceptual knowledge of decimal fractions at pretest (with initial procedural 
knowledge controlled for) predicted changes–as a result of instruction–in procedural 
competence from pretest to posttest. These changes in procedural competence (again 
controlling for initial scores on the procedural knowledge pretest) in turn predicted changes 
in conceptual knowledge from pretest to posttest. The iterative model of gradual, 
bidirectional influence of conceptual and procedural knowledge on development has been 
supported in multiple domains of learning. This model explains why children might be able 
to pass one test of conceptual knowledge and yet fail another test; because children have 
intuitions about part-whole relations, for example, does not mean that they fully understand 
conventional fractions.  
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The mechanism linking conceptual and procedural knowledge appears to be 
children’s ability to represent the decimal fraction on a mental number line, supported by 
correlational evidence from Experiment 1 and causal evidence from Experiment 2 of Rittle-
Johnson et al.’s research (2001). This linear representation undergoes development from 
childhood to adulthood and has been linked to both whole number magnitude estimation 
(Siegler & Opfer, 2003) and fractional magnitude estimation (e.g., Opfer, Thompson, & 
DeVries, 2007). Adults have been shown to successfully use a mental number line to 
represent relative magnitude and to solve inference problems, and recent neuropsychological 
evidence points to an internalized representation that preserves spatial features of a physical 
line, such as left-to-right orientation (e.g., Bouwmeester, Vermunt, & Sijtsma, 2007; 
Trabasso, Riley, & Wilson, 1975; Zorzi, Priftis, & Umiltá, 2002). Prompting children to 
think of decimal fractions as composite representations (e.g., a certain number of tenths, a 
certain number of hundredths and so on) rather than common unit representations (e.g., .45 as 
45 hundredths), and then mapping those representations spatially onto the number line, led to 
large gains in procedural knowledge (Rittle-Johnson et al., 2001). In addition, children who 
began with low conceptual knowledge benefited more from representational supports than 
children who began with higher conceptual knowledge. 

 
Some scholars have argued that frequencies are “privileged” mental representations 

from an evolutionary perspective and have used this concept to explain common errors in 
fraction and decimal use (e.g., Brase, 2002). The claim is not dissimilar from Gelman’s (1991) 
ideas about negative transfer from counting whole numbers, that “a frequentist representation 
that tends to parse the world into discrete, countable units” (p. 406, Brase) explains difficulties 
in dealing with part-whole relations as opposed to part-part relations (e.g., Sophian & Wood, 
1997; Sophian & Kailihiwa, 1998). However, recent research disentangling effects of 
frequentistic representations from clarification of class-inclusion (or part-whole) relations has 
shown that using frequencies per se does not reduce errors (for reviews, see Barbey & 
Sloman, in press; Reyna & Brainerd, 2008). Making part-whole relations transparent (e.g., by 
using Venn diagrams or distinctively labeling classes that are nested or overlapping), 
however, has been found to reduce errors for children and for adults in problems involving 
fractions, decimals, percentages, and frequencies (e.g., Girotto & Gonzalez, 2007; Reyna & 
Brainerd, 1994; Reyna & Mills, in press). For more advanced reasoners who have acquired 
conceptual knowledge, representations that make part-whole relations salient or transparent, in 
contrast to making part-part relations salient, virtually eliminate errors for simple magnitude 
judgments (Brainerd & Reyna, 1990, 1995; Lloyd & Reyna, 2001). 

 
Proportional reasoning involves many of the same elements as fractions, decimals, 

and other ratio concepts but it requires, in addition, the coordination of two ratio quantities. 
By this definition, judging the equivalence or relative magnitude of two fractions with 
unequal numerators and denominators is an example of proportional reasoning. Thus, many 
of the studies reviewed thus far concern proportional reasoning although they are not labeled 
as such. Early, informal competence can be detected if children are able to use perceptual 
cues, in particular surface area, to judge relative numerosity (Rousselle, Palmers, & Noel, 
2004). Using carefully controlled stimuli, Rousselle et al. showed that 3-year-olds responded 
above chance, even for large numerosities, by using an analog mechanism that codes 
continuous perceptual dimensions. In another study involving visual displays rather than 
numbers or notation, 3- to 4-year-olds were able to match proportions of pizzas (divided into 
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8 slices) and boxes of chocolates (consisting of 4 pieces), even when the numbers did not 
match (e.g., matching 

8
4  to 

4
2 ) (Singer-Freeman & Goswami, 2001). Sophian (2000) showed 

that 4- to 5-year-olds were able to identify corresponding spatial ratios based on relational 
information rather than the exact form of the stimuli (e.g., matching large and small 
rectangles of similar proportions, and rejecting rectangles that matched on only one 
dimension). Sophian and Wood (1997) used a more difficult task involving “conflict” 
problems in which 5-to-7-year-olds matched sample pictures either to a test stimulus that 
preserved the part-whole relation or one that preserved the part-part relation. By age 7, 
children were able to use part-whole relations to compare proportions. Jeong, Levine, and 
Huttenlocher (2007) found that 6-, 8-, and 10-year-olds failed a proportional reasoning task 
when discrete quantities were used, but even the youngest children showed some success 
when proportions involved continuous quantities. Children’s greater success with continuous 
quantities was related to the use of erroneous counting strategies in two discrete conditions: 
they counted the parts (and compared them) rather than comparing parts to wholes. In the 
continuous conditions, children were presumably able to rely on their earlier developing 
ability to perceptually compare relative surface areas.  

 
Hence, although there is some debate about exact ages and some variation across tasks, 

the studies indicate that children prior to formal schooling can recognize proportional analogs 
when they can perceptually compare relative amounts of surface area. In contrast, when 
problems involve numbers and simple ratios, children generally perform poorly until 7 or 8 
years of age, although gaps in understanding remain after these ages (Dixon & Moore, 1996; 
Fischbein, 1990; Kieren, 1988; Moore, Dixon, & Haines, 1991; Nunes, Schliemann, & 
Carraher, 1993; Singer, Kohn, & Resnick, 1997).  Ahl, Moore, and Dixon (1992) compared the 
relation between informal, intuitive and formal numerical proportional reasoning in fifth-
graders, eighth-graders, and college-aged subjects. In a temperature mixing task, varying 
amounts of water (1, 2, or 3 cups) at varying temperatures (20˚, 40˚, 60˚, and 80˚) were added 
to a container that was either cool (40˚) or warm (60˚), and children were asked what the 
resulting temperature would be. In the intuitive version of the task, quantities and temperatures 
were described verbally (e.g., cold, cool, warm, and hot), but in the numerical version, numbers 
were used (and students were told to use mathematics). Half of the students received the 
intuitive task first, and the other half received the numerical task first. Performing the intuitive 
task first improved performance in the numerical task; performance in the intuitive task did not 
change when it followed the numerical task. Therefore, students were able to use their intuitive 
understanding—elicited without numbers—to inform their numerical performance. 

 
In sum, studies of elementary and middle school-aged children’s abilities to solve 

fraction problems indicate that conceptual knowledge broadly determines performance in 
such tasks as estimation, word problems, and even computation. Procedural knowledge, too, 
influenced performance on such tasks, and worked hand-in-hand with conceptual knowledge 
to determine the benefit derived from instruction. A key mechanism linking conceptual and 
procedural knowledge is the ability to represent fractions on a mental number line, which 
also supports reasoning performance in adults. On-task time, motivation, working memory, 
and well-learned basic arithmetic skills (in addition to general intelligence and reading 
ability) were also determinants of performance. Studies of preschool and older children’s 
ability to solve proportional reasoning problems mirror findings for fraction problems 
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inasmuch as intuitive or pictorial versions of tasks are mastered early, in the preschool 
period. The tendency to rely on perceptual cues (comparing relative surface areas) continues 
in the elementary years, and children perform better using such intuitive strategies compared 
to numerical strategies. Among older elementary and middle school students, receiving an 
intuitive version of a proportional reasoning problem aids performance on a numerical 
version, but not vice versa. 

 
d. Obstacles to Mastery 

Many observers have remarked on the contrast between the relative ease of learning 
to count, which is engaged in spontaneously and seems to build easily on prior intuitions, and 
the relative difficulty of learning fractions (e.g., Moss, 2005; Sophian, 2007). Indeed, some 
have attributed the difficulties children have with fractions to the lack of fit with properties of 
counting (Gelman, 1991); for example, 3 > 2 and therefore children infer that 1/3 > 1/2. 
Because of the property of infinite divisibility, fractions, unlike counting numbers, do not 
form a sequence in which each number has a fixed successor. Therefore, it has been argued 
that the one-to-one and stable-order principles that are important to counting are misleading 
when children attempt to generalize from whole numbers to fractions. 

 
Gelman (1991) examined kindergarten and first-grade children’s interpretations of 

pictorial and numeral representations of fractions to determine whether children try to 
generalize from counting to fractions. Consistent with points made earlier about lack of 
familiarity with notation, young children read fraction symbols such as “

2
1 ” as combinations 

of whole numbers (e.g., “one and two” rather than “one-half”). As others have reported, 
children also incorrectly judged fractions with larger denominators to be larger than those 
with smaller denominators (e.g., that “

4
1 ” was more than “

2
1 ”). Finally, most children were 

unable to correctly place pictorial representations of proper and mixed fractions (e.g., 
3
1  of a 

circle, 1
2
1  circles) on a number line on which the values 0, 1, 2, and 3 were marked. 

Consistent with Gelman’s analysis that each of these effects had to do with negative transfer 
from knowledge of whole numbers, Vamvakoussi and Vosniadou (2004) found that just over 
half (

16
9 ) of a sample of ninth-graders expressed the view that fractions form a series (such 

as 
8
3,

8
2,

8
1  and so on) rather than being infinitely divisible. However, strong conclusions 

cannot be drawn from Vamvakoussi and Vosniadou’s relatively small sample, and a 
subsequent study by Smith et al. (2005) found that elementary school children were able to 
express the idea of infinite divisibility when prompted (e.g., endorsing the idea that one could 
divide numbers in half forever without ever getting to zero).  

 
Although the concept of infinite divisibility is of interest because it distinguishes 

fractions from whole numbers, this does not mean that children do not inappropriately apply 
knowledge about whole numbers to fractions regardless of what they believe about 
divisibility. It appears that when children do not understand the conventions of reading 
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fractions, they overgeneralize from their knowledge of whole numbers. For instance, they 
often judge the relative magnitude of two fractions as corresponding to the relative 
magnitudes of the numbers within them, which is sometimes correct (e.g., 

5
3

5
2
!  and 

5
4

3
2
! ), 

but sometimes is not correct (e.g., 
8
5

4
3,

5
2

3
2

!! , and 
8
6

4
3

=  although 3 < 5, 4 < 8, and 3 < 6) 

(Sophian, 2007). Similarly, they add compound fractions by reading left to right, such as 

adding 2 + 
8
3  to get 

8
5  (Mack, 1995; cf. Sophian, 2007). The reliance on knowledge of 

counting and whole numbers leads to predictable errors in judging relative magnitudes or 
equivalence of fractions. However, it is not clear that this negative transfer occurs because of 
conflicts with innate counting mechanisms. Rather, it may stem from lack of knowledge of 
conventional notation, an argument that is strengthened by the demonstration of accurate 
intuitions when such notation is not used.  

 
Another potential obstacle to mastery of fractions is the use of pictorial 

representations in early demonstrations, without sufficient emphasis on the nature of wholes 
in part-whole relations and the importance of equal-sized parts (Sophian, 2007). For 
example, if fractions are represented as slices of pizza as they often are, it becomes difficult 
to conceptualize improper (

5
6 ) fractions. The number line representation presented earlier 

would seem to be more robust, easily representing quantities less than and greater than one. 
However, little research has been conducted comparing the relative effectiveness of different 
representational formats and whether, for example, pizza slices or other part-whole pictorial 
representations introduce difficulties when children move to fractions beyond the unit 
segment. Despite assertions made about the relative merits of different formats (e.g. using 
discrete vs. continuous quantities to represent fractions), few experiments with sufficient 
sample sizes and appropriate dependent measures (i.e., learning outcomes) have been 
conducted. A straightforward, randomized assignment experiment, for instance, pitting initial 
instruction using the number line against pizza slices or other pictorial formats could be used 
to answer this question. Both near (using problems resembling examples from training) and 
far (using superficially different problems) transfer could then be assessed. 

 
In addition to pictures, words seem to influence the mental representations that 

children form concerning fractions. Several studies have confirmed that being a speaker of 
English, Croatian, or other languages that do not demarcate parts and wholes in fraction 
names is an obstacle to mastery of fractions. In East Asian languages, the part-whole relation 
is reflected in the corresponding names for fractions; for example, “one-fourth” is “of four 
parts, one” in Korean (Geary, 2006). Children whose languages demarcate parts and wholes in 
fractions names are able to demonstrate conceptual knowledge (e.g. they are able to correctly 
associate numerical fractions with pictorial representations) prior to formal instruction in 
fractions. For example, Miura, Okamoto, Vlahovic-Stetic, Kim, and Han (1999) found that 6-
and 7-year-old Korean children grasped the part-whole relations represented by simple 
fractions (e.g., 

4
1,

2
1 ) before formal instruction in first and second grade and before Croatian- 

and English-speaking children, whose languages do not have transparent word names for 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-52 

fractions. Such evidence is correlational, however, and subject to alternative interpretations 
based on differences in culture and experience. However, Paik and Mix (2003) demonstrated 
that when nontransparent, whole-number representations were used, U.S. and Korean children 
made similar errors in a fraction-identification task (although Korean children still scored 
better overall). When presented with fraction names that explicitly referred to parts and 
wholes on analogy with Korean names, U.S. children’s performance improved and their 
scores exceeded those of the same-grade Korean children. In order for such labeling to be 
effective without additional training, it must build on fundamentally sound intuitions. These 
studies introduce a manipulation—fraction names with explicitly marked parts and wholes—
that resembles the class-inclusion effects noted earlier (e.g., using Venn diagrams and tagging 
sets) because they, too, highlight part-whole relations. Both kinds of interventions are 
effective without additional training, suggesting that confusion about parts and wholes in 
working memory, rather than a total lack of conceptual knowledge, is responsible for unaided 
errors (e.g., Brainerd & Reyna, 1990; 1995).  

 
As noted earlier, working-memory limitations are an obstacle to mastery of fractions 

(although we use the language of limited capacity, interference rather than capacity may offer 
a more satisfactory explanation of developmental and individual differences) (Dempster, 
1992). English and Halford (1995) analyzed the working-memory demands of different tasks, 
and argued that different fraction interpretations entail different information-processing 
demands. A ratio interpretation, for example, a 2:3 ratio between red and blue chips involves 
just binary relations, because only two subsets need to be related to each other. In contrast, 

conceiving of the same array as corresponding to the fraction 
5
2  entails “ternary” relations, 

because three sets are related, the total set of all chips and each of its subsets, red chips and 
blue ones. Assessing equivalence relations between two fractions, as in the expression 

2
1  = 

6
3 , entails “quaternary” relations, because relations among all four quantities must be 

considered; judging relative magnitudes of fractions with unequal denominators and 
numerators, such as 

34
11

14
5
! , makes similar demands. Quotient interpretations of fractions 

(e.g., sharing 3 pizzas among 4 people) are more demanding of memory resources than part-
whole interpretations because they involve a more complex series of mappings (see Sophian, 
2007). Formally similar tasks can have different information-processing demands. For 
example, area models of fractions (such as a partitioned rectangle) are assumed to be lower in 
demands for memory resources than set models (such as an array of red and blue chips) 
because the whole is more salient in the area model and the nonselected parts (e.g., the 
nonshaded segments) are less salient. English and Halford’s claims once again reinforce the 
importance of making part-whole (or class-inclusion) relations salient or transparent.  

 
Individual differences in working memory have been associated with performance on 

fraction tasks (e.g., Hecht et al., 2003; see Hecht et al., 2007, for a review). Effects of 
working memory were independent of effects of conceptual knowledge, which means that 
both factors are important and neither can be reduced to the other. Specifically, in the Hecht 
et al. (2003) study, individual differences in working memory were assessed with a counting-
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span task and individual differences in conceptual knowledge were assessed with tasks 
involving providing numerical representations of pictorially presented fractions and vice 
versa, providing a pictorial representation of the sum of two pictorially-represented fractions, 
or identifying the larger of two numerically-represented fractions. The effects of working 
memory on fraction computation were mediated by differences in fifth-graders’ mastery of 
basic arithmetic facts (assessed by measures of accuracy and speed of retrieving basic 
addition and multiplication facts). That is, working memory uniquely contributed to 
variability in basic arithmetic knowledge (e.g., direct retrieval requires less working memory 
resources than counting to solve basic problems), and basic arithmetic, in turn, influenced 
fraction computation. Working memory directly influenced the solution of word problems, 
without any mediation through effects of basic arithmetic knowledge or conceptual 
knowledge (and when factors such as reading ability were also controlled for). Working 
memory predicted accuracy at, for example, setting up or translating word problems, as the 
Task Group elaborates in the section on Algebra. Although working memory is described as 
an individual difference, that does not mean that it cannot be changed or that strategies 
cannot be learned that make the most of whatever capacity an individual has, so that 
performance surpasses that of individuals with greater basic capacity. For example, strategies 
such as chunking (recoding a multidimensional concept into fewer dimensions) or 
segmentation (breaking a task into a series of steps, each of which is not too resource 
demanding) can reduce the working-memory demands of a task (Sophian, 2007). Moreover, 
conceptual knowledge carried the greatest weight in predicting performance on all three 
outcome measures (computation, estimation, and word problems), whereas working memory 
only affected word problems and only indirectly affected computation through knowledge of 
basic arithmetic facts (see Table 4, p. 290; Hecht et al., 2003).  

 
In sum, despite evidence of early appreciation of part-whole relations prior to formal 

schooling, children lack sufficient conceptual knowledge of conventional fractions, which is 
a stumbling block to performance on such fraction tasks as estimation, computation, and 
word problems. Conceptual knowledge is assessed using a variety of tasks, such as judging 
equivalence or rank ordering quantities according to magnitude, but it should be pointed out 
that these tasks do not tap identical competence; tasks such as rank ordering decimals and 
fractions may be harder than judging equivalence (Mazzocco & Devlin, in press). When 
students do not understand conventional fraction notation, they will often generalize 
inappropriately from whole number counting to fractions. However, they seem to have a 
rudimentary understanding of infinite divisibility, so the generalization from counting has 
exceptions, and they can build on intuitions about part-whole relations. Different 
representational formats, such as pictures and fraction names that separate parts and wholes, 
allow those intuitions to be tapped to support better performance, prior to explicit instruction. 
Intuitive versions of proportional reasoning problems are solved earlier, are easier, and 
improve performance on subsequent numerical problems. Even complicated operations, such 
as division, seem to be supported by earlier kinds of knowledge, for example, about sharing. 
Representations that make part-whole relations salient or transparent, in contrast to making 
part-part relations salient, improve performance across tasks and age groups. Effects of 
different representational formats (e.g., discrete objects vs. portions of shapes) on more 
advanced problem solving, such as adding improper and mixed fractions, has yet to be 
definitively determined. Among other differences, students with low working memory 
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capacity are less able to bring arithmetic facts to mind quickly and automatically, without 
drawing on mental resources (e.g., counting to solve basic problems) that could be used for 
other aspects of complex problem solving, compared to typically achieving students (Hecht 
et al., 2007). Despite the ubiquity of differences in working-memory capacity for low- and 
high-achieving groups in studies of mathematics learning, however, recent reviews of the 
literature on fractions assign greater weight to lack of conceptual knowledge in accounting 
for performance (e.g., Hecht et al.; Sophian, 2007). Conceptual knowledge has been shown 
to promote procedural knowledge (or computational ability), and vice versa, and 
development progresses iteratively, with gains in conceptual and procedural knowledge 
reinforcing, and bootstrapping, one another.  

 
e. Conclusions and Recommendations 

A basic interpretation of a fraction is a part-whole relation of two or more values, 
although there are other interpretations of fractions. Fractions can be represented as proper 
fractions (e.g., 

8
1 ), mixed numbers (e.g., 2 

8
1 ), or in decimal form (e.g., 0.8), but are often 

represented using pictures during early instruction. Difficulty with fractions is pervasive and 
is an obstacle to further progress in mathematics, and, thus, is likely to constrain achievement 
in science and pursuit of scientific careers (e.g., Sadler & Tai, 2007). The inability to 
understand and compute fractions, decimals, and proportions has important real-life 
implications, and has been linked to poor health outcomes, among other harmful effects. 

Classroom 
The learning of arithmetic facts provides a foundation for learning fractions. 

Committing such facts to memory reduces working memory demands of problem solving and 
thus allows attention to be focused on other problem features. Therefore, children should 
begin fraction instruction with the ability to quickly and easily retrieve basic arithmetic facts. 
Instruction focusing on conceptual knowledge of fractions is likely to have the broadest and 
largest impact on problem-solving performance (provided that it is aimed at accurate solution 
of specific problem types that tap conceptual knowledge). Procedural knowledge is also 
essential, however, and although it must be learned separately, is likely to enhance 
conceptual knowledge and vice versa. Successful interventions reported in the scientific 
literature could be transferred easily to classrooms. These interventions include using fraction 
names that demarcate parts and wholes, using pictorial representations that are mapped onto 
the number line, and linking composite representations of fractions to representations of the 
number line. Conceptual and procedural knowledge about fractions less than one do not 
necessarily transfer to fractions greater than one (i.e., improper and mixed fractions), and 
must be separately instructed. Appropriate intuitions about sharing, part-whole relations, and 
proportional relations can be built on in classrooms to support acquisition of conceptual and 
procedural knowledge of fractions. 
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Training 
Teachers. Training of teachers should include sufficient coverage of the scientific 

method so that teachers are able to critically evaluate the evidence for proposed pedagogical 
approaches and to be informed consumers of the scientific literature (who can keep up with 
advances in scientific knowledge after graduation from training programs). Teachers should 
be aware of common conceptions and misconceptions involving fractions, based on the 
scientific literature, and of effective interventions involving fractions. Thus, training should 
include comprehensive courses on cognitive development focusing on mathematics learning 
that draw on the primary literature in this area (i.e., refereed journal articles).  

 
Future researchers. Many of the best researchers in the basic science of mathematics 

learning are currently not engaged in directly relevant educational research. New funding 
should be provided to train future researchers, to begin new interdisciplinary degree programs 
with rigorous quantitative training, and to establish support mechanisms for career shifts for 
rigorous researchers that are similar to K awards from the National Institutes of Health.  

Curriculum 
The curriculum should allow for sufficient time on task to ensure acquisition of 

conceptual and procedural knowledge of fractions and of proportional reasoning, with the 
goal for students being one of learning rather than performance. However, there should be 
ample opportunity in the curriculum for accurate self-evaluation. The curriculum should 
include representational supports that have been shown to be effective, such as number line 
representations, and encompass instruction in tasks that tap the full gamut of conceptual and 
procedural knowledge, such as ordering fractions on a number line, judging equivalence and 
relative magnitudes of fractions with unequal numerators and denominators, estimation, 
computation, and word problems. The curriculum should make explicit connections between 
intuitive understanding and formal problem solving.  

Research 
Basic. Studies suggest that preschool and early elementary-school children have a 

rudimentary understanding of very simple fractional relations, but the mechanism underlying 
this knowledge is not yet known. The relation between this informal, often implicit 
knowledge, and the learning of formal mathematical fractional concepts and procedures is 
not well understood, and is an area in need of further study. Similarly, the mechanisms that 
contribute to the emergence of formal competencies in school are not fully understood, but 
involve a combination of instruction, working memory, and the bidirectional influences of 
procedural knowledge on the acquisition of conceptual knowledge and conceptual knowledge 
on the skilled use of procedures. Therefore, research is needed that tests specific hypotheses 
designed to uncover these mechanisms, including linking earlier intuitive understanding with 
later formal problem solving. In addition, research on understanding and learning of fractions 
should be integrated with what is known and with emerging knowledge in other areas of 
basic research, such as neuroscience, cognition, motivation, and social psychology. Research 
on mental representations and retrieval in memory, as well as on intuitive versus analytical 
reasoning, are especially relevant and currently not integrated with research on fractions. 
Ironically, the absence of a coherent and empirically supported theory of fraction tasks (i.e., 
how tasks are related to one another in terms of underlying processes) is a major stumbling 
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block to developing practical interventions to improve performance in this crucial domain of 
mathematics. Such a theory would, for example, provide scientific guidance concerning how 
instruction in different fraction tasks should be ordered.  

 
Classroom. Classroom-relevant research need not be conducted physically in 

classrooms, and constraints on funding that require that relevant research be performed in 
classrooms should be removed. Conversely, many interventions demonstrated to be effective 
in experiments should be scaled up and evaluated in classrooms. In order to produce a steady 
supply of high-quality research that is relevant to classroom instruction, a pipeline of 
research must be funded that extends from the basic science of learning to field studies in 
classrooms. Incentives should also be provided to encourage partnerships between basic and 
applied researchers, and to support research that includes both laboratory and field-based 
research, in a way that will provide converging operations.  

 
3. Estimation 

Estimation is an important part of mathematical cognition, one that is pervasively 
present in the lives of both children and adults. Consider just a few everyday examples. How 
many people were at the game? How fast can that Lamborghini go? About how much is 65 !  
29? Estimation may be used more often in everyday life than any other quantification process. 

 
In addition to its pervasive use, estimation is quite strongly related to other aspects of 

mathematical ability, such as arithmetic skill and conceptual understanding of computational 
procedures, and to overall math achievement test scores (Booth & Siegler, 2006; Dowker, 
2003; Hiebert & Wearne, 1986; LeFevre, Greenham, & Waheed, 1993; Geary, Hoard, Byrd-
Craven, Nugent, & Numtee, 2007). It usually requires going beyond rote application of 
procedures and applying mathematical knowledge in flexible ways. This type of adaptive 
problem solving is a fundamental goal of contemporary mathematics education. 

 
Yet another basis of the importance of estimation is practical—most school age 

children are surprisingly bad at it and even many adults are far from good. Standardized 
scores on the part of the NAEP that tests estimation proficiency are below those for the 
mathematics test as a whole (Mitchell, Hawkins, Stancavage, & Dossey, 1999). This limited 
proficiency, together with the pervasiveness of estimation in everyday life, its relation to 
general mathematical ability, and its embodying the type of flexible problem solving that is 
viewed as crucial within modern mathematics education, have led the National Council of 
Teachers of Mathematics (NCTM) to assign a high priority to the goal of improving 
estimation skills within each revision of its Math Standards since 1980 (e.g., NCTM, 1980, 
2000), as well as in its recent Focal Points (NCTM, 2006). 

 
Despite the importance of estimation both in and out of school, far less is known 

about it than about other basic quantitative abilities, such as counting and arithmetic. One 
reason for the discrepancy is that estimation includes a varied set of processes rather than a 
single one. Some estimation tasks, for example estimating the distance between two cities or 
the cost of a bag of groceries, require knowledge of measurement units such as miles or 
dollars. Other estimation tasks, for example estimating the number of coins in a jar or the 
answers to arithmetic problems, do not. Similarly, some uses of estimation, for example 



 Task Group Reports of the National Mathematics Advisory Panel 

 4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES 

4-57 

estimating the cost of a pizza or the speed of a Lamborghini, require prior knowledge of the 
entities whose properties are being estimated (i.e., pizzas, Lamborghinis). Other uses, such as 
estimating the length of a line on a page or the number of fans at a game, do not.  

 
In this discussion, the Task Group focuses on numerical estimation, the process of 

translating between alternative quantitative representations, at least one of which is inexact and 
at least one of which is numerical. This category includes many prototypic forms of estimation. 
For example, computational estimation involves translating from one numerical representation 
(e.g., 75 !  29) to another (about 2,200). Number line estimation either requires translating a 
number into a spatial position on a number line (e.g., given: 0_____________100, place a mark 
on the line where 71 would fall) or translating a spatial position on a number line into a 
number. Numerosity estimation requires translating a nonnumerical quantitative representation 
(e.g., a visual representation of the approximate volume and density of candies in a jar) into a 
number (e.g., about 300 marbles.) Because this task group’s focus is on the learning of 
mathematics, excluded from consideration are tasks that require knowledge external to 
mathematics, in particular knowledge of measurement units (e.g., pounds, hours, miles) or real-
world entities (e.g., population of Russia, number of people with AIDS). We also exclude from 
consideration trivial applications of estimation, such as rounding to the nearest 10, which 
unfortunately are the predominant focus of instruction in estimation in many U. S. classrooms.  

 
a. Understanding the Goals of Estimation 

Many children have highly distorted impressions of the goals of estimation, especially 
the goals of computational estimation. As noted by LeFevre et al. (1993), accurate 
computational estimation requires understanding of the simplification principle (the 
understanding that mental arithmetic is easier with simple operands) and the proximity 
principle (the understanding that the main aim of estimation is to obtain estimates close in 
magnitude to the correct answer). LeFevre et al. found that fourth- and sixth-graders 
understood the principle of simplification, but they showed little if any understanding of the 
importance of generating an estimate close in magnitude to the correct answer. When asked to 
define estimation, most said that it was “guessing” or indicated that they did not know. When 
asked to estimate the products of multidigit multiplication problems, only 20% of fourth-
graders produced reasonable estimates (estimates that varied systematically with the product).  

 
Sowder and Wheeler (1989) found that even middle and high school students typically 

do not understand that the goal of estimation is to generate estimates that are close to the correct 
value, rather than following some prescribed procedure. They based this conclusion on the 
reluctance of even ninth-graders to accept that both of two alternative estimates could be 
acceptable and on their infrequent use of compensation to correct for distortions introduced by 
rounding. When asked to generate estimates, some students went as far as to calculate the 
correct answer and then to round to a nearby number. The problem seemed to be that the 
children viewed estimation as a rigid algorithmic procedure that required following preset 
rounding rules rather than as a flexible attempt to approximate the magnitude of an answer using 
whatever means made sense in the particular situation. This blind execution of an algorithm is 
reflected in Sowder and Wheeler’s observation that, “Some students in both Grades 5 and 7 
objected to rounding 267 to 250 rather than 300, arguing, ‘You’re always taught to go up if it’s 
past five,’ or ‘Seven is above five, so you have to go up, not down (p. 144).’” 
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On the other hand, Sowder and Wheeler (1989) also noted that by fifth grade, the large 
majority of children, when presented hypothetical estimation procedures in which rounding 
was or was not followed by compensation for the distortions introduced by rounding, 
recognized that rounding with compensation was superior. This finding suggests that some 
conceptual understanding of the importance of the proximity principle is present by fifth grade. 
Instruction in estimation clearly needs to convey to students earlier and more consistently that 
the purpose of estimation is to generate values close in magnitude to the correct value. 

 
b. Development of Estimation Skills 

Computational estimation 
Development of computational estimation skills (the ability to answer an arithmetic 

problem with the goal of approximating the correct magnitude rather than calculating the 
exact answer) begins surprisingly late and proceeds surprisingly slowly. In one study, more 
than 75% of third- and fifth-graders did not agree that two alternative estimates of the sum of 
two addends could both be acceptable (Sowder & Wheeler, 1989). Similarly, Dowker (1997) 
found that early elementary school children often could perform exact computations in a 
numerical range but could not estimate answers in the same range. Thus, 7- and 8-year-olds 
who were able to compute the correct answer on problems with sums less than 100 failed to 
generate reasonable estimates (estimates within 30% of the correct answer) on 33% of these 
problems.  

 
Computational estimation does improve considerably, albeit gradually, with age and 

experience. Adults and sixth-graders are more accurate than fourth-graders in estimating the 
sum of 2 three-digit addends (Lemaire & Lecacheur, 2002), sixth- and eighth-graders are 
more accurate than fourth-graders in estimating the sums of long strings of addends (Smith, 
1999), and fourth-graders are more accurate than second-graders in estimating the sums of 
two-digit addends (Booth & Siegler, 2006). Similarly, adults are more accurate than eighth- 
graders, who in turn are more accurate than sixth-graders, in estimating the products of 
multidigit multiplication problems (LeFevre et al., 1993). Improvements in the speed of 
estimation of the answers to both addition and multiplication problems follow a similar 
course to improvements in accuracy over the same age range (Lemaire & Lecacheur).  

 
From early in the development of computational estimation, individual children use a 

variety of strategies (Reys, 1984). Evidence for such strategic variability comes both from 
observations of ongoing behavior and from immediately retrospective self-reports (LeFevre et 
al., 1993; Sowder & Wheeler, 1989). The following is a list of some of the most common 
estimation strategies for addition and multiplication (Dowker, Flood, Griffiths, Harriss, & 
Hook, 1996; LeFevre et al.; Reys et al., 1982; Reys et al., 1991; Sowder & Wheeler):  

 
1) Rounding: Converting one or both operands to the closest number ending in one or 

more zeroes (e.g., on 297 !  296, both multiplicands might be converted to 300). 
2) Truncating: Changing to zero one or more digits at the right end of one or more 

operands (e.g., on 297 !  296, both multiplicands might be converted to 290). 
3) Prior compensation: Rounding the second operand in the opposite direction of the 

first before performing any computation (e.g., on 297 !  296, 296 might be rounded to 
290 rather than 300 to compensate for the effect of rounding 297 to 300). 
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4) Postcompensation: Correcting later for distortion introduced by earlier rounding or 
truncation (e.g., on 297 !  296, multiplying 300 !  300 and then subtracting 2% of 
90,000). 

5) Decomposition: Dividing numbers into simpler forms (e.g., on 282 !  153, 
multiplying 280 by 100 and then by 1.5).  

6) Translation: Simplifying an equation (e.g., by changing the operation, on 44 + 53 + 
51 + 47, multiplying 50 !  4). 

7) Guessing. 
 
As might be expected, some of these strategies are used more often than others. 

Rounding is the most common approach (Lemaire et al., 2000; LeFevre et al., 1993; Reys et 
al., 1982; Reys et al., 1991). Compensation tends to be among the least frequent approaches, 
although it is among the most useful. For example, in Lemaire et al.’s study of estimation of 
multidigit sums, fifth-graders used rounding on 64% of trials and compensation on 2%. 

 
This use of multiple strategies is not a result of individuals using only one approach 

but differing in what that approach is. Instead, both children and adults often know and use a 
variety of computational estimation strategies. This is especially true among mathematically 
sophisticated individuals. For example, Dowker et al. (1996) examined the multiplication and 
division estimates of four groups of adults: mathematicians, accountants, and students 
majoring in psychology or English at Oxford University. The strategies that they used were 
remarkably diverse: For example, the 176 participants used 27 different strategies for solving 
the single problem 4645 ÷ 18. Individuals in each of the four groups averaged more than five 
strategies apiece. Strategic variability was evident even within a single person solving the 
same problem on two occasions. When problems were presented to participants a second time, 
mathematicians used a different strategy on 46% of items and psychology students on 37%. 

 
Both children and adults adapt their strategy choices to problem characteristics. One 

form that this adaptation takes is to use rounding more often on problems where it introduces 
less distortion. For example, on multidigit addition problems, the closer an addend is to the 
nearest 10, and therefore the less distortion introduced by rounding, the more often fourth- and 
sixth-graders round (Lemaire & Lecacheur, 2002). Similarly, on multidigit multiplication 
problems, sixth-graders, eighth-graders, and adults more often round both of the multiplicands 
when each includes two or three digits, but often only round the larger multiplicand when the 
smaller one is a single digit (LeFevre et al., 1993). This choice pattern minimizes distortion, 
because rounding two or three digit multiplicands to the nearest 10 changes the product by a 
smaller percentage than rounding single-digit multiplicands to the nearest 10.  

 
The range and appropriateness of computational estimation strategies increase with 

age and mathematical experience. Adults use a considerably greater variety of multiplication 
strategies than do sixth- or eighth-graders (LeFevre et al., 1993). Similarly, mathematicians 
and accountants, who have unusually extensive numerical experience, use a greater variety of 
appropriate estimation strategies than do even the highly selected psychology and English 
students at Oxford University (Dowker et al., 1996). The latter two groups used a greater 
variety of inappropriate estimation strategies than did the former two, which indicates that 
ability to generate appropriate variants is what distinguishes the mathematicians and 
accountants, rather than greater variation per se.  
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A second type of change in strategy use involves the sophistication of the strategies 
that are used. Use of compensation, a strategy that requires a good conceptual understanding 
of estimation, shows especially substantial growth. In estimating the answers to multidigit 
addition problems, far more ninth-graders use post-compensation than do third- or fifth-
graders (Lemaire et al., 2000; Sowder & Wheeler, 1989). The quality of strategy choices in 
multidigit multiplication also increases with age and mathematical experience. LeFevre et al. 
(1993) provided the example of strategy choices on 11 !  112. Among adults, 75% rounded 
the problem to 10 !  112, a computationally tractable approach that yields an answer within 
9% of the correct answer. Although this approach would seem well within the capabilities of 
sixth-graders (LeFevre et al.), no sixth-grader used it. Instead, they rounded either to 10 !  
100 or to 10 !110.  

 
All of the studies reviewed in this section involve computational estimation with 

whole numbers. Far less is known about computational estimation with fractions. Two 
findings that have emerged are that even high school students are very poor at computational 
estimation with fractions and that the main problem seems to be inadequate conceptual 
understanding of the magnitudes of fractions (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 
1981; Hecht et al., 2007). When more 13- and 17-year-olds estimate that 

13
12  + 

8
7  is roughly 

equal to 19 than estimate that it is roughly equal to 2, there clearly is a serious problem in 
their understanding of the relation between fractional notation and the magnitudes that are 
being estimated (Carpenter et al.). 

Number line estimation 
The number line task has proved highly informative, not only for improving 

understanding of estimation but also for providing useful information about children’s 
understanding of the decimal number system more generally. On this task, children are 
presented a line with 0 at one end, another number such as 100 or 1,000 at the other end, and 
no other numbers or hatch marks in between. The child is presented a new line and number to 
be estimated on each trial, until the child has estimated the magnitudes of numbers throughout 
the range (e.g., 0–1,000). Then each estimate is translated into a numerical value, and the 
relation between the number presented and the estimate is examined for the full set of 
numbers. Ideally, the estimated value should increase linearly with the actual value in a 1:1 
fashion, in accord with the equation y = x. Thus, on a number line with 0 at one end and 1,000 
at the other, the estimate for 20 should be 2% of the way between 0 and 1,000, the estimate for 
230 should be 23% of the way, the estimate for 760 should be 76% of the way, etc.  

 
Although this task seems easy, elementary school children’s estimates consistently 

depart from correct values in predictable ways. Moreover, similar departures from correct 
estimates are seen at the same ages on other types of estimation tasks; the deviations are 
indicative of broader difficulties with mathematics. This number-line task and findings have 
inspired an educational intervention that succeeded in improving a broad range of numerical 
skills in low-income preschoolers (Ramani & Siegler, 2008). 
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Number line estimation improves steadily during the elementary school years, with 
accuracy at any given age being greater on smaller numerical scales than on larger scales. On 
0–10 number lines, Petitto (1990) found that the percent of absolute error decreased from 
14% late in first grade to 4% late in third grade. On 0–100 number lines, the same children’s 
percent of absolute error decreased from 19% late in first grade to 8% late in third grade. On 
0–1,000 number lines, Siegler and Opfer (2003) found that percent absolute error improved 
from 21% in second grade to 14% in fourth grade, 7% in sixth grade, and 1% in adulthood. 
The number line estimates of children from low-income backgrounds and children with 
learning disabilities in mathematics are far less accurate than those of typically achieving 
children from middle-income families, though they also improve with age (Geary, Hoard, 
Nugent, & Byrd-Craven, in press; Siegler & Ramani, in press). The superiority of the 
estimates on the smaller scale (0–100) indicates that at least through fourth grade, children 
use their knowledge of particular numbers, rather than general understanding of the decimal 
system, to estimate. 

 
Children use two primary mental representations of numerical magnitude on number 

line estimation tasks. One common approach (the correct one with whole numbers) is to use a 
linear representation, that is, a representation in which numerical magnitude increases linearly 
with the size of the number. Another common approach is to employ a logarithmic 
representation, in which representations of numerical magnitudes increase logarithmically with 
numerical size. When children use such a logarithmic representation on a number line 
estimation task, the spatial positions they choose increase very quickly in the low range of 
numbers and then increase only slowly in the upper part of the range. For example, Siegler and 
Opfer (2003) found that on 0–1,000 number lines, differences between second-graders’ 
estimates for 5 and 86 were much larger than the differences between their estimates for 86 and 
810. Such logarithmic representations of quantities and other magnitudes are common across 
many species and tasks (Dehaene, 1997), and for good reason: To a hungry animal, the 
difference in importance between 5 and 86 pieces of food often is far larger than the difference 
between 86 and 810 pieces. This is not the case within the formal number system, however. 

 
With age and experience, children progress from using the less accurate logarithmic 

representation to the more accurate linear one on the number line task. For example, 
kindergartners’ median estimates on 0–100 number lines are better fit by the logarithmic 
function than by the linear function, first-graders’ estimates are fit equally well by the two 
functions, and second-graders’ estimates are better fit by the linear function (Geary et al., in 
press; Laski & Siegler, in press; Siegler & Booth, 2004). The same progression is seen in 
children with learning disabilities in mathematics, but it occurs more slowly and at older ages 
(Geary et al.). On 0–1,000 number lines, second-graders’ estimates are fit better by the 
logarithmic function, whereas fourth-graders’ are fit better by the linear function (Booth & 
Siegler, 2006; Opfer & Siegler, 2007). The same child often uses different representations 
depending on the scale of numbers they are asked to estimate. For roughly half of the second-
graders in Siegler and Opfer (2003), the best fitting function for number line estimates was 
linear on the 0-100 line but logarithmic on the 0–1,000 line. 
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Number lines can be used to examine estimates of the magnitudes of fractions as well 
as whole numbers. Results from such studies, like studies of computational estimation with 
fractions, show poor understanding of fractional magnitudes at all ages. Fifth- and sixth-
graders’ estimates of the magnitudes of decimal fractions do not even maintain the correct 
rank order (Rittle-Johnson et al., 2001). Even many adults in the United States have poor 
understanding of the magnitudes of common fractions. Opfer et al. (2007) found that most 
adults estimate the magnitudes of common fractions with numerators of “1” as a linear 
function of the distance between their denominators (even though the magnitudes of such 
fractions actually follow a logarithmic function). For example, adults estimate the 
magnitudes of 

1
1  and 

60
1  to be much closer than those of 

60
1  and 

1440
1 ), even though the 

magnitudes of the fractions in the initial pair are more than 60 times as discrepant.  
 

c. Individual Differences in Estimation 

Both children and adults show substantial individual differences in skill at 
computational estimation (Dowker, 2003) that are associated with broader individual 
differences in mathematical understanding. Proficiency at computational estimation 
correlates positively, and often substantially, with mathematics SAT scores (Paull, 1972), 
mathematics achievement test scores (Booth & Siegler, 2006; Siegler & Booth, 2004), 
performance on other estimation tasks (Booth & Siegler), and arithmetic fluency scores 
(Dowker, 1997, 2003; LeFevre et al., 1993).  

 
Accuracy and linearity of number line estimation also is highly associated with 

general mathematical ability. Significant and substantial correlations—typically between r = 
.50 and r = .60—have been found between mathematics achievement test scores and linearity 
of number line estimates among kindergartners, first-graders, and second-graders on 0–100 
number lines (Geary et al., in press; Siegler & Booth, 2004) and among second-, third-, and 
fourth-graders on 0–1,000 number lines (Booth & Siegler, 2006). Individual differences in 
linearity of number line estimates also are closely associated with individual differences in 
linearity on other estimation tasks (Booth & Siegler). These results suggest that performance 
on a variety of estimation tasks reflects a common underlying representation of numerical 
magnitude and that the closer this representation is to the formal linear mathematical system 
the better the overall mathematics achievement. 

 
d. Improving Children’s Estimation 

Findings with number line estimation have raised the question: What leads children to 
shift from logarithmic to linear representations of numerical magnitude? One common 
activity that seems likely to contribute is playing board games with linearly arranged, 
consecutively numbered, equal-size spaces (e.g., Chutes and Ladders©). Such board games 
provide multiple cues to both the order of numbers and the numbers’ magnitudes. In the 
games, the greater the number in a square, the greater a) the distance that the child has moved 
the token, b) the number of discrete moves the child has made, c) the number of number 
names the child has spoken, d) the number of number names the child has heard, and e) the 
amount of time since the game began. The linear relations between numerical magnitudes 
and these visuospatial, kinesthetic, auditory, and temporal cues provide a broadly based, 
multi-modal foundation for a linear representation of numerical magnitudes. 
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To determine whether playing number board games produces improvements in 
numerical understanding, Siegler and Ramani (in press) and Ramani and Siegler (2008) 
randomly assigned preschoolers at Head Start centers, all of whom came from low-income 
families, to play one of two board games. The games differed only in the board that children 
encountered. One board included linearly arranged, equal-spaced squares that progressed 
from 1–10 from left to right. The other board was identical except for the squares varying in 
color rather than number. Each child played the number board game or the color board game 
with an experimenter for four 15-minute sessions within 2 weeks. 

 
Playing the numerical board game for this 1 hour period increased the Head Start 

children’s proficiency not only at number line estimation but also at three other key 
numerical skills: counting, identifying printed numerals, and comparing the relative sizes of 
numbers. The gains in all four skills remained when children were tested nine weeks after the 
game playing experience. Gains were comparable for African-American and white children; 
they also were comparable for children who, relative to their low-income peers, entered the 
game with more or less numerical knowledge. Classmates who played the color board 
version of the game did not improve on any of the skills. The effect sizes of differences 
between the groups were substantial: d’s between .69 and 1.08 on the four measures on the 
immediate posttest and between .55 and .80 on the 9-week follow-up. 

 
Ramani and Siegler (2008) also tested whether board game experience in the 

everyday environment is related to numerical knowledge and whether it might contribute to 
the knowledge differences between children from low- and middle-income backgrounds. 
They asked children from the initial experiment, as well as age peers from middle-income 
backgrounds, about their experience playing board games, card games, and video games at 
their own and other people’s homes. The children from middle-income homes reported 
having more experience playing board games and card games in both contexts (though less 
experience playing video games). Of particular interest, the number of board games that the 
Head Start children reported playing at their own and other people’s homes correlated 
positively with their skill at all four numerical tasks examined in the study. In contrast, the 
preschoolers’ experience playing card games and video games was only minimally related to 
their numerical knowledge. Thus, playing numerical board games appears to be a promising 
(and inexpensive) way to improve low-income preschoolers’ numerical knowledge and to 
reduce discrepancies in the numerical knowledge that children from low- and middle-income 
homes bring to school. 

 
A different procedure has been found effective for improving elementary school 

children’s number line estimation. By second grade, a large majority of children generate 
linear representations of magnitudes in the 0–100 range but logarithmic ones in the 0–1,000 
range. Opfer and Siegler (2007) reasoned that a dramatic error of a number line estimate in 
the 0–1,000 range might lead children to search for an alternative approach, that their 
representations of numbers in the 0–100 range provided such an alternative, and that the 
children would draw the analogy to the 0–100 range and quickly improve their estimates in 
the 0–1,000 range. This proved to be the case. Providing the second-graders with feedback 
on their estimate of the single number 150—the number where the logarithmic and linear 
functions are most discrepant—led 80% of the children to shift from a logarithmic to a linear 
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approach after that single feedback problem. Almost all of these children continued to use the 
linear approach on all subsequent trials. Thus, feedback on well-chosen problems is another 
means of improving children’s estimation.  

 
Improving elementary school children’s numerical representations also can improve 

their skill at learning arithmetic. Presenting first-graders with accurate number line 
representations of the magnitudes of addends and sums enabled the children to recall the 
correct answer more often than children who were told the correct answer but were not 
presented the number line representations (Booth & Siegler, in press). Providing the number 
line representations also led to errors being closer in magnitude to the correct answer. Thus, 
numerical magnitude representations influence learning of arithmetic as well as a variety of 
other numerical skills and knowledge.  

 
e. Conclusions and Recommendations 

Numerical estimation is an important part of mathematical cognition. It is used 
frequently by both children and adults, in both academic and nonacademic contexts; is 
closely related to arithmetic skill, conceptual understanding of computational operations, and 
mathematics achievement test performance; and receives a considerable amount of attention 
in elementary school mathematics textbooks and classroom instruction. Moreover, estimation 
performance often reveals both subtle and gross deficiencies in numerical understanding. 

 
Despite its importance and the substantial attention that it receives, most children’s 

proficiency at estimation is poor. This in part reflects the emphasis in many classrooms on 
rounding procedures, to the exclusion of conceptually richer aspects of estimation, such as 
compensating for the distortions introduced by rounding. Many students do not even know 
that the goal of estimation is to generate values that are close to the correct value or that there 
is often more than one reasonable estimation procedure.  

 
From kindergarten or first grade onward, most children’s estimates of the magnitudes 

of whole numbers accurately reflect the rank order of the numbers. However, children from 
low-income backgrounds often do not even know the rank order of the numbers 0–10 when 
they enter school. Proficiency develops first in the 0–10 and 0–100 ranges, and then in the 0–
1,000 and larger ranges. However, many elementary school students fail to discriminate 
adequately among the magnitudes of numbers in the hundreds or thousands.  

 
Studies of estimation of the magnitudes of fractions show little if any understanding, 

even among middle school and high school students. Estimates often do not even maintain 
the rank order of the fractions’ magnitudes. There is a strong need to develop effective 
procedures for remedying most students’ lack of understanding of fractional magnitudes. 

Classroom 
Teachers should broaden instruction in computational estimation beyond rounding. 

They should insure that students understand that the purpose of estimation is to approximate 
the correct value and that rounding is only one of several means for accomplishing this goal.  
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Teachers should provide examples of alternative procedures for compensating for the 
distortions introduced by rounding, should emphasize that there are many reasonable 
procedures for estimating rather than just a single correct one, and should discuss reasons 
why some procedures are reasonable and others are not. 

 
Teachers in Head Start and other facilities serving preschoolers from low-income 

backgrounds should be made aware of the usefulness of numerical board games for 
improving the children’s knowledge of numbers and of the importance of such early 
knowledge for long-term educational success. 

 
Teachers should not assume that children understand the magnitudes represented by 

fractions even if the children can perform arithmetic operations with them, because the 
arithmetic competence may only represent execution of memorized procedures. Examining 
children’s ability to perform novel estimation tasks, such as estimating the positions of 
fractions on number lines, can provide a useful tool for assessing children’s knowledge of 
fractions. Providing feedback on such number line estimates can improve children’s 
knowledge of the fractions’ magnitudes. 

Training 
Teachers in preservice and in-service programs should be informed of the tendency of 

elementary school students not to fully understand the magnitude of large whole numbers, 
should be taught how to assess individual students’ understanding, and should be taught 
research-based techniques for improving the children’s understanding.  

 
Teachers should be made aware of the inadequate understanding of the magnitudes of 

fractions of elementary school, middle school, and high school students. The teachers also 
should be familiarized with the usefulness of feedback on number line estimates of the 
magnitudes of fractions for overcoming these difficulties. 

Curriculum 
Textbooks need to explicitly explain that the purpose of estimation is to produce 

accurate approximations. Illustrating multiple useful estimation procedures for a single 
problem, and explaining how each procedure achieves the goal of accurate estimation, is a 
useful means for achieving this goal. Contrasting these procedures with others that produce 
less accurate estimates, and explaining why the one set of procedures produces more accurate 
estimates than the other, is also likely to be helpful. 

Research 
Research is needed regarding simple instruments that teachers can use in the 

classroom for assessing children’s estimation skills, and regarding instruction that can 
efficiently improve children’s estimation. 

 
Research is needed on how the inadequate representations of whole number 

numerical magnitudes that have been identified by studies of estimation influence learning of 
other mathematical skills, such as arithmetic. 
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Research is needed on how children can be taught to accurately estimate the 
magnitudes of fractions and on how learning to estimate those magnitudes influences 
acquisition of other numerical skills involving fractions, such as arithmetic and algebra.  

 
Research is needed on how estimation is used by students (e.g., to solve complex 

problems, to improve test performance) and by adults in everyday life and professional tasks 
(e.g., to rule out implausible answers and thus reduce human error). 

 
4. Geometry 

Geometry is the branch of mathematics concerned with properties of space, and of 
figures and shapes in space. Euclidean geometry is the domain typically covered in 
mathematics curricula in the United States, although a separate year-long course is not 
usually taught until high school. Units on geometry as well as measurement are frequently 
included in middle school mathematics classes, whereas only the latter tends to be 
emphasized in the elementary grades.  

 
a. Geometry Performance of U.S. Students on International Mathematics Assessments 

Although geometric concepts and skills are typically taught in both elementary and 
middle school classrooms in the United States, international assessments indicate that the 
achievement levels of U.S. students are comparatively poor in this mathematical domain. To 
begin with, the 2003 Trends in International Mathematics and Science Study (TIMSS) 
showed no significant improvement in geometry for U.S. eighth-graders between 1999 and 
2003, despite significant gains in algebra during this same time period (Gonzales et al., 
2004). Moreover, of the five mathematical content areas assessed by TIMSS (number, 
algebra, geometry, measurement, and data), U.S. eighth-graders’ performance in geometry 
items was weakest (Mullis et al., 2004).  

 
Similarly, a report from the American Institutes for Research (Ginsburg et al., 2005) 

reexamined the 2003 mathematics performance of U.S. students on the TIMSS fourth- and 
eighth-grade assessments, as well as the Program for International Student Assessment 
(PISA)—relative to a common set of 11 other countries which had also participated in these 
studies (including Australia, Hong Kong,1 Japan, and New Zealand, among others). The content 
areas that were evaluated included 1) number/quantity, 2) algebra/change and relationships, 3) 
measurement, 4) geometry/space and shape, and 5) data/uncertainty. The United States ranked 
8th, 9th, and 9th out of the 12 countries on the TIMSS-4, TIMSS-8, and PISA, respectively. 
And again the performance levels of U.S. students were found to be significantly weakest in the 
area of measurement in Grade 4 and in geometry in Grade 8, as compared against the average 
U.S. score across all content areas. Furthermore, the United States was found to devote only 
about half as much time to the study of geometry as the other countries. 

                                                
1 Hong Kong is a Special Administrative Region (SAR) of the People’s Republic of China. 
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b. Importance of Geometry for Learning Algebra 

Given that the primary charge to the National Mathematics Advisory Panel concerns 
preparation for and learning of algebra, one may ask what geometry has to do with the 
acquisition of algebraic concepts and skills? Moreover, as the teaching of high school level 
geometry usually follows the first course in algebra, what if any geometric concepts should be 
learned in the middle school years, if not earlier, to ensure that students are best prepared to 
acquire a thorough understanding of key algebraic concepts and expressions? As noted in the 
Conceptual Knowledge and Skills Task Group report, the single aspect of geometry that is 
most directly relevant for early learning of algebra is that of similar triangles. In particular, the 
proof that the slope of a straight line is independent of the two points selected depends logically 
on considerations of the properties of similar triangles. This is because the corresponding 
angles of similar triangles are congruent and their corresponding sides are proportional. 
Therefore, the Conceptual Knowledge and Skills Task Group contends that it is crucially 
important for students to be given the opportunity to acquire these and other essential facts 
about similar triangles prior to the formal study of algebra. Furthermore, they point out that 
whereas students do not need to learn to construct the proofs of these theorems until they take a 
course in Euclidean geometry, they should nonetheless be able to make use of them.  

 
Consistent with this perspective, the NCTM’s (2006) Focal Points underscores (as do 

some state frameworks) the importance of these ideas in its section on algebra and 
connections to geometry for eighth-graders: “Given a line in a coordinate plane, students 
should understand that all ‘slope triangles’ triangles created by a vertical ‘rise’ line segment 
(showing the change in y), a horizontal ‘run’ line segment (showing the change in x), and a 
segment of the line itself—are similar. They also [should] understand the relationship of 
these similar triangles to the constant slope of a line” (p. 20).  

 
What are the essential aspects of similar triangles? Acknowledging the need for 

learning how the relations between various properties of triangles underlie the fact that the 
slope of a straight line is independent of the two points selected, the question arises as to 
what kinds of concepts students need to acquire to understand the “basic aspects” of similar 
triangles? Certainly, to comprehend that the corresponding sides of similar triangles are 
proportional requires at minimum an understanding of length, equal angles, right triangles, 
and correspondence, as well as the crucial concepts of ratio and proportion. At this point, the 
Task Group notes that the difficulties associated with acquiring a sound conceptual 
understanding of ratio and proportion in and of themselves (as outlined in the section on 
Fractions in the this report) clearly constitute a significant obstacle to mastering how the 
slope of a straight line is derived from the properties of similar triangles.  

 
Moreover, some additional difficulties may arise from the way in which the concept 

of similarity is often defined for students in school mathematics. For example, Wu (2005) has 
argued that rather than defining the similarity of figures as “same shape but not necessarily 
the same size,” the most mathematically accurate and potentially effective way to define it is 
two figures are similar if one figure is congruent to a dilated version of the other. Naturally, 
understanding this definition would necessitate learning the meanings of congruence and 
dilation. Although a common way of defining congruence in school mathematics is “same 
size and same shape,” Wu contends that a more mathematically correct and grade-level 
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appropriate (i.e., for middle school students) definition is a composition of translations, 
reflections and rotations. It follows that to make sense of this definition students would first 
have to learn the meanings of these various transformations of the plane (more commonly 
referred to as slides, flips and turns, respectively). Furthermore, students would have to learn 
the meaning of dilation—a transformation of the plane that expands (or contracts) all points 
away from (or toward) a central point by a common scale factor. This mathematically 
accurate definition is clearly rather complicated in comparison with the more commonly used 
definition: a transformation that changes a figure’s size, while its shape, orientation, and 
location remain the same. To sum up, in order to understand the mathematics underlying the 
proof that the slope of a straight line is independent of the choice of the points selected, 
students must successfully develop a conceptual understanding of the following: points, 
lines, length, angle, right triangle, correspondence, ratio, proportion, translation, reflection, 
rotation, dilation, congruence, and similarity.  

 
c. Limitations of the Relevant Research-Based Literature 

For the purposes of the present section, it is important to understand the 
developmental course that children take in learning the concepts that are required for 
understanding the properties of similar triangles. Whereas empirical studies of the key 
components of congruence, similarity, transformations, and so forth have indeed been 
conducted, it is difficult to draw firm, scientific conclusions from the relevant research 
literature. The reasons for this include, among others, 1) numerous studies of convenience 
samples with small numbers of participants, 2) the frequent use of a single age group or 
grade level, 3) the almost complete lack of longitudinal data, 4) an overemphasis on 
interview data and anecdotal reports, 5) a lack of rigor in study designs with comparatively 
limited use of experimental manipulations, and perhaps of greatest concern 6) a paucity of 
programmatic and cumulative efforts that could yield a clearer picture of the development of 
geometric thinking and reasoning. Thus for the most part, the Task Group is in agreement 
with Clements and Sarama’s (2007a) conclusion following a recent extensive and intensive 
review of the relevant literature, with a focus on early childhood mathematics: 

 
Although far less developed than our knowledge of number, research provides 
guidelines for developing young children’s learning of geometric and spatial 
abilities. However, researchers do not know the potential of children’s 
learning if a conscientious, sequenced development of spatial thinking and 
geometry were provided throughout their earliest years. Insufficient evidence 
exists on the effects (efficacy and efficiency) of including topics such as 
congruence, similarity, transformations, and angles in curricula and teaching 
at specific age levels. Such research, and longitudinal research on many such 
topics, is needed (p. 517). 
 

Nevertheless, the Task Group reviewed influential theories and literatures on children’s 
geometric learning and provided directions for future research in this area.  
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d. Paths of Acquisition 

Piaget’s theory of spatial development. One of the earliest and most influential 
theories of the development of spatial and geometric concepts was put forth by Piaget and 
Inhelder (1967), who proposed that young children initially conceptualize space and spatial 
relations topologically as characterized by the following properties: proximity, order, 
separation, and enclosure. With development, children subsequently begin to represent space 
in a projective fashion, that is, in relation to different points of view, and then sometime 
between middle and late childhood the Euclidean conceptual system emerges permitting 
preservation of metric relationships such as proportion and distance.  

 
Although numerous studies have been carried out to test the validity of this theory of 

“topological primacy,” the consensus of investigators who have reviewed the empirical 
literature is that evidence supporting this developmental model is comparatively weak. One 
central criticism of this theory has been that Piaget and Inhelder’s uses of terms such as 
topological, separation, and proximity are mathematically erroneous (Clements & Sarama, 
2007a; Kapadia, 1974). For example, as Clements and Sarama point out, Piaget and Inhelder 
(1967) maintain that children do not synthesize the concepts of proximity, separation, order, 
and enclosure to construct the notion of continuity until the emergence of the formal operations 
stage (at approximately 11 or 12 years of age). However, in direct contrast to comprising a 
synthesis of these four properties, continuity is itself a central concept in topology (McCleary, 
2006). And thus as Clements and Sarama note, the claim that this concept does not develop 
until early adolescence undermines the argument for the primacy of topological concepts 
(Darke, 1982; Kapadia). Concomitantly, these authors indicate that classifying figures as 
topological or Euclidean is problematic given that all figures possess attributes of both.  

 
Clements and Sarama (2007a) conclude that although the empirical evidence does in 

fact suggest that the spatial abilities of children develop considerably throughout the school 
years, young children are more competent than hypothesized by Piaget and Inhelder as they can 
reason about spatial perspectives as well as distances. Indeed, Liben (2002) cites research 
suggesting that implicit Euclidean concepts are present perhaps as early as birth or soon 
thereafter, and that visual experience may not even be necessary for this system to develop. 
Furthermore, she points out Piaget himself subsequently replaced his topological primacy model 
with a different theory (i.e., intra, inter, and transfigural relations; Piaget & Garcia, 1989).  

 
More recently, Dehaene, Izard, Pica, and Spelke (2006) tested adult and child 

participants from an isolated Amazonian community to determine whether they possess 
intuitive geometric conceptions, notwithstanding their lack of formal schooling, experience 
with maps, and a language containing an abundance of geometric terms. These investigators 
demonstrated that both children and adults spontaneously made use of foundational 
geometric concepts, including points, lines, parallelism, and right angles when trying to 
identify intruders in simple pictures, and used distance and angular relationships in 
geometrical maps to locate hidden objects. Finally, although a comparison group of 
American adults performed at a higher level overall than the Amazonian adults, the two 
groups showed similar profiles of difficulty. Dehaene et al. concluded that the existence of 
core Euclidean geometrical knowledge in all humans is inconsistent with Piaget’s hypothesis 
of a developmental progression from topology to projective to Euclidian geometry.  
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A final body of evidence emanating from research with adults has yielded findings 
that are also inconsistent with the developmental trajectory proposed by Piaget and Inhelder. 
According to Newcombe and Huttenlocher (2006), although the Piagetian approach has 
stimulated much research on spatial thought for many decades, investigators who have 
focused on spatial cognition in adults have questioned the accuracy of characterizing mature 
spatial thought as explicitly Euclidean. They go on to describe how a good deal of evidence 
supports the assertion of cognitive psychologists that the spatial representations of adults are 
“inevitably erroneous, biased, and fragmentary” (p. 738). 

 
Taken together, the mathematical inaccuracies of Piaget’s topological primacy thesis 

along with the mounting, negative empirical evidence to date leads the Task Group to 
conclude that this theory lacks the kind of compelling support needed to make it useful for 
continuing to inform the design and testing of instructional approaches in geometry.  

 
The van Hiele model of the development of geometric reasoning. The van Hiele 

model (1986) has been the dominant theory of geometric reasoning in mathematics education 
for the past several decades. According to this model the learner moves sequentially through 
five levels of understanding:  

 
Level 0: Visualization/Recognition—Students can name common geometric figures 
but usually recognize them only by their shapes as a whole, not by their parts or 
properties.  
 
Level 1: Description/Analysis—Students can judge a shape to be a certain type of 
figure based on its properties and can analyze component parts of the figures but 
cannot explain the interrelationships between figures and properties; they still do not 
understand definitions.    
 
Level 2: Informal Deduction or Ordering—Students can form definitions, establish 
interrelationships of properties within and among figures, and follow informal proofs 
but cannot construct one.  
 
Level 3: Formal Deduction—Students understand the significance of deduction as a 
way of establishing geometric theory within an axiomatic system, and comprehend 
the interrelationships and roles of undefined terms, axioms, definitions, theorems, and 
formal proof. 
 
Level 4: Rigor—Students can reason formally about different axiom systems.  
 

The majority of high school geometry courses are taught at Level 3.  
 
Battista (2007) has recently carried out a review and analysis of the strengths and 

weaknesses of this theory, and new developments pertaining to it, including 1) extending the 
level descriptors from two-dimensional to three-dimensional shapes, 2) reexamining the 
nature of levels, 3) elaborating the levels and proposing alternatives though related 
conceptions, 4) considering the idea that different types of reasoning develop simultaneously 
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but at different rates, 5) judging whether the developmental periods should be viewed as 
stages or levels, and 6) evaluating extant methods of assessment. Battista concludes that the 
van Hiele theory provides a generally valid description of the development of students’ 
geometric reasoning, especially pertaining to the learning of shapes (see Clements & Battista, 
1992, for a detailed review of the supporting evidence).  

  
Cognitive processes underlying the van Hiele levels. From the standpoint of the Task 

Group’s analysis, empirical examinations of the cognitive processes underlying van Hiele levels 
of geometric reasoning is a much more challenging endeavor. Nonetheless, such an approach is 
crucial for making further progress in this area, as well as designing appropriate assessment 
tasks for use in both research and practice. The Task Group thus concurs with Battista’s (2007) 
comment that “…it is one thing to devise broad categories of behavioral descriptors; it is 
another to determine the cognitive processes underlying these categories of behaviors. This has 
been and will continue to be, a major challenge facing researchers” (p. 854).  

  
Although theories such as the hierarchical interactionism model developed by 

Clements and colleagues (Clements & Battista, 1992; Clements & Sarama, 2007a) represent 
a major step in this direction, the Task Group agrees with Battista’s (2007) perspective on the 
state of the science:  

 
Although a number of theories and studies have been reviewed in an attempt 
to describe the cognitive processes by which students progress through the 
early van Hiele levels, this area of research is still in its infancy. This is due in 
great part because researchers are investigating cognitive processes that 
cannot be observed. To achieve progress in this domain, it is important for 
mathematics education researchers to heed the work of researchers in other 
fields such as cognitive science and neuroscience. Such research can provide 
valuable insights into these difficult-to-observe processes (pp. 858–859). 
 
Numerous advances have been made in recent years regarding the development of 

spatial cognition, including topics such as spatial visualization, spatial relations, spatial 
orientation, spatial perception, spatial memory, spatial reasoning, and spatial and visual 
imagery. Excellent reviews of this rich research literature can be found in Liben (2002), 
Newcombe and Huttenlocher (2000; 2006), and Tversky (2004). Nevertheless, comparatively 
few cognitive or developmental psychologists have explicitly studied the development and 
learning of Euclidean geometric concepts and skills. Having said this, it should be noted that 
Koedinger, Anderson, and colleagues have been applying theory-based cognitive processing 
approaches to instructional interventions in geometry for many years (see Ritter, Anderson, 
Koedinger, & Corbett, 2007 for an overview of this and related work, as well as recent work 
by Kao & Anderson, 2006, 2007; and Kao, Roll, & Koedinger, 2007). Finally, research on 
the cognitive neuroscience of geometric reasoning is just beginning to get off the ground 
(Kao & Anderson, 2006).  
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e. Obstacles to Mastery 

Earlier, the Task Group mentioned how difficulties in learning about ratio and 
proportion can present obstacles to understanding the meaning of similarity of triangles. 
Additionally, research on some intriguing geometric misconceptions are described below 
which are also relevant to understanding characteristics of shapes, albeit with respect to the 
concept of area. As such, future efforts to design instructional approaches for overcoming 
these kinds of errors may assist students in acquiring concepts crucial to understanding the 
definition of similarity.  

 
Same-perimeter/same-area misconception. Dembo et al. (1997) examined a common 

misconception involving the relationship between area and perimeter—namely, that shapes 
with the same perimeter must have the same area. In fact, shapes with the same perimeter 
frequently have different areas, and the area increases as the shape becomes more regular. 
Thus, as these authors note, for rectangles having a constant perimeter, area increases as the 
figure approaches a square and decreases as it approaches a line. Dembo et al. tested the 
effects of schooling on this misconception by comparing the performance of two groups of 
Israeli students: one that attended ultra-orthodox schools and had received virtually no 
instruction in math and science, and the other that attended mainstream schools and received 
extensive instruction in these areas.  

 
Surprisingly, the ultra-orthodox 12- to 14-year-old group correctly solved the geometric 

misconception problems more frequently than did their mainstream peers. The authors 
suggested two possible explanations of this unexpected finding. According to one perspective, 
the relatively strong performance of the ultra-orthodox students may have resulted from a 
curriculum which cultivated proficiency in applying general cognitive strategies and in carefully 
implementing rules of analytical reasoning to solve problems. Alternatively, early conventional 
instruction in geometry and related topics may actually have had an adverse effect on 
mainstream students’ geometric reasoning. That is, initial formal instruction may have 
inadvertently promoted this misconception as a consequence of students being presented with 
the concepts of perimeter and area pertaining to the same shapes and kinds of problems—and 
during one and the same course. As these investigators point out, since the same factors are used 
to compute perimeter and area for many types of shapes (e.g., length of the sides for squares, 
rectangles, and right triangles), students may deduce that area and perimeter are determined by 
the same variables, leading them to erroneously infer that when the perimeter remains the same 
under some transformation, the area must as well.  

 
Illusion of linearity. De Bock and colleagues have recently reviewed numerous 

studies demonstrating what has come to be known as the “illusion of linearity.” Essentially, 
this phenomenon consists of a misconception that the linear (or proportional) model can 
pertain to situations where it is in fact not applicable. More specifically, many students 
incorrectly believe that that if the perimeter of a geometric figure is enlarged k times, its area 
(and/or volume) is enlarged k times as well (De Bock, Verschaffel, & Janssens, 1998, 2002; 
De Bock, Van Dooren, Janssens, & Verschaffel, 2002; Freudenthal, 1983; Modestou, 
Gagatsis, & Pitta-Pantazi, 2004). Apparently, this misconception emerges not only in 
geometry, but also in elementary arithmetic (Van Dooren, De Bock, Hessels, Janssens, & 
Verschaffel, 2005), probability (Van Dooren, De Bock, Depaepe, Janssens, & Verschaffel, 
2003), algebra and calculus (Esteley, Villarreal, & Alagia, 2004). 
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Remarkably, a series of studies has shown that even with considerable scaffolding 
(e.g., supplying drawings, presenting the problem in another format, or providing meta-
cognitive hints), the vast majority of 12- to 16-year-old students fail to solve these problems 
due to a strong tendency to inappropriately apply linearity (De Bock et al., 1998; De Bock, 
Van Dooren, et al., 2002; Modestou et al., 2004). Van Dooren, De Bock, Janssens, & 
Verschaffel (2005) note that additional research suggests that this tendency is attributable to 
a set of closely related factors, including “the intuitiveness of the linear model, shortcomings 
in students’ geometrical knowledge, inadaptive attitudes and beliefs towards mathematical 
(word) problem solving, and a poor use of heuristics” (p. 266).  

 
De Bock, Verschaffel, Janssens, Van Dooren, and Claes (2003) explored the potential 

utility of two additional factors with 13- to 16-year-olds: 1) the authenticity of the testing 
context (i.e., prefacing the test with well-chosen, meaningful video fragments and linking all 
test items directly to these), and 2) the integrative use of drawings (i.e., having students draw 
a reduced copy of the figure described in the problem before trying to solve it). Neither of 
these manipulations improved performance. Additionally, both factors actually produced a 
negative effect. After exploring several possible explanations for this unanticipated finding, 
the authors conclude that, “Most likely, only a long term classroom intervention, not only 
acting upon students’ deep conceptual understanding of proportional reasoning in a modeling 
context, but also taking into account the social, cultural and emotional context for learning, 
can produce a positive effect in defeating the illusion of linearity” (p. 460). 

 
f. Conclusions and Recommendations 

Classroom 
Teachers should recognize that from early childhood through the elementary school 

years, the spatial visualization skills needed for learning geometry have already begun to 
develop. In contrast to Piagetian theory, young children appear to possess at least an implicit 
understanding of basic facets of some Euclidean concepts, although proper instruction is 
needed to ensure that children adequately build upon and make explicit this core knowledge 
for subsequent learning of formal geometry. Additionally, whereas children can reason to 
some extent about the properties of and relationships among different shapes, their 
developing abilities to acquire more detailed information about the metrics of these 
properties and the changes that occur under various transformations in the plane is by no 
means simple and straightforward.  

 Training 
Teachers. Teachers need to learn more about the latest research concerning the 

development of children’s spatial abilities in general and their geometric conceptions and 
misconceptions in particular. Acquiring knowledge of the spatial skills children bring to 
school with them, the limitations of these early developing competencies, and their use and 
misuse of shape words and names can help teachers capitalize on children’s strengths and aid 
them in overcoming their weaknesses. 

 
Future researchers. The next cohort of researchers who will be investigating 

geometry learning need to have a firm grounding in cognitive development and spatial 
information processing, in addition to mathematics education. Although some math 
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education researchers have explicitly linked their work to advances in these areas, future 
progress in studying students’ geometry learning will require a blend of content knowledge, 
proficiency with multiple research methods, and theoretical sophistication across several 
different disciplines. In addition, research teams composed of people who each possess a 
relevant area of expertise may be even more likely to help advance the study of geometric 
reasoning and evidence-based approaches to instruction in this domain. 

Curriculum 
Early exposure to common shapes, their names, and so forth appears to be beneficial for 

developing young children’s basic geometric knowledge and skills. However, comparatively 
little is known about what the long-term effects would be of including a foundational treatment 
of more complex geometric concepts in preschool through second-grade curricula. Moreover, 
despite the widespread use of mathematical manipulatives such as geoboards, dynamic 
software, and so forth during the elementary school years, rigorous evidence is lacking as to 
precisely when and how these should be implemented to help children acquire a foundational 
understanding of concepts such as congruence, similarity, transformations, and angles. Finally, 
while a judicious reliance on manipulatives may enhance the initial acquisition of some 
concepts under specified conditions, students must eventually transition from concrete (hands-
on) or visual representations to internalized abstract representations. The crucial steps in making 
such transitions are not clearly understood at present. 

Research 
Basic. Longitudinal studies are needed to assess more directly how developmental 

changes in spatial cognition can inform the design of instructional units in geometry. Studies 
are needed to demonstrate whether and to what extent knowledge about similar triangles 
enhances the understanding that the slope of a straight line is the same regardless of the two 
points chosen, thus leading to a more thorough understanding of linearity.  

 
Classroom. More research is needed that specifically links cognitive, theory-driven 

research to classroom contexts. At the same time, cognitive theorizing pertaining to geometry 
learning needs to take into account more facets of classroom settings if it is to eventually 
have a large impact on the design of instructional approaches. 

  
5. Algebra 

This Task Group acknowledges the existence of arguments for early algebra learning, 
that is, implicit knowledge in elementary-school children’s solving of arithmetic and other 
problems (Carraher & Schliemann, 2007). At this point, it is not known if the early algebra 
achievement of elementary school children reflects an actual implicit understanding of aspects 
of algebra, or if their performance is the result of the mathematical relation between algebra and 
arithmetic and not an indication of accumulating implicit knowledge. In either case, the Task 
Group focuses on explicit algebra content typically encountered in middle school to high school 
algebra courses. The bulk of the cognitive literature related to learning of this content focuses on 
simple linear equations and word problems; the Task Group summarizes the major findings 
from these studies below. The research literature for many of the remaining conceptual and 
procedural competencies identified within the Major Topics of School Algebra listed in the 
Report of the Task Group on Conceptual Knowledge and Skills is not sufficient for this Task 
Group to draw conclusions about the cognitive processes that contribute to these aspects of 
algebra learning; in many cases, sound studies are simply nonexistent. 
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a. Algebraic Equations 

The majority of cognitive and learning research on algebra examines the processes 
underlying the solution of linear equations and the sources of problem-solving error. Some of 
the studies also include more complex equations (e.g., quadratic), but not enough research is 
available to discuss findings on these types of equations separately. The Task Group does, 
however, note a few common sources of problem-solving errors when students attempt to 
solve more complex algebraic equations.  

Paths of Acquisition 
Conceptual and declarative knowledge. Studies of skilled adults and high school 

students who have taken several mathematics courses reveal that the processing of algebraic 
expressions is guided by an underlying syntax or system of implicit rules that guides the 
parsing and processing of the expressions (Jansen et al., 2003, 2007; Kirshner, 1989; Ranney, 
1987). The learning of this syntax is not completely analogous to learning the syntax and 
grammar of natural language, because learning the syntax of algebra is strongly influenced 
by schooling. Learning of algebraic syntax is determined, in part, by earlier learned 
arithmetic rules, such as the order of operations; use of the commutative, associative and 
distributive properties; and by knowing the mathematical meaning of symbols, such as 
parentheses or summation signs, that note subexpressions within the equation. 

 
Following Jansen et al. (2007), the parsing tree in Figure 2 illustrates the basic 

process followed by mathematicians when they solve algebraic equations, as revealed by an 
experimental method (Restricted Focus Viewer) that restricts the amount of information that 
can be viewed at one time and tracks the pattern with which components of the equation are 
processed. They typically scan the equation from left to right, but the variables, numbers, and 
exponents are not processed as individual symbols but rather as meaningful chunks, each of 
which is decomposed in turn. The processing is also influenced by core symbols that define 
chunks, including brackets, parentheses, horizontal bars in division, summation notations 
(∑), and so forth. For instance, mathematicians initially scan the following rational 
subexpressions from top to bottom, not strictly from left to right. Without an understanding 
of the mathematical meaning of these subexpressions, a person who is unfamiliar with 
algebra may view the subtraction sign and division lines as a continuous horizontal line that 
would be scanned from left to right and then top to bottom. 

 
5x – 2 _ 3y2 - 1 
2y + 7        4 
 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-76 

Figure 2: Processing Linear Equations 

 
 
 

 

Note: Experts scan algebraic equations in terms of meaningful chunks of 
information. For this expression, “3x” and “2y3” are processed as chunks, and 
“2y3” is then decomposed into the coefficient “2” or the variable, “y3.” 

 
These methods indicate that the solving of algebraic equations rests, in part, on 

learning the basic rules of arithmetic, mathematical meaning of core symbols, and eventually 
the automatic parsing of equations on the basis of this knowledge. Evidence for automaticity 
comes from the finding that skilled problem solvers scan and process basic sub-expressions 
in these equations in a fraction of a second (e.g., Jansen et al., 2007). Comparisons of novices 
and skilled problem solvers reveal that this fast and efficient processing is possible because 
the skilled problem solvers have formed long-term memory representations of the basic 
structure of algebraic equations and the sequences of procedural steps that can be used to 
solve them (Sweller & Cooper, 1985).  

 
A small-scale (n = 33) experimental study of college students’ algebraic rule learning 

(e.g., when multiplying variables with exponents, add the exponents, y3 x y7 = y10) revealed 
substantial benefits to cumulative practice. This group practiced already learned rules with 
newly introduced rules and was contrasted with groups that only practiced rules individually 
or received follow-up reviews and practice of individual rules (Mayfield & Chase, 2002). In 
comparison to the two other conditions, cumulative practice resulted in better short-term and 
long-term retention of individual rules and a better ability to apply rules to solve problems 
that involved the integration of multiple rules. One potential reason for the advantage of 
cumulative practice is that it provides a context for comparing, contrasting, and eventually 
discriminating between rules that might otherwise be used inappropriately (e.g., confusing 
the rule for (y3)7 with the rule for y3 !  y7). 

 
One method used to experimentally demonstrate the existence of such long-term 

memory representations is to compare the memory spans of experienced students and novices 
for meaningful and meaningless equations. In these studies, increasing skill is associated with 
longer memory spans for mathematically meaningful expressions but not for meaningless 
expressions with the same number of characters. When given 90 seconds to remember 
expressions such as 6y + 5 (2x – 7), 11th-graders with several years of high school 

 3   x              –       2                      y   3 

3x 2y3 

3x – 2y3 

2 y3 
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mathematics could remember strings of 10 to 12 symbols, whereas they remembered 4 
2
1  to 

5 
2
1  symbols when the same strings were presented in a meaningless way; e.g., 5 (2x + – 7 

6y. Memory span for meaningful but not meaningless expressions increased with number of 
mathematics classes and with practice (Sweller & Cooper, 1985).  

 
Students who are first learning algebra and adults who are not skilled in mathematics 

do not have long-term memory representations of basic forms of linear equations or the 
sequences of procedural steps that can be used to solve these equations. The absence of or 
failure to access these long-term memory representations does not necessarily preclude the 
solving of linear equations, as long as the individual understands the general arithmetical and 
algebraic concepts and rules needed to solve the problem. Unfortunately, there are often 
substantive gaps in this knowledge. The result is that many students make mistakes. Problem 
solving is sometimes complicated by the execution of mathematically correct, but 
unnecessary, procedures. As an example, when presented with a(y + 3z) – x =  4a and asked 
to solve for x, many students will unnecessarily expand a(y + 3z) [i.e., ay + 3az]; the problem 
can still be solved but now requires several added steps.  

  
Birenbaum et al. (1993) used a promising strategy for identifying sources of common 

errors such as these. A diagnostic test in which individual problems varied systematically in 
terms of the knowledge needed for correct solution was administered to eighth- and ninth- 
grade students in Israel. The problems ranged from relatively simple (e.g., 3 + x = 6 + 3 !  2) 
to those with more complex subexpressions [e.g., 6 + 4(x – 2) = 18]. The pattern of correct 
and incorrect solutions across problems allowed for the identification of the most likely 
sources of error. The most common errors occurred because many students failed to correctly 
divide when terms included a coefficient and a variable (e.g., 9x), and had difficulty applying 
the commutative and distributive properties [e.g., 4(x – 3)]. Other common errors resulted 
from a failure to correctly order the operations, and to correctly add and subtract numbers on 
both sides of the equation, especially signed numbers (e.g., 5x – 4). Using the same methods, 
Birenbaum and Tatsuoka (1993) found that many Israeli 10th-graders did not recall the laws 
of exponents. The two most common errors resulted from failure to recall that X0 = 1 and that 
(Xm)n = Xmn. Incorrect factoring was also a common source of error.  

 
Similar types of errors have been found in the United States and other countries. In 

these studies, moving terms from the left to the right side of an equation was a common point 
at which errors occurred (Anderson, Reder, & Lebiere, 1996; Cooper & Sweller, 1987; 
Lewis, 1981). In keeping with the division errors found by Birenbaum et al. (1993), for the 

problem, z
y

x
=

+ )]6(2[ (solve for x), one type of error involves moving y from the left to the 

right, rather than multiplying both sides of the equation by y. With this error, the right side of 

the equation reads 
y
z , rather than zy. These types of errors often reflect a poor conceptual 

understanding of the syntax of algebraic expressions.  
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A poor understanding of the concept of mathematical equality and the meaning of the 
“=” is common for elementary school children in the United States, and continues for many 
children into the learning of algebra. Many elementary school children believe that the equal 
sign is simply a signal to execute an arithmetic operation. On typical problems such as 3 + 4 + 
5 = __, this misinterpretation does not cause any difficulty. However, on less typical problems 
(at least in U.S. mathematics textbooks), such as 3 + 4 + 5 = __ + 5, it causes most third- and 
fourth-graders either to just add the numbers to the left of the equal sign, and answer “12,” or 
to add all numbers on both sides of it, and answer “17” (Alibali & Goldin-Meadow, 1993). 

 
Knuth et al. (2006) extended this research to 177 U.S. middle school children. They 

assessed children’s understanding of the equal sign as expressed in arithmetic (e.g., the 
meaning of “=” in 4 + 8 = __) and how this knowledge of equality was related to their ability 
to solve simple linear equations; e.g., 5x – 5 = 30. As found with third- and fourth-graders, 
many of the eighth-graders in this study interpreted the “=” as indicating the outcome of an 
arithmetic operation. Only 31% of the eighth-graders understood it as representing the 
equality of the terms on the left and right side of the equation. When solving the linear 
expressions, 33% of the eighth-graders used an algebraic strategy and these students always 
(100%) got the correct answer. The other two thirds of students used a “guess and check” 
strategy—as is often found for U.S. students (Cai, 2004; Johanning, 2004)—or some type of 
arithmetic strategy and frequently erred in solving the equation. 

 
About 75% of the eighth-grade students who understood mathematical equality used 

algebra to solve linear equations, compared to less than 20% who understood “=” as a signal 
to perform an operation. The relation between understanding the concept of mathematical 
equality and skill at solving linear equations held, when standardized mathematics 
achievement scores and algebra course work were statistically controlled.  

 
One potential source of U.S. students’ poor understanding of the equal sign is the way 

in which problems are presented in textbooks. McNeil et al. (2006) provided a systematic 
examination of four commonly used textbooks series in middle school and found that the 
most frequent presentation of “=” was in the context of ‘operate-equals-answer’ format; e.g., 
4 + 7 = 2x + 3 = 11 (see also Seo & Ginsburg, 2003). Other studies have indicated that use of 
this format contributes to students’ interpretation of “=” as operational rather than relational 
(Baroody & Ginsburg, 1983; McNeil & Alibali, 2005). A relational interpretation of “=” is 
most common for problems for which operations are needed on both sides of the equation 
(e.g., 4 + 5 = 11 – 2; 3x + 5 = x + 15). Yet, less than 5% of problems in middle school 
textbooks in the United States use this format, reaching a maximum of 9% of problems in 
eighth-grade textbooks.  

 
Although it has not been empirically assessed, it is possible that the tendency of 

simple arithmetic problems to be presented vertically in U.S. textbooks may make the 
transition to left to right horizontal processing of algebraic expressions more difficult than it 
needs to be. This is a readily testable hypothesis and, if correct, can be easily remedied with 
the presentation of simple arithmetic problems in a horizontal format beginning with first-
grade textbooks.  
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Procedural bugs. Errors in the solving of algebraic equations are sometimes classified 
as procedural bugs in a way analogous to the “buggy rules” noted earlier for subtraction 
(Birenbaum, Kelly, Tatsuoka, & Gutvirtz, 1994; Schoenfeld, 1985; Sleeman, 1984; Sleeman, 
Kelly, Martinak, Ward, & Moore, 1989; Wenger, 1987). These errors can occur due to 
overgeneralized use of procedures that are correct for some problems or from a 
misunderstanding of the procedure itself. Schoenfeld described a number of these types of 
procedural errors, a few of which are illustrated in Figure 3.  

 
Figure 3: Algebraic Bugs 

Expression Buggy/Incorrect Translation Potential Source of Confusion 

(X + Y)2 X2 + Y2 2(X + Y) = 2X + 2Y 

√(X + Y) √X + √Y √(XY) = √X √Y 

ZY
X
+

 
Z
X

Y
X

+  
X
Z

X
Y

X
ZY

+=
+

 

 
Unfortunately the nature of these bugs often differs from one student to the next and 

often for the same student from one equation to the next (Birenbaum et al., 1994; Sleeman et 
al., 1989). The problem of stability arises because the same equation can elicit several 
different types of bugs, and many students make errors on the same problem from one time 
to the next for different reasons. Although many bugs do not occur with enough consistency 
to inform specific classroom practices, a few bugs may be consistent across and within 
students. Preliminary studies by Sleeman et al. suggest that remediation that focuses on these 
specific bugs can reduce their frequency. Follow-up studies—perhaps using the classification 
methods described by Birenbaum and colleagues (1993, 1994; Birenbaum & Tatsuoka, 
1993), focusing on identifying the sources of error underlying stable bugs or classes of bugs 
and assessing the effectiveness of instructional strategies in correcting them—are needed.  

 
b. Word Problems 

The Task Group’s review of algebraic word problems includes studies of college 
students, due to a shortage of studies of middle and high school students’ performance on 
such problems. Results for these college samples are likely to underestimate the difficulty of 
solving word problems for high school students. In a few places, the Task Group includes 
research on multistep arithmetical word problems, because the core processes and sources of 
error appear to be similar for arithmetical and algebraic word problems. The Task Group also 
notes that the focus of some of this research is on problem-solving processes and not the 
learning of specific algebraic content. A review of the these studies is, nonetheless, needed 
because of the wide use of word problems in the mathematics curriculum, because the 
application of algebraic skills (e.g., in physics classrooms) is often in the context of word 
problems, and because student difficulty with solving word problems was identified as an 
area of concern in the National Survey of Algebra Teachers (Hoffer et al., 2007, Table 3). 
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Paths of Acquisition 
Problem translation and solution. Mayer (1982) proposed that the solution of 

algebraic word problems requires two general sets of processes: problem translation and 
problem solution. Problem translation involves transforming the verbal statement of the 
problem into a set of algebraic equations. It determines how the student forms a mental 
representation of the problem. The generation of the representation starts with an 
understanding of the text within which the problem is embedded (Kintsch & Greeno, 1985). 
Text comprehension involves understanding not only the meaning and mathematical 
implication of specific words (e.g., “speed” implies a rate problem), but also the structure of 
the entire problem.  

 
In an analysis of word problems presented in algebra textbooks, Mayer (1981) found 

that most problems included four types of statements: assignment statements, relational 
statements, questions, and relevant facts. Assignment statements, not surprisingly, involve 
assigning a particular numerical value to some variable. Relational statements specify a 
single relationship between two variables. Questions involve the requested solution (e.g., 
“What is X?”). Relevant facts involve any other type of information that might be useful for 
solving the problem. Problem translation involves taking each of these forms of information 
and using them to develop corresponding algebraic equations. The translation of assignment 
statements, questions, and relevant facts does not pose much of a problem for most high 
school and college students (Lewis & Mayer, 1987; Mayer, 1982; Wenger, 1987). However, 
discriminating relevant from irrelevant information (Low, Over, Doolan, & Michell, 1994) 
and determining if the problem is solvable (Rehder, 1999) are potential sources of difficulty 
for many students. Translation errors most frequently occur during the processing of 
relational statements.  

 
An example is provided by a simple problem: “There are six times as many students 

as professors at this university” (Clement, 1982, p. 17). Clement presented this problem to 
freshman engineering students at a major state university and asked them to write an equation 
that represented the relation between the number of students (s) and the number of professors 
(p). Thirty-seven percent of the engineering students committed an error on this problem, 
typically 6s = p. This type of error is fairly common (Hinsley et al., 1977) for at least two 
reasons. The first is that the syntax, or structure, of the relational statement suggests a direct 
(though incorrect) translation into an algebraic expression. So “six times ... students” is 
literally translated into 6s. Second, many students appear to interpret relational statements as 
requesting static comparisons. In this example, 6s is used to represent the group of students 
and p to represent the group of professors. In other words, for many students the “=” does not 
represent the actual equality of 6p and s, but rather simply separates the two groups. Students 
who correctly translate this relational statement understand that s and p represent variables, 
not static groups. These students understand that to make the number of professors equal to 
the number of students, some type of operation has to be performed; the smaller quantity, p, 
has to be increased so as to make it equal to the larger quantity, s. This translation leads to 
the correct algebraic expression, 6p = s. The finding that types of errors are common in 
college students who intend to major in engineering implies that mistranslations of relational 
statements are likely to be widespread.  
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In a large-scale study that included 8th- to 10th-grade students, MacGregor and Stacey 
(1993) demonstrated that it is not simply the syntax of the relational wording that makes the 
translation process a common point of error. Errors occurred even for problems in which the 
statement could be directly translated into an equation; e.g., “z is equal to the sum of 3 and y.” 
For one problem—“I have $x and you have $y. I have $6 more than you. Which of following 
must be true?”—students were asked to choose from among five alternatives. Across grades, 
only 34% to 38% of the 8th- to 10th-graders chose the correct, x = y + 6, equation. There was 
no predominantly incorrect response across the four potential mistranslations, although 
mistranslations that involved addition or subtraction (13% to 22% of choices; e.g., 6 + x = y) 
were more common than mistranslations that involved multiplication (3% to 15%, e.g., 6x = y) 
(p. 222). Capraro and Joffrion (2006) also found a variety of translation errors for a sample of 
668 middle school students, as did Sebrechts, Enright, Bennett, and Martin (1996) when 
undergraduates solved algebraic word problems from the quantitative section of the Graduate 
Record Exam (GRE). The pattern indicates there are many ways to mistranslate the same word 
problem, just as there are many potential procedural bugs when solving algebraic equations. 

 
At the same time, relational information conveyed in a word problem can sometimes 

aid problem solving if this relational information is consistent with students’ previous out-of-
classroom experiences and if these experiences and the corresponding situational 
representation can be used to create non-algebraic solution strategies (Bassok, Chase, & 
Martin, 1998; Koedinger & Nathan, 2004; Martin & Bassok, 2005). Bassok et al. found that 
the majority of word problems presented in one U.S. textbook series across first to eighth grade 
used story situations that were consistent with everyday activities or with everyday uses of 
objects described in the problems. Koedinger and Nathan discovered that these types of word 
problems are sometimes easier to solve (i.e., lower error rate) than corresponding linear 
equations. An analysis of solution strategies and error rates revealed that this was due to the 
frequent use of non-algebraic, arithmetic-based strategies for solving the word problems; these 
might involve a guess and test approach whereby the presented quantities are added, 
multiplied, etc. until an answer is obtained. Although these high school students were more 
successful with use of these non-algebraic strategies, the question of whether this contributes to 
their learning of formal algebraic representations of problem situations remains to be 
determined (Koedinger & Nathan).  

 
Hembree’s (1992) large-scale meta-analysis of students’ ability to solve mathematical 

word problems from first grade to college level also reveals contextual effects. Abstract 
problems were more difficult to solve than concrete problems (mean r = -.14; mean across 
studies) but the largest effect was for familiarity (r = .40). Familiarity was defined in such a 
way that it included familiarity with classes of word-problem (e.g., interest, compare, 
distance problems) or familiarity with the cover context (e.g., baseball, travel). Evidence for 
the importance of familiarity of problem class comes from the finding that contexts that were 
based on the students’ personal interests (r = .04) or preferences (r = -.04) were not related to 
problem-solving skill; that is, it was familiarity with solving the class of problem (e.g., rate) 
and not students’ personal interests.  
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The second general set of processes suggested by Mayer (1982) as necessary for the 
solution of algebraic word problems or problem solution refers to the actual use of algebraic or 
arithmetical procedures to solve the resulting equations. The same potential sources of error 
described for solving of linear equations can occur during this stage of solving word problems.  

 
Schema development. Hinsley et al. (1977) showed that successful translation of 

algebraic word problems, as well as the solution of algebraic equations and many other 
problem types, is guided by schemas—these include the syntax of equations. Sweller and 
Cooper (1985) provided a useful definition: “Schemas are defined as mental constructs that 
allow patterns or configurations to be recognized as belonging to a previously learned 
category and which specify what moves are appropriate for that category” (p. 60).  

 
In short, a schema is a long-term memory representation that makes possible fast 

and automatic recognition of key elements of an equation or word problem, enables the 
classification of the problem into a conceptual group (e.g., velocity problems, interest 
problems), and has a linked system of procedures that can be used to solve the problem 
(e.g., Larkin, McDermott, Simon, & Simon, 1980). It should be noted that this cognitive 
science approach to schema development differs from Piaget’s less precisely defined 
concept of schema.  

 
Morales et al.’s (1985) study of third-, and a combined group of fifth- and sixth-grade 

children’s conceptual understanding and ability to solve arithmetic word problems illustrates 
the usefulness of the concept of schema. The children’s conceptual knowledge was inferred 
based on how they sorted word problems into categories. The question was whether the sorts 
were based on conceptual similarity (e.g., combine versus change problems), (Carpenter & 
Moser, 1984; Riley, Greeno, & Heller, 1983) or on unimportant (surface) similarities in how 
the problems were worded (e.g., both about baseball). For both grade levels, more than two-
thirds of the errors were conceptually based—e.g., using a procedure appropriate for some 
class of problem but not the current problem—rather than due to computational error. More 
important, the categories formed by third-graders were more strongly influenced by the 
surface structure of the problems than by any underlying conceptual similarities, whereas the 
categorizations of the fifth- and sixth-graders were more strongly influenced by conceptual 
similarities. Third-graders who tended to organize the problems on the basis of conceptual 
categories, rather than surface structure, were much more accurate at solving the problems 
than were their peers who focused on surface features; the fifth- and sixth-graders did not 
make enough errors to conduct this type of analysis. The emerging ability to categorize word 
problems based on is underlying concepts (e.g., whether the problem asks for quantities to be 
combined or compared) and the corresponding reduction in problem-solving errors is 
consistent with development of category-specific schemas. 

 
Sweller and colleagues have demonstrated that one way in which schema development 

can occur with both algebraic equations and word problems is through the use of worked 
examples (e.g., Cooper & Sweller, 1987; Sweller & Cooper, 1985). Worked examples provide 
students with a sequence of steps that can be used to solve these problems. The students then 
solve a series of related problems that are in the same category (e.g., interest problems) and 
involve the same or a very similar series of problem-solving steps. Studies by Reed and 
colleagues (Reed & Bolstad, 1991; Reed, Willis, & Guarino, 1994) reveal that, at least for 
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word problems, worked examples that include an explanation of procedures (e.g., rate as 
related to work per unit of time or distance per unit of time) and several examples are more 
effective than simply providing students with the procedural steps. 

 
The associated experimental and quasi-experimental studies have shown that the use 

of well-developed worked examples has several advantages over more conventional teacher 
instruction followed by worksheet practice (Carroll, 1994; Cooper & Sweller, 1987; Sweller 
& Cooper, 1985; Zhu & Simon, 1987). It is likely to have similar advantages over unguided 
discovery learning. Because of the many potential bugs that students can commit when 
solving algebraic equations and the common translation errors for word problems, teacher 
presentation of a problem or two followed by worksheet practice or homework can result in 
students’ repeatedly committing (and therefore practicing) these bugs or translation errors.  

 
In comparison to conventional practice, students provided with worked examples 

solve problem in the same class (e.g., distance) faster and with fewer errors (Carroll, 1994). 
The benefits of worked examples for solving different classes of problems (i.e., far transfer) 
are mixed. Some studies have revealed no skill transfer from one class of worked examples 
to another (Sweller & Cooper, 1985), but other studies have found positive transfer (Cooper 
& Sweller, 1987). Cooper and Sweller provided preliminary evidence consistent with the 
hypothesis that worked examples promote the learning of schemas and the memorization of 
embedded procedures. A tentative conclusion is that use of worked examples promotes the 
automatization and transfer of procedures used across classes of problems but does not 
appear to promote the transfer of the schema, that is, the specific sequence with which 
embedded procedures are used to solve the different classes of problem. 

 
These same studies also have implications for unguided discovery. By definition, 

students using discovery approaches to learn algebra are novices and similar in some ways 
to students given conventional worksheets for problem-solving practice; students in both 
situations typically devise their own problem-solving strategies. Unlike students provided 
with worked examples, students engaging in conventional practice attempt to solve 
problems using the general problem-solving means-ends heuristic (i.e., working backward 
from the goal) (Newell & Simon, 1972), and often fall back on arithmetical rather than 
algebraic representations of the problem (Koedinger & Nathan, 2004). Even students 
provided with worked examples for one class of algebra problem revert to the means-ends 
heuristic when asked to solve problems for which a problem-solving schema has not yet 
been learned. 

 
Although use of the means-ends heuristic can be an effective approach in many 

problem-solving situations, it requires considerable working memory resources and results in 
an attentional focus on the problem-solving goal and not on learning the sequence of 
problem-solving steps (Sweller, 1989). An attentional focus on the problem-solving goal 
appears to interfere with learning the sequence of these steps; that is, learning the underlying 
schema and connecting the goal to the sequence of steps needed to attain it (Cooper & 
Sweller, 1987; Sweller et al., 1983).  

 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-84 

These and other results suggest that the effectiveness of worked examples appears to 
be due, at least in part, to a reduction in working memory demands that accompany use of 
means-ends problem solving. The elimination of these working memory demands allows 
attention to be focused on learning the sequence of steps that can be used to solve the class of 
problem (e.g., velocity) illustrated in the worked examples (Sweller, 1989). Worked 
examples can also provide a means of practicing embedded procedures.  

 
Although it has not been as extensively studied in the context of mathematics 

learning, research in other areas reveal limits on the effectiveness of worked problems. 
Worked problems are most effective during the initial stages of learning and lose their 
advantage over other methods, such as exploration, as the learners’ level of competence in 
the domain increases (Kalyuga et al., 2001; Tuovinen & Sweller, 1999).   

 
The above noted limitations in terms of transfer for worked examples were 

demonstrated by Blessing and Ross (1996). These researchers found that undergraduates who 
had attended a high school for mathematically and scientifically gifted students, Illinois 
Mathematics and Science Academy, were skilled at translating algebraic word problems into 
appropriate equations. Their skill was, in part, related to fast and automatic access to problem 
solving schemas (e.g., distance = rate !  time) associated with common word problems (e.g., 
those involving motion, interest, etc.) and the situations presented in these problems (e.g., an 
investor receiving dividends). However, when the “cover story,” or the way the problem was 
presented, was modified, but the underlying algebra needed to solve the problem was left 
unchanged, these students committed more errors. In a series of studies that included 
undergraduates, and 9th- and 10th-grade mathematics honors students, Bassok (1990) found 
that transfer from one problem type (e.g., banking) to another (e.g., manufacturing) occurred 
when students recognized that the problems were asking the same basic question, such as 
questions about the rate of change. This spontaneous transfer did not occur for all students 
and largely disappeared if the problem contexts were too different, even if the underlying 
similarity of the problems was not changed.  

 
Reed and colleagues (Reed, 1987; Reed, Dempster, & Ettinger, 1985) found the same 

pattern for undergraduates. They also found that if students’ recognized conceptual similarities 
between problems they were much more likely to draw the analogy and use the same problem-
solving procedures; for example, mixture problems that involve determining percentage of acid 
in a solution are conceptually the same as alloy problems (e.g., percentage of tin in bronze)  

 
In other words, retrieval of the problem-solving schema is tightly tied to the ways in 

which the corresponding class of problem (e.g., distance, interest) is typically presented in 
word problems. Modification of this cover story can result in failure to retrieve the 
appropriate procedural sequence or retrieval of the wrong sequence. Hembree’s (1992) meta-
analysis sheds some light on student attributes that might promote transfer across classes of 
word problem. Hembree found that students who were skilled problem solvers also were 
skilled at analogical reasoning (r = .56) and at drawing inferences (r = .49). Other student-
level traits, such as creativity (r = .22) and critical thinking (r = .37) were less closely related 
to successful problem solving. The importance of analogical and inferential reasoning is 
consistent with transfer effects in other areas (e.g., Holyoak & Thagard, 1997), and Reed’s 
(1987) studies of algebraic word problems.  
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Obstacles to mastery 
Stumbling blocks to the mastery of algebraic equations and the ability to translate 

word problems into algebraic expressions and equations are multifold and reflected in the 
many sources of problem-solving errors described in the preceding sections. In addition, a 
common obstacle to ability to solve algebraic equations is inadequate preparation in 
arithmetic.  

 
In keeping with this conclusion, Hembree’s (1992) meta-analysis revealed that for 

ninth-graders, the best predictors of the ability to solve word problems were computational 
skills (r = .51) and knowledge of mathematical concepts (r = .56). Other predictors were 
intelligence (r = .44), reading ability (r = .44), and vocabulary (r = .26). 

 
The deficiency in basic arithmetic skills includes poor knowledge of the properties of 

arithmetic (e.g., order of operations; commutative, associative, and distributive property; the 
laws of exponents) and committing arithmetic errors, especially the manipulation of signed 
numbers (e.g., -5) and rational expressions. Students who struggle with algebraic equations 
also make factoring errors and use algebraic procedures incorrectly (i.e., commit bugs). In 
comparison to skilled problem solvers, poor problem solvers do not process algebraic 
equations by breaking them into mathematically meaningful subexpressions, and often do not 
even understand the significance of symbols that signal the existence of a subexpression, 
such as parentheses. Many do not even have a good understanding of mathematical equality 
or the “=” sign. Translation of word problems, especially relational information, into 
appropriate algebraic expressions and the discrimination of relevant and irrelevant 
information are consistent sources of student difficulty.  

 
At a cognitive level, problem-solving errors and learning the syntax of algebraic 

expressions and algebraic schemas are influenced by working memory (Ayres, 2001, 2006; 
Cooney & Swanson, 1990; Lee, Ng, Ng, & Lim, 2004; Pawley, Ayres, Cooper, & Sweller, 
2005). Working memory limitations also make the processing of relational sentences in word 
problems and the discrimination of relevant from relevant information especially difficult 
(Cooney & Swanson). As noted for whole number arithmetic, the commitment of procedures, 
rules, and often-used facts to long-term memory will reduce the working memory demands 
associated with solving the problem, thus freeing resources for processing less familiar 
problem features. As described above, well-designed worked examples may be effective in 
allowing students to focus working memory resources on learning classes of algebraic 
problem and sequences of problem-solving steps. At the same time, worked examples that 
include redundant or extraneous information may increase the working memory demands of 
processing these examples and thereby make them less effective (Pawley et al.). Pawley et al. 
found that redundant information for one student may, however, be helpful for another; thus, 
the effects of including redundant or irrelevant information appears to vary with the working 
memory capacity and mathematical competency of the student.  

 
In a small-scale experimental study, Kalyuga and Sweller (2004) demonstrated that 

the potential cost of including irrelevant information can be addressed with use of faded 
worked examples. Here, the amount of information provided is reduced as students’ skill 
level increases. Use of these learner-adapted worked examples resulted in moderate gains 
(d = .46) in the ability to solve linear equations. Use of other learner-adapted systems, 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-86 

especially cognitive tutors, is also associated with improved skills in geometry and algebra, if 
the tutor is well integrated with classroom instruction and the overall curriculum (Koedinger, 
Anderson, Hadley, & Mark, 1997; Ritter et al., 2007). In a large-scale quasi-experimental 
study, Koedinger et al. demonstrated substantial gains (d = 1.2) in the ability to translate 
algebraic word problems into equations. More modest gains were found for scores on two 
standardized algebra tests (d’s = .30). 

  
In addition to working memory, accuracy at solving various forms of mathematics 

word problems, such as those found on the SAT, is also related to spatial abilities across 
samples ranging from gifted middle school students to college students (Casey, Nuttall, 
Pezaris, & Benbow, 1995; Casey, Nuttall, & Pezaris, 1997; Geary, Saults, Liu, & Hoard, 
2000; Johnson, 1984). The relation between spatial abilities and problem-solving accuracy 
may be due to the skilled use of visuospatial diagrams [see Larkin and Simon (1987) for 
general discussion of the utility of diagrams] or representations of the core relationships 
described in the problem, particularly the translation of relational information. Providing 
diagrams or instruction on the use of diagrams reduces errors rates when college students 
solve multi-step arithmetical word problem (Johnson; Lewis, 1989; Lewis & Mayer, 1987).  

 
In Hembree’s (1992) meta-analysis, the use of diagrams was more strongly related to 

the ability of fourth- and seventh-graders to solve word problems (r = .54) than was the use of 
other heuristics. From second grade to college, direct instruction on use of diagrams was much 
more effective for promoting their correct use than was practice alone (d = 1.16). Findings 
from a recent study of Japanese (n = 291) and New Zealand (n = 323) algebra students are also 
consistent with the usefulness of diagrams, at least for some types of problems (Uesaka, 
Manalo, & Ichikawa, 2007). These results are promising. However, the benefits and limitations 
of diagrams for facilitating the solving of different types of word problems remain to be 
determined and are more strongly related to instructional issues than to learning of specific 
algebraic content. 

 
The ability to solve word problems is also related to reading ability and nonverbal 

reasoning ability, above and beyond the influence of working memory (Lee et al., 2004). It is 
also very likely that other factors reviewed earlier, including motivation, self-efficacy, 
anxiety, and so forth contribute to skill development in algebra (e.g., Casey et al., 1997). 
Although cause-effect relations cannot be determined, Hembree (1992) found that skill at 
solving word problems was related to positive attitudes towards mathematics (r = .23) and 
problem solving (r = .20), self-confidence in mathematics (r = .35), and self-esteem (r = .27). 
These correlations are consistently lower than those found between measures of 
mathematical preparation (e.g., computational skills) and cognitive factors (e.g., use of 
diagrams) and skill at solving word problems. Studies that simultaneously assess all of these 
constructs are needed to fully understand their relative contributions. As an illustration, one 
small-scale (n = 42) correlational study simultaneously assessed several of these constructs as 
related to achievement gains in Algebra II (Jones & Byrnes, 2006). The analyses allowed for 
estimates of the unique contribution of multiple constructs and classroom-related behaviors. 
Completion of homework (ß = .36) was associated with higher end of class achievement test 
scores. Higher preclass knowledge of algebra (ß = .32) and self-regulation (ß = .33; e.g., 
ability to organize and self-check work) were also predictive of higher postclass scores. 
Frustration was associated with lower scores (ß = -.26).  
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Research on learning in general (described in the General Principles: From Cognitive 
Processes to Learning Outcomes section in this report) indicates a benefit for practice that is 
distributed across time, as contrasted with the same amount of practice massed in a single 
session. Pashler, Rohrer, Cepeda, and Carpenter (2007) provide a recent review, including 
discussion of one area of mathematics. Initial experimental studies with mathematics, 
specifically teaching probability, are consistent with the more general literature. As with 
other content areas, distributed and massed practice reveal no difference after 1 week (70 to 
75% correct), but after 4 weeks, the distributed practice group correctly solved 64% of the 
permutation problems as compared to 32% for the group trained with massed practice 
(Rohrer & Taylor, 2006).  

 
A unique study of the longer-term benefits of distributed practice was provided by 

Bahrick and Hall (1991). In this study, algebra and geometry tests were carefully constructed 
based on textbooks and New York State Regents Examinations from 1945 to 1985. These 
exams were administered to about one thousand 19- to 84-year-olds. Information was obtained 
on high school and college course work, grades, and standardized test scores (for a sub-sample), 
as well as mathematics-related occupations (e.g., math teacher) and other activities that would 
involve rehearsal of algebra or geometry after completion of formal schooling. The retention 
interval for algebra began with the last algebra course taken in high school or college; for 
geometry, it began with the completion of plane geometry in high school. These data allowed 
for estimates of the degree of retention over a 50-year period as a function of these variables.  

 
Overall, there was a steady decline in algebraic skills once the last course was taken. 

Over a 50-year interval between their last mathematics course to the time of the study 
assessment, about two-thirds of concepts and procedures typically taught in Algebra I was 
lost. Students who received an A in Algebra I, but took no other mathematics courses, 
retained more than students who received a B and these students in turn retained more than 
C students. The rate of decline in algebra skills was similar across groups; across a 50-year 
interval, the performance of all of these groups remained above that of a control group who 
had not taken high school algebra. The best predictor of long-term retention of competencies 
in algebra was the number of mathematics courses taken beyond Algebra I. Students taking 
college calculus showed a 20% decline in algebra performance over the 50 years, 
controlling for occupational and other potential confounds. Students taking a course beyond 
calculus showed no decline in algebra skills during this interval. A similar pattern emerged 
for content typically covered in Algebra II, but the effects of additional course work were 
less pronounced for geometry. The course work results suggest that the distributed review 
and integration—which was likely to have occurred more consistently for algebra than 
geometry—of the material across years contributes to the retention of the material 
throughout adulthood. 

 
c. Conclusions and Recommendations 

Too many students in high school algebra classes are woefully unprepared for 
learning even the basics of algebra. The types of errors these students make when attempting 
to solve algebraic equations reveal they do not have a firm understanding of many basic 
principles of arithmetic (e.g., commutativity, distributivity), and many do not even 
understand the concept of equality. Many students have difficulty grasping the syntax or 
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structure of algebraic expressions and do not understand procedures for transforming 
equations (e.g., adding or subtracting the same value from both sides of the equation) or why 
transformations are done the way they are. These and other difficulties are compounded as 
equations become more complex and when students attempt to solve word problems.  

 
With respect to policy, the situation is not likely to improve substantively without 

concerted and sustained federal efforts to make focused changes in teaching and curricula 
from elementary school forward, and efforts to change the ways in which teachers and future 
researchers are trained. There are many gaps in our current understanding of how students 
learn algebra and the preparation that is needed by the time they enter the algebra classroom. 
Funding to encourage scientists to enter research in this area is needed and to encourage the 
formation of research teams that will translate basic science findings into the design of 
instructional interventions to be assessed for effectiveness in the classroom.  

Classroom 
Teachers should not assume that all students understand even basic concepts, such as 

equality. Many students will not have a sufficient understanding of the commutative and 
distributive properties, exponents, and so forth to take full advantage of instruction in algebra.  

 
Many students will likely need extensive practice at basic transformations of 

algebraic equations and explanation as to why the transformations are done the way they are; 
for instance, to maintain mathematical equality across the two sides of the equation. 
Common errors, as illustrated in Figure 3, may provide an opportunity to discuss and 
remediate overgeneralizations or misconceptions. 

 
The combination of explanation of problem-solving steps combined with associated 

concepts is critically important for students to effectively solve word problems. For both 
equations and word problems, it is important that students correctly solve problems before 
given seatwork or homework. If students are making mistakes, then there may be a risk they 
will continue to make these errors and thus practice them during seatwork or homework.  

Training 
Teachers. Teachers should understand how students learn to solve equations and word 

problems and causes of common errors and conceptual misunderstandings. This training will 
better prepare them for dealing with the deficiencies students bring to the classroom and for 
anticipating and responding to procedural and conceptual errors during instruction.  

 
Future researchers. To implement the recommendations that follow, the next 

generation of researchers to study algebra learning will need multidisciplinary training in 
mathematics, experimental cognitive psychology, and education. This can be achieved 
through interdisciplinary doctoral programs or at a federal level postdoctoral fellowships that 
involve work across these disciplines. 
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Curriculum 
There are aspects of many, if not all, current textbook series in the United States 

that contribute to the poor preparation and background of algebra students. Modifying 
textbooks so that operations (arithmetical and algebraic) are presented on both sides of the 
equation, not just the typical operate-equals-answer format, is just one example of how 
textbooks can be improved.  

 
The use of worked-out examples that include conceptual explanation, procedural 

steps, and multiple examples holds promise for teaching students to solve common classes 
of problems. 

 
Retention of algebraic skills into adulthood requires repeated exposure that is 

distributed over time. This occurs as core procedures and concepts are encountered across 
grades. In much of mathematics, distributed practice should naturally occur as students 
progress to more complex topics. However, if basic skills are not well learned and 
understood, the natural progression to complex topics is impeded. This is because students 
will continue to make (and potentially practice) mistakes. As an example, procedures for 
transforming simple linear equations are embedded in more complex equations and thereby 
practiced as students solve them. The practice will not be effective, however, if students 
incorrectly transform basic equations, as they often do.  

Research 
Basic. The development of assessment measures that teachers can use to identify core 

deficiencies in arithmetic (whole number, fractions, and decimals), and likely sources of 
procedural and conceptual errors in algebra are needed. The early work of Birenbaum and 
colleagues appears promising in this regard.  

 
Research that explicitly explores the relation between conceptual understanding and 

procedural skills in solving algebraic equations is needed. Research on how student’s solve 
linear equations and where and why they make mistakes needs to be extended to more 
complex equations and other Major Topics of School Algebra identified by the Conceptual 
Skills and Knowledge Task Group.  

 
The issue of transfer, that is, the ability to use skills learned to solve one type or class 

of problem to solve another type or class of problem, needs considerable attention. Of 
particular importance is determining the parameters that impede or facilitate transfer, as 
illustrated by the work of Reed and Sweller.  

 
Research on instructional methods that will reduce the working memory demands 

associated with learning algebra is needed. Although there are individual differences in 
working memory capacity, aspects of instruction (e.g., using faded worked examples) may be 
modifiable in ways that reduce working memory demands. Instructional or curricular 
changes that reduce working memory demands appear to provide students with an enhanced 
potential to learn the procedure or concept that is the focus of instruction.   
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Longitudinal research is needed to identify the early (e.g., kindergarten, first-grade) 
predictors of later success in algebra.  

 
Classroom. A mechanism for fostering translation of basic research findings into 

potential classroom practices and for scientifically assessing their effectiveness in the 
classroom is needed. Cognitive tutors for algebra illustrate how this can be achieved. Equally 
important, mechanisms for reducing the lag time between basic findings and assessment in 
classroom settings need to be developed. 

E. Differences Among Individuals and Groups 

1. Sex Differences 

For large, nationally representative samples, the average mathematics scores of boys 
and girls are very similar; when differences are found, they are small and typically favor boys 
(Appendix C). However, there are consistently more boys than girls at the low and high ends 
of mathematical performance (Hedges et al., 1995). The overrepresentation of boys at the 
high end of mathematical performance has garnered considerable media attention and debate, 
but it has obscured the fact that average differences are small, if they are found at all, and has 
been a distraction from the goal of improving the mathematical competencies of both boys 
and girls. 

 
An overview of sex differences in overall performance across a variety of national 

and international data sets is presented in Appendix C. Mean differences often favor boys but 
are small, with effect sizes ranging from -01 to .16. In adulthood, men have a small 
advantage on measures of quantitative literacy, but this gap has narrowed since 1992 (d = .21 
in 1993, d = .11 in 2003). These results are consistent with similar analyses (Hedges & 
Nowell, 1995) and with meta-analyses that include smaller-scale studies (Hyde, Fennema, & 
Lamon, 1990). The magnitude of the gap may have diminished, but any such changes have 
not been consistent across grades or tests (Nowell & Hedges, 1998). More consistent sex 
differences have been found for some measures and for more select samples. As an example 
and as recently reviewed by Halpern et al. (2007), the male advantage (d ~ .40) on the SAT 
mathematics test has been remarkably stable during the past 40 years.  

 
Differences are also consistently found at the low and high ends of performance, with 

more boys than girls at these extremes (Hedges & Nowell, 1995; Strand & Deary, 2006). In a 
large-scale prospective study (see section on Learning Disabilities later in this report), 
Barbaresi et al. (2005) found that about two boys for every girl met one or several diagnostic 
criteria for a learning disability in mathematics sometime before the end of high school. The 
ratio of boys to girls at the high end tends to increase as the cutoff becomes more selective. 
Across multiple national studies, Nowell and Hedges (1998) found the ratio of boys to girls 
in the top 10% of mathematics scores ranged from 1.3:1 to 2.5:1. In these same studies, the 
ratio of boys to girls in the top 1% ranged from 2.6:1 to 5.7:1. Differences at the extremes 
begin to emerge in elementary school (Mills, Ablard, & Stumpf, 1993) and possibly before 
kindergarten (Robinson, Abbott, Berninger, & Busse, 1996), and in past decades has been 
quite large in mathematically talented adolescents (Benbow & Stanley, 1983).  
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Because the mean differences on mathematics measures are not large, and because 
several recent books and reviews have discussed potential mechanisms underlying 
differences at the high end of the distribution (Ceci & Williams, 2007; Gallagher & 
Kaufman, 2005; Halpern et al., 2007), the Task Group does not provide an extensive review 
of these mechanisms. The Task Group notes that the differences in the ratio of boys to girls 
and men to women at the high end of mathematical performance is likely to be related to a 
combination of factors, including stereotypes and beliefs regarding the mathematical abilities 
of boys and girls; the advantage of boys and men in some forms of spatial cognition (these 
differences can be reduced with practice on spatial tasks; Terlecki, Newcombe, & Little, in 
press); greater interest of boys and men in abstract, theoretical occupations and activities; 
and, the typically greater variability of boys and men in many cognitive domains (for a 
review of the evidence see Halpern et al.). Additional studies that simultaneously assess all of 
these potential mechanisms are needed to determine the relative importance of each of them.    

 
2. Race and Ethnicity 

One explicit charge to the National Mathematics Advisory Panel is to determine the 
processes by which students from diverse backgrounds learn mathematics. It is widely 
documented that black and Hispanic students perform substantially less well in our nation’s 
schools than their white and Asian counterparts. These achievement and attainment gaps are 
found across a host of schooling indexes, including grade point average; performance on 
district, state, and national achievement tests; rigorous course-taking; as well as, across 
behavioral indicators such as school drop-out, suspension and referral rates, and differential 
placements in special education, and programs for the talented and gifted.  

 
a. The Achievement Gap 

As documented in Appendix D and elsewhere, the mathematics performance gap is 
found from preschool to college (Ryan & Ryan, 2005), and across the full range of 
mathematical content areas. Even early on it tends to be manifested more on measures of 
mathematical concepts than on measures of mathematical computation (U.S. Department of 
Education, 2006; Hall, Davis, Bolen, & Chea, 1999).  

 
It is instructive to examine mathematics performance differences for high schools that 

serve white, black and Hispanic students together. Byrnes (2003) has done so by analyzing 
NAEP outcomes. Results from this national data base show that, overall, these mixed race 
schools (and that had at least one student scoring above the 80th percentile in mathematics), 
enrolled 79%, 13%, and 8% white, black and Hispanic students respectively. Yet, among the 
students who scored at or above the 80th percentile in mathematics, 94% were white, whereas 
only 3% were black and 3% were Latino. Representing these numbers somewhat differently, 
26% of the white students enrolled in these schools performed at or above the 80th percentile, 
as compared to only 7% of their black and Hispanic peers. White students were almost four 
times more likely than black and Hispanic students to reach this performance level.        

 
Hughes (2003) found mathematics performance differences when comparing third-

grade black and white students attending schools in a generally affluent school district. 
Specifically, differences were found even in the midst of a wealth of material and human 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-92 

resources available to black and white students. Elsewhere, Schmidt (2003) showed a black-
white difference in performance on the TIMSS even when controlling for socioeconomic 
status (SES), and Nettles (2000) has reported a 100-150 point difference on the SAT that 
holds up across all income levels. 

 
Defying easy explanation, in particular, are data from the most recent NAEP tests. 

Using average main NAEP mathematics scores for eighth-graders broken down by race and 
parents’ highest level of education, it was found that 23 scale points separated black and 
white test scores for students whose parents did not finish high school. Yet, white scores 
were 37 scale points higher than black scores for students whose parents graduated from 
college. The pattern is similar for white-Hispanic test score differences. The gap favoring 
white students was 9 scale points for students whose parents did not finish high school but 22 
scale points for children of college graduates. For 12th-graders, the white-black difference 
was 16 scale points for students of parents who did not finish high school; this difference 
jumped to 37 scale points for students whose parents were college graduates. The respective 
Hispanic-white differences were 8 and 22 scale points.  

 
It seems that whatever explanations are offered for these patterns, they cannot simply 

be reduced to a focus on social standing or SES (to the extent that parents’ education level is 
a marker for SES). The findings defy this straightforward explanation. 

 
Attempts to close these achievement gaps should be done in ways that raise 

achievement for all students, while simultaneously raising levels at a steeper rate for black 
and Hispanic students. 

 
b. Potential Sources of the Achievement Gap 

In this section, the Task Group reviews research literature on potential explanations 
of why mathematics performance is comparatively low for black and Hispanic students, and 
potential approaches for raising their mathematics achievement levels.   

Socioeconomic status (SES) 
The conventional explanations for poor math performance for black and Hispanic 

students center on inadequate social experiences and learning opportunities linked to low 
socioeconomic status. Because black and Hispanic children are disproportionately poor, and 
because poor children perform less well, this then identifies the root cause of such 
performance deficiencies.  

 
SES is a generic construct that has had many definitions over the years, including 

family income, parental education, and occupational prestige, among others. As documented 
in Appendix E, whether SES is defined in terms of parental education, poverty level, parental 
income, or a composite index, there is a consistent association between SES and mathematics 
achievement. The mechanisms linking these broad constructs to mathematical learning and 
achievement are not well understood, nor are the relationships among SES, ethnicity, and 
mathematics learning.  
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With respect to the latter issue, the findings are inconsistent. Stevenson, Chen, and 
Utal (1990) found that white-Hispanic-black differences on mathematics curriculum tests 
essentially disappeared when controlling for parental education and income level among 
fifth-grade but not third-grade students; yet, differences remained for reading scores across 
both grade levels. They also found that black and Hispanic mothers rated their children’s 
performance in mathematics as more important than did white mothers. Schultz (1993) found 
that SES was a major predictor of mathematics performance for fourth- to sixth-grade black 
and Hispanic students from urban school districts.  

 
Stewart (2006) focused on results obtained across multiple administrations of the 

National Education Longitudinal Study of 1988 (NELS:88) data set and found that among 
black secondary level students, the presence of household educational resources common in 
higher SES households, such as books, encyclopedias, and computers, predicted combined 
mathematics and science performance, in the 12th-grade.  For these students, neither family 
income nor parental educational level was directly related to mathematics and science 
achievement. Hall et al. (1999) found that fifth- to eighth-graders’ performance on the 
mathematics concepts and computations sections of the California Achievement Test was 
correlated with parental background (a measure which included but was not limited to 
highest level of formal education and highest math course taken) for white students but not 
for black students.   

 
In another analysis of the NELS:88 data, Thomas (1999) found that both home-based 

and school-based factors predicted performance outcomes across ethnic groups. When 
controlling for school-based and home-based factors, the mathematics performance gaps 
across white, black, and Hispanic students diminished substantially. A similar result was 
obtained in a study by Byrnes (2003). Drawing on the NAEP for 12th-graders, classroom 
experiences and learning opportunity factors accounted for more of the variance in 
mathematics scores across white, black, and Hispanic students than did SES. After 
statistically controlling for differences in parental background and school-based factors, the 
performance gap among these groups was substantially reduced.  

Are learning processes among ethnic groups similar or different? 
The weight of evidence supports the conclusion that learning processes are more 

similar than different across ethnic groups. This is not to say that there are no differences in 
how children from different ethnic groups approach the learning of mathematics, but rather 
that there are many similarities. 

 
Thomas (1999), for example, found that the configuration of variables that predict 

mathematics achievement for white, black, Hispanic, and Asian 10th-graders are generally the 
same. Stevens, Olivarez, Lan, and Tallent-Runnels (2004) also found that the same 
constellation of predictors of mathematics achievement generally held for white and Hispanic 
high school students. This result was essentially duplicated by Stevens and his colleagues 
(Stevens et al., 2006) in a study of Hispanic and white students from 4th through 10th grade. 
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In a more process-oriented study, Malloy and Jones (1998) found that the 
spontaneous approaches to mathematics problem solving that emerged in a sample of middle-
class black eighth-graders were highly similar to those found in studies of white students. 
Similar results have been reported by Kuhn and Pease (2006) and Rhymer, Henington, 
Skinner, and Looby (1999).  

 
c. Potential Cognitive and Social Influences 

The literature focusing on cognitive and social influences on the mathematics 
learning and performance of black and Hispanic students does not have a sufficient number 
of experimental studies to provide definitive results. Much of the research in this area is 
correlational, but many studies have nonetheless incorporated sophisticated multivariate 
analyses that can be used to control for potential confounding variables and to provide at 
least weak tests of potential “causal pathways.” 

 
Many of these studies have drawn on national secondary data sets rather than on 

primary data. The advantages are large samples with results that can be generalized across 
the nation. The disadvantages include greater reliance on self-report data and constructs 
based on these data that are often formulated in a post hoc fashion, and thus may not measure 
the potential mechanism as precisely as is possible in an experimental study. Further, many 
of the studies have not formulated hypotheses about specific social or cognitive mechanisms, 
nor about whether there are racial or ethnic differences on mechanisms that can be changed 
in ways that help to close the performance gap.  

 
Nevertheless, in recent years several hypothesized conceptions and processes have shown 

promise with respect to explaining and potentially narrowing ethnic differences in mathematics 
performance. Prominent among these are 1) stereotype threat; 2) cognitive load; 3) engagement, 
effort, and efficacy; 4) strategy use; 5) constructive and supportive academic interactions; 6) 
collaborative learning; and 7) culturally and socially meaningful learning contexts.  

Stereotype threat 
In the last decade, there has been increasing research attention given to the concept of 

stereotype threat as a contributing factor to group differences under certain specified 
conditions. This conception, first offered by Steele (1992), and then elaborated by Steele 
(1997), and Steele and Aronson (1995, 1998), hypothesizes that groups can be subjected to 
societal stereotypes that stigmatize their ability to perform in certain domains. For historical 
and sociological reasons, blacks have been viewed in the United States as having low 
intellectual ability and women as having low mathematical ability. These perceptions are 
particularly vexing because often attached to them is the presumption that the diminished 
ability is inherent and thus an unalterable characteristic of the group. When placed in a 
relevant performance setting, members of the stigmatized group are vulnerable to performing 
below their potential because of anxiety about upholding the negative stereotype.   
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Relation to ethnic differences in mathematics performance 
Stereotype threat is a promising conception that has offered plausible explanations for 

certain group differences in academic performance. Unlike many other hypotheses in this 
area, stereotype threat has been investigated using experimental methods, giving greater 
confidence in results that confirm this hypothesis. Yet, there are limitations that temper 
claims that this concept can account for ethnic differences in mathematics performance 
among school-aged children and youths.  

 
First, much of the research on stereotype threat and mathematics performance has 

focused on gender differences rather than on race or ethnicity differences. The study of 
stereotype threat in black and Hispanic samples has focused on general academic ability or 
intelligence; hence, the outcome measures for ethnic minority samples have typically been 
more general academic or test-performance related and not mathematics learning per se.  

 
Second, the preponderance of the most rigorously executed research on stereotype threat 

has been done with college students. This is an important factor because the effects of stereotype 
threat are predicted to be more evident among group members who have a great investment in 
doing well and are typically high performers to begin with. In other words, a preoccupation with 
performance under stereotype-threat conditions is only predicted to affect performance when 
students are concerned about doing well on the task; students who are not invested in learning 
mathematics may not be influenced by any stereotype that involves mathematics.  

 
As a result, there is not a sufficient research base testing the potential influence of 

stereotype threat in school-aged populations or focusing on mathematics performance of 
black and Hispanic students. Theoretically (as explained in the next section), it is unclear 
whether stereotype threat for mathematics can speak to the performance outcomes of black 
and Hispanic students who are not substantially invested in doing well in academic contexts. 
Nevertheless, studies addressing this issue are urgently needed.  

 
Potential mechanisms 
A recent study illustrates mechanisms that may link stereotype threat to performance 

outcomes. Keller (2007) investigated mathematics performance in a sample of 108 secondary 
level students in Germany (race was not specified, but they are presumably largely white). 
The students were randomly assigned to a stereotype threat or a no threat condition. 
Mathematics tasks were either difficult or easy. Those assigned to the threat condition were 
told in advance that for the mathematics tasks they were about to perform, gender differences 
in achievement had been found. The students in the no-threat condition were told gender 
differences had not been obtained. Further, the extent of identification with doing well in 
mathematics was assessed for all participants. Girls who value doing well in math and who 
were placed in the threat condition had larger decreases in mathematics task performance, 
from a pre-established baseline, when they worked on more difficult items. For difficult 
items, girls who did not value doing well in math performed better under the threat condition 
than under the nonthreat condition. There were no effects for the easy items. A similar result 
with a college student sample was obtained in an experiment by Beilock et al. (2007).  
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Ryan and Ryan (2005) offered a conceptual model for the processes underlying how 
stereotype threat influences quality of academic performance. When the conditions of 
stereotype threat are present—for individuals in which the domain is of importance to them 
and a negative stereotype exists—reminding the individual of the stereotype results in 
performance avoidance goals.  These in turn result in heightened anxiety and lowered self-
efficacy. As with mathematics anxiety, heightened anxiety under these conditions can result 
in thoughts about competence intruding into working memory, which functionally lowers this 
core capacity. Poor self-efficacy can result in diminished effort when problems become 
difficult. Although no study to date has tested the full model proposed by Ryan and Ryan, 
recent research has confirmed that each of these processes individually is linked to lowered 
performance outcomes in the face of stereotype threat.  

 
Consider the work of Smith, Sansone, and White (2007) involving a sample of white 

college females. They found that in the presence of a salient stereotype threat, participants who 
were high on achievement motivation were more likely to spontaneously adopt performance 
avoidance goals when working on a mathematics task than were students who were not high in 
achievement motivation. Schmader and Johns (2003) provided evidence consistent with the 
hypothesis that stereotype threat interferes with mathematics performance by reducing 
individuals’ working memory capacity. In this investigation, white men did better than white 
women on a mathematics task in a stereotype threat condition, and this difference was 
associated with reduced working memory resources for the women. No gender differences on 
the mathematics task or a working memory measure were found in a nonthreat control 
condition. Additional research revealed essentially the same pattern for Hispanic students.  

 
For a sample of undergraduate women, Beilock et al. (2007) extended the work of 

Schmader and Johns (2003) by using a mathematics task where the level of working memory 
demands could be manipulated. Women were assigned to either a threat or nonthreat condition 
and asked to solve high- and low-demand problems. For women in the threat condition, 
performance was particularly poor for high-demand problems. These women reported worries 
about the task and had thoughts about confirming the stereotype during problem solving; 
women in the nonthreat condition did not report these concerns. The authors reasoned that 
these thoughts and worries functionally reduced working memory capacity which resulted in 
worse performance on high-demand problems. These results confirm the hypothesis that threat 
can result in intrusive thoughts about confirming the stereotype—thoughts that in turn lower 
working memory capacity and thereby lower performance. 

 
Ryan and Ryan (2005) also hypothesized that anxiety could influence performance 

under conditions of stereotype threat, and there is some supporting evidence. The work of 
Osborne (2007) is notable in this regard. His research was also done with college students, 
but race of participants was not specified. Men and women were randomly assigned to either 
a threat or a nonthreat condition. For women, when using indexes of heightened anxiety, 
there were lowered levels of skin temperature, elevated levels of skin conductance, and 
heightened levels of diastolic blood pressure under the threat condition. No gender 
differences in physiological reactance occurred under the nonthreat condition. Moreover, 
women performed worse than men on the mathematics measure in the threat condition but 
not in the nonthreat condition. Ben-Zeev, Fein, and Inzlicht (2005) also found evidence for 
heightened arousal levels in women under conditions of stereotype threat. 
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Curiously few investigations have tested ways to alleviate the adverse influences of 
stereotype threat on performance. In one of the few studies that have done so, Beilock et al. 
(2007) found that extended practice on the difficult mathematics problems, which should 
make solving these problems more automatic and less dependent on working memory, 
eliminated the decrease in performance associated with stereotype threat.  

 
A study by Good, Aronson, and Inzlicht (2003) is unique in that they attempted to 

enhance performance for stereotyped groups through a systematic intervention for school-
aged children. This was a field experiment employing a sample of predominantly low-
income, predominantly ethnic-minority seventh-graders; 67% Hispanic, 13% black, and 20% 
white. For the treatment condition, these students were mentored across an academic year by 
college students who encouraged them to regard intelligence as pliable rather than fixed 
and/or to attribute academic difficulties in the seventh grade to the uniqueness of the 
academic setting; but mentors also explained that academic performances can be improved 
over time. A control group of students was provided information linked to an antidrug 
campaign. The outcome measure was performance on a statewide standardized test of 
mathematics and reading achievement. The results revealed that girls’ performance was 
substantially better in mathematics under the treatment condition than under the control 
condition. Boys performed essentially the same across conditions, with the exception of 
marginally significant (p < .06) better performance in the treatment condition (i.e., mentored) 
than the control condition. For reading, there was an overall main effect (across gender) for 
condition such that treatment students did better than control students.  

 
These are striking results, but in this investigation, stereotype threat was not directly 

manipulated. The findings are encouraging in that academic performance was significantly 
improved in groups that often are stereotyped as doing poorly on academic measures. Because 
of the design of the study, however, it is not known if the improved performance was due to 
alleviation of vulnerability to stereotype threat or to other factors such as increased effort.  

Cognitive load 
As the Task Group described in previous sections, there is considerable evidence that 

when the working memory system is overloaded, performance in many domains including 
mathematics suffers. Putting in place procedures to reduce this load can enhance performance. 
The Task Group has documented how task practice leads to more automatic processing and 
thus reduces the working memory demands of the task. In the previous section, it was reported 
that practice at a task reduced vulnerability to stereotype threat in a sample of college women. 
Interventions that reduce cognitive load should improve the performance of all students. It 
would seem to follow that interventions which improve working memory functioning for low-
achieving black and Hispanic students have high potential value.  

Engagement, effort, and self-efficacy 
In the earlier section in this report on Social, Affective and Motivational Influences 

on Learning, the Task Group reviewed work that indicated in general the positive influences 
that engagement, effort, and self-efficacy can have on mathematics performance. In 
reviewing research more specifically targeted to mathematics learning and performance of 
black and Hispanic students, the evidence strongly suggests that to the extent that such 
processes are positively manifested, mathematics performance can be improved. Findings in 
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support of this conclusion have been documented across the full kindergarten to 12th-grade 
spectrum. These factors are more likely to be linked directly, rather than indirectly (e.g., as 
indexed by SES), to mathematics performance, and account for much more variance in 
mathematics outcomes than do global family background factors. Moreover, these processes 
are substantially malleable and can be changed in learning and classroom settings.  

 
On the other hand, evidence suggests that important processes, such as effort devoted 

to school performance, are comparatively low for black and Hispanic students in traditional 
learning and classroom settings. The typical research investigating processes such as 
engagement, effort, and efficacy in black and Hispanic populations has not made use of 
experimental paradigms. These types of studies need to be conducted to determine how and 
why these processes influence mathematics learning and performance in ethnic minority 
populations, and how they can be improved in these populations. 

 
In recent years, research has documented that general motivation level is functionally 

linked to mathematics outcomes for black and Hispanic students. A recent study by Borman 
and Overman (2004) is a case in point. They set out to determine the factors that differentiate 
between academically successful and unsuccessful black, Hispanic, and white students from 
low-income backgrounds. They examined such students’ trajectory from third-grade to sixth-
grade performance using the Comprehensive Test of Basic Skills, Fourth Edition (CTBS/4) 
math scores from the Prospects national data set. This was a congressionally mandated study 
conducted between 1991 and 1994 as part of the federal evaluation of Title I at the elementary 
school level. The focus was students who performed comparably in the third grade but whose 
performance diverged substantially in the sixth grade. Students whose scores increased 
substantially were labeled resilient and those whose scores declined were termed nonresilient. 
The percentile ranks for the two groups were 39th and 38th respectively in third grade. In the 
sixth grade, the percentile ranks were 59th and 11th, respectively, for the resilient versus the 
nonresilient group. Students were polled each of the four years of the investigation on certain 
beliefs, attitudes, and practices pertaining to their schooling experiences, and for each factor, 
average ratings were calculated. One factor that distinguished the resilient from the 
nonresilient children was having a positive attitude toward school. 

 
In the previously cited Stewart (2006) study, the one factor that stood out as a 

predictor of combined mathematics and science achievement for the black students was 
general motivation level. This measure included items such as the importance of getting good 
grades and satisfaction from doing well in school. A similar result was obtained by Byrnes 
(2003) with 12th-grade black and Hispanic students, as well as white students. In a recent 
study, Balfanz and Byrnes (2006) found that self-reported effort emerged as a significant 
predictor of yearly gains in mathematics performance for black and Hispanic middle school 
students from an “urban background;” the gains were in terms of whether the students’ 
performance exceeded what would have been expected by average yearly grade-equivalent 
increments. This outcome, by implication, suggests that interventions such as the one 
described earlier (Blackwell et al., 2007) which focus on the importance and malleability of 
effort, have the potential to help reduce achievement differences in mathematics across racial 
and ethnic groups.  
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Sirin and Rogers-Sirin (2004) found that student engagement in school was among the 
two strongest correlates (among a host of variables) of combined math and English grades in a 
sample of middle class adolescent black students. Borman and Overman (2004) also found that 
student engagement differentiated between the academically successful and nonsuccessful 
students. In this investigation, student engagement was not a self-reported measured but instead 
was indexed by the extent to which teachers agreed that a student conveyed attitudes and 
manifested behaviors indicative of an interest in school work and a desire to learn.  

 
It is of interest that Borman and Overman (2004) also reported significant race 

differences for predictor variables. It was found that black students overall had substantially 
lower student engagement scores than did their white and Hispanic counterparts. However, 
the previously described experimental study by Blackwell et al. (2007) indicates that 
engagement scores can be raised for low-income minority students through certain targeted 
interventions. They deployed an intervention strategy similar to that used by Good et al. 
(2003). For a description of Blackwell et al., see the Goals and Beliefs About Learning 
section in this report.   

 
Self-efficacy has also been found to be an important correlate of mathematics 

achievement. In the Borman and Overman (2004) study, self-efficacy differentiated between 
resilient and nonresilient students. Elsewhere, Stevens et al. (2006) reported that across 4th to 
10th grade self-efficacy was a significant correlate of math achievement for Hispanic and 
white students (SES level was not reported). Similar findings have been obtained in many 
other recent studies; Navarro, Flores, and Worthington (2007) for Mexican-American 8th-
graders; Long, Monoi, Harper, Knoblauch, and Murphy (2007) for black low-income 8th- 
and 9th-graders; Stevens et al. (2004) for Hispanic and white 9th- and 10th-graders (41% of 
the sample were from low-income backgrounds); Byrnes (2003) for white, black, and 
Hispanic 12th-graders.  

 
Two studies have found that Hispanic students have lower-levels of self-efficacy, on 

average, than their counterparts from other ethnic groups. In the Borman and Overman 
(2004) study, Hispanic students had lower self-efficacy scores than did black or white 
students (d = .27), and in the Stevens et al. (2004) study, Mexican American students had 
lower mathematics self-efficacy than their white school counterparts (d = .25).  

 
These results, however, do not directly address the questions of the antecedents of 

self-efficacy and the factor(s) that can increase self-efficacy. At least two studies speak to 
these issues for ethnic minority populations. For a sample of black high school students, 
Gutman (2006) found that exposure to mastery goals in the classroom were associated with 
increased mathematics self-efficacy, as well as to higher mathematics grades. Similarly, 
students who espoused mastery goals had higher mathematics self-efficacy and higher 
mathematics course grades.  

 
In a related study, Fuchs et al. (1998) produced noteworthy results through an 

intervention experiment designed to heighten students’ mastery goal orientations. For the 
relevant part of this investigation, participants were second- to fourth-graders who began the 
school year at or near the bottom of their classes in mathematics performance; 78% of these 
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participants were black. The dependent variable was performance on a curriculum-based 
mathematics test at the end of the school year. Instruction focused on fostering mastery-
oriented beliefs through targeted activities across a full 17–18 weeks of the academic year. 
Over the course of the study, students were also provided opportunities to receive assessment 
feedback. Students were randomly assigned to one of three conditions: 1) mastery-focused 
plus assessment feedback, 2) assessment feedback only, and 3) a standard classroom 
instruction control condition. It was found that the mastery plus assessment treatment led to 
the highest end-of-year mathematics test scores, followed by the assessment only condition, 
whose participants in turn had higher scores than those receiving only the standard classroom 
instruction (for the mastery versus control difference, d = .94; for the mastery versus 
assessment feedback only difference, d = .42; and for the assessment feedback versus control 
difference, d = .43). 

Strategy use 
Studies of explicit instruction of problem-solving strategies indicate it is a potentially 

useful intervention for improving the mathematics achievement in racial and ethnic minority 
populations. Although strategy use has generally been understood to foster greater academic 
performance (e.g., Pressley and Woloshyn, 1995), much of this work has centered on reading 
performance. Of the many studies that have focused on mathematics, only a few have 
focused squarely on racial and ethnic minority populations.  

 
In a study of the correlates of mathematics performance, Schultz (1993) found that for 

black and Hispanic fourth- through sixth-graders, higher self-reported academic motivation 
(for which self-regulatory strategies figured prominently) was associated with higher 
mathematics achievement test scores. Malloy and Jones (1998) found that in comparing 
successful and unsuccessful mathematics problem solvers among their sample of black 
eighth-graders, the more successful students were more likely to use a mix of strategies and 
more often verified their procedures than their less successful peers. The less successful 
students often guessed. Examples of the strategies employed by the successful students were 
drawing diagrams, looking for patterns, or systematic guessing and checking. Among the 
verification procedures employed were rereading problems, checking calculations, or re-
doing the problems.  

 
Fuson, Smith, and Lo Cicero (1997) conducted a classroom based year-long 

intervention with first-grade Hispanic students from low-income backgrounds to determine if 
explicitly teaching certain strategies would improve their mathematics outcomes. 
Specifically, the children were taught to think of two-digit numbers as quantities of 10s and 
1s. By year’s end, these children could add and subtract two digit numbers with regrouping 
on par with similarly aged children in eastern Asian nations.  

Learning opportunities and constructive, supportive academic interactions 
At the heart of Walberg’s (1984) productivity model is the assumption that students 

will learn more if they are given more opportunities, more contact, and more exposure to 
settings where they can actually learn what is demanded, expected, or required of them. 
Correlational and quasi-experimental evidence supports this claim. There is also evidence 
that the broader settings in which the learning occurs can be important. Specifically, socially 
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supportive learning contexts are tied to enhanced academic performance (Patrick, Kaplan, & 
Ryan, 2007), and there is accumulating evidence that these contexts are particularly effective 
for black and Hispanic.  

 
With respect to learning opportunities, Byrnes’ (2003) earlier described study is 

especially telling. Byrnes used several opportunities to learn variables, along with key 
attitudinal variables. Among these variables were number of algebra and calculus courses 
taken; use of worksheets; and student attitudinal factors such as self-efficacy in relation to and 
liking of (taken together as a composite variable) mathematics, perceived utility of 
mathematics, and the perception that mathematics is more than just memorization. When 
comparing white versus black and Hispanic students who scored at or above the 80th 
percentile in mathematics performance on the NAEP tests, there were no differences across 
these variables.  

 
However when Byrnes (2003) compared black and Hispanic students who scored 

above the 80th percentile to black and Hispanic students who scored below this level, notable 
differences were found. Eighty-five percent of the minority students who scored above the 
80th percentile had taken courses beyond Algebra I, whereas only 47% of minority students 
who scored below the 80th percentile took these courses. Twenty-nine percent of those 
scoring above the 80th percentile had worksheets at least once a week versus 59% of those 
below the 80th percentile. Sixty-nine percent of those above the 80th percentile expressed 
self-efficacy for/ liking of mathematics, as compared to only 35% of those scoring below the 
80th percentile. Moreover, 75% of those scoring above the 80th percentile agreed that 
mathematics is more than just memorization, but this was found for only 25% of lower-
scoring students. In contrast, perceived utility of mathematics was not a differentiating factor 
in these comparisons. For that matter, it was not a predictor of mathematics outcomes in this 
study. Yet, courses beyond algebra, worksheet use, and math memorization were all 
significant predictors (self-efficacy and liking as significant predictors were discussed in a 
previous section). While these are correlational data where cause and effect cannot be 
determined, the study nevertheless reveals significant difference within black and Hispanic 
students in attitudes towards and views of mathematics.  

 
With respect to constructive and supportive social interactions, a qualitative study by 

Brand, Glasson, and Green (2006) deserves mention. They conducted in-depth interviews 
with five black students (four high school seniors and one college freshman) who were 
participating in a program designed to encourage them to become teachers. This is a highly 
selective program, in which students who finish high school are guaranteed four-year 
scholarships to college.  Among other things, students in the study were asked to describe 
their experiences in mathematics class. One central theme across students, in terms of school 
success, was having meaningful interactions with their teachers. This was taken to mean 
experiences that included having teachers who validated their capabilities, were accessible 
and approachable, were supportive, and held high expectations for them. 

 
These qualitative insights are consistent with empirical data from other investigations. 

Mooney and Thornton (1999) polled black and white seventh-graders from a range of SES 
backgrounds regarding their attributions for success in school. Although the relative 
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endorsement of the various attribution types was the same within race (for example, effort 
was most favored by both black and white students), cross-race comparisons revealed some 
important differences. White students, more so than their black counterparts, attributed 
success to a student’s own abilities. Black students, in contrast and to a much greater extent 
than white students, attributed success to rapport with their teachers. Also worth noting is a 
study by Casteel (1997) that asked the question, “Whom do you most want to please with 
your class work?”  Of the more than 1,600 black and white middle school respondents from 
diverse SES backgrounds, 71% of all black respondents answered “my teacher,” whereas 
only 30% of the white respondents answered in this way. The more common response from 
the white students was “my parents.” This pattern of results suggests that for many black 
students, they do not just learn from their teachers, but also they learn for their teachers.   

 
In a study focusing on low-income black students in 1st to 12th grades, Tucker and 

colleagues (2002) found that higher levels of classroom engagement were found when 
students reported that teachers were caring and interested in their doing well in school, and 
showed a personal interest in them. This teacher variable was the strongest predictor of 
student engagement in the study. In fact, the path analysis indicated that student engagement 
in class was directly related to this teacher factor; this pattern of findings had not been found 
in previous studies of white students. Other aspects of teacher behavior such as teacher 
structure—the extent teachers have fair and consistent consequences in response to student 
behavior, or provide clear feedback—influenced engagement only indirectly.   

 
Other studies demonstrate the connection between interpersonal academic context 

and mathematics performance. In the Borman and Overman (2004) study, another variable 
that differentiated resilient from nonresilient elementary students in their mathematics test 
performance was positive teacher-student interactions in the classroom.  

 
In a study of 12th-grade black students, Stewart (2006) found that a positive 

perception of the school environment (i.e., the perception that students get along well with 
teachers, have caring teachers, and teachers provide praise for good efforts) was a significant 
predictor of mathematics and science achievement. Elsewhere, Balfanz & Byrne (2006) report 
that the greater the number of “supportive classrooms” middle school black and Latino 
students participated in over time, the more likely the math performance gap would be closed 
between them and other racial/ethnic groups.  

 
These results are consistent with claims concerning importance of supportive social 

contexts, especially support provided by teachers, for the mathematics achievement of black 
and Hispanic students. However, definitive results await use of experimental tests of 
potential causal mechanism. One possibility is that these social contexts result in greater 
engagement and increased effort in the classroom and through this better mathematics 
achievement. Another possibility is that these contexts reduce stereotype threat effects, 
namely cognitive overload, increased anxiety, or the promotion of performance avoidance 
goals. Perhaps students from certain social or cultural backgrounds have been socialized such 
that they are more responsive to the combined power of the school and classroom context.  
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Research, however, has been gathered in recent years to suggest that the interpersonal 
relationships that do occur in classrooms serving low-income African American and Hispanic 
students are often not supportive and may result in disengagement. Ferguson’s (2003) 
research review and analyses are relevant to this point. He has gathered evidence that teacher 
expectations of future performance for black students are regularly more negative than they 
are for their white counterparts. Further, teacher perceptions and future expectations may 
affect future mathematics performance of black students, both positively and negatively, to a 
greater degree than that of white students. On the basis of data he had reported in 1998, 
Ferguson found that the relative influence of the teacher was nearly three times larger for 
black than white students in elementary school, whether the outcome was mathematics grades 
or mathematics achievement scores. In the Ferguson (1998) article, the data of interest 
examined the extent to which teacher perceptions of students’ “performance, talent, and 
effort” measured in the fall semester predicted students’ math achievement scores and math 
grades the following spring term (p. 286). The corresponding effect sizes for the prediction 
were .14 and .37 for white and black students, respectively, on the math achievement test, and 
.20 and .56, respectively, for mathematics grades.   

 
A recent meta-analysis provides further evidence concerning teacher expectations 

(Tenenbaum & Ruck, 2007). Their review covered research done between 1968 and 2003. 
The majority of these reviewed studies focused on elementary students only (approximately 
60%). The remainder included students at the secondary or university level, students across 
school levels, or in a few cases, unspecified sample characteristics. They found that teachers 
had more positive expectations for white than for black (d = .25) or Hispanic students (d = 
.46). Moreover, teachers directed more positive speech in the form of praise, affirmations, 
and positive feedback toward white than minority children. White students also received 
more product- and process-based questions, and therefore black and Hispanic students had 
fewer overall opportunities to respond academically in their classrooms. At the same time, 
the review did not reveal differences in the amount of negative speech directed at white, 
black, or Hispanic children. A study by Hauser-Cram, Sirin, and Stipek (2003) adds another 
dimension to this line of inquiry. They found that elementary school teachers held lower 
expectations for the future mathematics success of their current students to the extent that 
they perceived social and educational value differences between themselves and a student’s 
parents. Although the finding was marginally significant (p < .06), elementary school 
teachers also perceived the difference between themselves and parents to be larger for black 
parents than for white parents.  

Collaborative learning 
The available evidence suggests that when properly structured, generally speaking, 

collaboration for learning can have a positive influence on mathematics performance and 
may be relatively important for minority students, particular those from low-income 
backgrounds. This finding appears to be especially robust at the elementary school level. 
Research for or against the effectiveness of collaborative learning at the middle and high 
school level is generally absent from the literature. 
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Perhaps the best source to assess the effects of collaborative learning on mathematics 
outcomes in elementary school comes from a meta-analytic review conducted by Rohrbeck, 
Fantuzzo, Ginsburg-Block, and Miller (2003). They set certain conditions for inclusion of 
studies in their review. Among these criteria, there had to be ethnic group comparisons, 
explicit peer assistance with interdependent reward contingencies, and independent 
accountability or evaluation procedures. The latter two conditions were necessary because 
the extant literature on peer-assisted learning indicates these conditions are crucial to positive 
outcomes. Other qualifiers were that all studies had to appear in peer-reviewed journals, and 
had to have used experimental or quasi-experimental designs. Moreover, the interventions 
had to be classroom-based and occur for more than 1 week. Ninety studies published 
between the years 1966 and 2000 met these criteria.  

 
Overall, peer-assisted learning led to greater mathematics performance outcomes than 

did individual or competitively structured learning. But, the magnitude of these effects 
varied. Larger effects were found for: 1) urban versus rural and suburban settings, 2) low-
SES versus middle and higher SES, and 3) minority status (black and Hispanic) versus 
majority (white) status. The effect sizes were .44 and .23 for urban and suburban/rural 
locations, respectively. In the case of SES, the mean effect size was .45 when more than 50% 
of the sample was low SES, and .32 when less than 50 % of the sample size was low SES. 
For minority status, the mean effect size was .51 when more than 50 % of the sample was 
minority status (black and/or Hispanic) and .23 when less than 50 % of the sample size was 
of minority status.  The largest effect size was obtained for samples consisting of primarily 
black and/or Hispanic students, and the magnitude of the effect of collaborative learning on 
mathematics performance was largest when contrasting these ethnic minority children with 
their white counterparts.  

 
To illustrate the type of research assessed in this meta-analysis, consider a study 

conducted by Ginsburg-Block and Fantuzzo (1997). These researchers contrasted a 
reciprocal peer-tutoring dyad condition with a condition where students worked individually. 
The dyads met 2 times a week across a 10 week intervention period. The sample consisted of 
fourth- to sixth-grade black students from low-income backgrounds. For the reciprocal peer-
tutoring condition, the two students alternated between tutor and tutee. As the tutee answers 
test questions or performs a given task, the tutor prompts, provides feedback, and offers 
evaluative comments. The dyad work toward a common goal, that is, their reinforcement was 
contingent on the performance of both students. In this study, participants in the reciprocal 
peer-tutoring condition had higher mathematics classroom performance outcomes than those 
in the practice control condition; and they received higher ratings of teacher-observed task-
relevant behaviors during mathematics lessons. It was also found that these reported 
engagement levels were positively related to scores on a mathematics curriculum-based 
computation test. 

 
Socially and culturally meaningful learning contexts 
One final area with promising research is with respect to socially and culturally 

meaningful learning contexts. The goal is to better link what happens in school to experiences, 
values, and practices that are salient in the lives of black and Hispanic students (Perry, Steele, 
& Hillard, 2003; Ladson-Billings, 1997; Moll, Amanti, & Neff, 2005; Sternberg, 2006). Much 
of the actual scholarship done to establish such links has typically not brought systematic 
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empirical research to bear, and what empirical research that has been done, has most typically 
been linked to reading rather than math performance. There are a few exceptions, but even 
these have not used experimental methods or explored underlying processes that directly link 
social and cultural processes to academic outcomes. Yet, results from these few recent 
investigations indicate that this is an area of investigation that merits further study.   

 
A recent randomized field experiment by Cohen, Garcia, Apfel, and Master (2006) 

addressed the usefulness of linking school performance to matters of personal relevance for 
black students. The participants were black and white seventh-graders from middle- to lower-
middle-class backgrounds, and they all attended the same school. The authors describe their 
experimental treatment as a self-affirmation intervention. Early in the school year, students 
randomly assigned to this condition selected one or more of their most important values and 
then wrote brief paragraphs in which they justified why these values were chosen. The 
exercise was presented to the students as a normal lesson and took approximately 15 minutes 
to complete. After this exercise was completed, the teacher resumed the focal subject lesson. 
Students who had been randomly assigned to the “control” condition were asked to select one 
or more of the least personally important value(s) and write about why these values might be 
important to someone else. The same procedural protocol was followed for the control 
condition. Teachers themselves were blind to which students participated in what condition. 
Two parallel studies were conducted, separated by one year. In the first, students completed 
the exercise once; in the second, students completed the exercise twice in the fall semester. In 
the first, participants wrote about only one value; in the second they could choose up to three. 

 
For both studies, the first semester course grades of the black students in the 

treatment condition were significantly higher than those obtained for the black students who 
participated in the control condition. No treatment effect was obtained for the white students 
in either study. The black students in the treatment condition did even better than their black 
control group counterparts in other courses for which the treatment did not occur. For this 
investigation, the actual course subject in which the treatment was provided was not 
specified. But, given that the authors stated that the subject was not one linked to gender 
stereotype, it is very likely these were not mathematics classrooms.   

 
Although the Task Group noted earlier in the report concerns about sociocultural 

claims regarding learning, and specifically that many claims have not been scientifically 
evaluated, there are several studies from the sociocultural perspective that might provide 
insights for more fully interpreting some of the results described earlier.   

 
Another relevant approach has been to focus on cultural values or themes that may be 

more prominent in certain populations than in others and that may enhance learning and 
performance outcomes for these populations. One such theme is communalism (Boykin, 
1986; Boykin & Ellison, 1995), which has been hypothesized as being particularly prominent 
for many people of African descent, including African Americans. To be sure, there is no 
claim that all black people are communal or that communalism is a fixed trait of a given 
person or group of people. Rather, if this theme is more salient in the communities of blacks, 
then the corresponding social expectations may influence how children interpret and perform 
in school settings (Boykin & Allen, 2004).  
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Communalism as a cultural theme implies that a premium is placed on collaborative 
interdependence. If this is salient for many black Americans, then this could be one factor 
potentially contributing to the receptiveness to collaborative learning for black students 
described in the previous section. Moreover, if communalism is a culturally meaningful 
theme, then performance enhancements in group settings would occur even in the absence of 
individual incentives to perform well in collaborative settings, as found with reciprocal peer 
tutoring. This hypothesis has been tested in several experimental investigations, but only in a 
handful that have used mathematics achievement as an outcome variable.  

 
One such experiment was conducted by Hurley, Boykin and Allen (2005). In this 

study, fifth-grade black children from low-income backgrounds were given opportunities to 
learn effective strategies for solving mathematics estimation problems, and then to examine 
their subsequent performance on a mathematics estimation test. Students were randomly 
assigned to one of two conditions. In one condition, and after completing a 15-item 
mathematics estimation pretest that used grade-appropriate multiplication problems, children 
were given a 20-minute practice exercise in which they had to complete a workbook to help 
them become more facile with mathematics estimation. During the learning/practice phase, 
these students were encouraged to work alone and prompted to exercise their individual 
effort and autonomy. They were also offered a reward if their posttest performance reached a 
certain criterion level. This was the individual learning condition. The other children were 
assigned to the communal condition. After the pretest, these children were formed into 
groups of three and given a prompt during the learning phase. The prompt emphasized the 
importance of working together for the good of the group so that everyone in the group could 
benefit and learn that it is important to help each other. These children were not offered a 
reward for good performance. They were told to work together but not told how to work 
together. It was reasoned that if interdependence were a salient theme for them, they would 
not need external incentives to do well, nor would they require explicit instructions on how to 
work together. Participants in both conditions worked on the follow-up 15-item mathematics 
estimation posttest on an individual basis. Results revealed that performance on the posttest 
was superior for those who had worked in the communal learning condition (d = .56).  

 
This study had certain limitations, not the least of which was that the intervention 

only lasted for 20 minutes. However, results reported in a recent doctoral dissertation 
(Coleman, 2003) tentatively suggested that these effects can extend across a 4-week 
intervention done in conjunction with the actual classroom teaching of a fractions unit to 
third- and fourth-grade low-income black students. 

 
An intriguing study with an international comparison is also worth mentioning. 

Huntsinger, Jose, Fong-Ruey, and Wei-Di (1997) examined cultural differences in early 
mathematics learning among European Americans, second-generation Chinese Americans, 
and Chinese students residing in Taiwan. They sought to determine if there were differences 
in family practices related to mathematics and if any family differences were related to 
children’s mathematics outcomes in school. The focus was on children at the preschool and 
kindergarten levels.  Families from all three comparison groups were from middle-
class/professional backgrounds. It was found that Chinese Americans and Chinese families in 
Taiwan structured more daily time for homework or music practice and encouraged their 
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children to participate in mathematics-related activities more so than did the white parents. 
Chinese American parents, and to a lesser extent the Chinese parents in Taiwan, engaged in 
more direct, formal teaching of mathematics to their children than did white parents. 
Moreover, Chinese American and Chinese children in Taiwan performed better than white 
children on the Test of Early Mathematics Ability (TEMA-2). 

 
It was found that children who received more formal teaching at home and spent 

more time doing homework had higher mathematics test scores. Certainly this was a fairly 
small-scale study, with narrow SES backgrounds of the participants. Furthermore, it is not 
clear if the differences were actually due to cultural value factors, per se. But the implications 
for the importance of family organization of children’s activities, as it relates to mathematics 
outcomes, is relevant to the Task Group’s review of group differences in the mathematics 
competencies children bring to school.  

 
3. Learning Disabilities 

At least 5% of students will experience a significant mathematics learning disability 
(MLD) before completing high school, and many more children will show learning 
difficulties in specific mathematical content areas. Intervention studies are in the early stages 
and should be a focus of future research efforts. Further research also is needed to identify 
the sources of MLD and learning difficulties in the areas of fractions, geometry, and algebra.  

 
The issues of diagnostic criteria and the percentage of children with an MLD remain 

to be fully resolved. Change in the stringency of the diagnostic criteria (e.g., cutoff on a 
mathematics achievement test) used to diagnose MLD can significantly influence the pattern 
of identified deficits and explains some differences in results across studies (Murphy, 
Mazzocco, Hanich, & Early, 2007). Nevertheless, progress has been made in the past decade. 
Using a population-based birth cohort sample that provided medical, academic, and other 
information on 5,718 individuals from birth to age 19 years, Barbaresi et al. (2005) assessed 
the incidence of MLD using different diagnostic criteria. On the basis of the two criteria that 
involved at least a one standard-deviation difference between an intelligence quotient (IQ) 
score and a math achievement score, 6% to 10% of children showed evidence of MLD before 
they completed high school (the potential relations among IQ, mathematics learning, and 
MLD are not yet known and thus control of IQ is important). An additional 6% of children 
were diagnosed as MLD using a more lenient criterion. The two discrepancy-based criteria 
yielded estimates similar to the 5% to 8% of children estimated as having MLD in previous 
studies (Badian, 1983; Kosc, 1974; Gross-Tsur, Manor, & Shalev, 1996; Ostad, 1998; 
Shalev, Manor, & Gross-Tsur, 2005). In one of these studies, Shalev and colleagues 
identified 5% of 3,029 5th-graders as having MLD and found that 40% of these children 
remained at or below the 5th percentile in math achievement in 11th grade. Almost all of the 
remaining children were in the lowest quartile in math achievement, despite average IQ 
scores, and most would have been diagnosed as MLD using at least one of the Barbaresi et 
al. criteria. The pattern across studies suggests that 5% to 10% of children will meet at least 
one relatively strict criterion for MLD before reaching adulthood and at least another 5% 
might be diagnosed as MLD using more lenient criteria.  
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These large-scale studies are important for identifying the percentage of children who 
likely have some form of MLD. Although they do not provide detailed information on the 
nature of the underlying deficits in mathematics learning or in the cognitive mechanisms 
(e.g., working memory) that contribute to these deficits they are nonetheless informative 
regarding the early deficits of children with MLD and illustrate the usefulness of this 
approach for studying learning disabilities in other areas of mathematics.  

 
The cognitive and neuropsychological studies have revealed several sources of the 

poor early learning of arithmetic by children with MLD or other low-achieving children 
(Geary, 2004; Jordan et al., 2003; Ostad, 1998). The first involves delayed adoption of 
efficient counting procedures for problem solving and is manifest as frequent reliance on 
finger counting, infrequent use of the counting-on procedure, and frequent counting errors 
(Geary, 1990). The reliance on finger counting and the frequent counting errors are related to 
below-average working memory capacity. The delayed adoption of counting-on is related to a 
poor conceptual understanding of some counting concepts (Geary et al., 2004) and may also 
reflect a poor understanding of number and quantity per se (Butterworth & Reigosa, 2007). 
Many children with MLD eventually develop normal procedural competencies for solving 
simple arithmetic problems, although they usually do so several years after their peers. 

 
A second source of the low achievement of these children involves difficulties in the 

learning or retrieving of basic facts (Jordan & Montani, 1997; Russell & Ginsburg, 1984). This 
is not to say these children never correctly retrieve answers, but rather that they correctly 
retrieve basic facts less often; at times, they also generate different pattern of retrieval errors. 
Although not conclusive, evidence to date suggests two potential sources of these difficulties. 
The first involves the formation of long-term memory representations of basic facts, and the 
second involve interference during the retrieval process (Barrouillet, Fayol, & Lathuliére, 
1997; Geary, Hamson, & Hoard, 2000); interference is related to attentional and inhibitory 
control mechanisms of the central executive component of working memory. Whatever the 
source, short-term longitudinal and cross-sectional studies suggest that the difficulty in learning 
or retrieving basic facts is more persistent than the procedural delay (Jordan et al., 2003).  

 
The central executive component of working memory has also been implicated in the 

procedural delays of children with MLD (e.g., Geary et al., 2007; McLean & Hitch, 1999; 
Swanson, 1993; Swanson & Sachse-Lee, 2001), and their deficits in this core cognitive 
competency will almost certainly result in delayed learning in novel and complex mathematical 
topics. The two other core components of working memory—the phonological loop and 
visuospatial sketch pad—may also contribute to MLD but in more circumscribed ways.  

 
Butterworth and colleagues, however, have proposed that a poor “number sense” is the 

core deficit for children with MLD (Butterworth & Reigosa, 2007; Landerl et al., 2003). 
Number sense is defined in terms of the competencies that are evident in infants and young 
children and do not require formal schooling. These would involve, as an example, the ability 
to quickly subitize, or determine with a quick glance without counting that the quantity 
represented by ●● is less than that represented by ●●●. Deficits in these very fundamental 
areas would impede the learning of arithmetic in school. There is evidence consistent with the 
view that children with MLD have deficits in such areas, independent of any deficits in the 
central executive (e.g., Koontz & Berch, 1996; Jordan et al., 2003; Landerl et al.). 
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The studies of number sense deficits tend to include children often with average 
cognitive ability but with lower achievement, as evidenced by test scores, than is typical for 
research on MLD. It is possible that there are multiple forms of MLD. Central executive 
deficits would result in a broad range of deficits in mathematics and other areas. Deficits in 
the number sense system—potentially involving the intraparietal sulcus (see section on 
Brain Sciences and Mathematics Learning)—would be associated primarily with 
difficulties understanding quantity and, of course, with all of the mathematics dependent on 
this knowledge.   

 
Much less is known about MLDs in relation to learning other areas of arithmetic, and 

very little is known about the specific deficits associated with learning fractions, estimation, 
geometry, or algebra. The work that has been conducted suggests that children with MLD, and 
often more general learning disabilities, have difficulties with arithmetic algorithms (Russell 
& Ginsburg, 1984), quantitative estimation (Hanich, Jordan, Kaplan, & Dick, 2001), rationale 
numbers (Mazzocco & Devlin, in press), and with algebraic equations and word problems 
(Hutchinson, 1993; Ives, 2007). Further studies about learning disabilities and learning 
processes in these and related areas of mathematics are needed, as are studies of the 
underlying cognitive mechanisms (e.g., central executive component of working memory and 
basic number knowledge) and brain systems (e.g., areas of the prefrontal cortex that support 
working memory, and areas of the parietal cortex that support number-related processes and 
representations; see section on Brain Sciences and Mathematical Learning).  

 
The Task Group also notes that many students with MLD have comorbid reading 

disabilities or attentional difficulties. Whereas it is known that children with such multiple 
deficits have more difficulty learning in many areas of mathematics than do children with 
MLD and no other deficits, the sources of the comorbidity are not well understood.  

 
4. Gifted Students 

There are only a few cognitive studies of the sources of the accelerated learning of 
mathematically gifted students, but those that have been conducted suggest an enhanced 
ability to remember and process numerical and spatial information. Quasi-experimental and 
longitudinal studies consistently reveal that accelerated and demanding instruction is needed 
for these students to reach their full potential in mathematics. 

 
In most academic domains, gifted children achieve the same academic milestones as 

their more typical peers but do so at an earlier age (for reviews and discussion see Benbow & 
Lubinski, 1996; Siegler & Kotovsky, 1986). On the basis of this general pattern, 
intellectually or mathematically gifted children are predicted to learn arithmetic, fractions, 
algebra, and other areas of mathematics at an earlier age and in many cases with less 
exposure than other children. There are only a handful of cognitive studies of the processes 
that might underlie this accelerated learning in mathematics, and even in these studies, the 
criteria used to define giftedness has varied considerably (Dark & Benbow, 1990, 1991; 
Geary & Brown, 1991; Mills et al., 1993; Robinson et al., 1996; Swanson, 2006). 
Nonetheless, the results of these studies suggest an enhanced ability to retrieve spatial and 
numerical (but not verbal) information from long-term memory and an enhanced ability to 
manipulate these forms of information in working memory; the extent to which these 
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advantages are learned, inherent, or some combination is not known. Cognitive and 
developmental studies of children who show promise in the learning of mathematics are 
clearly needed to better understand the sources of their advantage and to better facilitate their 
long-term mathematical development.  

 
Even in the absence of detailed studies of cognitive processes, other forms of research 

on academically and mathematically gifted children and adolescents—as defined by 
performance on achievement and aptitude tests—reveal that acceleration, alone or in 
combination with curriculum differentiation, is a best practice for serving the academic needs 
of these students (Colangelo, Assouline, & Gross, 2004; Southern, Jones, & Stanley, 1993). 
It is an educational option that is most strongly supported by research (Benbow, 1991; 
Benbow & Stanley, 1996; Colangelo et al.; Kulik & Kulik, 1984). The underlying principle 
for educating gifted youth is “appropriate developmental placement,” or providing students 
with educational opportunities tailored to their rates of learning and level of competence 
(Benbow & Stanley; Colangelo et al.). In the words of Stanley (2000), the idea is to teach 
students “only what they don’t already know” (p. 216). Although multiple studies have been 
conducted on a variety of accelerative options, the Task Group can summarize the results 
easily: When differences are found, they favor accelerated programs over traditional 
instruction, regardless of the mode of acceleration (e.g., Swiatek & Benbow, 1991a, 1991b; 
The benefits of accelerated instruction remain evident, even 50 years later (Cronbach, 1996). 
Moreover, students who receive accelerated instruction in math are more likely to be 
pursuing science, technology, engineering, and math (STEM) careers in their mid-30s 
(Lubinski, Benbow, Shea, Eftekhari-Sanjani, & Halvorson, 2001; Swiatek & Benbow, 1991a, 
1991b). In addition, most students express satisfaction with their acceleration in both the 
short term and long term (Richardson & Benbow, 1990; Swiatek & Benbow, 1992). 

 
5. Conclusions and Recommendations 

Research efforts are needed in areas that assess the effectiveness of interventions 
designed to: 1) reduce the vulnerability of black and Hispanic students to negative stereotypes 
about their academic abilities, 2) functionally improve working memory capacity, and 3) 
provide explicit instruction on how to use strategies for effective and efficient problem solving.  

 
More experimental work is needed to specify the underlying processes that link task 

engagement and self-efficacy, and the mathematics outcomes for black and Hispanic 
students. Urgently needed are a scaling-up and experimental evaluation of the interventions 
that have been found to be effective in enhancing engagement and self-efficacy for black and 
Hispanic students.  

 
Intervention studies of students with MLD are in the early stages and should be a 

focus of future research efforts. Further research also is needed to identify the sources of 
MLD and learning difficulties in the areas of fractions, geometry, and algebra.  
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F. Brain Sciences and Mathematics Learning 

Brain sciences research has the potential to contribute to knowledge of mathematical 
learning and eventually educational practices. Nevertheless, attempts to connect research in 
the brain sciences to classroom teaching and student learning in mathematics are premature. 
Instructional programs in mathematics that claim to be based on brain sciences research 
remain to be validated.     

 
Although it is sometimes suggested that brain research should provide the scientific 

foundation for children’s education in mathematics and in other academic areas, it is too 
early to directly apply findings from studies of brain processes during mathematical 
reasoning to classroom teaching and learning. Yet promising research emerging from the 
field of cognitive neuroscience is permitting investigators to begin forging links between 
neurobiological functions and mathematical cognition. 

 
Most research making use of brain imaging and related techniques has focused on 

basic mental representations of number and quantity (Chochon, Cohen, van de Moortele, & 
Dehaene, 1999; Dehaene et al., 1999; Göbel, Calabria, Farné, & Rossetti, 2006; Halgren, 
Boujon, Clarke, Wang, & Chauvel, 2002; Kadosh et al., 2005; Pinel, Piazza, Le Bihan, & 
Dehaene, 2004; Temple & Posner, 1998; Vuilleumier, Ortigue, & Brugger, 2004; Zorzi et al., 
2002), with a few studies exploring problem solving in arithmetic (Gruber, Indefrey, 
Steinmetz, & Kleinschmidt, 2001; Rickard et al., 2000; Rivera et al., 2005) and simple 
algebra (Anderson, Qin, Sohn, Stenger, & Carter, 2003; Qin et al., 2003; Qin et al., 2004 ). In 
most of these studies, researchers have contrasted the brain regions activated when children 
(or adolescents) and adults solve the same arithmetic or algebra problems (Kawashima et al., 
2004; Qin et al., 2003; Qin et al., 2004; Rivera et al.); mapped changes in neural activity 
associated with practice at arithmetic (Delazer et al., 2003; Pauli et al., 1994); and 
differentiated the brain regions involved in arithmetic fact retrieval from those recruited for 
executing complex calculation procedures, such as regrouping in addition (Kong et al., 
2005). In other studies, researchers have compared brain activity when the same quantities 
are presented in different notations (e.g., 8 versus eight; Kadosh, Kadosh, Kaas, Henik, & 
Goebel, 2007; Piazza, Pinel, Bihan, & Dehaene, 2007). 

 
There is of course some variation across studies in the brain areas engaged when 

solving different types of mathematical problems—due to differences in experimental 
procedures and specific math problems presented across studies—but there are also 
intriguing consistencies. It has been repeatedly found that comparisons of number 
magnitudes (Pinel et al., 2004; Temple & Posner, 1998), quantitative estimation (Dehaene et 
al., 1999), use of a mental number line (Vuilleumier et al., 2004; Zorzi et al., 2002), and 
problem solving in arithmetic and algebra (Chochon et al., 1999; Qin et al., 2003; Rivera et 
al., 2005) activate several areas of the parietal cortex, including the bilateral intraparietal 
sulcus and angular gyrus. The intraparietal sulcus is also active when non-human animals 
engage in numerical activities (Sawamura, Shima, & Tanji, 2002; Thompson, Mayers, 
Robertson, & Patterson, 1970) and it has been proposed that a segment of this sulcus, 
particularly in the left hemisphere, may support an inherent number representational system 
(Dehaene et al., 2003). The evidence bearing on this last proposal, however, is mixed (Piazza 
et al., 2007; Shuman & Kanwisher, 2004; Simon & Rivera, 2007). 
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In all, researchers have used brain imaging and related methods to study the brain 
regions activated when children and adults solve arithmetic and simple algebra problems (Qin et 
al., 2003; Qin et al., 2004; Rivera et al., 2005), when the same individuals solve arithmetic 
problems at earlier and later points in learning (Delazer et al., 2003; Delazer et al., 2005), when 
individuals solve simple or more complex arithmetic problems (Dehaene et al., 1999; Kong et 
al., 2005), or when people solve arithmetic problems that involve different operations (Isheback 
et al., 2006). During the early phases of learning in childhood, numerical and arithmetical 
estimation and arithmetical problem solving generally engage the intraparietal sulcus of both 
hemispheres (Dehaene et al., 2003), as well as areas of the prefrontal cortex that support aspects 
of attentional control and working memory manipulations (Delazer et al., 2003; Menon, Rivera, 
White, Glover, & Reiss, 2000; Pauli et al., 1994). The execution of arithmetical procedures, 
such as regrouping in complex arithmetic, is also dependent on these prefrontal regions (Kong et 
al.). The evidence to date indicates that practice of simple (e.g., 2 !  5) and more complex (e.g., 
23 !  5) arithmetic results in changes in recruitment of the brain regions supporting these 
competencies; that is, on easier problems, there is a decreased involvement of the prefrontal and 
perhaps intraparietal regions and increased engagement of the angular gyrus, especially in the 
left hemisphere (Delazer et al., 2003; Pauli et al.; Rivera et al.; but see Rickard et al., 2000). 
There is not a sufficient number of studies with children of various ages and grades to draw 
strong conclusions about schooling and mathematical development, but the research that has 
been conducted thus far suggests a similar pattern, that is, decreased involvement of the 
prefrontal/working memory regions and increased involvement of the angular gyrus with 
increasing grade level and mathematical experience (Rivera et al.).  

 
This summary is an incomplete picture of schooling- and practice-related changes in 

brain functioning during mathematical learning. For example, Rivera et al.’s (2005) study 
also implicates other brain regions—such as the hippocampus which supports the formation 
of declarative memories—involved in the learning of basic arithmetic facts; Qin et al.’s 
(2003, 2004) studies suggest the parietal cortex in the adolescent brain may be more 
responsive than the same regions in the adult brain when individuals are learning to solve 
simple algebraic equations; Sohn et al.’s (2004) study suggests differences in the brain 
regions that contribute to success at solving algebraic word problems and algebraic 
equations; and, Ischebeck et al.’s (2006) results suggest that there may be differences in the 
network of posterior brain regions engaged during the learning of different arithmetical 
operations. The progress to date indicates that when combined with insights provided by 
cognitive research, brain imaging and related methodologies can provide unique and essential 
information on how children and adults learn mathematics. In coming years, these 
technologies will almost certainly help answer core questions associated with mathematical 
learning, such as the sources of learning disabilities and the effects of different forms of 
instruction on the acquisition of declarative, conceptual, and procedural competencies.  

 
1. Conclusions and Recommendations 

Brain sciences research has a unique potential for contributing to knowledge of 
mathematical learning and cognition, and eventually educational practices. Nevertheless, 
attempts to connect research in the brain sciences to classroom teaching and student learning 
in mathematics should not be made until instructional programs in mathematics based on 
brain sciences research are created and validated.     
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APPENDIX A: Literature Search Guidelines 

The goal of the literature search was to identify experimental, cognitive, or related 
studies of children’s mathematics learning in specific content areas (see key words). These 
involve measures of children’s learning, problem solving, or understanding that are more 
precisely defined (e.g., trial-by-trial assessment of problem solving strategy) than is typically 
found with psychometric measures (e.g., achievement tests). 

 
First search. This covered a designated set of core learning, cognition, and 

developmental journals: American Educational Research Journal; Child Development; 
Cognition; Cognition and Instruction; Cognitive Development; Cognitive Psychology; 
Cognitive Science; Current Directions in Psychological Sciences; Developmental 
Psychology; Developmental Review; Journal of Cognition and Development; Journal of 
Education Psychology; Journal of Experimental Child Psychology; Journal of Experimental 
Psychology, Learning, Memory and Cognition; Journal of Experimental Psychology: 
General; Journal of Memory and Language; Journal of Personality and Social Psychology; 
Learning and Individual Differences; Mathematical Cognition; Memory and Cognition; 
Nature; Psychological Bulletin; Psychological Review; Psychological Science; Review of 
Educational Research; Science. 

 
Second search. This covered other English-language, peer-reviewed journals that 

primarily publish empirical studies and are indexed in PsychInfo and Web of Science (Social 
Sciences Citation Index). 

 
Criteria for Inclusion 

• Published in English. 
• Participants are age 3 years to young adult. 
• Published in a peer-reviewed empirical journal, or a review of empirical research in 

books or annual reviews. 
• Experimental, quasi-experimental, or correlational methods. 
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APPENDIX B: Search Terms 

Search Terms Used in Literature Review 

Five Core topics: 
Learning and Cognition of:  
whole number arithmetic 
fractions 

estimation 
algebra 
geometry 

 
 

Specific Key Terms:  
 

  

arithmetic 
addition 
subtraction 
multiplication 
division 
base-10 
fraction 
number 
number line 
 
commutativity 
associativity 
place-value 
perimeter 
area 
volume  
linear equations 
function 
 

mathematical equality 
mathematical inequality 
ratio 
equation 
number sense 
ordinal 
cardinal 
 
variable 
set 
numerosity 
zero 
proportion 
proportional reasoning 
number comparison  
exponents 
radical 
 

arithmetic word problems 
algebra word problems 
fractions 
 
algorithm 
counting 
distributive property 
estimation 
integers 
magnitude comparison 
math anxiety 
mental arithmetic 
natural numbers 
numeracy 
part-whole relationships  
problem-size effect 
rational numbers 
real numbers 
regrouping 
subitizing 
transcoding 

math LD (learning 
disability) 

arithmetic LD  
dyscalculia 
 
math race 
math ethnicity 
math sex 
math gender 
math socioeconomic 

status 
math sociocultural 

background 
math gifted 
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APPENDIX C: Sex Differences 

The following tables and figures summarize the data on math performance by gender 
using data available on national samples. Data from the Trends in Math and Science Survey 
(TIMSS) illustrate the math performance of fourth- and eighth-graders. Data from the National 
Assessment of Educational Progress (NAEP) Long-Term Trend study illustrate performance 
between groups over the last 30 years. Data from the High School and Beyond (HS&B:80), 
National Education Longitudinal Study of 1988 (NELS:88), and Education Longitudinal Study 
of 2002 (ELS:2002) illustrate the math performance of 10th-grade students. Data from the 
National Adult Literacy Survey (NALS) and the National Assessment of Adult Literacy 
(NAAL) survey illustrate the quantitative literacy of adults. Data from the Program for 
International Student Assessment (PISA) illustrate the mathematics literacy and problem-
solving proficiency of 15-year-olds. To facilitate the interpretation of the various scores, a 
description of the test benchmarks and performance levels associated with each test is provided. 

National Assessment of Educational Progress 
Long-Term Trends: Mathematics Scores 

This section presents the long-term trends in NAEP mathematics scores. The goal is 
to describe the differences in performance between groups over the last 30 years and to 
describe how their scores have evolved over time. For each reporting group, results are 
presented in the form of the average scale score for intermittent years from 1978 to 2004 and 
the percent of students at each achievement level in 1978, 1999, and 2004.  

Methodology 

All data presented in this section were obtained from the NAEP Data Explorer.2 The 
Data Explorer allows users to create tables of results by custom combinations of reporting 
variables. The results can be reported in terms of mean score, percentage of students at or 
above performance levels, and score percentile.  

 
The Data Explorer also reports standard errors and can calculate the statistical 

significance of changes in a variable between years or between variables in the same year. 
The statistical significance of changes between variables over time (e.g., the score difference 
between girls and boys in 1978 versus the score difference between girls and boys in 2004) is 
taken either directly from the NAEP 2004 Trends in Academic Progress or estimated using 
the reported standard error provided by the Data Explorer. Only differences that are 
statistically significant beyond the 0.05 level are described in the text of this section. 

                                                
2 http://nces.ed.gov/nationsreportcard/naepdata. 
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Average Scale Scores and Performance Levels 

The NAEP long-term trend assessments are scored on a 0–500 point scale, but all 
average scale score charts presented here are ranged from 180–340 for consistency and best 
visibility of score differences. Charts of average scale scores are reconstructed to resemble 
the gap charts in NAEP 2004 Trends in Academic Progress. 

 
The following text was taken verbatim from the National Center for Education Statistics 

website, http://nces.ed.gov/nationsreportcard/ltt/performance-levels.asp in April 2007. 
 
More detailed information about what students know and can do in each 
subject area can be gained by examining their attainment of specific 
performance levels in each assessment year. This process of developing the 
performance-level descriptions is different from that used to develop 
achievement-level descriptions in the main NAEP reports. 
 
For each of the subject area scales, performance levels were set at 50-point 
increments from 150 through 350. The five performance levels—150, 200, 
250, 300, and 350—were then described in terms of the knowledge and skills 
likely to be demonstrated by students who reached each level. 
 
A “scale anchoring” process was used to define what it means to score in each 
of these levels. NAEP’s scale anchoring follows an empirical procedure 
whereby the scaled assessment results are analyzed to delineate sets of 
questions that discriminate between adjacent performance levels on the scales. 
To develop these descriptions, assessment questions were identified that 
students at a particular performance level were more likely to answer 
successfully than students at lower levels. The descriptions of what students 
know and can do at each level are based on these sets of questions. 
 
The guidelines used to select the questions were as follows: Students at a 
given level must have at least a specified probability of success with the 
questions (75 % for mathematics, 80 % for reading), while students at the next 
lower level have a much lower probability of success (that is, the difference in 
probabilities between adjacent levels must exceed 30 percent). For each 
curriculum area, subject-matter specialists examined these empirically 
selected question sets and used their professional judgment to characterize 
each level. The scale anchoring for mathematics trend reporting was based on 
the 1986 assessment. 
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The five performance levels are applicable at all three age groups, but only 
three performance levels are discussed for each age: levels 150, 200, and 250 
for age 9; levels 200, 250, and 300 for age 13; and levels 250, 300, and 350 
for age 17. These performance levels are the ones most likely to show 
significant change within an age across the assessment years and do not 
include the levels that nearly all or almost no students attained at a particular 
age in each year. 
 
The following description of each mathematics performance level was copied from 

http://nces.ed.gov/nationsreportcard/ltt/math-descriptions.asp in April 2007. 
 
Level 350: Multistep Problem Solving and Algebra 

Students at this level can apply a range of reasoning skills to solve multistep 

problems. They can solve routine problems involving fractions and percents, 
recognize properties of basic geometric figures, and work with exponents and square 
roots. They can solve a variety of two-step problems using variables, identify 
equivalent algebraic expressions, and solve linear equations and inequalities. They are 
developing an understanding of functions and coordinate systems. 
 
Level 300: Moderately Complex Procedures and Reasoning 

Students at this level are developing an understanding of number systems. They can 
compute with decimals, simple fractions, and commonly encountered percents. They 
can identify geometric figures, measure lengths and angles, and calculate areas of 
rectangles. These students are also able to interpret simple inequalities, evaluate 
formulas, and solve simple linear equations. They can find averages, make decisions 
based on information drawn from graphs, and use logical reasoning to solve 
problems. They are developing the skills to operate with signed numbers, exponents, 
and square roots. 
 
Level 250: Numerical Operations and Beginning Problem Solving 

Students at this level have an initial understanding of the four basic operations. 
They are able to apply whole number addition and subtraction skills to one-step word 
problems and money situations. In multiplication, they can find the product of a two-
digit and a one-digit number. They can also compare information from graphs and 
charts, and are developing an ability to analyze simple logical relations. 
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Level 200: Beginning Skills and Understandings 

Students at this level have considerable understanding of two-digit numbers. They 
can add two-digit numbers but are still developing an ability to regroup in subtraction. 
They know some basic multiplication and division facts, recognize relations among 
coins, can read information from charts and graphs, and use simple measurement 
instruments. They are developing some reasoning skills. 
 
Level 150: Simple Arithmetic Facts 

Students at this level know some basic addition and subtraction facts, and most can 

add two-digit numbers without regrouping. They recognize simple situations in 
which addition and subtraction apply. They also are developing rudimentary 
classification skills. 

 
Table C-1: Number of Students in Each NAEP Reporting Group, by Age, Gender, 
Race/Ethnicity, and Parents’ Level of Education: 1978, 1999, and 2004 
 Age 9 Age 13 Age 17 
Reporting Group/Year 1978 1999 2004 1978 1999 2004 1978 1999 2004 
Total 14800 6000 5200 24200 5900 5700 26800 3800 3800 
Male 7400 2940 2548 12100 2950 2736 13132 1824 1824 
Female 7400 3060 2652 12100 2950 2964 13668 1976 1976 
White 11692 4200 3068 19360 4189 3648 22244 2736 2584 
Black 2072 1080 728 3146 885 798 3216 570 456 
Hispanic 740 480 988 1452 590 912 1072 380 532 
Other   416   342   228 
Parents’ Level of Education          
Less than high school    2904 354 399 3484 266 342 
Graduated high school    7986 1239 1083 8844 76 722 
Some education after high school    3388 1003 855 4288 874 836 
Graduated college    6292 2832 2679 8576 1824 1786 
Unknown    3630 531 684 1340 1140 114 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

Note: Level of education is parents’ level of education and was not collected for 9-year-olds. 
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Figure C-1: Average NAEP Scale Scores by Gender, Age 9: Intermittent Years From 
1978–2004 

 
*Indicates score or gap is significantly different from 2004. 
+ 1996 was an exception to general trend of no gender gap in scores at age 9. 

Note: Data labels for male (above) and female (below). Between gender score differences (gaps) are shown in 
shaded boxes only for years in which the gap is statistically significant. Labeled gaps may not reflect labeled 
scores because of rounding. 

“Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and accommodated 
more students with disabilities. In order to maintain the long-term trend, test takers were randomly assigned to 
either the old test form, called the bridge assessment, or the modified test form. Results from the bridge 
assessment should be compared to results from assessments prior to 2004, while results from the modified 
assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the average scale score for 9-year-old boys and girls for each 
assessment since 1978. 

 
Discussion 

• In 2004, the average score for both boys and girls was higher than in any previous 
assessment. 

— The average score for 9-year-old boys increased by 10 points between 1999 
and 2004, going from 233 in 1999 to 243 in 2004. The average score for 
boys in 2004 was a 23 point increase from the average score of 220 in 1978. 

+ 
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— The average score for 9-year-old girls increased by 9 points between 1999 
and 2004, going from 231 in 1999 to 240 in 2004. The average score for 
girls in 2004 was a 23-point increase from the average score of 217 in 1978. 

 
• In general, there was no gender gap at age 9. The difference in average score for 

9-year-old boys and 9-year-old girls has not been significant in most years. 
— The one exception is 1996, when boys scored 4 points higher than girls on 

average. 
 

Figure C-2: Percent at NAEP Performance Levels by Gender, 9-Year-Olds: 1978, 1999, 
and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories (genders) may not be 
statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the percentage of 9-year-olds reaching each performance level 
by gender. The performance levels reported at age 9 are 150—Simple Arithmetic Facts, 
200—Beginning Skills and Understandings, and 250—Numerical Operations and Beginning 
Problem Solving.  
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Discussion 

• 9-year-old boys and girls reach similar performance levels. The differences in the 
percent of 9-year-old boys and 9-year-old girls reaching each performance level are 
not significant. 

• The percentage of 9-year-olds reaching the highest achievement level for this age 
group, at or above 250, has doubled since 1978 and has increased from approximately 
30% to 40% between 1999 and 2004.   

Figure C-3: Average NAEP Scale Scores by Gender, Age 13: Intermittent Years From 
1978–2004 

 
*Indicates score or gap is significantly different from 2004.  

Note: Data labels for male (above) and female (below). Between gender score differences (gaps) are shown in 
shaded boxes only for years in which the gap is statistically significant. Labeled gaps may not reflect labeled 
scores because of rounding. 

“Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and accommodated 
more students with disabilities. In order to maintain the long-term trend, test takers were randomly assigned to 
either the old test form, called the bridge assessment, or the modified test form. Results from the bridge 
assessment should be compared to results from assessments prior to 2004, while results from the modified 
assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the average scale score for 13-year-old boys and girls for each 
assessment since 1978. 
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Discussion 

• In 2004, the average score for both 13-year-old boys and 13-year-old girls was higher 
than in any previous assessment. 

— The average score for 13-year-old boys increased by 6 points between 1999 
and 2004, going from 277 in 1999 to 283 in 2004. The average score for 
boys in 2004 was a 19 point increase from the average score of 264 in 1978. 

 
— The average score for 13-year-old girls increased by 5 points between 1999 

and 2004, going from 274 in 1999 to 279 in 2004. The average score for 
girls in 2004 was a 14 point increase from the average score of 265 in 1978. 

 
• In general, there was no consistent gender gap at age 13. The difference in average 

score for 13-year-old boys and 13-year-old girls has not been significant in most years. 
— In 2004, 1996, and 1994 the average score for boys was 3 to 4 points 

higher than the average score for girls. 
 
Figure C-4: Percent at NAEP Performance Levels by Gender, 13-Year-Olds: 1978, 1999, 
and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories (genders) may not be 
statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 
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What Is This Indicator? 

This indicator presents the percentage of 13-year-olds reaching each performance 
level by gender in 1978, 1999, and 2004. The performance levels reported at age 13 are 
200—Beginning Skills and Understandings, 250—Numerical Operations and Beginning 
Problem Solving, and 300—Moderately Complex Procedures and Reasoning.  

 
Discussion 

• In 1999 and 2004, slightly more 13-year-old boys scored at or above 300 than did 13-
year-old girls. 

— In 1999 the gender gap at the 300 level was 4%, with 25% of boys and 
21% of girls performing at or above 300. 

— In 2004 the gender gap at the 300 level was 7%, with 33% of boys and 
26% of girls performing at or above 300. 

— The change in gender gap from 1999 to 2004 was not statistically 
significant. 

 
• The percentages of boys and girls scoring at or above 300 have increased since 1999 

and 1978.  
— The percentage of 13-year-old boys at or above 300 was 33% in 2004, 

which was 7% higher than in 1999 and 14% higher than in 1978. 
— The percentage of 13-year-old girls at of above 300 was 26% in 2004, 

which was 5% higher than in 1999 and 8% higher than in 1978. 
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Figure C-5: Average NAEP Scale Scores by Gender, Age 17: Intermittent Years From 
1978–2004 

 
*Indicates score or gap is significantly different from 2004.  

Note: Data labels for male (above) and female (below). Between gender score differences (gaps) are shown in 
shaded boxes only for years in which the gap is statistically significant. Labeled gaps may not reflect labeled 
scores because of rounding. 

“Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and accommodated 
more students with disabilities. In order to maintain the long-term trend, test takers were randomly assigned to 
either the old test form, called the bridge assessment, or the modified test form. Results from the bridge 
assessment should be compared to results from assessments prior to 2004, while results from the modified 
assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the average scale score for 17-year-old boys and girls for each 
assessment since 1978. 

 
Discussion 

• The average score for both girls and boys at age 17 has been flat since 1990, although 
average scores have increased slightly since 1978. 

— The average score for 17-year-old boys increased by four points from 304 
in 1978 to 308 in 2004. 
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— The average score for 17-year-old girls increased by eight points from 297 
in 1978 to 205 in 2004. 

• 17-year-old boys have consistently outscored 17-year-old girls on the long-term 
mathematics NAEP. 

— The gender gap for 17-year-olds in 2004 was three points and was not 
significantly different from previous years.  

 
Figure C-6: Percent at NAEP Performance Levels by Gender, 17-Year-Olds: 1978, 1999, 
and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories (genders) may not be 
statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the percentage of 17-year-olds reaching each performance 
level by gender. 

 
The performance levels reported at age 17 are 250—Numerical Operations and 

Beginning Problem Solving, 300—Moderately Complex Procedures and Reasoning, and 
350—Multistep Problem Solving and Algebra.  
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Discussion 

• In 1978 and 2004, slightly more 17-year-old boys scored at or above 350 than did 17-
year-old girls, but in 1999 gender differences were not significant. 

— The gender gap in 1978 was 5%; 10% of boys and 5% of girls scored at or 
above 350. 

— The gender gap in 2004 was 4%; 9% of boys and 5% of girls scored at or 
above 350. 

• The percentages of 17-year-old boys and girls at each performance level have, for the 
most part, not changed significantly between assessments.  

— The percentage of both girls and boys scoring at the 300 level was higher 
in 2004 than in 1978. The percentage of boys at the 300 level increased by 
9% to 52%, and the percentage of girls at the 300 level increased by 12% 
to 52%. 
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Trends in Math and Science Survey: TIMSS 

The TIMSS 2003 International Benchmarks of Mathematics Achievement are defined 
in Mullis et al. (2004, p. 63) as follows. 

Grade 8 

Advanced International Benchmark – 625 

Students can organize information, make generalizations, solve non-routine 

problems, and draw and justify conclusions from data. They can compute percent 
change and apply their knowledge of numeric and algebraic concepts and 
relationships to solve problems. Students can solve simultaneous linear equations and 
model simple situations algebraically. They can apply their knowledge of 
measurement and geometry in complex problem situations. They can interpret data 
from a variety of tables and graphs, including interpolation and extrapolation. 
 
High International Benchmark – 550 

Students can apply their understanding and knowledge in a wide variety of 

relatively complex situations. They can order, relate, and compute fractions and 
decimals to solve word problems, operate with negative integers, and solve multi-step 
word problems involving proportions with whole numbers. Students can solve simple 
algebraic problems including evaluating expressions, solving simultaneous linear 
equations, and using a formula to determine the value of a variable. Students can find 
areas and volumes of simple geometric shapes and use knowledge of geometric 
properties to solve problems. They can solve probability problems and interpret data 
in a variety of graphs and tables.  
 
Intermediate International Benchmark – 475 

Students can apply basic mathematical knowledge in straightforward situations. 
They can add, subtract, or multiply to solve one-step word problems involving whole 
numbers and decimals. They can identify representations of common fractions and 
relative sizes of fractions. They understand simple algebraic relationships and solve 
linear equations with one variable. They demonstrate understanding of properties of 
triangles and basic geometric concepts including symmetry and rotation. They 
recognize basic notions of probability. They can read and interpret graphs, tables, 
maps, and scales. 
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Low International Benchmark – 400 

Students have some basic mathematical knowledge. (Mullis et al., 2004, p. 62) 

Grade 4 

Advanced International Benchmark – 625 

Students can apply their understanding and knowledge in a wide variety of 

relatively complex situations. They demonstrate a developing understanding of 
fractions and decimals, and the relationship between them. They can select 
appropriate information to solve multi-step word problems involving proportions. 
They can formulate or select a rule for a relationship. They show understanding of 
area and can use measurement concepts to solve a variety of problems. They show 
some understanding of rotation. They can organize, interpret, and represent data to 
solve problems. 
 
High International Benchmark – 550 

Student can apply their knowledge and understanding to solve problems. Students 
can solve multi-step word problems involving addition, multiplication, and division. 
They can use their understanding of place value and simple fractions to solve 
problems. They can identify a number sentence that represents situations. Students 
show understanding of three-dimensional objects, how shapes can make other shapes, 
and simple transformation in a plane. They demonstrate a variety of measurement 
skills and can interpret and use data in tables and graphs to solve problems. 
 
Intermediate International Benchmark – 475 

Students can apply basic mathematical knowledge in straightforward situations. 
They can read, interpret, and use different representations of numbers. They can 
perform operations with three- and four-digit numbers and decimals. They can extend 
simple patterns. They are familiar with a range of two-dimensional shapes and read 
and interpret different representations of the same data. 
 
Low International Benchmark – 400 

Students have some basic mathematical knowledge. Students demonstrate an 
understanding of whole numbers and can do simple computations with them. They 
demonstrate familiarity with the basic properties of triangles and rectangles. They can 
read information from simple bar graphs.  
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Figure C-7: Average TIMSS Mathematical Scale Scores of U.S. 4th- and 8th-Graders,
by Sex: Various Years From 1995–2003

Note: TIMSS international benchmarks: Low 400, Intermediate 475,
High 550, Advanced 625

Source: Gonzales et al. (2004), Figures 1 and 2.

Standardized mean difference TIMSS, gender
4th grade 8th grade

1995 2003 1995 1999 2003
Boys-Girls 0.05 0.11 0.06 0.08 0.06
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Figure C-8: Average TIMSS Mathematical Scale Scores of U.S. 4th-Graders, by Sex, by 
Content Area: 2003 

 
Note: TIMSS international benchmarks: Low 400, Intermediate 475, High 550, Advanced 625 

Source: Mullis et al. (2003), Exhibit 3.3. 
 
Standardized mean difference TIMSS, content areas 4th grade 

 Number 
Patterns and 
Relationships Measurement Geometry Data 

Boys-Girls 0.09 0.06 0.14 0.02 0.06 

 
Figure C-9: Average TIMSS Mathematical Scale Scores of U.S. 8th-Graders, by Sex, by 
Content Area: 2003 

 
Note: TIMSS international benchmarks: Low 400, Intermediate 475, High 550, Advanced 625 

Source: Mullis et al. (2003), Exhibit 3.3. 
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High School and Beyond of 1980: HS&B:80 
National Education Longitudinal Study of 1988: NELS:88 

Education Longitudinal Study of 2002: ELS:2002  

The scores on the HS&B:80, NELS:88, and ELS:2002 are Item Response Theory 
(IRT) number-right scores on the NELS:88 1990 58-item scale. IRT estimates achievement 
based on patterns of correct, incorrect, and unanswered questions. “The IRT-estimated 
number-right score reflects an estimate of the number of these 58 items that an examinee 
would have answered correctly if he or she had taken all of the items that appeared on the 
multiform 1990 NELS:88 mathematics test. The score is the probability of a correct answer 
on each item, summed over the total mathematics 58-item pool” (Cahalan, Ingels, Burns, 
Planty, & Daniel, 2006, p.45). These scores are not directly translated into probability-of-
proficiency scores. However, five probability-of-proficiency scores in mathematics were 
estimated for students using performance on clusters of four items each as follows:  

Probability of Mastery, Mathematics Levels 

1) Simple arithmetical operations on whole numbers, such as simple arithmetic 
expressions involving multiplication or division of integers;  

2) Simple operations with decimals, fractions, powers, and roots, such as comparing 
expressions, given information about exponents;  

3) Simple problem solving, requiring the understanding of low-level mathematical 
concepts, such as simplifying an algebraic expression or comparing the length of line 
segments illustrated in a diagram;  

4) Understanding of intermediate-level mathematical concepts and/or multistep 
solutions to word problems such as drawing an inference based on an algebraic 
expression or inequality; and  

5) Complex multistep word problems and/or advanced mathematics material such as a 
two-step problem requiring evaluation of functions. (Cahalan et al., 2006, p. A-28) 
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Figure C-10: IRT—Estimated Average Math Score (10th-Grade), by Sex (HS&B:80, 
NELS:88, ELS:2002) 

 
Note: IRT scale score is the estimated number right out of a total of 58. 
Source: Cahalan et al. (2006), Tables 18 and 19. 
 

Standardized mean difference sophomores, gender 
 HS&B (1980) NELS:88 (1990) ELS:2002 (2002) 
Male-Female 0.03 0.02 0.08 

 
Table C-2: Probability of 10th-Grade Proficiency in Mathematics, by Gender 

  NELS:88 (1990) ELS:2002 (2002) 
Level 1    

  Male 90.7 91.7 
 Female 90.8 91.6 

Level 2    
 Male 62.8 68.4 
 Female 63.3 65.7 

Level 3    
 Male 44.3 48.0 
 Female 42.8 44.7 

Level 4    
 Male 20.2 22.3 
 Female 17.8 18.5 

Level 5    
 Male 0.5 1.3 
 Female 0.3 0.6 

Note: Proficiency levels – 1) Simple arithmetical operations with whole numbers; 2) 
Simple operations with decimals, fractions, powers, and roots; 3) Simple problem solving, 
requiring the understanding of low-level mathematical concepts; 4) Understanding of 
intermediate-level mathematical concepts and/or multistep solutions to word problems; and 
5) Complex multistep word problems and/or advanced mathematics material.  

Source: Cahalan et al., 2006, p. 57. 
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Program for International Student Assessment: PISA 

Mathematics literacy can be classified by proficiency levels, based on scores on the 
PISA, as follows: 

 
Below level 1 (less than or equal to 357.77) 
 
Level 1 (greater than 357.77 to 420.07) At Level 1, students can answer questions 
involving familiar contexts where all relevant information is present and the questions 
are clearly defined. They are able to identify information and to carry out routine 
procedures according to direct instructions in explicit situations. They can perform 
actions that are obvious and follow immediately from the given stimuli. 
 
Level 2 (greater than 420.07 to 482.38) At Level 2, students can interpret and 
recognize situations in contexts that require no more than direct inference. They can 
extract relevant information from a single source and make use of a single 
representational mode. Students at this level can employ basic algorithms, formula, 
procedures, or conventions. They are capable of direct reasoning and making literal 
interpretations of the results. 
 
Level 3 (greater than 482.38 to 544.68) At Level 3, students can execute clearly 
described procedures, including those that require sequential decisions. They can 
select and apply simple problem solving strategies. Students at this level can interpret 
and use representations based on different information sources and reason directly 
from them. They can develop short communications reporting their interpretations, 
results, and reasoning. 
 
Level 4 (greater than 544.68 to 606.99) At Level 4, students can work effectively with 
explicit models for complex concrete situations that may involve constraints or call for 
making assumptions. They can select and integrate different representations, including 
symbolic, linking them directly to aspects of real-world situations. Students at this level 
can utilize well developed skills and reason flexibly, with some insight, in these 
contexts. They can construct and communicate explanations and arguments based on 
their interpretations, arguments, and actions. 
 
Level 5 (greater than 606.99 to 669.3) At Level 5, students can develop and work 
with models for complex situations, identifying constraints and specifying 
assumptions. They can select, compare, and evaluate appropriate problem solving 
strategies for dealing with complex problems related to these models. Students at this 
level can work strategically using broad, well-developed thinking and reasoning 
skills, appropriate linked representations, symbolic and formal characterizations, and 
insight pertaining to these situations. They can reflect on their actions, and formulate 
and communicate their interpretations and reasoning. 
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Level 6 (greater than 669.3) At Level 6, students can conceptualize, generalize, and
utilize information based on their investigations and modeling of complex problem
situations. They can link different information sources and representations and flexibly
translate among them. Students at this level are capable of advanced mathematical
thinking and reasoning. These students can apply this insight and understandings along
with a mastery of symbolic and formal mathematical operations and relationships to
develop new approaches and strategies for attacking novel situations. Students at this
level can formulate and precisely communicate their actions and reflections regarding
their findings, interpretations, arguments, and the appropriateness of these to the
original situations (Lemke et al., 2005, p.18).

Figure C-11: Average Mathematics Literacy Scores of U.S. 15-Year-Olds, by Gender:
2003 PISA

Note: Level 1 (greater than 357.77 to 420.07), Level 2 (greater than 420.07 to 482.38), Level 3 (greater than
482.38 to 544.68), Level 4 (greater than 544.68 to 606.99), Level 5 (greater than 606.99 to 669.3), Level 6
(greater than 669.3)
Source: Lemke et al. (2005) Tables B-18 and B-20

Standardized mean difference, 15 year olds, gender*
PISA (2003)

Male-Female 0.07

*Standard deviations not provided for subscales
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Table C-3: Percentage of U.S. 15-Year-Old Students Scoring at Each Proficiency Level, 
by Gender: 2003 PISA 
 Below level 1 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

Male  10.5 14.7 23.2 23.1 16.9 8.9 2.8 
Female 9.9 16.4 24.6 24.5 16.2 7.2 1.2 
Overall 10.2 15.5 23.9 23.8 16.6 8.0 2.0 

Source: Lemke et al., 2005, Tables B-19 and B-6 
 
Table C-4: Comparison of U.S. and Organisation for Economic Co-operation and 
Development (OECD) Countries’ Average Scores on 2003 PISA Math Literacy 

 U.S. average OECD average 
Number of OECD countries 

scoring higher than U.S. 
Combined 483 500 20 
Space and shape 472 496 20 
Change and relationships 486 499 18 
Quantity 476 501 23 
Uncertainty 491 502 16 

Source: Lemke et al., 2005, Table 2 
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National Adult Literacy Survey: NALS 
National Assessment of Adult Literacy: NAAL 

The Committee on Performance Levels for Adult Literacy set performance levels for 
quantitative literacy as Below Basic, Basic, Intermediate, and Proficient and defined them as 
follows, based on scores on NALS and NAAL:  

 
Below Basic (0–234) indicates no more than the most simple and concrete literacy skills. 
 
Key abilities—locating numbers and using them to perform simple quantitative 
operations (primarily addition) when the mathematical information is very concrete 
and familiar. 
 
Basic (235–289) indicates skills necessary to perform simple and everyday literacy 
activities. 
 
Key abilities—locating easily identifiable quantitative information and using it to 
solve simple, one-step problems when the arithmetic operation is specified or easily 
inferred. 
 
Intermediate (290–349) indicates skills necessary to perform moderately challenging 
literacy activities. 
 
Key abilities—locating less familiar quantitative information and using it to solve 
problems when the arithmetic operation is not specified or easily inferred. 
 
Proficient (350–500) indicates skills necessary to perform more complex and 
challenging literacy activities.  
 
Key abilities—locating more abstract quantitative information and using it to solve 
multistep problems when the arithmetic operations are not easily inferred and the 
problems are more complex (Kutner et al., 2006, p. 3). 
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Figure C-12: Average Quantitative Literacy Scores of Adults, by Sex: NALS 1992 and
NAAL 2003

Note: Literacy levels: Below basic 0–234, Basic 235–289, Intermediate 290–349, Proficient 350–500

Source: Kutner, Greenberg, and Baer (2006), Figure 4.

Standardized mean difference adults, gender
1992 2003

Male-Female 0.21 0.11

Table C-5: Percentage of Adults in Each Quantitative Literacy Level, by Gender:
NALS 1992 and NAAL 2003

NALS, 1992 NAAL, 2003
Below basic Male 24 21

Female 28 22
Basic Male 29 31

Female 34 35
Intermediate Male 31 33

Female 28 32
Proficient Male 17 16

Female 9 11

Note: Below Basic (0–234) no more than the most simple and
concrete literacy skills; Basic (235–289) skills necessary to perform
simple and everyday literacy activities; Intermediate (290–349) skills
necessary to perform moderately challenging literacy activities;
Proficient (350–500) skills necessary to perform more complex and
challenging literacy activities.

Source: Kutner et al., 2007, p. 14
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APPENDIX D: Racial/Ethnic Differences 

The following tables and figures summarize the data on math performance by 
Race/Ethnicity using data available on national samples. Data from the National Assessment 
of Educational Progress (NAEP) Long-Term Trend study illustrate performance between 
groups over the last 30 years. Data from the Trends in Math and Science Survey (TIMSS) 
illustrate the math performance of fourth- and eighth-graders. Data from the High School and 
Beyond (HS&B:80), National Education Longitudinal Study of 1988 (NELS:88), and 
Education Longitudinal Study of 2002 (ELS:2002) illustrate the math performance of 10th-
grade students. Data from the National Adult Literacy Survey (NALS) and the National 
Assessment of Adult Literacy (NAAL) survey illustrate the quantitative literacy of adults. 
Data from the Program for International Student Assessment (PISA) illustrate the 
mathematics literacy and problem-solving proficiency of 15-year-olds. To facilitate the 
interpretation of the various scores, a description of the test benchmarks and performance 
levels associated with each test is provided. 

National Assessment of Educational Progress 
Long-Term Trends: Mathematics Scores 

This section presents the trends in long-term NAEP mathematics scores. The goal is 
to describe the differences in performance between groups over the last 30 years and to 
describe how their scores have evolved over time. For each reporting group, results are 
presented in the form of the average scale score for 1978–2004 and the percent of students at 
each achievement level in 1978, 1999, and 2004.  

Methodology 

All data presented in this section were obtained from the NAEP Data Explorer.3 The 
Data Explorer allows users to create tables of results by custom combinations of reporting 
variables. The results can be reported in terms of mean score, percentage of students at or 
above performance levels, and score percentile.  

 
The Data Explorer also reports standard errors and can calculate the statistical 

significance of changes in a variable between years or between variables in the same year. 
The statistical significance of changes between variables over time (e.g., the score difference 
between girls and boys in 1978 versus the score difference between girls and boys in 2004) is 
taken either directly from the NAEP 2004 Trends in Academic Progress or estimated using 
the reported standard error provided by the Data Explorer. Only differences that are 
statistically significant beyond the 0.05 level are described in the text of this section. 

 

                                                
3 http://nces.ed.gov/nationsreportcard/naepdata/. 
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Average Scale Scores and Performance Levels 

The NAEP long-term trend assessments are scored on a 0–500 point scale, but all 
average scale score charts presented here are ranged from 180–340 for consistency and best 
visibility of score differences. Charts of average scale scores are reconstructed to resemble 
the gap charts in NAEP 2004 Trends in Academic Progress. 

 
The following text was taken verbatim from the National Center for Education Statistics 

website, http://nces.ed.gov/nationsreportcard/ltt/performance-levels.asp in April 2007. 
 
More detailed information about what students know and can do in each subject area 

can be gained by examining their attainment of specific performance levels in each 
assessment year. This process of developing the performance-level descriptions is different 
from that used to develop achievement-level descriptions in the main NAEP reports. 

 
For each of the subject area scales, performance levels were set at 50-point 

increments from 150 through 350. The five performance levels—150, 200, 250, 300, and 
350—were then described in terms of the knowledge and skills likely to be demonstrated by 
students who reached each level. 

 
A “scale anchoring” process was used to define what it means to score in each of 

these levels. NAEP’s scale anchoring follows an empirical procedure whereby the scaled 
assessment results are analyzed to delineate sets of questions that discriminate between 
adjacent performance levels on the scales. To develop these descriptions, assessment 
questions were identified that students at a particular performance level were more likely to 
answer successfully than students at lower levels. The descriptions of what students know 
and can do at each level are based on these sets of questions. 

 
The guidelines used to select the questions were as follows: Students at a given level 

must have at least a specified probability of success with the questions (75% for mathematics, 
80 % for reading), while students at the next lower level have a much lower probability of 
success (that is, the difference in probabilities between adjacent levels must exceed 30%). For 
each curriculum area, subject-matter specialists examined these empirically selected question 
sets and used their professional judgment to characterize each level. The scale anchoring for 
mathematics trend reporting was based on the 1986 assessment. 

 
The five performance levels are applicable at all three age groups, but only three 

performance levels are discussed for each age: levels 150, 200, and 250 for age 9; levels 200, 
250, and 300 for age 13; and levels 250, 300, and 350 for age 17. These performance levels 
are the ones most likely to show significant change within an age across the assessment years 
and do not include the levels that nearly all or almost no students attained at a particular age 
in each year. 

 
The following description of each mathematics performance level was copied from 

http://nces.ed.gov/nationsreportcard/ltt/math-descriptions.asp in April 2007. 
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Level 350: Multistep Problem Solving and Algebra 

Students at this level can apply a range of reasoning skills to solve multistep problems. 
They can solve routine problems involving fractions and percents, recognize 
properties of basic geometric figures, and work with exponents and square roots. 
They can solve a variety of two-step problems using variables, identify equivalent 
algebraic expressions, and solve linear equations and inequalities. They are 
developing an understanding of functions and coordinate systems. 
 
Level 300: Moderately Complex Procedures and Reasoning 

Students at this level are developing an understanding of number systems. They can 
compute with decimals, simple fractions, and commonly encountered percents. They 
can identify geometric figures, measure lengths and angles, and calculate areas of 
rectangles. These students are also able to interpret simple inequalities, evaluate 
formulas, and solve simple linear equations. They can find averages, make decisions 
based on information drawn from graphs, and use logical reasoning to solve 
problems. They are developing the skills to operate with signed numbers, exponents, 
and square roots. 
 
Level 250: Numerical Operations and Beginning Problem Solving 

Students at this level have an initial understanding of the four basic operations. 
They are able to apply whole number addition and subtraction skills to one-step word 
problems and money situations. In multiplication, they can find the product of a two-
digit and a one-digit number. They can also compare information from graphs and 
charts, and are developing an ability to analyze simple logical relations. 
 
Level 200: Beginning Skills and Understandings 

Students at this level have considerable understanding of two-digit numbers. They 
can add two-digit numbers but are still developing an ability to regroup in subtraction. 
They know some basic multiplication and division facts, recognize relations among 
coins, can read information from charts and graphs, and use simple measurement 
instruments. They are developing some reasoning skills. 
 
Level 150: Simple Arithmetic Facts 

Students at this level know some basic addition and subtraction facts, and most can 

add two-digit numbers without regrouping. They recognize simple situations in 
which addition and subtraction apply. They also are developing rudimentary 
classification skills. 
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Figure D-1: Average NAEP Scale Scores by Race/Ethnicity, Age 9: Intermittent Years 
From 1978–2004 

 
*Indicates score or gap is significantly different from 2004. 

Note: Data labels for white (above) and black (below). Between race/ethnicity score differences (gaps) are 
shown in shaded boxes only for years in which the gap is statistically significant. Labeled gaps may not reflect 
labeled scores because of rounding. 

“Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and accommodated 
more students with disabilities. In order to maintain the long-term trend, test takers were randomly assigned to 
either the old test form, called the bridge assessment, or the modified test form. Results from the bridge 
assessment should be compared to results from assessments prior to 2004, while results from the modified 
assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the average scale score for 9-year-olds by race. “Other” 
includes Asian/Pacific Islander and American Indian/Alaska Native. 

 
Discussion 

• Whites and Other races significantly outscore blacks and Hispanics on the long-term 
mathematics NAEP at age 9. 

• The average score for black students of 224 was 23 points lower than the average 
score for white students in 2004. 

— The black-white gap has not changed significantly since 1986. 
— The black-white gap has closed by 9 points since 1978. 

• The average score for Hispanic students of 230 was 18 points lower than the average 
score for white students in 2004. 

— The Hispanic-white gap has closed by 8 points since 1999. 
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— The Hispanic-white gap in 2004 was not significantly different from the 
gap in 1978. 

• Average scores for all racial groups were higher in 2004 than in previous assessment 
years. 

— The average score for black students was 224 in 2004, which was a 
13 point increase from 1999 and a 32 point increase from 1978. 

— The average score for Hispanic students was 230 in 2004, which was a 
17 point increase from 1999 and a 27 point increase from 1978. 

— The average score for white students was 247 in 2004, which was an 
8 point increase from 1999 and a 23 point increase from 1978. 

— The average score for Other students was 256 in 2004, which was a 
13 point increase from 1999 and a 29 point increase from 1978. 

 
Figure D-2: Average NAEP Scale Scores by Race/Ethnicity, Age 13: Intermittent Years 
From 1978–2004 

 
*Indicates score or gap is significantly different from 2004. 

Note: Data labels for white (above) and black (below). Between race/ethnicity score differences (gaps) are 
shown in shaded boxes only for years in which the gap is statistically significant. Labeled gaps may not reflect 
labeled scores because of rounding. 

“Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and accommodated 
more students with disabilities. In order to maintain the long-term trend, test takers were randomly assigned to 
either the old test form, called the bridge assessment, or the modified test form. Results from the bridge 
assessment should be compared to results from assessments prior to 2004, while results from the modified 
assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 
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What Is This Indicator? 

This indicator presents the average scale score for 13-year-olds by race. “Other” 
includes Asian/Pacific Islander and American Indian/Alaska Native. 

 

Discussion 

• Whites and Other races significantly outscore blacks and Hispanics on the long-term 
mathematics NAEP at age 13. 

• The average score for black students was 27 points lower than the average score for 
white students in 2004. 

— The black-white gap has not changed significantly since 1986. 
— The black-white gap has closed by 15 points since 1978. 

• The average score for Hispanic students was 23 points lower than the average score 
for white students in 2004. 

— The Hispanic-white gap in 2004 was not significantly different from the 
gap in 1999. 

— The Hispanic-white gap has closed by 11 points since 1978. 
• Average scores for whites, blacks, and Hispanics were higher in 2004 than in 

previous assessment years. 
— The average score for black 13-year-old students was 262 in 2004, which 

was an 11 point increase from 1999 and a 32 point increase from 1978. 
— The average score for Hispanic students was 265 in 2004, which was a 6 

point increase from 1999 and a 27 point increase from 1978. 
— The average score for white students was 288 in 2004, which was a 5 

point increase from 1999 and a 17 point increase from 1978. 
— The average score for Other students was 292 in 2004, which was a 20 

point increase from 1978, but not significantly different from 1999. 
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Figure D-3: Average NAEP Scale Scores by Race/Ethnicity, Age 17: Intermittent Years 
From 1978–2004 

 
*Indicates score or gap is significantly different from 2004. 

Note: Data labels for white (above) and black (below). Between race/ethnicity score differences (gaps) are 
shown in shaded boxes only for years in which the gap is statistically significant. Labeled gaps may not reflect 
labeled scores because of rounding. 

“Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and accommodated 
more students with disabilities. In order to maintain the long-term trend, test takers were randomly assigned to 
either the old test form, called the bridge assessment, or the modified test form. Results from the bridge 
assessment should be compared to results from assessments prior to 2004, while results from the modified 
assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the average scale score for 17-year-olds by race. “Other” 
includes Asian/Pacific Islander and American Indian/Alaska Native. 

 

Discussion 

• Whites and Other races significantly outscore blacks and Hispanics on the long-term 
mathematics NAEP at age 17. 

• The average score for black students was 28 points lower than the average score for 
white students in 2004. 

— The black-white gap has not changed significantly since 1992. 
— The black-white gap has closed by 10 points since 1978. 

• The average score for Hispanic students was 24 points lower than the average score 
for white students in 2004. 

— The Hispanic-white gap in 2004 is not significantly different from the gap 
in 1999. 
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— The Hispanic-white gap in 2004 is not significantly different from the gap 
in 1978. 

• The average scale scores for whites, blacks, and Hispanics have increased since 1978, 
but the average scale scores for all races have been flat since 1992. 

— The average score for black students was 285 in 2004, which was a 17 
point increase from 1978. 

— The average score for Hispanic students was 289 in 2004, which was a 13 
point increase from 1978. 

— The average score for white students was 313 in 2004, which was a 7 
point increase from 1978. 

 
Figure D-4: Percent at NAEP Performance Levels by Race/Ethnicity, Age 9: 1978, 1999, 
and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories (racial/ethnic groups) 
may not be statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the percentage of 9-year-olds reaching each performance level 
by race. The performance levels reported at age 9 are 150—Simple Arithmetic Facts, 200—
Beginning Skills and Understandings, and 250—Numerical Operations and Beginning 
Problem Solving.  
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Discussion 

• More 9-year-old whites and Other races scored at or above the 250 level than blacks 
and Hispanics. 

— Differences between whites and Other, and between blacks and Hispanics 
at the 250 level were generally not significant. 

— 49% of white students scored at or above 250 in 2004, while only 24%, or 
half as many black 9-year-olds reached the 250 performance level in 2004. 

• The percentages of 9-year-olds of all races at or above the 250 level have increased 
since the 1999 and the 1978 assessments. 

— The percentage of black 9-year-olds scoring at or above 250 has increased 
by a factor of 6 since 1978 and doubled since 1999, going from 4% in 
1978 to 12% in 1999 and 24% in 2004.  

— Meanwhile, the percentage of white 9-year-olds scoring at or above 250 
increased from 23% to 49% between 1978 and 2004. 

• While blacks and Hispanics have seen large increases in the percent of 9-year-olds in 
the top performance level, the black-white gap at the 250 performance level has 
widened slightly since 1978, going from 19% in 1978 to 25% in 1999 and 2004. 
 

Figure D-5: Percent at NAEP Performance Levels by Race/Ethnicity, Age 13: 1978, 
1999, and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories (racial/ethnic groups) 
may not be statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 
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What Is This Indicator? 

This indicator presents the percentage of 13-year-olds reaching each performance 
level by race. The performance levels reported at age 13 are 200—Beginning Skills and 
Understandings, 250—Numerical Operations and Beginning Problem Solving, and 300— 
Moderately Complex Procedures and Reasoning.  

 
Discussion 

• More 13-year-old whites and Other scored at or above the 300 level than blacks and 
Hispanics. 

— Differences between whites and Other and between blacks and Hispanics 
at the 300 level were generally not significant. 

— 36% of white students scored at or above 300 in 2004, while only 9% of 
black 9-year-olds reached the 300 performance level in 2004. 

• The percentages of 13-year-olds of all races at or above the 300 level have increased 
since the 1999 and the 1978 assessments. 

• The black-white gap for 13-year-olds at the 300 performance level has widened 
slightly since 1978, going from 19% in 1978 to 27% in 2004.  

— During this time period the percentage of black 13-year-olds at the 300 
level only increased from 2% in 1978 to 9% in 2004. 

— Meanwhile, the percentage of white 13-year-olds at the 300 level 
increased from 21% in 1978 to 36% in 2004. 
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Figure D-6: Percent at NAEP Performance Levels by Race/Ethnicity, Age 17: 1978, 
1999, and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories (racial/ethnic groups) 
may not be statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

This indicator presents the percentage of 17-year-olds reaching each performance 
level by gender. The performance levels reported at age 17 are 250—Numerical Operations 
and Beginning Problem Solving, 300—Moderately Complex Procedures and Reasoning, and 
350—Multistep Problem Solving and Algebra.  

 
Discussion 

• The percentage of 17-year-olds at or above the 350 level has not changed over time, 
although the percentage at the 300 level has increased for all races since 1978. 

• In 2004 and 1978, 8.5% of whites reached the 350 performance level, while less than 
one percent of black 17-year-olds scored at or above 350. In 1999, the difference was 
not statistically significant. 

• Differences between whites and Other, and blacks and Hispanics are generally not 
statistically significant for 17-year-olds at the 350 level. 
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Trends in Math and Science Survey: TIMSS 

The TIMSS 2003 International Benchmarks of Mathematics Achievement are defined 
in Mullis et al. (2004, p. 63) as follows: 

Grade 8 

Advanced International Benchmark – 625 

Students can organize information, make generalizations, solve non-routine 

problems, and draw and justify conclusions from data. They can compute percent 
change and apply their knowledge of numeric and algebraic concepts, and 
relationships to solve problems. Students can solve simultaneous linear equations and 
model simple situations algebraically. They can apply their knowledge of 
measurement and geometry in complex problem situations. They can interpret data 
from a variety of tables and graphs, including interpolation and extrapolation. 
 
High International Benchmark – 550 

Students can apply their understanding and knowledge in a wide variety of 

relatively complex situations. They can order, relate, and compute fractions and 
decimals to solve word problems, operate with negative integers, and solve multi-step 
word problems involving proportions with whole numbers. Students can solve simple 
algebraic problems including evaluating expressions, solving simultaneous linear 
equations, and using a formula to determine the value of a variable. Students can find 
areas and volumes of simple geometric shapes and use knowledge of geometric 
properties to solve problems. They can solve probability problems and interpret data 
in a variety of graphs and tables.  
 
Intermediate International Benchmark – 475 

Students can apply basic mathematical knowledge in straightforward situations. 
They can add, subtract, or multiply to solve one-step word problems involving whole 
numbers and decimals. They can identify representations of common fractions and 
relative sizes of fractions. They understand simple algebraic relationships and solve 
linear equations with one variable. They demonstrate understanding of properties of 
triangles and basic geometric concepts including symmetry and rotation. They 
recognize basic notions of probability. They can read and interpret graphs, tables, 
maps, and scales. 
 
Low International Benchmark – 400 

Students have some basic mathematical knowledge. (Mullis et al., 2004, p.62) 
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Grade 4 

Advanced International Benchmark – 625 

Students can apply their understanding and knowledge in a wide variety of 

relatively complex situations. They demonstrate a developing understanding of 
fractions and decimals, and the relationship between them. They can select 
appropriate information to solve multistep word problems involving proportions. 
They can formulate or select a rule for a relationship. They show understanding of 
area and can use measurement concepts to solve a variety of problems. They show 
some understanding of rotation. They can organize, interpret, and represent data to 
solve problems. 
 
High International Benchmark – 550 

Student can apply their knowledge and understanding to solve problems. Students 
can solve multistep word problems involving addition, multiplication, and division. 
They can use their understanding of place value and simple fractions to solve 
problems. They can identify a number sentence that represents situations. Students 
show understanding of three-dimensional objects, how shapes can make other shapes, 
and simple transformation in a plane. They demonstrate a variety of measurement 
skills, and can interpret and use data in tables and graphs to solve problems. 
 
Intermediate International Benchmark – 475 

Students can apply basic mathematical knowledge in straightforward situations. 

They can read, interpret, and use different representations of numbers. They can 
perform operations with three- and four-digit numbers and decimals. They can extend 
simple patterns. They are familiar with a range of two-dimensional shapes, and read 
and interpret different representations of the same data. 
 
Low International Benchmark – 400 

Students have some basic mathematical knowledge. Students demonstrate an 
understanding of whole numbers and can do simple computations with them. They 
demonstrate familiarity with the basic properties of triangles and rectangles. They can 
read information from simple bar graphs. 
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Figure D-7: Average TIMSS Mathematical Scale Scores of U.S. 4th- and 8th-Graders,
by Race/Ethnicity: Various Years From 1995–2003

Note: TIMSS international benchmarks: Low 400, Intermediate 475, High 550, Advanced 625

Source: Gonzales et al. (2004), Figures 1 & 2.

Standardized mean difference TIMSS, race/ethnicity
4th grade 8th grade

1995 2003 1995 1999 2003
White-Black 1.01 0.92 1.08 0.92 0.96
White-Hispanic 0.57 0.66 0.81 0.77 0.75
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High School and Beyond of 1980: HS&B:80 
National Education Longitudinal Study of 1988: NELS:88 

Education Longitudinal Study of 2002: ELS:2002  

The scores on the HS&B:80, NELS:88, and ELS:2002 are Item Response Theory 
(IRT) scores on the NELS:88 1990 58-item scale. IRT estimates achievement based on 
patterns of correct, incorrect, and unanswered questions. “The IRT-estimated number-right 
score reflects an estimate of the number of these 58 items that an examinee would have 
answered correctly if he or she had taken all of the items that appeared on the multiform 
1990 NELS:88 mathematics test. The score is the probability of a correct answer on each 
item, summed over the total mathematics 58-item pool” (Cahalan et al., 2006, p. 45). These 
scores are not directly translated into probability of proficiency scores. However, five 
probability of proficiency scores in mathematics were estimated for students using 
performance on clusters of four items each as follows:  

Probability of Mastery, Mathematics Levels 

1) Simple arithmetical operations on whole numbers, such as simple arithmetic 
expressions involving multiplication or division of integers;  

2) Simple operations with decimals, fractions, powers, and roots, such as comparing 
expressions, given information about exponents;  

3) Simple problem solving, requiring the understanding of low-level mathematical 
concepts, such as simplifying an algebraic expression or comparing the length of line 
segments illustrated in a diagram;  

4) Understanding of intermediate-level mathematical concepts and/or multistep 
solutions to word problems such as drawing an inference based on an algebraic 
expression or inequality; and  

5) Complex multistep word problems and/or advanced mathematics material such as a 
two-step problem requiring evaluation of functions. (Cahalan et al., 2006, p. A-28) 

5 



Task Group Reports of the National Mathematics Advisory Panel 

 

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES  

4-19

Figure D-8: IRT—Estimated Average Math Score (10th-Grade), by Race/Ethnicity 
(HS&B:80, NELS:88, ELS:2002) 

 
Note: IRT scale score is the estimated number right out of a total of 58. 

Source: Cahalan et al. (2006), Tables 18 and 19. 
 
Standardized mean difference sophomores, race/ethnicity 
 HS&B (1980) NELS:88 (1990) ELS:2002 (2002) 
White-American Indian 0.71 0.94 0.78 
White-Asian -0.28 -0.18 -0.07 
White-Black 1.01 0.82 1.03 
White-Hispanic 0.84 0.58 0.84 
White-Other   0.39 
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Table D-1: Probability of 10th-Grade Proficiency in Mathematics by Race/Ethnicity 
  NELS:88 (1990) ELS:2002 (2002) 
Level 1    
 Asian or Pacific Islander 93.7 95.2 
 Black or African American 80.8 83.8 
 Hispanic or Latino 85.0 83.7 
 White 93.3 95.5 
Level 2    
 Asian or Pacific Islander 73.7 77.6 
 Black or African American 38.4 42.3 
 Hispanic or Latino 44.9 46.9 
 White 69.6 77.9 
Level 3    
 Asian or Pacific Islander 57.8 60.2 
 Black or African American 18.7 19.4 
 Hispanic or Latino 24.4 25.5 
 White 50.1 57.9 
Level 4    
 Asian or Pacific Islander 29.6 31.7 
 Black or African American 5.2 4.7 
 Hispanic or Latino 8.0 8.8 
 White 22.5 27.0 
Level 5    
 Asian or Pacific Islander 1.2 4.0 
 Black or African American less than 0.1 0.1 
 Hispanic or Latino 0.1 0.3 
 White 0.5 1.2 

Note: Proficiency levels – 1) Simple arithmetical operations with whole numbers; 2) Simple 
operations with decimals, fractions, powers, and roots; 3) Simple problem solving, requiring 
the understanding of low-level mathematical concepts; 4) Understanding of intermediate-level 
mathematical concepts and/or multistep solutions to word problems; and 5) Complex 
multistep word problems and/or advanced mathematics material. 

Source: Cahalan et al., 2006, p. 58. 
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National Adult Literacy Survey: NALS 
National Assessment of Adult Literacy: NAAL 

The Committee on Performance Levels for Adult Literacy set performance levels for 
quantitative literacy as Below Basic, Basic, Intermediate, and Proficient and defined them as 
follows, based on scores on NALS and NAAL: 

 
Below Basic (0–234) indicates no more than the most simple and concrete literacy 
skills. 
 
Key abilities—locating numbers and using them to perform simple quantitative 
operations (primarily addition) when the mathematical information is very concrete 
and familiar. 
 
Basic (235–289) indicates skills necessary to perform simple and everyday literacy 
activities. 
 
Key abilities—locating easily identifiable quantitative information and using it to 
solve simple, one-step problems when the arithmetic operation is specified or easily 
inferred. 
 
Intermediate (290–349) indicates skills necessary to perform moderately challenging 
literacy activities. 
 
Key abilities—locating less familiar quantitative information and using it to solve 
problems when the arithmetic operation is not specified or easily inferred. 
 
Proficient (350–500) indicates skills necessary to perform more complex and 
challenging literacy activities.  
 
Key abilities—locating more abstract quantitative information and using it to solve 
multistep problems when the arithmetic operations are not easily inferred and the 
problems are more complex. (Kutner et al., 2006, p. 3). 
 

198 



Task Group Reports of the National Mathematics Advisory Panel

4. REPORT OF THE TASK GROUP ON LEARNING PROCESSES

4-199

Figure D-9: Average Quantitative Literacy Scores of Adults, by Race/Ethnicity:
NALS 1992 and NAAL 2003

Note: Literacy levels: Below basic 0-234, Basic 235-289, Intermediate 290-349, Proficient 350-500

Source: Kutner, Greenberg, and Baer (2006), Figure 1: Kutner et al. (2006), Figure 2-6a.

Standardized mean difference adults, race/ethnicity
NALS 1992 NAAL 2003

White-Black 1.00 0.97
White-Hispanic 0.83 1.05
White-Asian -0.17 0.08
White-American Indian 0.65 0.52
White-Multiracial 0.44
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Table D-2: Percentage of Adults in Each Quantitative Literacy Level, by 
Race/Ethnicity: NALS 1992 and NAAL 2003 

  NALS, 1992 NAAL, 2003 
Below basic   
 White 9 7 
 Black 30 24 
 Hispanic 35 44 
 Asian/Pacific Islander 25 14 
 American Indian/Alaska Native 17 19 
 Multiracial  7 
Basic    
 White 25 25 
 Black 41 43 
 Hispanic 33 30 
 Asian/Pacific Islander 30 32 
 American Indian/Alaska Native 43 29 
 Multiracial  35 
Intermediate   
 White 48 51 
 Black 27 31 
 Hispanic 28 23 
 Asian/Pacific Islander 36 42 
 American Indian/Alaska Native 35 41 
 Multiracial  54 
Proficient    
 White 18 17 
 Black 2 2 
 Hispanic 5 4 
 Asian/Pacific Islander 9 12 
 American Indian/Alaska Native 5 10 

 Multiracial  4 

Note: Below Basic (0–234)—no more than the most simple and concrete literacy skills; 
Basic (235–289)—skills necessary to perform simple and everyday literacy activities; 
Intermediate (290–349)—skills necessary to perform moderately challenging literacy 
activities; Proficient (350–500)—skills necessary to perform more complex and 
challenging literacy activities.  

Source: Kutner et al., 2007, p. 16. 
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Program for International Student Assessment: PISA 

Mathematics literacy can be classified by proficiency levels, based on scores on the 
PISA, as follows: 

 
Below level 1 (less than or equal to 357.77) 
 
Level 1 (greater than 357.77 to 420.07) At Level 1, students can answer questions 
involving familiar contexts where all relevant information is present and the questions 
are clearly defined. They are able to identify information and to carry out routine 
procedures according to direct instructions in explicit situations. They can perform 
actions that are obvious and follow immediately from the given stimuli. 
 
Level 2 (greater than 420.07 to 482.38) At Level 2, students can interpret and 
recognize situations in contexts that require no more than direct inference. They can 
extract relevant information from a single source and make use of a single 
representational mode. Students at this level can employ basic algorithms, formula, 
procedures, or conventions. They are capable of direct reasoning and making literal 
interpretations of the results. 
 
Level 3 (greater than 482.38 to 544.68) At Level 3, students can execute clearly 
described procedures, including those that require sequential decisions. They can 
select and apply simple problem solving strategies. Students at this level can interpret 
and use representations based on different information sources and reason directly 
from them. They can develop short communications reporting their interpretations, 
results, and reasoning. 
 
Level 4 (greater than 544.68 to 606.99) At Level 4, students can work effectively 
with explicit models for complex concrete situations that may involve constraints or 
call for making assumptions. They can select and integrate different representations, 
including symbolic, linking them directly to aspects of real-world situations. Students 
at this level can utilize well developed skills and reason flexibly, with some insight, in 
these contexts. They can construct and communicate explanations and arguments 
based on their interpretations, arguments, and actions. 
 
Level 5 (greater than 606.99 to 669.3) At Level 5, students can develop and work 
with models for complex situations, identifying constraints and specifying 
assumptions. They can select, compare, and evaluate appropriate problem solving 
strategies for dealing with complex problems related to these models. Students at this 
level can work strategically using broad, well-developed thinking and reasoning 
skills, appropriate linked representations, symbolic and formal characterizations, and 
insight pertaining to these situations. They can reflect on their actions and formulate 
and communicate their interpretations and reasoning. 
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Level 6 (greater than 669.3) At Level 6, students can conceptualize, generalize, and
utilize information based on their investigations and modeling of complex problem
situations. They can link different information sources and representations and flexibly
translate among them. Students at this level are capable of advanced mathematical
thinking and reasoning. These students can apply this insight and understandings along
with a mastery of symbolic and formal mathematical operations and relationships to
develop new approaches and strategies for attacking novel situations. Students at this
level can formulate and precisely communicate their actions and reflections regarding
their findings, interpretations, arguments, and the appropriateness of these to the
original situations (Lemke et al., 2005, p.18).

Figure D-10: Average Mathematic Literacy Scores of U.S. 15-Year-Olds, by
Race/Ethnicity: 2003 PISA

Note: Level 1 (greater than 357.77 to 420.07), Level 2 (greater than 420.07 to 482.38), Level
3 (greater than 482.38 to 544.68), Level 4 (greater than 544.68 to 606.99), Level 5 (greater
than 606.99 to 669.3), Level 6 (greater than 669.3).

Source: Lemke et al. (2005) Tables B-26.

Standardized mean difference, 15-year-olds, race/ethnicity
White-Black 0.99
White-Hispanic 0.72
White-Asian 0.06
White-Multiracial 0.10

Source: Lemke et al., 2005, Tables B-19 and B-6.
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APPENDIX E: Socioeconomic Differences (SES) 

The following tables and exhibits summarize the data on math performance by SES 
using data available on national samples. Data from the National Assessment of Educational 
Progress (NAEP) Long-Term Trend study illustrate performance between groups over the last 
30 years. Data from the Trends in Math and Science Survey (TIMSS) illustrate the math 
performance of fourth- and eighth-graders. Data from the High School and Beyond (HS&B:80), 
National Education Longitudinal Study of 1988 (NELS:88), and Education Longitudinal Study 
of 2002 (ELS:2002) illustrate the math performance of 10th-grade students. Data from the 
National Adult Literacy Survey (NALS) and the National Assessment of Adult Literacy 
(NAAL) survey illustrate the quantitative literacy of adults. Data from the Program for 
International Student Assessment (PISA) illustrate the mathematics literacy and problem-
solving proficiency of 15-year-olds. To facilitate the interpretation of the various scores, a 
description of the test benchmarks and performance levels associated with each test is provided. 

National Assessment of Educational Progress 
Long-Term Trends: Mathematics Scores 

This section presents the trends in long-term NAEP mathematics scores. The goal is 
to describe the differences in performance between groups over the last 30 years and to 
describe how their scores have evolved over time. For each reporting group, results are 
presented in the form of the average scale score for 1978–2004 and the percent of students at 
each achievement level in 1978, 1999, and 2004.  

Methodology 

All data presented in this section were obtained from the NAEP Data Explorer.4 The 
Data Explorer allows users to create tables of results by custom combinations of reporting 
variables. The results can be reported in terms of mean score, percentage of students at or 
above performance levels, and score percentile.  

 
The Data Explorer also reports standard errors and can calculate the statistical 

significance of changes in a variable between years or between variables in the same year. 
The statistical significance of changes between variables over time (e.g., the score difference 
between girls and boys in 1978 versus the score difference between girls and boys in 2004) is 
taken either directly from the NAEP 2004 Trends in Academic Progress or estimated using 
the reported standard error provided by the Data Explorer. Only differences that are 
statistically significant beyond the 0.05 level are described in the text of this section. 

 

                                                
4 http://nces.ed.gov/nationsreportcard/naepdata/ 
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Average Scale Scores and Performance Levels 

The NAEP long-term trend assessments are scored on a 0–500 point scale, but all 
average scale score charts presented here are ranged from 180–340 for consistency and best 
visibility of score differences. Charts of average scale scores are reconstructed to resemble 
the gap charts in NAEP 2004 Trends in Academic Progress. 

 
The following text was taken verbatim from the National Center for Education Statistics 

website, http://nces.ed.gov/nationsreportcard/ltt/performance-levels.asp in April 2007. 
 
More detailed information about what students know and can do in each subject area 

can be gained by examining their attainment of specific performance levels in each 
assessment year. This process of developing the performance-level descriptions is different 
from that used to develop achievement-level descriptions in the main NAEP reports. 

 
For each of the subject area scales, performance levels were set at 50-point 

increments from 150 through 350. The five performance levels—150, 200, 250, 300, and 
350—were then described in terms of the knowledge and skills likely to be demonstrated by 
students who reached each level. 

 
A “scale anchoring” process was used to define what it means to score in each of 

these levels. NAEP’s scale anchoring follows an empirical procedure whereby the scaled 
assessment results are analyzed to delineate sets of questions that discriminate between 
adjacent performance levels on the scales. To develop these descriptions, assessment 
questions were identified that students at a particular performance level were more likely to 
answer successfully than students at lower levels. The descriptions of what students know 
and can do at each level are based on these sets of questions. 

 
The guidelines used to select the questions were as follows: Students at a given level 

must have at least a specified probability of success with the questions (75% for mathematics, 
80% for reading), while students at the next lower level have a much lower probability of 
success (that is, the difference in probabilities between adjacent levels must exceed 30%). For 
each curriculum area, subject-matter specialists examined these empirically selected question 
sets and used their professional judgment to characterize each level. The scale anchoring for 
mathematics trend reporting was based on the 1986 assessment. 

 
The five performance levels are applicable at all three age groups, but only three 

performance levels are discussed for each age: levels 150, 200, and 250 for age 9; levels 200, 
250, and 300 for age 13; and levels 250, 300, and 350 for age 17. These performance levels 
are the ones most likely to show significant change within an age across the assessment years 
and do not include the levels that nearly all or almost no students attained at a particular age 
in each year. 

 
The following description of each mathematics performance level was copied from 

http://nces.ed.gov/nationsreportcard/ltt/math-descriptions.asp in April 2007. 
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Level 350: Multistep Problem Solving and Algebra 

Students at this level can apply a range of reasoning skills to solve multistep 

problems. They can solve routine problems involving fractions and percents, recognize 
properties of basic geometric figures, and work with exponents and square roots. They 
can solve a variety of two-step problems using variables, identify equivalent algebraic 
expressions, and solve linear equations and inequalities. They are developing an 
understanding of functions and coordinate systems. 
 
Level 300: Moderately Complex Procedures and Reasoning 

Students at this level are developing an understanding of number systems. They can 
compute with decimals, simple fractions, and commonly encountered percents. They 
can identify geometric figures, measure lengths and angles, and calculate areas of 
rectangles. These students are also able to interpret simple inequalities, evaluate 
formulas, and solve simple linear equations. They can find averages, make decisions 
based on information drawn from graphs, and use logical reasoning to solve 
problems. They are developing the skills to operate with signed numbers, exponents, 
and square roots. 
 
Level 250: Numerical Operations and Beginning Problem Solving 

Students at this level have an initial understanding of the four basic operations. 
They are able to apply whole number addition and subtraction skills to one-step word 
problems and money situations. In multiplication, they can find the product of a two-
digit and a one-digit number. They can also compare information from graphs and 
charts, and are developing an ability to analyze simple logical relations. 
 
Level 200: Beginning Skills and Understandings 

Students at this level have considerable understanding of two-digit numbers. They 
can add two-digit numbers but are still developing an ability to regroup in subtraction. 
They know some basic multiplication and division facts, recognize relations among 
coins, can read information from charts and graphs, and use simple measurement 
instruments. They are developing some reasoning skills. 
 
Level 150: Simple Arithmetic Facts 

Students at this level know some basic addition and subtraction facts, and most can 

add two-digit numbers without regrouping. They recognize simple situations in 
which addition and subtraction apply. They also are developing rudimentary 
classification skills. 
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Figure E-1: Average NAEP Scale Scores, by Parents’ Highest Level of Education, 
Age 13: Intermittent Years From 1978–2004 

 
*Indicates score is significantly different from 2004. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

NAEP asks 13- and 17-year-old students to report both of their parents’ highest level 
of education. Parental education level is the background variable on the long-term NAEP that 
most closely addresses SES. This indicator presents the average scale score of 13-year-old 
students grouped by the highest level of education attained by either parent.  

 
Discussion 

• Parents’ level of education is directly related to students’ average scale score. 
• In 2004, 13-year-olds with at least one parent who graduated college scored 30 points 

higher than students whose parents had less than a high school education. This gap 
has not changed significantly since 1978. 
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— In 1978, the gap between 13-year-olds with at least one parent who 
graduated from college and 13-year-olds whose parents did not complete 
high school was 39 points. This is a significant difference from 2004. 

— The gap between 13-year-olds with at least one parent who graduated 
from high school and 13-year-olds whose parents did not complete high 
school has also improved since 1978, decreasing from 18 points in 1978 to 
10 points in 2004. 

• For 13-year-olds who reported that their parents completed high school, had some 
education after high school, or completed college, average scores were higher in 2004 
than in any previous assessment year. 

— The average score for 13-year-olds whose parents did not finish high 
school has increased since 1978 but did not change significantly between 
1999 and 2004. 

 
Figure E-2: Average NAEP Scale Scores, by Parents’ Highest Level of Education, 
Age 17: Intermittent Years From 1978–2004 

 
*Indicates score is significantly different from 2004 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 
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What Is This Indicator? 

NAEP asks 13- and 17-year-old students to report both of their parents’ highest level 
of education. Parental education level is the background variable on the long-term NAEP that 
most closely addresses SES. This indicator presents the average scale score of 17-year-old 
students grouped by the highest level of education attained by either parent.  

 
Discussion 

• Parents’ level of education is directly related to students’ average scale score. 
• In 2004, 17-year-olds with at least one parent who graduated college scored 30 points 

higher than 17-year-olds whose parents had less than a high school education. This 
gap has not changed significantly since 1978. 

— In 1978, the gap between 17-year-olds with at least one parent who 
graduated from college and 17-year-olds whose parents did not complete 
high school was 37 points. This is a significant difference from 2004. 

— The gap between 17-year-olds with at least one parent who graduated 
from high school and 17-year-olds whose parents did not complete high 
school has also improved since 1978, decreasing from 14 points in 1978 to 
8 points in 2004. 

• The average scale score for 17-year-olds at all levels of parental education have 
generally not changed over the life of the assessment. 

— The average scale score of 17-year-olds whose parents did not graduate 
from high school increased from 280 in 1978 to 187 in 2004, but the 
average scores of all other groups are flat when compared to 1978 and 1999. 
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Figure E-3: Percent at NAEP Performance Levels, by Parents’ Highest Level of 
Education, Age 13: 1978, 1999, and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories may not be 
statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 
 
What Is This Indicator? 

NAEP asks 13- and 17-year-old students to report both of their parents’ highest level of 
education. Parental education level is the background variable on the long-term NAEP that 
most closely addresses SES. This indicator presents the percentage of 13-year-olds reaching 
each performance level by parents’ highest level of education. The performance levels reported 
at age 13 are 200—Beginning Skills and Understandings, 250—Numerical Operations and 
Beginning Problem Solving, and 300—Moderately Complex Procedures and Reasoning.  

 
Discussion 

• Higher levels of parental education correlate with a higher percentage of 13-year-olds 
scoring at or above the 300 level, and a lower percentage of students at or below the 
200 level. The effect of parental education on the percentage of 13-year-olds at the 
250 level is not significant in most cases. 
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• While the percentage of students at or above 300 has increased over time for all 
parental education groups, the gap in achievement between the highest and lowest 
parental education groups has not changed significantly since 1999 or 1978. 

— The percentage of 13-year-olds with at least one parent who graduated 
from college scoring at or above the 300 level increased by 9%, from 33% 
in 1978 and 1999 to 41% in 2004. 

— The percentage of 13-year-olds whose parents did not finish high school 
scoring at or above the 300 level increased by 5%, from 5 to 6% in 1978 
and 1999 to 10% in 2004. 

 
Figure E-4: Percent at NAEP Performance Levels, by Parents’ Highest Level of 
Education, Age 17: 1978, 1999, and 2004 

 
*Indicates percentage is significantly different from 2004. Differences between categories may not be 
statistically significant. 

Note: “Bridge” refers to updates made to NAEP in 2004. The updates replaced outdated material and 
accommodated more students with disabilities. In order to maintain the long-term trend, test takers were 
randomly assigned to either the old test form, called the bridge assessment, or the modified test form. Results 
from the bridge assessment should be compared to results from assessments prior to 2004, while results from 
the modified assessment should be compared to assessments given after 2004. 

Source: Created by the Institute for Defense Analysis Science and Technology Policy Institute using the NAEP 
Data Explorer (http://nces.ed.gov/nationsreportcard/naepdata/). 

 
What Is This Indicator? 

NAEP asks 13- and 17-year-old students to report both of their parents’ highest level of 
education. Parental education level is the background variable on the long-term NAEP that 
most closely addresses SES. This indicator presents the percentage of 17-year-olds reaching 
each performance level by parents’ highest level of education. The performance levels reported 
at age 17 are 250—Numerical Operations and Beginning Problem Solving, 300—Moderately 
Complex Procedures and Reasoning, and 350—Multistep Problem Solving and Algebra.  
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Discussion 

• Higher levels of parental education correlate with a higher percentage of 17-year-olds 
scoring at the 300 and 350 levels, and a lower percentage of students at or below the 
250 level.  

• The achievement rates of 17-year-olds in all parental education groups and 
performance levels have not changed since 1999 or 1978. 

• Because of the small number of students whose parents did not graduate from high 
school reaching the 350 level, NAEP does not report statistical significance for 
comparisons with that subgroup. 
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Trends in Math and Science Survey: TIMSS 

The TIMSS 2003 International Benchmarks of Mathematics Achievement are defined 
in Mullis et al. (2004, p. 63) as follows: 

Grade 8 

Advanced International Benchmark – 625 

Students can organize information, make generalizations, solve non-routine 

problems, and draw and justify conclusions from data. They can compute percent 
change and apply their knowledge of numeric and algebraic concepts and 
relationships to solve problems. Students can solve simultaneous linear equations and 
model simple situations algebraically. They can apply their knowledge of 
measurement and geometry in complex problem situations. They can interpret data 
from a variety of tables and graphs, including interpolation and extrapolation. 
 
High International Benchmark – 550 

Students can apply their understanding and knowledge in a wide variety of 

relatively complex situations. They can order, relate, and compute fractions and 
decimals to solve word problems, operate with negative integers, and solve multi-step 
word problems involving proportions with whole numbers. Students can solve simple 
algebraic problems including evaluating expressions, solving simultaneous linear 
equations, and using a formula to determine the value of a variable. Students can find 
areas and volumes of simple geometric shapes and use knowledge of geometric 
properties to solve problems. They can solve probability problems and interpret data 
in a variety of graphs and tables.  
 
Intermediate International Benchmark – 475 

Students can apply basic mathematical knowledge in straightforward situations. 
They can add, subtract, or multiply to solve one-step word problems involving whole 
numbers and decimals. They can identify representations of common fractions and 
relative sizes of fractions. They understand simple algebraic relationships and solve 
linear equations with one variable. They demonstrate understanding of properties of 
triangles and basic geometric concepts including symmetry and rotation. They 
recognize basic notions of probability. They can read and interpret graphs, tables, 
maps, and scales. 
 
Low International Benchmark – 400 

Students have some basic mathematical knowledge (Mullis et al., 2004, p.62). 
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Grade 4 

Advanced International Benchmark – 625 

Students can apply their understanding and knowledge in a wide variety of 

relatively complex situations. They demonstrate a developing understanding of 
fractions and decimals and the relationship between them. They can select appropriate 
information to solve multistep word problems involving proportions. They can 
formulate or select a rule for a relationship. They show understanding of area and can 
use measurement concepts to solve a variety of problems. They show some 
understanding of rotation. They can organize, interpret, and represent data to solve 
problems. 
 
High International Benchmark – 550 

Student can apply their knowledge and understanding to solve problems. Students 
can solve multi-step word problems involving addition, multiplication, and division. 
They can use their understanding of place value and simple fractions to solve 
problems. They can identify a number sentence that represents situations. Students 
show understanding of three-dimensional objects, how shapes can make other shapes, 
and simple transformation in a plane. They demonstrate a variety of measurement 
skills and can interpret and use data in tables and graphs to solve problems. 
 
Intermediate International Benchmark – 475 

Students can apply basic mathematical knowledge in straightforward situations. 
They can read, interpret, and use different representations of numbers. They can 
perform operations with three- and four-digit numbers and decimals. They can extend 
simple patterns. They are familiar with a range of two-dimensional shapes, and read 
and interpret different representations of the same data. 
 
Low International Benchmark – 400 

Students have some basic mathematical knowledge. Students demonstrate an 
understanding of whole numbers and can do simple computations with them. They 
demonstrate familiarity with the basic properties of triangles and rectangles. They can 
read information from simple bar graphs. 
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Figure E-5: Average TIMSS Mathematical Scale Scores of U.S. 4th- and 8th-Graders, 
by School Poverty Level: 1999 and 2003 

 
Source: Gonzales et al., 2004, Tables C8 and C11. 
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High School and Beyond of 1980: HS&B:80 
National Education Longitudinal Study of 1988: NELS:88 

Education Longitudinal Study of 2002: ELS:2002  

The scores on the HS&B:80, NELS:88, and ELS:2002 are Item Response Theory 
(IRT) number-right scores on the NELS:88 1990 58-item scale. IRT estimates achievement 
based on patterns of correct, incorrect, and unanswered questions. “The IRT-estimated 
number-right score reflects an estimate of the number of these 58 items that an examinee 
would have answered correctly if he or she had taken all of the items that appeared on the 
multiform 1990 NELS:88 mathematics test. The score is the probability of a correct answer 
on each item, summed over the total mathematics 58-item pool” (Cahalan et al., 2006, p.45). 
These scores are not directly translated into probability of proficiency scores. However, five 
probability of proficiency scores in mathematics were estimated for students using 
performance on clusters of four items each as follows:  

Probability of Mastery, Mathematics Levels 

1) Simple arithmetical operations on whole numbers, such as simple arithmetic 
expressions involving multiplication or division of integers;  

2) Simple operations with decimals, fractions, powers, and roots, such as comparing 
expressions, given information about exponents;  

3) Simple problem solving, requiring the understanding of low-level mathematical 
concepts, such as simplifying an algebraic expression or comparing the length of line 
segments illustrated in a diagram;  

4) Understanding of intermediate-level mathematical concepts and/or multistep 
solutions to word problems such as drawing an inference based on an algebraic 
expression or inequality; and  

5) Complex multistep word problems and/or advanced mathematics material such as a 
two-step problem requiring evaluation of functions. (Cahalan et al., 2006, p. A-28) 

5 
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Figure E-6: IRT—Estimated Average Math Score (10th Grade), by SES (HS&B:80,
NELS:88, ELS:2002)

Source: Cahalan et al. (2006), Tables 18 and 19.

Table E-1: Probability of 10th-Grade Proficiency in Mathematics, by SES
NELS:88 (1990) ELS:2002 (2002)

Level 1
Lowest quarter 83.1 84.5
Middle quarters 91.1 92.5
Highest quarter 97.1 97.1

Level 2
Lowest quarter 41.3 46.4
Middle quarters 62.6 67.8
Highest quarter 83.3 86.2

Level 3
Lowest quarter 20.4 25.1
Middle quarters 41.4 44.7
Highest quarter 67.4 70.9

Level 4
Lowest quarter 5.7 7.6
Middle quarters 15.9 17.7
Highest quarter 36.2 38.7

Level 5
Lowest quarter 0.1 0.2
Middle quarters 0.2 0.5
Highest quarter 1.0 2.6

Note: Proficiency levels—1) Simple arithmetical operations with whole numbers; 2)
Simple operations with decimals, fractions, powers, and roots; 3) Simple problem solving,
requiring the understanding of low-level mathematical concepts; 4) Understanding of
intermediate-level mathematical concepts and/or multistep solutions to word problems;
and 5) Complex multistep word problems and/or advanced mathematics material.

Source: Cahalan et al., 2006, p. 57-58.
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National Adult Literacy Survey: NALS 
National Assessment of Adult Literacy: NAAL 

The Committee on Performance Levels for Adult Literacy set performance levels for 
quantitative literacy as Below Basic, Basic, Intermediate, and Proficient and defined them as 
follows, based on scores on NALS and NAAL: 

 
Below Basic (0–234) indicates no more than the most simple and concrete literacy 
skills. 
 
Key abilities—locating numbers and using them to perform simple quantitative 
operations (primarily addition) when the mathematical information is very concrete 
and familiar. 
 

Basic (235–289) indicates skills necessary to perform simple and everyday literacy 
activities. 
 
Key abilities—locating easily identifiable quantitative information and using it to 
solve simple, one-step problems when the arithmetic operation is specified or easily 
inferred. 
 

Intermediate (290–349) indicates skills necessary to perform moderately challenging 
literacy activities. 
 
Key abilities—locating less familiar quantitative information and using it to solve 
problems when the arithmetic operation is not specified or easily inferred. 
 

Proficient (350–500) indicates skills necessary to perform more complex and 
challenging literacy activities.  
 
Key abilities—locating more abstract quantitative information and using it to solve 
multistep problems when the arithmetic operations are not easily inferred and the 
problems are more complex (Kutner et al., 2006, p. 3). 

7 
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Figure E-7: Average Quantitative Literacy Scores of Adults, by Household
Income: NAAL 2003

Note: Literacy levels: Below basic 0–234, Basic 235–289, Intermediate 290–349, Proficient 350–500

Source: Kutner et al. (2007), Figure 2-17.

Table E-2: Percentage of Adults in Each Quantitative Literacy Level, by Household
Income: NAAL 2003

<$10,000
$10,000–
$14,999

$15,000–
$19,999

$20,000–
$29,999

$30,000–
$39,999

$40,000–
$59,999

$60,000–
$99,999

$100,000
or greater

Below Basic 26 16 11 16 11 12 7 2
Basic 9 8 6 14 14 21 19 9
Intermediate 4 4 3 10 11 22 28 18
Proficient 2 2 2 5 6 18 37 29

Note: Below Basic (0–234) no more than the most simple and concrete literacy skills; Basic (235–289) skills
necessary to perform simple and everyday literacy activities; Intermediate (290–349) skills necessary to
perform moderately challenging literacy activities; Proficient (350–500) skills necessary to perform more
complex and challenging literacy activities.

Source: Kutner et al. (2007), Table 2-3.
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Figure E-8: Average Quantitative Literacy Scores of Adults, by Highest Educational
Attainment: NALS 1992 and NAAL 2003

Source: Kutner et al., 2007, Table 3-2.

Table E-3: Percentage of Adults in Each Quantitative Literacy Level, by Highest
Education Attainment: NALS 1992 and NAAL 2003

Still in high
school

Less than/
some high

school

GED/
high school
equivalency

High school
graduate

Vocational/
trade/

business
school

Some
college

Associate’s/
2-year degree

Bachelor’s
degree

Graduate
studies/
degree

1992 (NALS)
Below Basic 31 65 25 26 18 11 8 5 2
Basic 37 25 46 41 39 34 29 21 15
Intermediate 27 9 26 29 35 42 45 44 43
Proficient 6 1 3 5 8 13 18 31 39

2003 (NAAL)
Below Basic 31 64 26 24 18 10 7 4 3
Basic 38 25 43 42 41 36 30 22 18
Intermediate 25 10 28 29 35 43 45 43 43
Proficient 5 1 3 5 6 11 18 31 36

Source: Kutner et al., 2007, Figure 3-1c.
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Program for International Student Assessment: PISA 

Mathematics literacy can be classified by proficiency levels, based on scores on the 
PISA, as follows: 

 
Level 1 (greater than 357.77 to 420.07) At Level 1, students can answer questions 
involving familiar contexts where all relevant information is present and the questions 
are clearly defined. They are able to identify information and to carry out routine 
procedures according to direct instructions in explicit situations. They can perform 
actions that are obvious and follow immediately from the given stimuli. 
 
Level 2 (greater than 420.07 to 482.38) At Level 2, students can interpret and 
recognize situations in contexts that require no more than direct inference. They can 
extract relevant information from a single source and make use of a single 
representational mode. Students at this level can employ basic algorithms, formula, 
procedures, or conventions. They are capable of direct reasoning and making literal 
interpretations of the results. 
 
Level 3 (greater than 482.38 to 544.68) At Level 3, students can execute clearly 
described procedures, including those that require sequential decisions. They can 
select and apply simple problem solving strategies. Students at this level can interpret 
and use representations based on different information sources and reason directly 
from them. They can develop short communications reporting their interpretations, 
results, and reasoning. 
 
Level 4 (greater than 544.68 to 606.99) At Level 4, students can work effectively 
with explicit models for complex concrete situations that may involve constraints or 
call for making assumptions. They can select and integrate different representations, 
including symbolic, linking them directly to aspects of real-world situations. Students 
at this level can utilize well developed skills and reason flexibly, with some insight, in 
these contexts. They can construct and communicate explanations and arguments 
based on their interpretations, arguments, and actions. 
 
Level 5 (greater than 606.99 to 669.3) At Level 5, students can develop and work 
with models for complex situations, identifying constraints and specifying 
assumptions. They can select, compare, and evaluate appropriate problem solving 
strategies for dealing with complex problems related to these models. Students at this 
level can work strategically using broad, well-developed thinking and reasoning 
skills, appropriate linked representations, symbolic and formal characterizations, and 
insight pertaining to these situations. They can reflect on their actions and formulate 
and communicate their interpretations and reasoning. 
 

0 
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Level 6 (greater than 669.3) At Level 6, students can conceptualize, generalize, and
utilize information based on their investigations and modeling of complex problem
situations. They can link different information sources and representations and flexibly
translate among them. Students at this level are capable of advanced mathematical
thinking and reasoning. These students can apply this insight and understandings along
with a mastery of symbolic and formal mathematical operations and relationships to
develop new approaches and strategies for attacking novel situations. Students at this
level can formulate and precisely communicate their actions and reflections regarding
their findings, interpretations, arguments, and the appropriateness of these to the
original situations (Lemke et al., 2005, p.18).

Figure E-9: Average Mathematics Literacy Scores of U.S. 15-Year-Olds, by Quarters
on the International Socioeconomic Index: 2003 PISA

Note: Level 1 (greater than 357.77 to 420.07), Level 2 (greater than 420.07 to 482.38), Level 3 (greater than
482.38 to 544.68), Level 4 (greater than 544.68 to 606.99), Level 5 (greater than 606.99 to 669.3), Level 6
(greater than 669.3)

Source: Lemke et al., 2005, Tables B-24.

1



 

 

 



 

  

 

 
Chapter 5: Report of the Task Group 
on Teachers and Teacher Education 

 
Deborah Loewenberg Ball, Chair 

James Simons 
Hung-Hsi Wu 

Raymond Simon, Ex Officio 
Grover J. “Russ” Whitehurst, Ex Officio 

Jim Yun, U.S. Department of Education Staff 





  

 

  

5-iii 

CONTENTS 

List of Tables .................................................................................................................... 5-v 
List of Abbreviations....................................................................................................... 5-vii 
 
Executive Summary ......................................................................................................... 5-ix 
I. Introduction .............................................................................................................. 5-1 
II. Methodology ............................................................................................................ 5-2 

A.  Categories of Studies .......................................................................................... 5-3 
1.  High-Quality Studies..................................................................................... 5-3 
2.  Moderate-Quality Studies.............................................................................. 5-4 
3.  Lesser-Quality Studies .................................................................................. 5-4 

B. Procedures ........................................................................................................... 5-4 
1.  Literature Search and Study Inclusion ........................................................... 5-4 
2.  Effect Size Calculations ................................................................................ 5-5 

III. Findings.................................................................................................................... 5-6 
A. Teachers’ Knowledge of Mathematics ................................................................ 5-6 

1. Introduction .................................................................................................. 5-6 
2. Teacher Certification as a Measure of Mathematical  

Content Knowledge....................................................................................... 5-7 
a. Overall Findings...................................................................................... 5-7 
b. Strength of the Findings ........................................................................ 5-10 
c. Magnitude of the Findings..................................................................... 5-10 

3. Content Course Work and Degrees as Measures of Mathematical 
Content Knowledge..................................................................................... 5-11 
a.  Overall Findings.................................................................................... 5-12 
b.  Strength of the Findings ........................................................................ 5-13 
c.  Magnitude of the Findings..................................................................... 5-13 

4.  Test Scores and Ad Hoc Measures as Measures of Mathematical 
Content Knowledge..................................................................................... 5-15 
a.  Overall Findings.................................................................................... 5-16 
b.  Strength of the Findings ........................................................................ 5-17 
c.  Magnitude of the Findings..................................................................... 5-17 

5.  The Mathematical Content and Nature of Teacher Licensure Exams ........... 5-19 
a.  Implications from the Empirical Evidence............................................. 5-21 

6.  Recommendations Based on the Mathematical and Logical Analysis  
of the Demands of Teaching Mathematics................................................... 5-22 

B.  Teachers’ Education: Teacher Preparation and Alternative Pathways to  
Teaching, Professional Development, and Induction ......................................... 5-23 
1.  Preservice Teacher Preparation ................................................................... 5-24 
2.  Alternative Pathways to Teaching ............................................................... 5-27 
3.  Induction Programs ..................................................................................... 5-33 
4.  Professional Development Programs........................................................... 5-35 
5.  Conclusions ................................................................................................ 5-40 
6.  Recommendations....................................................................................... 5-41 



  

 

  

5-iv 

C.  Teacher Incentives ............................................................................................ 5-41 56 
1. Utilizing Labor Market Incentives for Good Teaching................................. 5-42 57 

a. Skills-Based Pay.................................................................................... 5-42 58 
b.  Location Pay.......................................................................................... 5-43 59 
c.  Performance Pay.................................................................................... 5-43 60 

2.  Recommendations ....................................................................................... 5-47 61 
3.  Cautions ...................................................................................................... 5-47 62 

D.  Elementary Mathematics Specialist Teachers .................................................... 5-51 63 
1.  What Models Exist for Elementary Mathematics Specialist Teachers and 64 

Their Preparation?....................................................................................... 5-52 65 
a.  The Lead Teacher or Math Coach Model............................................... 5-54 66 
b.  The Specialized-Teacher Model............................................................. 5-55 67 
c.  The Pull-Out Model............................................................................... 5-55 68 

2.  What Evidence Exists for the Effectiveness of Elementary Mathematics 69 
Specialist Teachers with Respect to Student Achievement? ......................... 5-55 70 
a.  Costs Associated with Mathematics Specialists...................................... 5-56 71 
b.  Mathematics Specialists Internationally ................................................. 5-58 72 

3. Conclusions................................................................................................... 5-58 73 
 74 

BIBLIOGRAPHY ........................................................................................................... 5-59 75 
 76 

77 

 



  

 

   

5-v 

Tables 

Table 1:  Quality Characteristics of Models Examining Impact of Teacher  
Certification on Student Achievement in Mathematics, by Study and  
by Overall Quality ............................................................................................. 5-9 

Table 2:  Reported Impacts of Models Examining the Effect of Teacher  
Certification on Student Achievement in Mathematics for the  
High-Quality Studies ....................................................................................... 5-11 

Table 3:  Quality Characteristics of Models Looking at Impact of Teacher  
Math Course Work and Degrees on Student Achievement in  
Mathematics, by Study and by Overall Study Quality ...................................... 5-14 

Table 4:  Reported Impacts of Models Examining the Effect of Teacher  
Mathematics Course Work and Degrees on Student Achievement  
in Mathematics, by Study and by Overall Quality ............................................ 5-15 

Table 5:  Quality Characteristics of Models Looking at Impact of Teacher  
Test Scores and Other Ad Hoc Measures on Student Achievement  
in Mathematics, by Study and by Overall Study Quality .................................. 5-18 

Table 6:  Reported Impacts of Models Examining the Effect of Teacher  
Test Scores and Other Ad Hoc Measures on Student Achievement  
in Mathematics, by Study ................................................................................ 5-19 

Table 7:  Quality Characteristics of Models Examining Impact of Teacher  
Preparation Programs on Student Achievement in Mathematics  
or Teachers’ Mathematics Content Knowledge................................................ 5-25 

Table 8:  Reported Impacts From Models Examining the Effect of Teacher  
Preparation Programs on Student Achievement in Mathematics or  
Teachers’ Mathematics Content Knowledge .................................................... 5-26 

Table 9:  Quality Characteristics of Models Examining Impact of Alternative  
Pathways on Student Achievement in Mathematics ......................................... 5-29 

Table 10: Reported Impacts of Studies Examining the Effect of Teachers from  
Alternative Paths on Student Achievement in Mathematics.............................. 5-30 

Table 11: Quality Characteristics of Studies Examining Impact of  
Teacher Professional Development Programs on Student  
Achievement in Mathematics........................................................................... 5-36 

Table 12: Reported Impacts of Studies Examining the Effect of  
Teacher Professional Development Programs on Student  
Achievement in Mathematics........................................................................... 5-37 

Table 13: Quality Characteristics of Studies Examining Impact of Teacher  
Pay for Performance on Student Achievement in Mathematics ........................ 5-45 

Table 14: Reported Impacts of Models Examining the Effect of Teacher  
Pay for Performance on Student Achievement in Mathematics ........................ 5-48 

 





  

 

  

5-vii 

Abbreviations 

AIMS PK–16 The Alliance for Improvement of Mathematics Skills—PreKindergarten  
 Through Grade 16 
ANOVA  Analysis of Variance  
BA  Bachelor of Arts  
BNSE Belize National Selection Exam 
BSAP  Basic Skills Assessment Program  
CCTDM Classroom Center Teacher Developmental Mathematics  
CKT-M  Content Knowledge for Teaching Mathematics 
CSAP  Colorado Student Assessment Program  
CTBS  Comprehensive Test of Basic Skills 
ETS  Education Testing Service  
FCAT Florida Comprehensive Achievement Test 
GLS  Generalized Least Squares  
GPA Grade Point Average 
GSCE Graduate School College Education  
HLM Hierarchical Linear Modeling 
HS High School 
ICC  Intra-Class Correlation  
IMA Integrated Mathematics Assessment  
IP Incentive Plan 
ISD Independent School District 
ITBS  Iowa Test of Basic Skills 
KCPE Kentucky Council on Postsecondary Education  
LSAY Longitudinal Study of American Youth 
MA  Master of Arts 
MAT Master of Arts in Teaching  
MMI Maysville Mathematics Initiative  
NAEP National Assessment of Educational Progress 
NBPTS National Board for Professional Teaching Standards 
NCATE National Council for the Accreditation of Teacher Education 
NCE  Norm Curve Equivalent  
NELS National Educational Longitudinal Survey  
NWEA Northwest Evaluation Association Study 
OLS Ordinary Least Squares 
PFP Pay for Performance 
PK–16 Pre-School Through Grade 16 
PPST Pre-Professional Skills Tests  
PS Propensity Score 
RCT Randomized Controlled Trials 
RDD  Regression Discontinuity Design 
SAT  Scholastic Aptitude Test 
SAT-9 Stanford Achievement Test, Ninth Edition 
SC South Carolina 



  

 

  

5-viii 

SSCI Social Sciences Citation Index 
STAR Student/Teacher Achievement Ratio  
SUPP Supplemental  
TAAS Texas Assessment of Academic Skills  
TFA Teach for America  
TIMSS Trends in Mathematics and Science Study 
TRAD Traditional  
WCET Weighted Common Examinations Total 
WWC  What Works Clearinghouse 



  

 

  

5-ix 

Executive Summary 

Introduction 

Teachers are crucial to students’ opportunities to learn mathematics, and substantial 
differences in the mathematics achievement of students are attributable to differences among 
teachers. Therefore, the National Mathematics Advisory Panel (Panel) was charged with 
making recommendations, based on the best available scientific evidence, on “the training, 
selection, placement, and professional development of teachers of mathematics in order to 
enhance students’ learning of mathematics,” according to presidential Executive Order 
13398. To address this charge, the Panel established a Teachers and Teacher Education Task 
Group (Task Group), which combed the research on the relationship between teachers’ own 
knowledge and students’ achievement, and how effective teachers can best be recruited, 
prepared, supported, and rewarded. 

The four questions that structured the work of the Task Group are: 

1) What is the relationship between the depth and quality of teachers’ mathematical 
knowledge and students’ mathematics achievement? 

2) What is known about programs that help teachers develop the necessary mathematical 
knowledge for teaching? Which of these programs have been shown to affect 
instructional practice and student achievement?  

3) What types of recruitment and retention strategies are used to attract and retain highly 
effective teachers of mathematics?  How effective are they?  

4) What evidence exists for the effectiveness of elementary mathematics specialist 
teachers with respect to student achievement?  What models exist for elementary 
mathematics specialists and their preparation? 

The research base that addresses these questions was found to be uneven.  Therefore, 
in addition to making recommendations based on the best available evidence, the Task Group 
makes recommendations about the research needed in order to improve practice and policy 
with respect to teachers. 

Methodology 

The Task Group identified available scientific evidence, published in peer-reviewed 
journals and national reports, and categorized the quality of the research studies related to each 
of the four research questions. Studies were categorized as high quality, moderate quality, or 
lesser quality based on the appropriateness of the design in answering the specific research 
question. High-quality studies were those that employed a randomized control trial design or 
those that addressed the weaknesses of a correlational design through the use of large samples, 
control variables, multiple specifications, etc. Standardized regression coefficients or 
standardized mean differences were calculated as appropriate.  High-quality studies served as 
the primary basis for the Task Group’s recommendations, although the available evidence 
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varied for each research question.  Because of the paucity of rigorous empirical research to 
answer the Task Group’s fourth question, the Task Group provides a description of the 
programs and models that exist in the United States, some distinctions among the different 
models, and commentary on the costs and benefits of those different models. 

Teachers’ Knowledge of Mathematics 

Common sense dictates that teachers must know the mathematical content they teach, 
but defining a precise body of mathematical knowledge that would effectively serve teachers 
and would guide teacher education, professional development, and policy has proved 
challenging.  Therefore, the Task Group considered the empirical evidence on how the level 
and scope of teachers’ own mathematical knowledge affects the learning of their students.  
Across the rigorous research studies reviewed on the relationship between teachers’ 
mathematical knowledge and their students’ achievement, teacher content knowledge was 
measured in three different ways: teacher certification, mathematics course work, and tests of 
teachers’ mathematical knowledge. Across all studies, the general results are mixed but 
overall do confirm the importance of teachers’ content knowledge. However, because most 
studies have relied on proxies for teachers’ mathematical knowledge (such as teacher 
certification or courses taken), existing research does not reveal the specific mathematical 
knowledge and instructional skill needed for effective teaching, especially at the elementary 
and middle school level. Direct assessments of teachers’ actual mathematical knowledge 
provide the strongest indication of a relation between teachers’ content knowledge and their 
students’ achievement. 

Teacher Certification as a Measure of Mathematical Content Knowledge 

Across studies that used teacher certification or teacher certification in mathematics 
as a proxy for teachers’ mathematical content knowledge, findings were mixed about the 
impact of teacher certification on student achievement in mathematics.  Research in this area 
has not provided consistent or convincing evidence that students of teachers who are certified 
in mathematics gain more than those whose teachers are not.   

Content Course Work and Degrees as Measures of Mathematical 
Content Knowledge 

Mathematics course work and field-specific degrees are a second common group of 
proxies for teachers’ mathematical content knowledge; both measures focus on teachers’ 
completion of college-level mathematics study and are often jointly considered within the 
same analysis. In general, although results are mixed, there appears to be some positive 
relationship between teacher content course work and degrees, and student math achievement 
at the high school level. However, the existing research does not show evidence of such a 
relationship below ninth grade. 
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Test Scores and Ad Hoc Measures as Measures of Mathematical 
Content Knowledge  

More proximal measures of teachers’ mathematical content knowledge included tests 
of teachers’ content knowledge. Such measures allow closer examination of the effect that 
mathematical knowledge has on student achievement. Although there was variation among 
the set of studies that used teacher test scores as measures of teacher content knowledge, 
overall these studies signaled a positive effect of mathematical content knowledge on student 
achievement.  It should be noted that the studies this Task Group found were focused at the 
elementary level, making comparisons with other findings difficult. 

The Mathematical Content and Nature of Teacher Licensure Exams 

Although recent research treating teacher licensure as a proxy for teachers’ 
mathematical content knowledge has not consistently or convincingly shown that students of 
teachers who are licensed in mathematics gain more academically than those whose teachers 
are not, teacher licensure exams play an important role in determining the math teachers 
available for employment in schools. Recognizing the importance of teacher licensure exams, 
the Task Group sought access to these exams together with data on teachers’ performance on 
exam items. Due to issues of confidentiality, however, the Task Group was not able to gather 
information sufficient to assess the mathematical quality of these exams.  

Conclusions and Recommendations Regarding Teachers’ Knowledge of 
Mathematics 

Research on the relationship between teachers’ mathematical knowledge and 
students’ achievement supports the importance of teachers’ content knowledge in student 
learning. However, because most studies have relied on proxies for teachers’ mathematical 
knowledge (such as teacher certification or courses taken), existing research does not reveal 
the specific mathematical knowledge and instructional skills needed for effective teaching, 
especially at the elementary and middle school level.  

Direct assessments of teachers’ actual mathematical knowledge provide the strongest 
indication of a relation between teachers’ content knowledge and their students’ 
achievement. More precise measures are needed to specify in greater detail the relationship 
among elementary and middle-school teachers’ mathematical knowledge, their instructional 
skill, and students’ learning. 
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Teachers’ Education:  Teacher Preparation, Alternative Pathways 

to Teaching, Induction, and Professional Development 

Teaching well requires substantial knowledge and skill. The Task Group sought to 
understand the impact that teacher education has on teachers’ effectiveness.  The Task Group 
considered the empirical evidence on four types of professional training:  

• Preservice teacher preparation: Initial teacher training, conventionally offered in 
institutions of higher education; 

• Alternative pathways: Initial teacher preparation offered outside of conventional 
teacher education programs; 

• Induction programs: Professional support and additional training within the first years 
of practice; and 

• Professional development: Ongoing programmatic professional education of 
practicing teachers. 

The Task Group’s review of the available research and the rigor of this research 
highlights the critical need for more and better studies tracing the relationship between 
specific approaches to teacher education (i.e., curricula, pedagogy and assessment, 
instructors, structures, and settings) and teachers’ capacity for teaching and their students’ 
learning. However, existing research on aspects of teacher education, including standard 
teacher preparation programs, alternative pathways into teaching, support programs for new 
teachers (e.g., mentoring), and professional development, is not of sufficient rigor or quality 
to permit the Panel to draw conclusions about the features of professional training that have 
effects on teachers’ knowledge, their instructional practice, or their students’ achievement.  

Preservice Teacher Preparation 

The Task Group found very few empirical studies that addressed the question of the 
impact of preparation programs on student achievement or teachers’ mathematical content 
knowledge. Unfortunately, none were of sufficient rigor or quality to allow us to draw 
conclusions about the relationship of particular features of teacher preparation programs and 
their effects.   

Alternative Pathways Into Teaching 

Determining how different types of pathways into teaching may affect the knowledge 
and skill teachers’ bring to their work is a key policy question in a time when issues of 
teacher recruitment, retention, and quality are paramount. Overall, evidence is mixed on the 
effects of teachers’ pathways into teaching and their relationship to students’ achievement. 
Because of differences in specifications across studies, drawing specific conclusions about 
alternative pathways in general would be difficult to do from these studies. However, the 
evidence suggests that the differences among current pathways are small or not significantly 
different and that variation within programs is much greater than that across programs. 
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Induction Programs 

National reports calling for higher-quality teaching, higher teacher retention rates, and 
stronger student achievement identify support of new teachers—induction—as an area for 
improvement. The Task Group found a dearth of peer-reviewed research on early career 
support programs for mathematics teachers that looked at outcomes related to student 
achievement or teacher mathematics knowledge; key outcomes for much of the current 
induction literature is teacher retention, satisfaction, and beliefs. Given the current expansion 
of induction programs, it is important to assess the effectiveness of induction programs on 
teachers’ effectiveness. Until induction programs are content-specific or include specific 
content activities, it may be difficult to determine the effectiveness of induction on the 
mathematical knowledge of teachers or on students’ achievement gains. 

Professional Development Programs 

Practicing teachers continue their teacher education through in-service professional 
development. Studies that investigated the impact on teacher content knowledge lacked either 
comparison groups or direct measures of teacher content knowledge, instead relying on 
teacher self reports.  Across studies that investigated the relationship between teacher 
professional development programs and students’ mathematics achievement, there was a 
positive effect of professional development on student achievement.  However, there was 
insufficient evidence on the specific features of professional development that impact student 
achievement to make conclusions about what forms of, or approaches to, professional 
development are effective.   

Conclusions and Recommendations Regarding Teachers’ Education 

Despite common beliefs about qualities of effective teacher education, there is no 
strong evidence on the relationship between any specific form of teacher education and either 
teachers’ mathematics content knowledge or their students’ mathematics learning. Further, 
there is even less evidence to identify the specific features of training that might account for 
any program impacts, providing little insight into the crucial components of teacher education.   

High-quality research must be undertaken to create a sound basis for the mathematics 
preparation of elementary and middle school teachers within preservice teacher education, 
early-career support, and ongoing professional development programs. Outcomes of different 
approaches should be evaluated, in part, by using reliable and valid measures of 
mathematical knowledge that are demonstrably associated with gains in student achievement. 

Studies are needed with designs that lead to knowledge about the impact of different 
approaches to professional development, and that permit comparisons with other potential 
impacts on teacher capacity and effectiveness (e.g., experience, curriculum, curriculum 
policy). Such research will depend not only on rigorous designs, but also on valid and 
reliable measures of the key outcome variables:  teachers’ mathematical knowledge and skill, 
instructional quality, and student learning.  
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Key questions on which robust evidence is needed include: 

• Does teacher education (including preservice training of different kinds, professional 
development, and early career induction programs), have an impact on teachers’ 
capacity for teaching and on their students’ achievement? 

• What are key features of teacher education (e.g., duration, structure, quantity, content, 
pedagogy, structure, relationship to practice) that have effects on teacher capacity and 
on student achievement?  

• How do contexts (school, students, teachers, policy) affect the outcomes of 
professional development? 

• How do different amounts of teacher education affect outcomes and effects? 

Teacher Incentives 

Compensation is often cited as a key factor in improving teacher quality, and 
programs are focusing on compensation as a recruitment and retention strategy. The Task 
Group investigated the evidence on different salary schemes that aim to recruit, reward, and 
retain skillful teachers.  The programs utilize a variety of labor market incentives including:  

• Skills-based pay: Paying more to teachers who have technical skills that are in 
demand in other sectors of the economy, such as teachers with degrees in 
mathematics; 

• Location pay: Compensating teachers for working in conditions they view as 
unfavorable, such as those associated with high-poverty, low-achieving schools; and 

• Performance-based pay: Paying more to mathematics teachers who are more 
productive in raising student achievement. 

The Task Group examined research on each of these approaches to teacher 
compensation. 

Skills-Based Pay 

College students’ decisions to prepare for and enter into teaching depend on how the 
salary structure for teachers compares with those in competing occupations.  The magnitude 
of the salary differential between the private sector and the teaching profession for those who 
enter teaching with technical training is large, with a moderate difference on entry and a 
rapidly increasing gap over the first 10 years of employment. Teachers of mathematics and 
science are significantly more likely to move from or leave their teaching jobs because of job 
dissatisfaction than are other teachers, and of those who depart because of job dissatisfaction, 
the most common reason given is low salary. 
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Location Pay 

Research on the effects of location-based pay, intended to attract or retain skilled 
teachers in schools that serve under-resourced communities, yielded mixed results. The 
effectiveness of such salary schemes is affected by the size of differential in pay, the gender 
and experience of the teacher, whether the bonus is a one-time signing bonus or permanent, 
as well as other factors.  

Performance Pay 

There is a substantial variability in extant merit-pay systems. The Task Group 
identified four different dimensions of variability of “merit” pay:  whether salary differentials 
are tied to schools’ performance or that of individual teachers, how significant the differential 
is, the degree to which the scheme is focused on student performance, and whether the plan 
seems continuous or is a short-term experiment. Across the studies reviewed, each 
performance pay approach yielded some positive effects on student achievement. 

Recommendations and Cautions Regarding Teacher Incentives 

The results from research on teacher incentives generally support the effectiveness of 
incentives, although the methodological quality of the studies in terms of causal conclusions 
is mixed. The substantial body of economic research in other fields indicating that salary 
affects the number of workers entering a field and their job performance is relevant. In the 
context of the totality of the evidence, the Task Group recommends policy initiatives that put 
in place and carefully evaluate the effects of: 

• Raising base salaries for teachers of mathematics to be more competitive with salaries 
for similarly trained non-teachers; 

• Incentives for teachers of mathematics working in locations that are difficult to staff; and 

• Opportunities for teachers of mathematics to increase their base salaries substantially 
by demonstrable effectiveness in raising student achievement.   

Knowing more about how various incentive systems affect teachers would enable the 
design of more effective and efficient incentives.  

Elementary Mathematics Specialist Teachers 

There have been many calls for the use of “mathematics specialist teachers” at the K–5 
level in recent years, with some arguing that the teaching of mathematics even in the 
elementary grades calls for specialized knowledge, while most elementary teachers are 
generalists.  The Task Group sought to learn what is known about mathematics specialists at 
the elementary level. To contribute to thoughtful consideration of the issues involved in 
restructuring teacher roles around the idea of mathematics specialists, the Task Group 
reviewed a range of models in current use in the United States and abroad, and sought 
evidence about their effectiveness. 
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Models of Elementary Mathematics Specialist Teachers 

The Task Group identified three models of mathematics specialist teachers: the lead 
teacher or mathematics coach, who is a resource person for their coworkers and does not 
directly instruct students; the specialized teacher, who is responsible for the direct instruction 
of students; and the pull-out mathematics specialist, who directly instructs individuals or small 
groups of students within a classroom who have been identified as either failing to meet or 
exceeding their grade-level standards. Mathematics specialists as lead teachers or mathematics 
coaches are more common than the other two models. 

Evidence for Effectiveness of Elementary Mathematics Specialist Teachers  

The Task Group identified very few studies that probed the effectiveness of 
elementary mathematics specialists. Out of 114 potentially relevant pieces of literature, only 
one explored the effects of specialized mathematics specialists on student achievement in 
elementary schools. The study found no difference in the mathematics gain scores of students 
in an elementary school with a departmentalized structure compared to students in a school 
with a self-contained class structure.   

Costs Associated With Mathematics Specialists 

The costs associated with the employment, training, or certification of mathematics 
specialists were considered.  One cost has to do with the funding of the personnel involved 
and depends on the model used:  the specialized-teacher model involves only a redistribution 
of responsibilities among the existing staff, whereas the lead teacher or mathematics coach or 
the pull-out program requires the hiring of additional teachers. A second cost is that of the 
additional training needed for teachers to prepare with the specialization to fill these roles.  In 
addition to tuition costs for participating teachers, there are costs associated with developing 
and operating programs or courses. Simply taking more college-level mathematics courses 
would not be sufficient in most cases because regular mathematics courses generally do not 
focus on the mathematics needed for specialization in elementary and middle school. 

Mathematics Specialists Internationally 

Full-time elementary mathematics teachers are not widely used in most of the 
countries that produce high levels of student achievement in mathematics. Only three (China, 
Singapore, and Sweden) deploy such teachers at the elementary level. Elementary teachers in 
those countries may enter teaching with a stronger background in mathematics, which may 
be a factor in the success of those countries with mathematics education. 
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Conclusions Regarding Elementary Mathematics Specialist Teachers 

The Panel recommends that research be conducted on the use of full-time mathematics 
teachers in elementary schools. These would be teachers with strong knowledge of 
mathematics who would teach mathematics full-time to several classrooms of students, rather 
than teaching many subjects to one class, as is typical in most elementary classrooms. This 
recommendation for research is based on the Panel’s findings about the importance of teachers’ 
mathematical knowledge. The use of teachers who have specialized in elementary mathematics 
teaching could be a practical alternative to increasing all elementary teachers’ content 
knowledge (a problem of huge scale) by focusing the need for expertise on fewer teachers. 
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I. Introduction 

Teachers are crucial to students’ opportunities to learn and to their learning of 
mathematics. Substantial differences in the mathematics achievement of students are 
attributable to differences in teachers. A meta-analysis of the findings from seven large 
studies of variation in teacher effects found that 11% of the total variability in student 
achievement gains in mathematics across one year of classroom instruction was attributable 
to teachers (Nye, Konstantopoulos, & Hedges, 2004). The authors, noting that all the studies 
in their review were correlational, conducted a new analysis using data from the Tennessee 
class-size experiment, also known as the Student-Teacher Achievement Ratio (STAR) 
project. An analysis of STAR data has a methodological advantage over prior studies of 
natural variation in that both students and teachers were randomly assigned to classes. Nye et 
al. found that differences in teachers accounted for 12% to 14% of total variability in 
students’ mathematics achievement gains in each of Grades 1, 2, and 3. 

In a similar vein, Gordon, Kane, and Staiger (2006), using data from the Los Angeles 
Unified School District for teachers in Grades 3 through 5, report that the average student 
assigned to a teacher in his or her 3rd year of teaching who was in the bottom quartile during 
his or her first 2 years of teaching lost on average 5 percentile points on a mathematics 
assessment relative to students with similar baseline scores and demographics. In contrast, 
the average student assigned to a top-quartile teacher gained 5 percentile points relative to 
students with similar baseline scores and demographics. Thus, the average difference 
between being assigned a top-quartile or a bottom-quartile teacher was 10 percentile points. 

These are large effects, larger, for example, than those that have been shown to result 
from significant reductions in class size. Important to note is that these effects are for one year 
of instruction. Teacher effects are much larger when they combine across years of instruction. 
Sanders and Rivers (1996) used value-added methods to measure the effectiveness of all math 
teachers in Grades 3, 4, and 5 in two large metropolitan school districts in Tennessee. The 
growth in academic achievement by students in each teacher’s class relative to all other 
teachers was used to identify the most effective (top 20%) and the least effective (bottom 20%) 
teachers. The progress of children assigned to these low- and high-performing teachers was 
tracked over a 3-year period. Children assigned to three effective teachers in a row scored at 
the 83rd percentile in mathematics at the end of fifth grade, while children assigned to three 
ineffective teachers in a row scored at the 29th percentile. Using a different methodology, 
Rivkin, Hanushek, and Kain (2005) came to a similar conclusion: The cumulative effects of 
children being taught by highly effective teachers can substantially eliminate differences in 
student achievement that are due to family background. 

 Unfortunately, little is known about what accounts for these individual differences in 
teachers’ ability to generate gains in student learning. Investigating the best evidence about 
instructional practices that affect achievement is the province of the Instructional Practices 
Task Group. The Teachers and Teacher Education Task Group has sought to learn the impact 
of a teacher’s own knowledge on their students’ achievement and how teachers can be best 
recruited, prepared, supported, and rewarded.   



Task Group Reports of the National Mathematics Advisory Panel 

 

5. REPORT OF THE TASK GROUP ON TEACHERS AND TEACHER EDUCATION 

5-2 

The four questions that structured the work of the Teachers and Teacher Education 
Task Group are: 

1) What is the relationship between the depth and quality of teachers’ mathematical 
knowledge, and students’ mathematics achievement? 

2) What is known about programs that help teachers develop the necessary mathematical 
knowledge for teaching? Which of these programs have been shown to affect 
instructional practice and student achievement?  

3) What types of recruitment and retention strategies are used to attract and retain highly 
effective teachers of mathematics?  How effective are the strategies?  

4) What evidence exists for the effectiveness of elementary mathematics specialist 
teachers with respect to student achievement?  What models exist for elementary 
mathematics specialists and their preparation? 

The Task Group found an uneven research base to address these questions. Included in 
this report are the Task Group’s summary and recommendations, their observations about the 
nature of the empirical evidence currently available, and recommendations for the research 
needed to improve practice and policy with respect to teachers. The Task Group’s last question, 
on elementary mathematics specialist teachers, differs from the others as it relies primarily on 
anecdotal information regarding the effectiveness of mathematics specialists. Despite the 
paucity of empirical research, the Task Group believes that there is a useful contribution that 
the Panel can make to debates about this idea. What the Task Group has produced is a 
synthesis of the programs and models that exist in the United States, some distinctions among 
different models, and some commentary on the costs and benefits of those different models. 

II. Methodology 

The Task Group identified and organized the available scientific evidence into several 
categories as they reviewed studies related to each of the four research questions addressed 
by the group. The quality of the evidence varied for each research question, as described in 
the individual sections of the report. For example, because experimental manipulation of 
teacher characteristics, such as teacher preparation or teacher content knowledge, is not 
easily done, the Task Group relied on correlational studies investigating the relationship of 
these variables to student achievement. Following is a discussion of the categories for studies 
with quantitative designs that were considered for inclusion because they provided the most 
rigorous evidence available, followed by a discussion of the procedures for identifying 
relevant research and synthesizing the results. In their report, the Task Group relied primarily 
on the highest quality studies available for each question. 
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A. Categories of Studies 

1. High-Quality Studies 

The high-quality studies identified for the research questions addressed by the Task 
Group included those with designs that were randomized controlled trials (RCTs), quasi-
experimental studies that included baseline equivalence of treatment and control groups 
formed other than by random assignment, or correlational studies that met stringent quality 
standards. The strongest quality quasi-experimental and correlational studies were 
determined on the basis of: 1) the size of sample, 2) appropriate and adequate statistical 
controls, 3) use of multiple specifications, or tests for robustness of results, or both 4) use of 
individual-level versus aggregated data, and 5) the appropriateness and strength of the 
identification of the outcomes variable. These elements are reported for each study reviewed. 
The correlational studies in this category used such multivariate methods as regression 
analysis in the form of either standard ordinary least squares (OLS) or hierarchical linear 
modeling (HLM).  

More specifically, the correlational studies in this category all had these three 
characteristics: 

1) A baseline control for the outcomes measure (e.g., prior student mathematics 
achievement);  

2) Use of multivariate regression analysis; and 

3) A strong outcome measure (e.g., standardized test to measure student mathematics 
achievement). 

and at least three of the following four characteristics: 

1) Sample size—more than 1,000 observations on student mathematics achievement; 

2) Statistical controls—contained a pretest control for student mathematics achievement 
plus controls for other relevant student and teacher characteristics; 

3) Multiple specifications—multiple model specifications or other robustness checks on 
the results; and  

4) Student-level data—the analysis was conducted with student-level data that had not 
been aggregated beyond the classroom of students instructed by a teacher. 

Strong quasi-experimental and correlational studies formed the core of the research 
available to support conclusions and recommendations of the Task Group. 
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2. Moderate-Quality Studies 

Studies in this category were those that were empirical, but did not meet a sufficient 
number of the standards established for the highest category. For instance, some of the 
studies in this category are those with strong research designs but weak outcome measures, 
such as indirect measures of teacher content knowledge or student achievement. All of the 
studies included in this category used correlational methods, such as regression analysis in 
the form of either standard OLS or HLM.   

3. Lesser-Quality Studies 

Studies in this category met very few of the criteria established for the highest quality 
studies and/or their measure of a variable of interest was extremely weak. For example, 
studies where the measure for teacher content knowledge was defined as teacher certification 
in a field other than mathematics or a score on a mathematics test that the teacher took many 
years earlier fall into this category.   

B. Procedures 

1. Literature Search and Study Inclusion 

Literature searches were conducted to locate studies on the relationship between 
selected teacher characteristics and student learning in mathematics. Electronic searches were 
made in PsycINFO and the Social Sciences Citation Index (SSCI) using search terms 
identified by the Task Group. Studies were also identified through manual searches of 
relevant journals and reference lists, and recommendations from experts. Abstracts from 
these searches were screened for relevance to research questions and appropriate study 
design. For each study that met the screening criteria, the full study was examined to 
determine whether it met the inclusion criteria specified below. Citations from those articles 
and research reviews were also examined to identify additional relevant studies. 

Criteria for Inclusion:  

• Published between 1975 and 2007; 
• Involved Grade K–12 students studying mathematics or involved teachers of 

mathematics for Grade K–12 students; 
• Available in English; 
• Published in a peer-reviewed journal, government or national report, book, or book 

chapter; and 
• Used multivariate analysis with statistical controls. 
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2. Effect Size Calculations 

Standardized regression coefficients typically were used as effect size measures 
because they are often the only data available. The equation used to calculate standardized 
regression coefficients is equation 2.3 from Bring (1994):   

Bi = ˆ  i(si /sy )  

In this equation, i
ˆ  is the standardized regression coefficient on variable i, i

ˆ  is the 
regression coefficient reported in the paper for variable i, si is the standard deviation of 
variable i, and sy is the standard deviation of the dependent variable. Thus, to calculate the 
standardized regression coefficient, the regression coefficient is multiplied by the standard 
deviation of the independent variable, and divided by the standard deviation of the dependent 
variable. The first element required for this calculation, i

ˆ , was available in any paper where 
a regression coefficient on the variable of interest was reported, which included all of the 
high-quality studies. However, the two required standard deviations were frequently not 
reported, and in those cases the standardized regression coefficient could not be calculated. 

The standardized regression coefficient is interpreted as the change in the dependent 
variable as a fraction of the standard deviation that results when the independent variable 
changes by one standard deviation, holding the other variables constant. It is important to 
note, however, that although this is the best method available to calculate effect sizes given 
the data available in these papers, it is somewhat controversial and thus should be interpreted 
with caution. Essentially, the standard deviations used here are not entirely appropriate, 
because they are the overall standard deviations, which are much larger than the standard 
deviations when all independent variables but one are held constant. For more detail and an 
example of why standardized regression coefficients can be misleading, see Bring (1994). 

When possible, the Task Group applied the What Works Clearinghouse (WWC) 
guidelines to calculate standardized mean differences in mathematics achievement.1 Using 
Comprehensive Meta-Analysis, Version 2 software, Hedges g standardized mean differences 
were calculated for these studies. The standardized mean difference is defined as the 
difference between the mean score for the treatment group minus the mean score for the 
comparison group, divided by the pooled standard deviation of that outcome for both the 
treatment and comparison groups. 

In cases where schools, teachers, or classrooms were assigned (either randomly or 
nonrandomly) into intervention and comparison groups, and the unit of assignment was not 
the same as the unit of analysis, the effect size and accompanying standard error were 
adjusted for clustering within schools, teachers, or classrooms. This analysis used WWC 
guidelines to adjust for clustering, applying the default intra class correlation (ICC) 
adjustment for achievement guidelines of 0.20 when actual ICC values were unavailable.2 

                                                
1 See http://ies.ed.gov/ncee/wwc/twp.asp for the guidelines. 
2 See http://ies.ed.gov/ncee/wwc/overview/review.asp?ag=pi for more information on this issue. 
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III. Findings 

A. Teachers’ Knowledge of Mathematics  

What evidence exists about the relationship between the depth and quality of teachers’ 
knowledge of mathematics and gains in students’ achievement? 

1. Introduction  

It is widely assumed—some would claim common sense—that teachers must know 
the mathematical content they teach. Yet verifying this assertion and making it more precise 
for the purposes of teacher education, professional development, and policy have proved 
challenging for researchers. How much mathematics course work do teachers need to take? 
How much do they need to know? What exactly do they need to know, and do they need to 
learn it? On the one hand, a simple answer––and an obvious one––is that teachers must have 
a strong grasp of the curriculum that they are responsible to teach. Knowing the curriculum 
well enough also requires knowledge at levels beyond their grade assignment. On the other 
hand, showing the effect of different kinds or amounts of teacher mathematical knowledge on 
student achievement has been far from easy or conclusive. Expert opinion can offer insight 
into the mathematical demands of teaching.  

In this section, the Task Group considered empirical evidence that might help to 
shape teachers’ education and policy: How does the level and scope of teachers’ own 
mathematical attainment affect the learning of their students? 

This is, of course, hardly a new question. The relationship between teacher 
characteristics and student achievement outcomes has been examined extensively over the 
past four decades, reaching as far back as a study by Coleman in the 1960s (Coleman et al., 
1966). This education production function research attempted to determine the relationships 
between inputs, such as school and teacher characteristics, that can be modified (e.g., class 
size, expenditures on teacher salaries) and desired education outcomes (e.g., increased student 
achievement). The findings from this body of work have not produced consistent conclusions 
(e.g., Hanushek, 1986, 1989; Hedges, Laine, & Greenwald, 1994; Krueger, 1999; Monk, 
1992), especially regarding matters of the relationship between education expenditures and 
student performance. Yet, as Goldhaber (2007) noted, a major finding from this literature was 
that of all school-related factors, teacher quality dominates effects on student achievement. As 
such, more recent interest in school inputs has turned to examining how the characteristics of 
teachers and the policies that affect them (e.g., teacher certification, teacher testing) may be 
related to student achievement. In this section the Task Group turns to examining how 
teachers’ mathematical knowledge is related to student achievement.  

Studying the relationship of teachers’ mathematical knowledge to student 
achievement requires a measure of content knowledge. In the studies the Task Group 
reviewed and that met their standards of rigor, they identified three ways in which teachers’ 
mathematical knowledge has been measured and related to student achievement gains: 
teacher certification, mathematics course work, and tests of teachers’ mathematical 
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knowledge. Other paths to assess teachers’ content knowledge include scores on certification 
examinations, individual interviews and structured tasks, and teachers’ skill with 
mathematics in the context of actual instruction. The Task Group did not locate studies that 
examined the effects of measures on teachers’ performance on the learning of their students, 
and so these other approaches are not reflected in their initial summary. Consistent with the 
findings of other researchers who also have examined this body of literature, the Task Group 
finds that when studies are combined by type, including those that rely on proxies for teacher 
knowledge, such as certification status, the general results are mixed (Mandeville & Liu, 
1997; Hill, Rowan, & Ball, 2005). When studies that use direct measures of teachers’ 
mathematical knowledge are isolated, the effects are more positive.  

The Task Group summarizes the evidence available about teacher knowledge effects, 
comments on the quality and reliability of that evidence, and suggests a set of warranted 
conclusions and inferences based on the strongest evidence. In addition, for the strongest group 
of studies, the Task Group provides the magnitude of the findings for illustrative purposes. 

2. Teacher Certification as a Measure of Mathematical Content Knowledge 

The Task Group begins this synthesis by examining literature that uses teacher 
certification as a proxy for teachers’ mathematical content knowledge. A drawback to 
certification status is its inexactness as a measure of teachers’ content knowledge. This stems 
from several problems. The first is one of self-selection. If a teacher’s certification status is 
correlated with other characteristics that may also affect student outcomes (e.g., motivation), 
then any impact of certification on student achievement may not necessarily reflect the effect 
of greater mathematical content knowledge. The second problem is that, to the extent that 
certification status does not measure more nuanced elements of teacher mathematical content 
knowledge, if and where those “undetectable” teacher-to-teacher differences exist and are 
significant determinants of student outcomes, estimates of the effect of teacher mathematical 
content knowledge will be less precise, i.e., biased toward finding no impact on student 
outcomes. Another limitation is that different types of certification status (e.g., standard 
versus emergency) complicate the understanding of the effect of teacher mathematical 
content knowledge, primarily because how “true” mathematical content knowledge differs 
between these two groups of certified teachers is not completely clear (see Darling-
Hammond, Berry, & Thoreson, 2001; Fetler, 1999). Finally, the small percentage of 
uncertified teachers may also raise questions about what is being measured. 

a. Overall Findings 

Overall, findings about the impact of teacher certification on student achievement in 
mathematics have been mixed, even among the most rigorous and highest-quality studies. 
Research in this area has not provided consistent or convincing evidence that students of 
teachers who are certified in mathematics gain more than those whose teachers are not. This 
may be in part due to some of the drawbacks mentioned above (Goldhaber & Brewer, 2000; 
Rowan, Correnti, & Miller, 2002; Fetler, 1999; Mandeville & Liu, 1997). 
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As can be seen in Table 1, three studies found positive effects of teacher certification 
on student achievement (Goldhaber & Brewer,3 1997b, 2000; King Rice, 2003). 
Interestingly, each made use of the U.S. Department of Education’s National Educational 
Longitudinal Survey of 1988 (NELS:88), using as the dependent measure gain scores in 
student achievement, or student achievement with prior grade achievement as a control. The 
earlier work by Goldhaber and Brewer (1997b) examined differences in student achievement 
in mathematics in 10th grade with scores in 8th grade as a control, while their 2000 study and 
King Rice’s 2003 research examined 12th-grade differences in student achievement with 
scores in 10th grade as a control. Each of these studies used scores on the NELS:88 
mathematics test as its dependent measure, and each used a number of statistical controls in 
their regression analyses, including prior mathematics test scores. And though their point 
estimates of the effect of certification differ, all found positive impacts of teacher 
certification in mathematics on student achievement.  

Conversely, two of the high-quality studies and one of moderate quality found no 
significant effect of teacher certification as a predictor of student achievement in 
mathematics. These include studies by Kane, Rockoff, and Staiger (2006); Hill et al. (2005); 
and Rowan et al. (2002).4 Each of these studies made use of distinctly different data sets that 
vary in terms of measures (for both student test scores and sample characteristics) and sample 
representation. Specifically, Kane et al. used statewide data and state-specific standardized 
test scores for mathematics in New York City, while the other two studies used data spanning 
states that were originally collected as part of another study (Hill et al.; Rowan et al.).5 
Across all of these data sources, none of the studies found a significant effect of teacher 
certification status on students’ mathematics achievement. Thus, the strongest evidence 
currently available about the effect of teacher certification on student achievement in 
mathematics (i.e., the high- and moderate-quality studies reviewed for this section) is mixed. 

                                                
3 A third study (Goldhaber & Brewer, 1997a) uses the same data set and sample of students and teachers as the 
1997b study.  As the latter study includes additional predictors (i.e., teacher classroom behavior) the Task 
Group chose to include it as it appears to be a better specified model.   
4 Although all three of these studies represent solid empirical investigation, the Task Group considers the 
models in the Rowan, Correnti, and Miller (2002) study to be of moderate quality due to data limitations that 
the authors faced in their analysis.  Specifically, the authors acknowledged that their results and subsequent 
claims about the effect of certification reflected estimates based on less than 6% of their sample.  The models 
reported in the Harris and Sass (2007a) study investigated the effect of National Board for Professional 
Teaching Standards (NBPTS) certification, which is very different than standard certification. Thus, while the 
Task Group still considers these reports in drawing their conclusion, they represent less powerful evidence to 
support the argument at hand. 
5 Hill, Rowan and Ball (2005) make use of a study of instructional improvement initiatives in schools. Rowan, 
Correnti, and Miller (2002) uses the Prospects: The Congressionally Managed Study of Educational Growth 
and Opportunity 1991–1994.  
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Table 1: Quality Characteristics of Models Examining Impact of Teacher Certification on 
Student Achievement in Mathematics, by Study and by Overall Quality 
   Other Controls    

Authors Sample Size 

Pretest 
Controla

 Student Teacher 

Class, 
School, or 

District Family 

Multiple 
Specifications 

Student-
Level 

Analysis 

Identification 
Measure Grade(s) 

High-Quality Studies    

Goldhaber, & 
Brewer, 1997b 

5,149 students, 
2,245 teachers 
638 schools 
3498 math classes 

X X X X X X X 
Certified  
in math 

10 

Goldhaber, & 
Brewer, 2000 

3,786 students, 
2,098 teachers 

X X X X X X X 
Level of 

certificationb
 

12 

King Rice, 2003 3,696 teachers X  X X  X  Certified in math 12 

Kane, Rockoff, 
& Staiger 2006 

1,462,100 student-
year observations 

X X X X X X X 
Type of 

certification 

Panel data:  
3–8 

Hill, Rowan, 
Ball, 2005 

2,963 students, 
699 teachers 

X X X X X X X Certified 1 and 3 

Moderate-Quality Studies    

Rowan, Correnti, 
& Miller, 2002 

Panels of about 
4,000 students in 
more than 300 
classrooms and 
more than 120 
schools.e 

X X X X X  X 
Certified  
in mathc

 

Cohort 1:  
1–3;  

Cohort 2:  
3–6 

Harris, & Sass, 
2007a 

1,112,984 student-
year observations 

X X X X X X X 
NBPTS 

certificationd
 

4–10 

Lesser-Quality Studies         

Darling-
Hammond, 1999 

44 NAEP state 
averages for 
students, 52,000 
public school 
teachers, 9,500 
public schools, 
5,6000 school 
districts 

       

Well-qualified: 
state certification 
+ equivalent of 

math major (B.A. 
or M.A.) 

4 and 8 

Fetler, 1999 921,437 Total 
Grade 9: 347,201  
Grade 10: 313,303 
Grade 11: 260,933 

  X X X   

Emergency 
certification, 
school-level 

9–11 

Hawkins, 
Stancavage, & 
Dossey, 1998 

Unweighted -   
Grade 4: 6,627; 
Grade 8: 7,146; 
Grade 12: 6,904; 
Weighted -    
Grade 4: 3,714,998; 
Grade 8: 3,570,116; 
Grade 12: 2,830,443 

       

Certified in math, 
certified in 
education 

4, 8, and 12 

Larson, 2000 6,474 students, 
185 teachers X       

Certified  
in math 

1st semester 
algebra 
students 

Mandeville, & 
Liu, 1997 

203 teachers 
   X    

Grade level 
certification 

7 

a Includes use of pretest as control variable, gain scores, or value-added models. 
b Teachers responded to a question about their certification in mathematics or science. Based on their responses, they were classified as one of five 
groups: standard certification (reference group), probationary certification, emergency certification, private school certification, and no certification. 
c The authors caution that only 6% of the sample had special certification, subject-matter degrees, or both. 
d National Board for Professional Teaching Standards (NBPTS) certification can be general or subject-specific—this measure includes both types. 
e The authors conducted 12 analyses, given the design of the parent study (Prospects: The Congressionally Managed Study of Educational Growth 
and Opportunity 1991–1994) the number of students, classrooms, and schools varies over time as the pathways students take diverge. 
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b. Strength of the Findings 

The effect of teacher certification status on students’ mathematics achievement 
remains somewhat ambiguous. Of the 12 studies the Task Group reviewed on this subject, 5 
provide the highest-quality evidence due to five features of their design: 1) sample size, 2) 
appropriate and adequate statistical controls, 3) multiple specifications or tests for 
robustness of results,6 4) micro-level versus aggregated data, and 5) the appropriateness and 
strength of the identification of teacher content knowledge.7  These elements are reported in 
Table 1 for the 12 studies that use teacher certification status as a proxy for mathematical 
content knowledge.  

Seven studies (those in the first two panels of Table 1, the high- and moderate-quality 
studies) used regression analysis in the form of either standard OLS or HLM. Although the 
other five studies (in the bottom panel of the table) support the general conclusions of the 
Task Group’s findings, they represent the weakest evidence because they lack important 
qualities such as adequate controls (e.g., pretest scores for students), highly detailed data sets, 
or meaningful alternative specifications. The implications of these studies, therefore, must be 
interpreted with caution.   

c. Magnitude of the Findings 

Although most of these studies use very different measures of student achievement to 
assess the effect of teacher certification, it may be beneficial to know something about the 
magnitude of the effects reported in each piece. Already known are the different measures of 
dependent variables that can complicate the ability to compare regression coefficients across 
studies. Additionally, many studies lack sufficient information to transform measures of 
impacts (e.g., regression coefficients, mean differences) into standardized measures across 
studies. As a result, this Task Group can do little more than report standardized regression 
coefficients where data are available, and be cautious in their interpretation and comparison 
of these effects, regardless of their statistical significance. Table 2 lists the reported impacts 
of teacher certification on student achievement for the high-quality studies in terms of 
standardized regression coefficients. 

                                                
6 Robust results are those that are consistent even when multiple specifications or models are used.   
7 Of the five studies that met the criteria for high quality, only one (King Rice, 2003) does not employ student- 
and family-level controls in its analysis.  This is because King Rice aggregates her student- and family-level 
controls to the classroom (average) level. Also, the use of a pretest control in conjunction with other classroom- 
teacher- and school-level controls suggests her analysis satisfies the criteria of appropriate and adequate 
statistical controls. 
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Table 2: Reported Impacts of Models Examining the Effect of Teacher Certification on 
Student Achievement in Mathematics for the High-Quality Studies 

Authors Dependent Measure 

Standardized Regression 
Coefficientb

 Analytic Technique 

High-Quality Studiesa
    

Goldhaber, & Brewer, 1997b NELS test battery scores (Grade 10) 0.06* Generalized Least Squares 

Goldhaber, & Brewer, 2000 NELS test battery scores (Grade 12) 
Probationary certification in subjectc

 

 
0.01 

Ordinary Least Squares 

 Emergency certification in subjectc 0.00 Ordinary Least Squares 
 Private school certificationc -0.01 Ordinary Least Squares 
 No certification in subjectc  -0.01* Ordinary Least Squares 
King Rice, 2003 NELS test battery scores (Grade 12) 0.02* Ordinary Least Squares 

Kane, Rockoff, & Staiger, 2006 NYC standardized test scores (value-added 
Grades 3–8) 

0.00 Ordinary Least Squares 

Hill, Rowan, & Ball, 2005 Terra Nova scores   Hierarchical Linear Modeling 

      - Grade 1  0.00  

      - Grade 3  0.00  

*p < .05 
a High-quality studies are defined on page 3.  
b The standardized coefficient was calculated for those studies with sufficient data using the formula provided in Bring (1994) Bi = ˆ  i(si /sy )  
c The comparison is to standard certification in subject.  

 
As shown in Table 2, where there is a significant effect of teacher certification in 

mathematics on student achievement, it is quite small. Also, because teacher certification in 
mathematics is a remote proxy for mathematical content knowledge, this measure does not 
allow strong inferences about the effect of teachers’ knowledge on their students’ achievement. 

3. Content Course Work and Degrees as Measures of Mathematical 
Content Knowledge 

Mathematics course work and field-specific degrees are a second common proxy for 
teachers’ mathematical content knowledge. Although these are different, they both focus on 
teachers’ completion of college-level mathematics study. Consequently, these measures 
frequently appear together within the same data set and, thus, are often jointly considered 
within the same analysis. Therefore, for this section the Task Group discusses and 
synthesizes the literature and subsequent evidence presented for the relationship between 
these measures of teacher mathematical content knowledge and student achievement. 

Although the amount of course work or the possession of a degree in mathematics are 
both closer predictors of a teacher’s mathematical knowledge than certification status, these 
are still both proxies for that knowledge and each has unique validity problems. Neither 
measures the actual command of specific mathematical topics and skills. Neither measures 
what an individual actually learned, which may vary substantially from person to person. 
There is similarly no information about the correspondence between particular courses and 
the school curriculum for which teachers are responsible. Thus, as a measure of the 
knowledge on which teaching depends, course work or degree attainment may or may not 
correspond to what teachers use in the course of their work.  
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Also, as with certification status, there is no guarantee that using the amount of course 
work completed or type or level of degree circumvents the problems of selection bias 
previously mentioned. It could be that teachers who engage in generous amounts of 
mathematics course work or obtain mathematics degrees are particularly motivated to teach 
mathematics, or possess some other unobservable characteristics unrelated to course work 
and degree that make them especially effective at teaching mathematics. Finally, these 
measures do not take into account the passage of time. On the one hand, this may be 
important if individuals forget lessons from their schooling and change the core of their 
mathematics instruction over time to satisfy student or school needs or demands (e.g., 
switching from teaching geometry to teaching calculus).8 On the other hand, if teachers 
constantly practice the content-specific skills they need, and those needs do not significantly 
change over time, then the time lag is decidedly less important. 

a. Overall Findings 

Much like the research using certification status as a proxy for teachers’ mathematical 
knowledge, the findings in the literature on the impact of content-specific course work and 
degrees are mixed.9 Among the seven studies of high quality that examine the impact of a 
teacher’s mathematics course work, or degree, or both, on students’ mathematics 
achievement, several of which look at multiple measures of course work, or degree, or both, 
four provide estimates of the relationship between degree and student achievement (three are 
positive; one negative), four provide estimates of the relationship between course work and 
student achievement (all positive), and two examine the relationship between college credits 
and student achievement (one positive, one negative). The evidence from this set of studies is 
somewhat more consistent than the evidence for an effect of teacher certification, thus 
pointing to a likely positive relationship between teacher content course work and degrees, 
and student mathematics achievement. Left unexamined are important details, such as how 
many courses, or which degrees or programs of study make the most difference. Moreover, 
of the studies that found a positive impact of teacher course work and degrees on student 
mathematics achievement, many use NELS:88 data and most focus on high school students; 
thus their scope is limited.  

In particular, two reports by Goldhaber and Brewer (1997b, 2000) found positive 
impacts of course work attainment as noted previously. Both of these studies use the 
NELS:88 to measure student mathematics achievement, and their samples include students in 
10th (1997b) or 12th grades (2000). Findings from both studies indicate that students who 
have teachers with degrees in mathematics perform significantly higher on the NELS test 
battery than do students of teachers who are not qualified in math. Rowan, Chiang, and 
Miller (1997) also use the NELS data for 10th-grade students, finding that teacher’s 
possession of a mathematics degree is associated with higher student achievement. Monk and 
King (1994), on the other hand, use Michigan State University’s Longitudinal Study of 
American Youth (LSAY), which uses items from the U.S. Department of Education’s 
National Assessment of Educational Progress (NAEP) achievement test in mathematics. That 
                                                
8 Though including teacher experience as a control variable (common in the literature) helps to alleviate the 
inexactness of course work and degrees as measures over time, estimates of the interaction between teacher 
experience and course work and degrees (not common in the literature) would help to determine actual effects 
of course work and degrees.  
9 Supported by Wayne and Youngs (2003). 
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study also focuses on secondary school students but examines teacher course work at the 
graduate and undergraduate level. They found a positive relationship between number of 
mathematics courses taken and student achievement. The positive effects of teacher 
preparation in mathematics thus seem to exist across different data sources, although as 
noted, these studies all focus on high school grades. 

Less clear is how teachers’ level of conventional college mathematics study affects 
student achievement below ninth grade. Rowan et al. (2002) used a survey that followed two 
cohorts of students, starting in Grades 1 and 3, for 4 years. The authors found a negative impact 
for an advanced mathematics degree on student achievement, but acknowledge that fewer than 
6% of teachers (approximately 43 total) had subject-matter specific degrees. Harris and Sass 
(2007b) examined a number of different measures for students of all different ages, and 
although they mostly found no effects, they identified positive impacts for some measures and 
negative for others. Hill et al. (2005) found that teachers’ mathematics course work did not 
significantly predict gains in student achievement. 

Thus, the results across the studies that use teachers’ attainment as a proxy for 
mathematical knowledge are mixed. The strongest suggestion is that the level of teachers’ 
mathematics study may predict student achievement at the high school level. Evidence was 
not uncovered to support this relationship below ninth grade. It may be that using course 
work as a proxy for teachers’ actual knowledge is a less valid measure at this level than it 
is at the secondary school level where the content teachers teach is closer to the content 
they study in college. 

b. Strength of the Findings 

As described earlier in the section on certification, the Task Group chose to focus on 
a limited number of studies of the highest quality, based on 1) sample size, 2) appropriate and 
adequate statistical controls, 3) multiple specifications or tests for robustness of results, 4) 
micro-level versus aggregated data, and 5) the appropriateness and strength of the 
identification. These elements are reported in Table 3. Each of the studies used detailed 
regression analysis, in the form of either standard OLS or HLM. 

Studies of lesser quality are also reported in Table 3. While these studies support the 
general conclusions of the Task Group’s findings, they represent weaker evidence because 
they lack such important qualities as adequate controls (e.g., pretest scores for students), 
highly detailed data sets, and meaningful alternative specifications. Therefore, the 
implications of this research must be interpreted with caution.   

c. Magnitude of the Findings 

Although these studies use differing measures of student achievement and of teacher 
mathematics course work and degrees, there is value in knowing something about the 
magnitude of the effects reported in each piece. Table 4 lists the reported impacts of teacher 
course work and degrees on student achievement for the highest quality studies using 
standardized regression coefficients to allow comparisons across the studies where data are 
available. Table 4 shows that for teacher certification, the impact of teacher course work and 
degrees on student mathematics achievement, when a standardized coefficient can be 
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calculated, is quite small. This finding is consistent across measures and grade levels, although 
few studies have sufficient data for calculating the magnitude of the effect. Therefore, 
generalizations are not appropriate here. 

Table 3: Quality Characteristics of Models Looking at Impact of Teacher Mathematics 
Course Work and Degrees on Student Achievement in Mathematics, by Study and by 
Overall Study Quality 
   Other Controls    

Authors Sample Size 

Pretest 
Controla

 Student Teacher 

Class, 
School, 

or 
District Family 

Multiple 
Specifications 

Student-
Level 

Analysis 
Identification 

Measure Grade(s) 
High-Quality Studies   

Goldhaber, & 
Brewer, 1997b 

5,149 students,  
2,245 teachers, 3,498 math 
classes, 638 schools 

X X X X X X X 

B.A. and 
graduate degree 

in math 

10 

Goldhaber, & 
Brewer, 2000 

3,786 students,  
2,098 math teachers X X X X X X X 

B.A. and 
graduate degree 

in math 

12 

Harris, &  
Sass, 2007b 

Grades 4–5: 514,620 
students/ 785,780 
observations; Grades 6–
8: 542,289 students/ 
784,423 observations;  
Grades 9–10: 426,474 
students/ 667,698 
observations 
Teachers: Grades 3–5: 
2,134; Grades 6–8: 943; 
Grades 9–10: 639 

X X X X X X X 

Course work in 
math, college 
credits, math 

degree 

4–10 

Hill, Rowan,  
& Ball, 2005 

2,963 students,  
699 teachers X X X X X X X 

Course work in 
math content 

and math 
methods 

1 & 3 

Monk, 1994 2,829 students, 
608 math teachers X  X X  X X 

College degree 
in math, college 
courses in math 

10 & 11 

Monk, &  
King, 1994 

2,831 students,  
their teachers X X X X X X X 

College courses 
in math 

Cohort  
10–12 

Rowan, 
Chiang, & 
Miller, 1997 

5,381 students 
X X X X X X X 

College degree 
in math 

10 

Moderate-Quality Studies         

Rowan, 
Correnti, & 
Miller, 2002 

Panels of about 4,000  
students in more than  
300 classrooms and more 
than 120 schools 

X X X X X X X College degree 
in mathb

 

Cohort 1: 
Grades 1–3; 

Cohort 2: 
Grades 3–6 

Lesser-Quality Studies   

Darling-
Hammond, 
1999 

44 state averages for 
students, 52,000 public 
schools, 65,000 teachers 

       Well-qual: 
certification + 

math major 

4 & 8 

Darling-
Hammond, 
Berry, & 
Thoreson, 2001 

3,786 students, 
2,078 teachers 

X  X    X College degree 
in math (BA or 

MA) 

12 

Eisenberg, 
1977 

807 students, 
28 teachers 

 X     X College math 
GPA, courses 

taken 

Junior high 
Algebra I 
students 

a Includes use of pretest as control variable, gain scores, or value-added models. Gain scores are the calculated gains of students across a 
school year.  
b The authors also caution that they identified the effect of mathematics college degree from a maximum of 6% of the teachers in their sample. 
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Table 4: Reported Impacts of Models Examining the Effect of Teacher Math 
Course Work and Degrees on Student Achievement in Mathematics, by Study and 
By Overall Quality 

  Standardizeda Regression Coefficients  

Authors Dependent Measureb
 College Credits Degree/Major Course Work Analytic Technique 

Goldhaber, & Brewer, 
1997b 

NELS test battery 
scores (Grade 10) 

 0.03*  Ordinary Least Squares 

Goldhaber, & Brewer, 
2000 

NELS test battery 
scores (Grade 12) 

 Not available  Ordinary Least Squares 

Harris, & Sass, 2007b FCAT scores    2-stage Ordinary Least Squares 

 - Elementary  Not available   

 - Middle  Not available   

 - High  Not available   

Hill, Rowan, & Ball, 2005 Terra Nova scores    Hierarchical Linear Modeling 

 - Grade 1  0.02    

 - Grade 3 0.05    

Monk, 1994 Scores on NAEP-
based tests 

   Ordinary Least Squares 

 - Grade 10   Not available Not available  

 - Grade 11  Not available Not available  

Monk, & King, 1994 Gain scores on 
NAEP-based tests 
(Grades 10, 11, 
and 12) 

  .09* Ordinary Least Squares 

Rowan, Chiang, & 
Miller  1997 

NELS test battery 
scores (Grade 10) 

 Not available  Hierarchical Linear Modeling 

*p < .05 
a The standardized coefficient was calculated for those studies with sufficient data using the formula provided in Bring (1994) Bi = ˆ  i(si /sy ) . 
b Of the studies that consider measures of mathematics course work as their independent variable, only one (Monk, 1994) partitions its 
measure by the type of course work, in this case graduate and undergraduate course work.  Along these measures, the authors find that there 
is no significant effect (at the 5 % level) of graduate mathematics course work on student achievement, and that there is a significant effect 
of undergraduate mathematics course work, but only for one (i.e., the juniors) of the two grades tested. 
 
4. Test Scores and Ad Hoc Measures as Measures of Mathematical 
Content Knowledge  

Using test scores and more proximal measures of teacher mathematical content 
knowledge allows closer examination of the effect that mathematical knowledge has on 
student achievement. Such measures escape some of the traditional problems of selection 
bias and inexactness present in other more conservative measures. These types of measures 
make it possible to probe more directly the causal link between mathematical knowledge and 
student achievement. One caution with this approach is that specially developed tests or 
measures, although intuitively appealing or apparently more relevant, have often not been 
validated or otherwise checked for their psychometric quality.  
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a. Overall Findings 

Research that has used teacher test scores and other ad hoc measures has also 
produced mixed results. The Task Group’s inability to draw solid conclusions from this 
literature is in part due to the general lack of quality measures of mathematics content 
knowledge, as well as the absence of an adequate number of high-quality studies using these 
types of measures. Overall, the Task Group identified five studies that both examined the 
effect of mathematical content knowledge (as measured by test scores and other instruments) 
on student achievement and that met their standards for high or moderate quality. Of these, 
two studies found a positive and significant effect of mathematical content knowledge on 
student achievement, another found a positive but statistically insignificant effect, and two 
other studies found ambiguous effects for various measures with their sample. Unlike the 
studies reviewed earlier on teacher certification and course work that mostly examined 
student achievement at the high school level, the studies in this group are focused at the 
elementary level, making comparisons with other findings difficult. 

Clotfelter, Ladd, and Vigdor (2007) examined the relationship of teacher test scores 
to student mathematics achievement in North Carolina. Although the test did not focus solely 
on mathematics content, they found that higher teacher test scores are a significant predictor 
of higher student achievement. Hill et al. (2005) used test items specifically designed to 
measure the mathematical content knowledge used in teaching and controlled for content 
knowledge in teaching reading. They found that the measure of content knowledge of 
mathematics is a significant and positive predictor of student success in math.  

Harbison and Hanushek (1992) examined the effect of teacher mathematics test 
scores on fourth-grade tests on student achievement in Brazil; the authors found a positive 
effect of teacher test score on student achievement: “At fourth grade, a ten-point 
improvement in the mean teacher’s command of her mathematics subject matter … would 
engender a five-point increase in student achievement; this is equivalent to a 10% 
improvement over the mean scores of fourth graders” (p. 114). The effects are not significant 
at the traditional .05 statistical level. 

Two other studies used standardized tests as measures of teachers’ knowledge of 
mathematics. These show ambiguous results for determining the impact of teacher content 
knowledge on achievement. One study (Harris & Sass, 2007b) used teachers’ quantitative 
Scholastic Aptitude Test (SAT) scores taken at the time of college entry, a measure that is 
substantially more distal than those used in the studies reported above, to assess the impact of 
teacher content knowledge on math achievement for students taking the Florida 
Comprehensive Assessment Test (FCAT). Further, they partitioned their sample by grade to 
differentiate potential impacts at various grade levels. Ultimately they found that there is no 
significant effect of teachers’ previous higher SAT scores on elementary and middle school 
students, and that there is actually a negative impact on achievement for high school students.  

Mullens, Murnane, and Willett (1996) used teacher test scores on the Belize National 
Selection Exam (BNSE) to analyze their effect on students’ understandings of basic and 
advanced concepts in math. The authors found that while teacher test scores are not 
significant predictors of achievement for basic concepts in mathematics, they do exert a 
positive influence on student understanding of advanced concepts.   



 Task Group Reports of the National Mathematics Advisory Panel 

 

 5. REPORT OF THE TASK GROUP ON TEACHERS AND TEACHER EDUCATION  

5-17 

b. Strength of the Findings 

The Task Group’s conclusions about the impact of teacher content knowledge on 
student achievement, as measured by tests or specially designed measures, could only be 
drawn from a small number (n = 3) of the high-quality studies. Still, evidence from the 
lesser-quality studies is consistent, pointing in a positive direction. For example, Rowan et al. 
(1997) identified teacher content knowledge using a teacher’s response to a single school-
relevant mathematics question and found positive effects for that one item. Additionally, two 
studies (Harris & Sass, 2007b; Mullens et al., 1996) also are considered moderate quality due 
to their choice of measurement of teacher mathematical content knowledge. It could be 
argued that the use of quantitative SAT scores (Harris & Sass) may not capture important 
elements of mathematical content knowledge that are acquired at the collegiate level. By the 
same token, the use of eighth-grade BNSE scores (Mullens et al.) is even more likely to be a 
less relevant measure. Nevertheless, this Task Group cannot discount the possibility that 
these measures may assess mathematical content knowledge relevant for elementary (or even 
middle) school teaching. Overall, the evidence here (Table 5), based on a small number of 
studies, does point more strongly in the direction of a relationship between teachers’ usable 
knowledge of mathematics and students’ achievement than do the other measures of teacher 
content knowledge. 

c. Magnitude of the Findings 

Similar to the other sections, the Task Group reports the magnitude of the findings for 
each study in this strand using standardized regression coefficients, where data are available 
(see Table 6 later in this section). Since each one of these studies uses a distinctly different 
dependent measure, and only two studies have sufficient data for making comparisons, the 
Task Group cannot make any meaningful relative interpretations of these findings. However, 
it should be noted that even though the magnitude of the findings where they are available is 
quite small, the Hill et al. (2005) findings are substantially larger than the relationships noted 
for other measures of teacher content knowledge.  

Hill et al. (2005) also examined the effect of teacher certification in mathematics and 
mathematics education course work, in addition to their specific content knowledge measure 
These comparative analyses show that the specific measure of mathematical knowledge for 
teaching used by Hill et al. (2005) is measuring a type of understanding and skill that is not 
captured by certification status or course work measures. 
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Table 5: Quality Characteristics of Models Looking at Impact of Teacher Test Scores 
And Other Ad Hoc Measures on Student Achievement in Mathematics, by Study and 
By Overall Study Quality 

   Other Controls    

Authors Sample Size 
Pretest 

Control* Student Teacher 

Class, 
School,  

or 
District Family 

Multiple 
Specifications 

Student-
Level 

Analysis 
Identification 

Measure Grade(s) 

High-Quality Studies   

Clotfelter, 
Ladd, & 
Vigdor, 
2007 

Nearly 1 million student-
year observations 

X X X X X X X North Carolina 
teacher test 

scores 

3–5 

Harbison, 
& 
Hanushek, 
1992 

Over 2,500 students X X X X X   Brazilian math 
test scores 

2–4 

Hill, 
Rowan, & 
Ball, 2005 

2,963 students, 
699 teachers 

X X X X X X X CKT-M test 
measure 

1–3 

Moderate-Quality Studies         

Harris, & 
Sass, 
2007b 

Grades 4–5: 514,620 
students/785,780 
observations; Grades 6–8: 
542,289 students/784,423 
observations; Grades 9–
10: 426,474 students/ 
667,698 observations 
Teachers: Grades 3–5: 
2,134; Grades 6–8: 943; 
Grades 9–10: 639 

X X X X X X X SAT Quant. 
Score 

4–10 

Mullens, 
Murnane, 
& Willett, 
1996 

1,043 students X X X X X  X BNSE Math 
Score 

3 

Lesser-Quality Studies   

Rowan, 
Chiang, 
Miller, & 
1997 

5,381 students X X X X X X X A single-item 
teaching-

relevant and 
difficult math 

test 

10 

Sheehan, 
& Marcus, 
1978 

1,836 students,  
119 teachers 

X  X X    WCET scores 1 

* Includes use of pretest as control variable, gain scores, or value-added models. Gain scores are the calculated gains of students across a 
school year. 
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Table 6: Reported Impacts of Models Examining the Effect of Teacher Test Scores and 
Other Ad Hoc Measures on Student Achievement in Mathematics, by Study  

Authors Dependent Measure 
Standardized 

Regression Coefficienta Analytic Technique 
High-Quality Studies   
Clotfelter, Ladd,  
& Vigdor, 2007 

North Carolina 
standardized test 
(Grades 3–5) 

 Ordinary Least Squares 

 - Score Level Not available  
 - Score Gain Not available  
Harbison, & 
Hanushek, 1992 

Brazilian math test (from 
EDURURALb) 

 Ordinary Least Squares 

 - Grade 2  Not available  
 - Grade 4  .02  
Hill, Rowan, & 
Ball, 2005 

Terra Nova scores  Hierarchical Linear Modeling 

 - Grade 1  .06*  
 - Grade 3  .05*  
*p < .05 
a The standardized coefficient was calculated for those studies with sufficient data using the formula provided in Bring (1994) Bi = ˆ  i(si /sy ) .  
b EDURURAL is the research project that emerged from an effort to improve educational performance in rural northeast Brazil. 
 
5. The Mathematical Content and Nature of Teacher Licensure Exams 

Recent research treating teacher licensure as a proxy for teachers’ mathematical 
content knowledge has not consistently or convincingly shown that students of teachers who 
are licensed in mathematics gain more academically than those whose teachers are not 
(Goldhaber & Brewer, 1997a, 1997b, 2000; Hill et al., 2005; Kane et al., 2006; King Rice, 
2003; Rowan et al., 2002). However, teacher licensure exams still play an important role in 
determining the quality and quantity of math teachers available for employment in schools. 
To assess the quality of teacher licensure exams, it is first necessary to ascertain the 
mathematical integrity of the exam questions as well as the relevance of these questions to 
teaching in the classroom of an elementary or middle school. Such precise information turns 
out to be difficult to obtain. 

Most states use a teacher licensure exam that yields a score as a measure of a 
candidate’s achievement in the subject of mathematics. Each state has designed its own 
unique system of licensure by choosing among different exams and determining cut scores 
for them.10 The Praxis Series of exams created by Educational Testing Service (ETS) is the 
most commonly used teacher licensure exam. Overall, one or more of these exams are 
currently required in 38 states11 and the District of Columbia, with 7 of these states12 using 

                                                
10 Connecticut, Kansas, and Missouri use an identical set of certification exams and cut scores for the subject of 
math, as do Oklahoma and Nebraska. 
11 These are Alabama, Alaska, Arkansas, California, Connecticut, Delaware, Georgia, Hawaii, Idaho, Indiana, 
Kansas, Kentucky, Louisiana, Maine, Maryland, Minnesota, Mississippi, Missouri, Nebraska, Nevada, New 
Hampshire, New Jersey, North Carolina, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, Rhode Island, 
South Carolina, South Dakota, Tennessee, Utah, Vermont, Virginia, Washington, West Virginia, and Wisconsin. 
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the Praxis Series in conjunction with their own exam. Of the 12 states that do not use Praxis, 
913 use their own licensing exam exclusively, while the other 3 either do not require an exam 
for licensure or do not use an exam that yields an independent score in the subject of math.14  

The Praxis Series is composed of two separate exams, The Praxis I and II. The Praxis I 
exams, or Pre-Professional Skills Tests (PPST), are designed to measure basic skills in reading, 
writing, and mathematics. Most ETS states currently require the Praxis I tests for licensure, and 
often for admission into their teacher education programs. The cut scores currently required for 
licensure across these states range from 169 to 178 while the average performance range of 
teacher candidates is from 175 to 183.15 The Praxis II exams in mathematics measure 
specifically mathematical knowledge and teaching and are not nearly sufficient to warrant the 
formulation of any conclusions about the licensure of middle school teachers in mathematics.  

ETS shared data regarding two Praxis II exams in Series 0061 and 0063, one testing 
mathematical content knowledge, and the other addressing mathematical proofs, models, and 
problems (both with item performance data). At least one of these two series is used by 33 
states as part of the general licensure requirements in mathematics,16 but 30 of these states17 
also require additional exams, and 24 of these18 also use a Praxis II exam designed 
specifically for testing mathematical content knowledge at a middle school level.19 The cut 
scores in each state for these particular exams supplied by ETS are not known because these 
exams have been retired by ETS. There is also another unresolved issue. As these exams are 
for single-subject certification, it would be necessary to know the precise role the exams 
played in certifying middle school teachers in the 30 states mentioned earlier before any 
statement can be made about the appropriateness of these exams for the certification of 
middle school teachers. For example, in the multiple choice exam on content knowledge, 8 of 
25 exam items are on high school mathematics (e.g., calculus, trigonometry, conditional 
                                                  
12 These are Alabama, Alaska, California, Georgia, Indiana, South Carolina, and Washington. 
13 These are Arizona, Colorado, Florida, Illinois, Massachusetts, Michigan, New Mexico, New York, 
and Texas. 
14 Wyoming requires teacher candidates to demonstrate knowledge of the U.S. Constitution and the Wyoming 
Constitution either through course work or an exam. Montana does not require any testing for licensure, and 
Iowa does not use an exam with a separate math score. 
15 The average performance range encompasses the scores earned by the middle 50% of the examinees taking 
the test (n = 93,805). This statistic provides an indication of the difficulty of the test. The standard error of 
measurement for this figure (2.4) is a statistic that is often used to describe the reliability of the scores of a 
group of examinees. 
16 These are Alabama, Alaska, Arkansas, Connecticut, the District of Columbia, Georgia, Hawaii, Idaho, 
Indiana, Kansas, Kentucky, Louisiana, Maine, Maryland, Minnesota, Mississippi, Missouri, Nevada, New 
Hampshire, New Jersey, North Dakota, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, 
Utah, Vermont, Virginia, Washington, West Virginia, and Wisconsin. 
17 These are Alabama, Alaska, Arkansas, Connecticut, the District of Columbia, Georgia, Hawaii, Idaho, 
Indiana, Kansas, Kentucky, Louisiana, Maine, Maryland, Minnesota, Missouri, Nevada, New Hampshire, New 
Jersey, North Dakota, Ohio, Oregon, Pennsylvania, South Carolina, South Dakota, Tennessee, Vermont, 
Virginia, Washington, and West Virginia. 
18 These are Alabama, Alaska, Connecticut, the District of Columbia, Idaho, Kansas, Kentucky, Louisiana, 
Maine, Maryland, Minnesota, Missouri, New Hampshire, New Jersey, North Dakota, Ohio, Oregon, 
Pennsylvania, South Dakota, Tennessee, Vermont, Virginia, Washington, and West Virginia 
19 Here the District of Columbia has been counted as a state and currently uses the Praxis II exam designed 
specifically for testing mathematical content knowledge at a middle school level in addition to an exam testing 
mathematical content knowledge and one addressing mathematical proofs, models, and problems. 
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probability, matrices) while only 5 are related to fractions, the central topic of middle school 
mathematics; of these 5, only 2 (one on percent, the other on rate) directly probe teachers’ 
understanding of fractions. This exam, then, does not seem to assess directly the content for 
which middle school teachers are responsible. 

To determine whether the tests adequately measure teacher content knowledge, 
precise information about their licensure is needed. At the moment, the collection of such 
information is greatly hampered by confidentiality issues. The Task Group recommends that 
there be more openness in this area to facilitate the kind of academic inquiries that are a 
prerequisite to progress. 

a. Implications From the Empirical Evidence 

Overall, across the studies reviewed, the signal is that teachers’ knowledge of 
mathematics is a positive factor in students’ achievement. However, despite the common- 
sense nature of this claim, solid evidence about the relationship of teachers’ mathematical 
content knowledge to students’ mathematics achievement remains uneven and has been 
surprisingly difficult to produce. One main reason has been the lack of valid and reliable 
measures of teachers’ mathematical knowledge. The literature has been dominated by the use 
of proxies for such knowledge, such as certification status and course work. A second reason 
for the inconsistent findings has been weak study designs. Too few studies set up proper 
comparisons or use sufficient sample sizes or appropriate analytic methods. Selection bias 
and failure to isolate variables have further plagued these studies, as have inadequate or 
imprecise measures of students’ mathematics achievement. Finally, no studies identified by 
the Task Group probed the dynamic that would examine how teachers’ mathematical 
knowledge affects instructional quality, students’ opportunities to learn, and their gains over 
time. However, in the context of a body of literature that is as inexact as it has been, the 
positive trends identified do support the importance of teachers’ knowledge of mathematics 
as a factor in students’ achievement. 

To improve the quality of research evidence, sharper measures of teachers’ 
mathematical knowledge in different domains and at different levels are needed, with 
appropriate psychometric tests for their reliability and validity. Hill et al. (in press) report a 
series of in-depth validation studies that provide a benchmark for what such tests should 
involve. Also needed are value-added studies, including experimental studies of interventions 
designed to develop teachers’ mathematical knowledge for teaching and to inspect the effects 
of interventions on students’ mathematics achievement. 

As the scientific rigor and validity of research in this area increases, it should be 
informed by analyses of empirical data on the mathematical demands on teachers in the 
course of their work. Hypotheses generated through a mathematical perspective on teaching 
practice can provide researchers with a sharper focus on the question in ways more likely to 
produce results useful to policymakers, and to improve the relevance and effectiveness of 
teachers’ mathematical training and professional assessment. 
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6. Recommendations Based on the Mathematical and Logical Analysis of 
The Demands of Teaching Mathematics 

Although the empirical evidence does not yet strongly specify the nature of the 
mathematical knowledge needed for teaching, the Task Group hypothesizes that teaching 
mathematics demands knowledge of the subject. Because a direct relationship between 
conventional mathematical study and teacher effectiveness is not supported by a review of 
high-quality research, future research should uncover those aspects of teacher knowledge and 
understanding that are most strongly related to student learning. Policies should be developed 
and supported that would lead to a more mathematically skilled teacher force. The Task 
Group recommends investigating different components of content knowledge that may have 
relationships to instructional effectiveness. 

A first component worth investigating is the nature of the requisite competence with 
the school curriculum that teachers are responsible to teach. This includes the concepts, 
skills, and strategies that students are to learn, and the prerequisite content, several levels 
both below and beyond the level at which they teach. Another aspect of this curricular 
knowledge is the additional need for teachers to know school mathematics at a more 
advanced level than what is found in school textbooks. This may be seen in the daily tasks 
that teachers must perform and that appear to entail substantial mathematical judgment, 
understanding, and skill. For example, answering students’ questions may be unexpectedly 
subtle or complicated, or making up exam problems to focus on central ideas may require 
more than a minimal knowledge of the mathematics in the grade-level curriculum. It is also 
worth examining the extent to which teachers may need different types of advanced 
knowledge––for example, how an understanding of number theory may enrich and 
strengthen teachers’ capacity to teach whole number concepts and operations.  

Another important area in need of investigation is what else teachers may need beyond 
the standard skills and concepts in the school curriculum. Examples of work that teachers do 
that may require other mathematical knowledge include explaining why a particular topic is 
worth learning; providing connections within lessons, across lessons, and across grades; and 
making spontaneous instructional decisions in the classroom. These tasks of teaching seem to 
require mathematical skill that has not been well established in the research literature. 

To help students extend what they know, teachers may also need a deep 
understanding of the foundational ideas and skills prerequisite to the level of instruction, the 
mathematics that leads up to the students’ mathematical present. Middle school teachers 
teaching algebra may benefit from a nuanced understanding of operations, including their 
properties, and their interpretation and representations; upper elementary teachers may be 
enabled by an understanding of ways of renaming or re-representing mathematical ideas that 
arise in the early grades (e.g., with the standard subtraction algorithm). 

In addition to knowledge of particular content, including concepts and procedures, 
teaching may also require sensitivity, habits of mind, and attention to particular mathematical 
principles, such as precision, definitions, reasoning, and coherence. Mathematics uses 
language in exact ways quite different from its uses in other contexts, including everyday 
life. Attention to careful use of quantifiers, relations, and logical terms is important. Being 
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clear on the differences between “five apples,” “at least five apples,” “no more than five 
apples,” and “exactly five apples,” or between “if” and “if and only if” is important as young 
learners begin to express mathematical ideas, or as a teacher attentively uses a curriculum. A 
second, and closely related, aspect of mathematics is the importance of definitions. Terms, 
ideas, and concepts all require definition in the service of precision and to support reasoning.   

The Task Group reviewed how teachers’ knowledge of particular definitions, and 
perhaps equivalent alternatives and their relative advantages, make a difference for teaching 
quality. Another aspect for consideration may be a sense about the general role and nature of 
definitions within mathematics. Mathematical development and the solution of problems 
depend on specific approaches to logical argument and explanation. How does teachers’ 
knowledge of reasoning play a role in teaching, considering both the teachers’ own 
knowledge and their capacity to make mathematical reasoning and explanation accessible to 
and learnable by students? Being able to do that is rooted in a finely grained understanding of 
the nature of mathematical reasoning. Also worth investigating is the ability to see 
connections, and to appreciate and construct coherent links within and across ideas. How is 
early work with whole numbers connected to later encounters with integers, fractions, and 
the real number line? How are equivalent fractions related to the regrouping steps of the 
subtraction algorithm? What are useful geometric or physical models of arithmetic 
operations, and how can one explain the correspondences? 

More work is needed to inspect how mathematical knowledge is needed for and 
deployed in teaching. Hypotheses about the requisite skill and knowledge can help to 
advance the question from a blunt investigation of credentials to a more nuanced 
understanding of the mathematical demands of teaching and the connection of those to 
students’ learning gains. This is a crucial area for further and more precise study. 

B. Teachers’ Education: Teacher Preparation and Alternative 

Pathways to Teaching, Professional Development, and Induction 

What kinds of programs have been shown to help teachers develop the necessary 
mathematical knowledge and skills needed for teaching? 

a) How can preservice programs effectively increase beginning teachers’ 
mathematical knowledge for teaching? 

b) How can in-service programs do so? 
c) Do particular designs or curricula make a difference for teachers’ instructional 

skill and their students’ achievement? 
d) Is there evidence about how different kinds of professional preparation or 

requirements affect teachers’ effectiveness, and how these compare? 
Teacher education is regarded as key to building instructional quality and teacher 

effectiveness.  The Task Group uses the term “teacher education” here to refer to four 
different types of professional training:  

• Preservice teacher preparation: Initial teacher training, conventionally offered in 
institutions of higher education; 
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• Alternative pathways: Initial teacher preparation, offered outside of conventional 
teacher education programs; 

• Induction programs: Programs of professional support and additional training within 
the first years of practice; and 

• Professional development: Ongoing programmatic professional education of 
practicing teachers. 

The Task Group sought to examine the evidence on teacher education in these four 
forms, asking about the relationship between different forms of teacher education and the 
learning of teachers and their students.   

Many beliefs exist about what constitutes effective professional training for teachers, 
including what teachers should learn, how it should be structured and taught, and how much 
training is needed. There are also beliefs about learning from experience, and about what can 
be learned in formal settings or from practice. Many authoritatively stated positions assert 
“what we know” about “good” professional development. The Task Group wanted to learn 
what is known about particular curricula, structures, or approaches to teacher education, and 
their effects on gains in teachers’ mathematical knowledge and skill for teaching, and their 
demonstrated relationships to students’ achievement gains. The Task Group focused on these 
two outcomes to learn about effective professional training; although other outcomes (e.g., 
professional satisfaction, retention, teachers’ reports of usefulness or relevance of particular 
programs) may be informative, they fall short of providing links between professional 
education and actual effects on learning outcomes. To help inform sensible allocation of 
resources for professional education and to provide direction for continued research in this 
area, the Task Group focused directly on the current state of knowledge about these effects of 
professional education. The Task Group’s results highlight the critical need for more and 
better studies tracing the relationship between specific approaches to teacher education (i.e., 
curricula, pedagogy and assessment, instructors, structures, and settings) and teachers’ 
capacity for teaching and their students’ learning. 

1. Preservice Teacher Preparation 

The Task Group identified and synthesized peer-reviewed research and national 
reports to answer questions regarding the impact of preparation programs for teachers. Most 
of the studies found were descriptive—that is, they provided information about programs, 
described the characteristics of individuals who enrolled in or completed such programs, or 
simply compared students before and after a program or class without any comparison group. 
Other studies looked at limited relationships, such as the effect of being taught by a teacher 
who is certified in mathematics. Such studies were not useful for the question the Task Group 
sought to answer about features of preservice teacher preparation and their effects on teacher 
knowledge or student achievement. 

Five empirical studies were found that addressed the question related to impacts of 
preparation programs on student achievement or teachers’ mathematical content knowledge. 
Two of the studies examined effects on student achievement (Levine, 2006; Noell, 2006); the 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 5. REPORT OF THE TASK GROUP ON TEACHERS AND TEACHER EDUCATION  

5-25 

other three examined impacts on teacher mathematics content knowledge (Koehler & Lehrer, 
1998; McDevitt, Troyer, Ambrosio, Heikkinen, & Warren, 1995; National Center for Research 
on Teacher Learning, 1991). These studies employed a variety of analytical techniques, but 
none was of sufficient rigor or quality to allow the Task Group to draw conclusions about the 
relationship of particular features of teacher preparation programs and their effects. Only two 
of the five were peer-reviewed and none controlled for all the relevant factors that might 
explain variation in impact on either teachers’ knowledge or their students’ learning. 

In Tables 7 and 8, a synthesis is provided of the empirical evidence uncovered 
providing information on both study characteristics and study findings. Overall, however, the 
Task Group was unable to draw conclusions from this body of evidence. 

Table 7: Quality Characteristics of Models Examining Impact of Teacher 
Preparation Programs on Student Achievement in Mathematics or Teacher 
Mathematics Content Knowledge 
   Other Controls   

Authors Sample Size 

Pretest 
Control Student Teacher 

Class, School, 
or District Family 

Matching 
of Schools 

Level of 
Analysis 

 
Student Achievement in Mathematics 

       

Levine, 2006 1,611 math teachers, over 30 
million observations of 
students  

X  X X X X Teacher 

Noell, 2006 Over 200,000 students in 
Grades 4–9  X X  X X  Student 

 
Teacher Mathematics Content Knowledge 

       

Koehler, & Lehrer, 
1998 

10 preservice teachers  X      
Preservice 

teacher 
McDevitt et al., 1995 About 150 preservice 

teachers in the first cohort, 
110 in the second cohort  

      
Preservice 

teacher 

National Center for 
Research on Teacher 
Learning, 1991 

Longitudinal study of over 
100 participants in 5 
different programs 

X      
Preservice 

teacher 
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Table 8: Reported Impacts From Models Examining the Effect of Teacher Preparation 
Programs on Student Achievement in Mathematics or Teacher Mathematics 
Content Knowledge 

Authors Dependent Variable Independent Variable 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Student Achievement in Mathematics 
     

Levine, 2006 NWEA achievement 
tests 

Teacher trained at NCATE 
accredited school 

Positive & Not 
Significant X  ANOVAa

 

 NWEA achievement 
tests 

Teacher trained at 
doctoral/research university 

(vs. Masters I) 

Positive & 
Significant X  ANOVA 

Noell, 2006 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ B 

Positive & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ E 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ H 

Positive & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ K 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ L 

Positive & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ M 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ N 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended Alternative 
Cert. Univ M 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended Alternative 
Cert. Univ P 

Positive & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ A 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ D 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ F 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ G 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ J 

Negative & Not 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended 
Undergraduate Univ I 

Negative & 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended Alternative 
Cert. Univ B 

Negative & 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended Alternative 
Cert. Univ G 

Negative & 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

 Louisiana standardized 
test scores in math 

Teacher attended Alternative 
Cert. Univ L 

Negative & 
Significant X 4–9 

Hierarchical Linear 
Models (HLM) 

Teacher Mathematics Content Knowledge     

Koehler, & 
Lehrer, 1998 

Problem-type sorting 
task 

Learning using a hypermedia 
tool (vs. text) 

Positive & Not 
Significant X N/Ab

 
Comparison of 

Means 

 Solution-strategy 
sorting task 

Learning using a hypermedia 
tool (vs. text) 

Positive & 
Significant X N/A 

Comparison of 
Means 

McDevitt et al., 
1995 

Researcher-designed 
test given at the end of 

each math class 

An experimental program 
(vs. standard courses) 

Positive & 
Significant X N/A 

Comparison of 
Means  

National Center 
for Research on 
Teacher 
Learning, 1991 

Score on interview 
tasks and questionnaire 

Attended the only program in 
which developing pre-service 

teachers’ meaningful 
knowledge was an explicit goal 

Positive, 
Significance not 

reported  
X N/A 

Comparison of 
Means 

 

a Analysis of variance. 
b N/A means that data were not available. 
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2. Alternative Pathways Into Teaching 

The Task Group identified peer-reviewed research and national reports focused on the 
impact of alternative preparation programs for teachers. However, most of the studies located 
were only descriptive. These reports provided information about alternative programs or 
described the characteristics of individuals who enrolled in or completed such programs.   

The Task Group found 10 empirical studies that examined effects of alternative 
preparation programs on student achievement; all but one used correlational techniques (one 
was experimental). No empirical studies were found on the impacts of alternative pathways 
programs on teachers’ mathematical content knowledge. Tables 9 and 10 provide a synthesis 
of the relevant empirical evidence, and information on both study characteristics and study 
findings. Wherever possible, standardized regression coefficients were calculated. Overall, 
evidence is mixed on programmatic effects of teachers’ pathways into teaching and their 
relationship to students’ achievement. As shown in Table 10, four studies show positive 
effects for teachers trained in alternative pathways [e.g., Teach for America (TFA)]. Boyd, 
Grossman, Lankford, Loeb, & Wykoff (2006) found small differences in students’ 
mathematics achievement that could be associated with teacher preparation pathways and 
these effects were only for first-year teachers working with students in the sixth through 
eighth grades. Out of 18 different comparisons of different alternative pathways and 
“college-recommended pathways” investigated, 5 showed significant effects, with 4 of those 
showing positive effects for an alternative pathway, and 1 showing a negative effect. Overall, 
according to the authors, variation within pathways tended to be greater than variation across 
pathways. Decker, Mayer, and Glazerman (2004) found that students in TFA classrooms 
outperformed their peers, though the size of these effects varied with the characteristics of 
students (e.g., gender, mobility, and prior achievement status).  

Kane, Rockoff, and Staiger (2006) showed significant positive effects for one 
alternative pathway into teaching (Teach for America, TFA) and significant negative effects 
for a second alternative pathway (International Program). Results were also inconclusive in 
the research reported by Darling-Hammond, Holtzman, Gatlin, and Heilig (2005), who found 
more negative effects for teachers prepared through alternative pathways than for those 
prepared in traditional certification programs. In Raymond, Fletcher, and Luque (2001), the 
students of new TFA teachers outperformed those of new traditionally trained teachers at 
Grades 4 and 5, while there was no difference for teachers overall. At the middle school level, 
however, the difference was significant for all teachers overall but insignificant for new 
teachers. In contrast, Miller, McKenna, and McKenna (1998) found no differences between 
the mathematics achievements of fourth- or fifth-grade students whose teachers were prepared 
through alternative pathways and those prepared in traditional programs. Additionally, 
Laczko-Kerr and Berliner (2002) found that students of under-qualified teachers, including 
TFA teachers, performed less well on mathematics tests than those of comparably experienced 
certified teachers. 

Interpreting the evidence across these studies is not easy. One significant problem is 
definitional and related to the treatment conditions; “alternative pathways” does not define a 
clear programmatic type of teacher preparation. Some studies examined certification status 
while others compared different pathways to certification. Similarly, there is lack of clear 
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specification of the traditional preparation programs to which these alternatives are being 
compared. These programs—alternative and traditional—are all forms of preservice teacher 
preparation, and the studies do not probe into key curricular, structural, or other 
programmatic variables that would permit analysis of the programs and their effects. A 
second problem rests with massive differences in the design and measures of students’ 
achievement, making it difficult to compare across studies. A third issue is that the programs 
that tend to be studied over-sampled from one state (New York) and, thus, represent a narrow 
range geographically and only a tiny fraction of teachers in the system with over-sampling 
from more elite populations. Drawing conclusions about alternative pathways, in general, 
would be difficult to do from these studies. 

Determining how different types of pathways into teacher preparation may affect 
teachers’ capacity to teach is a key policy question in a time when issues of teacher 
recruitment, retention, and quality are paramount. Extant evidence suggests that there are no 
significant differences among current pathways, and, as Boyd et al. (2006) report, variation 
within programs appears to be greater than that uncovered across programs. Studies that 
more clearly specified the alternatives to be compared and the outcome measures used, and 
that used common or comparable designs would help in investigating this important question 
with more precision and focus. 
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Table 9: Quality Characteristics of Models Examining Impact of Alternative Pathways 
On Student Achievement in Mathematics 
   Other Controls   

Authors Sample Size 

Pretest 
Control Student Teacher 

Class,  
School, or 

District Family 

Matching 
of 

Teachers 

Level of 
Analysis 

Boyd, Grossman, Loeb, 
Lankford, & Wyckoff, 
2006 

1,035,949 Grades 3–8 student-year 
observations  Yes X X X X  Student 

Fetler, 1999 Total: 921,437 
Grade 9: 347,201 
Grade 10: 313,303 
Grade 11: 260,933 
students in schools across CA 

  X X X  School 

Goldhaber, & Brewer, 
2000 

3,786 Grade 12 math students  
2,098 math teachers  

X X X X X  Student 

Kane, Rockoff, & 
Staiger, 2006 

1,462,100 student-year 
observations, for Grades 3–8 in 
NYC schools from 1998–2005  

X X X X   Student 

Tatto, Nielsen, 
Cummings, Kularatna, 
& Dharmadasa, 1993 

216 teachers in Sri Lanka 

 X X X   Student 

Decker, Mayer, & 
Glazerman, 2004 

1,893 students in across 100 
classrooms 

X X X X X  Student 

Darling-Hammond, 
Holtzman, Gatlin, & 
Heilig, 2005 

271,015 students in the Houston 
ISD, Grades 3 and higher from 
1995–96 to 2001–02  

X X X X X  Student 

Laczko-Kerr, & 
Berliner, 2002 

232 newly hired teachers across 
5 AZ school districts from  
1998–2000  

  X X  X Classroom 

Raymond, Fletcher, & 
Luque, 2001 

81,814 students in Grades 4 & 5 
96,276 students in Grades 6 & 8 

X X X X X  Student 

Miller, McKenna & 
McKenna, 1998 

345 students in 18 middle school 
classrooms in GA 

  X   X Student 
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Table 10: Reported Impacts of Studies Examining the Effect of Teachers From Alternative 
Paths on Student Achievement in Mathematics 

Authors 

Dependent 
Variable 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Boyd, Grossman, Loeb, 
Lankford, & Wyckoff, 2006 

NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. College Recomm.) 

Over 1 year 
Unknown Negative & 

Significant X 4–5 
OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. College Recomm.) 

Over 2 years 

Unknown 
Positive & 

Not 
Significant 

X 4–5 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. College Recomm.) 

Over 3 years 
Unknown 

Positive & 
Not 

Significant 
X 4–5 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
College Recomm.) 

Over 1 year 
Unknown 

Negative & 
Not 

Significant 
X 4–5 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
College Recomm.) 

Over 2 years 
Unknown 

Positive & 
Not 

Significant 
X 4–5 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
College Recomm.) 

Over 3 years 
Unknown 

Positive & 
Not 

Significant 
X 4–5 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

Temp. Licensed (vs. 
College Recomm.) 

Over 1 year 
Unknown 

Negative & 
Not 

Significant 
X 4–5 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

Temp. Licensed (vs. 
College Recomm.) 

Over 2 years 
Unknown 

Positive & 
Not 

Significant 
X 4–5 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

Temp. Licensed (vs. 
College Recomm.) 

Over 3 years 
Unknown Positive & 

Significant X 4–5 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. College Recomm.) 

Over 1 year 
Unknown 

Negative & 
Not 

Significant 
X 6–8 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. College Recomm.) 

Over 2 years 
Unknown 

Positive & 
Not 

Significant 
X 6–8 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. College Recomm.) 

Over 3 years 
Unknown Positive & 

Significant X 6–8 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
College Recomm.) 

Over 1 year 
Unknown Positive & 

Significant X 6–8 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
College Recomm.) 

Over 2 years 
Unknown 

Positive & 
Not 

Significant 
X 6–8 OLS 

Regression 

Continued on p. 5-31 
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Table 10, continued 

Authors 

Dependent 
Variable 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Boyd, Grossman, Loeb, 
Lankford, & Wyckoff, 2006 

NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
College Recomm.) 

Over 3 years 
Unknown 

Positive & 
Not 

Significant 
X 6–8 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

Temp. Licensed (vs. 
College Recomm.) 

Over 1 year 
Unknown 

Negative & 
Not 

Significant 
X 6–8 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

Temp. Licensed (vs. 
College Recomm.) 

Over 2 years 
Unknown Positive & 

Significant X 6–8 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

Temp. Licensed (vs. 
College Recomm.) 

Over 3 years 
Unknown 

Positive & 
Not 

Significant 
X 6–8 OLS 

Regression 

Fetler, 1999 Stanford 
Achievement 
Test scores in 

math 

Percent Emergency 
Certified Teachers Unknown Negative & 

Indeterminate X 9 OLS 
Regression 

 Stanford 
Achievement 
Test scores in 

math 

Percent Emergency 
Certified Teachers Unknown Negative & 

Indeterminate X 10 OLS 
Regression 

 Stanford 
Achievement 
Test scores in 

math 

Percent Emergency 
Certified Teachers Unknown Negative & 

Indeterminate X 11 OLS 
Regression 

Goldhaber, & Brewer, 2000 Standardized 
test scores in 
math, for test 
designed by 

the ETS 
(NELS:88) 

Probationary 
Certification (vs. 

Traditionally Certified) 
0.00 

Positive & 
Not 

Significant 
X 12 OLS 

Regression 

 Standardized 
test scores in 
math, for test 
designed by 

the ETS 
(NELS:88) 

Emergency 
Certification (vs. 

Traditionally Certified) 
0.00 

Positive & 
Not 

Significant 
X 12 OLS 

Regression 

 Standardized 
test scores in 
math, for test 
designed by 

the ETS 
(NELS:88) 

Not Certified (vs. 
Traditionally Certified) -0.01 Negative & 

Significant X 12 OLS 
Regression 

Continued on p. 5-32 
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Table 10, continued 

Authors 

Dependent 
Variable 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Kane, Rockoff, & Staiger, 
2006 

NYC 
standardized 
math exam 

scores 

NYC Teaching Fellow 
(vs. Traditionally 

Certified) 
0.00 

Positive & 
Not 

Significant 
X 3–8 OLS 

Regression 

 NYC 
standardized 
math exam 

scores 

TFA Teacher (vs. 
Traditionally Certified) 0.01 Positive & 

Significant X 3–8 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

Int’l Program Teacher 
(vs. Traditionally 

Certified) 
0.00 Negative & 

Significant X 3–8 OLS 
Regression 

 NYC 
standardized 
math exam 

scores 

Not Certified (vs. 
Traditionally Certified) 0.00 Zero X 3–8 OLS 

Regression 

Tatto, Nielsen, Cummings, 
Kularatna, & Dharmadasa, 
1993 

Sri-Lankan 
test of math 

skills 

Untrained Teacher (vs. 
Teacher College) Unknown Positive & 

Significant X 4 Comparison of 
Means 

 Sri-Lankan 
test of math 

skills 

Untrained Teacher (vs. 
College of Education) Unknown Positive & 

Significant X 4 Comparison of 
Means 

 Sri-Lankan 
test of math 

skills 

Untrained Teacher (vs. 
Distance Education) Unknown 

Positive & 
Not 

Significant 
X 4 Comparison of 

Means 

Decker, Mayer, & 
Glazerman, 2004 

ITBS math 
scores TFA Teacher Unknown Positive & 

Significant X 1–5 HLM 
Modeling 

Darling-Hammond, Holtzman, 
Gatlin, & Heilig, 2005 

TAAS score 
in math TFA Teacher Unknown Positive & 

Significant X 3–HS HLM 
Modeling 

 Stanford 
Achievement 
Test score in 

math 

TFA Teacher Unknown Negative & 
Significant X 3–HS HLM 

Modeling 

 Aprenda 
score in math TFA Teacher Unknown Negative & 

Significant X 3–HS HLM 
Modeling 

 TAAS score 
in math 

Alternative 
Certification Unknown Negative & 

Significant X 3–HS HLM 
Modeling 

 Stanford 
Achievement 
Test score in 

math 

Alternative 
Certification Unknown Negative & 

Significant X 3–HS HLM 
Modeling 

 Aprenda 
score in math 

Alternative 
Certification Unknown 

Negative & 
Not 

Significant 
X 3–HS HLM 

Modeling 
 TAAS score 

in math 
Emer./Temp. 
Certification Unknown Negative & 

Significant X 3–HS HLM 
Modeling 

 Stanford 
Achievement 
Test score in 

math 

Emer./Temp. 
Certification Unknown 

Negative & 
Not 

Significant 
X 3–HS HLM 

Modeling 

 Aprenda 
score in math 

Emer./Temp. 
Certification Unknown 

Negative & 
Not 

Significant 
X 3–HS HLM 

Modeling 
Continued on p. 5-33 
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Table 10, continued 

Authors 

Dependent 
Variable 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Laczko-Kerr, & Berliner, 2002 Average 
Stanford 

Achievement 
Test score in 
math in 1998 

Certified Teacher (vs. 
Noncertified) Unknown 

Positive & 
Not 

Significant 
X 2–8 

Analysis of 
variance 

(ANOVA) and 
Comparisons 

of means 
 Average 

Stanford 
Achievement 
Test score in 
math in 1999 

Certified Teacher (vs. 
Noncertified) Unknown Positive & 

Significant X 2–8 
ANOVA and 
Comparisons 

of means 

 Average 
Stanford 

Achievement 
Test score in 
math in 1998 

Not TFA (vs. TFA 
teachers) Unknown 

Positive & 
Not 

Significant 
X 2–8 

ANOVA and 
Comparisons 

of means 

 Average 
Stanford 

Achievement 
Test score in 
math in 1999 

Not TFA (vs. TFA 
teachers) Unknown Positive & 

Significant X 2–8 
ANOVA and 
Comparisons 

of means 

Raymond, Fletcher, & 
Luque, 2001 

Average 
TAAS math 

score 

TFA Teacher (vs. 
non-TFA teachers, for 

all teachers) 
Unknown 

Positive & 
Not 

Significant 
X 4–5 OLS 

regression 

 Average 
TAAS math 

score 

TFA Teacher (vs. 
non-TFA teachers, w/ 

< 1 yr exp) 
Unknown Positive & 

Significant X 4–5 OLS 
regression 

 Average 
TAAS math 

score 

TFA Teacher (vs. 
non-TFA teachers, for 

all teachers) 
Unknown Positive & 

Significant X 6–7 OLS 
regression 

 Average 
TAAS math 

score 

TFA Teacher (vs. 
non-TFA teachers, w/ 

< 1 yr exp) 
Unknown 

Positive & 
Not 

Significant 
X 6–7 OLS 

regression 

Miller, McKenna, &  
McKenna, 1998 

ITBS reading 
and math 

scores 

Alternative 
Certification Unknown 

Positive & 
Not 

Significant 
X 5–6 

Multivariate 
Analysis of 

variance  
(MANOVA) 

and 
Comparisons 

of means 

 
3. Induction Programs 

National reports calling for higher-quality teaching, higher teacher retention rates, and 
stronger student achievement identify support of new teachers—or induction—as an area for 
improvement (National Commission on Mathematics and Science Teaching for the 21st 
Century, 2000; National Commission on Teaching and America’s Future, 2003; National 
Council of Teachers of Mathematics, 2002). As the goal of many induction programs is 
acclimation of new teachers to the school, they often last only the first year. Other induction 
programs are positioned as the first step on a continuum of professional development for 
teachers and are multiyear in nature. The assignment of mentors is frequently part, or all, of 
an induction program.  

Feiman-Nemser, Schwille, Carver, and Yusko (1999) discuss three definitions for 
induction: 1) a unique phase or stage in teacher development, 2) a time for socialization as 
the teacher transitions from preparation to practice, and 3) a formal program for beginning 
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teachers. In this review, as is common, the term “induction” was taken to mean a formal 
program for beginning teachers, including mentoring programs. Induction programs are 
varied in the length of time a person participates, the scope of support provided, and the 
guidance provided by policies and mandates (Feiman-Nemser et al.). Some states, such as 
California and Connecticut, have statewide induction programs.  

Frequently, at least in the United States, induction is viewed as synonymous with 
mentoring; however, this is not accurate. Mentoring is a frequent component of induction 
programs, but it is not the only component. Four goals of induction programs were identified 
by the National Commission on Teaching and America’s Future (Fulton, Yoon, & Lee, 
2005): 1) building and deepening teacher knowledge, 2) integration of new practitioners into 
a teaching community and school culture that support continuous professional growth of all, 
3) support for the constant development of the teaching community in the school, and 4) 
encouragement of a professional dialogue to articulate the goals, values, and best practices of 
the community. Induction programs should be systems which are “networks of supports, 
people, and processes that are all focused on assuring that novices become effective in their 
work” (p. 4). 

The concept of induction is not new in education. Although calls for programs to 
support new teachers can be dated to the 1960s, initially induction programs were 
uncommon. Only Florida had a mandated induction program prior to 1980 (Feiman-Nemser 
et al., 1999). Over the years induction programs, and mandates to support induction 
programs, increased due to ties between induction and such key issues as school reform, 
teacher retention, teacher quality, and achievement initiatives.  

The Task Group searched for empirical investigations of the effectiveness of teacher 
induction programs—broadly defined—on teacher mathematics knowledge and student 
achievement. Careful systematic review of the literature uncovered a dearth of peer-reviewed 
research on induction. Reviews of induction programs—frequently focusing on retention—
were examined (e.g., Feiman-Nemser et al., 1999; Glazerman, Senesky, Seftor, & Johnson, 
2006; Ingersoll & Kralik, 2004; Kagan, 1992; Lopez, Lash, Schaffner, Shields, & Wagner, 
2004; Totterdell, Bubb, Woodroffe, & Hanrahan, 2004). Overall, they identified more than 100 
potentially relevant pieces of literature. However, none focused on the effects of induction for 
mathematics teachers on student achievement or teacher mathematics knowledge.  

Literature examining induction is not scarce. However, rarely does it focus 
specifically on teachers of mathematics—although some focuses on both mathematics and 
science teachers (Adams & Krockover, 1997; Davis, Petish, & Smithey, 2006; Garet, Porter, 
Desimone, Birman, & Yoon, 2001; McGinnis, Parker, & Graeber, 2004). Much of the work 
is program evaluation of particular initiatives and is not peer-reviewed. For examples, see 
two programs in California: the New Teacher Center at the University of California Santa 
Cruz (www.newteachercenter.org), and California’s Beginning Teacher Support and 
Assessment program (www.btsa.ca.gov). In addition, many of the studies are case studies or 
qualitative in nature. The empirical evidence on outcomes of the programs is weak as none of 
the studies reviewed used random assignment, and few used a comparison group of any kind. 
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The key outcome for much of the extant induction literature is teacher retention. 
There is also a wealth of literature examining the effects of induction programs on teacher 
beliefs, satisfaction, and practices. Induction programs continue to expand, some mandated 
and some not. Given the expansion, it is important to assess the effectiveness of induction 
programs on outcomes, such as student achievement, and not rely only on evidence about 
teacher retention, satisfaction, and beliefs. Until induction programs are content-specific or 
include specific content activities, it may be difficult to determine the effectiveness of 
induction on the mathematical knowledge of teachers or on students’ achievement gains.  

4. Professional Development Programs 

The final component of teacher education that the Task Group investigated was 
professional development for practicing teachers. The Task Group searched for peer-
reviewed research and national reports that would offer high-quality evidence regarding the 
impact of professional development programs for teachers. Many of the studies identified 
were descriptive in that they provided information about the characteristics of the programs, 
and most of those that were empirical did not include a comparison group, but used a one-
group pretest-posttest design. This was the case for every empirical study they identified that 
examined the effects of teacher professional development programs on teachers’ 
mathematical content knowledge. Moreover, many of those relied on teacher self-reports 
about their knowledge before and after the professional development rather than on measures 
of teacher knowledge. As a result, this review includes only studies investigating the 
relationship between teacher professional development programs and students’ mathematics 
achievement. In other words, the Task Group did not include studies with a pretest-posttest 
design, and thus no studies related to teacher mathematics content knowledge were included. 

The Task Group found eight empirical studies, using a variety of analytical techniques, 
that examined effects of teacher professional development programs on student achievement. 
Tables 11 and 12 provide a synthesis of the relevant empirical evidence, and information on 
both study characteristics and study findings. For all studies except one (Jacob & Lefgren, 
2002), the Task Group was able to calculate a standardized effect size using Hedge’s g. These 
calculations are shown in Table 12. Accompanying this synthesis is a series of descriptive 
tables that provide more details on each study included in Tables 11 and 12. 
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Table 11: Quality Characteristics of Studies Examining Impact of Teacher Professional 
Development Programs on Student Achievement in Mathematics 

 Other Controls   

Authors Sample Size 

Pretest 
Control Student Teacher 

Class, School,  
or District Family 

Matching 
of Schools 

Level of 
Analysis 

Angrist, & Lavy, 
2001 

Elementary schools in 
Jerusalem, 9 intervention 
schools (7 secular, 2 
religious) and 11 comparison 
schools (6 secular, 5 
religious).  Approximately 
634 secular students; 196 
religious students. 

X X  X X X Student 

Campbell, 1996 Elementary school teachers 
(K–Grade 3) in 6 schools in 
Montgomery County, MD.  
Treatment group: students in 
3 treatment schools; 
comparison group: student in 
3 schools in the same county. 
n = 149 Kindergarten and 292 
Grade 1 students. 

     X Student 

Carpenter et al., 
1989 

40 Grade 1 teachers in 24 
schools (2 private) in 
Madison, WI. 

X      Teacher 

Chapin, 1994 Elementary, middle and high 
school students of 42 teachers 
in Chelsea, MA, school 
district versus students in the 
same schools whose teachers 
were not involved in the 
program.  Outcomes available 
for Grades 3 (n = 269), 6 (n = 
244) and 7 (n = 210) students. 

      Student 

Jacob, &  
Lefgren, 2002 

246 Elementary schools in 
Chicago (Grades 3–6), 
approximately 47,000 
students. 

X X   X X Regular 
discontinuity 

Student 

Karges-Bone, 
Collins, & 
Maness, 2002 

1 elementary school, 61 
Grade 3 students, 48 Grade 4 
students. 

      Student 

Saxe, Gearheart, 
& Nasir, 2001 

23 elementary schools in 
Greater Los Angeles: 9 
teachers in Integrated 
Mathematics Assessment 
(IMA) program, 8 teachers in 
collegial support program 
(SUPP); and 6 in 
traditional/no additional 
professional development 
program (TRAD). 

X X     Classroom 

Van Haneghan, 
Pruet, & 
Bamberger, 2004 

6 elementary schools (4 
treatment, 2 comparison) in 
Mobile, AL.  Followed two 
cohorts over the course of 3 
years (approx 200 in K, and 
approx. 420 in Grade 3). 

     X Student 
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Table 12: Reported Impacts of Studies Examining the Effect of Teacher Professional 
Development Programs on Student Achievement in Mathematics 

Authors 

Dependent 
Variable 

Independent 
Variable 

Effect size or 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcomes Grade(s) 
Estimation  
Technique 

Angrist & Lavy, 
2001  

1996 math score 

Attending secular 
school with more 

intensive in-
service training 

0.431 
Positive 

(p = .097) X 6 

Hedges g based on raw 
means (adjusted for 

differences in average 
pretest scores and 

adjusted for school-
level clustering) 

Campbell, 1996  Project-developed 
student 

achievement 
assessment 

Project IMPACT 
vs. comparison 

0.39 
Positive, not 
significant X K 

Hedges g (adjusted for 
school clustering) 

 Project-developed 
student 

achievement 
assessment 

Project IMPACT 
vs. comparison 

0.14 
Positive, not 
significant X 1 

Hedges g (adjusted for 
school clustering) 

Carpenter et al., 
1989  Computation – 

ITBS 

CGI treatment vs. 
basic problem-

solving workshop 

0.41 
Positive, not 
significant X 1 

Hedges g (pretest 
adjusted means, no 

adjust for clustering) 
 Computation – 

Number facts 

CGI treatment vs. 
basic problem-

solving workshop 

0.66 
Positive, 

significant X 1 

Hedges g (pretest 
adjusted means, no 

adjust for clustering) 
 Problem solving: 

ITBS 

CGI treatment vs. 
basic problem-

solving workshop 

0.37 
Positive, not 
significant X 1 

Hedges g (pretest 
adjusted means, no 

adjust for clustering) 
 Problem solving: 

simple 
add/subtract 

CGI treatment vs. 
basic problem-

solving workshop 

0.43 
Positive, not 
significant X 1 

Hedges g (raw means 
since adjusted not 

available, no adjust for 
clustering) 

 Problem solving: 
complex 

add/subtract 

CGI treatment vs. 
basic problem-

solving workshop 

0.42 
Positive, not 
significant X 1 

Hedges g (pretest 
adjusted means, no 

adjust for clustering) 
 Problem solving: 

advanced 

CGI treatment vs. 
basic problem-

solving workshop 

0.11 
Positive, not 
significant X 1 

Hedges g (pretest 
adjusted means, no 

adjust for clustering) 
 Problem solving: 

interview 

CGI treatment vs. 
basic problem-

solving workshop 

0.69 
Positive, 

significant X 1 

Hedges g (pretest 
adjusted means, no 

adjust for clustering) 
Chapin, 1994 

California 
Achievement Test 

Students of 
CCTDM teachers 
versus non-project 

teachers 

0.58 
Positive, 

significant X 3 
Hedges g (adjusted for 
classroom clustering) 

 

California 
Achievement Test 

Students of 
CCTDM teachers 
versus non-project 

teachers 

0.76 
Positive, 

significant X 6 
Hedges g (adjusted for 
classroom clustering) 

 

California 
Achievement Test 

Students of 
CCTDM teachers 
versus non-project 

teachers 

0.66 
Positive, 

significant X 7 
Hedges g (adjusted for 
classroom clustering) 

Jacob, &  
Lefgren, 2002  ITBS math score Probation vs. no 

OLS est =  
-.021 (se = 

.010) 

Negative, 
not 

significant 
X 3–6 

OLS with student and 
school covariates 

Karges-Bone, 
Collins, & 
Maness, 2002  

BSAP 

1997/98 cohort 
(post-treatment) 
vs. 1996 cohort 

0.70 
Positive, 

significant X 3 
Hedges g 

(student level) 

 

MAT 

1997/98 cohort 
(post-treatment) 
vs. 1996 cohort 

0.44 
Positive, not 
significant X 4 

Hedges g 
(student level) 

Continued on p. 5-38 
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Table 12, continued 

Authors 
Dependent 
Variable 

Independent 
Variable 

Effect size or 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcomes Grade(s) 
Estimation  
Technique 

Saxe, Gearheart, 
& Nasir, 2001  Concepts IMA vs. TRAD 2.39 

Positive, 
significant X 4–5 

Hedges g (classroom-
level analysis) 

 
Concepts SUPP vs. TRAD 0.67 

Positive, not 
significant X 4–5 

Hedges g (classroom- 
level analysis) 

 
Concepts IMA vs. SUPP 1.45 

Positive, 
significant X 4–5 

Hedges g (classroom- 
level analysis) 

 

Computation IMA vs. TRAD -0.53 

Negative, 
not 

significant 
X 4–5 

Hedges g (classroom- 
level analysis) 

 
Computation SUPP vs. TRAD -1.34 

Negative, 
significant X 4–5 

Hedges g (classroom- 
level analysis) 

 
Computation IMA vs. SUPP 0.77 

Positive, not 
significant X 4–5 

Hedges g (classroom-
level analysis) 

Van Haneghan, 
Pruet, & 
Bamberger, 2004  

Yr 1, Grade 3: 
SAT9 Problem 
Solving NCE 

Students of 
trained MMI 
teachers vs. 

control schools 

-0.04 

Negative, 
not 

significant 
X 3 

Hedges g (student level, 
adjusted for school-

level clustering) 

 Yr 1, Grade 3: 
SAT9 Procedures 

NCE 

Students of 
trained MMI 
teachers vs. 

control schools 

0.29 
Positive, not 
significant X 3 

Hedges g (student level, 
adjusted for school-

level clustering) 

 

Yr 1, Grade 3: 
SAT9 Total NCE 

Students of 
trained MMI 
teachers vs. 

control schools 

0.15 
Positive, not 
significant X 3 

Hedges g (student level, 
adjusted for school-

level clustering) 

 

Yr 1, Grade 3: 
TIMSS-items 

Students of 
trained MMI 
teachers vs. 

control schools 

0.35 
Positive, not 
significant X 3 

Hedges g (student level, 
adjusted for school-

level clustering) 

 Yr 2, Grade 4: 
SAT9 Problem 
Solving NCE 

Students in MMI 
schools versus 
control schools 

0.24 
Positive, not 
significant X 4 

Hedges g (student-
level, adjusted for 

school-level clustering) 
 Yr 2, Grade 4: 

SAT9 Procedures 
NCE 

Students in MMI 
schools versus 
control schools 

0.24 
Positive, not 
significant X 4 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 2, Grade 4: 

SAT9 Total NCE 

Students in MMI 
schools versus 
control schools 

0.27 
Positive, not 
significant X 4 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 2: 

Fractions 

Students in MMI 
schools versus 
control schools 

0.20 
Positive, not 
significant X 2 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

Fractions 

Students in MMI 
schools versus 
control schools 

0.70 
Positive, not 
significant X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 2: 

Geometry 

Students in MMI 
schools versus 
control schools 

0.01 
Positive, not 
significant X 2 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 2: 

Mental Math 

Students in MMI 
schools versus 
control schools 

0.22 
Positive, not 
significant X 2 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

Mental Math 

Students in MMI 
schools versus 
control schools 

0.46 
Positive, not 
significant X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 2: 

Numeration 

Students in MMI 
schools versus 
control schools 

0.11 
Positive, not 
significant X 2 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

Numeration 

Students in MMI 
schools versus 
control schools 

0.36 
Positive, not 
significant X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
Continued on p. 5-39 
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Table 12, continued 

Authors 
Dependent 
Variable 

Independent 
Variable 

Effect size or 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcomes Grade(s) 
Estimation  
Technique 

Van Haneghan, 
Pruet, & 
Bamberger, 2004  

Yr 3, Grade 2: 
Story Problems 

Students in MMI 
schools versus 
control schools 

0.27 
Positive, not 
significant X 2 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

Story Problems 

Students in MMI 
schools versus 
control schools 

0.47 
Positive, not 
significant X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

SAT9 Problem 
Solving NCE 

Students in MMI 
schools versus 
control schools 

0.57 
Positive, not 
significant X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

SAT9 Procedures 
NCE 

Students in MMI 
schools versus 
control schools 

0.67 

Positive, not 
significant 
(p = .097) 

X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

SAT9 Total NCE 

Students in MMI 
schools versus 
control schools 

0.66 
Positive, not 
significant X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 
 Yr 3, Grade 5: 

TIMSS items 

Students in MMI 
schools versus 
control schools 

0.71 

Positive, not 
significant 
(p = .078) 

X 5 

Hedges g (student level, 
adjusted for school-

level clustering) 

 
Across these eight studies that investigated the relationships of professional 

development to students’ achievement, few significant effects were identified. The study that 
yielded the most consistently positive effects was Chapin (1994). In this study, the 
achievement of 723 third-, sixth-, and seventh-grade students of 42 teachers who participated 
in a professional development program was compared with students in the same schools 
whose teachers were not involved in the program. The study design does not permit analysis 
of particular features of the professional development that might account for differences in 
teacher performance. Two other studies that showed positive effects on student achievement 
were Carpenter, Fennema, Peterson, Chiang, and Loaf (1989) and Saxe, Gearhart, and Nasir 
(2001). Carpenter et al. studied a professional development program in which teachers were 
provided with knowledge of students’ number fact concepts and reasoning, and showed that 
students in experimental classes exceeded students in control classes in number fact 
knowledge and problem solving. Saxe et al. compared three different professional 
development programs: an extensive subject-matter-focused professional development 
program whose goal was to improve teacher understanding of content, and of student 
thinking and learning processes; a program focused on building collegial support; and a 
traditional in-service program.20 

The researchers found significant differences for pupils’ conceptual and 
computational outcomes with the subject-matter-focused program leading to greater effects 
on students’ conceptual learning and the traditional program yielding greater impact on 
students’ computational skills. Angrist and Lavy (2001) studied a professional development 
program that involved weekly meetings between trainers and teachers to review teaching 
methods and plans for the following week, based on a “humanistic mathematics” philosophy 
of teaching. Treatment schools received an average of 10.5 more hours per week in training 
than comparison schools. Students in the treatment classes where the intervention was 

                                                
20 “Subject-matter-focused” denotes a program in which mathematics is central to teachers learning 
opportunities, and “traditional” ones are more focused on pedagogical classroom processes.  
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implemented performed significantly better than students in control schools. Still, none of 
these studies offers clear signals about the features of professional development that affect 
teachers’ capacity to teach or students’ achievement gains. 

Only one study (Jacob & Lefgren, 2002) directly investigated effects of the amount of 
professional development, a factor frequently thought to be crucial for effective professional 
development. This study reported no effects from modestly increased amounts of 
professional development on students’ learning in schools that were placed on probation for 
poor achievement. Little can be concluded from this study as the professional development 
was not specifically focused on mathematics, and no detailed information was provided 
about the nature of this professional development other than that it varied widely and was 
administered by a variety of organizations. 

Overall, the Task Group was not able to draw conclusions about the features of 
professional development that have an impact on students’ achievement because of the 
paucity of studies that investigated this link. For the studies the Task Group did identify that 
probed this connection, specificity is lacking regarding the features of the professional 
development programs where effects were found.   

Professional development is often regarded as one of the key policy levers for 
improving instruction and student achievement with currently practicing teachers. To probe 
this assumption, the Task Group sought to identify and review the available evidence about 
effects of professional development, and features that make a difference for either student 
outcomes or their teachers’ capacity to teach. The Task Group uncovered no studies, 
however, of sufficient quality where the designs and measures permitted them to ask and 
answer questions about teachers’ learning. Most studies used a simple pre- and posttest 
design with no comparison group or used self-report data on teachers’ learning. To ascertain 
the impact of professional development on students’ achievement, the Task Group did 
identify a small number of studies, but overall, these did not support any specific claims 
about the nature of professional development that affects teachers’ effectiveness. 

5. Conclusions 

The Task Group reviewed research on teacher education, including preservice teacher 
preparation, alternative pathways into teaching, induction programs, and professional 
development for practicing teachers. Despite the many beliefs about effective teacher education 
in any of these forms, the Task Group did not find strong evidence for the relationships 
between teacher education, and either teachers’ capacity to teach or their students’ learning. 
Even for the few studies that did produce significant effects, so little was unpacked about the 
features of the training that might account for a program’s impact that the Task Group was left 
without much greater insight into the crucial components of teacher education. 

Note that most research in this domain lacks rigorous designs and measures and is 
descriptive more often than not. Without comparison groups, or designs that permit analysis 
of program effects, it is difficult to draw conclusions about how teacher education works or 
about what the key features of effective professional training are.  
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6. Recommendations 

Studies are needed that use designs that lead to knowledge about the impact of 
different approaches to professional development and permit comparisons with other 
potential impacts on teacher capacity and their effectiveness (e.g., experience, curriculum, 
curriculum policy). Such research will depend not only on rigorous designs but also on valid 
and reliable measures of the key outcome variables: teachers’ mathematical knowledge and 
skill, instructional quality, and student learning.  Self-reported data cannot continue to be the 
main source of information about professional development outcomes. 

Key questions on which robust evidence is needed include the following: 

• Does teacher education (e.g., preservice training of different kinds, professional 
development, early career induction programs) have an impact on teachers’ capacity 
to teach and on students’ achievement? 

• What are key features of teacher education (e.g., duration, structure, quantity, content, 
pedagogy, structure, relationship to practice) that have effects on teachers’ capacity to 
teach and on students’ achievement?  

• How do contexts (e.g., school, students, teachers, policy) affect the outcomes of 
professional development? 

• How do different amounts of teacher education affect outcomes and effects? 

Given the vast investment made in teacher education and the call for more of it, 
knowledge about its effects is vitally needed. Efforts to build measures and to implement 
better research designs should be supported.   

C. Teacher Incentives 

What types of recruitment and retention strategies are used to attract and retain highly 
effective teachers of mathematics?  How well do they work? 

As the Task Group has previously noted, substantial differences in the mathematics 
achievement of students are attributable to differences in teachers. The Task Group has focused 
on the role of teachers’ mathematical knowledge in predicting student achievement, with 
teachers’ knowledge measured by proxies, such as certification, college course work, and scores 
on tests. Teachers’ college course taking in mathematics is associated with student gains in high 
school. Teacher’s mathematical knowledge as measured by tests is also linked to student 
achievement. Other characteristics of teachers including years of teaching experience, general 
cognitive ability, and selectivity of the institution awarding the teacher’s baccalaureate degree 
are associated with teacher effectiveness (Greenwald, Hedges, & Laine, 1996). It is important to 
note, however, that the largest reported positive effect of any of these characteristics is small 
relative to the magnitude of the natural variation in teacher effectiveness. 
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 Thus the Task Group knows that there are large differences in the on-the-job 
performance of teachers of mathematics as measured by student gains. Some portion of the 
differences in teacher effectiveness can be predicted by such known characteristics of teachers 
as their college course work and their scores on tests. But prior on-the-job performance of 
teachers is by far the strongest predictor of their future on-the-job performance.  

1. Utilizing Labor Market Incentives for Good Teaching 

One possible mechanism for recognizing and leveraging differences in teaching ability 
is salary. According to the National Center for Education Statistics’ Schools and Staffing 
Survey (Gruber, Wiley, Broughman, Strizek, & Burian-Fitzgerald, 2002), 70% of public 
school teachers in the United States in 2000 worked under a “uniform salary schedule” in 
which teachers with the same number of years of employment and the same level of 
postsecondary education received the same pay. In private industry and higher education, in 
contrast, pay is typically contingent on performance and area of specialization, as well as 
years of experience and level of education. In universities, for example, economists typically 
receive higher salaries than historians, reflecting the greater demand for economists outside 
the university sector. Within academia, economists who publish more influential work and 
bring in more external funding are paid more than less productive economists. Parallels in K–
12 education would take the form of paying more to teachers who have technical skills that 
are in demand in other sectors of the economy, such as teachers with degrees in mathematics 
(skills-based pay), and paying more to mathematics teachers who are more productive in 
raising student achievement (performance-based pay). Another type of incentive intends to 
compensate teachers for working in conditions they view as unfavorable, such as those 
associated with high-poverty, low-achieving schools (location pay). 

a. Skills-Based Pay 

Skills-based teacher incentives are based on two premises: Certain types of 
preparation and training are necessary to teach certain subjects, and individuals with that 
preparation and training are less likely to enter into or remain in teaching if their levels of 
compensation are substantially below market rates. Evidence presented previously is 
consistent with the first premise in demonstrating a relationship between certain types of 
teacher preparation and student outcomes. With respect to the second premise, a large and 
consistent body of economic research indicates that college students’ decisions to prepare for 
and enter into teaching depend on how the salary structure for teachers compares with those 
in competing occupations (Dolton & van der Kaauw, 1995; Bacolod, 2007; Goldhaber, 
DeArmond, Liu, & Player, 2007). 

The magnitude of the salary differential between the private sector and the teaching 
profession for those who enter teaching with technical training is large. Four years after 
graduation, the gap in annual salary between teachers and non-teachers who have training in 
math and science is $13,469. Ten years out of college, the annual salary gap is $27,890 
(Goldhaber et al., 2007). The salary differential for mathematically trained teachers versus 
non-teachers is likely to account at least in part for the significant teacher shortage in 
mathematics. In 2003–04, 74.1% of public high schools reported having teaching vacancies 
in mathematics, and 32.4% of those schools indicated that it was very difficult, or they were 
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not able to fill those vacancies. Both of these levels were higher than for any other field in 
which high schools reported vacancies (Strizek, Pittsonberger, Riordan, Lyter, & Orlofsky, 
2006). Differential salaries may also be responsible in part for the higher attrition rate from 
teaching of teachers with training in mathematics and science; Ingersoll (2000) reports that 
math and science teachers are significantly more likely to move from or leave their teaching 
jobs because of job dissatisfaction than are other teachers (40% of math and science, and 
29% of all teachers). Of those who depart because of job dissatisfaction, the most common 
reason given is low salaries (57% of respondents). 

b. Location Pay 

“Location” pay is premised on the well-documented tendency of the most qualified 
teachers to select or migrate towards schools that serve the most economically advantaged 
children (Lankford, Loeb, & Wyckoff, 2002; Hanushek, Kain, & Rivkin 2004; Reed, Rueben, 
& Barbour 2006). Could this problem be remedied by paying teachers more who serve in 
high-needs schools? Research on the effects of location pay provides mixed results that are 
likely affected by the size of differential pay, the gender and experience of the teacher, and 
whether the bonus is a one-time signing bonus or permanent, among other factors (Hanushek 
et al.; Loeb & Page, 2000). Hanushek et al., using longitudinal data from Texas and taking 
advantage of naturally occurring variation in teacher salaries across districts, found that 
women were much less responsive to salary differences than men in determining whether to 
transition out of a high-minority school. They estimate that it would require an 8.8% salary 
premium for nonminority males with 3–5 years of teaching experience to keep them from 
moving from large urban to suburban districts, but a 42.6% differential to retain nonminority 
females. On the assumption that location pay could not be targeted to male teachers, they 
concluded that offering teachers pay differentials to take jobs in low-performing schools is not 
a cost-effective means of improving achievement. In contrast, Clotfelter, Glennie, Ladd, and 
Vigdor (2006) found that a moderately-sized addition to salary ($1,800) was effective in 
encouraging mid-career and more senior math and science teachers to stay in high-needs 
districts in North Carolina.   

One important difference in the two studies is that Hanushek et al. (2004) estimated 
the size of the incentive that would neutralize teacher movement out of high-poverty urban 
schools, whereas Clotfelter et al. (2006) estimated the effect of the particular $1,800 bonus 
used in North Carolina, which was a 12% reduction in turnover rates. It may require much 
lower levels of location pay to reduce the outflow of experienced teachers from high-needs 
schools than it would take to eliminate it. 

c. Performance Pay 

Both skills-based pay and location pay as currently conceptualized and implemented 
provide incentives based on characteristics of teachers, such as college course work and 
experience, which are relatively weak predictors of student achievement. Thus they may be 
relatively inefficient mechanisms for enhancing the supply of effective teachers, where 
“effective” is defined as a teacher’s above-average ability to increase the measured academic 
achievement of students. If, as previously documented, the strongest predictor of a teacher’s 
effectiveness is the teacher’s history of effectiveness, and if teachers’ performance is affected 
by salary, then pay-for-performance might generate greater yields than similar investments in 
other incentives. 
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What is the evidence that pay-for-performance, or merit pay, has positive effects on 
teaching quality in mathematics? Before addressing that question it is important to note and 
briefly describe the substantial variability in the design of extant merit-pay systems. 

One major categorical distinction is between incentive schemes focused on 
individuals versus those focused on schools. In the latter, teachers within schools receive a 
bonus if the entire school in which they teach makes progress on measures of student 
learning. In the former, individual teachers receive salary increments based on the gains of 
their own students over the course of the school year. School-based incentive plans typically 
have political advantages over individual plans, and some have argued that they enhance 
cooperation among teachers compared to individual plans. But others have argued that 
school-based plans, depending as they do on cooperation and continuity of effort by the 
teaching staff, are poorly designed for schools in which teacher mobility is high, a striking 
characteristic of many central city, high-poverty schools. 

A second important dimension of variation among pay-for-performance plans is the 
level of compensation bonus that is available for higher performing teachers. Existing 
research on pay-for-performance involves bonuses that range from a couple of hundred 
dollars (Lavy, 2002) up to 40% or more of base salary (Glewwe, Ilias, & Kremer, 2003). 

Another distinction involves the degree to which the merit system is focused on 
student outcomes. In some systems, teacher bonuses are totally dependent on student gains 
on standardized assessments of learning (e.g., Winters, Ritter, Barnett, & Greene, 2006). At 
the other end of the dimension are systems in which input and output measures are mixed 
together in complex arrays. An example is Mexico’s Carrera Magisterial, which rewards 
teachers with salary bonuses based on a number of criteria, such as seniority, educational 
attainment, professional development, teacher performance, and student achievement 
(Santibáñez et al., 2007).   

Continuity is yet another dimension on which pay-for-performance systems differ. 
The majority of existing pay-for-performance systems is put forward as trials of the concept. 
A system that seems temporary may motivate teachers differently than one around which 
longer-term plans can be made.   

The Task Group identified 14 quantitative studies on teacher merit pay (see Table 
13). Of these, 13 showed positive effects on student outcomes (see Table 14). These studies 
varied methodologically from randomized control trials (Muralidaran, & Sundararaman, 
2006; Glewwe et al., 2003) to causally weaker correlational studies (e.g., Figlio & Kenny, 
2007) and quasi-experiments (e.g., Ladd, 1999).  The design of the performance pay plans 
varied across the studies on all the design features identified in this section. Given the 
variability in program design and evaluation methodology, it is striking that each of the 
studies found some positive effects on student achievement.  
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Table 13: Quality Characteristics of Studies Examining Impact of Teacher Pay for 
Performance on Student Achievement in Mathematics 
   Other Controls    

Authors Sample Size 

Pretest 
Control Student Teacher 

Class, 
School, 

or 
District Family 

Matching 
of Schools 

Level of 
Analysis Incentive Scheme 

Math 
Specific 

Test 
Atkinson et al., 
2004 

182 secondary 
school teachers in 
the U.K. across 
18 schools (with 
23,000 students) 

X X X    Teacher 

Teacher-based: 
greater than 9% 
increase in salary X 

Cooper, & 
Cohn, 1997 

541 classes, 
comprised of 532 
teachers and 
13,646 students in 
18 school districts 

X  X X X  Class/Teacher 

2 plans—teacher-
based or teacher-
and school-based: 
each with similar 
pay incentives 
from $2,000–
$3,000 

X 

Dee, & Keys, 
2004 

24,000 
observations 
pooled from over 
11, 000 students in 
79 participating 
schools over 
4 years 

X X X X X  Student 

Teacher-based: 
$2,000–$7,000 
raise 

X 

Eberts, 
Hollenbeck, & 
Stone, 2002 

2 high schools in 
MI (collectively 
comprised of over 
17,000 
student/year 
observations) 

X     X School 

Teacher-based:  
student retention 
bonus 12–12.5%  
of base pay, 
performance bonus 
5% of base pay, 
additional 10% 
bonus for both 

 

Figlio, & 
Kenny, 2006 

4,515 students  X X  X X  Student Varied within 
sample  

Glewwe et al., 
2003 

Over 50,000 
students from 100 
primary schools 

X X  X   Student 
School-based:  
21–43% of  
base salary 

X 

Ladd, 1999a 1,118 school-year 
observations in 
5 cities    X   School 

School-based: 
$1,000 to teacher 
and principals, and 
$2,000 to schools 

X 

Lavy, 2002 Over 22,000 
observations 
across 190 
schools  

 X  X X X Student 

2 school-based 
plans: amount 
varies by plan X 

Lavy, 2004 Over 120,000 
student-year 
observations 
across 350 
schools 

 X  X X X Student 

Teacher-based: 
$1,750–$7,500+ 

X 

Muralidharan, 
& 
Sundararaman, 
2006 

Over 68,000 
students from 300 
schools  X   X X  Student 

School-based, 
teacher-based: 
Unrestricted. 500% 
gain in ave. student 
test score – 5%) 

X 

Continued on p. 5-46 
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Table 13, continued 
   Other Controls    

Authors Sample Size 

Pretest 
Control Student Teacher 

Class, 
School, 

or 
District Family 

Matching 
of Schools 

Level of 
Analysis Incentive Scheme 

Math 
Specific 

Test 
Richards, & 
Sheu, 1992 

994 schools  X      School School-based: 
amount varies, 
during study was 
$30–$50 per pupil 
or approximately 
$10,000 per school 

 

Santibáñez et 
al., 2007 

Over 850,000 
classroom-year 
observations in 
Mexico 

  X X X  Class/Teacher (MX$)b 1,599 to 
(MX$) 12,462. 
Representing 27–
215% of base 
salary 

 

Slotnik, Smith, 
Glass, & 
Helms, 2004 

Over 100,000 
student-year 
observations 
across 16 schools 
in CO 

 X  X X X Student $500–$1,500 X 

Winters, Ritter, 
Barnett, & 
Greene, 2006 

608 student-year 
observations 
across 5 schools 
in AR 

X X  X X X Student $1,800–$11,200 X 

a Another piece, a book chapter by Clotfelter and Ladd (1996), has been cited by such authors as Podgursky and Springer (2007). However 
this piece has been omitted from Tables 13 and 14 because the analysis in that chapter later became integrated as part of a published article 
by Ladd (1999), and presents the same analysis as the Ladd (1999) piece included here. 
b MX$ means Mexican dollars. 
 

The methodologically strongest studies have been conducted in developing countries. 
For example, Muralidaran and Sundararaman (2006) reported results from a randomized trial 
of individual- and school-level performance-based incentives implemented across a 
representative sample of government-run rural primary schools in the Indian state of Andhra 
Pradesh. The program provided bonus payments to teachers based on the average 
improvement of their students’ test scores in independently administered learning 
assessments (with a mean bonus of 3% of annual pay). The effect size for students in 
incentive schools was .19 standard deviation units for mathematics. The students scored 
significantly higher on “conceptual” as well as “mechanical” components of the test 
suggesting that the gains in test scores represented an actual increase in learning outcomes. 
Incentive schools also performed better on subjects for which there were no incentives. There 
was no significant difference in the effectiveness of group versus individual teacher 
incentives. Incentive schools performed significantly better than other randomly chosen 
schools that received additional paraprofessional teachers and cash block grants that were 
equivalent in costs to the teacher incentives. 

No experiments on performance-based pay have been reported in the United States, 
although one large randomized trial is underway in Nashville, TN by the National Center on 
Performance Incentives. A recent correlational study by Figlio and Kenny (2006) examined 
locally generated, individual-based merit-pay programs in the United States by combining 
data from the NELS with the authors’ own survey on the use of incentives. The performance 
plans varied from school to school. The authors found that merit-pay plans had positive 
impacts on student achievement and appeared to be effective when other types of 
interventions, such as more frequent teacher evaluation, were not. 
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2. Recommendations 

The results from research on teacher incentives generally support the effectiveness of 
incentives, although the methodological quality of the studies in terms of causal conclusions 
is mixed. The substantial body of economic research in other fields indicating that salary 
affects the number of workers entering a field and their job performance is relevant. In the 
context of the totality of the evidence, and acknowledging the substantial number of 
unknowns, the Task Group recommends policy initiatives that put in place and carefully 
evaluate the effects of the following: 

• Raising base salaries for teachers of mathematics to be more competitive with salaries 
for similarly trained non-teachers; 

• Incentives for teachers of mathematics working in locations that are difficult to staff; and 

• Opportunities for teachers of mathematics to increase their base salaries substantially 
by demonstrable effectiveness in raising student achievement.   

3. Cautions 

The lack of results from randomized trials of performance-pay systems in the United 
States and the difficulty of estimating a cost-benefit ratio for particular types of bonuses means 
that much work remains to be done before the nation will know enough to put particular pay-
for-performance systems in place and predict their outcomes confidently. Currently, the effects 
of pay-based incentives on teachers are largely unknown. Knowing more about how various 
incentive systems affect teachers would enable the design of more effective and efficient 
incentives. Beyond the uncertainties about the effects of particular incentive systems, there is 
substantial evidence that teachers’ decisions to remain in teaching and to continue teaching in 
particular schools are affected by work conditions in addition to salary. This includes the 
proximity of their residence to the school, their support from school administrators, their 
teaching assignment, and the characteristics of their students (Marvel, Lyter, Peltola, Strizek, & 
Morton, 2006; Hanushek et al., 2004). It is important to note that increasing the pay of 
mathematics teachers necessarily involves redirecting resources from other purposes, including 
investments that might have greater effects on student outcomes. Informed policy decisions 
need to take into consideration the relative returns of alternative investments in improving 
student achievement. In light of the substantial number of unknowns, policy initiatives 
involving teacher pay should be carefully evaluated as they are put in place. 
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Table 14: Reported Impacts of Models Examining the Effect of Teacher Pay for 
Performance on Student Achievement in Mathematics 

Authors 

Dependent 
Measure 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Atkinson et 
al., 2004 

Gains in GSCE 
mean math test 

score 

Teacher’s 
eligible for 
incentives 

Data not 
available 

Positive, 
Significance 

unknown 

X 8–10 OLS regression 

 

Gains in (KS3 - 
GSCE) math test 

scores 

Teacher’s 
eligible for 
incentives 

Data not 
available 

Positive, 
Significance 

unknown 

X 8–10 OLS regression 

Cooper, 
Cohn, 1997 

Gains in median 
math test score 

Participation in 
Teacher Bonus 

Model 
0.22 

Positive & 
Significant X 

HS & 
Elem. OLS regression 

 
Gains in median 
math test score 

Participation in 
Campus/ 

Individual 
Incentive Model 

0.13 
Positive & 
Significant X 

HS & 
Elem. OLS regression 

 
Gains in median 
math test score 

Participation in 
Teacher Bonus 

Model 
0.20 

Positive & 
Significant X 

HS & 
Elem. 

Frontier 
regression 

 
Gains in median 
math test score 

Participation in 
Campus/ 

Individual 
Incentive Model 

0.13 
Positive & 
Significant X 

HS & 
Elem. 

Frontier 
regression 

Dee, & Keys, 
2004 

Stanford 
Achievement Test 

score in math 

Participation in 
TN Career 

Ladder System 

Data not 
available 

Positive & 
Significant X K–3  OLS regression 

Eberts, 
Hollenbeck, 
& Stone, 
2002 

Course completion 

Implementation 
of performance 
pay incentives 

in MI 

Data not 
available 

Positive & 
Significant  HS 

Difference-in 
difference in 

mean outcomes 

 Student GPA 

Implementation 
of performance 
pay incentives 

in MI 

Data not 
available 

Negative & 
Not 

significant 
 HS 

Difference-in 
difference in 

mean outcomes 

 

Course-passing rates 
conditional on 

course completion 

Implementation 
of performance 
pay incentives 

in MI 

Data not 
available 

Negative & 
Significant  HS 

Difference-in 
difference in 

mean outcomes 

Figlio, & 
Kenny, 2006 

Sum of 12th-grade 
NELS:88 scores 
across subjects 

Number of 
Teacher 

incentives 
offered 

Data not 
available 

Positive & 
Significant  12 OLS regression 

 

Sum of 12th-grade 
NELS:88 scores 
across subjects 

The existence of 
large incentives 

for teachers 

Data not 
available 

Positive & 
Significant  12 OLS regression 

 

Sum of 12th-grade 
NELS:88 scores 
across subjects 

The existence of 
medium 

incentives for 
teachers 

Data not 
available 

Positive & 
Significant  12 OLS regression 

 

Sum of 12th-grade 
NELS:88 scores 
across subjects 

The existence of 
small incentives 

for teachers 

Data not 
available 

Positive & 
Significant  12 OLS regression 

Continued on p. 5-49 
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Table 14, continued 

Authors 
Dependent  
Measure 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade(s) 
Estimation 
Technique 

Glewwe et 
al., 2003 

Change in district 
exam scores in math 

First year as 
incentive school 0.04 

Positive & 
Not 

significant 
X 4–8 

GLS regression 
in a random 

effects model 

 
Change in district 

exam scores in math 

Second year as 
incentive school 0.08 

Positive & 
Significant X 4–8 

GLS regression 
in a random 

effects model 

 
Change in district 

exam scores in math 

First year after 
two-year 
incentive 
program 

-0.05 

Negative & 
Not 

significant 
X 4–8 

GLS regression 
in a random 

effects model 

 
Change in KCPE 

exam scores in math 

First year as 
incentive school 0.06 

Positive & 
Not 

significant 
X 4–8 

GLS regression 
in a random 

effects model 

 
Change in KCPE 

exam scores in math 
Second year as  
incentive school  0.07 

Positive & 
Not 

significant 
X 4–8 

GLS regression 
in a random 

effects model 

 
Change in KCPE 

exam scores in math 

First year after 
two-year 
incentive 
program 

0.04 

Positive & 
Not 

significant 
X 4–8 

GLS regression 
in a random 

effects model 

Ladd, 1999a
 Pass rates in math 

on the TX 
Assessment of 

Academic Skills 
(TAAS)  

First year of 
incentive reform 

Data not 
available 

Positive & 
Significant X 7 OLS regression 

 

Pass rates in math 
on the TX 

Assessment of 
Academic Skills 

(TAAS)  

Second year of 
incentive reform 

Data not 
available 

Positive & 
Significant X 7 OLS regression 

 

Pass rates in math 
on the TX 

Assessment of 
Academic Skills 

(TAAS)  

Third year of 
incentive reform 

Data not 
available 

Positive & 
Significant X 7 OLS regression 

 

Pass rates in math 
on the TX 

Assessment of 
Academic Skills 

(TAAS)  

Fourth year of 
incentive reform 

Data not 
available 

Positive & 
Significant X 7 OLS regression 

Lavy, 2002 

Ave. matriculation 
test scores in math, 
in secular schools 

Two years after 
adopting 

incentive program 

Data not 
available 

Positive & 
Significant X 12 

OLS regression 
using regression 

discontinuity 

 

Ave. matriculation 
test scores in math, 
in religious schools 

Two years after 
adopting 

incentive program 

Data not 
available 

Positive & 
Significant X 12 

OLS regression 
using regression 

discontinuity 

 

Ave. matriculation 
test scores in math, 
in secular schools 

Two years after 
adopting 

incentive program 

Data not 
available 

Positive & 
Significant X 12 

OLS regression 
using RDD & 
PS matching 

 

Ave. matriculation 
test scores in math, 
in religious schools 

Two years after 
adopting 

incentive program 

Data not 
available 

Positive & 
Significant X 12 

OLS regression 
using RDD & 
PS matching 

Continued on p. 5-50 
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Table 14, continued 

Authors 
Dependent  
Measure 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade 
Estimation 
Technique 

Lavy, 2004 
Awarded credits in 

math 

Adoption of 
incentive 
program 

Data not 
available 

Positive & 
Significant X 12 Regular OLS 

regression 

 

Passing rates in 
math on 

matriculation exams  

Adoption of 
incentive 
program 

Data not 
available 

Positive & 
Significant X 12 Regular OLS 

regression 

 
Awarded credits in 

math 

Adoption of 
incentive 
program 

Data not 
available 

Positive & 
Significant X 12 

OLS regression 
using PS 
matching 

 

Passing rates in 
math on 

matriculation exams 

Adoption of 
incentive 
program 

Data not 
available 

Positive & 
Significant X 12 

OLS regression 
using PS 
matching 

 
Awarded credits in 

math 

Adoption of 
incentive 
program 

Data not 
available 

Positive & 
Significant X 12 OLS regression 

using RDD 

Muralidharan, 
& 
Sundararama, 
2006 

Difference in avg. 
math test designed 

by “educational 
initiatives”b

 

School 
assignment to 

individual 
incentives 

Data not 
available 

Positive & 
Significant X 1–5 OLS regression 

 

Difference in avg. 
math test designed 

by “educational 
initiatives” 

School 
assignment to 

group incentives 

Data not 
available 

Positive & 
Significant X 1–5 OLS regression 

Richards, & 
Sheu, 1992 

School mean gain 
score on Basic Skills 

Assessment 
Program (BSAP) 

Rank or “band” 
within established 

SC incentive 
structure 

Data not 
available 

Positive, 
Significance 

unknown 

 1–11 
Comparison of 

means  

 

School mean gain 
score on 

Comprehensive Test 
of Basic Skills 

(CTBS) 

Rank or “band” 
within established 

SC incentive 
structure 

Data not 
available 

Positive, 
Significance 

unknown 

 1–11 
Comparison of 

means 

Santibáñez et 
al., 2007 

Carrera Magisterial 
test score (across 
many subjects) 

IP Score, i.e. 
incentive scheme 

ranking metric 
0.16 Positive & 

Significant  Primary OLS regression 
using RDD 

 

Carrera Magisterial 
test score (across 
many subjects) 

Closest to cutoff 
for receiving 

incentives 
0.00 

Negative & 
Not 

significant 
 Primary OLS regression 

using RDD 

 

Carrera Magisterial 
test score (across 
many subjects) 

IP Score, i.e. 
incentive scheme 

ranking metric 
0.07 Positive & 

Significant  Secondary OLS regression 
using RDD 

 

Carrera Magisterial 
test score (across 
many subjects) 

Closest to cutoff 
for receiving 

incentives 
0.01 

Positive & 
Not 

significant 
 Secondary OLS regression 

using RDD 

Continued on p. 5-51 
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Table 14, continued 

Authors 
Dependent  
Measure 

Independent 
Variable 

Standardized 
Regression 
Coefficients 

Results of 
Estimated 

Effects 

Math 
Specific 

Outcome Grade 
Estimation 
Technique 

Slotnik, 
Smith, Glass, 
& Helms, 
2004 

Iowa Test of Basic 
Skills (ITBS) 

Marginal effect 
of being a pilot 

school (PFP plan 
adopted) 

Data not 
available 

Negative & 
Significant X Elem. 2 stage HLM 

model 

 

Colorado Student 
Assessment 

Program (CSAP) 

Marginal effect 
of being a pilot 

school (PFP plan 
adopted) 

Data not 
available 

Negative & 
Significant X Elem. 2 stage HLM 

model 

 
Iowa Test of Basic 

Skills (ITBS) 

Marginal effect 
of being a pilot 

school (PFP plan 
adopted) 

Data not 
available 

Positive & 
Not 

significant 
X Middle 

2 stage HLM 
model 

 

Colorado Student 
Assessment 

Program (CSAP) 

Marginal effect 
of being a pilot 

school (PFP plan 
adopted) 

Data not 
available 

Positive & 
Significant X Middle 

2 stage HLM 
model 

 
Iowa Test of Basic 

Skills (ITBS) 

Marginal effect 
of being a pilot 

school (PFP plan 
adopted) 

Data not 
available 

Positive & 
Significant X HS 

2 stage HLM 
model 

 

Colorado Student 
Assessment 

Program (CSAP). 

Marginal effect 
of being a pilot 

school (PFP plan 
adopted) 

Data not 
available 

Negative & 
Not 

significant 
X HS 

2 stage HLM 
model 

Winters, 
Ritter, 
Barnett, & 
Greene, 2006 

NCE in math from 
SAT minus NCE in 

math from ITBS 

Participation in 
incentive 
program 

Data not 
available 

Positive & 
Significant X K–5  

OLS 
regression, 

Difference-in-
difference 

a Another piece, a book chapter by Clotfelter and Ladd (1996), has been cited by such authors as Podgursky and Springer (2007). However 
this piece has been omitted from Tables 13 and 14 because the analysis in that chapter later became integrated as part of a published article 
by Ladd (1999), and presents the same analysis as the Ladd (1999) piece included here. 
b Educational Initiatives refers to incentives given or provided to educators based on achievement or attainment. 

D. Elementary Mathematics Specialist Teachers 

a) What models exist for elementary math specialist teachers and their preparation? 
What is known about the qualifications and responsibilities of mathematics specialist 
teachers? 

b) What evidence exists for the effectiveness of elementary math specialist teachers with 
respect to student achievement? 

There have been many calls for the use of math specialists at the Grade K–5 level in 
recent years (National Research Council, 2001; Maryland State Department of Education, 
2001; National Council of Teachers of Mathematics, 2000; Horowitz, Fuchs, & Clarke, 2006; 
American Mathematical Society, 2001; Fennell, 2006). The pressing need of math specialists 
comes from two sources. On the one hand, there is now a general awareness that many 
elementary teachers lack adequate knowledge of mathematics for teaching. Moreover, 
evidence exists for substantial variability in teachers’ knowledge of mathematics for teaching, 
and evidence exists that teachers’ grasp of such knowledge is directly and very strongly 
related to the mathematical quality of their classroom instruction (Learning Mathematics for 
Teaching, 2006). On the other hand, with more than 2 million current elementary teachers, the 
scale problem of raising the mathematical knowledge of such a large number of teachers 
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becomes intractable. The hope of training a small cadre of mathematically knowledgeable 
teachers and letting them teach the elementary mathematics classes leads some to consider the 
use of math specialists an important and scalable route to improving the quality of the 
mathematics instruction that students receive. The use of math specialists at the Grade K–5 
level to reduce the number of teachers who must know mathematics well for teaching 
therefore seems like a sensible strategy. 

However, despite multiple recommendations to use math specialist teachers, the 
meaning of the term “math specialist” varies. While educators and administrators who carry 
the title of “math specialist” can be found in most states, they frequently have different sets 
of responsibilities and qualifications. No national survey of their numbers, responsibilities, or 
qualifications has been conducted. Recent surveys of math specialists in Iowa21 and 
Maryland22 have shown that the use of math specialists is widespread, and in the case of 
Maryland this is true across multiple models of the position. Not long ago the Virginia 
legislature mandated the use of math specialists across the state; the state currently has one of 
the most developed and researched math specialist programs. Similar legislation may soon be 
proposed in the state of Maryland (Wray, 2007). Washington has also adopted legislation 
funding the use of math specialists to act as teacher coaches across the state (Thompson, 
2007). The use of different models of math specialists is thus by no means uncommon, but as 
the following discussion shows, their presence in the education hierarchy has been poorly 
defined and their effectiveness has been insufficiently studied. 

To contribute to thoughtful consideration of the issues involved in restructuring 
teacher roles around the idea of mathematics specialists, the Task Group reviewed a range of 
models in current use in the United States and abroad, and sought evidence about their 
effectiveness. However, there is a paucity of rigorous empirical research to answer the 
question posed in this section. 

1. What Models Exist for Elementary Math Specialist Teachers and 
Their Preparation? 

Math specialists can be found working at every level of U.S. public school systems. 
They hold positions that oversee all or groups of districts within a state, a single district, a 
single school within a district, classrooms within a school, and even particular students 
within a classroom. Some math specialists even take on several of these duties all at once (W. 
Haver, personal communication, April 1, 2007). In middle schools, math specialists are 

                                                
21 A survey of superintendents in Iowa shows that 63.2% of elementary schools in the state have some type of 
departmental model that treats math as a separate subject requiring a math specialist working under what likely 
is the specialized-teacher model. Not all elementary grades worked under this model. However, only 2.7% of 
Grades 1 and 2 were departmentalized across all elementary schools. This compares to 9% of all Grades 3, 
46.8% of Grades 4, 89.2% of Grades 5, and 66.7% of Grades 6 that were departmentalized across all elementary 
schools (Kemis, Heiting, Spitzli, & Lang, 2003). 
22 “In a recent survey of Maryland’s local mathematics supervisors, data indicated that Maryland public schools 
(Grades PreK–12) currently employ approximately 445 school-based (non-teaching) mathematics teacher-
leadership specialists at 439 schools, 158 school-based mathematics intervention specialists (who work 
primarily with students), and 134 district-level mathematics curriculum/instruction specialists, statewide” 
(Ruehl & Wray, 2006). 
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employed most often specifically to teach mathematics, while in elementary schools they 
may teach their students about multiple subjects, not just mathematics (Fennell, 2006). 
Overall, the location of employment of math specialists within the structure of a state’s 
school system partially determines both the certification needed to qualify for the position 
and the responsibilities of the position.  

Different sets of qualifications are currently required of mathematics specialists. 
Minimally, a math specialist is someone who has demonstrated expertise, usually through 
experience as a former math teacher, testing, or both.23 Math specialists are frequently certified 
through course work leading to a master’s degree (W. Haver, personal communication, April, 
2007). For example, particular colleges and universities in the states of Virginia24 and 
Michigan25 have graduate-level certification programs for mathematics specialists. Math 
specialists have also been known to gain their certification through professional development 
course work not leading to a higher degree from any accredited institution of higher or 
postsecondary education (C. Chapman, personal communication, May 1, 2007). 

At present, there are at least three models for the use of math specialists: the lead-
teacher or math coach model, the specialized-teacher model, and the pull-out model (Fennell, 
2006). Math specialists as lead teachers are more common than those working under the 
other two models. In practice, however, math specialists frequently take on responsibilities 
that cut across all three models. 

                                                
23 For example, the governor of the state of Massachusetts recently recommended laws requiring math 
specialists to be elementary school teachers who have spent at least 80% of their weekly teaching time teaching 
math and who also have passed the elementary math section of the Massachusetts Tests for Educator Licensure 
(Romney, 2007).  
24 There are currently six colleges and universities in the state that offer a master’s degree program that endorses 
mathematics specialist in accordance with states’ licensure regulations for school personnel (Virginia 
Legislature, 2005). 
25 “In conjunction with the Horace H. Rackham School of Graduate Studies, the School of Education of the 
University of Michigan-Dearborn offers a Master of Arts degree in Education. This is a degree that is designed 
for educators who desire to fulfill all requirements for a University of Michigan master’s degree, including 
residency, at UM-D. The program is also designed for teachers who wish to strengthen their competencies, 
expand their professional outlook and gain greater knowledge and understanding of their subject specialization. 
Through this program teachers may apply for an endorsement/certificate in Early Childhood and Early 
Childhood Special Education Inclusion UM-D Certificate, English as a Second Language, Middle Level 
Education, Middle School Mathematics Endorsement and Middle Grades Mathematics Leadership, Reading 
Specialist K–12, other endorsements for which the School of Education is approved, a renewal of the 
Provisional Certificate, or obtain a Professional Education Certificate. Eligibility for regular admission into the 
program includes completion of a bachelor’s degree, a 3.0 (B) undergraduate grade point average or better, and 
a teaching certificate. Individuals whose grade point is less than 3.0 may be considered for probationary 
admission status and may be required to submit evidence of potential for success in a graduate program.” 
(Retrieved on 8/13/2007 from http://www.umich.edu/~bhlumrec/acad_unit/rackham/degree_req/ 
www.rackham.umich.edu/Programs/other.camp/Dearborn/educ-dbn.html.) 
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a. The Lead Teacher or Math Coach Model 

Math specialists of this type act as resource persons for their coworkers and do not 
directly instruct students. They work at the state, district, and school levels, providing 
leadership and information to teachers and staff and often coordinating mathematics 
programs within a school, a district, or across districts (V. Inge, personal communication, 
May 1, 2007). Frequently, these math specialists are elementary teachers who have been 
released from all or some of their responsibilities of classroom instruction (Reys & Fennell, 
2003; Rowan & Campbell, 1995; Ohanian, 1998). They facilitate teachers’ use of 
instructional strategies; align curricular frameworks with state, district, or local standards; 
distribute, interpret, and apply the findings of research on the teaching and learning of math 
to teachers; and organize professional development opportunities for teachers (M. Madden, 
personal communication, April 1, 2007). One of the most important responsibilities of math 
specialists of this type is their charge to foster a self-reflective culture of learning among 
teachers (Moon, 2002; P. Hess, personal communication, May 1, 2007). As Campbell (2007; 
Campbell & White, 1997) points out, theirs is a very challenging task as,   

[math specialists of this type] are called upon to navigate not only 
the complexity of teaching and student learning as it emerges in 
the classrooms of multiple teachers, but to do so while provoking 
the development of those teachers by advocating for their change, 
nurturing their performance, advancing their thinking, increasing 
their mathematical understanding, and saluting their attempts 
(Campbell & White, 1997, p. 328). 

Some math specialists are also empowered to officially assess the performance of 
math teachers in the classroom, but this role is less common as it requires particular 
organizational structures within schools or districts to support this form of professional 
evaluation.26 Math specialists of this type have been funded in part with Title I dollars.27 In 
practice, the responsibilities of math specialists who work as lead teachers are quite fluid and 
are primarily determined by the context of their employment. They are referred to by many 
other names, including mentors, coaches, and resource, lead, and peer teachers (J. Lott, 
personal communication, May 1, 2007). As with their responsibilities, the meaning of these 
terms also depends on context (Miller, Moon, & Elko, 2000). 

                                                
26 For instance, the Charlottesville City Schools District in Charlottesville, VA, has hired elementary math 
specialists to work in individual schools who supports “the professional growth of elementary teachers by 
strengthening classroom teachers’ understanding of math content … will co-teach lessons, develop curriculum 
and lessons, and create appropriate assessments, as needed. The math specialist will spend a minimum of 75% 
to 80% of his/her time in classrooms directly with students. He or she may also assist administrative and 
instructional staff in interpreting data and designing approaches to improve student achievement and instruction.  
Qualified applicants must hold a valid Virginia teaching certificate and be enrolled in a university-based 
elementary math specialist program which will result in a Virginia endorsement as a K–8 math specialist. 
Applicants must have teaching experience and a master’s degree is preferred” (Job posting found April 2007, at: 
http://www.ccs.k12.va.us/uploads/Mathematics%20Specialist%20JD.pdf). 
27 For instance, the town of Carlisle, MA, has used a Title 1 grant to partially fund a math specialist position in 
their elementary schools since 2003 (The Carlisle School Administration, 2005). 
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b. The Specialized-Teacher Model 1785 

Math specialists of this type are responsible for the direct instruction of students. They 1786 
work at the school and district levels, but most frequently take responsibilities in one school. In 1787 
the upper grade levels (particularly for Grades 6–8) these math specialists frequently have the 1788 
responsibility for the instruction of a single grade level (Fennell, 2006). They work with other 1789 
teachers at their grade level to divide up the subjects being taught (e.g., math, social studies, 1790 
science), and frequently all teachers retain some responsibility for reading and language arts 1791 
instruction in a “homeroom” environment (Reys & Fennell, 2003).  1792 

c. The Pull-Out Model 1793 

This is a variation of the specialized-teacher model. In this model, math specialists 1794 
directly instruct individuals or small groups of students within a classroom who have been 1795 
identified as either failing to meet or exceeding the standards attached to their grade level 1796 
(V. Mills, personal communication, May 1, 2007). Therefore, this type of math specialists 1797 
does not address the problem of the deficiency of mathematics instruction in the generic 1798 
elementary classroom. They have been funded in part with Title I dollars, and in some cases 1799 
Title II class reduction dollars (V. Inge, personal communication, May 1, 2007). 1800 

2. What Evidence Exists for the Effectiveness of Elementary Mathematics 1801 
Specialist Teachers With Respect to Student Achievement? 1802 

The search for empirical investigations about the effectiveness of elementary 1803 
mathematics specialists turns up little research on the subject. In all, the searches identified 1804 
114 potentially relevant pieces of literature, but only one (McGrath & Rust, 2002) was an 1805 
investigation that explored the effects of specialized mathematics teachers on student 1806 
achievement in elementary schools. These authors found no difference in the mathematics 1807 
gain scores of students in an elementary school with a departmentalized structure compared 1808 
to students in a school with a self-contained structure.   1809 

In the series of ethnographic studies compiled as part of the Recognizing and 1810 
Recording Reform in Mathematics Education Project (R3M), the presence of mathematics 1811 
specialists or leaders were cited as being critical elements of reform (Ferrini-Mundy & 1812 
Johnson, 1996). But the authors caution that the presence of the math specialists in these 1813 
studies is not sufficient to make the argument for mathematics specialists. 1814 

Anecdotal reports addressing the effectiveness of math specialists are more common. 1815 
These include descriptions of the use of math specialists working under the lead-teacher 1816 
model (Campbell, 1996; West & Straub, 2003; Miller, Moon, & Elko, 2000) and the 1817 
specialized-teacher model (Sconiers, 1991). Additional work presents anecdotal evidence 1818 
showing that math specialists working under the lead-teacher model have a positive effect on 1819 
students’ academic achievement, or on their teachers’ beliefs about teaching and learning, or 1820 
on both (Brosnan, 2007; Campbell, 2007; Inge, 2002; Ruehl & Wray, 2006; Virginia 1821 
Mathematics and Science Coalition, 2002; Virginia Legislature, 2006; Wray, 2007). In 1822 
addition, Wu (2007) argues from a curricular perspective that the use of math specialists in 1823 
the specialized-teacher model is a necessity for adequate mathematics instruction in 1824 
elementary school.  1825 
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Given the paucity of evidence that general teacher certification has a positive effect 
on student achievement, it may seem counterintuitive to think that the use of elementary 
mathematics specialists would have positive effects.  It is likely, however, that if the use of 
elementary math specialists is to have a positive effect, it will be because the training of 
specialists develops, in a more focused way, the specialized mathematical knowledge for 
teaching shown to have effects on student achievement. This suggests that policies and 
programs for elementary math specialist need to be developed in tandem with research that 
attempts to uncover those aspects of teacher knowledge and understanding most strongly 
related to student learning. 

a. Costs Associated With Mathematics Specialists 

The costs associated with the employment, training, or certification of math 
specialists can be substantial. 

Funding of employment. One widely held belief is that any commitment made to 
employ a math specialist must be maintained over time, usually for at least five years (Reys 
& Fennell, 2003). The costs quickly escalate when officials try to do so in multiple locations 
across a district or state.28 These financial costs can change dramatically depending upon the 
type of math specialists employed. The lead-teacher model often requires a substantial 
commitment in resources because teachers may have to be reassigned to take on leadership 
roles. On the other hand, the specialized-teacher model may not require the hiring of new 
personnel but rather a redistribution of teaching tasks among existing employees and 
therefore could be less costly than the lead-teacher model (Reys & Fennell, 2003). The pull-
out model may be more expensive than the specialized-teacher model because it requires 
additional teachers who target their instruction only at specific and small groups of students. 
Additionally, the use of the pull-out model may not rule out the need for employing multiple 
math specialists within one school. 

Required training. Math specialists who work under the lead-teacher model may 
need instruction in math content, teaching pedagogy, education policy, organizational 
leadership, adult education, and professional development practices in education. While math 
specialists who work under the specialized-teacher model may not need training in 
organizational leadership, or adult education, or both, they do require the special training in 
mathematics necessary to directly instruct students with special needs (W. Haver, personal 
communication, April 1, 2007; V. Mills, personal communication, May 1, 2007).  

                                                
28 For example, the town of Carlisle, MA, hired one part-time math specialist at the cost of $25,000 a year in 2005 
(The Carlisle School Administration, 2005). If math specialists are placed in every school in any given district, the 
cost quickly escalates. For example, in Delaware, a budget of $2.7 million for the math specialist program would 
provide a specialist for every school containing seventh and eighth grades. The governor of Alabama proposed the 
Math, Science and Technology Program—which provides professional development, equipment, and at-school 
support by math and science specialists to improve math and science instruction—that would allow the program to 
expand to more than 600 schools and serve more than 300,000 students at a cost $33 million. While it is 
impossible to extrapolate any real cost estimates from these figures, they do give a sense of the scale. 
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Training programs vary greatly in quality and length, and although a greater emphasis 
on the study of mathematics is needed to train current elementary teachers to be math 
specialists, simply taking more college-level mathematics courses would not be sufficient. In 
most cases, college-level mathematics courses are generally not well designed for the benefit 
of Grades K–6 teachers (Battista, 1994; Reys & Fennell, 2003). Many training programs do 
not require the completion of a master’s degree, but rely on professional development 
opportunities, often lasting several days or weeks at least and frequently including some 
college-level course work.29 The most rigorous training programs for math specialists require 
the completion of a master’s degree, such as that found in the state of Virginia.30  

Implementation. There are many costs associated with the adoption of any type of 
math specialist position. The scarce supply of qualified candidates available to work as math 
specialists plays a large role in driving up the costs associated with their use (Reys & 
Fennell, 2003). Additionally, other common barriers to the use of math specialists in 
elementary schools have been cited by researchers and practitioners.  

Across most types of math specialists, there is currently little general consensus as to 
the appropriate certification required for employment and few common job descriptions. This 
can be considered a cost of implementation because an agreement on the necessary training and 
responsibilities of a math specialist may aid in the creation of necessary research and public 
policy (W. Haver, personal communication, April 1, 2007; L. Pitt. personal communication, 
May 1, 2007).  

Differences between urban, suburban, and rural schools are so far-reaching and 
substantial that no single definition of the qualifications and responsibilities of math 
specialists can be easily adopted that would be valid across the board (L. Pitt, personal 
communication, May 1, 2007). For example, some rural areas use on-site teacher leaders as a 
means of offering leadership to small but spread-out populations of teachers and some urban 
districts are positioning several math specialists within one school (Campbell, 2007). 

                                                
29 The Alliance for Improvement of Mathematics Skills PreK–16 (AIMS PK-16) is a partnership of nine 
independent school districts in south Texas and two Hispanic-serving institutions of higher education, Del Mar 
(community) College and Texas A&M University-Kingsville. This partnership includes course work or 
organized collaboration with peers or experts in the subject of mathematics but does not lead to a degree from 
any accredited institution of higher or postsecondary education. (Retrieved on 8/13/2007 from 
http://www.delmar.edu/aims/) 
30 Virginia is home to six colleges and universities that offer a master’s degree program for mathematics 
specialists. For example, the Mathematics Education Leadership Program at George Mason University offers a 
33-credit master of education leadership degree with a concentration in math specialist leader (Grades K–8). 
The concentration is a unique 3-year program for persons who desire part-time study to become specialists in 
the teaching and leadership of school mathematics. Students in the program study mathematics content, 
teaching, curriculum, and leadership. 
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b. Mathematics Specialists Internationally 1884 

Eleven nations (Singapore, Belgium (Flemish), Sweden, Japan, China, the Netherlands, 1885 
Latvia, Lithuania, United Kingdom, Hungary, and the Russian Federation) scored above the 1886 
United States in the fourth-grade Trends in Mathematics and Science Study (TIMSS).31 Only 1887 
Singapore, Sweden, and China use math specialists in the specialized-teacher model in Grades 1888 
1 through 6 and the other seven do not; no data could be obtained from the Russian Federation. 1889 
In summary, the utilization of math specialists in countries scoring higher than the United 1890 
States on standardized tests, such as the TIMSS, is not widespread.  1891 

3. Conclusions 1892 

The lack of data precludes any definitive recommendations on the use of mathematics 1893 
specialists. It may be noted, nevertheless, that the specialized-teacher model of math 1894 
specialists is one that comes closest to the original intent of using math specialists: It is the 1895 
least expensive of the three models, and it is the one among the three that seems the most 1896 
realistic in solving the scale problem of overcoming the content-knowledge deficiency 1897 
among elementary teachers. But the absence of data to support its potential effectiveness 1898 
presents a problem in formulating policies for its widespread adoption. It might be a surprise 1899 
that only 3 of the 11 nations that outperform the United States in the fourth-grade TIMSS use 1900 
mathematics specialists. This is, however, difficult to interpret because in contexts where 1901 
teachers’ mathematical preparation is strong, the need for a subset of teachers selected to be 1902 
specialists may be reduced. Still, there are compelling reasons to encourage research to 1903 
examine the effectiveness of the specialized model. In addition, the need for this kind of 1904 
math specialist may be sufficiently compelling so that one may wish to proceed, with 1905 
caution, to create a corps of such specialists. In terms of content knowledge, the criteria that 1906 
should be used for the certification of these specialists remain unknown.  1907 

The lead-teacher model is the most expensive of the three. It is also limited by the 1908 
expectation that it is possible to produce a large number of teachers who not only possess 1909 
superior mathematical knowledge to mentor teachers but also who are superior in 1910 
pedagogical knowledge and organizational skills. Unless there is substantial evidence that 1911 
this model of specialists is effective, any pursuit of this model may be premature at this point. 1912 
To the extent that the pull-out model is not designed to meet the needs of the generic 1913 
classroom, this model is not pertinent to the present considerations. 1914 

                                                
31 Major sections of the research synthesis reported here were prepared by Institute for Defense Analyses 
Science Technology Policy Institute. 
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Executive Summary 

Introduction 

Mathematics teaching is an extraordinarily complex activity involving interactions 
among teachers, students, and the mathematics to be learned in real classrooms (Cohen, 
Raudenbush, & Ball, 2003). It involves making choices about material and tools to use, 
planning ways to group and interact with students of differing backgrounds and with 
differing interests and motivation. It is within this set of areas that some of today’s most 
pressing and debated questions about mathematics instruction are situated. 

 
The Instructional Practices (IP) Task Group needed to consider the challenges that 

this complexity creates while determining what might be learned from research studies on the 
teaching of mathematics. Not all of the questions that teachers, policymakers, and the public 
wish to have answered are easily studied or lend themselves to experimental and quasi-
experimental research, types of research from which generalizations to practice or for policy 
can be made. Moreover, many important questions that could be studied using these methods, 
unfortunately, have not been addressed in these ways. This limits what can validly be said 
about possible effective practices for the teaching of mathematics. The Task Group’s 
undertaking was to marshal the scientific evidence to make policy recommendations and, 
thus, only experimental and quasi-experimental studies could be examined. 

 
This situation is hardly unique to mathematics education, or educational research in 

general. It is—and has been—true in the development of scientific research in any field from 
engineering to economics to clinical psychology to public health. The accumulation of 
findings is slow at first, with the expensive experimental designs employed only after a 
certain amount of knowledge has emerged. Research on teaching and learning is a relatively 
young field. 

 
With these caveats in mind, the overarching question the Task Group approached is: 

What instructional practices enable students to learn mathematics most successfully? 
Fortunately, while the knowledge base is not uniformly deep, there has been some progress at 
assembling evidence about questions of causal impact that has implications for practice and 
for policy within specific areas of mathematics instructional practice.   
 

Therefore, within this general question, the Task Group identified six questions for 
investigation, addressing topics that were deemed important by the field, often including 
issues that have been hotly debated. Questions were identified within all three of the types of 
interactions comprising teaching as indicated in Figure 1; the Task Group recognizes that 
most of the questions here engage all three types of interactions specified in the figure, but 
have classified them according to the types of interactions that seem most salient. 
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Figure ES-1: Instructional Triangle 

 
Source: Adding It Up, National Research Council, 2001, p. 314. 

 
The Task Group realizes that by no means is the list of questions discussed below a 

comprehensive list of questions about each of these three types of interactions; indeed, it only 
begins to scratch the surface about what might be learned to inform mathematics teaching 
practice through research. The Task Group was aware that there are many widely used 
instructional practices that might have been examined here but that were not included 
because of limitations of time, resources, and available research. Nonetheless, it is a list of 
specific issues that will allow the Task Group to draw some conclusions from a small set of 
rigorous research studies, thereby setting the foundation for a far more expansive program of 
rigorous research that would fill the gaps in the research on these issues and also take up the 
many other issues that practitioners face in improving mathematics teaching and learning. 

 
The methodology used in the Instructional Practices Task Group research review 

process, including an account of how the topics were selected, and the criteria for standards 
of evidence, are discussed in the full report introduction and in Appendix A. 

Interactions Between Teachers and Students 

Most contemporary perspectives on instruction argue that finding the best form for 
those interactions is a complex problem that is dependent on teachers’ backgrounds, 
students’ characteristics, school culture, the mathematical topics being addressed, and the 
instructional materials being used. One advantage of rigorous experimental research is that, 
over time, the professional community can discern which practices tend to be effective across 
a broad array of teacher and learning characteristics and a broad array of mathematical 
topics. One major goal of the Task Group’s effort is to critically review the research literature 
for the small body of rigorous experimental studies and to discern patterns of findings that 
suggest specific means for improving instructional practice.   
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It is agreed that there is no single, ideal form in which students and teachers should 
consistently interact. Nonetheless, there are certain “positions” taken by various 
organizations and individuals arguing in favor, or in opposition to, such practices as direct 
instruction, cognitive-strategy instruction, student-centered approaches, cooperative learning, 
discovery learning, guided inquiry, situated cognition approaches, collaborative learning, and 
lecture-recitation.  

 
A less polarizing issue, but one that is of great importance to classroom teachers of 

mathematics, is the challenge of how to best interact with low-achieving students and 
specifically with students having learning disabilities. A major challenge of mathematics 
teaching for teachers is to find the combination of instructional approaches and materials that 
will best meet the needs of the diversity of students in their classrooms.  

 
Research was examined that addresses two basic questions about the forms of teacher 

and student interactions. 
 

How Effective Is Teacher-Directed Instruction in Mathematics in 
Comparison to Student-Centered Approaches, Including Cooperative and 
Collaborative Groups, in Promoting Student Learning? 

A controversial issue in the field of mathematics teaching and learning is whether 
classroom instruction should be more teacher directed or student centered. These terms have 
come to incorporate a wide array of meanings, with teacher directed ranging from highly 
scripted direct instruction approaches to interactive lecture styles, and with student centered 
ranging from students having primary responsibility for their own mathematics learning to 
highly structured cooperative groups. Schools and districts must make choices about 
curricular materials or instructional approaches that often seem more aligned with one 
instructional orientation than another. This leaves teachers wondering about when to organize 
their instruction one way or the other, whether certain topics are taught more effectively with 
one approach or another, and whether certain students benefit more from one approach than 
the other. The review was limited to studies that directly compared these two positions. The 
studies in the review compare an instructional regime in which teachers do more teaching 
(and therefore students less) with one in which students do more teaching and teachers less.  

 
Only eight studies were found that met the Task Group’s standards for quality that were 

consistent with this definition. The studies presented a mixed and inconclusive picture of the 
relative impact of these two forms of instruction. High-quality research does not support the 
contention that instruction should be either entirely “child centered” or “teacher directed.” 
Research indicates that some forms of particular instructional practices can have a positive 
impact under specified conditions. All-encompassing recommendations that instruction should 
be entirely “child centered” or “teacher directed” are not supported by research. The limited 
research base of rigorous research does not support the exclusive use of either approach. 

 
One of the major shifts in education over the past 25–30 years has been advocacy for 

the increased use of cooperative learning groups and peer-to-peer learning (e.g., structured 
activities for students working in pairs) in the teaching and learning of mathematics. 
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Cooperative learning is used for multiple purposes: for tutoring and remediation, as an 
occasional substitute for independent seatwork, for intricate extension or collaborative 
groups has been advocated in various mathematics education reports, policies, and state 
curricular frameworks and instructional guidelines. 

 
Research has been conducted on a variety of cooperative learning approaches. One 

such approach, Team Assisted Individualization (TAI) has been shown to significantly 
improve students’ computation skills. This instructional approach involves heterogeneous 
groups of students helping each other, individualized problems based on student performance 
on a diagnostic test, and rewards based on both group and individual performance. Effects on 
conceptual understanding and problem solving were not significant. There is evidence 
suggesting that working in dyads with a clear structure also improves computation skills in 
the elementary grades. However, additional research is needed. 

 
What Instructional Strategies for Teaching Mathematics to Students  
With Learning Disabilities and to Low-Achieving Students Show the 
Most Promise? 

A major challenge of mathematics teaching for teachers is to find the combination of 
instructional approaches and materials that will best meet the needs of the diversity of 
students in their classrooms. The Task Group chose to examine research that specifically 
looks at issues addressing students who bring a range of diversity to mathematics 
classrooms—those students with learning disabilities and those students who struggle with 
learning mathematics but who do not have a mathematics learning disability. 

 
Obviously this topic has been of high interest for special educators, but increasingly, 

surveys of teachers have indicated that, as increasing numbers of students with learning 
disabilities (LD) receive their mathematics instruction in their regular classroom, strategies 
for teaching these students have become a high priority for all educators. Fortunately, there is 
an appreciable body of research on this topic that meets the standards for rigorous scientific 
research established by this Task Group. 

 
A review of 26 high-quality studies, mostly using randomized control designs, was 

conducted. These studies provide a great deal of guidance concerning some defining features of 
effective instructional approaches for students with LD as well as low-achieving (LA) students.   

 
Explicit systematic instruction typically entails teachers explaining and 

demonstrating specific strategies, and allowing students many opportunities to ask and 
answer questions and to think aloud about the decisions they make while solving problems. 
It also entails careful sequencing of problems by the teacher or through instructional 
materials to highlight critical features. More recent forms of explicit systematic instruction 
have been developed with applications for these students. These developments reflect the 
infusion of research findings from cognitive psychology, with particular emphasis on 
automaticity and enhanced problem representation. 
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This analysis of the body of research indicated that explicit methods of instruction are 
consistently and significantly effective with students with learning disabilities in the 
performance of computations, solving word problems, and solving problems that require the 
application of mathematics to novel situations.  

 
Only a small number of studies were located that investigated the use of visual 

representations or student “think alouds.” Therefore, no inferences about their effectiveness 
can be drawn. The research suggests that they are most useful when they are integrated with 
explicit instruction.  

 
Based on this admittedly small body of research, the Task Group concludes that 

students with learning disabilities and other students with learning problems should receive 
some time on a regular basis with some explicit systematic instruction. There is no reason to 
believe that this type of instruction should comprise all the mathematics instruction these 
students receive. However, it does seem essential for building proficiency in both 
computation and the translation of word problems into appropriate mathematical equations 
and solutions. Some of this time should be dedicated to ensuring that students possess the 
foundational skills and conceptual knowledge necessary for understanding the mathematics 
they are learning at their grade level. 

Interactions Between Students and the  

Mathematics They Are Learning 

In discussions about effective mathematics instruction, there are multiple questions 
about the ways the curriculum, instructional materials, and resources for mathematics 
learning influence student performance in mathematics. The Task Group chose to focus the 
research review on three controversial areas of this domain: a curricular issue concerning 
how the mathematics is presented; an issue about the impact of tools as a means of 
interacting with the mathematics; and a curricular organization issue about the pace and 
nature of the mathematics for gifted students. 

 
Do ‘Real-World’ Problem Approaches to Mathematics Teaching, and 
Efforts to Ensure that Students Can Solve ‘Real-World’ Problems, Lead to 
Better Mathematics Performance Than Other Approaches? 

The importance of addressing this topic as an especially controversial “hot button” 
issue in the field was stressed, both by Task Group members, as well as by members of the 
public in testimony to the Panel. Many textbooks begin each unit with “real-world” problems 
and consider this a potentially motivating approach. Some instructional materials use “real-
world” contexts as a means of introducing mathematical ideas. State and national standards 
typically include as goals students’ ability to apply mathematics to situations that occur in a 
child’s life, or that might occur in future jobs. Consequently, high-stakes assessments such as 
the National Assessment of Educational Progress (NAEP) and many state tests include “real-
world” problems. There are strong perspectives both in support of, and in opposition to, the use 
of “real-world” problems as a means for students to interact with the mathematics they are to 
learn. For these reasons, a serious examination of the research on this topic seemed warranted.  
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The research review focused on two key issues. The first was the extent to which 
problems that authors call “real-world” problems do, in fact, pique students’ interest and 
engage them more fully in exploration of mathematical concepts, with a goal of learning 
mathematics. A related issue is the extent to which use of “real-world” problems in 
instruction increases students’ ability to transfer the mathematical knowledge they possess to 
novel situations. Unfortunately, there is no agreed upon definition of “real-world” problems; 
the terminology is used in very different ways by researchers, teachers, mathematicians, and 
mathematics educators. And, the matter that what is a “real-world” problem to one student 
may not be a “real-world” problem to another is an issue. Conducting research in this area is 
complex; fidelity of the teachers’ implementation of the instructional materials or 
instructional strategy is difficult to assess. Although not addressed in the studies we 
examined, teachers’ knowledge and capacity to use such problems effectively varies greatly. 
Given these caveats, the Task Group addressed the question of whether using “real-world” 
contexts to introduce and teach mathematical topics and procedures is preferable to more 
typical instructional approaches.  

 
The body of high-quality studies for this topic is small. Five studies addressed the 

question of whether the use of “real-world” problems as the instructional approach led to 
improved performance on outcome measures of ability to solve “real-world” problems, as 
well as on more traditional assessments. Four of these were similar enough to combine in a 
meta-analysis. The meta-analysis revealed that if mathematical ideas are taught using “real-
world” contexts, then students’ performance on assessments involving similar problems is 
improved. However, performance on assessments of other aspects of mathematics learning, 
such as computation, simple word problems, and equation solving, is not improved. 

 
For certain populations (upper elementary and middle grade students and remedial 

ninth-graders) and for specific domains of mathematics (fraction computation, basic equation 
solving, and function representation), instruction that features the use of “real-world” 
contexts can have a positive impact on certain types of problem solving. Additional research 
is needed to explore the use of “real-world” problems in other mathematical domains, at 
other grade levels, and with varied definitions of “real-world” problems.  

 
What Is the Relative Impact on Mathematics Learning When Students Use 
Technology Compared to Instruction That Does Not Use Technology? 

There are several types of educational technology that provide opportunities for 
students to interact with mathematics. The review includes focus on computer software, 
calculators, and graphing calculators. 

 
Among the many categories of technology, calculators, including graphing 

calculators, have generated the greatest amount of debate. Some have championed their use 
in developing problem-solving abilities, by allowing students to perform far more, and more 
complex, arithmetic operations than would have been possible without technology. Others 
believe that calculators may reinforce independent skill mastery, or even that they should, 
along with mental arithmetic, replace some of the paper-and-pencil calculations that 
dominate elementary school mathematics. On the other hand, some have bemoaned their 
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misuse. One concern is that calculators may have an insidious effect on paper-and-pencil 
arithmetic and algebraic skills. Some are concerned that reliance on calculators can preclude 
the development of proficiency with standard calculation algorithms and thus deprive 
students of an understanding and appreciation of the mathematics that underlies the standard 
algorithms, as well as ability to quickly retrieve basic arithmetic facts.  

 
A review of 11 studies that met the Task Group’s rigorous criteria (only one study 

was less than 20 years old) found limited to no impact of calculators on calculation skills, 
problem solving, or conceptual development over periods of up to one year. Unfortunately, 
these studies cannot be used to judge the advantages or disadvantages of multiyear calculator 
use beginning in the early years because such long-term use has not been adequately 
investigated. The Task Group cautions that to the degree that calculators impede the 
development of automaticity, fluency in computation will be adversely affected. 

 
The Task Group found that computer-assisted instruction (CAI) drill and practice, if 

of high quality, can improve students’ performance compared to conventional instruction. 
Drill and practice programs can be useful tools in developing students’ automaticity, or fast, 
accurate, and effortless performance on computation, freeing working memory so that 
attention can be directed to the more complicated aspects of complex tasks. 

 
Research has demonstrated that tutorials (CAI programs, often combined with drill and 

practice) that are well designed and implemented can have a positive impact on mathematics 
performance. CAI tutorials have been used effectively to introduce and teach new subject-
matter content. However, these studies also suggest several important caveats. Care must be 
taken that there is evidence that the software to be used has been shown to increase learning in 
the specific domain and with students who are similar to those who are under consideration. 
Educators should critically inspect individual software packages and studies that evaluate them 
critically. Furthermore, support conditions to use the software effectively (sufficient hardware 
and software; technical support; adequate professional development, planning, and curriculum 
integration), should be in place, especially in large-scale implementations, to achieve optimal 
results. 

 
Research indicates that computer programming improves students’ performance 

compared to conventional instruction on both mathematics achievement in general and on 
problem solving. However, computer programming by students can be employed in a wide 
variety of situations using distinct pedagogies, not all of which may be effective (e.g., 
integration into the mathematics curriculum may be required for substantial effects). Therefore, 
the findings are limited to the careful, targeted application of computer programming for 
learning used in the studies reviewed.  
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What Instructional Arrangements for Engaging with Mathematics Are 
Most Promising for Mathematically Gifted Students? 

Zimmer, Christina, Hamilton, and Weber Prine (2006) noted that, in a recent survey of 
teachers implementing the No Child Left Behind Act (NCLB), over half the teachers surveyed 
felt that implementation of the law resulted in improved learning opportunities for low-
performing students, but that teachers and administrators at all levels of schooling worried 
about high-achieving students receiving adequate instructional challenge in all curricular areas. 
This review of the research literature explored the immediate and delayed impacts of gifted 
education approaches aimed at accelerating students’ mathematics instruction (e.g., by 
covering two, or even four years of high school mathematics in 15 months) and those that 
attempt to provide enrichment or extension activities for mathematically precocious students. 
This question is addressed in the category of student-mathematics interactions because it is 
very much about the pace and structure for engaging gifted students with mathematics content. 

 

The Task Group’s review of the literature about the kind of mathematics instruction 
would be most effective for gifted students focused on the impact of programs involving 
acceleration, enrichment, and the use of homogeneous grouping. The extensive literature 
searches we conducted yielded few studies that met the Task Group’s methodologically 
rigorous criteria for inclusion. Thus for this topic—and this topic only—we relaxed these 
criteria in order to fulfill our charge of evaluating the “best available scientific evidence.” 
One randomized control trial study and seven quasi-experimental studies were located. All 
but one of these studies have limitations. 

 
Despite the flaws in any one study, the set of studies suggests there is value to 

differentiating the mathematics curriculum for students who are gifted in mathematics and 
possess sufficient motivation, especially when acceleration is a component (i.e., pace and 
level of instruction are adjusted). A small number of studies suggest that individualized 
instruction, where the pace of learning is increased and often managed via computer 
instruction, produces gains in learning. 

 
Gifted students who are accelerated by other means not only gained time and reached 

educational milestones earlier (e.g., college entrance) but appear to achieve at levels at least 
comparable to those of their equally able same-age peers on a variety of indicators even 
though they were younger when demonstrating their performance on the various achievement 
benchmarks. One study suggests that gifted students also appear to become more strongly 
engaged in science, technology, engineering, or mathematical areas of study.  

 
Some support also was found for supplemental enrichment programs. Of the two 

programs analyzed, one explicitly utilized acceleration as a program component and the other 
did not. This supports the view in the field of gifted education that acceleration and 
enrichment combined should be the intervention of choice. We believe it is important for 
school policies to support appropriately challenging work in mathematics for gifted and 
talented students.  
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Interactions Between Teachers and Mathematics 

Teachers engage with the mathematical content that they teach in various aspects of 
teaching practice: in planning and designing lessons, in interpreting and responding to 
student questions, and in the work of assessing their students’ mathematical knowledge. 
Fortunately, formative assessment is an area of great contemporary interest and is also an 
area with a rich set of rigorous experimental field studies.  

 
What Is the Impact of Use of Formative Assessment in 
Mathematics Teaching? 

Educators at all levels realize the importance of assessing their students’ progress during 
the year. Formative assessment—the ongoing monitoring of student learning to inform 
instruction—is generally considered a hallmark of effective instruction in any discipline. Interest 
in formative assessment has dramatically increased since No Child Left Behind required states 
to establish accountability systems. Teachers’ interpretation and use of the data available to 
them from instructionally embedded, in-class assessments in the context of teaching, along with 
high-stakes assessments are critical for improving outcomes for all students. However, many 
different systems have been established and touted for use as formative assessments. These 
range from the end-of-unit and mastery tests that accompany major commercial textbook series, 
to more contingent and informal probes of students’ understandings to be used while they solve 
problems, to weekly tests that sample from the year’s instructional objectives in mathematics. 
The Task Group examined rigorous experimental studies of the impact of teachers’ use of 
formative assessment on students’ growth in mathematics proficiency. The Task Group’s 
review of the high-quality studies of this topic produced several conclusions. 

  
Teachers’ regular use of formative assessment is marginally significant in improving 

their students’ learning. This is especially true if teachers have additional guidance on using 
the assessment to design and individualize instruction.  

 
Although the research base is smaller, and less consistent than that on the general 

effectiveness of formative assessment, the research suggests that several specific tools and 
strategies can help teachers use formative assessment information more effectively. The first 
promising strategy is providing formative assessment information to teachers (via technology) 
on content and concepts that require additional work with the whole class. The second 
promising strategy involves using technology to specify activities needed by individual 
students. Both of these aids can be implemented via tutoring, computer-assisted instruction, or 
help provided by a professional (teacher, mathematics specialist, trained paraprofessional).  

 
The Task Group cautions that only one type of formative assessment has been studied 

with rigorous experimentation. These are assessments that include random sampling of items 
that address state standards. These assessments tend to take between 2 and 8 minutes to 
administer and thus are practical for regular use.  
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The regular use of formative assessment particularly for students in the elementary 
grades is recommended. These assessments need to provide information not only on their 
content validity but also on their reliability and their criterion-related validity (i.e., 
correlation of these measures with other measures of mathematics proficiency). For 
struggling students, frequent (e.g., weekly or biweekly) use of these assessments appears 
optimal, so that instruction can be adapted based on student progress. 

 
Research is needed regarding the content and criterion-related validity and reliability 

of other types of formative assessments (such as unit mastery tests included with many 
published mathematics programs, performance assessments, and dynamic assessments 
involving “think alouds”). This research should include studies of consequential validity (i.e., 
the impact they have on helping teachers improve the effectiveness of their instruction). 

 
Use of formative assessments in mathematics can lead to increased precision in how 

instructional time is used in class and can assist teachers in identifying specific instructional 
needs. Formative measures provide guidance as to the specific topics needed for assistance. 
Formative assessment should be an integral component of instructional practice in mathematics. 

Conclusion 

Mathematics instruction is a complex professional practice. The educational research 
community has made important forays into several of the most controversial and pressing 
questions about the effectiveness and impact of various types of instructional practice, and in 
particular have conducted some studies that examine the effects of various interpretations and 
implementations of practices that have been advocated in the “reform” documents in 
mathematics education over the past two decades.  

 
The question asked by the Task Group is: What can be learned from a review of the 

best available evidence in six important aspects of practice? These practices included: the 
use of “real-world” problems in mathematics teaching, the use of technology, the enrichment 
and acceleration of instruction for mathematically precocious students, the use of cooperative 
groups and peer instruction, the use of direct instruction with learning disabled students, and 
the use of formative assessment. 

 
For none of the areas examined did the Task Group find sufficiently strong and 

comprehensive bodies of research to support all-inclusive policy recommendations of any 
of the practices addressed. Nor did the Task Group find sufficient evidence to support 
policy recommendations favoring the status quo in mathematics teaching.   

 
Across all of the areas, the Task Group found that several instructional practices in 

mathematics teaching show some promise, in comparison to typical practice, for 
affecting student learning. In each case the “promising” practice is clearly specified, 
somewhat prescriptive, and involves a mix, or combination, of particular distinct practices. 
Thus, for example, it cannot be said that cooperative learning is a practice whose 
effectiveness is supported by research—but the Team Assisted Individualization (TAI) 
approach, with particular students in a particular area of mathematics does appear to be 
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effective. Although formative assessment to inform instruction is useful, it is enhanced when 
teachers use assessment tools with known validity and reliability. For students performing in 
the lower third of grade level expectations, explicit instruction using clear models of 
proficient performance, many opportunities to verbalize their problem-solving strategies, and 
adequate practice and review should be a part of the mathematics program. It is not 
surprising that what the Task Group found about effective instructional practice is far more 
subtle and nuanced than direct answers to the starkly stated questions investigated.   

 
The Task Group found some rather robust findings, but these findings must be 

accompanied by a caveat. When a practice is demonstrated by high-quality experimental 
research to have some promise, it is critical to be clear about the promise “for what aspects of 
mathematics proficiency.” Different practices and approaches impact different kinds of 
outcomes, ranging from computational performance, to “real-world” problem solving, to 
identifying extraneous problem information, to long-term participation and interest in 
studying mathematics.  

 
Because researchers and practitioners use different definitions to describe their 

interventions, it is conceptually problematic to place too much stock in generalizing that a 
broad category of practice (e.g., using technology or using “real-world” problems) has 
impact because a set of studies working on the same particular component of this category 
has impact, which was the case in some of the Task Group’s reviews.  

 
The Task Group’s process included asking mathematicians and mathematics 

education reviewers to examine the mathematical content of the research studies—to look at 
the assessments and interventions, to the extent possible, based on the published reports. 
They expressed important concerns, including the possibility that an outcome measure item 
purported to measure computation might not do so because it really measures ability to use 
the context, for instance. They expressed concern that some topics were underdeveloped (i.e., 
failed to help students access the underlying mathematics in the topic covered), or that items 
were mislabeled (e.g., as “problem solving”) when the mathematics expert might classify 
them otherwise. However, they also did note that several of the studies reviewed seemed to 
help students increase their knowledge of mathematics and how to apply that knowledge to 
novel situations in a way that is valid from a mathematical perspective.  

 
Seeing how few robust findings emanated from a review of the rigorous research on 

the topics addressed, it is clear that most practitioners would like more guidance for several 
areas of instruction. Yet even the inconclusive and limited findings can provide a real service 
to the profession. If an administrator, a developer or a parent comments, “Research says that 
lessons must start with ‘real-world’ problems,” or “Students will really learn mathematics 
only if they are taught using direct instruction,” consumers and professionals now know that 
research is inconclusive on these topics.  

 
This is a necessary step in the evolution of educational research into a more mature 

science. The paucity of findings and the paucity of high-quality experimental research in the 
field led the Task Group to realize, early on in the process, that few definitive answers to the 
research questions posed would be found.  
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What Would the Instructional Practices Task Group  

Say to the Practitioner?   

There is no one ideal approach to teaching mathematics; the students, the 
mathematical goals, the teacher’s background and strengths, and the instructional context, all 
matter. The findings here do suggest that it is especially important to: 

 
• monitor what students understand and are able to do mathematically;  
• design instruction that responds to students’ strengths and weaknesses based on 

research when it is available; and 
• employ instructional approaches and tools that are best suited to the mathematical 

goals, recognizing that a deliberate and conscious mix of strategies will be needed. 
 
Also, it is important for teachers, school administrators, and the public to understand 

the importance of helping to formulate research questions and being willing to participate in 
the types of experimental and quasi-experimental studies that are described here.  

What Would the Instructional Practices Task Group  

Say to the Researcher? 

More research that can identify causal claims is needed to guide both policy and practice. 
Building the mathematics education research portfolio to include this work will involve: 

 
• Formulation of research questions that are of interest to practitioners and policy-

makers; 
• Collaborations among mathematicians, mathematics education researchers, 

methodologists, and psychometricians; and 
• Motivation to design and undertake rigorous studies. 

 
The work of this Task Group has substantiated understanding of the complexity and 

challenge of effective mathematics instruction. It is now up to practitioners, policymakers, 
mathematicians, and mathematics education researchers to take up the challenges of 
clarifying the definitions of mathematics instructional practices, debunking myths about 
mathematics instruction, and formulating the types of research studies that can answer the 
pressing questions that need to be addressed. 

 
In conclusion, instructional practice should be informed by high-quality research, 

when available, and by the best professional judgment and experience of accomplished 
classroom teachers.  
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I. Introduction 

A. Instructional Practices 

Mathematics teaching is an extraordinarily complex activity involving interactions 
among teachers, students, and the mathematics to be learned in real classrooms (Cohen, 
Raudenbush, & Ball, 2003). It involves making choices about material and tools to use, 
planning ways to group and interact with students of differing backgrounds and with 
differing interests and motivation. It is within this set of areas that some of today’s most 
pressing and debated questions about mathematics instruction are situated. 

 
The Instructional Practices Task Group needed to consider the challenges that this 

complexity creates while determining what might be learned from research studies on the 
teaching of mathematics. Not all of the questions that teachers, policymakers, and the public 
wish to have answered are easily studied or lend themselves to experimental and quasi-
experimental research, types of research from which generalizations to practice or for policy 
can be made. Moreover, many important questions that could be studied using these methods, 
unfortunately, have not been addressed in these ways. This limits what can validly be said 
about possible effective practices for the teaching of mathematics. The Task Group’s 
undertaking was to marshal the scientific evidence to make policy recommendations and, 
thus, only experimental and quasi-experimental studies were examined.  

 
This situation is hardly unique to mathematics education or educational research in 

general. It is—and has been—true in the development of scientific research in any field from 
engineering to economics to clinical psychology to public health. The accumulation of findings 
is slow at first, with the expensive experimental designs employed only after a certain amount 
of knowledge has emerged. Research on teaching and learning is a relatively young field. 

 
With these caveats in mind, the overarching question the Task Group approached is: 

What instructional practices enable students to learn mathematics most successfully? 
Fortunately, while the knowledge base is not uniformly deep, there has been some progress at 
assembling evidence about questions of causal impact that has implications for practice and 
for policy within specific areas of mathematics instructional practice.   

 
Therefore, within this general question, the Task Group identified six questions for 

investigation, addressing topics that were deemed important by the field often including 
issues that have been hotly debated. Questions were identified within all three of the types of 
interactions comprising teaching as indicated in Figure 1; the Task Group recognizes that 
most of its questions here engage all three types of interactions specified in the figure, but 
have classified them according to the types of interactions that seem most salient. 
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Figure 1: Instructional Triangle 

 
Source: Adding It Up, National Research Council, 2001, p. 314. 

 
The Task Group realizes that by no means is the list of questions discussed below a 

comprehensive list of questions about each of these three types of interactions; indeed, it only 
begins to scratch the surface about what might be learned to inform mathematics teaching 
practice through research. The Task Group was aware that there are many widely used 
instructional practices that might have been examined here but that were not included 
because of limitations of time, resources, and available research. Nonetheless, it is a list of 
specific issues that will allow the Task Group to draw some conclusions from a small set of 
rigorous research studies, thereby setting the foundation for a far more expansive program of 
rigorous research that would fill the gaps in the research on these issues and also take up the 
many other issues that practitioners face in improving mathematics teaching and learning. 

 
1. Notes About Methodology and Reporting 

The methodology used in the Instructional Practices Task Group research review 
process, including an account of how the topics were selected, and the criteria for standards of 
evidence, are included in Appendix A. For ease in reading this report key points are 
summarized here. The studies used in the meta-analyses and syntheses that follow were 
designated as either Category 1 or 2. Category 1 studies are experimental and quasi-
experimental studies that meet or meet with reservations the What Works Clearinghouse 
(WWC) standards. Studies in this category provide evidence of causal claims and include 
randomized control trials (RCTs) and strong quasi-experimental studies. Some exceptions to 
the WWC criteria were allowed; these are described in Appendix A. Category 2 consisted of 
weak group comparison studies (e.g., failed RCTs and weak nonequivalent comparison 
designs; other flaws discussed in Appendix A). Category 2 studies are always open to multiple 
interpretations with regard to causal inferences; however, they are not necessarily weak studies 
for other purposes such as description. If there were no acceptable experimental studies, 
sections of the report may include brief discussion of Category 2 studies. If there is a pattern of 
findings across the studies this may also be mentioned. Panelists were free to use any type of 
research (descriptive, correlational, qualitative) to set the context for the meta-analyses.  
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For all studies that met the criteria for inclusion, the What Works Clearinghouse 
guidelines were used to calculate standardized mean differences in mathematics achievement. 
Hedges’ g standardized mean differences were calculated for each of the studies. In cases in 
which schools, teachers, or classrooms were assigned (either randomly or nonrandomly) into 
intervention and comparison groups and the unit of assignment was not the same as the unit of 
analysis, the effect size and accompanying standard error were adjusted for clustering within 
schools, teachers, or classrooms. When judged appropriate, effect sizes were pooled across 
studies meta-analytically using random effects models. Specifically, weighted mean effect 
sizes were computed using inverse variance weights to reflect the statistical precision of the 
respective studies stemming from both the subject-level and study-level sampling error. 

 
Multiple contrasts: For each study that included at least three conditions, effect sizes 

were calculated for all relevant contrasts, provided that they were orthogonal.  When pooling 
the effects using meta-analytic techniques, only independent effect sizes per study were 
included, i.e., those not based on the same participant samples.  

 
Multiple outcomes: For studies that reported effects on more than one mathematics 

achievement outcome, either one outcome was chosen, or the results from multiple outcomes 
were averaged, with decisions made by the authors on a case-by-case basis. Assessments that 
were overly aligned with an intervention were either not used or noted when used. 

 
Multiple independent samples within a study: In cases in which impacts on 

independent samples within a study were reported, all independent effect sizes were included 
separately in the pooled analysis.   

 
Throughout this report, effect sizes are reported as statistically significant only when 

p < .01. Effect sizes where p < .10 are described as “bordering on significance”. This report 
conforms with the National Math Advisory Panel (Panel) Guidelines for Standards of 
Evidence in using the following terminology: strong evidence, moderately strong evidence, 
suggestive evidence, inconsistent evidence, and weak evidence. 

 
2. Interactions Between Teachers and Students 

Most contemporary perspectives on instruction argue that finding the best form for 
those interactions is a complex problem that is dependent on teachers’ backgrounds, 
students’ characteristics, school culture, the mathematical topics being addressed, and the 
instructional materials being used. One advantage of rigorous experimental research is that, 
over time, the professional community can discern which practices tend to be effective across 
a broad array of teacher and learning characteristics and a broad array of mathematical 
topics. One major goal of the Task Group’s effort was to critically review the research 
literature for the small body of rigorous experimental studies and to discern patterns of 
findings that suggest specific means for improving instructional practice.  

 
It is agreed that there is no single, ideal form in which students and teachers should 

consistently interact. Nonetheless, there are certain “positions” taken by various 
organizations and individuals arguing in favor of, or in opposition to, such practices as direct 
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instruction, cognitive-strategy instruction, student-centered approaches, cooperative learning, 
discovery learning, guided inquiry, situated cognition approaches, collaborative learning, and 
lecture-recitation.  

 
A less polarizing issue, but one that is of great importance to classroom teachers of 

mathematics, is the challenge of how to best interact with low-achieving students and 
specifically with students having learning disabilities. A major challenge of mathematics 
teaching for teachers is to find the combination of instructional approaches and materials that 
will best meet the needs of the diversity of students in their classrooms. Research was examined 
that addresses two basic questions about the forms of teacher and student interactions. 

 
a. How Effective Is Teacher-Directed Instruction in Mathematics in Comparison to 

Student-Centered Approaches, Including Cooperative and Collaborative Groups, in 

Promoting Student Learning? 

A controversial issue in the field of mathematics teaching and learning is whether 
classroom instruction should be more teacher-directed or student-centered. These terms have 
come to incorporate a wide array of meanings, with teacher-directed ranging from highly 
scripted direct instruction approaches to interactive lecture styles, and with student-centered 
ranging from students having primary responsibility for their own mathematics learning to 
highly structured cooperative groups. Schools and districts must make choices about 
curricular materials or instructional approaches that often seem more aligned with one 
instructional orientation than another. This leaves teachers wondering about when to organize 
their instruction one way or the other, whether certain topics are taught more effectively with 
one approach or another, and whether certain students benefit more from one approach than 
the other. The review was limited to studies that directly compared these two positions. The 
studies in the review compare an instructional regime in which teachers do more teaching 
(and therefore students less) with one in which students do more teaching and teachers less.   

 
One of the major shifts in education over the past 25–30 years has been advocacy for 

the increased use of cooperative learning groups and peer-to-peer learning (e.g., structured 
activities for students working in pairs) in the teaching and learning of mathematics. 
Cooperative learning is used for multiple purposes: for tutoring and remediation, as an 
occasional substitute for independent seatwork, for intricate extension activities, for initial 
brainstorming and for numerous other purposes. Use of cooperative or collaborative groups 
has been advocated in various mathematics education reports, policies, and state curricular 
frameworks and instructional guidelines. 

 
Provided in a subsequent section of the report is a synthesis of the research that met 

Task Group criteria on the topic of teacher-directed vs. student-centered learning. The section 
includes a review of studies that compare general versions of teacher-directed and student-
centered mathematics instruction in accordance with the Task Group’s definition. There are 
only a limited number of sufficiently rigorous research studies making this comparison, 
within this definition. There is also a review of studies that examine various forms of 
cooperative and collaborative groups, including such specific approaches as Team Assisted 
Instruction and Peer Assisted Learning, as well as the use of cooperative groups with 
technology, and other approaches. 
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b. What Instructional Strategies for Teaching Mathematics to Students with Learning 

Disabilities and to Low-Achieving Students Show the Most Promise? 

A major challenge of mathematics teaching for teachers is to find the combination of 
instructional approaches and materials that will best meet the needs of the diversity of 
students in their classrooms. The Task Group chose to examine research that specifically 
looks at issues addressing students who bring a range of diversity to mathematics 
classrooms—those students with learning disabilities (LD) and those students who struggle 
with learning mathematics but who do not have a mathematics learning disability. 

 
Obviously this topic has been of high interest for special educators, but increasingly, 

surveys of teachers have indicated that, as increasing numbers of students with LD receive 
their mathematics instruction in their regular classroom, strategies for teaching these students 
has become a high priority for all educators. Fortunately, there is an appreciable body of 
research on this topic that meets the standards for rigorous scientific research established by 
this Task Group.  

 
3. Interactions Between Students and the Mathematics They Are Learning 

In discussions about effective mathematics instruction, there are multiple questions 
about the ways the curriculum, instructional materials, and resources for mathematics 
learning influence student performance in mathematics. The Task Group chose to focus the 
research review on three controversial areas of this domain: a curricular issue concerning 
how the mathematics is presented; an issue about the impact of tools as a means of 
interacting with the mathematics; and a curricular organization issue about the pace and 
nature of the mathematics for gifted students. 

 
a. Do ‘Real-World’ Problem Approaches to Mathematics Teaching and Efforts to 

Ensure That Students Can Solve ‘Real-World’ Problems Lead to Better Mathematics 

Performance Than Other Approaches? 

The importance of addressing this topic as an especially controversial “hot button” 
issue in the field was stressed, in particular, by Task Group members, as well as by members 
of the public testifying before the Panel. Many textbooks begin each unit with “real-world” 
problems and consider this a potentially motivating approach. Some instructional materials 
use “real-world” problems as a means of introducing mathematical ideas. State and national 
standards typically include as goals students’ ability to apply mathematics to situations that 
occur in a child’s life or that might occur in future jobs. Consequently high-stakes 
assessments such as the National Assessment of Educational Progress (NAEP) and many 
state tests include “real-world” problems. There are strong perspectives both in support of, 
and in opposition to, the use of “real-world” problems as a means for students to interact with 
the mathematics they are to learn. For these reasons, a serious examination of the research on 
this topic seemed warranted.  
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The research review focused on two key issues. The first was the extent to which 
problems that authors call “real-world” problems do, in fact, pique students’ interest and 
engage them more fully in exploring mathematical concepts with a goal of learning 
mathematics. A related issue is the extent to which “real-world” problems increase students’ 
ability to transfer the mathematical knowledge they possess to novel situations. Unfortunately, 
there is no agreed upon definition of “real-world” problems; the terminology is used in very 
different ways by researchers, teachers, mathematicians, and mathematics educators.  

 
b. What Is the Relative Impact on Mathematics Learning When Students Use Technology 

Compared to Instruction that Does Not Use Technology? 

There are several types of educational technology that provide opportunities for 
students to interact with mathematics. The review includes focus on computer software and 
calculators, including graphing calculators. 

 
Among the many categories of technology, calculators, including graphing 

calculators, have generated the greatest amount of debate. Some have championed their use 
in developing problem-solving ability by allowing students to perform far more, and more 
complex, arithmetic operations than would have been possible without technology. Others 
believe that calculators may reinforce independent skill mastery, or even that they should, 
along with mental arithmetic, replace some of the paper-and-pencil calculations that 
dominate elementary school mathematics. On the other hand, some have bemoaned their 
misuse. One concern is that calculators may have an insidious effect on paper-and-pencil 
arithmetic and algebraic skills. Some are concerned that reliance on calculators can preclude 
the development of proficiency with standard calculation algorithms and thus deprive 
students of an understanding and appreciation of the mathematics that underlies the standard 
algorithms, as well as ability to quickly retrieve basic arithmetic facts.  

 
c. What Instructional Arrangements for Engaging with Mathematics Are Most Promising 

for Mathematically Gifted Students? 

Zimmer, Christina, Hamilton, and Weber Prine (2006) noted that, in a recent survey of 
teachers implementing the No Child Left Behind Act, more than half the teachers surveyed felt 
that implementation of the law resulted in improved learning opportunities for low-performing 
students but that teachers and administrators at all levels of schooling worried about high- 
achieving students receiving adequate instructional challenge in all curricular areas. This 
review of the research literature explored the immediate and delayed impacts of gifted 
education approaches aimed at accelerating students’ mathematics instruction (e.g., by 
covering 2, or even 4 years of high school mathematics in 15 months) and those that attempt to 
provide enrichment or extension activities for mathematically precocious students. This 
question is addressed in the category of student-mathematics interactions because it is very 
much about the pace and structure for engaging gifted students with mathematics content. 
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4. Interactions Between Teachers and Mathematics 

Teachers engage with the mathematical content that they teach in various aspects of 
teaching practice: in planning and designing lessons, in interpreting and responding to 
student questions, and in the work of assessing their students’ mathematical knowledge. 
Fortunately, formative assessment is an area of great contemporary interest and is also an 
area with a rich set of rigorous experimental field studies.  

 
a. What Is the Impact of Use of Formative Assessment in Mathematics Teaching? 

Educators at all levels realize the importance of assessing their students’ progress 
during the year (i.e., formative assessment). Interest in formative assessment has dramatically 
increased since No Child Left Behind required states to establish accountability systems. 
Teachers’ interpretation and use of the data available to them from instructionally embedded, 
in-class assessment in the context of teaching, along with high-stakes assessments are critical 
for improving outcomes for all students. However, many different systems have been 
established and touted for use as formative assessments. These range from the end-of-unit 
and mastery tests that accompany major commercial textbook series, to more contingent and 
informal probes of students’ understandings to be used while they solve problems, to weekly 
tests that sample from the year’s instructional objectives in mathematics. The Task Group 
examined rigorous experimental studies of the impact of teachers’ use of formative 
assessment on students’ growth in mathematics proficiency.  
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II. Teacher-Directed and  
Student-Centered Instruction in Mathematics 

The Task Group, in its initial activity of formulating key flashpoint questions about 
mathematics instruction, identified the question, “Is teacher-directed instruction more 
effective than student-centered instruction?” as one needing particular attention because of 
pressures faced by teachers being urged to use one or the other of these styles exclusively.  

 
The terms “teacher-directed instruction” and “student-centered instruction” are 

sometimes used as labels to stake out starkly contrasting views in discussions about 
mathematics teaching. In their purest forms, these labels convey images of instruction that are 
in some sense polar opposites. For some, these terms convey differences of perspective about 
whether the goals of teachers or the needs of students should have primacy in determining what 
specific mathematics teaching interventions will be used in the mathematics classroom. Some 
have interpreted “student-centered” instruction to mean that students, rather than teachers, 
control the direction and content of the mathematical discussion, or that students are expected 
to somehow learn all mathematics on their own, by teaching one another. “Teacher directed” 
instruction has been interpreted in similarly extreme ways, to mean that teachers are not 
responsive to, or aware of, students’ learning issues, and instead dispense mathematics 
instruction in a way that is disconnected from the learners. The distinction has been 
summarized by some with the ubiquitous “sage on the stage rather than a guide on the side” 
maxim. The idea of the “guide on the side” is often associated with intentions of mathematics 
education reforms in the past two decades concerning the role of the teacher. 

 
The National Research Council (NRC) report Adding It Up acknowledges the 

challenge of such labels in discussing teaching: “Much debate centers on forms and 
approaches to teaching: ‘direct instruction’ versus ‘inquiry,’ ‘teacher-centered’ versus 
‘student-centered,’ ‘traditional’ versus ‘reform.’ These labels make rhetorical distinctions 
that often miss the point regarding the quality of instruction. The quality of instruction is a 
function of teachers’ knowledge and use of mathematical content, teachers’ attention to and 
handling of students, and students’ engagement in and use of mathematical tasks.” (2001, 
p. 315). This section undertakes a circumscribed treatment of what have perhaps become 
positions that have hardened into ideologies that rarely offer pragmatic guidance to teachers 
on how they should teach.   

A. Literature Review 

The caricatures of teacher-directed and student-centered instruction that have 
sometimes emerged in debates on this subject are not validated in the versions of teacher-
directed and student-centered instruction that were examined in the studies reviewed. Indeed, 
teacher-directed instruction involves assessment and careful attention to student progress—
students were very much involved in the versions of teacher-directed instruction described in 
these studies. And, teachers have a key role in the versions of student-centered instruction 
described here as well—they choose tasks, direct discussion, and work toward mathematical 
goals. The Task Group found no examples of studies in which students were teaching 
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themselves or each other without any teacher guidance; nor did the Task Group find studies 
in which teachers conveyed mathematics content directly to students without any attention to 
their understanding or response. The fact that these terms, in practice, are neither clearly nor 
uniformly defined, nor are they true opposites, complicates the challenge of providing a 
review and synthesis of the literature.   

 
The literature review presented below will not end the debate over student-centered and 

teacher-centered instruction. Instead, it offers a summary of what is currently known about 
effective instructional practices in mathematics as they relate to teacher-directed or student-
centered approaches, drawing on an exhaustive search based on terms that have been used in 
the literature to describe both teacher-directed and student-centered instructional approaches. 
Using the search terms provided in Appendix B, only studies of how instruction influences 
mathematics achievement were included. Studies of how instructional approaches affect 
students’ motivation, social skills, attitudes toward mathematics, or other noncognitive 
outcomes were not reviewed. The search found 40 randomized experiments or quasi-
experiments that were determined to have a rigorous design and to be relevant to the topic.  

 
Blanket statements endorsing a philosophy of mathematics education will not be 

found. Even when examining high-quality studies, considering context is crucial to properly 
interpreting results. In other words, some approaches may be shown to be effective, but 
confidence in their effectiveness is only warranted under specified conditions. Factors such 
as the age of students, the mathematical content that is taught, the duration of the 
instructional program, the preparation of the teachers, and the outcomes that are sought must 
be taken into account. 

 
Consequently, this literature review comes with a warning. Educators should be leery 

of sweeping claims that “best practices” in mathematics instruction are known and supported 
by research. Most efforts to promote any single all-encompassing style of instruction, to the 
exclusion of any others, are based on beliefs, not science, and much of the research cited to 
promulgate those beliefs does not meet minimal standards of quality. A body of high-quality 
research simply does not exist to answer such broad questions as whether teacher-directed or 
student-centered instruction should be dominant in teaching mathematics. 

 
1. What Is Meant by Teacher-Directed Instructional Strategies? 

Interpretations of teacher-directed instructional strategies gleaned from the literature vary 
widely. Common to most is the notion that the teacher has complete control of the instruction. 
Perhaps the best-known instantiation of teacher-directed instructional strategies as conceptualized 
in the late 1960s and 1970s was in the context of Project Follow Through, and was called Direct 
Instruction (Gersten & Carnine, 1984). Project Follow Through, a part of President Lyndon 
Johnson’s War on Poverty in 1967, has been reported to be the largest and most expensive 
federally funded experiment in education ever conducted (Becker, 1977; Gersten et al., 1984). 
There were 17 distinct instructional models represented in the Follow Through evaluation 
(Stebbins, St. Pierre, Proper, Anderson, & Cerva, 1977, p. 2; see also Stallings, 1975, and 
Stallings & Kaskowitz, 1974), and Direct Instruction was one of these models.  
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Direct Instruction was a behaviorally oriented educational program using a tightly 
controlled teaching methodology and highly structured instructional materials. The 
instruction was programmed, emphasizing children’s learning of intelligent behavior through 
programmed questions and answers provided in a fast-paced fashion. “Teachers present 
specified questions.… Proper responses are reinforced and incorrect answers are corrected 
according to specified procedures” (Stebbins et al., 1977, p. 65). 

 
According to Kameenui, Carnine, Darch, and Stein (1986), the model of Direct 

Instruction, as described by Gersten and Carnine (1984) “employs clearly articulated 
teaching sequences that contain explicit, step-by-step teacher modeling and a means of 
assessing student mastery at each step of development” (p. 635). Meyer, Gersten, and Gutkin 
(1983) describe the component of the “Direct Instruction Model:” “a) consistent focus on 
academic objectives; b) high allocations of time to small-group instruction in reading, 
language, and math; c) the tight, carefully sequenced Distar curriculum; … e) a 
comprehensive system for monitoring both the rate at which students progress through the 
curriculum and their mastery of the material covered” (p. 243). 

 
In work of the same period, Good and colleagues described and studied what they 

termed “active mathematics teaching” (see Good & Grouws, 1977, 1979; Good, Grouws, & 
Ebmeier, 1983). Guidelines for instruction in this program indicate a highly structured and 
prescribed instructional sequence, including: daily review, development, seatwork, as well as 
homework assignments and special reviews. The development sequence includes 
explanations, demonstrations, and illustrations, as well as repetition and elaboration (Brophy 
& Good, 1986, p. 348). Kameenui et al. (1986) provide details about what the development 
component of active mathematics teaching involves: “The direct approach to development 
views the teacher as one who controls the instructional goals and pace, chooses the 
appropriate materials, and provides immediate and academically oriented feedback to the 
learner.” And, in this same vein, work by Slavin (1980) has examined “focused instruction,” 
which involves a “highly structured schedule of teaching, worksheet work, and quizzes.” (As 
described in Beady, Slavin, & Fennessey, 1981, p. 519).   

 
More recently, reform documents of the past two decades have argued against teacher-

directed instruction, not the same very specific, programmed kind of direct instruction of the 
1960s and 1970s but rather a more general type of instruction in which the teacher is the 
primary authority. For instance, the National Council of Teachers of Mathematics Curriculum 
and Evaluation Standards for School Mathematics notes: “In many classrooms, learning is 
conceived of as a process in which students passively absorb information, storing it in easily 
retrievable fragments as a result of repeated practice and reinforcement” (National Council of 
Teachers of Mathematics, 1989, p. 10). It is contrasted with an instructional style that 
emphasizes a “constructive, active view of the learning processes” (p. 10)—which is not 
exactly aligned with the student-centered view of the 1960s and 1970s. 

 
In summary, the hallmarks of teacher-directed instructional strategies include clearly 

prescribed instructional sequences, consistent focus on content objectives, emphasis on 
explanation, assessment and correction of errors, feedback to students and assignments and 
review, in which the teacher is doing all of these things. In addition, teacher-directed 
instruction can be manifested in the way the classroom is organized, and is often associated 
with whole group instruction. Most important is that the teacher is doing the teaching. 
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For the purpose of this review, “teacher-directed” instruction is viewed as 
instruction in which primarily the teacher is communicating the mathematics to the 
students directly and in which the majority of interactions about the mathematics are 
between the teacher and the student. 

 
2. What Is Encompassed in “Student-Centered” Approaches to 
Mathematics Instruction? 

More than a century ago John Dewey urged educators to consider the notion of what 
some have called “child-centered” education: “The teacher is not in the school to impose 
certain ideas or to form certain habits in the child, but is there as a member of the community 
to select the influences which shall affect the child and to assist him in properly responding 
to these influences” (Dewey, 1897, pp. 77–80).   

 
The emphasis on the centrality of the student in education has been interpreted in 

various ways in mathematics education over several decades, most recently in the standards 
reform movement of the late 1980s and subsequent extensions. Common to most of these 
interpretations is the notion that the students’ experience, motivation, interest, and knowledge 
needs to be a central consideration in the teachers’ design and implementation of instruction. In 
addition, the focus on teachers’ relationships with students is sometimes central. In recent years, 
numerous policies and programs have promoted a student-centered emphasis, invoking various 
theories of learning. Constructivism is one of these theories. See Cobb (2007) for a discussion of 
the ways in which theoretical and philosophical perspectives influence mathematics education. 

 
At least three of the Project Follow Through instructional strategies can be classified as 

student-centered. The Tucson Early Education Model (TEEM) was “based on the concept that 
each child has a unique growth pattern with individual rates and styles of learning” (Stebbins et 
al., 1977, p. 41). TEEM took as a premise that formal learning should have as its basis the 
experiences young children bring to the classroom. “Some classroom activities are selected and 
structured by the teacher, and others are chosen by the children” (p. 41). The second model, the 
Cognitively Oriented Curriculum model, was a Piagetian developmental model focused on 
developing children’s ability to reason. The goals included helping children sustain 
independent activity, define and solve problems, assume responsibility for decisions and 
actions, and work cooperatively (p. 2, p. 89). And, the Education Development Center (EDC) 
Open Education approach, with its roots in the philosophy of the British Infant Schools and the 
developmental theories of Piaget, provided children with a wide range of materials for learning. 

 
Another clearly defined approach to student-centered instruction was developed by 

Flanders and his colleagues, based on the Flanders Interaction Analysis Categories (FIAC) 
(see Flanders, 1970; discussed in Brophy and Good, 1986). According to Brophy and Good, 
“Flanders believed that there was too much teacher talk and not enough student talk in most 
classrooms, so that teachers should be more ‘indirect’” (p. 333). This style of instruction 
involved examining pupil attitudes and emphasized “asking questions, accepting and 
clarifying ideas or feelings, and praising or encouraging as indirect techniques” (p. 333). The 
student-centered interventions of this time period, often aimed at primary and early 
elementary age children, featured elements of free choice and developmental readiness. 
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Lampert (1990) has compared school mathematics with knowledge in the discipline 
of mathematics, noting that “few teachers engage students in a public analysis of the 
assumptions that they make to get their answers” (p. 32). She summarizes the assumptions of 
reform documents  (National Research Council, 1989; National Council of Teachers of 
Mathematics, 1989) as follows: “Reform documents recommend that mathematics students 
should be making conjectures, abstracting mathematical properties, explaining their 
reasoning, validating their assertions, and discussing and questioning their own thinking and 
the thinking of others” (p. 33). This might be viewed as a description of a “student-centered” 
approach, although of course such approaches could be in place in a teacher-directed 
classroom as well. Socratic teaching methods, for example, feature teacher-directed 
dialogues between teachers and students. Close questioning requires students to justify 
thinking out loud and to explain the logic behind their arguments and conclusions. 

 
In the National Research Council report How People Learn (National Research 

Council, 2000), the term “learner centered” is used to: 
 
…refer to environments that pay careful attention to the knowledge, skills, 
attitudes, and beliefs that learners bring to the educational setting. The term 
includes teaching practices that have been ‘culturally responsive,’ ‘culturally 
appropriate,’ ‘culturally compatible,’ and ‘culturally relevant’ (Ladson-
Billings, 1995). The term also fits with ‘diagnostic teaching’ (Bell et al., 
1980): attempting to discover what the student is thinking in relation to the 
problems on hand, discussing their misconceptions sensitively, and giving 
them situations to go on thinking about which will enable them to readjust 
their ideas (Bell, 1982). Teachers who are learner centered recognize 
building on the conceptual and cultural knowledge that students bring with 
them to the classroom (pp. 133–134). 

 
To be sure, some depictions of student-centered instruction emphasize a passive role 

for teachers. The Bureau of Labor Statistics, for example, in its Occupational Outlook 
Handbook describes the job of teaching as follows: 

 
Teachers act as facilitators or coaches, using classroom presentations or 
individual instruction to help students learn and apply concepts in subjects 
such as science, mathematics, or English. They plan, evaluate, and assign 
lessons; prepare, administer, and grade tests; listen to oral presentations; and 
maintain classroom discipline. Teachers observe and evaluate a student’s 
performance and potential and increasingly are asked to use new assessment 
methods. For example, teachers may examine a portfolio of a student’s 
artwork or writing in order to judge the student’s overall progress. They then 
can provide additional assistance in areas in which a student needs help. 
Teachers also grade papers, prepare report cards, and meet with parents and 
school staff to discuss a student’s academic progress or personal problems. 
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Many teachers use a ‘hands-on’ approach that uses ‘props’ or ‘manipulatives’ 
to help children understand abstract concepts, solve problems, and develop 
critical thought processes. For example, they teach the concepts of numbers or 
of addition and subtraction by playing board games. As the children get older, 
teachers use more sophisticated materials, such as science apparatus, 
cameras, or computers. They also encourage collaboration in solving 
problems by having students work in groups to discuss and solve problems 
together. To be prepared for success later in life, students must be able to 
interact with others, adapt to new technology, and think through problems 
logically (U.S. Department of Labor, Bureau of Labor Statistics, 2008). 
 
In summary, the elements of student-centered mathematics instruction as described in 

contemporary treatments include emphasis on student responsibility and independence; 
acknowledgment of students’ experiences, prior knowledge, and interests and motivations in 
the design of mathematics instruction; and the centrality of students’ thinking and students 
teaching other students in the classroom. Teachers facilitate, encourage, and coach but do not 
explicitly instruct by showing and explaining how things work.  

 

For the purposes of this review, “student-centered” instruction is viewed as 
instruction in which primarily students are doing the teaching of the mathematics and 
that the majority of the interactions about the mathematics occurs between and 
among students. 

 
The vague and often overlapping ways in which “teacher-directed” and “student-

centered” are used in the literature, not to mention in contemporary discourse, present 
challenges for any attempt to summarize research on the topic. A major source of the 
ambiguity stems from the use of these adjectives to modify several different nouns. As 
illustrated in the citations above, by their very nature nouns such as “education,” 
“environments,” “practices,” or “learning” comprise a collection of activities. The Task 
Group chose to focus on one element—instruction—and to search for studies that contrast 
who is doing the teaching—teachers or students? The contrast never exists in an absolute 
sense, of course, but in degree. All of the studies in our review compare an instructional 
regime in which teachers do more teaching (and therefore students less) with one in which 
students do more teaching and teachers less.   

 
This focus was chosen because teachers told the Panel that they understand the 

expectations of administrators in their districts are that they teach exclusively in teacher-
directed ways, essentially as it has been defined here. And, other teachers have said that their 
administrators are critical unless they are teaching in student-centered ways, again as it has 
been defined here. Thus, this review was undertaken to highlight these distinctions in ways that 
will hopefully help policymakers and teachers to engage in practice that is evidence based. 
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In accordance with the definitions of teacher directed and student centered being 
used, the focus is on the nature of the mathematics instruction (literally the interactions 
between the teachers and the students about mathematics). Not included are studies in which 
the nature of the curriculum (the materials for learning) might be construed as more or less 
teacher-directed or student-centered. Note that most current interpretations of what it means 
to be teacher-directed or student-centered conflate issues of instruction and curriculum. For 
example, the use of practice worksheets (a curricular device) might be associated with a 
teacher-directed approach but indeed could be highly student-centered in its design. 

 
Within the review, a number of studies were found that directly compare a form of 

teacher-directed instruction to a form of student-centered instruction. These studies are 
discussed in the first section. Later sections address studies that have looked at student-
centered classroom organizational approaches of cooperative groups and peer-tutoring 
approaches.  

 
Methodological considerations specific to this section can be found in Appendix A. 
 

3. Comparisons of Student-Centered and Teacher-Directed Approaches to 
Instruction 

Research Studies. Eight studies meeting the criteria to be considered Category 1 
studies were located that compared student-centered and teacher-directed approaches to 
instruction (see Table 1). The pattern of effects is quite complex. It is not possible to 
undertake a meta-analysis of these studies because the interventions are all of such distinct 
types, according to the above categorization, that pooling effect sizes is not meaningful. The 
specific interventions studied in the Project Follow Through evaluation study (Stebbins et al., 
1977) are treated in a separate section. 
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Table 1: Studies That Investigated the Effects of Teacher-Directed and Student-
Centered Instruction on Mathematics Achievement 

Study Design Sample Duration/Content Contrast Measure Subgroup 
Hedge’s 

g 
Standard 

error 

Pooled problem 
solving outcomes: 
word problem solving 
(ES = 0.110), function 
word problem (ES = 
0.393), and equation 
solving (ES= -0.281) 
measures 

Overall 0.074 (ns) 0.399 

Brenner et al., 
1997a RCT 

128 students in six 
intact pre-algebra 
classes in three 
junior high 
schools in 
southern 
California 

20 days/ Meaningful 
thematic contexts 
used in pre-algebra 
concepts 

Guided 
discovery 
approach vs. 
Traditional 
textbook 

Pooled representation 
outcomes: function 
word problems (ES = 
0.877*) and word 
problems (ES = 0.623) 

Overall 0.750 ~ 0.403 

Low 
ability -0.614 (ns) 0.569 

Medium 
ability 0.156 (ns) 0.311 Ciccelli, 1982 RCT 64 fifth-grade 

students 

40 minutes per day 
for 9 days/ 
Probability and 
graphing 

Direct vs. 
Nondirect 
instruction 

Math achievement test 

High 
ability -0.374 (ns) 0.535 

Schema 
broadening 
instruction vs. 
Control 

Pooled transfer 
measures Overall 0.545 (ns) 0.439 

Fuchs et al., 
2006c RCT 

445 third-grade 
students in 30 
classrooms in 
seven schools in 
an urban district 

16 weeks/ 
Mathematical 
problem solving 
strategies 

Schema 
broadening 
instruction-real 
life vs. Control 

Pooled transfer 
measures Overall 1.077 * 0.464 

Boys 0.155 (ns) 0.345 Hopkins et al., 
1997 Quasi 

34 third-grade and 
40 fifth-grade 
students 

1 30-minute session/ 
Arithmetic 

Didactic vs. 
Constructivist 
approach 

Arithmetic 
computation test Girls 1.142 *** 0.327 

Kameenui et al., 
1986 – Study 3 RCT 24 fourth-grade 

students  
11 daily 35-minute 
sessions/ Division 

Direct 
Instruction 
(Project Follow 
Through) vs. 
Control 

Math achievement test Overall 0.444 (ns) 0.399 

Pooled near transfer 
outcomes 
(classifications: ES =  
-0.006, sequence: ES =  
-0.346, comparison: 
ES = -0.383) 

Overall -0.245 (ns) 0.276 

Muthukrishna & 
Borkowski, 
1995 

RCT 54 third-grade 
students 

14 consecutive class 
days/ Addition and 
subtraction word 
problems 

Guided 
discovery 
approach vs. 
Direct strategy 
instruction Pooled far transfer 

outcomes (form: 
ES =0.576*, context: 
ES =0.380) 

Overall 0.478 ~ 0.278 

Continued on p. 6-19 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-19 

Table 1, continued 
Study Design Sample Duration/Content Contrast Measure Subgroup Hedge’s 

g 
Standard 

error 
Procedural learning 
test Overall -0.272 (ns) 0.301 

Procedural transfer 
test Overall -0.125 (ns) 0.300 

Discovery 
learning and 
prompts to 
explain vs. 
Direct 
instruction and 
prompts to 
explain  

Conceptual 
knowledge test Overall -0.458 (ns) 0.304 

Procedural learning 
test Overall -0.719 * 0.313 

Procedural transfer 
test Overall -0.085 (ns) 0.303 

Rittle-
Johnson, 2006 RCT 

85 third- through fifth-
grade students in an 
urban parochial school 

1 40-minute session/ 
Mathematical 
equivalence 

Discovery 
learning and 
no prompts vs. 
Direct 
instruction and 
no prompts 

Conceptual 
knowledge test Overall 0.050 (ns) 0.303 

3rd-grade 
females -0.073 (ns) 0.428 

3rd-grade 
males 0.392 (ns) 0.429 

4th-grade 
females -0.138 (ns) 0.431 

Rudnitsky et 
al., 1995a RCT 

401 third- and fourth-
grade students in 21 
classrooms in six 
schools 

18 days/ Addition  
and subtraction word 
problems 

Writing and 
discussion vs. 
Practice and 
explicit 
heuristics 

Near transfer 
posttest 

4th-grade 
males 0.462 (ns) 0.417 

Project Follow Through Evaluation  

Stebbins 
et al., 1977—
Direct 
Instruction 
Modelb 

Quasi 

316 Project Follow 
Through and 317 Non-
Project Follow 
Through students 
enrolled in program 
from kindergarten 
through third grade in 
five districts (New 
York, NY; Grand 
Rapids, MI; W. Iron 
Co., MI; Flint, MI; and 
Providence, RI) 

Kindergarten through 
3rd grade/ General 
elementary school 
mathematics 
curriculum 

Direct 
Instruction 
Follow 
Through vs. 
Non-Follow 
Through 

Overall 
Metropolitan 
Achievement Test 
(MAT) outcome: 
computations (ES = 
0.315*), concepts 
(ES = -0.064), and 
problem solving 
(ES = 0.017) 
measures 

Overall 0.105 (ns) 0.142 

Stebbins 
et al., 1977—
Cognitive 
Curriculum 
Modelb 

Quasi 

177 Project Follow 
Through and 337 Non-
Project Follow 
Through students 
enrolled in program 
from kindergarten 
through third grade in 
five districts (New 
York, NY; Okaloosa 
Co., FL; Greeley, CO; 
Seattle, WA; and 
Chicago, IL) 

Kindergarten through 
3rd grade/ General 
elementary school 
mathematics 
curriculum 

Cognitively 
Oriented 
Curriculum 
Follow 
Through vs. 
Non-Follow 
Through 

Overall 
Metropolitan 
Achievement Test 
(MAT) outcome: 
computations (ES = 
-0.318~), concepts 
(ES = -0.355*), and 
problem solving 
(ES = -0.295~) 
measures 

Overall -0.357 * 0.167 

Stebbins 
et al., 1977—
EDC Open 
Education 
Modelb 

Quasi 

248 Project Follow 
Through and 487 Non-
Project Follow Through 
students enrolled in 
program from 
kindergarten through 
third grade in five 
districts (Philadelphia, 
PA; Burlington, VT; 
Lackawanna Co., PA; 
Morgan Comm. Sch., 
DC; and Paterson, NJ) 

Kindergarten through 
3rd grade/ General 
elementary school 
mathematics 
curriculum 

EDC Open 
Education 
Follow 
Through vs. 
Non-Follow 
Through 

Overall 
Metropolitan 
Achievement Test 
(MAT) outcome: 
computations (ES = 
0.052), concepts 
(ES = -0.081), and 
problem solving 
(ES = -0.073) 
measures 

Overall -0.037 (ns) 0.140 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c These studies use classroom-level analyses. 
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The studies that produced significant effect sizes in contrasts comparing teacher-
directed to student-centered instruction will be discussed. Hopkins, McGillicuddy-De Lisi, 
and De Lisi (1997) investigated different ways of teaching third- and fifth-grade students 
how to compute with whole numbers and fractions. The experiment consisted of a single 
30-minute session in which students were taught individually. The researchers were 
interested in determining if didactic or constructivist instruction, in this case instruction 
emphasizing particular mathematical practices, benefits girls and boys differentially when 
learning mathematical computation. Two groups of children—matched on a pretest of 
computation skills, grade, and gender—were formed at third and fifth grades. In a single 30-
minute session, conducted with individual students, students were taught how to solve six 
computation problems involving addition, subtraction, multiplication, and division with 
whole numbers and fractions. Whole number operations included multiplying three digit by 
three digit numbers and the items with fractions included addition and subtraction of mixed 
numbers without a common denominator. One group was instructed using a didactic 
approach in which the mathematical practices of algorithms, rules, and solution methods 
were explicitly taught. A constructivist teaching strategy was used with the other group. In 
that setting, teachers suggested alternative mathematical practices, including ways to 
organize tasks, recasting children’s comments with tag questions requesting clarification, and 
providing demonstrations that guided students to discover solutions. Both groups were then 
post-tested on computation. No effect was found for boys, but girls in the didactic 
instructional groups made statistically significant gains over girls who received constructivist 
teaching (ES = 1.142). The gains for girls were apparent at both grade levels.  

 
The literature search uncovered two high-quality studies that found evidence of far 

transfer, under very limited conditions. Both studies investigated how to teach problem 
solving strategies, and both studies found guided discovery (a particular interpretation of 
student-centered instruction) more effective than direct instruction methods. Muthukrishna 
and Borkowski (1995) conducted an experiment consisting of 14 lessons teaching third 
graders the number family (or part-whole) strategy for solving word problems with addition 
and subtraction.  The strategy involves a part-whole schema in which one larger quantity 
(known or unknown) is thought of as a whole comprising two smaller quantities (known or 
unknown) that are parts.  For example, a student who knows that 1 + 5 = 6 can conceptualize 
6 as a whole made up of 1 and 5 as parts, with two subtraction facts, 6 - 1 = 5 and 6 - 5 = 1, 
derived from the addition fact.  Students were taught that the unknown in a word problem 
involving addition and subtraction is either a whole or a part. Students were randomly 
assigned to four conditions for instruction: direct strategy teaching, guided discovery, a 
combination of direct teaching and guided discovery, and a control condition. The number 
family schema was not taught to the control group, and students in the control condition 
primarily received instruction from their regular classroom teacher. The other groups were 
instructed by the experimenter and an assistant.  A typical guided discovery lesson consisted 
of 20 minutes working in pairs followed by whole class discussion of students’ solutions. 
Students in the guided discovery group worked with a variety of manipulative materials and 
did not engage in individual paper and pencil activities. The post-test consisted of addition 
and subtraction word problems assessing both near and far transfer of skills.   
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Additional aspects of the study may be of use in interpreting the results. Although a 
14-day period is relatively brief for studying instructional methods, it is a long time to teach a 
single problem solving strategy to third-graders. Note also that the skill emphasized here—
using the number family strategy—was used to solve mathematics problems that are typically 
far below the grade level of the students in the study. Students who had mastered solving the 
problem types used in the study were excluded, as were students who lacked the basic skills 
to solve addition and subtraction word problems not requiring regrouping or carrying.  

 
Calculation of effect sizes on the near transfer outcomes, contrasting the discovery 

group and the direct instruction group, revealed no significant effect sizes. On the far transfer 
problems, the guided discovery group outperformed the direct strategy teaching group on the 
test for form transfer (problems of a different form than those in instruction) with a 
significant effect size (ES = 0.576). There was no significant effect on the test for context 
(problems presented in a context different from what had been used in instruction) when 
contrasting the same two groups. Nonetheless, the pooled effect size on the far transfer 
measures approached significance (ES = 0.478), favoring the guided discovery group.  

 
A study by a team of researchers at the University of California at Santa Barbara 

(Brenner et al., 1997) investigated middle school pre-algebra students who were learning 
how to represent function problems in multiple formats. Problem representation involves 
constructing and using mathematical representations in words, graphs, tables, and equations, 
a difficult task particularly for many students making the transition from arithmetic to 
algebra. In pre-algebra textbooks, function word problems are typically represented by 
equations, tables consisting of ordered pairs, and graphs. 

 
The intervention consisted of a 20-day instructional unit taught to 128 seventh- and 

eighth-graders in three schools. Three teachers each had two pre-algebra classes; one class 
was randomly assigned to the treatment and the other to the control condition. Students in 
the treatment groups worked in heterogeneous groups and used manipulative materials. 
Teachers used a guided discovery approach in which students were encouraged “to explore 
different representations and to develop their own understanding of each one” (Brenner et 
al., p. 668). In the control groups, students were taught with textbooks and teachers used 
traditional direct instructional methods.  

 
Results were mixed. Five outcomes were tested in the study: word problem solving, 

function word problems, equation solving, function representation, and word problem 
representation. One effect size reached statistical significance. Students in the student-centered 
strategies groups were better able, at a significant level, to represent function problems in 
multiple ways (ES = 0.877). The subtest of the assessment instrument measuring this outcome 
awarded two points per item. For example, students were given the problem: “Mary Wong just 
got a job working as a clerk in a candy store. She already has $42. She will earn $7 per hour. 
How many hours will she have to work to have a total of $126?” (Brenner et al., p. 671). For 
the subtest for representation, students received one point for drawing a diagram, chart, table, 
or graph to represent the problem and one for writing the correct equation in the form of y = 
mx + b. Having the correct answer had no bearing on the score for the representation subtest. 
The effect size on the word problem representation outcome measure (ES = 0.623) did not 
reach statistical significance, and the pooled far transfer outcomes (using the two representation 
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outcome measures) bordered on statistical significance (ES = 0.750). On the subtests reflecting 
ability to find problem solutions correctly, effect sizes were not significant, but favored the 
guided discovery group with effect size 0.393 on function word problem outcome, and the 
traditional textbook group (ES = -0.281) on equation solving measures.   

 
In a 2006 paper, Rittle-Johnson reported on a comparison of teacher-directed 

instruction and student-centered instruction. In the comparison of the discovery learning and 
direct instruction conditions without prompts, there was a significant effect size favoring the 
direct instruction condition on the procedural learning test. 

 
Her formulation of teacher-directed is based in information-processing and cognitive 

theories about working memory capacity, while her view of student-centered instruction 
draws on Piaget and current reformers who emphasize the importance of discovery learning. 
In this study of third through fifth grade students, children were assigned randomly to one of 
four conditions, based on two factors: “direct instruction versus discovery learning” and 
prompts for self-explanation vs. no prompts. Self-explanation is “generating explanations for 
oneself” (Rittle-Johnson, 2006, p. 1). The mathematical focus was on equivalence—the ideas 
that equations represent balance and that the same quantity is on both sides. Rittle-Johnson 
points out the importance of this idea as a precursor to algebra.   

 
Assessments involved a pretest on mathematical equivalence problems, a posttest given 

immediately after the intervention, and then delayed posttest. The intervention was done in a 
single session, in which students worked one-on-one with a researcher in a 40-minute session. 
Children solved problems, reported on their solution strategies, and were provided with 
feedback. In the direct instruction condition students were told explicitly how to solve the 
problems. In the student-centered condition no instruction was given, and children were asked 
to “think of a new way to solve the problem.” Prompts for doing self-explanation were 
introduced in the two groups in that condition. The posttests measured procedural learning, 
procedural transfer, and conceptual understanding. Comparison of the discovery learning and 
prompts group to the direct instruction with prompts group yielded nonsignificant but negative 
(i.e., favoring the direct instruction group) results on all three outcome measures (note ES =  
-0.272 and -0.458 on the procedural and conceptual tests, respectively).   

 
Four additional studies involved comparisons, in some form, of teacher-directed and 

student-centered strategies, in which no significant effect sizes were found.  The studies by 
Cicchelli (1982) and Kameenui et al. (1986) introduced a direct instruction-type treatment and 
compared to more student-centered instruction. The Rudnitsky et al. (1995) and Fuchs et al. 
(2006) studies both implemented clearly specified student-centered instruction and compared 
to more of a “business as usual” condition. Effect sizes in Kameenui et al., while non-
significant (ES = 0.444) favored the direct instruction condition. In the Ciccelli study, the effect 
favored the nondirect instruction condition for low and high ability students (ES = -0.614 and  
-0.374, respectively) and the direct instruction group for medium ability students (ES = 0.156).   

 
Because this set of studies differs in terms of the nature of the intervention, pooled 

effect sizes have not been calculated. In summary, note that there is no conclusive evidence 
from this set of studies to support either a teacher-directed or student-centered approach to 
mathematics instruction. 
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4. Project Follow Through Evaluation Studies 

Three relevant models of the extensive National Longitudinal Evaluation of Project 
Follow Through (Stebbins et al., 1977) were located that met the criteria for inclusion. At 
that point in history, the evaluation of Project Follow Through (FT) was the largest and most 
expensive evaluation of any intervention conducted in education or any of the social 
sciences. Follow Through’s evaluation involved longitudinal quasi-experiments conducted 
with kindergarteners through third-graders in low-income schools across the country. The 
outcome measures testing mathematical achievement were the computations, concepts, and 
problem solving subtests of the Metropolitan Achievement Test. The three Follow Through 
models included in this report that tested teacher-directed or student-centered instruction and 
had equivalent groups at baseline were Direct Instruction, Cognitively Oriented Curriculum, 
and EDC Open Education. Results are reported in Table 1. 

 
Direct Instruction “use(d) a fast moving series of programmed … (i.e., scripted) ... 

questions and answers … teachers present specified questions to elicit a verbal child 
response. Proper responses are reinforced and wrong answers are corrected according to 
specified procedures” (Stebbins et al., 1977, p. 65). Programmed instruction materials are 
used, and students work in small homogeneous groups; frequent criterion-referenced tests are 
provided. The Task Group considers this to be a teacher-directed intervention. 

 
The EDC Open Education approach states, “Children learn at individual rates and in 

individual ways…” (Stebbins et al., 1977, p. 113). The approach has its roots in British infant 
schools and in the developmental theories of Piaget. The instruction occurs in an open setting 
and children are provided with a wide range of materials for learning. This is a student-
centered model. The Cognitively Oriented Curriculum model, also a developmental model, 
was aimed at “developing children’s ability to reason.” The curriculum is based on the use of 
learning centers in which “children choose their activities and work with teachers in small 
groups” (Stebbins et al., p. 89). This too is a student-centered intervention. 

 
Concurrent with the impact evaluation, Stallings (1975), conducted an extensive 

observational study of the activities in the Follow Through classrooms and their 
corresponding control group (i.e., business as usual) classrooms. Using a complex, reliable 
observational system, they were able to predict which classrooms were FT and which were 
control, and to discriminate between each example (FT) and control classroom with over 
80% accuracy. They consistently found significant differences between each FT approach 
and its control condition, and between the various FT models. 

 
When Stallings (1975) compared the Direct Instruction approach with “non Follow 

Through” instruction, which would have been a version of “business as usual” at the time 
they were essentially comparing a highly structured, teacher-directed intervention (based on 
principles of instructional design and concept development derived from learning theory and 
applied behavior analysis, to say nothing of the genius of Englemann) with a more general 
type of teacher-directed instruction.  
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The 1977 project evaluation (Stebbins et al., 1977) found significant effect sizes 
favoring Direct Instruction on the Computation subtest only (ES = 0.315). No other effect 
sizes were significant, nor was the overall effect on the Metropolitan Achievement Test 
Mathematics composite significant.   

 
Another Project Follow Through model study compared the Cognitively Oriented 

Curriculum to a non-Follow Through business as usual condition. The effect size on the 
Concepts subtest was significant (-0.355), and the effect sizes on the Computation and 
Problem Solving measures were marginally significant (ES = -0.318 and ES = -0.295). Note 
that all effect sizes were negative, favoring the teacher-directed control condition. The final 
study in this group involved a comparison of the Open Education program to a business-as-
usual control condition. There were no significant effect sizes.    

 
No pooling was done of these studies.  
  

5. Conclusion 

The studies produced a mix of significant effect sizes favoring student-centered 
instruction, and others favoring teacher-directed instruction, together with findings of no 
significant effects. As a result, the research does not lead to any conclusive result about the 
value of student-centered instructional strategies in comparison to teacher-directed 
instructional strategies. Under some conditions, with some groups of students, and for some 
kinds of outcomes, an isolated study may find that either teacher-directed or student-centered 
strategies are preferable. In general the evidence does not provide a case for favoring or 
promoting either strategy over the other. The Task Group points out that in only one of the 
studies reviewed is “teacher-directed” instruction the experimental treatment. 

B. Cooperative Learning and Peer Tutoring 

Cooperative learning strategies offer students an opportunity to learn from and with 
other students. However, the means by which cooperative learning plays out in classrooms 
varies along many dimensions. For instance, tasks assigned in cooperative learning groups 
range from practice on teacher-taught skills to learning methods of problem solving. Students 
can be grouped homogeneously or heterogeneously by ability. Students may be assigned 
specific roles within a cooperative group or they may decide for themselves how to 
accomplish a group task. Group and individual accountability operate differently in different 
cooperative learning settings. Slavin (1991) describe a cooperative learning strategy as when 
groups work to earn some type of recognition or award based on the individual learning of 
every group member. Group members’ individual learning is measured by success on 
assignments, quizzes, and tests. Students are motivated to help each other learn so that 
individual achievement increases and, as a result, the group receives awards or recognition. 
Cooperative learning may include individual accountability or group reward structures. 

 
Good, Mulryan, and McCaslin (1992) conclude that small-group instructional 

approaches are supported by research that indicated students need to be more active. 
“[Research] suggests that students are too passive and need to become more involved 
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intellectually in classroom activities” (p. 167). They go on to note, “Many writers interpret 
recent cognitive science research as suggesting the need for less teacher support and for more 
learner independence (see Nickerson, 1988), [although] what this means in practice is far from 
clear. For example, does heavy reliance on more talented peers mean less dependency on the 
teacher? Do different skills and concepts require different amounts of expert modeling and 
coaching so that simple statements about appropriate practice are highly misleading?” (p. 167).   

 
A number of studies compare cooperative grouping strategies to more traditional 

whole-class instruction, or in some cases, to individual practice that is part of teacher-
directed instruction. Our review is organized by the following categories: studies of very 
specific approaches to cooperative learning [Team Assisted Individualization (TAI), Student 
Teams-Achievement Division (STAD), Peer Assisted Learning (PALS)]; studies of other 
collaborative learning strategies; combination strategies involving cooperative or 
collaborative learning; and cooperative learning approaches in the context of technology.   

 
Note that our search of the literature and analyses are not concerned with affective 

outcomes, only on measures of mathematics achievement.  
 

1. Specific Approaches to Cooperative Learning Team Assisted 
Individualization (TAI) 

This strategy combines individualization with cooperative work. In TAI, students are 
grouped in heterogeneous teams of four or five persons. Each student receives a set of 
mathematics problems tailored to individual performance on a diagnostic test. Students help 
each other when needed and check each others’ work. Rewards are based on group performance 
on assignments, quizzes, and tests. Tests at the end of the unit are taken individually. 

 
Six studies, described within four separate papers, met our criteria for review and 

examined the effect of TAI on some type of mathematical outcome. The pooled effect size 
for computation outcomes on student-level analyses was significant (ES = 0.377), favoring 
the TAI condition. Slavin, Leavey, and Madden (1984) report on two studies with elementary 
school students focused on computation with decimals and fractions, and with word 
problems. In one randomized controlled trial (RCT) study, TAI was contrasted with whole-
class lectures and group-paced instruction. The second study, a quasi-experiment, involved 
fourth- through sixth-graders, with the same type of control condition. A third study (Slavin, 
Leavey, & Madden, 1984), involving 1,371 students in Grades 3 to 5, again compared TAI 
with whole class lectures. The fourth paper in this set (Xin, 1999) involved third-grade 
students in an RCT focusing on arithmetic topics including basic fact families, calculation, 
coins, and place value. A large number of mainstreamed special education students (14%) 
were involved. The TAI treatment was coupled with a CAI component; the control condition 
was whole class instruction coupled with the same CAI. 

 
All of these studies allowed for student-level analyses to examine effect sizes on an 

outcome measure of computation, the California Test of Basic Skills-Computations (CTBS) 
for the Slavin studies, and the Stanford Achievement Test-Math for the Xin study. Five 
contrasts were examined—the three in the Slavin et al. studies, and results for two groups in 
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the Xin study (regular education, and LD students). No effect sizes were significant 
separately, except for the significant effect size of 0.595 comparing TAI with computer-
assisted instruction (CAI) in the Xin study to students in the regular education group.  

 
Two additional studies, both RCTs, are reported in Slavin and Karweit (1985). One 

worked with students in Grades 4 through 6, the other with third- through fifth-graders, using 
TAI over a period of 18 and 16 weeks. The mathematics topics were decimal and fraction 
arithmetic, introduction to algebra, and word problems. The control conditions were the 
Missouri Mathematics Program (a form of teacher-directed instruction) and a business as 
usual control condition. Classroom-level effects (ES = 0.709, 0.562) on computation 
outcomes were significant and favored the TAI intervention on computation scores. In three 
of these studies a concept outcomes measure was also included. Slavin et al. (1984b) and 
Slavin & Karweit (1985)—Studies 1 and 2 included outcomes on the CTBS-Concepts test. 
Three contrasts were computed, all proving to be nonsignificant; the pooled effect size of the 
classroom-level analyses (0.018) also was nonsignificant. 

 
The studies are summarized in Tables 2a and 2b. It can be concluded that the 

implementation of TAI for students in Grades 3 through 6, in comparison to a form of whole 
class instruction, benefits computation skills. Note that this finding applies only to the very 
particular cooperative group strategy of TAI and only to computation, not concepts or 
problem solving. 

 
2. Student Teams-Achievement Division (STAD)  

This form of cooperative learning developed by Slavin and colleagues, involves four-
to-five member homogeneous teams studying together after teacher presentation. Individual 
quizzes are taken and rewards are at the team level.  

 
Four studies of STAD, all randomized controlled experiments, met our criteria for 

review. They are summarized in Table 3. No significant effect sizes were produced in this set, 
although all effect sizes were positive, favoring the STAD intervention. Jacobs (1996) examined 
the performance of third- through fifth-graders, content not specified, in a STAD condition and 
then in an individual student accountability condition, and produced non-significant effects 
favoring STAD of 0.573, 0.484, and 0.454, for third-, fourth-, and fifth-graders respectively. 
STAD did not provide any particular advantage to student participants in comparison with more 
teacher-directed classroom strategies as implemented in these four studies.   

 
3. Peer Tutoring Approaches 

The studies in this section examine the impact of a small group instruction approach 
that features peers learning from and with their peers, in variations of peer-tutoring. One 
particular version, Peer-Assisted Learning Strategies (PALS) (http://kc.vanderbilt.edu/pals/), 
“is a version of classwide peer tutoring. Teachers identify which children require help on 
specific skills and [whom] the most appropriate children are to help other children learn those 
skills. Using this information, teachers pair students in the class, so that partners work 
simultaneously and productively on different activities that address the problems they are 
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experiencing. Pairs are changed regularly, and over a period of time as students work on a 
variety of skills, all students have the opportunity to be ‘coaches’ and ‘players’.” 
(http://kc.vanderbilt.edu/pals/). The strategy also creates opportunities for a teacher to 
circulate in the class, observe students, and provide individual remedial lessons.  

 
Five studies that examine various versions of peer tutoring met our criteria for review, 

allowing for calculation of effect sizes for 20 different contrasts at the student and classroom 
levels, and for computation and concepts outcome measures. Three of the studies in this 
section use PALS. The studies are summarized in Table 4. Pooled effect sizes examining 
computation outcomes at the classroom level were significant (ES = 0.431), and approached 
significance at the student level, favoring the peer tutoring interventions. In none of these 
studies were significant effect sizes produced on concept outcome measures. Nor, when 
doing student-level analyses, were any individual effect sizes on computation significant. 

 
The pooled effect size on the computation outcomes for the three studies that used 

student-level analyses was 0.238, which approached statistical significance. In a 15-week 
randomized controlled study of kindergartners (Fuchs et al., 2001) PALS was compared to a 
control condition that was described as teacher-directed lessons and demonstrations. Positive 
but not significant effects on the Stanford Early School achievement test in student-level 
analyses were detected for special education students, low-achieving students, and medium-
achieving students (effect sizes respectively, of 0.431, 0.374, and 0.436). In a study of first- 
graders comparing PALS with a business-as-usual basal core curriculum (Fuchs, Fuchs, 
Yazdian, & Powell, 2002), no statistically significant effects were found. Ginsburg-Block 
and Fantuzzo (1998) implemented an RCT with low-achieving third- and fourth-grade 
students in an urban elementary school using a reciprocal peer tutoring (RPT) model 
(Palincsar & Brown, 1984) on the mathematics achievement of low SES students. Results 
were nonsignificant but favored the peer collaboration condition (ES = 0.590).  

  
The effect sizes of the two studies that included classroom-level analyses were also 

pooled (Fuchs et al., 1995; Fuchs et al., 1997). These examined the impact of peer-assisted 
strategies, allowing for effect size calculations on seven different contrasts. The 1995 RCT 
study was done in second through fourth grade classrooms, over a 23-week period in which 
two 25–30 minute sessions per week were done using PALS, integrated with regular 
assessments. The control condition was teacher-mediated instruction, and the topic focus 
arithmetic operations. The 1997 study, also an RCT, also worked with second- through 
fourth-grade classrooms using peer-mediated versus teacher-mediated instruction (Fuchs et 
al., 1997). They investigated the effects of a peer tutoring program in which students 
received explicit instruction on how to provide elaborated help. Students were taught to 
provide explanations that would encourage peers to solve problems for themselves (instead 
of simply giving answers), referred to as “elaborated PMI.” These interventions were 
modeled separately, with students assigned to two experimental treatments—PMI-elaborated 
and PMI elaborated plus conceptual. Both studies had both computation and conceptual 
outcome measures. 

 
In both studies contrasts were calculated for LD, low-achieving, and average-

achieving students. In the 1997 study there was also a comparison of high-achieving 
students. The results are interesting and mixed. In the 1995 study, the only significant effect 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-28 

size was for low-achieving students (ES = 0.728), on the computation measure, favoring 
PALS. Only two other effect sizes approached significance in this set: in the 1997 study, for 
both LD and low-achieving students, on the computation tests, the effect sizes were 
appreciable (0.663 and 0.704), on the computation outcome measure only, favoring the peer-
assisted condition. No other effect sizes were significant, although all but one (in the 1997 
study, LD on the concepts outcome measure) were positive. However, when the seven effect 
sizes for classroom-level computation outcome measures were pooled for these two studies, 
the result was a significant effect size (ES = 0.431). 

 
In summary, it appears that peer tutoring strategies may be promising in teaching 

young children mathematical operations (which may not be exclusively computation 
oriented). However, this finding must be treated cautiously because the evidence is only 
suggestive. For the pooled effects of the Fuchs et al. (1995) and Fuchs et al. (1997) studies, 
there are some important limitations. The two studies were both in Grades 2–4, involve 
learning whole number operations, were possibly conducted using the same sample of 
schools, and were conducted by the same research team. The 1995 Fuchs et al. study did not 
include high-achieving students. Moreover, in the 1995 study, teachers in the peer tutoring 
condition were regularly provided with formative assessment data to guide instruction, but 
teachers in the control condition were not. Thus, the study does not provide a clear contrast 
between peer tutoring and a more teacher-directed form of instruction. The extent to which 
the positive effects that were detected were produced by formative assessment, by peer 
tutoring, or by an interaction of the two interventions cannot be determined. 

 
4. Other Collaborative Learning Strategies  

Five studies of other collaborative learning strategies met the criteria for inclusion, all 
of them RCTs. The studies are referred to as “collaborative learning” because they do not 
feature interventions as structured as the cooperative learning techniques featured above, but 
they all utilize methods of student grouping that involve student-to-student collaboration in 
learning. Two of the seven contrasts computed yielded effects that were significant.  

 
A study by Barron (2000) produced statistically significant effect sizes favoring the 

collaborative condition in solving complex video-based mathematical problems. Sixth-
graders enrolled in a public magnet school serving academically talented children were 
assigned randomly to either a group or individual condition. The task was to solve video-
based problems from The Adventures of Jasper Woodbury series. Students first viewed the 
15-minute episode, “Journey to Cedar Creek,” which describes several dilemmas facing a 
character who is considering the purchase of a boat. In the second session, students were 
asked to solve these problems either individually or in teams of three by completing exercises 
in a workbook. In the third session, students were asked to solve the problems again, this 
time individually, regardless of the condition to which they had been assigned in the previous 
session. In the fourth and final session, students viewed a 5-minute video posing a parallel 
problem to assess near transfer of the acquired skills.   

 
Students who had worked in triads solved more of the problems correctly than 

students who had worked individually at significant levels (ES = 0.472). The effect on a 
transfer task approached the level of significance (ES = 0.392).  
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In a study of the effects of a communal environment on African-American students’ 
learning of mathematical estimation (Hurley et al., 2005), effects were significant. The 
researchers drew a sample of fifth-grade African-American students from two urban public 
schools. The students had to fall within the middle 75% for their classroom and school in 
terms of academics and behavior. The children in the sample came from a low SES 
background as measured by both their school’s participation in Title I and the students’ 
participation in the free and reduced-price lunch program. 

 
Boys and girls were divided equally between two treatments though within gender 

students were randomly assigned. One experimental condition was highly communal; 
students learned estimation working in groups of three. Students sat at the same table and 
shared one set of materials. Each study session included the experimenter reading a 
communal prompt to the students. Students were asked to hold hands and were reminded that 
they were members of a group and should work hard and help one another because they were 
members of the same school and community. The other condition was low-communal; 
students studied alone in sets of three. Each student had his or her own set of materials and 
sat at his or her own desk. These study sessions included an individualized prompt to remind 
students they could earn a reward if their scores increased and to work hard on their own to 
improve their scores. Before and after their study sessions, all students took a 15-question 
test on mathematics estimation. The intervention was very brief (20 minutes). The effect size 
(ES = 0.655) favoring the triads groups was significant.  

 
The studies by Janicki and Peterson (1981), Kramarski and Mevarech (2003), and 

Peklaj and Vodopivec (1999) all compared some form of cooperative group strategies, with 
no significant effects (see Table 5).  

 
5. Strategies Combining Collaborative or Cooperative Learning With 
Other Approaches 

Also meeting the criteria were three studies that examined cooperative learning 
strategies used in conjunction with other instructional practices. Because the cooperative 
learning elements were mixed with other modifications in practice, the Task Group was not 
able to isolate the effects of cooperative learning alone. 

 
Only one of the studies yielded a statistically significant effect size, on a computation 

outcome measure. A quasi-experimental study by Busato et al. (1995) investigated Adaptive 
Instruction and Cooperative Learning (AGO),1 a Dutch model that includes curricular 
adaptations, whole class instruction to introduce a topic, small group cooperation, regular 
assessments, individual work with the possibility of students helping each other, remedial 
groups working with direct guidance from a teacher, and whole class reflection. The study 
involved 572 middle school students in the Netherlands, and the intervention lasted for one 
month. The mathematical topic was pre-algebra ideas, and the interventions were AGO 
versus “a more traditional instructional method (mainly without group work)” (p. 671). The 
effect size for boys was significant (0.681) and for girls approached significance (0.583).  

 
                                                             
1 AGO refers to the Dutch model called Adaptief Groeps-Onderwijs. 
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A quasi-experiment by Stevens and Slavin (1995) involved 1,012 elementary school 
students in Grades 2–6 in a year-long comparison of cooperative learning vs. whole class 
instruction. The nonsignificant effect on the California Achievement Test was negative, 
favoring the whole group instruction, on the applications test. The effect on the CAT 
computation (ES = 0.120) approached significance favoring the cooperative learning treatment. 
And finally, the Brenner et al. study (1997) discussed previously, small group instruction was 
compared to a control condition. The effects, favoring the small group condition, were not 
significant. The effect size for the pooled problem solving outcomes was 0.074. 

 
6. Cooperative Learning Strategies in the Technology Context   

Here the Task Group presents a review of the research that examined the use of 
cooperative learning strategies in the context of technology-based instruction. Use of some 
form of collaborative learning in computer-based instruction (CBI) is suggested by several 
positive reports from preschool to college (e.g., Leron & Lavy, 2004; Light & Blaye, 1990; 
Nastasi & Clements, 1994; Scardamalia et al., 1992; Schofield, 1995; Strommen, 1993). The 
following section discusses the eight studies identified that examined the use of cooperative 
learning strategies in the context of computers; the studies are summarized in Table 7. Only 
two of the studies produced significant effect sizes. 

 
Seven studies investigated learning on computers in groups versus learning on 

computers individually (Hooper, 1992; Hooper, Temiyakam, & Williams, 1993; Mevarech et 
al., 1991; Mevarech, 1993, 1994; Slavin & Karweit, 1984; and Xin, 1999). All participating 
students were in elementary school. Durations ranged from very short (1 week) to an academic 
year. The outcomes measured in most studies were limited to computation, but the Hooper 
(1992, 1993), and the Slavin and Karweit (1984) studies also assessed mathematical concepts.  

 
It was possible to calculate 15 different effect sizes across these studies. Only those 

that were significant are highlighted. Weiss et al. (2006) studied kindergarten students in 
Israel learning about numbers and operations. One treatment was a multimedia environment 
involving cooperation while the other was a multimedia environment involving an individual 
learning style. The outcome measure was a skills test on numbers and operations. The 
significant effect size (-0.862) favored the individual teaching style treatment. In the study by 
Xin (1999) that compared TAI involving CAI to whole-class computer-assisted instruction, 
the effect size on the Standard Achievement Test-Math for regular education students was 
significant (ES = 0.595), favoring the small group-based treatment. Effects for all but two 
studies were positive. A negative effect was found in the Weiss et al. (2006) study and for 
low- and high-achieving students in the Mevarech (1993) study. None of the other effect 
sizes calculated reached significance. 

 
In summary, implications for policy and practice do not indicate a simple solution, 

such as, “Students should work together on computers.” Positive effects of cooperative 
learning in technological contexts can be obtained, but they may be limited in size, especially 
when using simple CAI programs, and may depend on teachers’ management and guidance 
of positive interactions and collaboration. 
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C. Summary and Conclusions 

At this time a body of scientifically sound research does not exist that will quell the 
controversies about the best way to instruct students in mathematics. As evident from the 
review, however, educators are not completely in the dark about effective practice. Three 
principal findings emerge from the literature. First, some of the limitations in the studies 
reviewed in this section will be discussed. 

 
Although all of the studies discussed here met the technical criteria for inclusion, 

there were a number of issues relative to the studies that could be addressed in future 
research. In some cases, for instance, the treatments were of such brief duration that it is 
difficult to interpret the conclusions. In many cases the control condition is inadequately 
specified leaving the reader to make assumptions about exactly what is being compared to 
what. In the case of teacher-directed and student-centered instruction, the terms are so 
vaguely defined to begin with that this is a serious problem in using the research literature to 
draw conclusions that may be useful for policy. Only some of these studies actually measure 
and document the nature of the intervention, leaving questions about the fidelity and extent 
of implementation and thus lack of clarity about what might be causing the results. This body 
of work tends to include examinations of specific groups of students, which is informative 
relative to specific groups, but needs to be balanced with studies that look at broader 
populations. Finally, in some cases the team evaluating the effectiveness of the intervention 
also invented the method (although it is emphasized that all studies included in this report 
met the stringent criteria for inclusion). 

 
The review does allow us to make some key conclusions. First, Team Assisted 

Individualization (TAI), a cooperative learning strategy, has been shown to be effective in 
teaching computation skills. The finding does not extend to problem-solving skills or 
mathematical concepts. It is critical to note that the strategy involves much more than simply 
putting students into groups. Students first take diagnostic tests, and teachers utilize the 
results to prepare individualized sets of worksheets that target weak computation skills. 
Working in heterogeneous groups of four or five students, students are encouraged to work 
together to ensure that all students in the group attain mastery. Teachers work with small 
groups of students, pulled from different teams who are working on the same skill (e.g., 
division of decimals). Cooperation within groups is reinforced by group rewards given on the 
basis of final tests (for a more detailed description of TAI, see Slavin, Madden, and Leavey 
(1984) and Slavin and Karweit (1985)).  

 
Why does TAI work? Researchers of TAI have argued that several elements of the 

technique may enhance learning: students receive immediate feedback from peers (as 
compared to delayed feedback from teachers during whole class instruction); materials 
present mathematical skills in a logical, hierarchical sequence; students’ deficient areas are 
assessed, identified, and targeted with individualized materials; a group reward structure 
motivates students and encourages teamwork; the intervention blends teacher-directed and 
student-centered instruction. More research is needed to identify the precise mechanisms of 
TAI’s effectiveness. 
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A second cooperative learning strategy, generally known as peer tutoring, also 
showed signs of promise, with a significant pooled effect size favoring the peer-assisted 
condition. This finding must be treated cautiously, in that it involves only two studies, is 
limited to the study of whole number operations by students in Grades 2-4, and only reaches 
statistical significance at the class level. In one of the studies, formative assessment was a 
key component of the intervention. Studies on which student level effects could be calculated 
did not produce statistically significant findings. As with TAI, the treatment is highly specific 
and involves far more than having students work in pairs. In both of these sets of studies, it is 
important to underscore that significant effect sizes were found only for computation or 
operations, not for mathematical concepts or problem solving. 

 
The second main finding pertains to problem solving. Three studies were reviewed 

that documented successful far transfer of problem solving skills after extensive instruction. 
Muthukrishna and Borkowski (1995) studied third-graders who were taught a part-whole 
problem solving strategy in 14 lessons. Brenner et al. (1997) investigated middle school pre-
algebra students learning how to represent function problems in multiple formats. The 
program consisted of 20 lessons. In both experiments, students in the guided discovery 
condition outperformed students in the traditional instruction condition on measures of far 
transfer. These effects were not statistically significant but they bordered on significance. 
Educators considering whether to implement these interventions would have to weigh the 
limitations of the outcomes—problem solving strategies that are restricted to particular topics 
in mathematics—with the amount of instructional time spent to attain them. Whether the 
benefits of guided discovery extend to content beyond the areas examined in these studies, or 
can be accomplished in less time, has not been studied. 

 
In contrast, there were three studies (not counting the cooperative group studies) in 

which significant effects were found, favoring the teacher-directed instructional approach), 
for performance on computation outcome measures. Hopkins et al. (1997) found that the 
“didactic” treatment led to better performance by girls on an arithmetic computation test. 
And, in the Project Follow Through Evaluation, Stebbins et al. (1977) found significant 
effects favoring direct instruction, and nearly significant effects favoring the control 
treatment (in contrast to the Cognitively Oriented Curriculum) on the computation outcome 
measure. It is possible that under some conditions, with certain mathematical emphases and 
particular groups of students, the teacher-directed approaches can lead to better performance 
on computational assessments than more student-centered approaches. 

 
That leads to the final principal finding. Much more research is needed that directly 

compares the effectiveness of student-centered and teacher-directed instruction, and that 
provides clear operational definitions for these terms. In particular, research is needed with 
teacher-centered instruction as the experimental condition. Almost all of the research reviewed 
here investigated experimental modes of instruction that are student-centered—whether guided 
discovery, cooperative learning, or peer tutoring—with the control condition described as 
“teacher-directed” or “traditional” or “direct instruction.” Experiments with better specified 
teacher-directed interventions would enhance our understanding of how to improve classroom 
instruction in mathematics. A comprehensive program of research might succeed in 
transforming what has been a clash of ideologies into a search for effective practice.  
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Table 2a: Studies That Investigated the Effects of Team Assisted Individualization 
(TAI) on Computation Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Computation Outcomes 

Student-level analyses  

Slavin,  
1984—
Study 1b 

RCT 

504 students in Grades 3–5, 
including 6% who were 
receiving special education 
services, in 18 mathematics 
classes in six schools in a 
suburban Maryland school 
district 

8 weeks/ Addition, 
subtraction, 
multiplication, division, 
numeration, decimals, 
fractions, and word 
problems 

TAI vs. 
whole class 
lectures and 
group paced 
instruction 

CTBS—
Computations Overall 0.103 (ns) 0.460 

Slavin,  
1984—
Study 2b 

Quasi 

375 students in Grades 4–6, 
including 27% who were 
receiving special education 
services, in 16 mathematics 
classes in four schools in a 
suburban Maryland school 
district 

10 weeks/ Addition, 
subtraction, 
multiplication, division, 
numeration, decimals, 
fractions, and word 
problems 

TAI vs. 
whole class 
lectures and 
group paced 
instruction 

CTBS—
Computations Overall 0.109 (ns) 0.460 

Slavin et al., 
1984b Quasi 

1,371 students in Grades 3–5, 
including 8% that received 
special education services, in 
59 mathematics classes in 
eight schools in a suburban 
Maryland school district 

24 weeks/ Unspecified 
math curriculum (likely 
same topics as above) 

TAI vs. 
whole class 
lectures and 
group paced 
instruction 

CTBS—
Computations Overall 0.147 (ns) 0.331 

Regular 
education 0.595 ** 0.210 

Xin, 1999 RCT 
118 third-grade students in 
six mathematics classes in 
three schools 

Daily for one semester/ 
Basic fact families 
including addition, 
subtraction, multiplication, 
and division; coin 
recognition, place value, 
concepts, number patterns 

TAI w/CAI  
vs. whole 
class w/CAI 

Stanford 
Achievement 
Test—Math Learning 

disability 0.338 (ns) 0.390 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard 
Error 

2.265 4 0.271 0.687 
Pooled ES (four studies, five effect sizes) 

0.377 ** 0.145 

Classroom-level analyses  

Slavin & 
Karweit, 
1985—
Study 1 

RCT 345 students in Grades 4–6 
in 15 mathematics classes 

18 weeks/ Addition, 
subtraction, 
multiplication, division, 
numeration, decimals, 
fractions, ratios, statistics, 
introduction to algebra, 
and word problems 

TAI vs. 
Missouri 
Mathematics 
Program  

CTBS—
Computations Overall 0.709 *** 0.143 

Slavin & 
Karweit, 
1985—
Study 2 

RCT 
480 students in Grades 3–5 
in 22 mathematics classes in 
and around Hagerstown, MD 

16 weeks/ Addition, 
subtraction, 
multiplication, division, 
numeration, decimals, 
fractions, ratios, statistics, 
introduction to algebra, 
and word problems 

TAI vs. As-Is 
Control  

CTBS—
Computations Overall 0.562 *** 0.138 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard 
Error 

0.548 1 0.459 0.000 
Pooled ES (two studies, two effect sizes) 

0.633 *** 0.099 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 2b: Studies That Investigated the Effects of Team Assisted Individualization 
(TAI) on Concepts Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Concepts Outcomes 
Student-level analyses 

Slavin, 
1984b Quasi 

1,371 students in 
Grades 3–5, 
including 8% that 
received special 
education services, in 
59 mathematics 
classes in eight 
schools in a suburban 
Maryland school 
district 

24 weeks/ 
Unspecified 
math curriculum 
(likely same 
topics as above) 

TAI vs. whole 
class lectures 
and group 
paced 
instruction 

CTBS—
Concepts Overall 0.098 (ns) 0.331 

Classroom-level analyses 

Slavin & 
Karweit, 
1985— 
Study 1 

RCT 
345 students in 
Grades 4–6 in 15 
mathematics classes 

18 weeks/ 
Addition, 
subtraction, 
multiplication, 
division, 
numeration, 
decimals, 
fractions, ratios, 
statistics, 
introduction to 
algebra, and 
word problems 

TAI vs. 
Missouri 
Mathematics 
Program  

CTBS—
Concepts Overall -0.003 (ns) 0.139 

Slavin & 
Karweit, 
1985— 
Study 2 

RCT 

480 students in 
Grades 3–5 in 22 
mathematics classes 
in and around 
Hagerstown, MD 

16 weeks/ 
Addition, 
subtraction, 
multiplication, 
division, 
numeration, 
decimals, 
fractions, ratios, 
statistics, 
introduction to 
algebra, and 
word problems 

TAI vs. As-Is 
Control  

CTBS—
Concepts Overall 0.038 (ns) 0.134 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

0.045 1 0.832 0.000 
Pooled ES (two studies, two effect sizes) 

0.018 (ns) 0.097 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 3: Studies That Investigated the Effects of Student Teams-Achievement  
Divisions (STAD) 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s 
g 

Standard  
Error 

Alkhateeb & 
Jumaa, 2002a RCT 

111 eighth-grade 
students in four 
classes in two 
schools in the 
United Arab 
Emirates 

3 weeks/ 
Algebraic 
expressions 

STAD vs. 
Whole Class 
Instruction 

Algebra test Overall 0.108 (ns) 0.479 

Third 
grade 0.573 (ns) 0.492 

Fourth 
grade 0.484 (ns) 0.487 Jacobs, 

1996a RCT 

266 students in 
Grades 3–5 at a 
large private 
Christian/ 
fundamentalist 
elementary school in 
the Southeast 

9 weeks/ 
Unspecified 
3rd grade 
curricular 
unit 

STAD vs. 
Direct 
Instruction 
with rewards 
and student 
individual 
accountability  

Curriculum 
specific math 
test 

Fifth 
grade 0.454 (ns) 0.486 

Madden & 
Slavin, 
1983a 

RCT 

183 third-, fifth-, 
and sixth-grade 
students, including 
40 special education 
students, in six 
math classes in the 
Baltimore City 
schools 

7 weeks/ 
Unspecified 
3rd-, 5th-, 
and 6th-
grade 
curricular 
units 

STAD vs. 
Focused 
Instruction 
(whole class 
lectures, 
individual 
practice, 
quizzes, and 
individual 
recognition) 

Curriculum 
specific math 
test 

Overall 0.124 (ns) 0.402 

Slavin & 
Karweit, 
1984a 

RCT 

588 ninth-grade 
students in 25 math 
classes in 16 inner 
city Philadelphia 
junior and senior 
high schools 

One school 
year/ 
Unspecified 
9th-grade 
general math 
curriculum 

STAD vs. 
Focused 
Instruction 
(students 
worked 
individually 
and did not 
receive team 
recognition) 

CTBS, 
Shortened 
version 
(computation, 
concepts and 
applications 
subscales) 

Overall 0.113 (ns) 0.221 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 
1.384 5 0.926 0.000 

Pooled ES (four studies, six effect sizes) 
0.227 (ns) 0.152 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 4: Studies That Investigated the Effects of Peer Assisted Learning 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Computation Outcomes 
Student-level analyses 

Special 
education 0.431 (ns) 0.524 

Low 
achieving 0.374 (ns) 0.454 

Medium 
achieving 0.436 (ns) 0.270 

Fuchs et al., 
2001a RCT 

168 Kindergarten 
students in 20 
classes in five 
schools in a 
Southeastern 
metropolitan area 

15 weeks/ 
Kindergarten 
core curriculum 

PALS vs. Teacher-
directed lessons 
and demonstrations 

Stanford Early 
School 
Achievement Test 

High 
achieving -0.162 (ns) 0.380 

Fuchs et al., 
2002a RCT 

327 first-grade 
students in 20 
classrooms in a 
Southeastern 
metropolitan 
public school 
system 

16 weeks/ 
Addition, 
subtraction, 
counting, sets, 
geometry, and 
measuring 

PALS vs. As-is 
basal core 
curriculum 

Stanford 
Achievement Test Overall 0.055 (ns) 0.223 

Ginsburg-
Block & 
Fantuzzo, 
1998 

RCT 

104 low-
achieving third- 
and fourth-grade 
students in an 
urban elementary 
school 

Two 30-minute 
sessions per 
week for 7 
weeks/ Addition, 
subtraction, 
multiplication, 
and division 
computation and 
word problems  

Peer collaboration 
dyads vs. Control 

Curriculum based 
computation test Overall 0.590 (ns) 0.389 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

3.361 5 0.645 0.000 
Pooled ES (three studies, six effect sizes) 

0.238 ~ 0.134 
Classroom-level analyses 

Learning 
disability 0.260 (ns) 0.311 

Low 
achieving 0.728 ** 0.320 Fuchs et al., 

1995 RCT 

40 Grade 2–4 
classrooms in 
nine elementary 
schools in a 
Southeastern, 
urban school 
district 

Two 25-30 
minute sessions 
per week for 23 
weeks/ Grade 
level’s annual 
operations 
curriculum 

PALS integrated 
with regular 
assessments vs. 
Teacher-mediated 
instruction  

Acquisition 
learning: Math 
Operations Test—
Revised 

Average 
achieving 0.297 (ns) 0.312 

Learning 
disabilities 0.663 ~ 0.386 

Low 
achieving 0.704 ~ 0.388 

Average 
achieving 0.177 (ns) 0.378 

Fuchs et al., 
1997 RCT 

40 Grade 2–4 
classrooms in a 
Southeastern 
metropolitan 
public school 
system 

18 weeks/ 
Number 
concepts, 
counting, word 
problems, 
charts/graphs, 
money, 
measurement, 
geometry, and 
computation 

Peer-mediated 
instruction vs. 
Teacher-mediated 
instruction 

Comprehensive 
Mathematics 
Test—Operations 

High 
achieving 0.242 (ns) 0.378 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.904 6 0.821 0.000 
Pooled ES (two studies, seven effect sizes) 

0.431 ** 0.132 
Continued on p. 6-37 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-37 

Table 4, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Concepts Outcomes 
Classroom-level analyses 

Learning 
disability 0.199 (ns) 0.311 

Low 
achieving 0.063 (ns) 0.310 Fuchs et al., 

1995 RCT 

40 Grade 2–4 
classrooms 
in nine 
elementary 
schools in a 
Southeastern, 
urban school 
district 

Two 25–30 minute 
sessions per week for 
23 weeks/ Grade 
level’s annual 
operations curriculum 

PALS integrated 
with regular 
assessments vs. 
Teacher-mediated 
instruction  

Acquisition 
learning: Math 
Concepts and 
Applications 

Average 
achieving 0.307 (ns) 0.312 

Learning 
disabilities -0.016 

(ns) 
0.377 

Low 
achieving 0.515 

(ns) 
0.383 

Average 
achieving 0.139 (ns) 0.377 

Fuchs et al., 
1997 RCT 

40 Grade 2–4 
classrooms in 
a Southeastern 
metropolitan 
public school 
system 

18 weeks/ Number 
concepts, counting, 
word problems, 
charts/graphs, money, 
measurement, 
geometry, and 
computation 

Peer-mediated 
instruction vs. 
Teacher-mediated 
instruction 

Comprehensive 
Mathematics Test-
Concepts 

High 
achieving 0.099 (ns) 0.377 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.406 6 0.965 0.000 
Pooled ES (two studies, seven effect sizes) 

0.186 (ns) 0.130 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
 
Table 5: Studies That Investigated Other Cooperative Learning Strategies 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s 
g 

Standard  
Error 

Solutions to story 
problems—mastery Overall 0.472 * 0.205 

Barron, 
2000 RCT 

96 sixth-grade 
students in a public 
magnet school for 
academically 
talented children 

Four 1-hour 
sessions/ Contextual 
problem solving 

Problem solving 
collaboratively in 
triads vs. Problem 
solving individually 

Solutions to story 
problems—transfer Overall 0.392 ~ 0.204 

Hurley 
et al., 2005 RCT 

78 African-
American fifth-
grade students in 
two urban public 
schools 

One 20-minute 
session/ Math 
estimation 

Triads worked together 
in a high-communal 
setting vs. Individuals 
worked in a low-
communal setting 

Math estimation 
task Overall 0.655 ** 0.230 

Janicki & 
Peterson, 
1981a 

RCT 117 fourth- and 
fifth-grade students 2 weeks/ Fractions 

Small group direct 
instruction vs. 
Individual direct 
instruction 

Researcher 
developed test on 
fractions 

Overall -0.041 (ns) 0.188 

Metacognitive and 
cooperative groups vs. 
Metacognitive and 
individual 

Graph 
interpretation test Overall 0.355 (ns) 0.387 Kramarski 

& 
Mevarech, 
2003a 

RCT 

384 eighth-grade 
students in 12 
classrooms in four 
Israeli junior high 
schools 

2 weeks/ Linear 
graphing 

Cooperative groups vs. 
Individual work 

Graph 
interpretation test Overall 0.105 (ns) 0.388 

Peklaj & 
Vodopivec, 
1999a 

RCT 

373 fifth-grade 
students in 15 
classes from nine 
primary schools in 
Slovenia 

One lesson per 
week for seven 
months/ Basic 
concepts, measure 
transformation, 
calculations, 
problem solving 

Cooperative learning 
vs. Individual work 

Teacher 
developed math 
test 

Overall 0.317 (ns) 0.251 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 6: Studies That Investigated Multiple Strategies—Cooperative Learning 
Combined With Other Instructional Practices 

Study Design Sample Duration/Content Contrast Measure Subgroup 
Hedge’s 

g 
Standard  

Error 

Brenner et al., 
1997a RCT 

128 students in six 
intact pre-algebra 
classes in three 
junior high 
schools in southern 
California 

20 days/ Pre-
algebra ideas such 
as the functional 
relationship 
between two 
variables and 
contextual 
translation and 
application 

Anchored 
instruction 
using small 
groups vs. 
Control 

Pooled problem 
solving outcomes: 
word problem 
solving (ES = 
0.110), function 
word problem 
(ES = 0.393), and 
equation solving 
(ES = -0.281) 
measures 

Overall 0.074 (ns) 0.399 

Boys 0.681 * 0.227 
Busato et al., 
1995a Quasi 

572 middle school 
students in 23 
classes in six 
schools in the 
Netherlands 

Unspecified 
duration/ Existing 
Dutch math 
curriculum 

AGO model 
curriculum vs. 
Traditional 
curricula 

Test of math 
achievement Girls 0.583 ~ 0.235 

California 
Achievement 
Test—CAT 
computations 

Overall 0.120 ~ 0.068 

Stevens & 
Slavin, 1995c Quasi 

1,012 elementary 
students in Grades 
2–6 in five 
schools in a 
suburban 
Maryland school 
district.  Two of 
the schools were 
cooperative 
elementary 
schools and three 
schools were more 
traditional 
elementary 
schools 

1 year/ Math 
computation 

Cooperative 
learning 
school vs. 
Whole class 
instruction 

California 
Achievement 
Test—CAT—
application 

Overall -0.050 (ns) 0.068 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c To be more comparable with other studies, the data presented for this study are data only after the first year, although two years of data 
were available. 
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Table 7: Studies That Investigated Cooperative Learning Strategies in the Context 
of Computers 

Study Design Sample Duration/Content Contrast Measure Subgroup 
Hedge’s 

g 
Standard  

Error 

Hooper, 1992 RCT 

115 fifth- and 
sixth-grade 
average or high-
ability students 
from a suburban 
middle school 

1 week/ Calculation 
of number of sides of 
a three-dimensional 
object and classifying 
objects as examples 
or nonexamples of a 
concept 

Cooperative 
learning with 
computer 
based 
instruction 
(CBI) vs. 
Individual 
learning with 
CBI 

Math test 
including fact, 
application, 
generalization, 
and problem-
solving 
questions 

Overall 0.335 ~ 0.201 

Hooper, 1993 RCT 

175 fourth-
grade average or 
high-ability 
students from 
six classrooms 
in a suburban 
middle school 

3 weeks/ Calculations 
using the four basic 
arithmetic operations 
using symbols to 
represent constants 
and operations 

Cooperative 
learning with 
computer 
based 
instruction 
(CBI) vs. 
Individual 
learning with 
CBI 

Math test 
including fact, 
application, 
generalization, 
and problem-
solving 
questions 

Overall 0.305 ~ 0.157 

Low 
achieving 0.266 (ns) 0.285 

Medium 
achieving 0.268 (ns) 0.285 Mevarech et 

al., 1991 RCT 

149 sixth-grade 
students in five 
classrooms in 
one Israeli 
school 

One trimester/ Basic 
operations with 
positive integers and 
fractions 

Pairs w/CAI 
vs. Individual 
w/CAI 

TOAM 
achievement 
(computerized 
diagnostic) 

High 
achieving 0.120 (ns) 0.289 

Low 
achieving -0.028 (ns) 0.479 

Mevarech, 
1993a RCT 

110 third-grade 
students in two 
Israeli public 
schools 

One trimester/ 
Traditional 3rd grade 
curriculum in 
arithmetic 

Pairs w/CAI 
vs. Individual 
w/CAI 

Arithmetic 
achievement 
test High 

achieving -0.506 (ns) 0.480 

3rd grade 
Low 
Achievers 

0.287 (ns) 0.322 

3rd grade 
High 
Achievers 

0.123 (ns) 0.319 

6th grade 
Low 
Achievers 

0.266 (ns) 0.337 

Mevarech, 
1994a RCT 

344 third-grade 
and 279 sixth-
grade students in 
19 classrooms in 
five schools in a 
suburb of Tel 
Aviv, Israel 

Two 20-minute 
sessions per week for 
one academic year/ 
Basic skills with 
mathematics 
operations, 
comprehension of 
numerical systems, 
understanding 
mathematical rules, 
solving word 
problems 

Integrated 
learning 
system 
(ILS) in 
homogenous 
pairs vs. ILS 
individually 

ILS diagnostic 
test 

6th grade 
High 
Achievers 

0.348 (ns) 0.336 

Slavin & 
Karweit, 
1984a 

RCT 

588 ninth-grade 
students in 25 
math classes in 
16 inner city 
Philadelphia 
junior and 
senior high 
schools 

One school year/ 
Unspecified 9th grade 
general math 
curriculum 

STAD vs. 
Focused 
Instruction 
(students 
worked 
individually 
and did not 
receive team 
recognition) 

CTBS, 
Shortened 
version 
(computation, 
concepts and 
applications 
subscales) 

Overall 0.113 (ns) 0.221 

Continued on p. 6-40 
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Table 7, continued 

Study Design Sample Duration/Content Contrast Measure Subgroup 
Hedge’s 

g 
Standard  

Error 

Weiss et al., 
2006 RCT 

116 students in 
six Kindergarten 
classes of 
medium to high 
SES in Israel 

28 hours over 
5 months/ 
Mathematical skills 
about numbers and 
operations from 1 to 
10  

Multimedia 
environment in 
a cooperative 
learning 
teaching style 
vs. Multimedia 
environment in 
an individual 
learning 
teaching style 

Skills test on 
numbers and 
operations 

Overall -0.862 *** 0.238 

Regular 
education 0.595 ** 0.210 

Xin, 1999 RCT 

118 3rd-grade 
students in six 
mathematics 
classes in three 
schools 

Daily for one 
semester/ Basic fact 
families including 
addition, subtraction, 
multiplication, and 
division; coin 
recognition, place 
value, concepts, 
number patterns 

TAI w/ CAI 
vs. whole 
class w/ CAI 

Stanford 
Achievement 
Test-Math Learning 

disability 0.338 (ns) 0.390 

Heterogeneity 
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

27.457 14 0.017 49.011 
Pooled ES (8 studies, 15 effect sizes) 

0.157 0.101 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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III. Effective Instruction for Students With Learning Challenges: 
A Meta-Analytic Review 

Between 5% and 10% of students will experience a serious learning disability in 
mathematics before completing high school (Barbaresi, Katusic, Colligan, Weaver, & 
Jacobsen, 2005). Many more will have difficulties in learning mathematics at an acceptable 
level of proficiency. In this section, the Instructional Practices Task Group addresses the 
rigorous research on instructional methods that can help these students. An overview of the 
methodological procedures for the Task Group is provided in Appendix A. Throughout this 
section, the Task Group used these meta-analytic techniques as noted in the methodology 
statement. Because of the wide array of instructional approaches explored in the research for 
this section, multiple meta-analyses were performed to analyze this research.  

 
The Task Group chose to review studies of students with LD separately from studies 

of low-achieving students because the problems experienced by students with LD are 
consistently more severe than those experienced by other low-performing students (Fuchs, 
Fuchs, Mathes, & Lipsey, 2000; Murphy, Mazzocco, Hanich, & Early, 2007). Therefore, 
educators cannot necessarily assume that techniques that are effective for students with 
learning disabilities are the most effective or efficient means for teaching struggling students. 
However, the reader will note that many of the same themes and issues recur across these 
two bodies of research. 

A. Characteristics of Students With  

Learning Disabilities in Mathematics 

Most of the research on the nature of learning disabilities in mathematics has been 
conducted with younger students and typically involves understanding their gaps in whole 
number arithmetic. Certain findings have been consistently replicated. Because students with 
LD display problems in so many areas of mathematics, pinpointing the exact nature of the 
cognitive difficulty has been an intricate process (Geary, 2003).  

 
However, there are several problems that seem particularly chronic. The first is 

efficient retrieval of basic arithmetic combinations (mathematics facts) (Jordan, Hanich & 
Kaplan, 2003). A second is delayed adoption of efficient counting strategies. Students with 
learning disabilities will tend to count on their fingers well after their peers have outgrown 
this approach and when forbidden by their teachers they may count with the help of visual 
placemarkers in the classroom (e.g., stripes on the ceiling or the radiator), or give up in 
frustration. Most typically developing students learn, prior to entering school, what is 
commonly called a “counting-on strategy.” They learn that if they have to add 7 to 2, this 
process is mathematically equivalent to adding 2 to 7, and that is much more efficient to 
make this transformation (i.e., that the most efficient way to find 2 + 7 is to start with the 7 in 
a mental number line and count up 2, rather than start with the 2 and count up 7). In contrast, 
students with LD will tend to start at 2 and count up using 7 figures or objects. Thus, they are 
more likely to make errors by using the tedious procedure. Furthermore, even if their answer 
is accurate, their strategy for reaching this answer is far from efficient.  
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It also appears that students with learning disabilities have a very limited working 
memory (Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007; McLean & Hitch, 1999; 
Swanson & Sachse-Lee, 2001), which affects their ability to keep abstract information in 
their minds for the purpose of counting and solving specific problems. Finally, students with 
learning disabilities seem to display problems in many aspects of basic number sense such as 
comparing magnitudes of numbers by quickly visualizing a number line or transforming 
simple word problems into simple equations (Jordan, Hanich, & Kaplan, 2003; Fuchs, 
Compton, Fuchs, Paulsen, Bryant, & Hamlett, 2005). In addition, two studies (DiPerna, Lei 
& Reid, 2007; Fuchs, 2005) have both found that teachers’ ratings of a child’s attention span 
and task persistence, both areas that are often difficult for students with LD, are good 
indicators of subsequent problems in learning mathematics.  

B. Students With Low Achievement in Mathematics 

Many more students struggle to learn mathematics than the 5 to 10% who appear to 
possess a learning disability in mathematics (Badian, 1983; Fuchs et al., 2005; Gross-Tsur et 
al., 1996; Lewis et al., 1994). Although there are numerous disputes about how to best define 
and operationalize the general term “learning disabilities,” and the more specific term “math 
disabilities,” there is some emerging consensus (Bradley, Danielson, & Hallahan, 2002).   

 
In contrast, there is no consensus as to how to operationalize the term “low 

achieving,” other than students whose performance in mathematics is below grade level 
expectations. In some cases, e.g., Cardelle-Elawar (1995), all students in a low-income, low-
achieving school are considered low achieving. Other studies (e.g., Moore & Carnine, 1989) 
only select students who perform poorly on a screening test that addresses the topic of the 
intervention research study.   

 
Several dilemmas and constraints presented themselves when considering studies of 

low-achieving students not presented in working with studies of students with LD. First, there is 
no agreed upon operational definition of what is meant by a student struggling to learn 
mathematics or a low-achieving or “at risk” student (Mazzocco, 2007). Indeed, there is no 
measurable boundary or cut-off criterion, based on standardized test performance, for 
considering a student to be math disabled versus experiencing low achievement in mathematics.  
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Meanwhile, the factors that contribute to the low-achieving designation seem to 
include some unknown combination of the following:  

 
• deficiencies with previous mathematics instruction and mathematics teachers with 

limited knowledge of the subject (Sowder, Philipp, Armstrong, & Schappelle, 1998);   

• limited experiences at home that informally teach familiarity with number concepts, 
build and reinforce procedural facility and demonstrate relevance of mathematics to 
everyday problems (e.g., Griffin, Case, & Siegler, 1994);   

• problems with sustaining attention to academic tasks and activities (Fuchs, Compton, 
Fuchs, Paulson, Bryant, & Hamlett, 2005; DiPerna, Lei, & Reid, 2007; Kolligian & 
Sternberg, 1987); and, 

• weak motivation and maladaptive attribution style (Torgesen, 1994).    

 C. A Meta-Analytic Review of Research With Students With  

LD and LA in Mathematics (1976–2007) 

There is a dramatically smaller body of research on mathematics instruction 
compared to reading instruction for students with LD. A recent review of the ERIC literature 
base (Gersten, Clarke, & Mazzocco, 2007) found that the ratio of studies on reading 
disabilities to mathematics disabilities and difficulties was 5:1 for the decade 1996–2005. 
However, this was a dramatic improvement over the ratio of 16:1 in the prior decade.  

 
Despite the limited knowledge of the precise nature of learning disabilities in 

mathematics, especially in areas such as rational numbers, geometry and pre-algebra, 
researchers have attempted to develop interventions that can teach students with LD. In fact, 
in the Panel’s literature search, the number of high-quality studies examining the 
effectiveness of various instructional practices for teaching students with LD far surpasses 
the number of studies conducted with typically developing students.  

 
The Task Group speculates that there are several reasons for this phenomenon. One 

important factor has been the consistent support for research in the field of special education; 
annual research budgets for special education often surpassed budgets for research on the 
education of nondisabled students in academic areas. Even more importantly, the Office of 
Special Education Programs (OSEP) at the U.S. Department of Education has consistently 
supported experimental research since the late 1960s.  

 
In addition to studies of students with LD, the Task Group was also able to locate a 

small number of studies with low-achieving students that met the criteria for rigorous 
experimental or quasi-experimental research. The children in these studies were defined as 
either at-risk or experiencing mathematics difficulties based on performance on a screening 
measure of mathematics skills or teacher ratings or recommendation. None of the participants 
was formally diagnosed as math disabled by the researchers.   
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Thus, a reasonable set of studies exists that investigate the effectiveness of various 
instructional approaches for teaching students with LD using rigorous experimental or quasi-
experimental designs, and a smaller, but still adequate set of studies exists that examine 
various approaches for teaching students who experience difficulties in mathematics, but 
were not classified as possessing a learning disability. To conduct a meta-analysis, the Task 
Group needed to center the analysis around a key research question. The question most 
consistently posed in the research studies reviewed concerned the effectiveness of explicit 
systematic instruction on the mathematics performance of this group of students.  

D. The Nature of This Report 

This document summarizes the meta-analyses conducted for the Panel’s Instructional 
Practices Task Group on the nature of effective mathematics instruction for students with LD 
and for other low-achieving students. To organize these meta-analyses, the Task Group 
clustered studies into four categories: 

 
• Studies of the impact of systematic explicit instruction on the performance of students 

with LD in mathematics 

• Studies of the impact of systematic explicit instruction on the performance of low-
achieving students in mathematics 

• Other approaches for teaching students with LD 
— Selection of examples to foster development of more sophisticated strategies 

for quick retrieval of basic arithmetic facts  
— Use of visual representations as a key component of instruction  
— Instruction that encouraged students to think aloud  

• Other approaches for teaching low-achieving students that are primarily implicit 
 
The following sections provide study characteristics for each of the studies identified 

and effect sizes for the Category 1 (high-quality) studies on posttest measures and transfer 
measures (when available). The effect sizes are pooled for the studies that examined the 
effects of using explicit instruction for students with LD using common meta-analytic 
standards. Effect sizes for studies in the remaining categories were not pooled because the 
interventions varied greatly across studies.  

 
All effect sizes have been adjusted for clustering, when appropriate. The Task Group 

used the U.S. Department of Education’s What Works Clearinghouse default Intra-Class 
Correlation of .20 for the adjustment. For further details on data analysis, see the footnotes 
accompanying the tables and the Methodological Procedures section in Appendix A. 
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E. Explicit Strategies Used for Students With Learning Disabilities 

Explicit instruction involves teacher-demonstrated step-by-step plans for solving a 
problem. The teacher demonstrates a specific plan for a set of problems (as opposed to a 
general problem-solving heuristic strategy) and students are asked to use the same procedures 
or steps demonstrated by the teacher to solve the problem. For example, Xin, Jitendra, and 
Deatline-Buchman (2005) provided explicit instruction for using strategies for identifying 
and solving various word problem types. Students were given prompt sheets for identifying 
salient features of the word problem types. Students then were taught to map these features 
onto a schema diagram that represented the problem structure. Next, students used the 
schema diagram to formulate the appropriate mathematical equation for solving the problem. 
Each of these steps toward problem solution were explicitly taught strategies for problem 
solution.   

 
There were nine studies that looked at the effect of explicit strategies for students 

with LD, met the inclusion criteria, and were methodologically adequate. Results from these 
studies are presented in three tables. Each table includes the findings for a separate 
mathematical outcome: word problem solving, computation, or transfer of learning. Table 8 
below presents the results from the six studies that investigated the effects of using explicit 
strategies on improving word problem-solving outcomes with students with learning 
disabilities. Table 9 presents results of the three high-quality studies that looked at 
computation outcomes. Table 10 presents the results of the four studies that included a 
measure of generalization of training. All tables include the pooled effect size, tests for 
heterogeneity, and tests for statistical significance for the pooled effect size. The pooled 
effects reveal significant effects of explicit instruction on solving word problem solving 
(ES = 1.152), computation (ES = 1.285), and transfer (ES = 0.777).   
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Table 8: Studies That Investigate Explicit Strategies With Students With Learning 
Disabilities: Word Problem Outcomes 

Study Design Sample Duration/Content Contrast Measure Hedge’s g  
Standard 

Error 
Word Problem Outcomes 

Hutchinson, 
1993 RCT 

20 LD students in 
Grades 8–10 from two 
junior high schools in 
suburban Vancouver, 
Canada 

40-minute sessions on 
alternate days for 4 
months/ Algebraic 
word problem solving 
(relational problems, 
proportion problems, 
& two-variable, two-
equation problems) 

Metacognitive 
and solution 
strategies vs. 
Regular resource 
class instruction 

Pooled B.C. 
Mathematics 
Achievement 
Test (ES = 
0.705), Q2 B.C. 
Achievement 
Test (ES = 
1.724) 

1.215 * 0.484 

Jitendra et 
al., 1998 RCT 

34 students in Grades 
2–5 from four public-
schools in the U.S. 25 
students were classified 
as having mild 
disabilities (LD, 
educable mentally 
retarded, or seriously 
emotionally disturbed), 
and the remaining nine 
students had difficulty 
in math 

17–20 40–45-minute 
sessions/ Addition and 
subtraction word 
problems (including 
change, group, and 
compare problems) 

Explicit step-by-
step strategy vs. 
Traditional basal 
strategy 

Researcher 
designed word 
problem solving 
criterion test 

0.557 (ns) 0.342 

Milo et al., 
2005a Quasi 

36 LD students in three 
special primary schools. 
Average age of students 
was 9.10 years 

Two weekly lessons 
for half the year 
during regular math 
class/ Addition and 
subtraction 

Directing vs. 
Guiding 
instruction 

Addition and 
subtraction word 
problem test 
based on 
problems from 
the databank of 
the National 
Institute for 
Educational 
Measurement 

0.303 (ns) 0.447 

Owen & 
Fuchs, 
2002a 

Quasi 

24 third-grade students 
with IEPs from 14 
classrooms in six 
schools (20 students 
had LD, one had 
MMR, two had speech 
disorders, and one had 
ADHD) 

Six lessons/ Word 
problems that involve 
finding “halves” 

Full-dose 
acquisition and 
transfer vs. 
Traditional  

Researcher 
designed word 
problem solving 
test  

3.385 *** 0.888 

Wilson & 
Sindelar, 
1991b 

RCT 

62 LD students from 
nine elementary 
schools in a medium-
sized school district in 
northern Florida 

Fourteen 30-min 
lessons over 3 weeks/ 
Addition and 
subtraction word 
problems (four types 
of two- to three-
sentence problems) 

Strategy plus 
sequence vs. 
Sequence only 

Researcher 
designed word 
problem test 

0.782 ~ 0.470 

Xin et al., 
2005 RCT 

22 middle school 
students in one school 
(18 students had LD, 
one had severe 
emotional disorders, 
and three were at-risk 
for math failure) 

12 1-hour sessions/ 
Multiplicative 
compare and 
proportion problems 
and mixed word 
problems 

Schema-based 
instruction (SBI) 
vs. General 
strategy 
instruction (GSI) 

Researcher 
designed word 
problem solving 
criterion test 

1.866 *** 0.497 

Heterogeneity  
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

14.754 5 0.011 66.110 
Pooled ES (five studies,  

five effect sizes) 1.152 *** 0.341 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
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Table 9: Studies That Investigate Explicit Strategies With Students With Learning 
Disabilities:  Computation Outcomes 

Study Design Sample Duration/Content Contrast Measure Hedge’s g 
Standard  

Error 
Computation Outcomes 

Schopman 
& Van Luit, 
1996 

Quasi 

60 students between 
the ages of 5 and 7 
attending schools 
for special 
education 
(primarily LD) who 
scored less than 
45% correct on a 
test for number 
sense (likely in the 
Netherlands) 

Thirteen lessons in 
3 months/ Preparatory 
arithmetic skills 
(number sense, 
counting skills, and 
Piagetian operations) 

Directing and 
guiding vs. 
Control 

Utrech test of 
number sense 1.023 *** 0.286 

Tournaki, 
2003 RCT 

42 LD second-grade 
students attending 
self contained 
special education 
classes in one 
school in New York 

Eight 15-minute 
sessions on consecutive 
school days/ Algebra 
(three problem types:  
relational problems, 
proportion problems, & 
two-variable, two-
equation problems) 

Strategy 
instruction vs. 
Drill and practice 

Researcher 
designed 
computation test 

1.612 *** 0.426 

Van Luit & 
Naglieri, 
1999a 

Quasi 

42 9–11-year-old 
LD students from 
two schools for 
special education in 
the Netherlands 

Three 45-minute 
sessions per week for 
17 weeks/ Multiplication 
and division problems 

MASTER 
program 
(Mathematics 
Strategy Training 
for Educational 
Remediation) vs. 
Standard 
instruction 

Researcher 
designed 
mathematics 
achievement test 

2.174 * 0.991 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.221 2 0.329 9.956 

Pooled ES (four studies,  
four effect sizes) 

1.285 *** 0.256 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
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Table 10: Studies That Investigate Explicit Strategies With Students With Learning 
Disabilities: Transfer Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s  
g 

Standard  
Error 

Transfer Outcomes 

Jitendra et al., 
1998 RCT 

34 students in Grades 
2–5 from four public-
schools in the U.S. 
25 students were 
classified as having 
mild disabilities (LD, 
educable mentally 
retarded, or seriously 
emotionally 
disturbed), and the 
remaining nine 
students had difficulty 
in math  

17–20 40–45-minute 
sessions/ Addition 
and subtraction word 
problems (including 
change, group, and 
compare problems) 

Explicit step-by-
step strategy vs. 
Traditional basal 
strategy 

Researcher 
designed 
generalization test 

1.010 ** 0.357 

Milo et al., 
2006a Quasi 

36 LD students in 
three special primary 
schools. Average age 
of students was 9.10 
years 

Two weekly lessons 
for half the year 
during regular math 
class/ Addition and 
subtraction 

Directing vs. 
Guiding 
instruction 

Researcher 
designed transfer 
test 

-0.073 (ns) 0.445 

Tournaki, 
2003 RCT 

42 LD 2nd-grade 
students attending 
self contained 
special education 
classes in one school 
in New York 

Eight 15-minute 
sessions on 
consecutive school 
days/ Algebra (3 
problem types: 
relational problems, 
proportion problems, 
& two-variable, two-
equation problems) 

Strategy 
instruction vs. 
Drill and practice 

Researcher 
designed transfer 
test 

0.801 * 0.382 

Xin et al., 
2005 RCT 

22 middle school 
students in one 
school (18 students 
had LD, one had 
severe emotional 
disorders, and three 
were at-risk for math 
failure) 

3–4 times per week, 
for a total of 12 
1-hour sessions/ 
Multiplicative 
compare and 
proportion problems 
and mixed word 
problems 

Schema-based 
instruction (SBI) 
vs. General 
strategy instruction 
(GSI) 

Researcher 
designed 
generalization test 

1.334 ** 0.467 

Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

5.496 3 0.139 45.416 

Pooled ES (four studies,  
four effect sizes) 0.777 ** 0.277 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
From these results, one can infer that explicit instruction is an effective means for 

building performance in problem solving, computational proficiency, and ability to transfer 
from items on which students received training to items on which students had not received 
training, for students with LD.  

 
However, the number of high-quality studies is small, and one would not want to 

overgeneralize from a set of nine studies that, taken together, are limited by a restricted range of 
study characteristics. For example, many of the studies were of short or moderate duration. 
Although the set of studies represents a wide range of age levels (seven of the studies examine 
elementary schools, while two studies examined middle schools) there are a sparse number of 
studies for any given age level or any given mathematical topic. The studies reviewed almost 
exclusively used researcher-developed measures, which tend to yield higher effect sizes than 
norm-referenced measures of generalized mathematics proficiency (Swanson & Hoskyn, 1998).  
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1. The Evolving Nature of Explicit Systematic Strategy Instruction 

Nonetheless, the positive and significant pooled effect sizes for the studies that 
investigate the effect of explicit systematic instruction study results on word problems, 
computation, and transfer outcomes suggests that explicit systematic instruction is a desirable 
approach for at least some critical aspects of mathematics instruction for students with LD. 
The question becomes, what exactly is explicit systematic instruction? There is no easy 
answer to this question. In fact, like most educational labels, this term means very different 
things to different individuals. In addition, the nature of explicit systematic instruction has 
evolved over time. 

 
Probably the earliest use of this term (at least during the past four decades) was the 

pioneering work of Bereiter and Engelmann (1966) in providing preschoolers from low-income 
families with explicit systematic instruction in number concepts, counting, phonological 
awareness, and the more formal structure of the language used in school. By the 1980s, the 
external evaluation of Project Follow Through documented the success of this approach for 
teaching low-income students in the primary grades, particularly in the area of mathematics 
(Stebbins, St. Pierre, Proper, Anderson, & Cerva, 1977; Gersten & Carnine, 1984). As a result, 
many advocated the use of this approach, called direct instruction, in teaching mathematics to 
students with LD (e.g., Hallahan & Kauffman, 1986). In a 1998 meta-analysis, Swanson and 
Hoskyn (1998) concluded that the combination of direct instruction and strategy instruction 
was an effective approach for teaching students with LD in all academic areas.  

 
In the 1980s, direct instruction approaches began to incorporate principles gained 

from cognitive psychology and were increasingly referred to by the terms explicit instruction 
or explicit strategy instruction. In some cases, strategies were rather broad heuristics meant to 
teach students how to approach any type of mathematical problem (e.g., Montague, 1992). In 
other cases, the approach was heavily scripted and detailed precise steps students should take 
to solve a particular problem type. This latter approach has been criticized for its failure to 
help students understand underlying concepts and build flexible thinking (e.g., flexible use of 
a mental number line for estimation, and fluency with number properties such as the 
commutative and distributive laws; Woodward & Montague, 2002). However, others have 
argued that high degrees of explicitness and highly systematic instruction are critical for 
students with LD (e.g., Owen & Fuchs, 2002; Jitendra et al., 1998).  

 
Although the nature of explicit strategic instruction has evolved over time and can vary 

widely from study to study, there are a number of common features that define this approach. 
Generally, clear consistent modeling of step-by-step strategies through teacher explanation, 
modeling and demonstration; careful control of task difficulty; planful sequencing of teaching 
and practice examples; and specified procedures for providing corrective feedback characterize 
explicit systematic instruction. The studies reviewed here represent a range of approaches to 
providing explicit systematic instruction. However, all of them include most of the 
instructional features described above. In addition, this set of studies also demonstrates how 
explicit instruction has evolved over time to incorporate more innovative instructional features 
that support and encourage student interaction, flexibility, and generalization.  
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In Owen and Fuchs’ (2002) research on teaching problems involving fraction 
concepts, students were shown transfer problems in a careful sequence. Transfer problems 
referred to those with extraneous information, differing terminology from the practice items 
(e.g., the terms “one third” and “divide equally into three pieces”), and multistep problems 
that included one step involving manipulation of fractions. Students received clear feedback 
on their attempts to apply what they had learned in their practice sets onto the broader 
spectrum of problems and when they experienced problems, teachers demonstrated the 
underlying similarities to the previously taught problems.  

 
Van Luit and colleagues (1999) have developed a line of research for teaching 

students with LD that attempts to synthesize principles of explicit strategy instruction with 
advances in the understanding of the underlying nature of LD in mathematics (e.g., Geary, 
2005; Brown & Campione, 1990; Fuchs & Fuchs, 1998). The approach differs from earlier 
versions of direct instruction in several important ways. As in traditional models of direct or 
explicit instruction, students are taught in a quite explicit fashion one problem solving 
strategy at a time. As with Owen and Fuchs (2002) and Jitendra et al. (1998), teachers 
explicitly present a series of problem-solving steps to students and model several problems of 
this type for a small group of students. Students are taught multiple problem solving 
strategies and practice with an array of problems that use different types of syntax and 
different types of situations. Teachers actively encourage students to think aloud, to either 
walk through the steps in their strategy or articulate a reason for their decision to, for 
example, divide rather than multiply. Most of the intensive instruction is conducted in small 
groups. Teachers in Van Luit and Naglieri (1999), Jitendra et al. (1998), and Owen and 
Fuchs (2002) also used visual representations to teach problem solving. 

  
Tournaki (2003) used explicit instruction to help students with LD learn more 

sophisticated counting strategies. She capitalized on the important insight made by Siegler 
(1987) that a key milestone in beginning mathematics proficiency for children is the insight 
that to most effectively solve a simple addition problem, it is invariably easier to start 
counting from the larger number, rather than the first number. For 3 + 8, it is far more 
efficient to count 3 up from 8 than to begin with the 3 and “count up” 8. This insight requires 
students to have some grasp of the commutative law and also a reasonable sense of 
magnitude comparison—two essential components of number sense.   

 
The goal of this study was to examine whether the counting on strategy could be 

successfully taught to elementary students with LD. Instruction was quite clear and explicit. 
An example of the Strategy Instruction condition from Tournaki (2003, p. 458) is as follows: 

 
Q (Teacher): When I get a problem, what do I do? 
A (Desired student response, i.e., repeat of the rule): I read the problem: 
5 plus 3 equals how many. Then I find the smaller number.  
 
Teacher points to the smaller number and says, 3. Now I count the fingers. 
Q (Teacher): So how many fingers am I going to count? 
A (Desired student response): 3.  
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After a few problems, the teacher had students solve problems while thinking aloud, 
i.e., repeating the steps and asking themselves the questions. Teachers always provided clear, 
immediate feedback when students made errors. 

 
Note how closely this approach aligns to the depiction of explicit instruction 

presented earlier. Yet note how the target goal is to intentionally propel students into use of a 
more sophisticated counting strategy than just adding two numbers together, based on the 
finding from cognitive psychology (Siegler & Shrager, 1984; Geary, 1993) that students with 
LD tend to solve a problem such as 3 + 8 by starting at 3 and counting “up” 8 objects, 
whereas nondisabled students quickly learn that since 3 + 8 is the same as 8 + 3, it is much 
more efficient to start with 8 and count up 3 more objects.  

 
An interesting pattern emerges in the research of Tournaki (2003) on explicitly teaching 

students to use the counting on strategy. There is a significant impact on the immediate 
computation posttest (ES = 1.612). In other words, students with LD do better when taught a 
strategy than when they are simply given a set of addition problems and told to do them as fast 
as they can. However, the significant effect measured by the transfer test (ES = 0.801) indicates 
that strategy-based approaches that teach students about number families and number bonds 
pay dividends in terms of other important areas of mathematics such as estimation.  

 
2. Contemporary Adjustments to Explicit Strategy Instruction   

There are several additional important characteristics of most contemporary 
approaches to explicit strategy instruction. Van Luit and Naglieri (1999) provide a concise 
description. In their view, strategy instruction is when “students are taught to flexibly apply a 
small repertoire of strategies that reflect the processes most frequently evidenced by skilled 
students” (p. 99). They also stress the importance of a good deal of small group interaction in 
which students are encouraged and prompted to think aloud as they do mathematics, and 
peers provide feedback on their strategy selection and execution. 

 
Van Luit and Naglieri (1999) began instruction with use of concrete objects but then 

expeditiously moved into mental solutions that entailed a good deal of thinking aloud. The final 
phase of each instructional cycle included a “phase of control, shortening, automization and 
generalization” (p. 101). What is similar between these two methods is that transfer and practice 
for automaticity are not assumed. Nor are students expected to develop these proficiencies by 
doing homework problems or by informal discussions with peers. Significant blocks of 
instructional time are dedicated to these goals, and teachers closely monitor student progress 
toward independent performance. Whereas the goal of automaticity and clear, explicit modeling 
remains central, teaching students how to transfer the knowledge they obtained is a major focus, 
and is characteristic of the more contemporary explicit strategy instruction studies.  

 
Another strand in this research seems particularly relevant for students with LD who 

struggle with story problems. In related streams of research, Hutchinson (1993), Jitendra et 
al. (1998) and Xin et al. (2005) taught students in a systematic fashion a graphic 
representation to help them analyze the contents of a story problem. The three studies have 
addressed a) simple arithmetic word problems involving addition and subtraction (“change, 
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combine, compare” following the Riley, Greeno, and Heller (1983) representational system) 
b) comparative problems involving multiplication (Xin et al., 2005), and c) word problems 
that typically are taught in beginning algebra. 

 
The goal is to help students grasp the nature of word problems that involve an 

operation (either addition or multiplication of whole numbers) and its inverse operation. 
Rather than focusing on tricks such as “key words” students learn to use a visual 
representation to analyze the question and then discern how to handle relevant information. 
Exposure to all aspects of each of the problem types is deliberate and explicit. Practice is 
extensive, including opportunities for students to think aloud as they complete their graphic 
organizers. The instructor carefully highlights the key aspects of each problem type and 
provides a good deal of discrimination practice. Figure 1 below is an example of the graphic 
representation used to teach students a way to analyze multiplication problems involving 
comparisons (Xin, Jitendra, & Deatline-Buchman, 2005, p. 185).  

 
Figure 2: General Problem-Solving Steps Employed in the Schema-Based Instruction 
and General Strategy Instruction Conditions 

 
Source: Xin et al., 2005, p. 185. 

 
Upon examining the full array of studies, one is struck by several features. The first is 

that all these studies address topics that are particularly problematic for students with LD, 
particularly those with difficulties in both mathematics and reading (Jordan, Hanich, & 
Kaplan, 2003). The second is that the pooled effects on word problems, computation, and 
transfer outcomes are all significant. The third is that the instructional strategies in the 
interventions do borrow from both the mathematics education research and the cognitive 
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development research in mathematics. This seems an advance over the very general 
heuristics that comprised much of the mathematics intervention research in the special 
education literature 15 to 20 years ago. Those generic strategies were often borrowed from 
the research on reading comprehension or writing, and failed to capitalize on the advances 
made in research on the teaching and learning of mathematics. In fact, Xin et al. (2005) 
intentionally used the older, generic problem solving approach as the control group condition 
and found large effects favoring the more innovative approach for helping students 
understand the mathematical nature of the story problem. 

 
Because in explicit strategy instruction students are invariably taught how to 

approach the problem type or types and are usually given precise wording to use as they 
think aloud, development of mathematical insight rarely plays a role in the design of the 
interventions (with the possible exception of Van Luit and Naglieri, 1999, in which multiple 
strategies are highlighted, potentially allowing such insights to develop). Therefore, there is 
not much known about the extent to which explicit instruction helps support students in 
developing such insights or understandings since proficiency and conceptual knowledge are 
always related in an integral fashion (Rittle-Johnson, Siegler, & Alibali, 2001).  

 
In summary, this body of research on explicit instruction suggests that the field has 

made reasonable strides in understanding at least one type of intensive mathematics 
instruction that will help students with LD become more proficient in solving relatively basic 
grade level word problems and at least make some gains toward understanding how to 
translate stories or written problems into appropriate symbols, representations, and 
mathematical expressions. 

 
This approach for providing explicit systematic instruction should also help inform the 

development and implementation of the type of preventative small group interventions that are 
increasingly used to help students who are struggling to acquire proficiency in mathematics in 
general classroom instruction. Preventative small group interventions provide students, who are 
identified as struggling in the Tier 1 core curriculum, with specific skill instruction in small 
groups. A major goal of preventative small group interventions is that they will reduce 
inappropriate referrals to special education, because if students benefit from a relatively low 
cost small group mathematics intervention in their general classroom, they are unlikely to 
require the intensive instruction that special education is intended to provide.  
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3. Studies Evaluating the Impact of Explicit Instruction for 
Low-Achieving Students 

As described earlier, explicit instruction requires the teacher to be the provider of 
knowledge and to provide a great deal of structure and control concerning how content is 
learned, including the specific strategies or steps used by the children to solve the problems. 
Table 11 summarizes the results from the studies that investigated the effects of various 
strategies on the math achievement of low-achieving students. The four studies that 
investigated explicit instruction as a means for teaching low-achieving students are: Darch, 
Carnine, and Gersten (1984); Kroesbergen, Van Luit, and Maas (2004); Moore and Carnine 
(1989); and Woodward and Brown (2006). All but one of the effect sizes for the explicit 
instruction studies (i.e., Woodward & Brown, 2006) are significant.2 

 
Table 11: Studies That Investigate the Effects of Various Instructional Strategies on 
Math Achievement for Low-Achieving Students 

Study Design Sample 
Duration/ 
Content Contrast Measure Hedge’s g 

Standard  
Error 

Darch et al., 
1984 RCT 

73 low-achieving  
fourth-grade 
students in one 
school  

Eleven 30-minute 
lessons/ Math story 
problems 

Explicit Method 
with Fixed Time vs. 
Basal Instruction 
with Fixed Time 

Researcher 
designed 
word 
problem test 

1.914 *** 0.408 

Pooled 
computation 
measures 
(includes two 
tests) 

0.441 ** 0.179 

Pooled fact 
fluency 
measures 
(includes two 
tests) 

0.180 (ns) 0.177 Fuchs et al., 
2005 RCT 

139 first-grade 
students at risk for 
the development of 
math difficulty in 41 
classrooms in 10 
schools 

48 sessions, 3 times 
weekly for 16 
weeks/ Identifying 
numbers, more and 
less, addition and 
subtraction 

Tutoring based on 
CRA vs. No 
Tutoring 

Pooled 
conceptual 
and 
application 
measures 
(includes 
three tests) 

0.414 * 0.179 

Kroesbergen et 
al., 2004 RCT 

265 students aged  
8–11 years old from 
13 general and 11 
special elementary 
schools for students 
with learning and/or 
behavioral disorders 
in the Netherlands 

Thirty 30-minute 
lessons, twice 
weekly, over 4 to 5 
months/ 
Multiplication 

Explicit vs. 
Traditional 
Instruction 

Pooled 
Problem 
Solving 
Measures 

0.569 * 0.262 

Continued on p. 6-61 

                                                             
2 An obvious outlier that was not included in the table was Cardelle-Elawar’s (1995) study.  The effect size was 
equivalent, for example, to the average control classroom being at the 3rd percentile and the average 
experimental classroom being at approximately the 84th percentile. The effect size for that study is 
extraordinarily large. This may, in part be due to the fact that the unit of analysis was the classroom, not the 
individual child. Effect sizes are larger when analysis is based on means of classrooms because individual 
differences among children within classrooms are minimized. However, there are likely to be other factors 
relating to the alignment of test to the intervention that lead to the study’s extraordinary high effect size. 
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Table 11, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Hedge’s g 

Standard  
Error 

Moore & 
Carnine, 1989 RCT 

29 students in 
Grades 9–11 from 
three math classes 
for low-performing 
students in a high 
school in a medium-
sized city in the 
Northwest 

Twenty 50-minute 
lessons/ Ratio and 
proportion word 
problems 

ATCD (Active 
teaching with 
empirically 
validated curriculum 
design) vs. ATB 
(Active training 
with basals) 

Researcher 
designed 
criterion 
referenced 
test to assess 
student 
mastery of 
specific 
mathematics 
skills 

0.994 ** 0.386 

Pasnak et al., 
1991a RCT 

85 low-performing 
students from 17 
Kindergarten classes 
in six neighboring 
Northern Virginia 
schools 

3–4 sessions per 
week over three 
months/ Introductory 
mathematical 
concepts 

Piacceleration vs. 
Control 

SESAT math 
subtest 0.520 (ns) 0.348 

Thackwray et 
al., 1985 RCT 

60 third- and fourth-
grade children with 
teacher perceived 
academic problems 
from three urban 
public schools 

Four 45-minute 
sessions/Addition 

Specific self 
instruction vs. 
Didactic 

Pooled math 
quiz (ES = 
0.501) and 
Peabody 
Individual 
Achievement 
Test (ES = 
0.780) 

0.641 * 0.325 

Woodward & 
Baxter, 1997b RCT 

38 low-achieving 
third-grade students 
in nine classes in 
three schools located 
in the Pacific 
Northwest 

One school year/ 
Third grade math 

Everyday 
Mathematics vs. 
Heath Mathematics 
Program 

ITBS 
including 
computation 
(ES = -0.176), 
concepts 
(ES =0.199), 
and problem 
solving skills 
(ES = -0.085) 
subtests 

-0.223 (ns) 0.635 

Woodward & 
Brown, 2006b Quasi 

53 students in two 
middle schools in 
nearby medium-
sized suburban 
school districts. 
Students had been 
identified as low-
achieving in 
mathematics by 
elementary school 
teachers. No student 
had an IEP for 
mathematics 

One school year/ 
Both curricula 
emphasized core 
NCTM strands: 
numbers, operations, 
measurement, 
geometry, data 
analysis and 
probability 

Transitional Math 
Curriculum vs. 
Connected Math 
Program 

Pooled 
standardized 
(ES = 0.797) 
and 
researcher 
developed 
test (ES = 
1.435) 

1.116 (ns) 0.688 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 

 
Two of the studies (Darch et al., 1984; Moore & Carnine, 1989) used a highly explicit 

approach based on the Direct Instruction model articulated by Silbert, Carnine, and Stein 
(1989) and Engelmann and Carnine (1982). This is a traditional approach to explicit 
instruction, which has been widely used in the field of special education with students with 
LD, especially in the 1980s and early 1990s. With direct instruction, teachers model how to 
solve a specific problem type, and spell out the necessary steps. Students learn the steps and 
through careful sequences of examples, practice solving problems in the precise fashion that 
they were taught. Another one of the studies, Kroesbergen et al. (2004) also employed a 
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highly explicit instructional approach. That is, students (8–11 years old) were instructed via 
directions and modeling by their teacher how and when to apply specific strategies for 
solving multiplication computation problems. Students were directed to only use the strategy 
taught by the teacher. Although highly explicit instruction has been shown to lead to 
enhanced academic outcomes for students with learning disabilities, and other students 
considered at risk for experiencing difficulties in mathematics (e.g., Gersten & Carnine, 
1984; Baker, Gersten, & Lee, 2002) some have questioned the extent to which students 
actually learn the underlying rationale behind the strategies that are explicitly taught (e.g., 
Woodward & Howard, 1994; Woodward & Montague, 2002).   

 
The two studies (Kroesbergen et al., 2004; Woodward & Brown, 2006) could be 

characterized as teaching students a variety of heuristics for problem solving but with 
significant segments of instruction following the highly explicit nature of classic direct 
instruction. In fact, one of the goals in the framing of some of the research studies we discuss 
below is an attempt to ponder and define the nature of explicit instruction for low-achieving 
students. Their thinking is helpful in beginning to unpack this construct. 

 
Woodward and Brown (2006) found that despite statements by the National Council 

of Teachers of Mathematics (NCTM) (2000) indicating that students experiencing difficulties 
in mathematics benefit from a challenging curriculum, they could not locate any research to 
support this claim. They note, “In-depth examinations of this population indicate that without 
substantive modifications, these students do not exhibit high levels of success on either 
academic measures or everyday activities” (e.g., Baxter, Woodward, Wong & Voorhies, 
2002; Woodward & Baxter, 1997, p. 151). Their analysis of the relevant research, with which 
we concur, notes that effective components of instruction for low-achieving students in 
mathematics supports the use of both concrete and visual representations of concepts, 
carefully orchestrated practice activities with feedback on all aspects of mathematics and 
high, but reasonable, expectations.   

 
Woodward and Brown (2006) evaluated an intervention, written by Woodward, 

called Transitional Mathematics, and attempted to put these components into practice in six 
intensive, remedial middle school classrooms. The curriculum included numerous visual 
models for representing mathematical procedures in a meaningful way. They present, for 
example, difficult concepts such as place value in three-digit addition by both using a written 
algorithm and a visual model that depicts the algorithm. Regrouping was taught via 
systematic use of expanded algorithms as well as visual models of the expanded algorithm. 
Practice on relevant mathematics facts, and factoring was part of each daily lesson. The 
teacher explicitly introduced the concepts, and worked problems with the group that 
exemplified the concept before students broke into pairs. Because of the reading difficulties 
of many of the students, the teacher most often read the problem to the students. Guided 
practice consisted of approximately five problems worked on by students and reviewed with 
the teacher. This part of the lesson also included a good deal of checking for understanding 
(Good & Grouws, 1977) and attempts to explore any student misconceptions. Practice was 
typically done in pairs and included opportunities for students to explain their reasoning to 
each other and with the class. Students in the comparison classroom were taught using the 
Connected Mathematics Program, a commonly used middle school curriculum. Woodward 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-63 

and Brown characterize this as follows: The core emphasis of this program is problem 
solving, and students typically read descriptions of problems as part of each lesson. 
Connected Mathematics is much more contextualized in elaborate “real-world” problems, 
and has a more peripheral attention to skill development, in contrast with Transitional 
Mathematics that integrates the latter with distributed practice. This quasi-experimental study 
involved two schools, one the intervention school and one the comparison school—no 
mention was made concerning how schools were designated. 

 
Regarding differences in achievement between groups, the effect size on the Terra 

Nova, a standardized mathematics achievement test was not significant but indicative that the 
Transitional Mathematics treatment is a promising approach (ES = 1.116). Note how this 
study, like the others in the explicit instruction set also includes an array of other practices 
deemed to be beneficial—use of guided practice, intensive use of visual models so that 
students can represent problems in multiple ways (Donovan & Bransford, 2005), clear and 
explicit instruction in use of the concepts and provision of heuristics for problem solving.  

 
Kroesbergen et al. (2004) and Darch, Carnine, and Gersten (1984) used an approach 

that was even more explicit than the Woodward and Brown (2006) model. In these studies, 
teachers modeled an approach for solving problems and students were expected to follow the 
teachers’ model. Teachers did explain when the strategy was appropriate, and provided 
examples of occasions when it was not appropriate. In both cases, the degree of structure was 
higher than in Woodward and Brown (2006) and students were not given a chance to talk 
through their approach for solving the problem with a partner or the teacher. Both studies 
(Kroesbergen et al. and Darch, Carnine, & Gersten) demonstrated significant effects on 
researcher-developed measures that were aligned with curricula taught, favoring the explicit 
instruction groups. In the Kroesbergen et al. (2004) study, the effect size in the area of word 
problems involving multiplication was significant (ES = 0.569) and in Darch, Carnine, and 
Gersten (1984) there was also a significant effect size in the area of word problems (ES = 
1.914) that cut across all four basic arithmetic operations.   

 
Moore and Carnine (1989) explored the degree of explicitness within the context of 

highly interactive, teacher-directed instruction. In this study, high school students were 
taught how to solve ratio and proportion problems. Whereas control group students were 
taught to ask themselves “Is this information important?” students in the experimental 
condition were taught in a much more step-by-step fashion and were taught strategies for 
each of four types of problem sets. For this study, the effect size was significant (ES = 0.994) 
on a test of mastery of specific skills. However, one must take into account that this study 
measured only the topic covered, in contrast to Woodward and Brown (2006), which 
measured all aspects of mathematics covered in a typical school year.  
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F. Other Approaches for Teaching Students With  

Learning Disabilities 

This next section addresses other instructional approaches for teaching mathematics 
to students with LD. The findings are organized by three major themes:  

 
• Selection of examples to foster development of more sophisticated strategies for 

quick retrieval of basic arithmetic facts 
• Emphasis on visual representation 
• Emphasis on encouraging students to think aloud 

 
It is interesting to note that virtually all of the studies in these categories also have at 

least a reasonably strong degree of explicitness in the design of their instruction—a feature 
that is consistent across the body of studies reviewed for this section.  

 

1. Strategies for Quick Retrieval of Basic Arithmetic Facts 

Quick retrieval of basic arithmetic facts or combinations has been assumed by 
virtually the entire mathematics education community as critical for success in more 
advanced mathematics. It is considered a necessary, though not a sufficient requirement for 
emerging mathematical competence. Researchers in the field of LD have found for several 
decades that slow and inaccurate retrieval of basic combinations is a clear, consistent early 
indicator of persistent serious difficulties in mathematics (Gersten, Jordan, & Flojo, 2005; 
Geary, 2005; Jordan, Hanich, & Kaplan, 2003; Goldman & Pellegrino, 1987; Hasselbring, 
Goin, & Bransford, 1988).  

 
Two studies with students with LD were included in this classification, and are 

summarized in Table 12. Beirne-Smith (1991) attempted to examine whether sequencing of 
examples could enhance facility with basic addition combinations for students with LD. She 
used an array of facts developed by Carnine and Stein (1981) that was geared toward helping 
students see that to compute, for example, 8 + 2, all they needed to do was count up by 2. 
Examples of the array are 2 + 4, 2 + 5, and 2 + 6. The impact of the sequence did not lead to 
significant improvement over simple rote practice. 
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Table 12: Studies That Investigate the Use Of Strategies With Students With Learning 
Disabilities to Develop the Ability to Quickly Retrieve Arithmetic Facts 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s 
g 

Standard  
Error 

Beirne-
Smith, 1991 RCT 

30 students with LD aged 6 to 
10 years old from four schools 
in two adjacent southeastern 
school districts were tutored. 
20 students with no learning 
disabilities in Grades 3–6 
served as tutors 

30-minute tutoring 
sessions for four 
weeks/ Single-digit 
addition facts 

Counting-on 
procedure 
vs. Rote 
memorization 

Oral test on 
addition facts 0.165 (ns) 0.448 

Woodward, 
2006 RCT 

15 fourth-grade LD students 
from two “mainstreamed” 
classrooms in a school in a 
suburban school district in 
the Pacific Northwest 

20 25-minute 
sessions daily 
over four 
consecutive weeks/ 
Multiplication facts 

Strategy and 
timed practice 
vs. Time 
practice via 
direct 
instruction 

Pooled 
researcher 
designed 
computation 
measures 

0.377 (ns) 0.509 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
 
Woodward (2006) extended this line of research to much more complex multiplication 

combinations, which require many students to rely on some variant of multiplication tables and 
sheer rote practice. He developed an intervention containing two components. The first 
involved explicit instruction in an array of strategies that can help with quick retrieval of 
multiplication combinations. These included numerous shortcuts based on properties of 
numbers. One is counting backward for combinations of 9, i.e., knowing that 8  9 achieves 
the same answer as 8  10 - 8. Another is use of the distributive law, e.g., 37  5 equates to the 
same product 35  5 plus 2  5 An advantage of this strategy’s approach is that students could 
not only learn more efficient ways to compute these multiplication facts but also develop their 
facility with using properties of numbers to solve problems. 

 
However, Woodward (2006) noted that strategy instruction will not, in and of itself, 

promote quick retrieval of mathematical combinations for all students with LD (see 
Hasselbring, Goin, & Bransford, 1988). He therefore combined the strategy instruction and 
practice with timed practice drills. He compared students taught with a combined strategy 
instruction and timed practice approach to students taught only with timed practice. 

 
Results were positive favoring the strategy group and nonsignificant. However, given 

the small sample size, and inconsistent findings across mathematics domains, one can only 
infer that this approach—or aspects of this approach—might be worth exploring in terms of 
development of more fluent retrieval as well as in helping students understand more about 
number families and increasing their ability to estimate. However, the set of studies on 
building fluency in computing mentally or retrieving arithmetic combinations indicates that 
there is a good deal more to be learned about how to improve students’ proficiency in this 
critical area. 
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2. Use of Visual Representations, Visualization, and the Concrete-
Representation-Abstract Approach  

Adding It Up, the 2001 National Research Council report on the teaching of 
mathematics, eloquently describes the role of representations in the teaching and learning of 
mathematics, a role that has not always been adequately highlighted until recently in the 
instructional research on LD. 

 
Mathematics requires representations. In fact, because of the abstract nature of 
mathematics, people have access to mathematical ideas only through the 
representations of those ideas. … Much of the real intellectual work in 
mathematics concerns the interpretation and use of representations of 
mathematical ideas (pp. 94–95, emphasis added).  
 
The authors explain that mathematical ideas are often metaphorical, and thus, a 

representation or multiple representations are excellent means for conveying mathematical 
ideas. This section summarizes a set of five recent studies on the role of visual representations 
as a key means for teaching mathematical ideas, strategies, and procedures to students with 
LD. Each researcher approaches the use of representations somewhat differently.  

 
Table 13 presents information on each of the studies, as well as the outcomes of the 

studies. Because the instructional approaches are so different, the Task Group did not pool 
effect sizes across the set of studies. However, taken together, these approaches reflect a 
trend toward serious thinking about instructional uses of representations that include physical 
models using manipulatives, pictorial representations, abstract representations using 
geometric shapes, as well as increasingly abstract representations, such as number lines and 
graphs of functions and relationships. It should be noted, however, that the effect sizes across 
studies are quite variable.  
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Table 13: Studies That Investigate the Use of Concrete Instruction and Visual 
Representations Used for Students With Learning Disabilities 

Study Design Sample Duration/Content Contrast Measure 
Hedge’s  

g 
Standard  

Error 

Butler et al., 
2003a RCT 

50 students in Grades 
6–8 with mild–
moderate disabilities 
(42 students with 
specific learning 
disabilities in math 
and eight with other 
disabilities) from a 
public middle school 
located in a large 
urban area of the 
Southwest 

Ten 45-minute 
lessons/ Fraction 
concepts and 
procedures 

Concrete-
representational-
abstract (CRA) vs. 
Representational-
abstract (RA)  

Area Fractions, Quantity 
Fractions, and Improper 
Fractions subtests 
provided measures of 
conceptual understanding 
of fraction equivalency 
and Abstract Fractions 
and Word Problems 
subtest provided a 
measure of application 

-0.095 (ns) 0.526 

Immediate Posttests - 
Addition and subtraction 
computation skills tests 

-0.043 (ns) 0.477 

1 week follow-up tests 0.076 (ns) 0.477 

Manalo et al., 
2000—
Experiment 1 

RCT 

29 From three 
students (equivalent 
to eighth grade) with 
learning disabilities 
from two schools in 
the Palmerston North 
area of New Zealand 

Five 25-minute 
sessions twice per 
week/ Addition and 
subtraction 

Process mnemonics 
vs. Demonstration 
imitation 

6 week follow-up tests 0.956 ~ 0.506 

Immediate Posttests - 
Addition, subtraction, 
multiplication, and 
division computation 
skills tests 

-0.153 (ns) 0.475 

1 week follow-up tests 0.180 (ns) 0.472 

Manalo et al., 
2000—
Experiment 2 

RCT 

28 From three 
students (equivalent 
to eighth grade) with 
learning disabilities 
from two schools in 
Auckland, New 
Zealand  

Ten 25-minute 
sessions twice per 
week/ Addition, 
subtraction, 
multiplication, and 
division 

Process mnemonics 
vs. Demonstration 
imitation 

8 week follow-up tests 1.876 ** 0.579 

Walker & 
Poteet, 1989a RCT 

70 sixth- and eighth-
grade LD students 
receiving mathematics 
instruction in resource 
room programs in four 
Indiana school districts 

Seventeen 30-
minute lesson/ 
Problem solving 
strategies for 
simple word 
problems involving 
addition and 
subtraction 

Instruction using 
diagrammatic 
representations vs. 
Traditional 
instruction 

One-step story problem-
solving test 0.349 (ns) 0.330 

Witzel et al., 
2003a RCT 

34 matched pairs of 
sixth- and seventh-
grade students with 
learning disabilities or 
at-risk for difficulties 
in math (41 LD 
students and 27 at-
risk) in 12 inclusive 
classrooms in an 
urban county in the 
Southeast  

Nineteen 50-
minute lessons/ 
Algebraic 
transformation 
equations 

Concrete-
representational-
abstract (CRA) vs. 
Abstract 

Algebra transformation 
equations test  0.826 * 0.346 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
The intriguing set of two experiments by Manalo and colleagues (2000) examines the 

use of easy-to-imagine visual stories and schema to help students remember rules, principles, 
and procedures. These studies address a potentially important issue in the practice of teaching 
mathematics: how to provide prompts or facilitators to help students create visual 
representations. In this study, explicit teacher-directed instruction (modeling followed by 
guided practice with clear feedback) is a constant. The variable is visualization. 
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Manalo et al. (2000) adapted an approach from a Japanese educator, Nakane. The 
goal of this approach is to “summarize the organization and the process of problem solving 
… using familiar metaphors expressed in familiar ways” (p. 138) and thus to teach 
mathematical operations in a clear, comprehensible fashion. The goal of the researcher was 
to present mathematical problems as interesting, easy to visualize narratives that would 
engage the students, and thus enhance their interest in the process, their memory of the 
procedures taught, and the questions that children must ask themselves before deciding on a 
strategy for solving a problem. 

 
For Study 1, the topic was basic arithmetic computation problems; all participants were 

screened to ensure that they were not proficient in use of standard algorithms for multidigit 
operations involving regrouping, even though they had been taught this material before, often 
many times before. Numbers were presented as characters and operations as stories. For 
example, to teach subtraction, students were asked to visualize warriors with numbers on their 
uniforms, and to visualize that the bigger the number on the uniform, the stronger the warrior. 
The teacher used simple drawings to demonstrate the procedure or story. For subtraction, the 
top number represented the attackers and the bottom numbers the defenders, and students were 
told that the attackers weakened during the battle. The number on the uniform of a defender 
told a student how much strength was sapped from the warrior. In cases involving regrouping 
(e.g., 33-5), students were told that for example, a warrior with strength of 3 would not have 
adequate strength to sustain a battle with a defender with strength of 5. Thus, the army would 
need to regroup and borrow some strength from the warrior with strength of 30. The teacher 
used pictures to demonstrate the process of regrouping. 

 
Similar stories were developed for multiplication and division. The approach used to 

teach students in both the experimental and control conditions was a combination of model-
demonstration with guided practice and feedback. Two experiments were conducted. The first 
entailed the researcher as the teacher; the second used two different teachers. For both studies, 
the pattern of findings was similar. No significant effects were found on the immediate posttest 
or a test administered one week later. Yet, on the six-week and eight-week follow-up tests, the 
effect for Experiment 1 (in which the researcher did all the teaching) was 0.956, which 
bordered on statistical significance, and for Experiment 2, which used teachers other than the 
researcher, the effect was larger and statistically significant (effect size = 1.876). 

  
Given the problems with maintenance of knowledge for many students with LD, 

these results seem worth noting. The use of consistent visual representations and stories to 
help students think through their decisions about appropriate computational processes is an 
important fact to note. One wonders about its impact on helping students with LD translate 
more complex mathematical problems and work with more complex mathematical concepts. 
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3. Visual Representations and Helping Students Understand Visual 
Representations by Use of the Concrete-Representational-Abstract 
(CRA) Method 

Two of the studies in this section (Butler et al., 2003; Witzel et al., 2003) examine the 
use of concrete-representational-abstract (CRA) instruction for students with learning 
disabilities. This sequence of instruction begins at a concrete level, with students 
manipulating objects. Once students understand a topic concretely, they work with the topic 
using visual representations. Once the students are comfortable with how the topic can be 
represented in multiple ways, they work with the concepts at a more abstract level. The 
Walker and Poteet study (1989–1990) are also included in this section because their work can 
be seen as a precursor to the more complex CRA model.  

 
In the earliest study in this subcategory, Walker and Poteet (1989–1990) compared a 

diagramming method of problem solving with a keyword approach. Subjects were middle school 
students with LD. In both conditions in this study, explicit instruction was a constant and not a 
variable. The experimental variable using a visual representation to help students organize 
information from one- and two-step story problems involving basic addition and subtraction, then 
to translating the pictures into numerical expressions, and ultimately to computing the answer. 

 
Although this skill seems exceptionally easy for middle school students, poor 

performance on word problems is prevalent with this group. In fact, on the pretest, the 
average score for students was equivalent to 16.43 correct (out of 32 possible problems, 
51.34% correct). Students in the diagramming group were taught to create diagrams that bear 
similarity to those used by Xin et al. (2005) and Jitendra et al. (1998). Finally, students were 
asked to compute the actual solution. The comparison group was taught to identify keywords 
in the problem that could then be directly translated to specific numerical operations. Despite 
not reaching statistical significance, the effect size (0.349) suggests that, given the difficulty 
that students with LD have in developing proficiency in this area; the approach could well be 
labeled promising.  

 
Butler et al. (2003) used the CRA to teach middle school students with LD basic 

concepts and procedures involving fractions. The topics included concepts and procedures 
related to equivalence of fractions and computations involving fractions. The authors note that 
researchers (e.g., Woodward & Montague, 2002) have suggested that many students with LD 
lack any real understanding of the concepts underlying various procedures that they can 
perform and that these problems truly surface once students begin to work with rational 
number concepts and operations. In this study, as in Walker and Poteet (1989–1990), the 
instructional methodology was similar for experimental and control students in that explicit 
instruction was used in both conditions. The major difference was that CRA students spent 
three days working with concrete objects, three days with visual representations, and only then 
moved on to abstract, symbolic notation. The control condition began with visual 
representations for three days. Major emphasis in both conditions was placed on fractions as 
part of a set, as opposed to fractions as area. As one can see in the first study in Table 13, the 
effect size for this method was nonsignificant. Thus, the CRA intervention implemented in this 
study was not more effective than the control condition in teaching fractions to middle school 
students with LD.  
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The other CRA study, Witzel et al. (2003), also conducted with middle school students, 
differs in several important ways from Butler et al. (2003). The first is that the topic was a more 
difficult one, algebraic transformation equations. The second is that the researchers used CRA 
quite differently. For example, Witzel et al. progressed more fluidly from concrete, to visual, to 
abstract. The third difference is that, in this case, a researcher-developed measure was used 
rather than the standardized measure used by Butler et al. Finally, as can be seen in the last 
study in Table 13, effect size (ES = 0.826) is statistically significant. 

 
The authors note that because of the abstract nature of algebra, building a 

mathematically accurate concrete representation is much more of a struggle. Figure 3 presents 
an example of the instructional materials used and how the researchers grappled with 
representation of a variable (x) with concrete objects when x can represent any real number 
(Witzel et al., 2003, p. 127).   

 
Figure 3: Concrete, Representational, and Abstract Examples of an Inverse Operation 

 
Source: Witzel et al., p. 127. 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-71 

G. Strategies That Encourage Students to Think Aloud 

The Task Group identified two studies that examined strategies that encouraged 
students with LD to think aloud (Ross & Braydon, 1991; Schunk & Cox, 1986). Table 14 
below summarizes characteristics for the two studies, and presents the effect sizes.   

 
Table 14: Studies That Investigate the Impact of Think Aloud Strategies With Students 
with Learning Disabilities 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s 
g 

Standard  
Error 

Ross & 
Braden, 
1991a 

RCT 

94 elementary school 
students with LD in nine 
intact special education 
resource rooms 
classified as learning 
disabled in math 

Nineteen 60-minute 
sessions over four 
weeks/ Addition 
and subtraction 

Cognitive 
behavior therapy 
in which students 
are instructed to 
talk aloud vs. 
Direct instruction  

Stanford Diagnostic 
Mathematics Test - 
computations 

0.135 (ns) 0.434 

Schunk 
& Cox, 
1986  

RCT 
90 students classified 
with LD in math from 
six middle schools 

Six 45-minute 
sessions/ 
Subtraction with 
regrouping 

Continuous 
verbalization vs. 
No verbalization  

Subtraction test 1.005 *** 0.271 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
As previously mentioned, asking students to think aloud was a major component in 

many of the explicit instruction studies. What differentiates these two studies from those in 
the explicit instruction set (e.g., Manalo, 2000; Tournaki, 2003) is that in these studies, 
verbalization was the sole independent variable. In contrast, in the other explicit instruction 
studies, students thinking aloud was but one of several instructional components. Thus, these 
two studies suggest that: encouraging students to think aloud as they work on arithmetic 
problems shows promise as one component of a mathematics intervention. 

 
Both of these studies were influenced, to some extent, by the research of Donald 

Meichenbaum (1985), which suggested that students with learning disabilities, behavior 
disorders and, in all likelihood attention deficit disorders, could be helped in many areas of 
both academic and social development by being taught to verbalize. The Meichenbaum 
approach targets one of the key characteristics of students with LD—Geary’s (2005) concept 
of impulsivity and Kolligian and Sternberg’s (1987) concept of lack of task persistence. By 
actively encouraging students to speak to themselves about the strategies they are using to 
solve a problem, the researchers felt that students would be inhibited from quickly, almost 
recklessly proceeding forward without serious thought. In addition, the focus on active 
encouragement of thinking aloud is integrally linked to Vygotsky’s notion that thought is 
inner speech, and that students may well need to go through a period of actually thinking out 
loud, especially those students with learning difficulties.  

 
Schunk and Cox (1986) examined the effectiveness of verbalizing the steps of 

problem solving with middle school students with LD working two- to six-column 
subtraction problems with and without regrouping. As in the Tournaki study, the teacher in 
the treatment group talked through the steps of solving the subtraction problem and then 
students worked several problems while verbalizing the steps.  
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Students in the comparison group learned the same procedures but were in no way 
encouraged to verbalize during problem solving. This study is different from both the 
Friedman (1992) and Lambert (1996) studies in that students were solving computation 
problems not word problems, although some of the computations were rather complex. A 
statistically significant effect size of 1.005 was found on a subtraction computation test that 
was closely aligned to the types of problems used during instruction. Effects were modest 
and not statistically significant for the Ross and Braden (1991) study (ES = 0.135), although 
this could be due to the fact that the measure lacked the tight alignment to the intervention of 
the Schunk and Cox study. In any case, one study (Schunk & Cox, 1986) but not the other 
(Ross & Baden, 1991) suggests that for students with LD, merely encouraging self-
verbalization or thinking aloud can have beneficial effects in terms of learning mathematics. 

H. Other Approaches for Teaching Low-Achieving Students 

Unlike studies of other approaches to teaching students with LD, most of the other 
studies reviewed with low-achieving students can be characterized as providing primarily 
implicit instruction (with the exception of Fuchs et al., 2005). Implicit instruction refers to 
the teaching approaches that provide students with broad guidance in terms of general 
procedures for solving problems, including relatively broad questions to ask themselves. 
However, there is little in the way of specific guidance in how students construct knowledge, 
and these approaches do not necessarily include any mathematics in them. Students are 
provided strategies that are used to solve math problems, such as teaching students to think 
aloud, or use visual representations with strategic use of manipulatives. For example, 
Thackwray, Meyers, Schleser, and Cohen (1985) taught students five specific self-
instructions to say out loud while solving addition word problems. Presumably, these self-
instructions were intended to enhance student’s ability to construct accurate representations 
of the problem features and solution strategies.  

 
The four studies that are included in this category are Fuchs et al. (2005); Pasnak, 

McCutcheon, Holt, and Campbell (1991); Thackwray et al. (1985); and Woodward and Baxter 
(1997). Table 11 summarizes the characteristics of these four studies. It is important to note 
that these studies do provide various degrees of teacher direction, so we prefer the term 
“primarily implicit instruction” rather than implicit instruction because all studies reviewed 
below seem to provide instruction primarily, but not necessarily exclusively, via an implicit 
instructional approach. We treat each study separately as we did for studies considered in this 
section for evaluating the impact of explicit instruction for low-achieving students.  
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One study, Thackwray et al. (1985), examined the effects of encouraging students to 
think aloud as they worked using the cognitive behavioral model developed by Donald 
Meichenbaum (1985), which was a common special education technique in the 1970s and 
1980s. This technique was based on the premise that thinking aloud consistently will increase 
students’ ability to reflect on their actions and help dissipate some of the impulsivity that is 
typical of low-achieving students in mathematics. Students were taught five steps. The first 
step involved orienting students to solve the problem. The next two steps appear below:  

 
Step 2: First, I have to look at the problem very slowly to determine if it is addition, 

subtraction, multiplication or division. 
 
Step 3: This one is addition. I can tell by the sign. (Thackwray et al., 1985, p. 301). 
 
First, the instructor (a graduate student) modeled the steps; gradually, the student 

performed the five steps independently with no prompting. This study exemplifies implicit 
instruction because teachers provided minimal control over how students solved the problems. 
Rather, students were allowed to verbalize as they wished. In the specific self-instruction 
condition, the experimenter modeled the self-instructions (verbalizations) while the teacher 
performed two, three, and four digit addition problems. Using Meichenbaum’s (1975) five-step 
fading procedure, the experimenter gradually required the child to verbalize while performing 
each step toward solution alone while solving the math problem. In the didactic condition, 
children were simply provided instructions concerning what to verbalize during problem 
solving. However, no modeling of the verbalizing process was provided.    

 
Thackwray et al. (1985) investigated the effectiveness of this approach in a study 

involving 60 third- and fourth-graders who were perceived as experiencing difficulties in 
mathematics by their teachers. Although teacher judgment is no substitute for a mathematics 
performance measure, it often is reasonably accurate (Hoge & Coladarci, 1989). The 
intervention was quite short: four 45-minute lessons. The content was problems involving 
whole number addition. The control group received typical lecture-demonstration-practice 
with feedback instruction. The effect size (ES = 0.641) was significant, suggesting evidence 
of efficacy for this approach. The outcome was a composite of a standardized test: the 
Peabody Individual Achievement Test (PIAT) and a 20-item addition test. Based on the one 
study, there appears to be evidence of the effectiveness of promise in this general approach 
for problem solving, though replication of these findings in other studies would seem 
important for further research. 

 
1. Instruction in Piagetian Cognitive Operations (Classification, Seriation, 
and Number Conservation) 

The writings of Jean Piaget have always played a role in instructional research in 
mathematics, most recently in Griffin, Case, and Siegler (1994). Pasnak et al. (1991) 
examined the impact of small group instruction on Piagetian cognitive operations on 
kindergartners’ performance on the Stanford Early School Achievement Test (SESAT)-
Mathematics. The SESAT is essentially a readiness test, as opposed to a mathematics 
achievement test.  
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The sample was also selected by the kindergarten teachers as students who were 
having difficulty learning the basics of mathematics in kindergarten. The researchers used the 
students’ scores on the Otis Lennon School Ability Index to confirm that they were in the at 
risk category. On average, these students were at least .5 standard deviation units below the 
school mean. 

 
Instruction focused on the three Piagetian concrete operations that many students 

acquire informally before kindergarten (classification, seriation, and conservation). Many 
types of manipulatives were used (bolts, cups, lima beans, dominoes etc.). The amount of 
time devoted to this instruction was appreciable, three months of 15–20 minute small group 
lessons, delivered three to four times a week. Control group students received typical 
kindergarten instruction in numbers and number concepts.  

 
The effect size (0.520) was not statistically significant, when corrected for classroom 

level clustering. Nonetheless, the magnitude of the effect size, especially given the fact that a 
standardized achievement test was used which was not closely aligned to the specific content 
taught, suggests there may well be some promise to this approach. 

 
2. Evaluation of the Effects of ‘Reform’ Curricula on Low-
Achieving Students  

Woodward and Baxter (1997) conducted a small, but oft-cited, quasi-experiment that 
examined the impact of Everyday Mathematics, one of the curricula assumed to be consistent 
with the 1989 NCTM Curriculum and Evaluation Standards for School Mathematics. The 
study involved 38 low-achieving third-grade students in nine classes. The researchers 
assessed the impact of the reform curriculum versus a more mainstream commonly used core 
mathematics text. Note that students in neither condition received any additional support in 
mathematics from either special education or Title I. Results were nonsignificant (when 
adjusted for within-school clustering) and favored the control group (ES = -0.223). The 
reform curriculum produced one positive effect on the Concepts section of the Iowa Test of 
Basic Skills (ITBS) and two negligible negative effects: on the ITBS subtests for 
Computation and Problem Solving. None of these effects was significant. One reasonable 
conclusion is that low-achieving students require additional support and intensive work on 
foundational skills and that use of an innovative curriculum will not lead to any serious 
benefit unless such support is provided above and beyond the students’ classroom 
mathematics instruction. One notes that more recent research, including research by 
Woodward, adopts approaches that combine interest in teaching concepts along with 
procedures to build conceptual knowledge with the use of explicit instruction.  
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3. Response to Intervention: Evaluation of a Preventative Small Group 
Intervention for First-Graders at Risk for Experiencing Difficulties 
in Mathematics  

We identified only one study that investigated the effects of tutoring using concrete-
representational-abstract (CRA) instruction with low-achieving students.  

 
Fuchs et al. (2005) screened first-grade students in 41 classrooms in 10 schools using 

a set of screening measures that are known to be valid and reliable (see for example Gersten, 
Jordan, & Flojo, 2005). These students received small group instruction three times per 
week, a typical procedure for preventative small group (Tier 2) interventions. Core 
components of the intervention included strategic use of manipulatives to ensure students 
understood more abstract visual representations and mathematical symbols, heavy emphasis 
on problem solving and discussion of solutions, and use of technology to provide 
individualized practice on basic addition and subtraction combinations to increase quick and 
fluent retrieval.  

 
Fuchs et al. (2005) used a wide array of both researcher-developed and standardized 

measures, of computation and concepts, applications, or word problems, as well as addition 
and subtraction fact fluency. Effect sizes were 0.414 and significant, favoring the tutoring 
group for concepts or problem solving, 0.441 and significant for the combined computation 
measures and 0.180 but not significant for the two fact fluency measures. The effects were 
stronger for the computation and concepts measures than the fact fluency measure, indicating 
that the technology component appeared to be the weakest facet of the intervention. In 
interpreting the effect sizes, the reader should note that the control group students received 
no additional instruction. Thus the independent variable is receiving tutoring using a CRA-
based instructional model versus receiving no additional support whatsoever.  

 
In general, this appears to be an effective preventative small group early intervention 

for students who exhibit problems in mathematics at the beginning of the first grade. It also is 
a solid example of how both concepts, procedures, and problem solving can be taught and 
practiced in an intense, integrated fashion. It should be noted that beyond Bruner’s concrete-
pictorial-symbolic sequence, no information is provided about how the tutors interacted with 
the children about the mathematics. 
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I. Summary and Conclusions 

The Task Group was able to locate a reasonable number of high-quality experimental 
and quasi-experimental studies that investigated the effectiveness of various mathematics 
interventions in teaching mathematics to students with LD and LA. These studies provide a 
great deal of guidance concerning some defining features of effective instructional 
approaches for students with learning disabilities as well as low-achieving students. These 
features, many of which are associated with explicit systematic instruction, can be roughly 
categorized as follows: 

  
1) Concrete and visual representations (mathematical drawings) 
2) Explanations by teachers  
3) Explanations and math talk by students in whole class discussion  
4) Students working together 
5) Carefully orchestrated practice activities with feedback 
6) High but reasonable expectations 

 
Some additional features of this research are noteworthy beyond the generally 

consistent effectiveness of both explicit and primarily implicit instructional approaches 
(interestingly Kroesbergen et al. (2004) actually compared and found no differences in 
multiplication outcomes between these two approaches). The first is that studies varied 
widely in terms of mathematical skills that were targeted. Most included a focus on 
computation skills, while others included specific attention to word problem solving. This 
focus on problem solving in research on students with learning disabilities and low-achieving 
students is a relatively recent trend, and an important one, because students with LD and LA 
struggle, in particular, with word problems. 

 
The second is that a small but important set of studies examined best methods for 

building quick retrieval of arithmetic combinations. Mathematics educators have long been 
aware of the importance of quick retrieval of basic combinations so that students can focus 
on the problem at hand. Retrieval is stressed in the NCTM’s Curriculum Focal Points for 
Prekindergarten through Grade 8 Mathematics: A Quest for Coherence (2007). In addition, 
research on learning disabilities has consistently documented that inefficient and ineffective 
retrieval of combinations is typical of a student with learning disabilities in mathematics. 
Addressing this issue has been more of a struggle. Programs have been developed that 
orchestrate practice sets for each student and try to teach similar combinations together. 
However, Hasselbring et al. (1988) noted that even these programs are not successful with 
many students with LD.  
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The studies by Tournaki (2003) and Woodward (2006) are important because they 
demonstrate that there is wisdom in teaching students strategies about computation as a 
means of increasing speed and accuracy of retrieval. If nothing else, this type of instruction is 
more interesting and potentially engaging for students and more likely to build a deeper 
understanding of the number system than pure rote memorization. Note that Woodward 
intentionally paired strategy instruction with 15 minutes of timed practice. This mixture is 
one that seems to show promise.  

 
Additionally, many studies examined approaches to instruction that, based on the 

description, included coverage of conceptual understanding. In some studies, students were 
provided visual models so that students could use a visual representation to either compute or 
solve a word problem. Others used strategies that encouraged children to analyze word 
problem structure, so that meaningful patterns could emerge such as via explicit instruction 
or verbalizing. Mathematics educators have long been aware of the importance of developing 
an understanding of number operations, and patterns in problem solving, and this emphasis 
on meaningful understanding of operations is stressed in the NCTM Focal Points. In 
addition, research on mathematical learning in general, and mathematical disabilities and 
low-achievement, is associated with the nature of development of areas of number sense, 
including conceptual understanding of mathematical procedures and strategies for obtaining 
solution (Gersten & Chard, 1999; Hecht, Vagi, & Torgesen, 2007). Programs have been 
developed that orchestrate practice sets for each student and try to teach meaningful 
understandings of numbers and number operations. However, Fuchs et al. (2005) remind us 
that future work is needed to increase the power of classroom as well as tutorial treatments in 
low-achieving (at-risk) children.   

 
1. Quality of Mathematics Taught in the Studies 

In order to obtain an independent review of the quality of the actual mathematics 
taught in this set of studies, two research mathematicians involved in mathematics education, 
and one prominent mathematics educator were asked to examine the mathematical content 
and the nature of instruction (as opposed to the research design and technical details) of a 
small subset of studies. They looked at studies that described the mathematics content and 
instructional procedure with some amount of detail because we saw no benefit in, for 
example, asking a mathematician to evaluate a study in which it said, “Students learned the 
material in the third-grade mathematics state standards,” or studies that focused on very 
simple algorithms.  Thus, we tended to choose the studies that bit off the most ambitious 
mathematical material and developed seemingly effective means for teaching the materials to 
students with learning problems and learning disabilities. We selectively summarize some 
results in this section. 

 
The reader will recall that Woodward (2006) employed a combination of individualized 

fact practice with instruction that involved work with number families and applications of the 
distributive law to ease mental computation fluency. (For example, students learned that it is 
usually easier to calculate 8  9 by remembering that since 9 is the same as 10 - 1, this 
problem has the same answer as 8 (10 - 1) or 8  10 minus 8  1. Or that 9  8 is the same as 
8  9, so if you know one, you know the other because they are equivalent.) 
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The attempt to link computation to number properties is admirable, but several 
problems were noted. One mathematician observed that students should not be taught that 
9  3 is the same as 3  9. They are, in fact two different problems with the same answer. 
One refers to 9 sets of 3 units, the other to 3 sets of 9. For students to succeed in algebra, they 
must understand this difference and remember that two things may look very different and 
represent very different type of problem types but still have the same answer. The work on 
multiplication combinations could have resulted in intense work on applications of the 
commutative, associative and distributive properties of numbers, but based on the text of the 
article, it did not appear to do so. The importance of doing so for students with LD and other 
students with learning problems is critical. In contrast, the treatment in Woodward and 
Brown (2006), developed by the same author, appeared to offer a much richer mathematical 
menu to students. 

 
A similar concern was expressed about the pre-algebra material used in Witzel et al. 

(2003). Algebra was taught only on the procedural level. The importance of understanding 
the nature of a defining variable appeared to be underdeveloped, as did the potential richness 
of the concrete and visual representations and their link to sets of story problems. Similar 
concerns were raised about the CRA research of Butler et al. (2003), where numerous 
opportunities to explore rich mathematical ideas were lost. 

 
These are among the more ambitious studies in the set reviewed, and among the few 

that really try to delve into complex mathematical topics and concepts. Each of the studies 
demonstrated some success in reaching the population. However, more intensive collaboration 
with research mathematicians who know the underlying mathematics in the K–8 curriculum 
can result in even richer, more effective intervention research for these students.  

 
The research mathematicians also noted that although the two studies that attempted 

to teach story problems to students (Xin et al., 2005; Fuchs et al., 2005) did not really teach 
problem solving in the sense that NRC (2001) defined it. However, the studies seemed to be 
solid attempts to help students understand how to use the mathematics they already knew in 
an increasing array of applications. 

 
2. Conclusions 

On a positive note, many of the studies seriously address two areas of extreme 
difficulty for students with LD and low-achieving students: application of mathematics to 
word problems and building of quick retrieval of basic arithmetic combinations. These two 
areas are essential components of any serious mathematics intervention for these students and 
we now possess several evidence-based approaches for addressing these areas.  

 
It becomes difficult to conclude easy generalizations about the set of studies. A terse 

summary would be that explicit instruction is effective (often highly effective) in both 
domains. In addition, more implicit instructional approaches such as strategic use of concrete 
objects and visual representations shows some promise, although the number of studies 
supporting this approach is small, and results are not consistent. Finally, approaches that 
encourage students to think aloud as they solve problems seem to produce significant 
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positive effects. The drawback in these generalizations is that these terms mean different 
things to different people. Thus, in translating these findings into practice, effects may be 
highly dependent on how these instructional principles are conceptualized and how carefully 
they are incorporated into instruction.   

 
One process that might ease the transition is that many of the interventions included 

specific scripts for teachers to use for their lessons (although they were usually told to use 
these as a guide rather than an ironclad script). These could serve as templates for lessons as 
districts develop various professional academies and training institutes.  

 
Moreover, some other barriers to translating the research findings into classroom 

practice are as follows including the lack of sufficient specificity concerning the actual content 
of the mathematics instruction that was provided, which makes replication and extension of the 
current studies difficult. From a pragmatic standpoint, this is understandable given the need for 
authors to both describe the instructional sequence and content while leveraging page length. 
Also, the reviewed studies tend to use either a criterion-referenced test with items that are not 
presented or comprehensively defined or a standardized achievement test. A notable problem 
with standardized achievement tests is that they are composed of items from many domains of 
mathematics skill (e.g., basic computation, long division, fractions) and therefore tend to 
provide limited specificity concerning the actual mathematics content that students have 
mastered (Geary, 2005; Hecht, 1998). Finally, criteria for identifying and including low-
achieving students examined in these studies were not consistent, which makes generalization 
of findings uncertain. Most of the studies utilize quite systematic instruction, with high degree 
of structure and a deliberate pace. This degree of explicitness and detail seems critical for this 
group of students. Our hope is that research and development efforts will continue to 
incorporate these elements into instructional materials that can be used with students with 
learning disabilities and low achievement in mathematics.   
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IV. ‘Real-World’ Problem Solving 

A. Introduction and Background 

Discussion and debate about the place of “real-world” problems in mathematics 
instruction—both as a site for learning mathematics, and as an outcome—has been a central 
theme in U.S. mathematics education for more than a century. The earliest goals of 
mathematics instruction in this country related to practical uses of mathematics, in such areas 
as shopkeeping, commerce, surveying, banking, and carpentry (see Michalowicz & Howard, 
2003). Early U.S. mathematics textbooks are filled with practical problems intended to 
prepare students to enter the workplace and to address the particular application needs of the 
growing nation and society. Over the decades this emphasis on practical applications has 
ebbed and flowed. In the “new math” years (1960s and 70s), the predominant curricular 
emphasis was on mathematical precision and the structure of mathematics, but, even then, 
some critics, such as the applied mathematician Morris Kline (1973), continued to call for 
applications in the school curriculum. Indeed, even amidst the abstract and logic-focused new 
mathematics materials developed during the post-Sputnik era, there was at least one 
applications-oriented curriculum, the Unified Science and Mathematics for Elementary 
Schools (USMES) project.3  

 
A resurgence of calls for emphasis on “real-world”4 problems came in the 1989 

Curriculum and Evaluation Standards for School Mathematics, of the National Council of 
Teachers of Mathematics (NCTM), which argued that “instruction should be developed from 
problem situations” (NCTM, 1989, p. 11). The document recommends that in the early 
grades (K–4), most problems used in instruction should arise from “school and other 
everyday experiences” (p. 23). Progressing through the grades, there should be a balance 
between “problems that apply mathematics to the “real-world” and problems that arise from 
the investigation of mathematical ideas” (p. 75), and by high school, even more of the 
problems can arise from mathematics itself. 

 
The Instructional Practices Task Group begins by summarizing the definitions and 

operational meanings that researchers and developers have given to the term “real-world” 
problems. In the next section the Task Group will highlight some of the rationale and 
justifications that researchers and developers have used when arguing for and against 
particular characteristics of “real-world” problems and their uses as a part of the school 
mathematics curriculum. These viewpoints are sometimes based in research, and sometimes 
are more directly tied to experience and expert judgments. They sometimes relate to the 
question of how important it is for students to be able to apply their mathematical knowledge 
to particular types of problems as an outcome of schooling is. Finally, a synthesis of the 

                                                             
3 Launched in 1970 through the Education Development Center, with funding from the National Science 
Foundation; described as a project designed so “students could carry out long-range investigations of real and 
practical problems based in their local environment” (http://www.coe.ufl.edu/esh/Projects/usmes.htm). 
4 We will include “real world” in quotation marks throughout because of the ambiguity of definition of this 
phrase in the current literature. 
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findings from 21 studies examining the impact of “real-world” problem-based instruction on 
mathematics learning outcomes is provided, followed by commentary about issues in this 
body of research, and recommendations. 

B. What Do Researchers and Developers Mean by  

‘Real-World’ Problems? 

Here the Task Group draws on the conceptualizations of “real-world” problems 
assembled from both developers of instructional materials and researchers who study the 
impact of such problems. A serious problem in synthesizing the research in this area is that 
there is no clear, agreed-upon meaning for “real-world” problems. One characteristic 
mentioned frequently is the meaningfulness and relevance of the problem to the student 
audience. The Realistic Mathematics Education (RME) movement, which originated in the 
Netherlands through the work of the mathematician Hans Freudenthal (1973, 1991), has been 
influential in school mathematics in some countries. RME emphasizes relevance and the 
activity of doing mathematics; there are several lines of research that have a basis in the 
RME movement. For instance, researchers De Bock, Verschaffel, Janssens, Van Dooren, and 
Claes (2003) discuss “organizing mathematical activities around rich, attractive, and realistic 
contexts … [not only] aspects of the ‘real’ social or physical world; they can also refer to 
imaginary, fairy-like worlds as long as they are meaningful, familiar, and appealing to the 
students. It is not the amount of realism in the literal sense … but rather the extent to which it 
succeeds in getting students involved in the problem and engage them in situationally 
meaningful thinking and interaction” (p. 445). In the same tradition, van Dijk and others 
(2003) describe problems that “bring pupils into situations that make sense to them and 
provide them with opportunities to experience mathematics as it was developed in cultural 
history” (p. 164). Other scholars feel that “real-world” problems should be similar to 
problems that are encountered in applications beyond school, and that are authentic, for 
instance problems that are “…embedded in a rich narrative structure” and that may require 
students to make both mathematical and nonmathematical (e.g., ethical) decisions.  

 
In contrast, the problems typically found in algebra textbooks that are sometimes 

called “story problems” or “word problems” also are sometimes studied in efforts to look at 
“real-world” problem solving. Jonassen (2003), for example, defines story problems as those 
that “typically present a quantitative solution problem embedded within a shallow story 
context” (p. 267). 

 
A “real-world” oriented curriculum that has been studied by a number of the 

researchers cited in this paper, and whose authors provide detail about their conceptualization 
of “real-world” problems, is the Adventures of Jasper Woodbury video series 
(http://peabody.vanderbilt.edu/projects/funded/jasper/Jasperhome.html). This technology-
based series is designed to motivate students by engaging them in the solution of complex, 
multistep problems. The goals of the materials are to promote problem-finding and to 
develop problem-solving skills. Each 15–20 minute video segment presents an adventure 
story which involves solving a challenge. The Cognition and Technology Group at 
Vanderbilt (CTGV) identifies “real-world” problems as being complex, which means having 
multiple steps, requiring integration of mathematical concepts, involving identification of 
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relevant data, and demanding generation of appropriate questions (see CTGV, 1992; Hickey 
et al., 2001, pp. 613–14). The goal of this type of problem is to allow students to experience 
some of the ambiguity and complexity, as well as the intellectual excitement, that adults 
experience when solving actual problems involving mathematics, be it in engineering, 
business, accounting, architecture, transportation planning, etc. The hope is that, by 
anchoring mathematical procedures and concepts in an array of actual situations, students 
will see the value of knowing the procedures and will more likely be able to transfer what 
they learn in mathematics to actual problems. The terms “anchored instruction,” “situated 
cognition,” and “teaching for transfer” often recur in this literature. 

 
In summary, note how diverse these meanings of “real-world” problem solving are in 

the literature. This creates challenges and opportunities for researchers, who in general could 
make progress on some of the fundamental “real-world” problem solving questions with 
more clarity and focus in the operationalization of the terminology. 

 
What are the purported advantages and disadvantages of using various types of 
“real-world” problems in school mathematics instruction? 
 
There are several related but distinct reasons advanced in both research and other 

educational rhetoric for including “real-world” problems in the school mathematics 
curriculum. Those who believe that students’ ability to solve “real-world” problems should 
be an important outcome of school mathematics argue for the inclusion of such problems in 
the curriculum as preparation. Others contend that “real-world” problems should be in the 
curriculum because of their potential to engage and motivate students by engaging them in 
something they see as meaningful and important (see Bransford, Sherwood, Hasselbring, 
Kinser, & Williams, 1990; Bransford, Vye, Kinser, & Risko, 1990; CTGV, 1991; DeBock et 
al., 2003). Hiebert et al. (1996) comment that the “mathematics acquired in these realistic 
situations, proponents argue, will be perceived by students as being useful” (p. 14). 

 
Another reason sometimes given is that such problems, especially when assigned to 

be done in groups, provide students with opportunities to learn some of the social problem-
solving skills they will need to use later in the workplace (see Resnick, 1987b). The 
Vanderbilt group (CTVG) contends that “‘anchor[ing]’ or ‘situat[ing]’ instruction in the 
context of meaningful problem solving environments … allow[s] teachers to simulate in the 
classroom some of the advantages of ‘in-context’ apprenticeship training” (CTGV, 1992, p. 
294; also citing Brown et al., 1989).  

 
Finally, there is a view that students’ learning and ability to make mathematical 

connections in the process of applying their knowledge to a wider range of “real-world” 
problems might be enhanced (see Hiebert et al., 1996). The notions of both near and far 
transfer in problem solving appear later in the literature synthesis. 

 
Common to these views seems to be the assumption that, by teaching students 

mathematics through “real-world” problems, and by teaching students to solve such problems 
in school, students will become better solvers of the types of problems that they might 
encounter in everyday life or the workplace (see Verschaffel & De Corte, 1997), and that 
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they will develop a genuine disposition to, and interest in, solving such problems. Some 
research has looked specifically at whether it is indeed the case that the use of “real-world” 
problems in instruction promotes such outcomes.  

 
Anderson, Reder, and Simon (1996) have countered some of the claims attributed to the 

proponents of the use of “real-world” problems.5 They claim that research has indicated that 
transfer can happen even if students learn in a situation that is not specific to the site of 
application. They argue further that using such problems can be inefficient: “Often real-world 
problems involve a great deal of busy work and offer little opportunity to learn the target 
competencies” (Anderson et al., 1996, p. 9). They also note that research indicates that workplace 
skills can be learned separately from the social context, and that in some cases they should be.  

 
There is also the question of whether the contexts that developers imagine as being 

motivational and engaging for students actually are. Some researchers (e.g. Geary, 1995) 
have suggested that the contexts in which problems are offered may not be that intrinsically 
motivating to students. Geary emphasizes that making the mathematics interesting and also 
ensuring that adequate mathematics is learned may require “degrading” the mathematical 
content in ways that are not satisfactory. Hiebert et al. (1996) advocate the importance of 
students’ “problematizing” mathematics and suggest that the particular context chosen for a 
problem is not necessarily as important as the way the teacher engages the students: “Given a 
different culture [valuing reflective inquiry and problematizing], even large-scale real-life 
situations can be drained of their problematic possibilities. Outside-of-school problems can 
provide contexts for important mathematical work, but the packaging of the task is not the 
primary determinant of the engagement” (pp. 16–18).  

 
“Real-world” problems are often considered to be “open-ended,” a term that is 

equally ill-specified in its meaning. Pehkonen (1997) provides some history of the idea of 
“openness” in mathematics education, citing work initiated in Japan in the 1970s that helped 
to launch international focus. He defines open problems in contrast to “closed problems” in 
mathematics, in which in “open problems,” the starting situation or the goal is not explained 
exactly. Such problems then encompass problem situations in which the student must “find” 
the problem, “what if” problems, and problems in which multiple solution processes are 
possible. In a 1994 essay, Hung-Hsi Wu uses examples of problems from K–12 mathematics 
curricula to highlight that in the case of some open-ended problems, teachers are unlikely to 
know the required mathematics deeply and at the same time provide a suitably simplified 
explanation to students. Others have raised concerns about the adequacy of teachers’ 
knowledge of the nonmathematical contexts—in which some of these problems are 
embedded—to assess the reasonableness of the problem’s assumptions, and about the 
efficiency of using elaborate “real-world” problems in covering mathematics content.  

 
In summary, even without a consistent definition of the notion of “real-world” 

problems, there are strongly held and argued positions, founded on a variety of bases, in 
support of, and critical of, the use of various types of “real-world” problems in school 
mathematics instruction. 
                                                             
5 For replies and additional commentary concerning the Anderson et al. (1996) paper, see Greeno (1997) and 
Cobb and Bower (1999). 
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C. Research Studies Examining the Impact of ‘Real-World’ 

Problems in Mathematics Instruction 

Despite the variety of reasons that have been advanced supporting the inclusion of 
“real-world” problems in mathematics instruction, the available research on the topic that 
met the Instructional Practices Task Group standards for inclusion addresses only two rather 
focused types of questions: 

 
• Does the use of “real-world” problems in mathematics instruction, in comparison to 

typical instructional practice, lead to improved understanding of mathematical ideas, 
or improved computational performance, or improved mathematics performance? 
(Using “Real-World” Problems to Teach Mathematical Ideas). 

• Does the use of particular instructional strategies to help students learn to solve “real-
world” problems, in comparison to other strategies and to typical instructional 
practice, lead to improved performance on assessments that involve solving “real-
world” problems; i.e., can near and far transfer be achieved? (Using Specific 
Strategies to Improve “Real-World” Problem Solving).6 

Researchers from cognitive science, psychology, and mathematics education have 
undertaken a range of studies that examine phenomena related to “real-world” problems in 
mathematics teaching and learning. Most of this work has been descriptive and is not 
included in the meta-analytic discussion to follow. However, it could serve as an important 
basis for clarifying and disentangling the meanings of “real-world” problems as an 
instructional approach and as an outcome of schooling, and provide insights into the design 
of interventions and assessments that are focused on “real-world” problems. Ethnographic 
studies have looked, for instance, at the problem-solving strategies used in practices such as 
candy-selling, tailoring, carpentry, gardening, etc., and the relationship of such craft 
knowledge to performance on school-based problem tasks (see Presmeg, 2007). International 
studies such as the Programme for International Student Assessment (PISA) study provide a 
snapshot of U.S. students’ performance on problem solving. This Organisation for Economic 
Co-operation and Development (OECD) initiative is a collaborative effort of the OECD 
member countries to “measure how well students at age 15, and therefore approaching the 
end of compulsory schooling, are prepared to meet the challenges of today’s societies… 
moving beyond the school based approach towards the use of knowledge in everyday tasks 
and challenges” (Programme for International Student Assessment, 2003, p. 9). PISA is 
unique as an international assessment in its explicit effort to assess students’ ability to “apply 
their knowledge and experience to real-world issues” (Programme for International Student 
Assessment, 2003, p. 9). The 2003 administration of PISA examined mathematical literacy 
and problem solving, and the performance of U.S. students was lower than the average 
performance for students from OECD countries (see Lemke et al., 2004). Thus for those 

                                                             
6 The initial search for and screening of literature was initially only for the use of “real world” problems in 
instruction (question 1), not as the outcome (question 2). The literature identified for the second question 
resulted from the first, but we did not go back and systematically search for other studies that might fit this 
second question. 
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concerned that ability of U.S. students to solve “real-world” problems is an important 
outcome of schooling, studies such as PISA indicate that U.S. performance has substantial 
room for improvement. 

 
Here the Task Group draws on the 21 studies that qualified as Category 1 or Category 

2 studies and that examined, with random assignment or quasi-experimental methods, the 
impact of some type of “real-world” problem instructional intervention on student 
mathematics learning outcomes. There were 13 studies (five Category 1 and eight Category 
2) that examined the effect of using “real-world” problems as the means of instruction on 
mathematics achievement. An additional eight studies (five Category 1 and three Category 2) 
examined specific strategies to solve “real-world” problems. The second group did not 
examine a “real-world” problem instructional intervention. Although many have argued that 
a major reason for using “real-world” problems in mathematics instruction is to increase 
interest and motivation, the Task Group did not search for studies that looked at motivation 
only as an outcome. For those studies of mathematics achievement that did include a 
motivation outcome, those outcomes are not discussed. The studies are presented according 
to the two categories mentioned earlier. See Tables 15 and 16 for a summary of the Category 
1 studies, including effect size calculations.  

D. Using ‘Real-World’ Problems to Teach Mathematical Ideas 

The Task Group located 13 studies that introduced some version of a “real-world” 
problem instructional treatment, and that compared outcomes on student performance in 
mathematics. Five of these can be considered Category 1 studies for which effect sizes could 
be computed. Four of these studies contrast some type of “real-world” problem-based 
instruction with more typical mathematics instruction (although even this varies to some 
degree). The fifth is concerned with contrasting two different approaches to using “real-world” 
problems as an instructional approach. All employ outcome measures that assess mathematics 
performance on what might be considered “typical” types of school mathematics outcomes. In 
addition, some include outcome measures for transfer, or involving contextualized problems.  

 
Three of the Category 1 studies in this area focus on computations with fractions. 

Anand and Ross (1987) developed three versions of an intervention aimed at teaching fifth-
and sixth-graders how to divide fractions. The operationalization of “real-world” problem 
solving involved two ways of contextualizing problems: by adding such student-specific 
information as name, favorite candy bar, etc. into problems, or by simply providing a 
concrete context for a computational problem. The intervention was a CAI unit that included 
a “review of prerequisite mathematics facts… introduced the rule for dividing fractions and 
demonstrated its application to an example problem by using the following four-step 
solution.… This rule application was repeated for four additional problems” (p. 73). The 
treatments varied by changing the contexts for the learning material; there were abstract 
contexts provided, concrete contexts, and personalized contexts based on a biographical 
questionnaire for the students. The posttest involved context problems similar to those 
presented in the practice examples, transfer problems, and recognition memory of the rule 
definition and steps problems. Ninety-six students were randomly assigned to the four 
treatment conditions (control; concrete; personalized; abstract). 
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Table 15: Studies That Examine Use of “Real-World” Problems in 
Mathematics Instruction 

Study Design Sample Duration/Content Contrast Measure 
Hedge’s  

g 
Standard  

Error 
Contextualized Mathematics Outcomes 

Anand & 
Ross, 1987 RCT 

96 students in fifth or 
sixth grade attending a 
university affiliated 
elementary school that 
emphasized individual 
learning and progression 

One lesson/ Division of 
fractions 

Concrete and 
Personalized vs. 
Abstract 

Transfer subtest 0.379 (ns) 0.249 

Bottge & 
Hasselbring, 
1993 

RCT 

36 students in two ninth-
grade remedial 
mathematics classes in 
one Midwest high school 

5 days/ Adding and 
subtracting fractions in 
relation to money and 
linear measurement 

Contextualized 
problems vs. 
Word problems 

Contextualized 
problem test 1.009 ** 0.385 

Bottge, 
1999a RCT 

49 middle school average-
achieving students in two 
intact pre-algebra classes 

10 school days/ Story 
problems and transfer 
problems involving 
fraction computation 

Contextualized 
problems vs. 
Word problems 

Contextualized 
problem test 1.131 (ns) 0.693 

Brenner et 
al., 1997a RCT 

128 seventh- and eighth-
grade students in six 
intact pre-algebra classes 
at three junior high 
schools in a small urban 
area in Southern 
California 

1 month/ Meaningful 
thematic contexts and 
other features 

Anchored 
instruction vs. 
Traditional 
textbook 

Pooled word problem 
representation (ES =  
-0.281), function word 
problem representation 
(ES = 0.877), and 
function word 
problem solution 
(ES = 0.393) tests 

0.631 (ns) 0.402 

Heterogeneity 
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

2.499 3 0.475 0.000 
Pooled ES (4 studies, 4 effect sizes) 

0.616 *** 0.179 
Standard Mathematics Outcomes 

Anand & 
Ross, 1987 RCT 

96 students in fifth or 
sixth grade attending a 
university affiliated 
elementary school that 
emphasized individual 
learning and progression 

One lesson/ Division of 
fractions 

Concrete and 
Personalized vs. 
Abstract 

Pooled context (ES = 
0.931***) and 
recognition (ES = 
0.727**) subtests 

0.828 ** 0.257 

Bottge & 
Hasselbring, 
1993 

RCT 

36 students in two ninth-
grade remedial 
mathematics classes in 
one Midwest high school 

5 days/ Adding and 
subtracting fractions in 
relation to money and 
linear measurement 

Contextualized 
problems vs. 
Word problems 

Word problem test -0.553 (ns) 0.368 

Bottge, 
1999a RCT 

49 middle school average-
achieving students in two 
intact pre-algebra classes 

10 school days/ Story 
problems and transfer 
problems 

Contextualized 
problems vs. 
Word problems 

Pooled computation 
(ES = 0.049) and 
word problem tests 
(ES = -0.198) 

-0.124 (ns) 0.683 

Brenner et 
al., 1997a RCT 

128 seventh- and eighth-
grade students in six intact 
pre-algebra classes at three 
junior high schools in a 
small urban area in 
Southern California 

1 month/ Meaningful 
thematic contexts and 
other features 

Anchored 
instruction vs. 
Traditional 
textbook 

Pooled equation 
solving (ES = -0.281) 
and word problem 
solving (ES = 0.110) 
tests 

-0.086 (ns) 0.399 

Heterogeneity 
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

10.835 3 0.013 72.312 
Pooled ES (four studies, four effect sizes) 

0.066 (ns) 0.374 
A Study that Examined Two Different Approaches to “Real-world” Problem-based Instruction 

van Dijk et 
al., 2003a  RCT 

238 fifth-grade students 
in 10 classes in the 
Netherlands 

13 lessons in 3 weeks/ 
“Real-world” problems 
that entail division with 
a remainder 

Student vs. 
Teacher 
constructed 
models 

Curriculum specific 
posttest 0.402 (ns) 0.307 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
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Several contrasts (comparisons of results for two different treatment conditions) 
resulted in statistically significant and meaningful effect sizes: most striking was the 
significantly better performance of the personalized group than the abstract group7 on the 
context and recognition measures (effect sizes = 1.434 and 1.116, respectively). The concrete 
and personalized treatment group also performed significantly better than the abstract 
treatment group on the context and recognition measures (effect sizes = 0.931 and 0.727, 
respectively). Of the nine effects computed for this study,8 five produced effect sizes 
significant at the .05 level or better. All favored the personalized or personalized and 
concrete treatments over the abstract, with the strongest differences on the context and 
recognition outcome measures. Effect sizes on the transfer measure for the personalized 
group in comparison with the abstract group also was significant, with an effect size of 0.630, 
and combining the concrete and personalized treatments and comparing to the abstract also 
yielded an appreciable though non-significant effect size (0.379) on the transfer measure. For 
all of these measures the combined effect size is 0.679, which is significant. 

 
The Task Group notes that the use of “contextualized” in the Anand and Ross study is 

a narrowly focused operationalization of “real world.” “Contextualization” occurred by 
personalizing the problems through such means as using the students’ names or interests 
within the problems. This would not fit most of the operational meanings for “real-world” 
problems discussed earlier. Nonetheless, the strong effects on context and recognition 
problems is interesting, and suggest that a very specifically focused type of contextualization 
can be more effective on context and recognition outcomes than abstract presentation of 
problems, and can have some effect on transfer. 

 
Bottge and his colleagues have published two studies that met the Category 1 

criteria (Bottge & Hasselbring, 1993; Bottge, 1999). Both studies pursue questions about the 
effect of “contextualized mathematics instruction” on the problem-solving performance of 
middle school and ninth grade students. The instructional interventions are video-based 
problem solving materials based on the principles that guided the Cognition and Technology 
Group at Vanderbilt (CTGV) in the design of the Adventures of Jasper Woodbury series. 
These include commitment to “guidance by an effective teacher; a rich, realistic source of 
information; and a meaningful problem-solving context” (Bottge & Hasselbring, 1993, p. 5).  

 
In the 1993 study, 36 students in two ninth-grade remedial mathematics classes were 

assigned to treatment and control conditions, where the instruction was focused on problem 
solving in the area of fraction addition and subtraction. The students had experienced 
behavioral or academic difficulties. Students were compared on their ability to solve a 
contextualized problem following instruction. All students received review in fraction 
computation skills for five days prior to the intervention. The intervention was then an 
additional five days of problem solving that employed, for the “contextualized problem” (CP) 
group, an 8-minute contextualized problem presented via videodisc called Bart’s Pet Project. 
The “word problems” (WP) condition received a series of standard word problems in 
instruction. In both conditions the students were guided to solve the problems by their teachers. 

                                                             
7 Contrasts not included in table because of the need to use only independent contrasts in pooling effect sizes 
from multiple contrasts. 
8 There were three contrasts, each with three measures. Only one is included in the table. See above footnote. 
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Effect sizes were computed on two outcome measures; a word problem test and a 
contextualized problem-solving test administered via video. The effect of the CP condition in 
contrast with the WP condition on the contextualized problems was significant (ES = 1.009). 
The effect size on the word problem measure, perhaps a more typical school mathematics 
outcome measure, was not significant and favored the control group (ES = -0.553). It is 
possible that the video-based contextual outcome measure was overly aligned with the 
treatment and the word problem measure was overly aligned with the control, which makes the 
results unsurprising. Nonetheless, the study seems to demonstrate that with this particular 
group of at-risk students, the “real-world” treatment can make a difference on the transfer task. 

 
In 1999, Bottge again looked at the effect of contextualized mathematics instruction 

on the problem-solving performance of middle school students. The topic was fraction 
computation, and the interventions involved two video-based contextualized mathematics 
problems, both in the spirit of the CTGV-designed Adventures of Jasper Woodbury. The 
control treatment was a more standard presentation of word problem instruction, using 
problems parallel to those in the video materials. Outcome measures included computation, 
word problems, a contextualized problem, and an applied transfer task. There was a 
noteworthy but nonsignificant effect size (1.131), favoring the treatment groups, on the 
contextualized problem. It is worth noting that on the computational outcome there was a 
slight but not statistically significant advantage for the control group (ES = -0.049) and 
similarly, on the word problem outcome measure, the nonsignificant effect size (-0.198) 
slightly favored the control group. Note also that the mathematical content of this instruction 
is not standard ninth-grade content and that students were provided with review on the 
procedural aspects of fraction computation prior to the intervention. 

 
The fourth study in this group (Brenner et al., 1997), focused on student understanding 

of key pre-algebra ideas such as the functional relationship between two variables, and 
contextual translation and application. A unit emphasizing meaningful thematic contexts and 
other features (thereby possibly confounding the “real-world” emphasis with other 
characteristics) was developed and used in three pre-algebra classes, and the control condition 
was three pre-algebra classes using a traditional algebra textbook. The effect size for the 
anchored instruction treatment in contrast with the traditional condition on solution to the 
function word-problem test was appreciable, though not significant (ES = 0.393). The effects 
on the word problem and equation solving measures were notably nonsignificant and slightly 
favored the control group. So, in this case, the influence of the treatment on the mathematical 
content that was especially aligned with the treatment was the strongest. 

 
The final study in this group is of a different type. A group of researchers in the 

Netherlands (van Dijk, van Oers, Terwel, & van den Eeden, 2003) undertook a study with 
fifth-grade students to compare two different approaches to “real-world” problem-based 
instruction, in the spirit of the Dutch Realistic Mathematics Education (RME) movement of 
teaching through problems. Two different approaches to mathematization, or modeling (a type 
of “real-world” problem instruction) were used. The experimental treatment was called “guided 
co-construction,” where during instruction on the topic of percentages and graphs, students 
were guided by teachers to create their own models of the problems that were serving as the 
foundation of instruction. This was compared to a more traditional (within RME) expository 
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approach, in which teachers provide students with models for the instructional problems. The 
posttest “measured the pupils’ achievement regarding percentages and graphs in a quantitative 
way” (p. 177) which the Task Group takes to be a measure of what are typical school 
mathematics outcomes for the Dutch context, rather than a transfer task. The effect size 
favoring the guided co-construction group was not significant but encouraging (ES = 0.402).  

 
In some of these studies the medium for introducing contextualized problems is 

video-based material, and the outcome measure is also video-based, causing over-alignment 
of the treatment with the outcome measure. Although the novelty of using video is not 
mentioned as a possible confound for studies of this type, it is worth considering how this 
particular instructional approach may affect students’ interest and engagement.  

 
The Task Group also calculated a pooled effect size across the four studies that are 

most similar (Anand & Ross, 1987; Bottge, 1999; Bottge, & Hasselbring, 1993; and Brenner 
et al., 1997) on the contextualized mathematics outcomes; see Table 15. Using the pooled 
measures in each of these studies, the pooled effect size was 0.616 and statistically 
significant. Thus the meta-analysis suggests that the impact of using “real-world” contexts in 
mathematics instruction on mathematics performance on similar “real-world” problems is 
significant. And, the impact on performance on other areas of mathematics, including 
computation, simple word problems, and equation solving, is not, at least when using this 
small set of studies as evidence. There are a number of caveats to be considered here; only 
four studies, all of them somewhat different, were included. And, the outcome measures are a 
mix of what might be thought of as “typical” mathematics measures, as well as more 
specialized transfer measures of contextualized or “real-world” problem solving.  

 
In summary, the findings from these five studies, taken together, indicate that under 

certain conditions, the effect of treatments that employ contextualized problems in instruction 
on performance on contextual problems involving particular areas of mathematics can be 
significant. The results of these studies cannot be considered conclusive in providing 
direction on the general question of the use of “real-world” problem solving as a strategy for 
improving mathematics learning. However, they do suggest that certain well-defined “real-
world” problem solving approaches can lead to improved performance on specific outcome 
measures, both for typical school mathematics performance, and more strongly, for transfer 
to “real-world” problem solving. 

 
There were eight additional studies9 that were classified as Category 2 but which will 

be discussed here because they provide additional insight into what has been learned from the 
Category 1 studies, or because they raise other interesting research issues. There were 
various, distinct flaws in these studies. For instance, in some, the use of “real-world” 
problems in instruction is confounded by concomitant instructional interventions, such as use 
of small groups, or emphasis on exploration in the curriculum, or inclusion of student writing 
as an instructional strategy. Other flaws also occurred, including the use of volunteer teachers 
in the treatment conditions, lack of matched control groups, lack of evidence of testing of 

                                                             
9 Ben-Chaim, Fey, Fitzgerald, Benedetto, & Miller, 1998; Bottge Rueda, Serlin, Hung, & Kwon, 2007; CTGV, 
1992; DeBock, Verschaffel, Janssens, Van Dooren, & Claes, 2003; Hickey et al., 2001; Henderson & 
Landesman, 1995; Irwin, 2001; Klein, Beishuizen, & Treffers, 1998. 
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group equivalence, outcome measures overly aligned with the treatment or control 
conditions, or only one unit assigned to each experimental condition. Thus no conclusions 
about impact of “real-world” problem solving as an instructional approach can be drawn 
from this set of studies.  

 
Seven of the studies (all but Bottge et al., 2007) are designed to compare some type of 

“real-world” problem solving treatment to a control condition of typical mathematics 
instruction. Several use specific curricular interventions as the “real-world” problem 
intervention. In the case of Ben-Chaim et al. (1998) the treatment involved a full curriculum 
at the middle grades, the Connected Mathematics Program. A problem in using such a study 
to examine the specific impact of “real-world” problems is that full curricula such as this 
employ a range of principles and instructional approaches, and so findings cannot be clearly 
attributed to any particular component of the intervention. Henderson and Landesman (1995) 
used a similarly broad intervention (thematically integrated instruction) in their study, 
thereby making it difficult to interpret the impact of “real-world” problems. Given this, 
finding appropriate designs and measures that would allow a more focused look at the place 
of “real-world” problems in curricula that also include other interventions seems a 
worthwhile direction to pursue.  

 
Klein et al. (1998) is another study in the Dutch context, comparing effects of two 

different approaches to teaching with realistic problems, where the introduction of flexible 
solution is handled differently in the treatment and control. This study is noteworthy because 
of the fine-grained detail in explaining the difference in these two approaches to working 
with “real-world” problems. The Task Group mentions the CTGV 1992 study because there 
is a creative outcome measure that has to do with problem solving planning. In the DeBock 
et al. (2003) research study, there is a very strong initial focus on the mathematical topic 
(applying linear models), raising the possibility that “real-world” instructional approaches 
may be better used for the teaching of some specific mathematical ideas rather than others. 
This study is also interesting because the assessments are varied according to the treatments, 
in an attempt to compare the impact of different treatments on assessments. 

 
The Task Group also notes a final study that does raise some ideas that are worthy of 

consideration. In Bottge et al. (2007), the performance of different groups of students who 
were instructed using Enhanced Anchored Instruction (EAI) is compared. EAI is an 
instructional approach based on the concept of anchored instruction as advanced by the 
CTGV, which involves having students solve a problem in a multimedia format and then 
apply what they have learned in hands-on problem settings, such as building skateboard 
ramps (p. 32). The mathematical topics in this case involved rates, construction of graphs, 
lines of best fit, and fraction calculation. In this study, the emphasis is on the possibly 
differential impact of the “real-world” oriented curriculum on different groups of students 
(students with learning disabilities, and high- and average-achieving students). This is 
classified as a Category 2 study because of design issues, but it is an interesting example for 
consideration. The authors report that, following treatment, students in the inclusive classes 
(which include learning disabled students) outscore the students in the typical classes. This, 
together with other studies by Bottge, as well as the study by Henderson and Landesman 
(1995) that is concerned with bilingual instruction as well as thematic integration, suggests 
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that more systematic research on the impact of “real-world” problem based instruction on 
particular subgroups of students who have been traditionally underserved in mathematics, 
may be worthwhile.  

 
Three of the studies examine the impact of video-based instruction that involves the 

presentation of mathematical problems through “real-world,” contextual settings (Cognition 
and Technology Group at Vanderbilt [CTGV], 1992; DeBock et al., 2003; and Hickey, 
Moore, & Pellegrino, 2001). Two (CTGV, 1992; Hickey, Moore, & Pellegrino, 2001) report 
on the impact of the implementation of the Jasper Woodbury series. DeBock et al. (2003) use 
video material based on Gulliver’s Travels. There are other innovations in the use of video-
based instruction, including involvement of students in cooperative groups, for instance, 
which can cause confounding; in addition, the types of outcome measures used in these 
studies vary in terms of their closeness to the focus of the intervention. 

 
Remaining mindful that all of these studies have flaws that prevent their inclusion in 

Category 1, five of them report significantly better performance of treatment groups (some 
kind of “real-world” instruction) than of control groups, on particular measures that tend to 
emphasize “real-world” problems in one way or another (Ben–Chaim et al. 1998; CTGV, 
1992; Hickey et al., 2001; Henderson & Landesman, 1995; and Irwin, 2001). In contrast, 
Klein et al. (1998) report no difference on procedural competence between the control and 
treatment groups, and DeBock et al. (2003) report a negative result, where students using the 
video instructional treatment performed worse than those who solved non-embedded 
problems on the outcome measure.  

 
No conclusions about impact can be drawn from these studies. Instead, they highlight 

the complexities of these research issues, and point toward interesting questions, designs, and 
measures that could help form a foundation for subsequent research. 

E. Using Specific Strategies to Improve  

‘Real-World’ Problem Solving 

The search for studies that examined the use of “real-world” problems as an 
instructional strategy led to a small number of Category 1 studies that concerned the impact 
of different instructional strategies for teaching students to solve “real-world” problems. Note 
that this is not necessarily all of the studies that have examined strategies for improving 
“real-world” problem solving. This work is distinguished from what is included in the prior 
section in part by a particularly strong focus on the primary goals of both near and far 
transfer outcomes. Lynn Fuchs and her research group have undertaken a series of studies in 
this vein, several of which met our criteria. A study by Fuchs, Fuchs, Hamlett, and Appleton 
(2002) was aimed at enhancing mathematical problem-solving performance of fourth-graders 
with mathematical disabilities. All students participated in their regular classroom 
mathematics instruction using a basal text, and a six-lesson base treatment on approaching 
mathematical problem solving. One experimental group received 24 sessions of problem-
solving tutoring; one received 24 sessions of computer-assisted practice; a third received both 
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the tutoring and computer-assisted practice sessions.10 Small group tutoring was provided on 
problem-solving rules and on transfer. The computer-assisted practice emphasized tasks 
intended to lead to far-transfer. There were three types of outcome measures: ability to solve 
story problems, transfer story problems, and “real-world” problems. Significant effects 
favoring the problem-solving tutorial group were found on the story problem and transfer 
story problem measure (effect sizes of 1.340 and 0.982, respectively). The effect size on the 
“real-world” problem solving measure was not significant (-0.041) and slightly favored the 
computer-assisted practice group, indicating no significant differences between treatments on 
the primary outcome measure of far transfer. 

 
Table 16: Studies That Examine Strategies to Improve “Real-World” Problem Solving 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s  
g 

Standard  
Error 

Barron, 
2000 RCT 

96 sixth-grade 
students in a 
public magnet 
school for 
academically 
talented children 

Four 1-hour sessions/ 
Contextual problem 
solving 

Problem solving 
collaboratively in 
triads vs. Problem 
solving individually 

Pooled transfer 
measures 0.287 (ns) 0.204 

Fuchs et al., 
2002 RCT 

40 fourth-grade 
students with 
mathematical 
disabilities in six 
classrooms in 
three schools 

24 sessions/ 
Mathematical 
problem solving 

Problem-solving 
tutoring vs. 
Computer-assisted 
practice  

Pooled story 
problems (ES = 
1.340**), transfer 
story problems 
(ES = 0.982**) 
and “real-world” 
problem-solving 
measures (ES =  
-0.041) 

0.760 ~ 0.454 

SBTI vs. Control 1.123 * 0.513 

Fuchs et al., 
2004a RCT 

351 third-grade 
students in 24 
classrooms in 
seven schools in 
an urban district 

34 lessons over 16 
weeks/ Mathematical 
problem solving 

SBTI expanded vs. 
Control 

Transfer-4 
measure (a 
measure of far 
transfer that 
approximated real 
life problem 
solving) 

2.087 *** 0.600 

SBI vs. Control 0.545 (ns) 0.439 
Fuchs et al., 
2006a RCT 

445 third-grade 
students in 30 
classrooms in 
seven schools in 
an urban district 

16 weeks/ 
Mathematical 
problem solving 
strategies 

SBI-RL vs. 
Control 

Pooled transfer 
measures 1.077 * 0.464 

Rudnitsky et 
al., 1995 RCT 

401 third- and 
fourth-grade 
students in 21 
classrooms in 
six schools 

18 days/ Addition 
and subtraction word 
problems 

Writing and 
discussion vs. 
Practice and 
explicit heuristics 

Near transfer 
posttest 0.190 ~ 0.115 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a These studies use classroom-level analyses. 

                                                             
10 Contrasts with this condition not included in table. 
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A second study (Fuchs, Fuchs, Finelli, Courey, & Hamlett, 2004) built on these 
findings and implemented schema-based transfer instruction (SBTI), which explicitly teaches 
students about transfer features of problems in an effort to improve their near- and far- 
transfer performance. Twenty-four third-grade teacher volunteers in seven urban schools 
were randomly assigned to one of three conditions: control, SBTI, and SBTI expanded (this 
included focus on additional and challenging superficial problem features such as irrelevant 
information, and the concept of “real-life” situations that introduce more information than 
problems typically used in school). The 16-week treatments were compared using four 
outcome measures: Transfer-1 (novel problems structured in the same was as those in the 
instruction); Transfer-2 (novel problems that varied in the three transfer features taught in 
SBTI); Transfer-3 (novel problems that varied in transfer features taught in both SBTI and 
expanded SBTI); and Transfer-4 (measure of far transfer that varied from the problems used 
in instruction in six major ways). Calculation of effect sizes for Transfer-4 (measure of far 
transfer that approximated “real-life” problem solving) yielded significant effects for the 
SBTI expanded vs. the control condition (ES = 2.087), and for the SBTI vs. the control group 
(ES = 1.123). The Task Group can conclude that this particular, highly specific instructional 
approach can result in stronger performance on a “real-world” problem outcome. 

 
This group of studies led to a randomized controlled study published in 2006 (Fuchs, 

Fuchs, Finelli, Courey, Hamlett, Sones et al., 2006). Three treatment conditions were 
implemented: the “teacher-designed” condition, which was the control, with teachers using 
the district curriculum; and two schema-broadening instruction (SBI) conditions. One SBI 
condition was the problem-solving instruction used in earlier studies, emphasizing superficial 
problem features, problem structures, and problem types. The second SBI condition is 
expanded to include “explicit instruction in strategies for tackling the complexities involved 
in real-life problems” (p. 296). The Task Group found a significant effect size (ES = 1.077) 
for the enhanced schema-broadening instruction aimed at preparation for solving real-life 
problems in comparison to the control group members on pooled far transfer measures. In 
addition, the effect of the SBI treatment in comparison to the control on the far transfer 
outcome measures was encouraging, though not significant (ES = 0.545). The results of these 
two studies (Fuchs et al. 2004, Fuchs et al. 2006), in contrast to the Fuchs, Hamlett, & 
Appleton et al. (2002) suggest that the enhanced schema-broadening instruction, which 
explicitly helps students to recognize and attend to irrelevant and extraneous features in real-
life problems, is effective in enabling students to successfully solve real-life transfer 
problems. 

 
Two additional studies met the Category 1 criteria and have been classified as being 

about promoting student performance on “real-world” problems through a particular 
instructional strategy. Barron (2000) used Jasper Woodbury-style video-based microworlds 
as the instructional treatment being tested, in comparison to control conditions, for its effect 
on a student problem solving performance measure. Two different grouping strategies for 
students using the Jasper Woodbury materials were compared. In one condition, the sixth-
grade students worked in triads. In the other, they worked individually. The effect size 
calculation yielded an encouraging though not significant effect of the triad arrangement 
(ES = 0.287). Rudnitsky, Etheridge, Freeman, and Gilbert (1995) focused on helping third- 
and fourth-grade students solve arithmetic word problems through two different treatments: a 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-101 

“writing-to-learn” approach, in which students created their own mathematical stories and 
problems, and a control condition involving practice and explicit heuristics. On a near-
transfer problem-solving posttest, there was no significant effect size (ES = 0.190). 

 
In summary, these five studies examine several very different types of instruction 

intended to improve near or far transfer performance on “real-world” problems. The 
strategies were: student grouping, computer-assisted instruction, problem-solving tutoring, 
schema-based instruction, enhanced schema-based instruction, and problem writing. It is not 
reasonable to calculate pooled effect size for these five studies, given the differences in the 
instructional interventions. It is important to note that, of all of these strategies, the only one 
that shows promise on an empirical basis is the enhanced schema-based instruction in both 
Fuchs et al. (2004) and Fuchs et al. (2006). Note too that the mathematical domain is narrow 
(whole number arithmetic) and this was undertaken only at the third grade. At the same time, 
the heart of the intervention—a focus on extraneous and irrelevant information—is a feature 
that some would surely say is a defining feature of “real-world” problems; these are messy 
problems. Fuchs and her colleagues seem to have demonstrated that, under very specific 
conditions, in a very narrow area of mathematics, it is possible to teach students how to 
address these issues and be effective problem solvers. 

 
There were three studies classified as Category 2 that also examine instructional 

strategies for improving performance on “real-world” problems. All of them have design 
flaws which exclude them as studies from which the Task Group can draw conclusions about 
impact. However, these studies are instructive because they provide ideas about various kinds 
of instructional interventions that have been attempted, and about interesting outcome 
measures. Serafino and Cicchelli (2003) contrast two instructional approaches within the 
anchored instruction model on which the Jasper materials are based. The Structured Problem 
Solving model includes a more teacher-dominated, structured approach, with more focused 
teacher questions and summaries. The Guided Generation model casts the teacher in more of 
a facilitator role. Shyu (1999) investigated the effects of a video-based anchored instruction 
program based on the Jasper Series. There were three instructional treatments—the video-
based instruction, the printed, story-book version, and regular instruction. Both of these 
studies designed alternative instructional approaches for use with problem-based curricula. 

 
Verschaffel and DeCorte (1997) conducted an experiment with 10–12 year olds in 

which the treatment involved a sequenced introduction of “real-world” problems and 
discussion of the information available and the approach to the problem. What is of particular 
interest in this study is the outcome measure, “disposition toward realistic modeling,” which 
is intended to assess students’ tendency to use “real-world” knowledge and realistic 
considerations in their problem solving. The authors report a significant difference favoring 
the treatment group, but these results are not robust given that the treatment condition had 
only one unit. Nonetheless, it is worth noting that the instructional interventions in this study 
seem to share the principles in the Fuchs et al. approaches, in which there is explicit focus on 
features characteristic of “real-world” problems. Further development of such approaches for 
use in wider contexts might be fruitful.  
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Based on an examination of studies primarily concerned with testing different 
approaches to teaching that enable students to solve “real-world” problems, the Task Group 
concludes that some instructional approaches will lead to better student performance on 
“real-world” problems than others. However, these instructional practices are highly 
specified, and the studies only demonstrate their effectiveness for relatively narrow classes of 
problems. For those who view performance on “real-world” problems as an important 
outcome of K–12 mathematics education, there are still far more open questions about what 
will lead to far transfer and which instructional methods are best than there are conclusions. 

F. Conclusion 

It is difficult to draw conclusions from the set of studies that examine the impact of the 
use of “real-world” problems and related instructional strategies in instruction on student 
mathematics performance, including performance on “real-world” problems. The body of 
studies is small; the outcome measures are often designed by the researchers and information is 
not available on psychometric characteristics of these measures; and, confounding variables 
that are difficult to measure reliably, such as fidelity of implementation and other contextual 
features, are not always included in the study reports.  

 
The set of studies also has a certain homogeneity. Of the 21 studies discussed here, 10 

of them are focused on instructional materials that introduce “real-world” problems through 
the Jasper Woodbury series, or similar video materials. Researchers have not undertaken the 
necessary rigorous examination of print instructional materials that have as their primary goal 
the introduction of mathematical ideas through “real-world” problems. Nor has there been 
adequate attention to the possibility that different mathematical ideas, topics, and procedures 
might best be learned through particular instructional approaches; perhaps using “real-world” 
problems is good for some mathematical topics and not for others. The Task Group found 
very few studies that started from any clear hypotheses about why a particular intervention 
would be likely to help with a particular area of mathematics. 

 
Debates about the place of “real-world” problems in the mathematics classroom are 

complicated by a number of issues; the operationalization of the term “real-world” problems 
varies by mathematician, researcher, developer, and teacher; fidelity of the teachers’ 
implementation of the instructional materials or instructional strategy is difficult to assess; 
contextual features, such as SES, or the school’s orientation toward reform matter; and most 
likely, although not addressed in the studies the Task Group examined, teachers’ knowledge 
and capacity to use such problems effectively varies greatly.  

 
A particularly relevant issue to focus on in this domain may be the degree to which 

students’ ability to apply mathematical knowledge to “real-world” or “authentic” problem 
situations is a valued and agreed-upon outcome of school mathematics. If “real-world” 
problem solving is not seen as an essential outcome of K–12 mathematics education, then the 
modest accumulation of research available (meeting our screening criteria) on the topic 
would suggest that there is no great value in using “real-world” problems as a main element 
of mathematics instruction nor is there great value investing significant time to design 
effective instructional strategies that rely on “real world” contexts. However, if ensuring that 
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students know the needed mathematics, and can apply that mathematics to the more complex 
and open kinds of problems that can be encountered in the “real world” is important, then the 
studies reviewed here offer some promise. 

 
The Task Group concludes that, under certain conditions, for specific domains of 

mathematics, instruction that features the use of “real-world” contexts shows potential 
promise for having a positive impact on student achievement. However, these results are not 
yet sufficient as a basis for widespread policy recommendations. 

 
If the goal of application of the mathematical knowledge in contexts is considered 

important, then these studies would suggest that continued investment in research and 
development that is coordinated with state standards may be worthwhile, with several caveats. 
More studies should use standardized outcome measures in place of the researcher or developer-
designed instruments, so that the results can accumulate in a more useful way. If such measures 
are not used, then the design of outcome goals and measures needs more integrated involvement 
of psychometricians and mathematicians, who can watch for the difficulties of overly 
confounding the outcome assessment with the intervention, or of assessing mathematics too 
narrowly. Studies that look beyond special populations of students (e.g., remedial students, 
special education students) are needed. Randomized control experiments are necessary for 
generalization and clarity about the scale-up potential and outcomes of specific interventions. 
And, more attention is needed to the specific kinds of mathematical outcomes that are obtained 
by specific types of “real-world” problem interventions. For instance, “real-world” approaches 
may be especially useful for introducing particular mathematical concepts and processes, and 
less useful or inefficient for the introduction of other topics. Thus far the research has made little 
systematic progress on this matter. 
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V. The Role of Technology in Mathematics Education 

Although young in historic terms, computer technology has a strong presence in our 
lives and in the research literature. This report synthesizes what is known from high-quality 
research about the effectiveness of a variety of approaches to applying computer technology 
to the solution of educational problems in mathematics instruction. The report begins with a 
brief overview of the categories of computer applications that mathematics educators have 
used. Next, using the prior reviews, syntheses, and meta-analyses as context and background, 

the Instructional Practices Task Group’s own original meta-analyses of rigorous studies for 
those categories that included an adequate body of studies that fit the Task Group’s criteria 
are presented. These included drill and practice, tutorials, calculators, and computer 
programming. The Task Group’s basic question is: What is the role of technology including 
computer software, calculators and graphing calculators in mathematics instruction and 
learning? The last section summarizes answers to this question on the basis of the Task 
Group’s review of high-quality research. 

A. Categories of Instructional Software 

As an all-purpose device, a computer can take a variety of forms and play a variety of 
instructional roles. The term computer-based instruction (CBI) will refer to all these 
applications of computer technology to education. As an interactive device, the computer can 
be programmed to provide opportunities for active learning and reflective thinking on the one 
hand, or to provide drills on the other. It might manage and individualize instruction. It can 
perform tedious calculations, potentially having positive effects (if it thus allowed 
engagement in topics otherwise impossible or difficult for students to approach) or 
unintended consequences (students become overly dependent on calculators). This paper uses 
the following categories to classify instructional software (with the caveat that software 
programs can combine pedagogical categories): 

 
• Drill and practice; 
• Tutorials; 
• Tools (including calculators) and problem solving; 
• Computer programming; 
• Simulations; 
• Games; 
• Internet; 
• Tools for teachers. 

 
A brief description of each of these categories is provided below, and Table 17 

provides complementary descriptions. Table 17 lists several features that may distinguish 
more effective from less effective computer-based practice (including unique features—those 
that can not easily be duplicated in noncomputer environments). 
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Drill and practice software provides practice on skills and knowledge to help students 
remember and use that which they have been taught. A main goal is to achieve automaticity, or 
fast, accurate, and effortless performance, freeing working memory so that attention can be 
directed to the more complicated aspects of complex tasks. As with most drill in any medium, 
drill and practice computer programs present tasks or exercises and give feedback to students.  

 
Tutorials attempt to introduce and teach new subject-matter content, by presenting 

information and often by attempting to engage students in one-to-one Socratic dialog (e.g., 
tutorials using artificial intelligence to engage in dialogues). These are usually developed in 
situations in which a well-defined set of information must be acquired.   

 
The term computer-assisted instruction (CAI) is commonly used to refer to drill and 

practice programs, tutorials, or their combination. A specific type of CAI is the integrated 
learning system (ILS), a large suite of programs, mainly tutorial, but with drill and practice 
included, that provides sequenced instruction across several grade levels, tracking students’ 
progress and branching as necessary, and maintaining extensive records of student progress 
(using computer-managed instruction, or CMI, which is discussed in a following section). 

 
Simulations are models of some part of the world (such as the noncomputer board 

games “Life” or “Monopoly”), and computer simulations are often more complex 
mathematical models that respond in relatively realistic ways to input based on “real-world” 
data. Most simulations present situations with components and interactions among those 
components and generate data about them in response to student input that mirrors 
relationships in those physical-world or mathematical situations. Thus, students play a role of 
an active member of a system, making decisions and analyzing the results of those decisions. 
Goals often are to motivate engagement, develop intuition about a problematic situation, 
facilitate acquisition of skills and knowledge, and enhance transfer of mathematical skills as 
students perform activities reflecting those in the “real world.”  

 
Games may share characteristics with simulations, as the term “simulation games” 

suggests. This category is broader, encompassing games that are no more than drill and practice 
with game-like elements used as rewards, to those in which mathematics is intrinsic to the goals, 
rules, and tasks of the game. Games of the former type, in which mathematics is extrinsic, often 
have goals similar to those of drill and practice software. The latter are often designed to 
promote acquisition of mathematical knowledge and skill, as well as problem solving. 

 
Tools include a wide variety of software programs that perform specific sets of 

functions, such as calculation, statistics and graphing, computer-based laboratories (CBL, 
e.g., sensors, including statistical analysis and display of the resulting data), or manipulation 
of mathematical expressions in symbolic form. Pedagogical goals may include allowing more 
complex problem solving by transferring routine aspects of tasks to the technological tool 
and encouraging students to solve problems in practical, applied settings. Calculators, 
including graphing calculators, are widely available tools that have generated a large amount 
of interest and research. They have been used for many purposes, from facilitating problem 
solving by allowing students to perform far more, and more complex, arithmetic operations 
than would have been possible without technology, to serving as simple fact checkers.  
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Problem solving applications may be one or more tools as above, but may also 
include the presentation of problems and feedback (similar to the feedback of CAI). 

 
Computer programming involves the provision of computer languages or environments 

to facilitate students’ creation of procedures that solve mathematical problems. Goals may 
include students’ learning and reflecting on algorithms (arithmetic or algebraic), as expressed 
in the computer language, gaining specific knowledge and skills (e.g., in geometry), and 
learning certain problem-solving strategies, such as problem determination and explication, 
problem decomposition, and construction and evaluation of procedures. Some environments 
are tuned for special purposes, such as the development of mathematical models for 
simulations, or providing a scripting language within a geometric construction program. 

 
The Internet provides general information searching and retrieval functions. Educational 

applications include specifically organized inquiries (e.g., “WebQuests”). The Internet also 
offers myriad applications and features (“blogs,” groups, etc.) that may be harnessed for the 
purposes of mathematics education. The Internet can also be the delivery medium for any of the 
other categories of software; those are considered within their specific category. 

 
Tools for teachers include a variety of software programs designed to aid pedagogical 

tasks. For example, electronic blackboards (“smart boards”) facilitate the display of 
information or demonstration of any type of software, and with “clickers,” can aggregate 
students’ responses; management systems help store, organize and analyze information, such 
as achievement data, and may include item, test, or practice generators; and hand-held 
devices facilitate classroom interaction (e.g., each student has a device, and responses or data 
entry are easily and quickly inputted and evaluated or aggregated). 

 
Computer management systems include computer-managed instruction, or CMI, in 

which the computer analyzes assessments of students, directs their course through a 
curriculum, and provides reports at individual and aggregate levels. These can be stand-alone 
systems or can form the foundation for other categories of CBI, such as CAI.  
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Table 17: Categories of Educational Software 

Category Typical Pedagogy Possible Features 

Drill and 
Practice 

Linear 
Repetitious 
Presentation of task, student response, feedback 

Sequencea 
Managementb 
Feedbackc 
Controlled introduction of items 
Distributed practice 
Reinforcement schedules 

Tutorials Linear progression with various amounts of branching 
Didactic presentation and, sometimes, Socratic 

dialog, presentation of information, questioning, 
and feedback depending on the response; 
branching to explanations or review 

Sequence 
Management 
Feedback 
Instructional eventsd 

Tools and 
Problem 
Solving 

Specific functions (calculator, graphing, computer-
based laboratories, geometric construction, CAS) 

Problem Solving may include presentation of 
problems and feedback 

Integration/data communication 
across tools (or with other 
software categories) 

Specific feature sets 

Computer 
Programming 

Specific language 
Specific educational environment, specific tasks 

Mathematics emphasis 
Integration into curriculum 

Simulations Nonlinear; exploratory/inquiry-oriented 
Provides a model of “real-world” or mathematical 

situation in which students act; then responds to 
students input following that model  

Integrated with tutorials or teaching 
tools 

Appropriate simulatione 

Games Provides a set of tools and/or miniature “world” as 
setting for attempting to achieve a goal within a 
framework of rules 

Provides clear goals, a set of artificial rules, and 
elements of competition 

Mathematics emphasis 
Intrinsic mathematics 
Manipulation of concepts 
Motivational elements 

Internet Type: General information search/retrieval, 
“WebQuest,” other 

 

Tools for 
Teachers 

Type: electronic blackboard, demonstration/display, 
management system (CMI; may include practice 
generator), item/test/practice generator, classroom 
interaction (each student has device) 

Integration/data communication 
across tools (or with other 
software categories) 

 
a Sequence: Consists of building a sequence of mathematical strategies/skills/concepts.  
b Management: Computer management may consist of record keeping only (includes “picks up where left off”), more 
sophisticated formative assessment, or formative-assessment-with-branching [e.g., remediation]. 
c Feedback: Corrective feedback may be knowledge of correctness only, or also provide answer, or also provide remediation 
or explanation. May attend to speed of response. 
d Features most of the events of instruction identified by cognitive psychology to correspond to learning processes (e.g., 
gaining attention, informing learner of objectives, stimulating recall of prior learning, presenting stimuli with distinctive 
features, guiding learning, eliciting performance, providing informative feedback, assign performance, enhancing retention 
and transfer). 
e Appropriate abstraction or simplification of the problem situation vs. oversimplification or misrepresentation of the “real-
world” situation or the mathematics. 
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B. Methods 

1. Syntheses of Existing Reviews 

Prior syntheses and meta-analyses related to the effects of different forms of 
instructional technology on student mathematics achievement were identified through 
keyword searches in PsycInfo and Web of Social Sciences Citation Index. Experts in the 
field of technology instruction and meta-analysis provided additional references. Finally, the 
reference lists from the identified syntheses and related original studies were reviewed to 
identify additional syntheses. 

 
From among the group of reviews that were identified, 26 quantitative syntheses and 

meta-analyses were included in the Task Group’s synthesis of existing reviews.11 These were 
reviewed to ascertain the number of included studies that focused on the primary population 
of interest (elementary and junior high school students taking part in mathematics-related 
technology interventions), the nature of the technology, and the syntheses procedures. 
Results from these quantitative syntheses and meta-analyses that addressed the primary 
population of interest of the Panel and the technologies considered were then summarized. 
The pooled effect sizes from these meta-analyses are presented in Tables C-1 through C-7 of 
Appendix C. 

 
2. The Task Group’s Meta-Analyses 

For the Task Group’s original meta-analyses, studies were located using the 
Group’s search procedures and the keywords listed in Appendix A. Original empirical 
studies on technology were categorized based on the category of software on which the 
intervention focused. Effect sizes were calculated for the Category 1 studies, and effect 
sizes were pooled when appropriate. All effect sizes have been adjusted for clustering, 
when appropriate. Study characteristics are provided for each of the Category 1 studies that 
were included in the meta-analyses.   

 
A number of methodological decisions in preparing the data for analysis and in 

choosing which effect sizes to include in the pooled analyses were made. In particular, four 
key issues were confronted, as follows. 

 
First, a number of studies evaluated the effects of more than one technology intervention 

and/or more than one comparison group. Specifically, three studies (Battista & Clements, 1986; 
Clements, 1986; and Emihovich & Miller, 1988) evaluated the effects of a programming 

                                                             
11 The Task Group examined literature reviews, syntheses, and meta-analyses, and conducted syntheses reported 
here of prior quantitative syntheses and meta-analyses, as follows: Becker (1992); Burns & Bozeman (1981); 
Chambers (2002); Christmann, Badgett, & Lucking (1997); Ellington (2003); Ellington (2006); Fletcher-Flinn 
& Gravatt (1995); Gordon (1992);  Hamilton (1995); Hartley (1978); Hembree (1984); Hembree & Dessart 
(1986); Hembree (1992); Khalili & Shashaani (1994); Khoju, Jaciw, & Miller (2005); Kuchler (1999); Kulik & 
Kulik (1991); Kulik (1994);  Kulik (2003); Lee (1990); Lou, Abrimi, & d’Apollonia (2001); Niemiec & 
Walberg (1984); Ryan (1991); Slavin, Lake, & Groff (2007); Slavin & Lake (2007); Smith (1997). 
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treatment (using Logo) and a tutorial or drill and practice (i.e., CAI) treatment, compared to a 
no-treatment control. In two of these cases (Clements, 1986; and Emihovich & Miller, 1988), 
the CAI group was focused, at least in part, on mathematical content. In these cases, the 
programming versus control group contrast was included in the meta-analysis exploring the 
effects of programming interventions, and the CAI versus control group contrasts were included 
in the meta-analyses exploring the effects of drill and practice programs (Emihovich & Miller, 
1988) or tutorial programs (Clements, 1986). The programming vs. CAI comparisons are noted 
in the programming section and presented in Appendix C. In other studies, two similar 
treatments were compared with a no-treatment comparison group. In these cases (for example, 
in Oprea, 1988), the treatment that was more similar to a typical intervention that schools would 
be likely to implement was included. Still, in other studies, a specific intervention was compared 
to multiple comparison groups. In this situation, the most relevant intervention versus control 
contrasts was chosen on a case-by-case basis.12   

 
Second, studies often explored the effects of interventions on a range of outcomes. 

For the purposes of this meta-analysis, the focus was only on mathematics-related or 
problem-solving outcomes. In cases in which multiple outcomes within these domains were 
available, an average effect size across the multiple outcomes was calculated.   

 
Third, studies often reported effects on a variety of independent samples of students. 

For example, studies sometimes reported results by race, gender, grade level, or disability 
status. In cases in which it is likely that the intervention experience was different for these 
subgroups multiple effect sizes for a study are presented; for example, separate effects by 
grade level and disability status. In addition, multiple effect sizes are reported for studies that 
present results from multiple trials exploring the same intervention and outcome (for 
example, across sites or across samples or cohorts). 

 
Fourth, a number of studies met the criteria for being Category 1 studies but did not 

compare a technology intervention to a no-treatment control group. Instead, these studies 
compared two different versions of technology interventions. Although these studies are not 
appropriate to pool in a meta-analysis, some suggested findings from these comparison 
studies are presented. 

 
Finally, for studies about calculators only, there were three additional methodological 

decisions that were made in preparing the data for analysis and in choosing which effect sizes 
to include in the pooled analyses. First, three studies (Szetela, 1980; Szetela, 1982; and 
Wheatley, 1980) presented outcomes based on assessments where the calculator treatment 
group was allowed to use calculators, while the no-calculator comparison group was not. In 
two of these studies, (Szetela, 1980; Wheatley, 1980) this was the only information available. 
In the one case in which both an assessment allowing calculator use and a standard paper and 

                                                             
12 For example, in Johnson-Gentile et al., 1994, one comparison group received an intervention that used 
manipulatives that was almost identical to the curriculum of the programming intervention. In this case, the 
programming versus the no-treatment comparison group contrast was included.  However, in Ortiz and 
MacGregor (1991), we chose to include the programming intervention versus a textbook-based intervention 
contrast, because the no-treatment comparison group did not receive any instruction on the outcome that was 
being evaluated (“the concept of variable”). 
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pencil assessment that did not allow calculator use were available (Szetela, 1982), the effect 
size for the latter was included Table C-9 in Appendix C summarizes the effects for any 
additional sets of effect sizes in which students were allowed to use calculators. 

 
Second, three studies (Duffy & Thompson, 1980; Standifer & Maples, 1981; and 

Standifer & Maples, 1982) evaluated the effects of two calculator interventions and a no-
calculator control group. For the purposes of the meta-analysis, contrasts that are most 
similar to contrasts in other studies are included, thus attempting to compare the basic 
treatment of using a calculator during instruction versus not using a calculator.13 The two 
Standifer and Maples studies compared the effects of using a standard hand-held calculator 
and a “programmed feedback” calculator. Focus was on the hand-held versus control group 
contrast, with the additional effect sizes presented in Table C-9 in Appendix C. The Duffy 
and Thompson study includes one condition that simply provides students with calculators in 
the classroom and does not provide guidance to teachers, a second condition that provides 
calculators plus instructional packages for teachers, and a no-calculator control condition. 
Again, focus was on the basic calculator versus no calculator contrast, with the effect sizes 
for the more enhanced treatment documented in Table C-9. 

 
Third, there were three studies (the same three as noted in the previous paragraph) 

that also provided effect size information for Total Achievement scores. This information is 
also presented in Table C-9. 

C. Categories of Instructional Software: Findings 

This section summarizes findings from studies that examined specific categories of 
instructional software. For each category, results from prior syntheses and meta-analyses 
provide background information and, for each category for which the Task Group conducted 
its own meta-analyses, those results are presented. 

 
1. Drill and Practice 

a. Prior Syntheses and Meta-Analyses 

Many of the studies in the prior CBI reviews probably included drill and practice 
software, so there is reason to expect similar results for reviews that delineated this category. 
The detailed effect size information from prior quantitative syntheses and meta-analyses are 
presented in Table C-1 in Appendix C. Prior syntheses and meta-analyses (see Table 18) 
suggest that CAI drill and practice generally improves students’ performance compared to 
conventional instruction, with the greatest effects on computation, and less effect on concepts 
and applications (recall the caveats expressed previously, and note the discussion in the 
following section on tutorials). Prior reviews have found that drill and practice positively 
affects attitudes toward mathematics and instruction in mathematics. They suggest that drill 
and practice is equally effective at all grade levels and may be more effective for males. Drill 

                                                             
13 In some studies, however, the only treatment or comparison contrasts were a calculator plus additional 
materials treatment versus a no-calculator control group (for example, Szetela, 1982). In these cases, these 
contrasts were included. 
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and practice is the only category of instructional software that shows stronger effects for 
serving as a substitute for conventional instruction, rather than as a supplement to it. It may 
be that such programs address students’ instructional needs for practice adequately and 
efficiently, making substantial teacher intervention less important. 

 
Variance in the findings of these reviews, and even wider variance in the individual 

studies, suggests that general conclusions should be made cautiously. Probably at work here 
are critical variables, including the quality of the particular software, but also contextual 
variables (e.g., settings, such as urban, suburban, or rural and student or family 
characteristics) and implementation variables (e.g., duration, use of the intervention as a 
supplement or substitution for conventional instruction, and fidelity of implementation; 
support and availability of resources, funds, and time; setting within the school) (Clements, 
2007). One implication is that we should examine the influence of these variables when 
possible. The scarcity of information in this regard suggests a second implication, to which 
we will return: The field needs more comprehensive and nuanced reporting and analysis. 

 

Table 18: What Prior Reviews Say About Drill and Practice  

• General findings  
— Generally improves students’ performance when compared to conventional 

classroom instruction (median ESa = 0 .345)  
— Greatest effects on computation, less on concepts and applications 
— Positive effects on attitudes toward mathematics and instruction in mathematics 

• Contextual variables 
— No consistent differences by grade level 
— No consistent differences by ability level 
— Differences favored males 

• Implementation variables 
— Differences favored programs that substitute for other mathematics instruction 
— Differences favored experimenter or teacher developer-designed (vs. commercially 

designed) software 
— No consistent differences by program duration 

a The median effect size is the median across meta-analyses that reported a pooled effect size.  Pooled effect 
sizes for individual meta-analyses are provided in Appendix C; Drill and Practice is Table C-1. 

b. The Task Group’s Meta-Analysis of Drill and Practice Software 

Table 19 presents the studies in the Task Group’s meta-analysis of high-quality 
experimental and quasi-experimental studies on the effects of drill and practice software on 
achievement. From all the studies reviewed, only 12 met the criteria for inclusion. These 12 
studies yielded a total of 18 effect sizes. Of these, 16 were positive (4 of which were 
statistically significant) and 2 negative (neither statistically significant), with a mean pooled 
effect size of 0.320, which was statistically significant. Although this is conjectural, there 
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seems to be a trend for greater effects of interventions that were shorter and focused on 
developing the automaticity of specific skills. If this is indeed the case, this would be 
consistent with reports from other reviews. 

 
The Task Group extended each meta-analysis to ascertain whether effect sizes were 

mediated by particular contextual and implementation variables. Results are presented in 
Table 20. A between-group p-value was calculated using CMA software to determine if the 
effect of a particular contextual or implementation variable was significant, and results of 
these analyses are shown in the same row as the name of the variable.  
 
Table 19: Studies That Examine Effects of Drill and Practice Technology on 
Mathematics Achievement 

Study Design Sample Duration/Content Contrast Measure 
Hedge’s  

g 
Standard  

Error 
Drill and Practice 

Ball, 1988a QED 
91 fourth-grade students 
in five classes in two 
schools 

12 computer 
lessons over 6–8 
weeks/ Fractions 

Computer lessons 
on fractions vs. 
traditional 
fraction 
instruction 

Posttest—
Fractions 0.815 ~ 0.457 

Campbell et al., 
1987 RCT 

48 third-grade students 
in a middle-class 
suburban school in the 
Southeast 

20 minutes daily  
of D&P for 5 
weeks (+30 min 
instruction for  
both T &C)/ 
Division of whole 
numbers/Milliken 
Mathematics 
Sequences program 

Milliken 
Mathematics 
D&P vs. 
worksheets 

Posttest—
Division 0.445 (ns) 0.288 

Carrier et al., 1985 RCT 

144 fourth-grade 
students in six 
classrooms in a 
metropolitan school 
district 

10–15 minutes per 
lesson over 14 
weeks/ Multiplica-
tion and division 

Three different 
D&P vs. 
Worksheets 

Post: 
Symbolic 
algorithms, 
mult. & 
division 

0.228 (ns) 0.167 

Emihovich & Miller, 
1988 RCT 

24 first-grade students in 
five classrooms in an 
elementary school in the 
Southeast 

20, 30-min sessions 
(3 months)/ 
Addition/ 
subtraction, basic 
mathematics skills 

Series of CAI 
software vs. 
regular reading 
and mathematics 
instruction  

CTBS—
Mathematics 0.407 (ns) 0.399 

41 third-grade students 
in rural Saskatchewan, 
Canada 

Spring semester/ 
3rd-grade 
mathematics 

0.412 (ns) 0.693 

Fletcher et al., 1990a RCT 
38 fifth-grade students in 
rural Saskatchewan, 
Canada 

Spring semester/ 
5th-grade 
mathematics 

Milliken 
Mathematics 
Sequence vs. 
Control 
(traditional 
instruction + 
worksheets) 

Canadian 
Tests of Basic 
Skills (CTBS) 

0.338 (ns) 0.697 

Fuchs et al., 2006 RCT 

33 first-grade learning 
disabled students in nine 
classrooms in three Title 1 
schools in a metropolitan 
school system 

50, ten-minute 
sessions over 18 
weeks/ Addition 
and subtraction 

mathematics 
FLASH vs. 
spelling FLASH 

Post: 
addition, 
subtraction, 
and story 
problems 

0.177 (ns) 0.349 

Kraus, 1981 RCT 
19 second-grade students 
in one school in a 
southwestern Ohio city 

5 sessions over a 
two week period 
(average 64 
minutes)/ Fish 
Chase game: 
addition 

Fish Chase vs. 
Hangman 

Addition 
speed test 1.454 ** 0.523 

Continued on p. 6-118 
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Table 19, continued 

Study Design Sample Duration/Content Contrast Measure 
Hedge’s  

g 
Standard  

Error 
Drill and Practice 

15 Kindergarten students 
in achievement level 1 in 
one public school in a 
large Southern city 

-0.548 (ns) 0.529 

13 Kindergarten students 
in achievement level 2 in 
one public school in a 
large Southern city 

0.344 (ns) 0.575 McCollister et al., 
1986 RCT 

25 Kindergarten students 
in achievement level 3 in 
one public school in a 
large Southern city 

6 sessions/ 
Numeral 
recognition and 
cardinal counting 

How Many 
Squares computer 
program vs. 
Milton Bradley 
Flannel board 

Pine & Burts 
(1984) 
numeral 
recognition 
and cardinal 
counting 

0.429 (ns) 0.405 

24 second-grade students 
in New York City public 
schools 

0.150 (ns) 0.408 

Podell et al., 1992: 
Study 1 RCT 28 learning disabled 

students in Grades 2–4 
in New York City public 
schools 

Up to 10 15-minute 
sessions, three 
times per week/ 
Addition 

Mathematics 
Blaster - 
Addition vs. 
Worksheets 

Accuracy 
rate: mean 
trials to 
criterion 0.783 * 0.397 

20 students in New York 
City public schools, 
ages 6–9 

0.627 (ns) 0.478 

Podell et al., 1992: 
Study 2 RCT 22 learning disabled 

students in New York 
City public schools, 
ages 6–11 

Up to 10 15-minute 
sessions, three 
times per week/ 
Subtraction 

Mathematics 
Blaster - 
Subtraction vs. 
Worksheets 

Accuracy 
rate: mean 
trials to 
criterion 0.568 (ns) 0.435 

Saracho, 1982a QED 

256 Spanish speaking 
migrant children 
attending third through 
sixth grade 

3 hours a week, 
60 hours for the 
academic year/ 
Elementary 
mathematics 

D&P vs. regular 
classroom 
instruction 

CTBS—
Grades 3–6 -0.118 (ns) 0.304 

Saunders & Bell, 
1980 RCT 

101 advanced Algebra 
students in four classes 
in one public high school 

<1/2 hr per week 
for the school  
year/ Algebra II 

Algebra problems 
using BASIC vs. 
regular 
Instruction 

Cooperative 
Mathematics 
Test: Algebra 
II 

0.136 (ns) 0.201 

Watkins, 1986 RCT 
82 first-grade students 
from a suburban 
Southwestern school 

3, 15 min sessions 
per week (October 
through June)/ 
Mathematics 
Machine D&P 

Mathematics 
D&P vs. Reading 
D&P 

California 
Achievement 
Test 

0.432 ~ 0.221 

Heterogeneity 
Q-value Df (Q) P-value I-squared Hedge’s g Standard Error 

14.678 17 0.619 0.000 
Pooled ES (12 studies,  

18 effect sizes) 0.320 *** 0.078 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
Contextual variables. The studies in the Task Group’s meta-analysis yielded the 

following results regarding contextual variables: 
 

• Age or grade. The effect of drill and practice software was confirmed as significantly 
effective at the elementary level, but there are not enough studies at the other levels to 
make any comparisons or other conclusions. 

• Ability. There is no evidence that children with and without learning disabilities 
benefit differently from use of drill and practice software.  
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Implementation variables. These studies yielded the following results regarding 
implementation variables: 

 
• Duration. Results of the Task Group meta-analysis indicate that duration of the 

intervention is not a significant moderator. This is consistent with findings from prior 
syntheses and meta-analyses. 

• Substitute versus supplement. Consistent with other review findings, the effect sizes 
calculated in the Task Group meta-analysis were higher for drill and practice 
interventions that substituted for, rather than supplemented, classroom practice. Effect 
sizes were significant only for substitution implementations, but the difference 
between the two did not reach statistical significance.  

• Experimenter or teacher vs. commercial developer. Effects sizes were larger for 
experimenter or teacher-developed, compared to commercial, drill and practice 
software, with no significant difference between them. This is consistent with prior 
review findings, both yielded significant effects. 

In summary, the Task Group’s meta-analysis of rigorous studies about the effects of drill 
and practice software produced a mean pooled effect size of 0.320 that is statistically significant. 
This finding is consistent with the conclusions of prior syntheses and meta-analyses. There is no 
solid evidence that students of different ability levels or disability status benefit differently. 
Results suggest higher effect sizes when drill and practice software is used as a substitute, rather 
than supplement, to instruction (although comparisons were not significant). 
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Table 20: Subgroup Analysis 
  Drill and practice  Tutorials  Programming 

    
N studies/ 

ES 
Hedges 

g   Se   
N studies/ 

ES 
Hedges 

g   se   
N studies/ 

ES 
Hedges 

g   Se 
Contextual variables               
Grade level  ns a     ns     *** a   
 Elementary 11 / 17 0.352 *** 0.084  2 / 4 0.235  0.214  9 / 22 0.854 *** 0.134 
 Middle School 0 / 0 na  na  3 / 4 0.138  0.088  7 / 8 0.218  0.151 
 High School 1 / 1 0.136  0.201  4 / 5 0.480 ~ 0.246  0 / 0 na  na 
 Mixed 0 / 0 na  na  1 / 1 0.379  0.441  0 / 0 na  na 
Ability  ns     ns     na   
 Learning disabled 3 / 4 0.303  0.258  4 / 5 0.238  0.143  0 / 0 na  na 
 Non-LD 10 / 13 0.356 *** 0.087  6 / 9 0.356 ** 0.136  14 / 30 0.674 *** 0.115 

 
Migrant (span 
speaking) 1 / 1 -0.118  0.698  0 / 0 na  na  0 / 0 na  na 

Implementation variables              
Duration  ns     ** a     ns   
 Less than 4 weeks 3 / 8 0.492 ** 0.184  3 / 5 0.642 *** 0.181  3 / 3 0.974 ~ 0.530 
 4 to 8 weeks 2 / 2 0.550 * 0.243  0 / 0 na  na  2 / 2 0.910 * 0.441 
 Greater than 8 weeks 7 / 8 0.223 * 0.095  6 / 9 0.141 ~ 0.075  9 / 25 0.625 *** 0.124 
Supplementation vs. substitutiona ns     ns     ns   
 Supplement 4 / 4 0.290  0.250  2 / 3 0.425 * 0.175  7 / 9 0.721 ** 0.208 
 Substitute 8 / 14 0.370 *** 0.092  7 / 11 0.288 * 0.112  7 / 21 0.655 *** 0.141 
Curricular Integrationb  ns     *** a     ns   
 Low 2 / 2 0.766  0.637  0 / 0 na  na  1 / 1 -0.065  0.444 
 Medium 7 / 11 0.319 ** 0.100  3 / 6 0.037  0.074  9 / 12 0.739 *** 0.159 
 High 3 / 5 0.259 ~ 0.139  6 / 8 0.503 *** 0.108  4 / 17 0.682 *** 0.168 
Commercial vs. researcher ns     ** a     na   
 Commercial 7 / 13 0.268 * 0.104  5 / 8 0.092  0.068  14 / 30 0.674 *** 0.115 
 Researcher-designed 5 / 5 0.441 ** 0.172  4 / 6 0.516 ** 0.165  0 / 0 na  na 

Total  12 / 18 0.320 *** 0.078  9 / 14 0.302 ** 0.099  14 / 30 0.674 *** 0.115 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Between group test of significance p-value (ns = not significant; na = not applicable). 
b Supplementation categories are defined as follows: “supplement” = the technology treatment served as an addition to regular class time in 
mathematics; “substitute” = time spent on treatment technology substituted for at least some portion of math instruction/class time. 
c Curricular integration characterizes the level of integration with the regular math curriculum.  “Low” is categorized as little to no 
integration with math curricula; “Moderate” is defined as covering topics related to the regular math curricula and possibly coordinating 
instruction with technology; “High” is defined as curricula that was designed around the specific technology intervention. 
 
2. Tutorials 

a. Prior Syntheses and Meta-Analyses 

Prior syntheses and meta-analyses (see summary Table 21) suggest that CAI tutorials 
improve students’ performance compared to conventional instruction, with slightly greater 
effects on concepts and applications than on computation. The detailed effect size 
information from prior quantitative syntheses and meta-analyses are presented in Table C-2 
in Appendix C. These syntheses most frequently identify tutorials as the most effective 
software category, when compared to drill and practice, simulations and games, and tools. 
They suggest that tutorials appear to be effective at all grade levels, particularly the higher 
grades and that tutorials are more effective when they supplement, rather than replace, 
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conventional instruction, when they involve experimenter or teacher-developed, rather than 
commercially-developed, software, and when they are developed for a specific audience 
rather than a general audience. These findings come from syntheses and meta-analyses with 
different inclusion criteria than those used by the Instructional Practices Task Group. 

 

Table 21: What Prior Reviews Say About Tutorials 

• General findings 
— Generally improves students’ performance when compared to conventional 

classroom instruction, with a median pooled effect size of 0.38 (Table C-2) 
— More researchers have claimed that tutorials are more effective than drill and 

practice (Burns & Bozeman, 1981; Khalili & Shashaani, 1994; Lee, 1990) 
— Somewhat higher effect sizes for concepts and applications than computation 
— No effects on attitudes 
— Often low fidelity of program implementation 

• Contextual variables 
— Slight advantage for higher grade levels 
— No consistent differences by ability level 
— No consistent differences by gender 

• Implementation variables 
— Differences favoring programs that supplement instruction versus substitute 
— Differences favoring experimenter or teacher developed programs vs. 

commercially developed software 
— Differences favoring specific vs. a general audience 
— No consistent differences by program duration 

 
b. The Task Group’s Meta-Analysis of Tutorial Software 

Table 22 presents the studies in the Task Group’s meta-analysis of high-quality 
experimental and quasi-experimental studies on the effects of tutorial and mixed tutorial and 
drill and practice software on achievement. From all the studies reviewed, only nine met the 
criteria for inclusion. These studies yielded a total of 14 effect sizes. Of these, 10 were positive 
(two of which were statistically significant), one negative, and three near zero, with a 
significant mean pooled effect size of 0.302. Those studies assessing mathematics achievement 
only had a mean pooled effect size of 0.288, which was statistically significant. Those that 
assessed problem-solving ability had a mean pooled effect size of 0.425, which also was 
statistically significant. Several contextual and implementation variables were examined. 

 
Contextual variables. These studies yielded the following results regarding contexts 

(see Table 20). 
 

• Age or grade. Similar to the results of the prior syntheses and meta-analyses, the IP 
meta-analysis indicates that tutorials have a slight advantage for high school students, 
but there are no significant differences between those effects and effects for other 
grade levels. 
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• Ability. Similar to the results of the prior syntheses and meta-analyses and the results 
for drill and practice, there was no significant difference between effects for students 
with and without learning disabilities, although the tendency for effects to be lower in 
schools with lower achievement needs further study. 

Implementation variables. The Task Group’s meta-analysis indicates the following 
regarding implementation variables. 

 
• Duration. Tutorials were significantly more effective in studies in which interventions 

were less than 4 weeks in duration than those in which interventions were greater than 
8 weeks. This must be interpreted with caution: Some treatments took place over many 
weeks, but the time students used the software remained limited. Thus, this finding may 
have more to do with limiting the confounding effects of other factors. 

• Substitute vs. supplement. Tutorials were more effective when they supplement, 
rather than replace, conventional instruction, but the difference was not significant. 
However, they are significantly more effective when they are highly integrated with 
the regular mathematics curriculum (compared to medium integration, which had 
near-zero effects). 

• Experimenter or teacher vs. commercial developer. Consistent with the prior 
syntheses and meta-analyses, there are stronger effects for experimenter or teacher-
developed, compared to commercial, software. 

The Task Group’s meta-analysis of rigorous studies is consistent with the conclusions 
from the prior syntheses and meta-analyses. The Task Group analysis suggests that there is a 
suggestion that high school students may benefit more from tutorials than students at other 
grade levels (although comparisons were not significant). Tutorials were significantly more 
effective if they were highly integrated with the regular mathematics curriculum than when 
they were less integrated. Tutorials developed by a researcher or teacher had significantly 
greater positive effects than commercial software. 

 
One of the studies in the Task Group set examining tutorials, Dynarski et al. (2007), 

includes two recent large randomized trial evaluations, and warrants particular attention 
because of the scale of these two studies (3,136 students in one study, 1,402 in a second 
study). The results suggest caution. The near-zero effect sizes in Dynarski et al. (0.071, 
-0.064) suggest that results of using tutorials are not guaranteed to be superior to standard 
instruction. Moreover, the results suggest additional questions that must be addressed in 
future research. Scaling up software interventions may be particularly difficult, and the more 
encouraging results from earlier and smaller studies (e.g., Fuchs et al., 2002, nonsignificant 
effect size of 0.586; Henderson et al., 1985, significant ES of 0.976; Thompson & Rickhuss, 
1992, nonsignificant effect size of 0.774; or Wheeler & Regian, 1999, significant effect size 
of 0.517) may reflect efficacy under advantageous (i.e., closer to “ideal”) conditions more 
than effectiveness at scale.  
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The Task Group findings indicate that tutorials are more effective if they are highly 
integrated into the curriculum (see Table 20), which requires that such integration be done 
either by the curriculum or software developers or by teachers. This is an extensive task that 
may demand additional time for both professional development and for work with colleagues 
on curriculum. A final issue is amount of use of tutorial software in classrooms. In the 
Dynarski et al. (2007) study, it considers teacher reports of tutorial software usage in the 
classroom. But when the study considered software recorded usage, usage in the classroom was 
much lower; compare teachers’ report of 51 hours of usage to the products’ reports of 17 hours 
for sixth grade; or teachers’ report of 46 hours of usage to the products’ reports of 15 hours for 
ninth grade. Even the teacher data are substantially lower than publishers’ recommendations. 
This is consistent with the Panel’s National Survey of Algebra Teachers that indicated low 
frequency of the use of technology (averaging “less than once a week;” (Hoffer, 
Venkataraman, Hedberg, & Shagle, 2007).  These are issues in scaling up software use and 
suggest important questions for future research. 

 
The direct implications of the Dynarski study are serious cautions to anyone who 

believes merely introducing technology will raise students’ scores. This was a rigorous 
randomized control trials design conducted in 33 districts and 1,232 schools. The products 
being evaluated had been identified as being effective and widely used. Teachers were 
trained. There were no significant effects. Thus, educators must consider not only empirical 
evidence of effectiveness of a particular software package but also issues of scale-up, 
including integration with the extant curriculum, fidelity of implementation, including 
amount of use, and technological and pedagogical support. 

 
To return to the software per se, studies also show that fine-tuning the mathematics 

and pedagogy in software can make a significant difference in learning. For example, in a 
study of another cognitive tutor (geometry), holding time-of-instruction constant, one group 
discussed why and how they used the strategy they used, and the other practiced more 
problems. The authors report that the former group had significantly greater understanding 
and showed greater transfer (Aleven & Koedinger, 2002). 
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Table 22: Studies That Examine Effects of Tutorials or Tutorials Plus Drill and 
Practice on Mathematics Achievement 

Study Design Sample Duration/Content Contrast Measure 
Hedge’s  

g 
Standard  

Error 
Tutorial + Drill & Practice 

24 first-grade 
students from a 
middle-class 
midwestern school 
system 

0.397 (ns) 0.398 

Clements, 
1986 RCT 

24 third-grade 
students from a 
middle-class 
midwestern school 
system 

44 sessions (22 
weeks)/ Elementary 
mathematics using 
CAI drill, tutorial, and 
problem-solving 
software (mathematics 
and reading) 

CAI drill, tutorial, and 
problem-solving 
software (mathematics 
and reading) vs. 
traditional instruction 

WRAT 
Mathematics 
score 

0.142 (ns) 0.395 

22 low-achieving 
eighth-grade 
students from five 
sections in same 
school 

-0.001 (ns) 0.426 

Dalton & 
Hannafin, 
1988 

RCT 
25 high-achieving 
eighth-grade 
students from five 
sections in same 
school 

Two lessons/ 
Geometry & area of 
circle 

Computer initial and 
remedial instruction vs. 
traditional initial and 
remedial instruction 

Mastery quiz: 
area of circle 

0.571 (ns) 0.395 

Dynarski et 
al., 2007: 
Study 1a 

RCT 

3,136 sixth-grade 
students in 10 
different districts 
across U.S.,  
focused on lower 
achievement districts 

One academic year, 
wide variation, but 
overall average use of 
the CAI was 17hrs/yr/ 
General mathematics 

CAI vs. Control 
(standard instruction) 

SAT-10 
mathematics 
battery 

0.071 (ns) 0.106 

Dynarski et 
al., 2007: 
Study 2a 

RCT 

1,404 algebra 
students in 10 
different districts 
across U.S.,  
focused on lower 
achievement districts 

One academic year, 
average use of the 
CAI was 15hrs/yr/ 
Algebra 

CAI vs. Control 
(standard instruction) 

ETS End-of-
Course Algebra 
Assessment 

-0.064 (ns) 0.117 

18 fourth-grade 
students with 
mathematics 
disabilities in three 
schools in a 
southeastern city 

24 sessions (twice per 
week for 12 weeks)/ 
Problem-solving 

Computer vs. Control 0.586 (ns) 0.486 

Fuchs et al., 
2002 RCT 

20 fourth-grade 
students with 
mathematics 
disabilities in three 
schools in a 
southeastern city 

48 sessions (four 
times per week for 
12 weeks)/ Problem-
solving 

Tutor + Computer vs. 
Tutor only 
(ES of Tutor + Computer 
vs. Control was 1.281) 

Pooled problem-
solving score 
(three subtests) 

-0.147 (ns) 0.448 

Henderson et 
al., 1985 RCT 

81 students 
attending five 
general mathematics 
or intro to algebra 
classes in one high 
school with large 
proportion of Latino 
students 

Three modules 
(Three sessions)/ 
Factors and prime 
numbers 

Computer-Video vs. 
Control 

Combined 
Recognition and 
Constructed 
scores on 
Factors and 
Prime numbers 
test 

0.976 *** 0.234 

Moore, 1988 RCT 

117 seventh- and 
eighth-grade 
students in the 
lowest level of 
remedial 
mathematics in four 
middle schools 

School year (Sept - 
May)/ Middle school 
mathematics 
instruction 

Milliken Mathematics 
Sequences + written 
assignments vs. Direct 
Instruction using 
Mathematics for 
Individual Achievement 

District 
Mathematics 
Placement Test 

0.273 (ns) 0.185 

Continued on p. 6-125 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-125 

Table 22, continued 

Study Design Sample Duration/Content Contrast Measure 
Hedge’s  

g 
Standard  

Error 
Tutorial + Drill & Practice 

1 week/ Algebra—
solving equations 

CAI MuMath/Solving 
Equations vs. 
noncomputer instruction 

Solving 
equations 0.364 (ns) 0.465 

Thomas & 
Rickhuss, 1992 RCT 

17 high school 
students (average 
age 15) in one 
algebra class 1 week/ Algebra—

factorization 

CAI MuMath/ 
Factorization vs. 
noncomputer instruction 

Factorization 0.774 (ns) 0.480 

Triffiletti et al., 
1984 RCT 

20 learning disabled 
students (ages 9–15) 
in a private school in 
Jacksonville, FL 

school year (Sept - 
May)/ SPARK-80 
Computerized 
Mathematics System 

SPARK-80 vs. Resource 
Room 

Key 
Mathematics 
Diagnostic 
Arithmetic Test 
(grade equiv) 

0.379 (ns) 0.441 

Wheeler & 
Regian, 1999a RCT 

493 ninth-grade 
students in 40 
traditional 
mathematics 
instruction classes  
in Texas, New 
Mexico, and Ohio 

one session per week, 
for the school year/ 
Word Problem 
Solving (WPS) Tutor 

WPS vs. Control 

Word Problem 
solving combo 
(concrete & 
abstract) 

0.517 * 0.206 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

24.385 13 0.028 46.688 
Pooled ES (9 studies, 14 effect sizes) 

0.302 ** 0.099 
Mathematics outcomes only  
Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

20.519 10 0.025 51.264 
Pooled ES (7 studies, 11 effect sizes) 

0.288 * 0.112 

Problem-solving outcomes only 
Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.939 2 0.379 0.000 
Pooled ES (two studies, three effect sizes) 

0.425 * 0.175 

Note: The 2 studies with problem-solving outcomes are Fuchs et al. (2002) and Wheeler & Regian (1999), all others have mathematics outcomes. 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 

 
3. Tools: Calculators and Graphing Calculators 

Among the many categories of technology, calculators, including graphing 
calculators, have probably generated the greatest amount of debate. Some have championed 
their use in developing problem-solving ability by allowing students to perform far more, and 
more complex, arithmetic operations than would have been possible without technology. 
Others have bemoaned their misuse as simple fact checkers. A concern is that calculators 
have an insidious effect on paper-and-pencil arithmetic and algebraic skills. 

 
Calculators have been used in mathematics education for 70 years, since Emmett 

Betts engaged students with calculating machines in 1937. They metamorphosed from the 
original bulky and expensive machines to the electronic calculators of the 1960s, the 
inexpensive handheld, four-function calculators of the 1970s, and the wide variety of basic, 
scientific, and graphing calculators available today.   
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The usefulness of calculators in homes and businesses may seem clear, but their use 
in education, at first blush, seems equally problematic—students should learn to compute 
without calculators. The Panel’s survey of the nation’s algebra teachers indicated that the use 
of calculators in prior grades was one of their concerns (Hoffer et al., 2007). 

 
a. Prior Syntheses and Meta-Analyses 

Previous reviews (see summary in Table 23) have suggested that calculators of all 
types, basic, scientific and graphing, may benefit students’ achievement in and attitudes 
toward mathematics (see the detailed effect size information from prior quantitative 
syntheses and meta-analyses in Tables C-3 and C-4 in Appendix C). Effects are usually more 
positive when students are allowed to use calculators during testing. Effects on concepts, 
contrary to perhaps the most common concern, are near zero but positive, and effects on 
problem solving were positive.  

 
Table 23: What Prior Reviews Say About Calculators 

• General findings 
— Generally improve students achievement and attitudes (median pooled effect 

size on computation, 0.41, Table C-3) 
— Generally improve mathematical problem solving (median pooled effect size, 

0.19) but little or no effect on conceptual development (median pooled effect 
size near zero) 

— Most effective in facilitating learning of operational skills (“operational” 
indicating that the report was unclear as to whether the instrument assessed 
the computational, conceptual, or both domains) 

— Graphing calculators particularly effective for conceptual skills (Table C-4) 
— All the effects mentioned are lower when testing without calculators 

• Contextual variables 
— No consistent differences by grade levels 
— Some differences by ability level 

• Implementation variables 
— Special calculator instruction may have more positive effects (pedagogical 

uses vs. merely providing calculators) on computational, operational, and 
problem solving competencies 

 
b. The Task Group’s Meta-Analysis of Calculators 

Turning to the Task Group’s meta-analysis of rigorous studies, Tables 24, 25, and 26 
provide individual study and pooled effect sizes for each of the three focal outcomes: 
computation (Table 24), problem solving (Table 25), and concepts (Table 26).14 The tables 
disaggregate studies analyzed at the student level from studies analyzed at the classroom level. 

                                                             
14  Many of the studies had a concern that calculators may impede computational achievement, and thus were testing 
to see whether use of calculators had a positive or negative effect on computation.  The studies that assessed the 
effects on problem solving and concepts often hypothesized that calculators would improve these outcomes. 
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Meta-analytic pooled effect sizes and accompanying statistics are based on pooling of similarly 
aggregated effect sizes. In other words, studies that analyzed data at the student-level are 
pooled together, and similarly, studies that analyzed at the classroom level are pooled together. 

 
It was the Task Group’s hope to discern through this meta-analysis any differences 

that might exist between the effects of graphing calculators and non-graphing calculators. 
However, nearly all of the peer-reviewed published studies using graphing calculators 
examine the effects on students in advanced mathematics courses (such as Algebra 2, 
Trigonometry, Precalculus, and Calculus). As a result, only one of the included studies 
(Graham & Thomas, 2000) used a graphing calculator. 

 
Table 24 presents studies that contrast treatment condition using calculators with a 

non-calculator control condition on computational outcomes. Seven of the studies (one with 
effects at four different grade levels) analyzed data at the individual student level, and the 
remaining three (including nine comparisons) used the classroom or teacher as the unit of 
analysis. For the student-level set, then, ten effect sizes were calculated. The pooled effect 
size is 0.319, which borders on statistical significance. In only one of the included studies 
(Wheatley, 1980), students were allowed to use calculators during assessment. Once that 
study is removed from the analysis, the pooled effect size is 0.307, and is not statistically 
significant. For the classroom-level set, nine effect sizes were calculated. The mean effect 
size is -0.085, which is not statistically significant. 

 
Outcomes of studies that examine the effects of calculator use on problem solving are 

presented in Table 25. The seven comparisons in the student-level set (note that four were 
from a single study, Szetela (1982)) yielded a mean pooled effect size of 0.304, which 
borders on statistical significance. The four comparisons from the classroom-level set yielded 
a mean pooled effect size of -0.063, which was not statistically significant.  

 
Regarding outcomes on measures of conceptual development, presented in Table 26, 

the four comparisons in the student-level set yielded a mean pooled effect size of 0.278, 
which is not statistically significant. The three comparisons from the classroom-level set 
yielded a mean pooled effect size of 0.128, which was not statistically significant.  

 
Several contextual and implementation variables were examined. These are 

summarized in Table C-8 in Appendix C. 
 
Contextual variables. These studies yielded the following results regarding contexts. 
 

• Age or grade. There were no statistically significant differences among the effect 
sizes for elementary school-aged students (ES = 0.367, ns, five effect sizes within 
four studies) versus secondary school-aged students (ES = 0.113, ns, four effect sizes 
within three studies) for computation, nor for applications or concepts. However, this 
is based on a small sample of studies and thus there may not be sufficient power to 
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detect differences in effect sizes (e.g., differences in effect sizes for applications, 
which were larger for secondary than for elementary, and statistically significant only 
for secondary, should be evaluated in future research). 
 
Implementation variables. The Task Group’s meta-analysis indicates the following 

regarding implementation variables. 
 

• Duration. Studies that provided interventions for shorter periods (less than 3 months) 
had stronger effects on computation than studies that extended over longer time 
periods (3 months or longer). Specifically, the pooled effect size, under random 
effects assumptions, for interventions taking place for less than three months was a 
statistically significant 0.503 (p < .05, seven effect sizes within five studies); while 
the effect for studies taking place for longer than 3 months was not statistically 
significant (ES = -0.134, three effect sizes within three studies).15 Although this 
would be an interesting finding if valid, it is based on a small sample, and thus it is 
likely that other factors unrelated to program duration may have led to this result. 
There were no such significant differences for applications or concepts. 

• Special calculator instruction. Using alternative interventions or enhancing the 
intervention did not, as a whole, yield significantly higher effect sizes.  

In summary, effect sizes of the Task Group’s meta-analysis to examine the effects of 
calculator use on computation skills are smaller than those reported in prior syntheses and 
meta-analyses.  

 
Concerning the impact of calculator use on problem-solving competencies, the Task 

Group’s meta-analysis at the student level yielded a borderline significant, positive effect, but 
classroom-level analyses were near zero. The results in Table 25 are mainly for the outcomes 
in which students were not allowed to use calculators to solve problems on the assessments, 
Wheatley (1980) is the only study that includes outcomes where calculators were allowed. 
When looking at outcomes in which calculators were permitted on the assessments, effects 
were more positive (e.g., two of the four contrasts examined from Szetela (1982) reached 
statistical significance, see Table C-9 in Appendix C). Assessing proficiency with the same 
tools available as were available during instruction may be viewed as constituting a valid 
comparison, perhaps especially for problem-solving outcomes. Comparing these conclusions 
to those in the syntheses of previous reviews, the pattern is similar to what was found for 
computation: The effect sizes in the present meta-analyses are smaller.  

 
Effect sizes on conceptual development tended to be positive, favoring the calculator 

treatments, but generally small and all nonsignificant (see Table 26). This is consistent with 
the prior syntheses and meta-analyses, which reported near-zero pooled effect sizes. 

 

                                                             
15 The five studies taking place for less than three months include: Schnur & Lang (1976), Standifer & Maples 
(1981), Szetela (1980), the Grade 3, 5, and 7 sample of Szetela (1982), and Wheatley (1980).  The three studies 
taking place for three or more months include: Campbell & Virgin (1976), Standifer & Maples (1982), and the 
Grade 8 sample of Szetela (1982). 
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The two specific alternative interventions or enhancements to calculators (programmed 
feedback calculators and supplementary materials) used in studies identified as high quality by 
the Task Group (Standifer & Maples, 1981, 1982; Duffy & Thompson, 1980) did not yield any 
significant effect sizes. This is in contrast to the findings of the prior syntheses and meta-
analyses (and to the findings for formative assessment discussed in the Task Group report), 
which include a wider range of enhancements, including more recent interventions. More 
research needs to be conducted, for example, on essential distinctions such as between 
functional and pedagogical use. 

 
Finally, there are several important caveats. Effects of calculator use, especially 

appropriate versus inappropriate pedagogical use in the early grades, have not been 
adequately researched. Similarly, long-term effects of inappropriate calculator use may be 
negative (Wilson & Naiman, 2004); there is no reliable evidence. The Task Group’s meta-
analysis could not include adequate research on graphing calculators; high-quality research is 
needed regarding this type of calculator. 

 
Table 24: Studies That Investigate the Effects of Calculators on Computation Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Computation Outcomes 

Student-level analyses 

Campbell 
& Virgin, 
1976b 

Quasi 

252 fifth- and sixth- 
graders in two North 
York elementary 
schools (Canada). 

7 months/ 
Basic 
computation 

Calculators to check 
work vs. No calculators 

Metropolitan 
Achievement Test 
computation score 

Overall 0.022 (ns) 0.642 

Schnur & 
Lang, 
1976a 

RCT 

60 youths ages 9 to 
14 in four summer 
compensatory 
education classes in 
rural Iowa. 

26 weeks/ 
Computation 

Calculators to check 
work and compute 
subset of problems vs. 
Compensatory 
education program 

Computational Skills 
Program 
Computational Test 

Overall 0.855 ~ 0.512 

Standifer 
& Maples, 
1981a 

RCT 

141 students in 6 
third-grade 
classrooms in 
Monroe, Louisiana  

11 weeks/ 
Computation 

Hand-held, four 
function calculator vs. 
No calculator in regular 
mathematics 
curriculum (see Table 
C-9 for effects of 
programmed feedback 
calculator vs. No 
calculator in regular 
mathematics 
curriculum) 

Science Research 
Associates 
Assessment: 
computation score 

Overall 0.635 (ns) 0.398 

Standifer 
& Maples, 
1982a 

RCT 

113 students in 10 
third- and fourth-
grade Title I 
compensatory 
mathematics 
classrooms in 
Monroe, Louisiana 

5 months/ 
Computation 

Hand-held, four 
function calculator vs. 
General remedial 
mathematics 
curriculum (see Table 
C-9 for effects of 
experimental group 
2 using programmed-
feedback calculators + 
regular remedial 
curriculum) 

Science Research 
Associates 
Assessment: 
computation score 

Overall 0.023 (ns) 0.329 

Szetela, 
1980 RCT 

39 students in two 
seventh-grade classes 
in a middle class 
elementary school 
(likely in Canada) 

3 weeks/ Focus 
on learning the 
concept of 
ratios 

Calculator-based 
instruction with four-
function calculator vs. 
Instruction without 
calculators 

Researcher-designed 
test on ratios Overall 0.322 (ns) 0.316 

Continued on p. 6-130 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-130 

Table 24, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

46 third-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

Third grade 1.337 *** 0.323 

33 fourth-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

Fifth grade -0.307 (ns) 0.342 

47 seventh-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

Seventh 
grade 0.279 (ns) 0.288 

Szetela, 
1982 

RCT 
for 
Grades 
3, 5 
and 7 
and 
Quasi 
for 
Grade 
8 

54 eighth-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

8 weeks/ All 
grades focused 
on problem 
solving. Grade 
specific foci 
included: 
Grade 3: whole 
number 
operations in 
multiplication, 
basic division; 
Grade 5: 
introduction to 
decimals, 
operations with 
decimals; 
Grades 7 and 
8: decimals, 
ratios, and 
percents. 

Regular instruction 
plus calculator-specific 
materials vs. Regular 
instructional activities 

Researcher-designed 
computational skills 
(16 items); tailored 
to grade level  

Eighth grade -0.267 (ns) 0.270 

Wheatley, 
1980c Quasi 

44 sixth-grade 
students in two 
classes (same 
teacher) in an 
elementary school in 
a Midwestern 
university town 

6 weeks/ 
Problem 
solving 

Problem solving with 
calculators vs. Problem 
solving intervention 
without calculators 

Measure of 
computational errors 
(reverse coded) on 
five researcher-
designed problems 

Overall 0.573 (ns) 0.691 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g 
Standard 

Error 

20.822 9 .013 56.776 
Pooled ES: student level (7 studies, 10 effect sizes) 

0.319 ~ 0.077 
Classroom-level analyses 

Approx. 135 students 
in 20 fourth-grade 
classrooms in 
Columbus, Ohio 

Fourth grade 0.037 (ns) 0.428 

Approx. 122 students 
in 18 fifth-grade 
classrooms in 
Columbus, Ohio 

Fifth grade 0.325 (ns) 0.452 
Duffy & 
Thompson, 
1980 

RCT 

Approx. 129 students 
in 19 sixth-grade 
classrooms in 
Columbus, Ohio 

26 weeks/ 
Application 
problems, 
decimals, 
rounding, 
estimation 

Calculators only plus 
regular mathematics 
program vs. Regular 
mathematics 
curriculum (see Table 
C-9 for effects of 
calculator plus 
instructional packages 
for teachers, plus 
regular mathematics 
program) 

CTBS computation 
score 

Sixth grade -0.395 (ns) 0.444 

Szetela & 
Super, 
1987 

Quasi 

Approx. 424 students 
in 21 seventh-grade 
classrooms in an 
urban-rural district in 
Canada 

One school 
year/ Problem 
solving  

Problem solving with 
calculators vs. Problem 
solving intervention 
without calculators 

Rational Numbers 
test—40 item test 
used in British 
Columbia  

Overall -0.076 (ns) 0.423 

Continued on p. 6-131 
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Table 24, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Second 
grade -0.603 (ns) 0.587 

Third grade 0.352 (ns) 0.577 

Fourth grade -0.460 (ns) 0.580 

Fifth grade -0.434 (ns) 0.579 

Wheatley 
& 
Shumway, 
1979 

RCT 

Students in 50 
classrooms in second 
through sixth grade 
in five Midwestern 
states. Ten 
classrooms in each 
grade level. 

7 months/ 
Basic four-
function 
calculator/ 
computation 

General calculator use 
(teachers trained but 
determine how they will 
implement) vs. No 
calculators/regular 
mathematics program 

Stanford 
Achievement Test - 
Computation score 

Sixth grade 0.315 (ns) 0.576 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g 
Standard 

Error 

4.010 8 0.856 0.000 
Pooled ES: student level (three studies, nine effect sizes) 

-0.085 (ns) 0.167 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The treatment group was allowed to use a calculator during assessment for this outcome. 
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Table 25: Studies That Investigate the Effects of Calculators on Problem Solving Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Problem Solving Outcomes 

Student-level analyses 

Campbell & 
Virgin, 1976b Quasi 

150 fifth- and sixth-
graders in two 
North York 
elementary schools 
(Canada) 

7 months/ Basic 
computation 

Calculators to 
check work vs. 
No calculators 

MAT computation 
score Overall 0.238 (ns) 0.642 

Szetela, 1980 RCT 

39 students in two 
seventh grade 
classes in a middle 
class elementary 
school (likely in 
Canada) 

3 weeks/ Focus on 
learning the concept 
of ratios 

Calculator-based 
instruction with 
four-function 
calculator vs. 
Instruction without 
calculators 

Researcher-designed 
ratio problems test Overall 0.869 ** 0.329 

46 third-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

Third 
grade 0.522 ~ 0.296 

33 fourth-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

Fifth grade -0.507 (ns) 0.345 

47 seventh-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

Seventh 
grade 0.227 (ns) 0.288 

Szetela, 1982 

RCT for 
Grades 
3, 5 and 
7 and 
Quasi 
for 
Grade 8 

54 eighth-grade 
students in a middle 
income school in 
Richmond, British 
Columbia 

8 weeks/ All grades 
focused on problem 
solving.  Grade 
specific foci 
included: Grade 3: 
whole number 
operations in 
multiplication, basic 
division; Grade 5: 
introduction to 
decimals, operations 
with decimals; 
Grades 7 and 8: 
decimals, ratios, and 
percents. 

Regular 
instruction plus 
calculator-specific 
materials vs. 
Regular 
instructional 
activities  

Researcher designed 
problem-solving 
post-test (10 
items)—correct 
answer measure was 
used to calculate 
effect sizes (other 
measure available 
were problems 
attempted and 
correct operation 
used) 

Eighth 
grade 0.344 (ns) 0.270 

Wheatley, 
1980c Quasi 

44 sixth-grade 
students in two 
classes (same 
teacher) in an 
elementary school 
in a Midwestern 
university town 

6 weeks/ Problem 
solving 

Problem-solving 
with calculators 
vs. Problem-
solving 
intervention 
without 
calculators 

Process score 
(processes used to 
solve problems) 

Overall 0.353 (ns) 0.689 

Heterogeneity 

Q-value df (Q) P-value I-squared 
Hedge’s 

g 
Standard 

Error 

9.105 6 0.168 34.101 

Pooled ES: student level (four studies,  
seven effect sizes) 

0.304 ~ 0.167 
Continued on p. 6-133 
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Table 25, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Classroom-level analyses 
Approx. 135 
students in 20 
fourth-grade 
classrooms in 
Columbus, OH 

Fourth 
grade -0.413 (ns) 0.433 

Approx. 122 
students in 18 fifth-
grade classrooms in 
Columbus, OH 

Fifth grade -0.161 (ns) 0.440 Duffy & 
Thompson, 
1980 

RCT 

Approx. 129 
students in 19 sixth-
grade classrooms in 
Columbus, OH 

26 weeks/ 
Application 
problems, decimals, 
rounding, estimation 

Calculators only 
plus regular 
mathematics 
program vs. 
Regular 
mathematics 
curriculum (see 
Table C-9 for 
effects of 
calculator plus 
instructional 
packages for 
teachers, plus 
regular 
mathematics 
program) 

CTBS applications 
score 

Sixth grade 0.178 (ns) 0.440 

Szetela & 
Super, 1987 Quasi 

Approx. 424 
students in 21 
seventh-grade 
classrooms in an 
urban-rural district 
in Canada 

One school year/ 
Problem solving  

Problem solving 
with calculators 
vs. Problem-
solving 
intervention 
without 
calculators (see 
Table C-9 for 
larger positive 
effects where 
calculator group 
was able to use 
calculators) 

Combination of two 
researcher designed 
problem solving 
measures: 
translation problems 
(20 items) and 
process problems 
(20 items) 

Overall 0.140 (ns) 0.424 

Heterogeneity 

Q-value df (Q) P-value I-squared 
Hedge’s 

g 
Standard 

Error 

1.230 3 0.746 0.000 

Pooled ES: student level (two studies,  
four effect sizes) 

-0.063 (ns) 0.217 
~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The treatment group was allowed to use a calculator during assessment for this outcome. 
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Table 26: Studies That Investigate the Effects of Calculators on Concept Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s 
g 

Standard  
Error 

Concepts Outcomes 

Student-level analyses 

Campbell & 
Virgin, 
1976b 

Quasi 

252 fifth- and  
sixth-graders in  
two North York 
elementary 
schools (Canada). 

7 months/ Basic 
computation 

Calculators to check 
work vs. No calculators 

MAT 
concepts 
score 

Overall 0.129 (ns) 0.642 

Graham & 
Thomas, 
2000a 

Quasi 

84 students in 
Grades 9 and 10 
in two schools in 
New Zealand  

3 weeks/Algebra 

Graphic calculator used 
to learn algebraic 
variables vs. Standard 
algebra instruction 

Kuchmann 
(1981) 
designed to 
measure 
algebraic 
understanding 

Overall 0.328 (ns) 0.489 

Standifer & 
Maples, 
1981a 

RCT 

141 students in 
six third-grade 
classrooms in 
Monroe, LA  

11 weeks/ 
Computation 

Hand-held, four function 
calculator vs. No 
calculator in regular 
mathematics curriculum 
(see Table C-9 for 
effects of programmed 
feedback calculator vs. 
No calculator in regular 
mathematics curriculum) 

Science 
Research 
Associates 
Assessment: 
computation 
score 

Overall -0.076 (ns) 0.395 

Standifer & 
Maples, 
1982a 

RCT 

113 students in 
10 third- and 
fourth-grade 
classrooms in 
Monroe, LA 

5 months/ 
Computation 

Hand-held, four 
function calculator vs. 
General remedial 
mathematics curriculum 
(see Table C-9 for 
effects of experimental 
group 2 using 
programmed-feedback 
calculators + regular 
remedial curriculum) 

Science 
Research 
Associates 
Assessment: 
computation 
score 

Overall 0.546 (ns) 0.332 

Heterogeneity 
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

1.519 3 0.678 0.000 
Pooled ES: student level (4 studies, 4 effect sizes) 

0.278 (ns) 0.213 
Classroom-level analyses 

Approx. 135 
students in 20 
fourth-grade 
classrooms in 
Columbus, OH 

Fourth 
grade 0.063 (ns) 0.428 

Approx. 122 
students in 18 
fifth-grade 
classrooms in 
Columbus, OH 

Fifth grade 0.221 (ns) 0.440 
Duffy & 
Thompson, 
1980 

RCT 

Approx. 129 
students in 19 
sixth-grade 
classrooms in 
Columbus, OH 

26 weeks/ 
Application 
problems, decimals, 
rounding, estimation 

Calculators only plus 
regular mathematics 
program vs. Regular 
mathematics curriculum 
(see Table C-9 for 
effects of calculator 
plus instructional 
packages for teachers, 
plus regular 
mathematics program) 

CTBS 
concepts 
score 

Sixth grade 0.103 (ns) 0.439 

Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

0.071 2 0.965 0.000 
Pooled ES: student level (one study,  

three effect sizes) 0.128 (ns) 0.252 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The treatment group was allowed to use a calculator during assessment for this outcome. 
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4. Computer Programming 

One of the early uses of educational technology in education was engaging students 
in programming computers as a way to explore, learn, or apply and practice mathematical 
ideas. For example, the original developers of Logo developed this programming language to 
serve as a conceptual framework for learning mathematics (Feurzeig & Lukas, 1971; Papert, 
1980). Classroom observations suggested that children use certain mathematical concepts in 
Logo programming. As an illustration, first-graders use such mathematical notions as 
number, arithmetic, estimation, measure, patterning, proportion, symmetry, inversion, and 
compensation (Kull, 1986). Similar observations of intermediate graders indicated that Logo 
may make it possible to explore certain mathematical concepts, such as angle measure or 
recursion, earlier than is currently believed (Carmichael, Burnett, Higginson, Moore, & 
Pollard, 1985; Papert, Watt, diSessa, & Weir, 1979). Here the Task Group investigates 
whether engaging students in computer programming has significant effects on their 
mathematics achievement and problem-solving ability. 

 
a. Prior Syntheses and Meta-Analyses 

Detailed effect size information from prior quantitative syntheses and meta-analyses 
are presented in Table C-5 in Appendix C. Previous reviews (see summary Table 27) indicate 
that programming improves students’ performance compared to conventional instruction, 
with the greatest effects on concepts and applications, especially geometric concepts, and 
weaker effects on computation. They also have indicated that programming positively affects 
problem solving, as well as attitudes toward mathematics and instruction in mathematics, 
more so than other software categories. On the basis of prior syntheses and meta-analyses, 
computer programming appears to have the same effectiveness at various grade levels. There 
is some evidence it is more effective for students of average, rather than low or high 
socioeconomic status (SES). Earlier syntheses and meta-analyses have argued that 
programming is somewhat more effective when it supplements, rather than replaces, 
conventional instruction, consistent with suggestions for mediated instruction of 
programming. Certain computer languages, especially the Logo computer language, have 
stronger positive effects than other computer languages. Other syntheses have similarly 
concluded that direct teacher involvement and better designed languages result in better 
instruction, and provide more guidance for instruction (Clements & Sarama, 1997). As with 
other types of software, Logo programming can be particularly effective when embedded in a 
curriculum and then in a context that includes professional development for teachers. 
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Table 27: What Prior Reviews Say About Programming Interventions 

• General Findings 
— Logo programming can increase students’ mathematical achievement, 

especially if it is integrated into a coherent curriculum with teacher 
mediation (Clements & Sarama, 1997) 

— The median pooled effect size for mathematics achievement across the meta-
analyses is 0.35; for problem solving, the median is 0.285 (see Table C-5) 

— Impacts more likely on concepts and applications as opposed to 
computation 

— Positive effects on attitudes toward mathematics and instruction 
• Contextual variables 

— Differences favoring elementary school-age (vs. secondary) in achievement 
(similar for problem solving) 

— Differences favoring average SES students vs. either high or low SES 
— No consistent differences in ability level 

• Implementation variables 
— Differences favoring shorter duration programs (up to 18 weeks; based on 

only one meta-analysis) 
— Differences favoring programs that supplement rather than substitute for 

other mathematics instruction for problem solving (substitution is slightly 
higher for achievement). Narrative reviews conclude that better outcomes 
result from curriculum integration and mediated teaching 

— Differences favoring computer programs designed to support learning 
(such as Logo) 

 
b. The Task Group’s Meta-Analysis of Computer Programming Interventions 

Table 28 presents the studies in the Task Group’s meta-analysis of high-quality 
experimental and quasi-experimental studies on the effects of students’ engaging in computer 
programming on their achievement. From all the studies reviewed, only 14 met the criteria 
for inclusion. These 14 studies yielded a total of 30 effect sizes. Of these, 24 were positive, 
1 negative, and 5 near zero, with a mean pooled effect size on combined outcome measures 
of 0.674, which was statistically significant. Those assessing mathematics achievement only 
had a mean pooled effect size of 0.698, which also was statistically significant. (An 
important note is that some of these interventions involved changes in curriculum, using 
technology, but also altering content and teaching.) Those that assessed problem solving 
ability had a mean pooled effect size of 0.518, which was also statistically significant. 

 
Although only two studies (Johnson-Gentile et al., 1994; Ortiz & MacGregor, 1991) 

reported effects on retention, both reported a larger effect size for the delayed, compared to 
the immediate, posttests (1.901 immediate, significant ES; 2.410 delayed for Johnson-Gentile 
et al.; 0.437 immediate, bordering on significant .898 for Ortiz & MacGregor). These 
findings suggest that computer programming, possibly due to the more extensive processing 
(due to the programming activity per se) over multiple modalities (e.g., numeric or symbolic 
and visual or graphic) or the ability to actively submit one’s ideas for evaluation and 
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feedback (e.g., did the program run as expected) facilitates students’ development of higher 
level conceptual structures. That is, computer programming requires a complete, precise, and 
abstract explication, potentially leading to conceptually richer concepts. Students specify 
steps to a noninterpretive agent, with thorough specification and detail, then observe, reflect 
on, and correct. The computer serves as an explicative agent. 

 
Several of these studies also compared computer programming to a CAI-based treatment, 

and so were not included in the basic meta-analysis in Table 28. Showing consistently higher 
scores for the computer programming than the CAI groups (but none reaching levels of statistical 
significance), these contrasts can be found in Appendix C in Table C-10. Several contextual and 
implementation variables may have contributed to the inconsistency. 

  
Contextual variables. These studies about programming yielded the following results 

regarding contexts (Table 20). 
 

• Age or grade. Effects were significantly higher when used with elementary school 
students than with middle school students, consistent with previous reviews. 
 
Implementation variables. These studies yielded the following regarding 

implementation variables. 
 

• Duration. There were no significant differences for interventions of different durations. 

• Substitute versus supplement. Both substitution and supplementation programming 
treatments had statistically significant positive effects (ES 0.721 and ES 0.655), and 
the differences in effects between these two types of treatments were not significant.  

• Level of integration. The differences across subcategories of curricular integration 
also did not reach statistical significance, but there is a clear pattern of effect sizes in 
which stronger effects are related to high (0.682, significant) or medium (0.739, 
significant), compared to low (-0.065, not significant) integration. 

The Task Group’s meta-analysis of rigorous studies on the effects of computer 
programming on mathematics achievement supports the conclusions of the previous 
syntheses, with a significant mean pooled effect size of 0.698 for mathematics achievement 
and 0.518 for problem solving (See Table 28) (compare to the median pooled effect sizes of 
0.35 and 0.258, respectively, for the previous meta-analyses). Effects were higher for 
elementary school students than for older students. There is a suggestion that greater 
curricular integration yields stronger positive effects. Further, this meta-analysis suggested a 
result not previously revealed—that results for delayed posttests might be greater than those 
for immediate posttests. 
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Table 28: Studies That Examine Effects of Computer Programming on 
Mathematics Achievement 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s  
g 

Standard  
Error 

Programming 
12 fourth-grade students in 
a midwestern middle 
school 

0.660  0.609 Battista & 
Clements, 
1986  

RCT 
26 sixth-grade students in a 
midwestern middle school 

42 sessions (two 40-min 
per week)/ LOGO 

Logo vs. C 
(computer literacy) 

Problem-solving 
Tests 1&2, 
Combined 

0.049  0.392 

Blume & 
Schoen, 
1988 

QED 
50 eighth-graders in two 
midwestern junior high 
schools 

A semester-long class/ 
BASIC Basic vs. C Combined problem 

solving and logic -0.065  0.444 

24 first-grade students from 
a middle-class midwestern 
school system 

1.072 * 0.423 
Clements, 
1986 RCT 

24 third-grade students 
from a middle-class 
midwestern school system 

44 sessions (22 weeks)/ 
LOGO Logo vs. C WRAT 

Mathematics score 
0.636  0.405 

51 Kindergarten students in 
a school near Kent, OH  2.842 *** 0.609 

71 Kindergarten students in 
a school near Buffalo, NY  0.121  0.495 

87 first-grade students in a 
school near Kent, OH  0.938 ~ 0.495 

92 first-grade students in a 
school near Buffalo, NY  0.394  0.486 

103 second-grade students 
in a school near Kent, OH  0.009  0.481 

96 second-grade students in 
a school near Buffalo, NY  1.457 ** 0.502 

56 third-grade students in a 
school near Kent, OH  0.571  0.511 

47 third-grade students in a 
school near Buffalo, NY  0.674  0.524 

158 fourth-grade students 
in a school near Kent, OH  0.184  0.470 

92 fourth-grade students in 
a school near Buffalo, NY  0.353  0.486 

103 fifth-grade students in 
a school near Kent, OH  0.093  0.481 

95 fifth-grade students in 
two schools, one near Kent, 
OH (Site 1) and one in 
Buffalo, NY (Site 2) 

0.982 * 0.492 

141 sixth-grade students in 
a school near Kent, OH  0.526  0.474 

Clements 
et al., 2001 QED 

108 sixth-grade students in 
a school near Buffalo, NY  

Incorporated into classes 
over entire academic 
year/ LOGO and 
geometry 

Logo vs. Control Geometry 

0.011  0.479 

Clements 
& Battista, 
1989 

RCT 

48 third-grade students of 
seven teachers from a 
middle class midwestern 
school 

78 sessions, three 45-55 
min per week (26 
weeks)/ LOGO 

Logo vs. C 
(computer 
composition/music 
+ some Logo) 

Combined  
posttest 1.495 *** 0.328 

Degelman 
et al., 1986 RCT 

15 Kindergarten students 
attending a private day care 
center 

15 minutes/day for five 
weeks/ LOGO Logo vs. C Problem solving 

(proportion correct) 1.284 * 0.576 

Continued on p. 6-139 
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Table 28, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Hedge’s g 

Standard 
Error 

Emihovich 
& Miller,  
1988 

RCT 

24 first-grade students in 
five classrooms in an 
elementary school in the 
southeast 

20, 30-min sessions 
(3 months)/ LOGO  Logo vs. C  CTBS - 

Mathematics 0.719 ~ 0.408 

Johnson-
Gentile et 
al., 1994 

QED 

150 fifth- and sixth-graders 
in six classrooms in two 
schools, one urban and one 
suburban 

8 class days/ LOGO and 
geometry Logo vs. control 

Logo Geometry 
Motions Unit 
Posttest 

1.901 *** 0.420 

Kapa, 1999 

15 fifth-grade students 
from four classes in two 
elementary schools in Tel 
Aviv, Israel, working 
individually 

individual: LOGO-
STAT vs. C (Q-
Text, linguistic 
problem-solving) 

0.520  0.496 

Kapa, 
1999a 

RCT 
30 fifth-grade students from 
four classes in two 
elementary schools in Tel 
Aviv, Israel, working in pairs 

twice per week for 
45 min for semester/ 
LOGO-STAT-
programming and 
graphing 

pairs: LOGO-
STAT vs. C (Q-
Text, linguistic 
problem-solving) 

Problem solving 
(range 1–6) 

0.697 ~ 0.412 

Lehrer & 
Randle, 
1987 

RCT 
24 first-grade students in a 
low SES New York City 
school 

35 sessions, twice per 
week 20–25 min, 5 
months/ LOGO 

Logo vs. C TOH (avg of 
TOH 1–3)  1.254 ** 0.434 

Oprea, 
1988a QED 

54 sixth-grade students in 
three schools in a small 
midwestern city 

6 weeks/ BASIC applied 
to mathematics content 

Wholistic BASIC 
vs. C 

Mathematical 
Generalization 
Instrument 

0.391  0.679 

Ortiz & 
MacGregor, 
1991 

RCT 

59 sixth-grade students 
from four classrooms in 
two metropolitan area 
public schools 

5, 50-min sessions/ 
LOGO and the concept 
of a variable 

Logo vs. textbook-
based instruction 
on concept of 
variable 

Concept of 
variable 
instrument 

0.437 ~ 0.260 

Thompson 
& Wang, 
1988a 

QED 

40 sixth-grade students 
from two classrooms 
(taught by the same 
teacher) in one school 

3, 45-min sessions/ 
LOGO and graphing 
skills 

Logo vs. C 
Posttest- 
Cartesian 
coordinates 

0.538  0.696 

Turner & 
Land, 
1988a 

QED 

153 middle school students 
in seven classrooms in four 
inner-city midwestern 
public schools 

1hr/week, 16 weeks/ 
LOGO and angles and 
distance, variables, 
rectangular coordinate 
systems, negative 
numbers, etc. 

Logo vs. C 
Mathematics 
Multiple Choice 
Posttest 

-0.267  0.471 

Heterogeneity  
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

53.503 29 0.004 45.797 
Pooled ES (14 studies, 30 effect sizes) 

0.674 *** 0.115 
Mathematics outcomes only 
Heterogeneity  

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

45.078 22 0.003 51.196 
Pooled ES (9 studies, 23 effect sizes) 

0.698 *** 0.138 
Problem-solving outcomes only 
Heterogeneity 

Q-value df (Q) P-value I-squared Hedge’s g Standard Error 

8.512 7 0.290 17.765 
Pooled ES (six studies,  

eight effect sizes) 0.518 ** 0.169 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
 
Note: The studies with mathematics outcomes are Clements (1986), Clements et al. (2001), Clements & Battista 
(1989), Emihovich & Miller (1988), Johnson-Gentile et al. (1994), Oprea (1988), Ortiz & MacGregor (1991), 
Thompson & Wang (1988), and Turner & Land (1988).  

The studies with problem-solving outcomes are Battista & Clements (1986), Blume & Schoen (1988), Clements 
(1990) (not part of main pooled analysis; it was based on the same study or sample as Clements & Battista 
(1989), Degelman et al. (1986), Kapa (1999), and Lehrer & Randle (1987). 
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Based on the small number of studies in the subsequent categories, the Task Group 
did not conduct a meta-analysis of studies in these categories. The findings of prior syntheses 
and reviews are briefly presented to guide future research. 

 
5. Tools: Computer—Existing Reviews 

Studies in a broader and more ill-defined category of technology, software tools and 
exploratory environments (excluding calculators which were discussed above), were found to 
have inconsistent effects on student performance when compared to conventional classroom 
instruction in the synthesis of existing reviews. Detailed effect size information from prior 
quantitative syntheses and meta-analyses are presented in Table C-6 in Appendix C. One 
review reported that problem solving software appeared as effective as other categories of 
software (Edwards et al., 1975). However, pooled effect sizes reported in other meta-analyses 
have tended to be low, including 0.04 for tool and exploratory environments (Lou et al., 
2001, who emphasize that commercial tests may underestimate effects), 0.10 for “computer-
enhanced instruction” (a broad interpretation, Kulik & Kulik, 1991), and 0.24 for secondary 
students’ use of problem-solving software (Kuchler, 1999). 

 
In contrast to these limited effects, a recent randomized trials evaluation of a middle-

school mathematics approach in which software is a key component reported a larger effect 
size (Roschelle et al., 2007). The approach focuses on proportionality, with software that 
connects different representational systems; for example, linking visual forms such as graphs 
and simulated motions to linguistic forms such as algebraic symbols and narrative stories of 
motion in an interactive and expressive context. The approach also embeds the software 
within a curriculum and includes professional development for the teachers, which may 
account for its success. Caveats include the short duration of the study (less than a month) 
and the participation of all volunteer teachers; for these reasons this study did not meet the 
Task Group’s inclusion criteria. 

 
Based on the small number of studies for any particular subcategory of tools and 

exploratory environments, the Task Group did not conduct a meta-analysis of this category 
except for one specific type of tool, the calculator, discussed previously. 

 
6. Simulations and Games—Existing Reviews 

Detailed effect size information from prior meta-analyses on simulation and games 
are presented in Table C-7 in Appendix C. The prior syntheses of the effects of simulation 
and game software revealed inconsistent effects on student performance when compared to 
conventional classroom instruction, with three previous meta-analyses providing a median 
pooled effect size of 0.23. All specific findings come from only one of these meta-analyses; 
thus, all results are tentative. 

 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-141 

Table 29: What Prior Reviews Say About Simulations and Games 

• General findings 
— Larger effects for computation or a combination of goals than for concepts 

and applications (but based on one meta-analysis, with small numbers of 
effect sizes; see Table C-7) 

— Arithmetic and “general” subjects showed higher effects than geometry and 
algebra 

— Attitudes toward mathematics and instruction positively affected by use of 
simulation software 

• Contextual variables 
— Junior high students benefited more than elementary students 
— Simulations appear more effective for males 

• Implementation variables 
— Effects were greater for studies of 1–18 weeks compared to those of 19–36 

weeks duration  
— Higher effects of supplemental use on achievement than substitution. 
— Substitutions shows a negative effect on problem solving 
— No differences between experimenter or teacher-developed and commercial 

software 
— Higher gains in a context that combines guidance both with the subject 

matter content (e.g., other forms of instruction) and with students’ 
interaction with the simulation 

 
7. Internet 

There is no consistent empirical research base on the many types of learning and 
teaching that can be delivered or supported over the Internet. Two categories of software that 
appear to have tentative support, based on previous syntheses, are online learning and Web-
based inquiry (e.g., Fadel & Lemke, 2006). Possible negative effects of using the Internet for 
mathematics and mathematics instruction also need to be researched. There were an 
insufficient number of original empirical studies to conduct an original meta-analysis on the 
use of the Internet in mathematics instruction. 

 
8. Tools for Teachers 

Such tools as electronic blackboards and quick-response devices have mostly 
descriptive studies to support them (e.g., Fadel & Lemke, 2006). The application of 
computer-managed instruction (CMI) has already been discussed as a component of ILSs. In 
addition, direct studies of CMI show a pooled effect size of 0.14 in a previous meta-analysis 
(Kulik, 1994). There were an insufficient number of original empirical studies to conduct an 
original meta-analysis on this topic. 
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D. Conclusions and Implications 

This review summarized what is known about the role of technology, including 
different categories of computer software and calculators, in mathematics instruction and 
learning. Before reviewing the findings, several general issues are discussed. 

 
Some reviewers have decried that the literature on educational technology is too 

inconsistent and uneven to make “sweeping conclusions about the effectiveness of instructional 
technology” (Kulik, 2003). Both a conceptual analysis and empirical review concur that any 
such sweeping conclusions are not warranted, but also suggest that such conclusions should not 
be sought as guides for educational practice. “Technology” is not a single, monolithic entity 
(Clements & Sarama, 2003). This review has shown different effects for different categories of 
software, has identified contextual and implementation variables, and whenever possible has 
distinguished between different applications of computer technology. However, the present 
research corpus is weak in distinguishing the effects of specific features of software categories 
and specific software applications (such as in Table 17; this major gap in research will be 
discussed in the succeeding section, “Instructional Software: Features and Pedagogical 
Strategies”). There are too few studies on documented implementations of specific strategies 
for educational technology, and even fewer studies on particular educational technology 
programs. Longitudinal studies are also needed. 

 
Although some previous meta-analyses identified their effects (e.g., 0.19 to 0.24) as 

“weak,” any such classification is dubitable, because the importance of any pooled effect 
size depends on a variety of factors (Lipsey & Wilson, 2001). For CBI, one particular issue 
is that students are often maximally engaged with the computer materials for 15–30 
minutes two to three times per week. Pooled effect sizes must be interpreted in that context 
(Slavin & Lake, 2007).  

 
Existing research, and the many available reviews of this body of research, suggests 

that specific categories and uses of educational technology can make a significant, positive 
contribution to students’ learning of mathematics. The Task Group conducted its own meta-
analyses to evaluate those conclusions of previous reviews. 

 
1. Drill and Practice 

Prior syntheses and meta-analyses suggest that CAI drill and practice generally 
improves students’ performance compared to conventional instruction, with the greatest 
effects on computation, and more limited on concepts and applications. It is the only category 
of instructional software that shows, in previous reviews, higher effects for serving as a 
substitute for conventional instruction, rather than as a supplement to it. It may be that such 
programs address students’ instructional needs for practice adequately and efficiently, 
making substantial teacher intervention less important. 

 
The Task Group’s meta-analysis of rigorous studies supports these conclusions. Drill 

and practice software had a significant positive effect on mathematics achievement. When 
analyzed for different ages and grades, positive effects were confirmed for the elementary 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-143 

level, but there were too few studies at other levels to make comparisons or conclusions. 
Effect sizes were higher for interventions that substituted for, rather than supplemented, 
classroom practice. 

 
In summary, drill and practice through high-quality CAI, implemented with fidelity, 

can be considered a useful tool in developing students’ automaticity, or fast, accurate, and 
effortless performance on computation, freeing working memory so that attention can be 
directed to the more complicated aspects of complex tasks. A caveat is that older studies may 
have used software better designed to use research-based strategies (and fewer “bells and 
whistles,” graphics and sound not related to instruction) than many more recently published 
programs. Using such strategies to incorporate features such as those in Table 17 will likely 
maximize positive effects. The following section includes additional caveats relevant to drill 
and practice.  

 
2. Tutorials 

Prior syntheses and meta-analyses suggest that CAI tutorials improve students’ 
performance compared to conventional instruction, with slightly greater effects on 
performance on concepts and applications measures than on computation measures. Based on 
these prior syntheses and meta-analyses, tutorials appear to be effective at all grade levels, 
particularly the higher grades. Reviews indicate that they are more effective when they 
supplement, rather than replace, conventional instruction, when they involve experimenter or 
teacher-developed, rather than commercially developed, software, and when they are 
developed for a specific audience rather than a general audience. 

 
The Task Group’s meta-analysis of rigorous studies similarly indicates that tutorials 

can increase mathematics performance, both overall achievement and, possibly more so, 
mathematical problem-solving ability. It supported the conclusion that tutorials are more 
effective as supplements, rather than replacements, for conventional instruction and when 
they are highly integrated with the regular mathematics curriculum. Finally, tutorial software 
developed by researchers or teachers was more effective than that developed by commercial 
companies. Findings of individual studies provide serious caveats, however, including the 
need to consider empirical evidence of effectiveness of a particular software package, and 
issues of scale-up, including integration with the extant curriculum, and fidelity of 
implementation, including amount of use, and technological and pedagogical support.  

 
In summary, tutorials, as well as software packages that combine tutorials with drill and 

practice, that are well designed (e.g., including features in Table 17; see also Clements, 2007; 
Clements & Battista, 2000) and implemented can be considered as potentially useful tools in 
introducing and teaching specific subject-matter content to specific populations, especially at 
the junior and senior high school levels. Research suggests that tutorials be designed to develop 
specific educational goals for specific populations. Caveats are that results are not guaranteed, 
and care must be taken that there is evidence that the software increases learning and that the 
requisite support conditions to use the software effectively are in place. 
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3. Tools: Calculators and Graphing Calculators 

Prior syntheses and meta-analyses suggest that calculators of all types, basic, 
scientific and graphing, may benefit students’ achievement in (and attitudes toward) 
mathematics, and effects are more positive when calculators are used during testing. Previous 
reviews also indicate that effects of calculator use on calculation, contrary to perhaps the 
most common concern, are near zero but positive (even when calculators are not allowed on 
the assessments), and effects on problem solving were positive. 

 
The Task Group’s meta-analyses of 11 studies that met the Panel’s rigorous criteria 

(only one study less than 20 years old) found limited to no impact of calculators on 
calculation skills, problem-solving, or conceptual development. Effect sizes of these studies 
are lower than those in prior syntheses and meta-analyses. On the basis of the high quality 
studies identified in this category by the Task Group, it is reasonable to conclude that there is 
no significant negative impact of calculators on students’ calculation competence (only one 
of the studies allowed students to use calculators on the assessment). However, there are 
several important caveats. These findings are limited to the effect of calculators as used in the 
11 studies, including studies up to a year in duration. Also, tests of computational skills did 
not measure the more basic processes, such as retrieval or decomposition, that students use to 
solve arithmetic problems, nor did they measure automaticity or procedural execution as 
might be assessed with timed paper-and-pencil tests (see the Learning Processes Task Group 
report). This is especially important when arithmetic skills are being formed, because 
inappropriate calculator use may interfere with the development of these skills. On the other 
hand, it is possible that appropriate calculator use could provide useful feedback and build a 
stronger association between addends and their sum, strengthening these associations. 
Especially given these conflicting possibilities, and the importance of this early development, 
the lack of rigorous studies with students earlier than third grade is especially unfortunate. 
Also, research on calculator use over several years—especially comparing inappropriate and 
appropriate use—is direly needed. 

 
Further, given that the basic computational skills of many Americans are poor, as 

described in the Learning Processes report, a finding of no effect is not a promising one; 
more powerful instructional approaches are needed. The synthesis of previous reviews 
suggests that more recent calculator interventions, especially those putting calculators to 
“pedagogical use” as an essential element in the teaching and learning of mathematics, have 
a greater positive effect (the studies in the Task Group’s meta-analysis did not report such 
comparisons). “Pedagogical use” usually implies extending mathematics learning in certain 
situations (and perhaps using calculators to check the accuracy of mental or other 
calculations), rather than using calculators when other methods would be appropriate. The 
overuse and inappropriate use of calculators, decried by many, may be more harmful than 
these (relatively short-term) studies indicate. On the other hand, an emphasis on mental 
arithmetic may ameliorate such problems. There is much researchers still need to study. 

 
This report has not addressed several important educational issues. There is a dearth of 

research not only on broad categories of calculator use such as “functional vs. pedagogical” 
use, but on specific uses of calculators that may lead to negative effects (e.g., overdependence), 
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null effects, or specific positive effects. Such research should also fill the gap in the literature if 
studies included observation of how, how much, and how well, calculators are used (this 
includes, for planned interventions, “fidelity of implementation” measures). 

 
In a similar vein, the older studies in the Task Group’s meta-analysis, and more recent 

calculator studies, classify measures and findings by broad categories only, such as 
“calculation,” “problem solving,” and “concepts.” Greater specificity in terms of grade level 
and topic, instructional goals, and pedagogical strategy would yield more useful research 
results and implications. Would specifically targeted use, in which the calculator’s unique 
characteristics are used intentionally, result in greater benefits? For example, one might only 
introduce calculators in work with arithmetic with numbers of six or more digits, square 
roots, or scientific notion. Another project might introduce calculators in earlier grades, not 
to replace computational practice (mental and paper-and-pencil arithmetic) but rather to 
extend computational and problem-solving proficiency. 

 
Even more fundamental, although some may argue against calculator use because it 

circumvents the mathematics they wish students to perform, others believe that in an age of 
calculators and computers, it is inappropriate to continue to focus the elementary school 
mathematics curriculum on pencil-and-paper arithmetic (Ralston, 1999). Research cannot 
address such curriculum issues of goals and values, although, it should be explicit about its 
assumptions. Research can clarify the ramifications of various approaches, but the work of 
discussing these approaches, and evaluating them through empirical research, largely remains 
to be done. 

 
In summary, most of the effects in the Task Group’s meta-analysis have a similar 

pattern of results to those in the prior syntheses and meta-analyses, but with smaller, and 
usually near-zero, statistically insignificant effect sizes. Given the design flaws noted in some 
studies included in previous meta-analyses, this may indicate that the smaller effect sizes 
represent more accurate estimates of calculators’ effects. However, there are different, but 
still substantial, limitations to the pool of studies that met the criteria for inclusion in the 
present meta-analyses. First, only 11 studies of the hundreds in the literature are included in 
the Task Group’s meta-analysis. Only one was published after 1987, and that had but one 
comparison, at Grades 9 and 10. This could be important, as a previous meta-analysis 
indicated that effects of calculators may be becoming more positive with time (Ellington, 
2003), which may suggest that technology, and especially support materials and professional 
development related to technology use, are improving since the introduction of calculators. 
Recent calculator interventions that use research-based approaches (e.g., embedding 
technology within a curriculum and targeting calculator use to particular pedagogical ends) to 
incorporate newer technologies provide suggestive results (Stroup, Pham, & Alexander, 
2007). Second, most of the studies included in the Task Group’s meta-analysis measured 
computational skills, but only half assessed the learning of problem solving or concepts. 
Thus, many of the comparisons for a specific effect are from a small number of studies (with 
effects pooled from multiple comparisons frequently originating from a single study). Given 
the different limitations of each report, conclusions that they share appear trustworthy—that 
is, calculators as used in these studies have little or no effect on most measured outcomes in 
calculation or concepts, given the manner in which calculators were used and the duration of 
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the studies—but, especially when outcomes differ, a larger body of more recent, rigorous 
studies that documents how calculators are used, including research that examines multiyear 
use of calculators, is needed before firm conclusions can be reached. 

 
4. Computer Programming 

Computer programming by students can be employed in a wide variety of situations 
using distinct pedagogies. Prior syntheses and meta-analyses indicate that programming 
improves students’ performance compared to conventional instruction, with the greatest effects 
on concepts and applications, especially geometric concepts, and weaker effects on 
computation. Previous reviews also indicate that programming positively affects problem 
solving, as well as attitudes toward mathematics and instruction in mathematics, more so than 
other software categories. Prior reviews also provide some evidence that use of computer 
programming is more effective for students of average, rather than low or high SES. Earlier 
reviews have claimed that programming is somewhat more effective when it supplements, 
rather than replaces, conventional instruction, consistent with suggestions for mediated 
instruction of programming. Certain computer languages, especially the Logo computer 
language, were reported to have stronger positive effects than other computer languages.  

 
The Task Group’s meta-analysis of rigorous studies supports the conclusions of 

previous reviews about the impact of computer programming on mathematics performance. 
Further, the meta-analysis suggested that results for delayed posttests might be greater than 
those for immediate posttests. Additional research is needed to ascertain whether this finding 
is generalizable. 

 
In summary, computer programming can be considered an effective tool, especially 

for elementary school students, for developing specific mathematics concepts and 
applications and mathematical problem-solving abilities. Effects may be larger the more 
computer programming is integrated into the curriculum. Although there was insufficient 
research on such issues, the Task Group notes that instructional use of programming has 
fewer “bells and whistles” than other categories of software and demands thoughtful 
curricula and knowledgeable teachers, all of which may have contributed to the lack of 
frequency in U.S. classrooms (it is more widely used in other countries, Clements & Sarama, 
1997). Dissemination of research, including research-based curricula and professional 
development, could lead to a reversal of this trend. 

 
5. Tools: Computer Tools 

Software tools and exploratory environments (excluding calculators) have inconsistent 
effects on student performance. Prior syntheses and meta-analyses suggest that problem-
solving software may have potential, but effect sizes have been small. Recent rigorous studies 
suggest that new approaches may have promise, but there are an inadequate number of such 
studies for the Task Group to conduct a meta-analysis of this software category. 

 



 Task Group Reports of the National Mathematics Advisory Panel 

 

 6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-147 

6. Simulations and Games 

Prior syntheses and meta-analyses suggest that simulation and game software 
packages may have positive, but relatively small, effects on student performance when 
compared to conventional classroom instruction. Previous studies also have shown them to 
have a positive effect on attitudes. Junior high, more than elementary, students may benefit 
from working with simulations and games. Supplemental use is indicated, consistent with the 
intrinsically unguided nature of simulations and games. 

 
In summary, there is only slight evidence—based on studies of unknown rigor—

indicating that simulations may be useful, especially at the middle or junior high level, to 
develop skills, concepts, and applications of knowledge in problem-solving settings. More 
needs to be known about developing and using this category of software, but it is likely that 
careful integration into a well-structured curriculum is critical to facilitate learning. 

 
7. Instructional Software: Features and Pedagogical Strategies 

Many questions essential to designing and selecting educational technology 
applications cannot be answered, because studies and reviews do not distinguish such 
applications on their use of specific features. Similar situations exist for practice, the role of 
the teacher (especially specific pedagogical strategies).  

 
a. Software Features 

The Task Group’s reviews found that the previous meta-analyses and rigorous studies 
did not permit generalizations about critical features of software, such as those identified in 
Table 17. That is, prior syntheses and meta-analyses do not sufficiently distinguish such 
applications on their use of specific features that theoretically should contribute to learning. 
Such findings would be invaluable to the field, both because decisions could be guided by 
any software program’s inclusion of critical features and because the development of new 
software programs could be similarly guided. 

 
Only for the sake of illustration, a few studies that did not meet the Task Group’s 

criteria are described here that compare CAI conditions, most of which had varied 
conclusions. One study reported that enhancing drill by placing it within a game context does 
not yield significantly different outcomes overall, but the game may distract students with 
learning disabilities (Christensen & Gerber, 1990). Enhancement with multimedia 
significantly improved learning in one study (Macaulay, 2003) but CAI with animated vs. 
static pictures or with or without the presentation of a cognitive strategy were equally 
effective (Shiah, Mastropieru, Scruggs, & Mushinski Fulk, 1994). Verbal guidance (in 
students’ first language) may support learning from multimedia educational games (Moreno 
& Duran, 2004). These are single studies with little conceptual overlap; the field needs more 
complete and reliable guidance. 

 
Few software programs are designed based on explicit (i.e., published) theoretical and 

empirical research foundations (but see Clements, 2007; Clements & Sarama, 2007a; Ritter, 
Anderson, Koedinger, & Corbett, 2007). More continuous, committed, iterative research and 
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development projects are needed in this area. Research-based iterative cycles of evaluation 
and development, fine tuning software’s mathematics and pedagogy within each cycle, can 
make substantial differences in learning (e.g., see Aleven & Koedinger, 2002; Clements & 
Battista, 2000; Clements et al., 2001; Laurillard & Taylor, 1994; Steffe & Olive, 2002). 

 
Such research could identify how and why software designs could be improved. As 

one example, the pooled effect sizes in the Task Group’s meta-analysis actually might be an 
underestimate of what can be achieved if drill and practice software were more carefully 
designed. Few studies use empirically validated strategies such as adaptive feedback and 
increasing ratio review (Siegel & Misselt, 1984). 

 
8. Final Words 

In most cases, specific uses of technology will not facilitate learning optimally unless 
they are implemented with fidelity. Unfortunately, information is lacking on this critical issue 
because reviewers and researchers generally have not measured fidelity. A similar situation 
exists for many specific pedagogical issues. 

 
In addition, from the subtleties of designing features of software, to the complexities of 

scaling up approaches to work with entire educational systems, substantive challenges face 
researchers and other educators. These challenges must be met, and findings integrated across 
levels, before conclusions about the effectiveness of educational technology can be offered 
with confidence. Many difficulties stand in the way of conducting high-quality work in the 
field of technology in mathematics education. Applications that go beyond using the simplest 
features of technology to deliver a traditional curriculum face both (a) challenges of 
redesigning scope and sequences, pedagogies, software, and assessments (Kulik & Kulik, 
1991), along with financial and logistical hurdles, and (b) barriers of a priori negative 
evaluation of the goals and assessment instruments they may wish to employ. Such barriers 
may have dampened innovative research and development in educational technology. This is 
unacceptable; concerted efforts are needed to meet these challenges and provide educators with 
clear guidelines from research. This is especially important given the poor implementation of 
educational technology in the field (Clements & Sarama, 1997; Cuban, 2001; Hoffer, 
Venkataraman, Hedberg, & Shagle, 2007). 

 
Finally, technological advances continue to challenge practitioners and researchers. 

There is no research on questions that have arisen only recently. What technologies are most 
appropriate for students for whom multiple hand-held devices are a ubiquitous presence? 
How has the presence of Internet sites affected students (e.g., mathematics as presented on 
Wikipedia)? Both new questions and old must be better addressed with high-quality studies 
of high-quality implementations of computer-based tools if educational technology is to 
fulfill its potential. 
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VI. Instructional Practices and Mathematics Achievement:  
The Case of the Gifted Student 

Students arrive at school with different skills and knowledge levels as well as 
capacities for benefiting from the opportunities provided by schools; these differences remain 
throughout schooling (Benbow & Stanley, 1996). This conclusion has been documented 
widely in the literature, going back as far as Learned and Wood (1938). Learned and Wood 
were among the first to show the wide range in knowledge among students in the same grade. 
For example, approximately 10% of high school seniors had more scientific knowledge than 
the average college senior. Such individual differences in knowledge and skills are evident 
even before entry into kindergarten, are reflected by the variance of test scores, and persist in 
every grade thereafter (Paterson, 1957; Pressley, 1949; Seashore, 1922; Terman, 1954; Tyler, 
1965; Willerman, 1979; also see Learning Processes Task Group report). Moreover, there are 
differences in rate of learning. Those 13-year-olds who are in the top 1% of ability, for 
example, can assimilate, in three intensive weeks of schooling, a full year of high school 
biology, chemistry, Latin, physics, or mathematics (e.g., Lynch, 1992; Stanley & Stanley, 
1986; VanTassel-Baska, 1983). Those who are in the top 1 in 10,000 in ability can 
accomplish even more in this time frame. Moreover, highly mathematically able students, 
with their exceptionally strong short-term working memory (Dark & Benbow, 1990, 1991, 
1994), enjoy abstract, unstructured problems and thrive with complexity, which is different 
from the learning environment that is typical in the “regular” classroom. At the other end are 
students who need intensive work and much structured support and scaffolding over a long 
period of time to master basic skills in reading and mathematics. A challenge in teaching, 
then, is to be responsive to these individual differences so that all students make progress and 
are allowed to achieve their potential (National Research Council, 2000, 2002; Stanley, 
2000). Particularly challenging for teachers are those students who are advanced or so 
challenged that the typical age-grade curriculum becomes inappropriate. In the case of the 
advanced student, serious adjustment is required if to teach them only what they already do 
not know (Stanley, 2000). In this report, the Task Group begins by briefly describing the 
strategies that are typically used to meet the learning needs of the advanced learner, often 
labeled the gifted student, and then move on to assess their effectiveness. 

 
In American schools there are a plethora of programs that have been developed to 

meet the needs of gifted students. They represent the varied results obtained when the four, 
theoretically derived principles for adjusting the educational experiences or, more precisely, 
differentiating the curriculum are employed. The curriculum can be differentiated by level 
(e.g., grade level), complexity (e.g., abstract, unstructured), breadth or depth, and pacing to 
meet the learning needs of gifted students and ensure developmental appropriateness, 
according to an extensive literature in gifted education (Kaplan, 1986; Renzulli, 1986; 
VanTassel-Baska, 1998; Olszewski-Kubilus, 2007). Depending upon the relative emphasis of 
each one of these principles and the social context, the resulting programs fall into four broad 
categories: enrichment, acceleration, homogeneous grouping, and individualization. 
Enrichment often is seen in the regular classroom or in pullout programs or supplemental 
classes. It represents attempts to make the curriculum more appropriate for gifted students by 
adding to it or providing more depth and complexity while keeping students with their same-
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age peers. Acceleration and homogeneous grouping are attempts at forming groups for 
instruction that are at the same approximate achievement level, either by moving the 
advanced student to a higher grade in a (or many) subject(s) or by forming groups of same-
age students on the basis of their demonstrated achievement. Indirectly, complexity is 
enhanced. Of course, all of these options can be used in some combination and that is what 
textbooks and articles in gifted education suggest (VanTassel-Baska, 1998). As well, the 
amount of adjustment required depends upon the level of giftedness and the difference 
between the individual gifted student and the average of the class. Acceleration that involves 
grade-skipping or putting individual students in a higher grade for a specific subject, for 
example, is typically reserved for the highly gifted (e.g., top 1% or even more extreme ability 
levels) as students much below that level often do not require such extreme adjustments.  

 
A big debate in gifted education has been between the use of enrichment and 

acceleration. Most view this as a false dichotomy. For the highly gifted especially, it is 
recommended that both be utilized (VanTassel-Baska, 1998; Olszewski-Kubilus, 2007). 
There is, however, great resistance in K–12 schools toward using acceleration, even with the 
highly gifted (Benbow, 1991; Colangelo et al., 2004). This is not the case at the collegiate 
level when course placement is dependent upon having met prerequisites or scores on 
placement exams. The resistance by K–12 educators and fears of parents in terms of social 
and emotional development, however, have served to stimulate much research, admittedly of 
varying quality, to assess acceleration’s effectiveness and whether it actually produces harm. 
Thus, there is an imbalance in the existing research literature in gifted education, with most 
of the research focused on accelerative strategies. Moreover, acceleration itself is a profound 
thing to do as it puts usual intellectual and social trajectories out of synchrony and often 
involves just one or possibly just a few students in a given school. This means that special 
considerations and individualization are required to make it possible and ensure its success. 
For example, special efforts are made to place the to-be-accelerated child with a teacher 
supportive of the acceleration if at all possible (VanTassel-Baska, 1998), given the frequent 
hostility toward such students and any interventions provided (Benbow & Stanley, 1996; 
Coleman, 1960; Cramond & Martin, 1987; Hofstadter, 1963; Tannenbaum, 1962). This, 
coupled with other issues (e.g., the child wanting to accelerate—motivation as a criterion)—
makes it challenging to conduct carefully controlled research. 

 
Previous meta-analyses have tried to make sense of this literature with all of its 

limitations and the varying quality of studies. They identified acceleration as the most 
promising strategy, followed by homogeneous grouping involving differentiation of the 
curriculum and adjustment of methods of teaching (Kulik & Kulik, 1982, 1984, 1992; Rogers, 
2007; Olszewski-Kubilus, 2007). This represents what the field of gifted education thought the 
state of knowledge was before the Instructional Practices Task Group began its work. 

 
As discussed in the introduction of this report and in Appendix A, the Instructional 

Practices Task Group developed criteria for which studies it would consult as part of its 
deliberations. The Task Group’s charge was to assess the effects of instructional practices on 
mathematics achievement and establish a warranted claim of causality. It posed the following 
question: Can the Task Group conclude, without much doubt, that an intervention or mode of 
teaching is more effective than conventional practice or another approach? To draw such 
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conclusions requires that studies meet a high standard of methodological rigor. Experimental 
and high-quality quasi-experimental studies would be consulted and confounds had to be 
carefully assessed to determine if valid inferences could be drawn even from this select group 
of studies. The Task Group also decided that non-Category 1 studies could be used only to 
support the conclusions of well-designed experimental or quasi-experimental studies. Groups 
of compromised studies (e.g., analyses, where weaknesses in one, for example, are off-set by 
findings in another) could provide context for the analysis conducted by the Task Group and 
the strength of its recommendation. The Panel also chose to limit itself for the most part to 
published, peer-reviewed journal articles. The approach is perhaps most similar to that used 
by the What Works Clearinghouse. This process eliminated all but a few relevant studies in 
several topical areas. This was true here as well—for the report on strategies used to serve 
gifted students.  

 
Using the criteria established, the Task Group conducted a literature search for 

studies that assessed effectiveness of various options for serving gifted students. Key terms 
used included enrichment, differentiated curriculum, and acceleration. Only studies that 
compared gifted students participating in an intervention with a comparison group composed 
of nonparticipating gifted students were included. Studies that employed other comparison 
groups (e.g., students several grades above the treatment group, norms, or non-gifted) are not 
included. Finally, the Task Group generally used the term gifted to refer to students at the 
90th percentile or above on standardized mathematics achievement tests, although most of 
the studies included here used much more selective criteria. The literature search, operating 
within these constraints, initially produced 11 studies, one of which was immediately 
eliminated due to methodological design weaknesses. The remaining ten were then reviewed 
by an independent methodologist, who also assessed them in relation to the Panel criteria. 
The Task Group followed his guidance, which resulted in two more studies being eliminated. 
Additional suggestions for studies to be consulted that emerged from the review process or in 
discussion were followed up and subjected to the same review criteria.  

 
Of the eight studies that were included in this report on serving the needs of gifted 

children, all were either Category 1 or 2 studies (as described in the Methodology document 
in Appendix A). One was a randomized control trial (RCT) and seven were quasi-
experimental. The methodological limitations of each study are clearly presented below. The 
Task Group organized the studies based on the type of approach toward instruction into two 
main categories: (i) Acceleration practices, including individualized, self-paced learning and 
(ii) Enrichment with or without acceleration. 

 
In the following sections, the Task Group describes the practices used, provides study 

characteristics for each of the studies, and calculates effect sizes for the outcomes when possible.  
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A. The Role of Acceleration in Gifted Students’ Math Achievement 

and Math-Related Outcomes 

Acceleration of the curriculum, as noted above, is one form of adapting the 
instructional experiences received by gifted students. The curriculum is adjusted to meet the 
needs of the individual learner or, rather, the individual is placed in the curriculum at the 
approximate level of his or her functioning. Some call this placement according to 
competence or developmental placement (Benbow & Stanley, 1996). Acceleration may 
include presenting subject matter content earlier (e.g., algebra in 7th grade) or at a faster 
pace, or both, self-paced learning or compacting of the curriculum, participating in Advanced 
Placement programs (i.e., college-level classes in high school), taking college classes while 
in high school, skipping grades, and graduating early from high school and subsequently 
entering college early. It provides a differentiated curriculum for gifted students by using 
curricula designed for older students. The opinion of most educators in the field of gifted 
education, however, is that good acceleration does not stop there (VanTassel-Baska, 1998). It 
also should explore topics more deeply, probe interconnectedness of concepts, and adjust the 
content to make it more complex and abstract. This can occur in special accelerated classes 
for gifted students or in the regular classroom with a truly excellent teacher. 

 
Several points need to be considered when evaluating the value of acceleration for 

gifted students. Acceleration, beyond self-paced learning or offering algebra to eighth-
graders, is reserved for the highly gifted. Second, because of social and academic disruptions 
it causes, acceleration is used only with students who want to accelerate (VanTassel-Baska, 
1998). No matter how positive the effects of acceleration could be, it is a widely held 
professional opinion that it is inadvisable to accelerate a child if there is significant resistance 
(Benbow, 1998). Thus, this educational intervention is different from others (e.g., choosing a 
specific text-book or teaching method) because student choice is a factor in its use. It may be 
that those students who choose to accelerate are more academically motivated or desire 
academic challenges more than those who choose not to. Alternatively, those who choose to 
not accelerate may need more of other, nonacademic, factors in structuring a satisfying life. 
That is, accelerates and non-accelerates may have different priorities and this is confounding 
when the aim is to assess effects of acceleration specifically. Thus, any recommendations 
would pertain only to academically motivated students, the very ones for whom acceleration 
is to be used according to practice guidelines developed on the basis of professional 
judgment. 

   
Third, when gifted students are accelerated by putting them together for special classes, 

this creates a different academic and social environment that appears to be highly valued by 
and motivating for gifted students (Benbow, Lubinski, & Suchy, 1996). In this descriptive 
study, students report feeling affirmed and challenged in ways that the regular classroom does 
not provide. Also, the nature of the discourse changes, becoming much more high-level and 
intellectually challenging (Fuchs, Fuchs, Hamlett, & Karns, 1998). So, accelerated classes are 
more than just content taught at a fast pace. This makes it hard, if not impossible, to separate 
out the effects attributable only to the acceleration in these types of programs. 
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The analyses presented in Table 30 include six quasi-experimental studies that looked 
at acceleration and include both short- and long-term outcomes; that is, students were 
assessed shortly after having been accelerated (e.g., completion of self-paced learning 
program) or several years later. In the latter studies, the short-term impact on learning is not 
assessed (e.g., covering two years of mathematics in one) but rather subsequent participation 
in mathematics in the years following the advancement (e.g., college course-taking four years 
later) is assessed. In the analyses, the Task Group presents individual but not pooled effects 
sizes of the acceleration practices. The “interventions” were seen as sufficiently different to 
preclude pooling. Findings associated with both the short-term and long-term outcomes are 
presented in Table 30.  

 
Table 30: Studies That Examine the Impact of Acceleration on Gifted Students’ Math 
Achievement and Math Related Outcomes 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s 
g 

Standard  
Error 

Short-Term Effects 

Brody & 
Benbow, 
1990: 
Study 1c 

Quasi 

80 seventh-grade participants in 
the Talent Search sponsored by 
the Center for Talented Youth 
(CTY) at Johns Hopkins 
University. All subjects were 
screened with SAT-M to meet 
eligibility requirements for 
participation in gifted educational 
programs 

Three weeks/ 
Algebra 1 or above 

Fast-paced 
accelerated 
summer math 
class vs. No 
summer program 

SAT-Math  0.241 (ns) 0.227 

Ma,  
2005b d e Quasi 

276 gifted seventh-grade students 
randomly selected from the 
Longitudinal Study of American 
Youth (LSAY) 

One school year/ 
Algebra 1 

Took Algebra 1 
in grades 7 or 8 
vs. Did not take 
Algebra 1 in 
grades 7 or 8 

LSAY Math 
Achievement 
(combination of sub-
tests: math basic 
skills, algebra, 
geometry)f 

0.167 (ns) 0.166 

Parke, 
1983 Quasi 44 gifted students in Grades K–2 

from two elementary schools 

10 weeks/ Addition, 
subtraction, place 
value, sets, and 
measurement 

Used self-
instructional 
math materials 
vs. Control 

Skill Masteryg Insufficient data to 
calculate effect sizes 

Ysseldyke 
et al., 
2004a 

Quasi 

100 gifted students in Grades 3–5 
that were part of a larger study in 
which instructional software was 
implemented in 15 different states 
in the U.S. 

Four months/ 
Individually based 
mathematics 
curriculum tailored 
to grade level/skill 
level 

Personalized 
Computer 
Instruction vs. 
Control 

STAR math computer 
adaptive test of 
mathematics skills in 
numeric concepts, 
computation, and 
math applications 

0.449 ~ 0.271 

Continued on p. 6-160 
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Table 30, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s 
g 

Standard  
Error 

Long-Term Effects 

Swiatek 
& 
Benbow, 
1991a  

Quasi 

37 qualifying participants and 58 
nonparticipants of a fast-
paced/self-paced accelerated math 
classes that were followed up 10 
year after participation. The 
subjects were initially identified 
through the Study of 
Mathematically Precocious Youth 
(SMPY) referrals and screened 
through additional testing 

Saturday mornings 
for approximately 
one year/ Algebra 1 
and 2, plane 
geometry, 
trigonometry, and 
analytic geometry 

Participation in 
extracurricular 
fast-paced and 
self-paced 
accelerated math 
classes vs. No 
participation 

Percent taking 
elective 
undergraduate math 
courses (ES = 0.066), 
Percent undergraduate 
majors in math (ES = 
0.271), Percent 
graduate majors in 
applied math (ES = 
0.514~) 

0.284 (ns) 0.317 

Swiatek 
& 
Benbow, 
1991b 

Quasi 
107 pairs of gifted students that 
were followed up 10 years after 
participation in SMPY 

N/A 

Students who 
chose to undergo 
acceleration and 
enter college at 
least one year 
early vs. Students 
who chose 
traditional 
educational route 

Number of non-
required math courses 
(ES = 0.381**), 
Number of 
undergraduate math 
courses (ES = 0.091) 

0.236 ~ 0.137 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c The standard deviations used for the calculation of effect size were estimates provided by the author. 
d The number of students used for the gifted analytic sample was adjusted by the 12% attrition that the overall study had in the first two years. 
e The seventh and ninth grade achievement tests were used as pre- and posttests to estimate effect of taking Algebra 1 in seventh or eighth 
grade. 
f The three sub-measures of LSAY Math Achievement Test—math basic skills, algebra, geometry—were combined to create a score 
comparable to the SAT-M. 
g The assessment included 170 items testing mastery of 82 skills in five areas: addition, subtraction, place value, sets, and measurement. 

 
Brody and Benbow (1990; Study 1), in a quasi-experimental study, investigated 

whether short-term, accelerative academic training had an effect on SAT scores of middle 
school students who were in the top 1% in ability. Program participants were enrolled in a fast-
paced, three-week summer academic program that was focused on increasing content 
knowledge in pre-algebra. Their performance on the SAT was compared to a nonrandomized 
control group not participating in any accelerative learning experience during the summer but 
in the top 1% in ability (with lower SAT-M scores initially but not SAT-V) or to students 
enrolled in other, nonmathematics accelerative classes in the academic summer program. The 
results from the ANCOVA, adjusting for relatively large initial differences in ability across 
groups, revealed that in-depth instruction over a short period of time in specific mathematical 
or verbal areas had little or no impact on SAT scores at the conclusion of the program. The data 
reported in Table 30 reflects no significant effect between the participants in the fast-paced 
mathematics class and those not enrolling in any special mathematics class (ES = 0.241). 

 
Ysseldyke et al. (2004), in a quasi-experimental study, compared third through sixth 

grade gifted students whose mathematics curriculum was differentiated and adjusted to the 
needs of the students through a instructionally-based curriculum management system, called 
Accelerated Math (Renaissance Learning, 1998). It was a self-directed, four-month long 
mathematics program with assessment of skill level, tailoring of the instruction to match skill 
level, individual pacing and goal setting, ample practice, and immediate feedback to student and 
teacher on performance. The effect size of 0.449 bordered on statistical significance, and 
favored the personalized instruction group on outcome measures of mathematics skills, numeric 
concepts, computation, and mathematics applications.  
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Parke (1983), in another quasi-experimental study, used a 10-week self-instruction 
program in mathematics with gifted Kindergarten through second-graders to differentiate the 
curriculum and compared their performance to another equally able, high-ability sample and a 
comparison group, both of whom were enrolled in a regular class with no differentiation. In 
terms of design limitations, there was no random assignment; the sample size was small; and 
there were large pretest ability differences among the groups. Data needed to compute an effect 
size also were not reported. The ANCOVA results reported by the author, adjusted for initial 
differences in ability, were statistically significant. The intervention group mastered 
significantly more concepts and skills than the comparison groups. The adjusted means were 52 
learned concepts for the participants, 38 for the high-ability comparison group, and 41 for the 
random comparison groups. This finding lends support to the value of differentiation through 
individualization via self-paced, accelerative learning. 

 
Ma (2005) compared the mathematics achievement at the end of high school for 

students in the top 10% in ability who took formal algebra either in seventh or eighth grade, an 
increasing trend in the U.S. for capable students, and equally able students who took such 
algebra in ninth grade or beyond. Ma used a subsample of the Longitudinal Study of American 
Youth that was divided into gifted, honors, and regular students. For each, differences between 
students who took Algebra I early (accelerated) versus those who did not, mainly reflecting 
practices in different schools, were examined. There were relatively balanced numbers of 
accelerated versus not accelerated for the gifted (49%) and honors (21%) students, but few 
“regular” students were accelerated in this way (4%) as would be expected. The mathematics 
achievement outcome variable, which captured performance on a combination of basic 
mathematical skills, algebra, geometry, and quantitative literacy items, was a growth curve of 
achievement measures from Grade 7 to 12. The effect size for the score differences favoring 
accelerates was 0.167 and not statistically significant. All accelerated students seemed to 
perform well on this test, however, even though reservation has been expressed about learning 
algebra early (e.g., Prevost, 1985). 

 
Swiatek and Benbow (1991a), in a quasi-experimental study, assessed participants 10 

years after the completion of two homogeneously grouped and fast-paced mathematics 
classes. The individuals in these classes had learned algebra and possibly all the content up 
through precalculus at a rapid rate. These classes were the model for the fast-paced programs 
that have sprung up across the country in the past 35 years and now serve over 100,000 gifted 
students annually. The initial class was taught by an experienced math teacher at a rate 
dictated by the capacity for learning of the most able students in the class. Most students in 
the class completed four years of mathematics in 14 months and their standardized 
achievement test scores were well above the 90th percentile on relevant tests of mastery. A 
subgroup completed just two years of math in that time frame. They were less able initially 
and, thus, experienced difficulty in keeping up the pace of the faster moving group. The 
participants in the two fast-paced mathematics classes were compared to students who had 
been matched on ability but did not attend the class and students who dropped out of the 
class. All were at least in the top 1% in ability, but there may have been motivational and 
other differences between participants and nonparticipants. Another limitation was that the 
same teacher taught both classes (reassuringly, similar results in mathematics has been found 
with other teachers, e.g., Lunny, 1983; Mezynski, Stanley, & McCoart, 1983). At the end of 
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high school, the participants scored higher on standardized mathematics achievement tests, 
such as the College Board Math Achievement test, than the nonparticipants or dropouts, 
despite their younger age, and did not regret their acceleration (Benbow, Perkins, & Stanley, 
1983). Ten years after the initiation of the class few statistically significant differences on 
academic achievement variables emerged between the participants and the comparison group 
(Table 30). The one effect that borders on significance (ES = 0.514) favored the participants 
(who also tended to be several years ahead in their educational progress and so were younger 
at time of comparison on specific variables than nonparticipants). This comparison was the 
percent of students at age 23 who were attending graduate school in applied mathematics, 
engineering, and computer science (50% of participants vs. 28% of comparison group). 

 
Swiatek and Benbow (1991b), in a quasi-experimental study, compared, via a 10-year 

follow-up, mathematically talented students (at least top 1% in ability) who had managed to 
accelerate their education so that they entered college at least one year early with equally 
able students who had not entered college early. This was a nonrandomized comparison, but 
the groups had been matched on gender and pretest SAT scores (within 10 points for 
mathematics, 20 for verbal). The mathematics achievement outcomes were indirect—number 
of undergraduate mathematics courses taken, number of non-required mathematics courses 
taken, mathematics major as an undergraduate or graduate student, and interest, confidence, 
and perceived ease of mathematics. Only one statistically significant effect size was found on 
the various outcome variables (see Table 30)—on the number of non-required mathematics 
courses taken (ES = 0.381). The difference favored accelerates who, of course, also had the 
advantage of being advanced in their education. 

 
In a correlational study, Sadler and Tai (2007) have demonstrated that learning 

mathematics at an earlier age than typical or at a faster pace is related to allowing students to 
become more advanced in their mathematics education and to be better prepared for college 
science classes. No long-term negative consequences have been found and the evidence 
suggests that there are possibly some small additional advantages. 

B. The Role of Enrichment on Gifted Students’  

Mathematics Achievement 

The following section presents findings from the remaining two studies that utilized 
primarily enrichment to differentiate the curriculum for gifted students (Robinson et al., 
1990; Robinson, 1997). Because the interventions differed in that one also explicitly adjusted 
the pace of instruction, the effects are presented individually (see Table 31). 

 
.  
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Table 31: Studies That Examine the Role of Computer Instruction, Enrichment, and 
Cooperative Learning on Gifted Students’ Math Achievement 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s  
g 

Standard  
Error 

Robinson et 
al., 1990 Quasi 

78 elementary age 
students who 
participated in a 
special program for 
mathematically 
talented children and 
185 program 
alternates 

One school year/ 
Variety of math 
content 

Curriculum 
replacement 
program with a 
focus on 
enrichment, self-
paced computer 
instruction, and 
acceleration vs. 
Regular curriculum 

Math Applied to 
Novel Situations 
(MANS)c 

0.648 *** 0.114 

Robinson et 
al., 1997 RCT 

310 gifted 
Kindergarten and 
1st-grade students in 
158 schools who 
scored at or above 
the 98th percentile 
on a screening test  

14 2 1/2 hour 
sessions per year for 
two years/ 
Kindergarten and 
first-grade curriculum 

Extracurricular 
constructivist 
enrichment 
activities (Saturday 
Club) vs. No 
enrichment 

Pooled measures 
(Stanford-Binet IV 
quantitative subtest, 
Number knowledge 
test; Woodcock-
Johnson calculation 
subtest) 

0.401 ** 0.127 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
b Data were adjusted for clustering that occurred within schools. 
c Standardized measure MANS measures skills in computation, estimation, mental arithmetic, number representations, relations, number 
patterns, elucidation, word problems. 

 
Robinson et al. (1997), the only experimental study to emerge out of the literature 

search, randomly assigned equally able gifted kindergarten and first-grade students to 
supplemental enrichment mathematics classes conducted on Saturdays over two years or to 
no treatment. The enrichment classes, with 28 sessions in all, were described by the authors 
as constructivist in philosophy, “developmentally appropriate,” and adhering to NCTM 
(1989) guidelines. Teachers created social communities that engaged in open-ended problem-
solving. At the end of two years, the participants significantly outperformed nonparticipants 
on a combined mathematics achievement measure. However, there was differential 
attrition—5% in the control condition, 20% in treatment condition—and it is possible that the 
least able students left the program at higher rates than the most able. A statistically 
significant effect size of 0.401 was found favoring the students who participated in the 
enrichment program. Here, the regular curriculum in the school was not differentiated in any 
way. Rather, gifted children were challenged through the provision of extra activities, a pull-
out model of sorts, and were not explicitly accelerated. 

 
The Robinson et al. (1990) study is similar to the Ysseldyke et al. (2004) study in that 

it utilized CAI to adjust pace and is quasi-experimental. However, this after-school 
mathematics program for gifted elementary students also provided specific enrichment 
activities for the class that allowed students to add breadth and depth to their learning. Hence, 
the curriculum was differentiated even further than what was possible in Ysseldyke et al. and 
Parke (1983). This was, however, one single class and hence involved just one teacher. 
Performance of participants was compared to non-randomized control groups comprised of 
students who were selected but did not attend or were selected as alternates. Although there 
was no reporting on pretest mean differences in ability among the groups, a regression 
discontinuity analysis was used with pretest proxy measures as covariates. With a statistically 
significant effect size of 0.648, the results lend support to the value of differentiating and 
enhancing the pace of the curriculum for gifted students. 
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C. Conclusions 

It is generally agreed that good teaching is responsive to individual differences, 
tailoring instruction to meet the needs of individual learners (Robinson, 1983). In the case of 
gifted students who are advanced in their skill and concept attainment and can learn new 
material at a much more rapid rate than their same-age peers (e.g., Lynch, 1992; Stanley & 
Stanley, 1986; VanTassel-Baska, 1983), it is the professional opinion of those in gifted 
education that these students need a curriculum that is differentiated (by level, complexity, 
breadth and depth), developmentally appropriate, and conducted at a more rapid rate (Van 
Tassel-Baska, 1998). This is typically accomplished to some degree through some 
combination of acceleration, homogeneous grouping, enrichment, or individualization.  

 
As the Instructional Practices Task Group began its work, it was aware that there 

were hundreds of studies over decades evaluating the effectiveness of acceleration, in which 
results have been interpreted as indicating positive academic benefits and no negative effects 
social-emotionally (see Colangelo, Assouline, & Gross, 2004; and Rogers, 2007 for the latest 
syntheses). The Task Group did not know the overall quality of these studies or their 
usefulness for drawing causal attributions. So, it was impossible to decipher the strengths of 
the signal emitted from these studies and into which category the support for this 
instructional practice fell (see the Panel Standards of Evidence Document). From a 
descriptive study, the Task Group learned, however, that gifted students report satisfaction 
with acceleration (even wishing as adults that they had accelerated more) and that they feel 
they would not have achieved as much without it (Benbow et al., 2000; Benbow, Lubinski, & 
Suchy, 1996). But, such data, although valuable, are from the world of perceptions and 
beliefs and cannot speak to effectiveness. 

 
Enrichment, which attempts to add breadth and depth to the regular curriculum, as 

well as complexity, also has been studied and has exhibited some positive effects under the 
same circumstances, limitations, or conditions affecting the interpretability of findings from 
the literature on acceleration. Yet, many seemingly excellent enrichment programs have not 
been rigorously evaluated, perhaps because this option for meeting the needs of gifted 
students has faced less negativity and resistance than is the case for acceleration.  

 
Homogeneous grouping is an educational approach that meets with much controversy 

as well. Enrichment tends to dominate in homogeneously grouped classes, but it often 
includes some increased pace of learning. So, there can be settings wherein both acceleration 
and enrichment is utilized, which most professionals in gifted education would prefer. Before 
the Task Group began our review of this literature, the state of knowledge, as captured by the 
results of meta-analyses, revealed positive effects of homogeneously grouped classes, with 
the value-added gain in one year being about four to five months (Kulik & Kulik, 1982, 
1987, 1992). These meta-analyses, however, lumped together studies of various 
methodological quality, making them less rigorous tests of effectiveness and hence 
compromised generalizability (also see Delcourt, Cornell, & Goldberg, 2007; Robers, 2007). 
In terms of perceptions, nonetheless, gifted students when reflecting back as an adult 20 
years later seem to favor homogeneous grouping (Benbow et al., 2000). Finally, although 
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often utilized to stimulate gifted children, the effects of mathematics contests on the 
mathematics achievement of gifted students have not been well studied. This, then, was the 
state of knowledge before Instructional Practices undertook its analysis.  

 
The Task Group’s review of the literature assessing the effectiveness of the various 

means for tailoring instruction to meet the needs of gifted students yielded surprisingly few 
studies that met the methodologically rigorous criteria for inclusion adopted by the Task 
Group. The Task Group actually had to use somewhat less stringent criteria than in other 
instructional practices reports in order to fulfill the charge of evaluating the “best available 
scientific evidence.” The Task Group could formulate recommendations only on the basis of 
one randomized control trial study and seven quasi-experimental studies that met the 
Category 1 and 2 criteria. This was disappointing, especially because even the few studies 
included in the analyses contained some methodological limitations. For example, almost all 
studies on acceleration, although essentially positive in their reported outcomes (Colangelo, 
Assouline, & Gross, 2004 and Rogers, 2007 provide a comprehensive review), are limited to 
students who are highly gifted and motivated to accelerate. Thus, motivation is a confound 
just as it is a selection criterion for being considered a candidate for acceleration. 

 
Nonetheless, the studies reviewed above that met our criteria provided some support 

for the value of differentiating the mathematics curriculum, especially when acceleration is 
a component (i.e., pace and level of instruction is adjusted). Individualized instruction in 
which pace of learning is increased, often managed via computer instruction, also showed 
positive benefits.  

 
The challenge of implementing random assignment or well-matched comparison 

groups in programs for gifted students is substantial. Parents are unlikely to agree to let their 
child participate in anything but the treatment that is designed for acceleration or enrichment. 
Thus, to gain insights about the impact and nature of different approaches to the 
mathematical education of the gifted, it would be useful to look at some research that does 
not meet the inclusion criteria because it has been designed to be more descriptive or 
correlational. That research when coupled with the analyses reported above suggests several 
positive directions. For instance, there is evidence that gifted students who are accelerated by 
other means gained time and reached educational milestones earlier (e.g., college entrance) 
than their equally able same-age peers. They also demonstrate comparable or stronger 
performance than their same-age peers (although with small effect sizes) on a variety of 
indicators, at younger ages. Together these studies help to illuminate the conclusions drawn 
from the scientific literature as summarized above. The Task Group has no evidence that 
acceleration harms the mathematical achievement of the gifted student.  

 
Gifted students who are accelerated also appear to become more strongly engaged in 

science, technology, engineering, or mathematics areas. This finding fits well with the results 
of a recent correlational study showing that the more mathematics courses taken in high 
school, which is facilitated through acceleration, the more likely students are to perform well 
in science (Sadler & Tai, 2007). Although some have seen acceleration as a cause for 
concern, there is no evidence in the studies that met our criteria that gaps and holes in 
knowledge have occurred as a result of acceleration.  
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Support also was found for supplemental enrichment programs. Of the programs 
analyzed here, one explicitly utilized acceleration as a program component and the other did 
not. Of the two studies that met our criteria for inclusion as Category 1 or 2, both studies had 
significant effect sizes favoring the enrichment treatment. So, although the evidence is 
somewhat mixed, it suggests a positive effect of enrichment approaches. Other research (e.g., 
Benbow, 1998; Delcourt, Cornell, & Goldberg, 2007; Rogers, 2007; VanTassel-Baska, 1998; 
VanTassel-Baska & Brown, 2007) has examined varied enrichment approaches. Clearly 
understanding the nature of the enrichment activity is crucial to efforts to improve 
opportunities for gifted students. Self-paced instruction supplemented with enrichment 
seemed to have a positive impact on student achievement. This supports the widely held view 
in the field of gifted education that acceleration and enrichment combined should be the 
intervention of choice. 

 
Underscored by the analysis undertaken by the Task Group is the need for more high-

quality experimental and quasi-experimental research to study effectiveness of interventions 
designed to meet the learning needs of gifted students. Especially missing are evaluations of 
academically rigorous enrichment programs, the mathematical content explored in such 
programs, and their goals. The Task Group concludes, however, that it is important for 
school policies to support appropriately challenging work in mathematics for gifted and 
talented students. Acceleration, combined with enrichment, is certainly a promising, possibly 
moderately supported (if the entire literature is considered), practice.  
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VII. Teachers’ Use of Formative Assessments to Improve 
Learning of Mathematics: Results from a Meta-Analysis of 
Rigorous Experimental and Quasi-Experimental Research 

Formative assessment—ongoing monitoring of student learning to inform instruction—
is generally considered a hallmark of effective instruction in any discipline. In the past 
20 years, the term has been used in two complementary but distinct traditions of scholarship 
and research. One tradition—which has played an influential role in the field of mathematics 
education—is represented, for example, in two recent publications by the National Research 
Council—one on the teaching and learning of mathematics (National Research Council, 2001) 
and one on human learning and cognition (National Research Council, 2005). Donovan and 
Bransford (National Research Council, 2005) established three goals for formative 
assessments: 1) “to make students’ thinking visible to both teachers and students;” 2) “to 
monitor student progress (in mastering concepts as well as factual information);” and, 3) to 
“design instruction that is responsive to student progress” (p. 16). 

 
The second tradition, developed primarily within the fields of school psychology, 

educational psychology, and special education shares only one of the three aforementioned 
goals. This approach is typified, for example, by the definition provided in the recent 
Encyclopedia of School Psychology (Lee, 2005). In this tradition, formative assessments are 
tools “used to monitor progress and to provide feedback about the progress being made. ... In 
the classroom setting, formative evaluation is used to inform students and teachers about 
progress” (p. 209). The goal of this type of formative assessment is to determine whether 
specific students—or in some cases, an entire class—require additional instruction devoted to 
learning a particular concept or acquiring proficiency in a particular mathematical procedure 
or strategy for problem solving. Typically, measures are administered weekly or biweekly, 
often using computer-assisted assessment. They are brief and efficient, taking approximately 
5 minutes to administer. 

 
Note that both research traditions stress monitoring progress toward an instructional 

goal and adjusting instruction for students based on the formative measures. However, the 
school psychology tradition devotes a good deal of attention to empirical establishment of the 
validity and reliability of the assessment procedures (e.g. Fuchs, 2004; Foegen, Jiban, & 
Deno, 2007).  

 
The system described by Donovan and Bransford (2005) rarely addresses psychometric 

issues. It presents an ambitious agenda that includes not only progress monitoring but also 
interpretation of students’ errors and misconceptions to guide the types of questions teachers 
ask to probe for student understanding. This tradition is embodied for example, in Adding It 
Up (National Research Council, 2001): 

 
Information about students is crucial to a teacher’s ability to calibrate tasks and 
lessons to students’ current understanding.… In addition to tasks that reveal 
what students know and can do, the quality of instruction depends on how 
teachers interpret and use that information. Teachers’ understanding of their 
students’ work and the progress they are making relies on … their ability to use 
that understanding to make sense of what the students are doing. (pp. 349–350). 
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Ruiz-Primo, Shavelson, Hamilton, and Klein (2002) discuss a continuum of 
assessment distance that traverses both traditions. The continuum includes the following 
distance classifications, with the classifications ranging from formative to summative 
assessments, by proximity: 

 
• Immediate—informal observation or artifacts from a lesson. 
• Close—embedded assessments and semi-formal quizzes following several activities. 
• Proximal—formal classroom exams following a particular curriculum. 
• Distal—criterion-referenced achievement tests such as those required by NCLB. 
• Remote—broad outcomes measured over time—norm-referenced tests, such as the 

Scholastic Aptitude Test. 
 
Formative assessment would be identified as immediate, close and perhaps proximal 

in the continuum above and is used to regularly monitor instruction. Freudenthal (1973) 
noted, “It is more informative to observe a student during a mathematical activity than to 
grade his papers” (p. 84). Informal assessments which include observations and informal 
probes of students to assess their level of understanding, according to Freudenthal, need to 
inform day-to-day teaching.  

  
Sueltz, Boynton, and Sauble (1946) noted that observation, discussion, and interviews 

serve better than paper-pencil tests in evaluating a pupil’s ability to understand the principles 
he or she uses. Spitzer (1951) and others have long advocated the interview as a formative 
assessment strategy that is closely associated with the use of observations. Decades later the 
National Council of Teachers of Mathematics noted that information is best collected through 
informal observation as students participate in class discussions, attempt to solve problems, 
and work on various assignments individually or in groups (National Council of Teachers of 
Mathematics, 1989, p. 233). However, Glaser and Silver (1994) note that aside from teacher-
made classroom tests, the integration of assessment and learning as an interacting system has 
been too little explored. The meta-analysis completed by the Instructional Practices Task 
Group revealed no methodologically acceptable studies that examined the impact of using 
this type of assessment on student performance. 

 
The goal of this section is to review the experimental and quasi-experimental research 

on the extent to which teachers’ use of formative assessments in mathematics enhances 
students’ acquisition of mathematics content. Although the Task Group reviewed the 
literature for studies using any type of formative assessment from any tradition, the only 
studies located that met the criteria for adequate experimental design emanated from the 
school psychology or educational psychology traditions.  

 
This report describes studies that indicate the extent to which use of formative 

assessments improves students’ mathematics proficiency. The Task Group also describes the 
impacts of various enhancements, i.e., procedures and strategies for helping teachers use this 
information to provide differentiated instruction, and, thus enhance mathematics achievement. 
The Task Group centered the meta-analysis on two research questions. The first was whether 
teachers’ use of formative assessments enhanced student achievement in mathematics. The 
second question explored the effectiveness of various tools or enhancements that can assist 
teachers in their use of formative assessments. Before discussing the findings of the meta-
analysis, the Task Group begins by providing a brief historical overview.  
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A. Historical Overview 

In the 1970s and 1980s, a good deal of research and effort went into the field of 
formative assessment. Researchers examining high-performing schools invariably found that 
the school used some system to monitor all students’ academic progress on a regular basis. 
Mastery learning (e.g., Bloom, 1980; Guskey, 1984), a form of differentiated instruction was 
widely implemented in large school districts such as Chicago and San Diego. Mastery 
learning calls for frequent assessment of student progress using brief tests at the end of each 
unit, which is typically once a week. Students who did not reach a mastery level (typically 
defined as 80% correct) are retaught the material. Those with scores above the mastery level 
are provided with extension or enrichment activities. During this time in history, publishers 
of the major mathematics curricula began to include unit tests along with their programs. 
This practice continues to this day. 

 

B. Validity and Reliability Concerns for Formative  

Assessments in Mathematics 

In developing formative assessments in mathematics, the goal has invariably been to 
develop measures that are valid and reliable in the psychometric sense (AERA, APA, 
NCME, 1999) and that are relatively easy to administer and score.  

 
Contemporary conceptions of test validity include indices that a measure is correlated 

with other measures of mathematics achievement which can include teacher appraisals (criterion-
related validity), that the mathematical content is valid and important (content validity) and that 
there is evidence concerning the impact of use of the measure, including both intended and 
unintended consequences (consequential validity) (e.g., Messick, 1988). A valid formative 
assessment system should actually help teachers “make specific instructional decisions” 
(National Research Council, 2001, p. 35) and according to Gersten, Keating, and Irvin (1995), it 
should also provide data that indicates that use of the system is beneficial to students. 

 
A group of researchers found the unit mastery tests problematic for several reasons. 

When they examined the psychometric characteristics of these measures (Fuchs, Tindal, & 
Fuchs, 1986; Tindal, Fuchs, Fuchs, Shinn, Deno, & Germann, 1985) they found them to be 
weak. In addition, difficulty levels varied from week to week, and the cut score of 80 or 85% 
seemed increasingly arbitrary. Unit mastery tests, sometimes called criterion-referenced tests 
in this era, did nothing to assess retention of previously taught material. 

 
Almost 25 years ago, two seminal articles called for a radically different, seemingly 

counterintuitive approach to formative assessment (Fuchs, Deno, & Mirkin, 1984; Deno, 
1986). This approach entailed a sampling of items representing major instructional objectives 
for the year and periodic use of assessments with items that randomly sampled across the 
year’s objectives. This approach seems counterintuitive in that, during the early parts of the 
year, students are asked to solve problems involving material not yet covered. Toward the 
end of the year, they are asked about material they may have covered 6 to 8 months ago.  
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Yet, therein lies the power of a formative assessment that contains items from across 
the year’s objectives. It is a far more accurate means to measure progress because the difficulty 
remains more or less the same across the year, and teachers and students can actually see the 
progress they have made toward acquiring the material. In contrast, typical mastery learning 
tests’ difficulty level varied from unit to unit, depending on both the difficulty of the topic and 
the difficulty of the items selected. In addition, with this type of assessment system, students 
could actually see their progress; from say a score of 20% correct to 90% correct, as the year 
progressed. Even in the best of unit mastery tests, students will typically score at about the 
same level from unit to unit. Another advantage of this type of system is that it automatically 
assesses both retention of material taught months ago and, to some extent, a student’s ability to 
generalize what she learned to unfamiliar material. Because each of the brief measures samples 
broadly across the years’ objectives, criterion-related validity is far superior to assessments that 
only cover one week’s unit. For all these reasons, these measures have consistently shown far 
superior reliabilities and criterion-related validity than traditional unit mastery tests (see Fuchs 
(2004) and Foegen et al. (2007) for extensive reviews). They also have consistently 
demonstrated construct validity, in particular, in terms of sensitivity to instruction, i.e. use as a 
means to reliably monitor student progress. 

 
Especially in the field of reading, a second type of formative assessment was used, 

which also possessed strong psychometric qualities in terms of criterion-related validity (i.e., 
correlation with state- or nationally-normed achievement test) and reliability. These measures 
are typically called robust indicators. Foegen et al. (2007) define them as:  

 
Measures that represent broadly defined proficiency in mathematics … 
Effective measures are not necessarily representative of a particular 
curriculum but are instead characterized by the relative strength of their 
correlations to various overall mathematics proficiency criteria (p. 4).  
 
These measures are “not necessarily drawn from the student’s … (actual) ... 

curriculum, yet offer strong correlations to a host of criterion measures of overall subject area 
proficiency” (p. 4). 

 
A potential advantage of robust indicators is that they can “create a seamless and 

flexible system of progress monitoring measures in mathematics … across multiple grade 
levels. The search for robust indicators represents an effort to identify aspects of core 
competence in mathematics … that are predictive of important outcomes in mathematics, 
regardless of the vagaries of specific curriculum programs or high stakes state tests.”  

 
Several robust indicators have been developed in the field of mathematics, especially 

for students in the primary grades. These include measures of number naming (e.g., 
VanDerHeyden, Witt, Naquin, & Noell, 2001; Chard, Clarke, Baker, Otterstedt, Braun, & 
Katz, 2005), magnitude comparison (e.g., Clarke & Shinn, 2004) and counting proficiency. 
Validity coefficients tend to be higher for first grade assessments than kindergarten 
assessments and highest for magnitude comparison measures. A drawback of these measures 
is that they are only useful for one grade level so that they cannot be used to assess progress 
over multiple years. 
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At the middle school level, Foegen (2000) developed two robust indicator measures: 
one of fluency with basic arithmetic combinations (i.e., facts) and the second, an estimation 
task. The estimation task was a timed measure and attempted to measure students’ number 
sense (as opposed to computational skill). 

 
Helwig and Tindal (2002) developed a measure that focused on conceptual 

understanding using an item bank developed for eighth-graders. In general, these measures 
demonstrated adequate criterion related validity, although the Helwig et al. conceptual measure 
demonstrated the strongest correlations with high-stakes assessments.  

 
The authors note that, with one or two exceptions, neither the robust indicators 

approach nor the sampling from annual state curricular objectives approach have generated 
the same high levels of criterion related validity that oral reading fluency has in the field of 
reading. A major benefit of sampling from annual objectives is that teachers can use these 
data to obtain a sense of topics that require additional attention for groups of students. There 
are, however, several drawbacks.  

 
The first is that, in order to be efficient, the sample of items should be limited. 

However, a limited sample of items may cause potential reliability issues. The second is that, 
at the current point in time, state standards in mathematics are quite variable in terms of 
quality, and different states provide differing emphases to topics and sequence topics 
differently (Reys, Dingman, Sutter, & Teuscher, 2005). Current efforts to use a common 
framework such as the NCTM Focal Points (National Council of Teachers of Mathematics, 
2006) may help alleviate this problem in the future. 

 
Both these types of measures were, in our view, unfortunately given the term, 

curriculum based measurement. That term seems to imply that they are valid, for example, 
only for a given curricula. Yet, in reality they are aligned to various district or states’ 
mathematics standards. In 2007, Deno reported that the term used to describe this formative 
assessment approach was an unfortunate choice (Deno, 2007). Unlike unit mastery tests, the 
curriculum objective can basically be used for any curricula in use in a district because they 
gauge progress toward state standards.  

 
Virtually all the applied experimental research on formative assessments has involved the 

use of these types of measures and an understanding of (a) the extent to which providing teachers 
and students with this information enhances mathematics achievement and, increasingly, (b) the 
efficacy of various tools and procedures for helping teachers use this information to provide 
differentiated instruction. This is the focus of the remainder of this section. 

 
Most of the formative assessments used in mathematics demonstrate criterion-related 

validities in the 0.5 to 0.7 range (Foegen et al., 2007). Although these are weaker than those 
found in reading, they appear to be reasonable. It is in the area of consequential validity, that 
formative assessment measures have shown their greatest utility (Gersten et al., 1995). In the 
next section, the Task Group reviews the research on this topic that (a) examines 
impacts/effects of use of formative assessments and (b) addresses the standards for 
experimental and quasi-experimental design utilized by the Task Group.  
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C. Results 

Table 32 presents the contrast between use of formative assessment on a regular 
(typically biweekly) basis versus a control condition. Six of the studies analyzed data at the 
individual student level, and the remaining three used the classroom or teacher as the unit of 
analysis. (One study (Calhoon & Fuchs, 2003) did not compare formative assessment to a 
control condition; it measured the impact of an enhanced version of formative assessment to 
a control condition. This study is thus excluded from this analysis.)  

 
Table 32: Studies that Investigate the Impact of Formative Assessment (FA) Versus a 
Control Condition 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Student-level analyses 

Allinder et 
al., 2000a RCT 

38 learning disabled 
elementary students and 
22 teachers in a large 
midwestern school district 

School year/ 
Curriculum based 
measurement in 
math computation 

FA only vs. 
Control 

Math 
Computation 
Test-Revised 

Overall -0.012 (ns) 0.349 

Fuchs et al., 
1990a RCT 

56 learning disabled 
students (Grades 3–9) and 
20 elementary special 
education teachers in a 
southeastern metropolitan 
school district 

15 weeks/ 
Individualized math 
programs 

FA with 
performance 
indicator only 
vs. Control 

Math 
Computation 
Test-Revised 
(Combined 
problems and 
digits) 

Overall 0.239 (ns) 0.323 

30 students and teachers in 
Grades 2–5 in a 
southeastern district 

Average 
achieving 0.310 (ns) 0.379 

30 students and teachers in 
Grades 2–5 in a 
southeastern district 

Low 
achieving 0.015 (ns) 0.377 Fuchs et al., 

1994 RCT 

30 students and teachers in 
Grades 2–5 in a 
southeastern district 

25 weeks/ Classwide 
program - general 
math operations 

FA only vs. 
Control 

Math 
Operations 
Test-Revised 

Learning 
disabilities 0.189 (ns) 0.378 

22 learning disabled 
students (Grades 3–7) and 
12 special education 
teachers in Tennessee 
metro school district 

FA vs. Control 0.468 (ns) 0.467 

Fuchs et al., 
1996a RCT 

25 learning disabled 
students (Grades 3–7) and 
15 special education 
teachers in Tennessee 
metro school district 

School year/ Aim 
was to reintegrate 
students into 
mainstream math 

FA plus  
TP (trans-
environmental 
programming) 
vs. TP only 

Math 
Operations 
Test-Revised 
(Digits) 

Overall 

0.220 (ns) 0.429 

Fuchs et al., 
1999a RCT 

272 students (Grades 2–4) 
and 16 teachers in four 
schools in one southeastern 
school district 

23 weeks/ Problem 
solving 

Performance 
Assessments 
(PA) vs. no PA 

Novel problem-
solving (based 
on ITBS 
problem) 

Overall 0.355 (ns) 0.249 

Spicuzza et 
al., 2001a Quasi 

495 students in Grades 4 
and 5 in multiple schools 
in a large, midwestern 
school district 

4 months/ 
Accelerated Math - 
individualized 
assignments 

Accelerated 
Math vs. regular 
math program 

NALT 
(Northwest 
Evaluation 
Association) –
annual district 
test 

Overall 0.139 (ns) 0.213 

Heterogeneity 
Q-value Df (Q) P-value I-squared Hedge’s g Standard Error 
1.509 8 0.993 0.000 

Pooled ES: student level  
(six studies, nine effect sizes) 0.206 ~ 0.107 

Continued on p. 6-177 
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Table 32, continued 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s  
g 

Standard  
Error 

Classroom-level analyses 

Allinder, 
1996 RCT 

58 students (Grades 3–6) 
of 29 special education 
teachers in multiple 
schools in a large midwest 
school district 

16 weeks/ Math 
computation FA vs. Control 

Math 
Computation 
Test-Revised 

Overall 0.558 (ns) 0.387 

Fuchs et al., 
1989 RCT 

40 students (Grades 2–9) 
of 20 special education 
teachers in elementary  
and middle schools  
in a southeastern 
metropolitan area 

15 weeks/ 
Individualized math 
programs 

Dynamic goal 
FA vs. Control 

Math 
Computation 
Test 

Overall 0.600 (ns) 0.439 

Fuchs et al., 
1991 RCT 

42 learning disabled 
students (Grades 2–8) and 
22 teachers in multiple 
elementary and middle 
schools in a southeastern 
metropolitan area 

20 weeks/ Math 
operations 

FA only vs. 
Control 

Math 
Operations Test 
(combined 
problems and 
digits) 

Overall 0.045 (ns) 0.426 

Heterogeneity 
Q-value Df (Q) P-value I-squared Hedge’s g Standard Error 
1.069 2 0.586 0.000 

Pooled ES: student level  
(three studies, three effect sizes) 0.408 ~ 0.240 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within teachers or classrooms. 

 
Effect sizes were calculated for studies in which analysis was conducted at the 

individual student level (N = 6) and those where analysis was conducted at the classroom 
level (N = 3).  

 
For the student level set, nine effect sizes from the six relevant studies were calculated. 

There are two reasons for this. The first is that Fuchs, Fuchs, et al. (1994) intentionally sampled 
students from three strata: those with learning disabilities, a below-average low-performing 
group, and a group of students performing at or near the class average. For Fuchs, Roberts, 
Fuchs, and Bowers (1996), there were four conditions, including two involving formative 
assessment (FA). Thus, effect sizes for two orthogonal contrasts could be calculated. 

 
For the six studies where analyses were conducted at the student level, the mean 

effect size is 0.206, bordering on significance. For the three studies that use the class as the 
unit of analysis, the effect size is 0.408, also bordering on significance.  

 
A reasonable inference is that merely providing teachers and students with feedback on 

how they are progressing is consistently helpful to students. This is a consistent replicable 
phenomenon across a large number of studies that involve well over a hundred classrooms. The 
reader should keep in mind that two-thirds of the research has been conducted at the elementary 
school level and only two include a middle school sample, and a one high school sample. In 
addition, all have used formative assessment systems that have empirical data to indicate 
validity and reliability. In addition, all but one (Ysseldyke et al., 2003), have used formative 
assessments that are based on sample problems selected to represent a randomly selected set of 
state standards for the year. Thus, there is insufficient evidence to determine whether or not the 
use of formative assessments is effective in the secondary grades. The next set of studies 
investigates what additional information is required to assist teachers in how to use these data.  
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D. Enhancements to Assist Teachers in Use of  

Formative Assessment 

Early on, researchers realized that teachers might not know how to use formative 
assessment to enhance instruction unless some type of additional guidance was provided. 
Thus, a set of enhancements was developed and field-tested in a series of research studies. 
These appear in Tables 33 and 34. Table 33 compares the use of formative assessments with 
enhancement to a control condition (i.e., no formative assessment). Table 34 attempts to 
estimate the value added to formative assessment by each of these enhancements. Thus, the 
contrasts in Table 34 compare use of formative assessment with an enhancement to use of 
formative assessment. 

 
Table 33: Studies That Investigate the Impact of Formative Assessment (FA) Plus 
Enhancements Versus a Control Condition 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s 
g 

Standard 
Error 

Student-level analyses 

Allinder 
et al., 
2000a 

RCT 
37 learning disabled elementary 
students and 20 teachers in a 
large midwestern school district 

School year/ 
Curriculum based 
measurement in 
math computation 

FA + teacher self-
monitoring of 
instructional changes 
vs. Control 

Math 
Computation 
Test-Revised 

Overall 0.588 (ns) 0.369 

Calhoon 
& Fuchs, 
2003a 

RCT 

92 high school students with 
disabilities (Grades 9–12) and 
three teachers in 10 classrooms 
in three schools in a southeastern 
urban district 

15 weeks/ 
Computation, 
concepts and 
applications 

FA with PALS (Peer-
assisted learning 
strategies) vs. Control 

Math 
Operations 
Test-Revised 
(computation) 

Overall 0.355 (ns) 0.340 

Fuchs et 
al., 1990a RCT 

54 learning disabled students 
(Grades 3–9) and 20 elementary 
special education teachers  
in a southeastern metropolitan 
school district 

15 weeks/ 
Individualized 
math programs 

FA with performance 
indicator and skills 
analysis vs. Control 

Math 
Computation 
Test-Revised 
(Combined 
problems and 
digits) 

Overall 0.398 (ns) 0.325 

30 students and teachers in Grades 
2–5 in a southeastern district 

Average 
achieving 0.292 (ns) 0.379 

30 students and teachers in Grades 
2–5 in a southeastern district 

Low 
achieving 0.546 (ns) 0.383 Fuchs et 

al., 1994 RCT 

30 students and teachers in Grades 
2–5 in a southeastern district 

25 weeks/ 
Classwide  
program - general 
math operations 

FA + instructional 
recommendations vs. 
Control 

Math 
Operations 
Test-Revised 

Learning 
disabilities 0.172 (ns) 0.377 

Fuchs et 
al., 1996a RCT 

24 learning disabled students 
(Grades 3–7) and 13 special 
education teachers in Tennessee 
metro school district 

School year/ Aim 
was to reintegrate 
students into 
mainstream math 

FA + 
transenvironmental 
programming (TP) vs. 
Control 

Math 
Operations 
Test-Revised 
(Digits) 

Overall 0.304 (ns) 0.445 

Heterogeneity 

Q-value df (Q) P-value I-squared 
Hedge’s 

g 
Standard 

Error 
0.901 6 0.989 0.000 

Pooled ES: student level (five studies,  
seven effect sizes) 

0.383 ** 0.140 
Classroom-level analyses 

Fuchs et 
al., 1991 RCT 

43 learning disabled students 
(Grades 2–8) and 22 teachers in 
multiple elementary and middle 
schools in a southeastern 
metropolitan area 

20 weeks/ Math 
operations 

FA with expert system 
instructional 
consultation vs. 
Control 

Math 
Operations 
Test 
(combined 
problems and 
digits) 

Overall 0.657 (ns) 0.439 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within teachers or classrooms. 
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Table 34: Studies That Investigate the Impact of Formative Assessment (FA) Plus 
Enhancements Versus Formative Assessment Only 

Study Design Sample 
Duration/ 
Content Contrast Measure Subgroup 

Hedge’s 
g 

Standard 
Error 

Student-level analyses 

Allinder et 
al., 2000a RCT 

33 learning disabled 
elementary students 
and 18 teachers in a 
large midwestern 
school district 

School year/ 
Curriculum based 
measurement in 
math computation 

FA + teacher self-
monitoring of 
instructional changes vs. 
FA only 

Math 
Computation 
Test-Revised 

Overall 0.603 (ns) 0.386 

Fuchs et 
al., 1990a RCT 

72 learning disabled 
students (Grades 3–9) 
and 20 elementary 
special education 
teachers in a 
southeastern 
metropolitan school 
district 

15 weeks/ 
Individualized 
math programs 

FA with performance 
indicator and skills 
analysis vs. FA with 
performance indicator 
only 

Math 
Computation 
Test-Revised 
(Combined 
problems and 
digits) 

Overall 0.234 (ns) 0.291 

20 students and 
teachers in Grades 2–5 
in a southeastern 
district 

Average 
achieving -0.021 (ns) 0.428 

20 students and 
teachers in Grades 2–5 
in a southeastern 
district 

Low 
achieving 0.453 (ns) 0.434 Fuchs et 

al., 1994 RCT 

20 students and 
teachers in Grades 2–5 
in a southeastern 
district 

25 weeks/ 
Classwide 
program—general 
math operations 

FA + instructional 
recommendations vs. 
FA only 

Math 
Operations 
Test-Revised 

Learning 
disabilities -0.037 (ns) 0.428 

Fuchs et 
al., 1996a RCT 

24 learning disabled 
students (Grades 3–7) 
and 13 special 
education teachers in 
Tennessee metro 
school district 

School year/ Aim 
was to reintegrate 
students into 
mainstream math 

FA + transenvironmental 
programming (TP) vs. 
FA only 

Math 
Operations 
Test-Revised 
(Digits) 

Overall -0.229 (ns) 0.444 

Heterogeneity 
Q-value df (Q) P-value I-squared Hedge’s g Standard Error 
2.949 5 0.708 0.000 

Pooled ES: student level (4 studies, 6 effect sizes) 
0.194 (ns) 0.159 

Classroom-level analyses 

Fuchs et 
al., 1991 RCT 

41 learning disabled 
students (Grades 2–8) 
and 22 teachers in 
multiple elementary 
and middle schools in 
a southeastern 
metropolitan area 

20 weeks/ Math 
operations 

FA with expert system 
instructional consultation 
vs. FA without expert 
system 

Math 
Operations 
Test 
(combined 
problems and 
digits) 

Overall 0.750 ~ 0.443 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within teachers or classrooms. 
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Specific enhancements included: 
 
1) Providing teachers with detailed analysis indicating strengths and weaknesses 

based on formative assessment data. The analysis describes student proficiency in 
specific mathematics subskills, and visually presents student proficiency in each 
subskill across the school year. The detailed information provided by the analysis 
allows teachers to evaluate how students maintain skills over time and helps 
teachers decide what to teach. Further, specific areas for instructional change can 
be targeted based on the information provided (Fuchs et al., 1990) (effect size of 
0.398; value-added effect size of 0.234; these effect sizes did not reach statistical 
significance). 

2) Using data from formative assessments and sophisticated software to provide 
specific instructional suggestions to teachers for individual students. Instructional 
consultation on teacher planning and student achievement was provided by a 
computerized expert system. Using the formative assessment data, the expert 
consultation system recommended instructional adjustments and provided 
detailed instructions on how to implement that adjustment. The consultation not 
only helped teachers isolate what material to re-teach but also how to restructure 
their instruction (Fuchs et al., 1991) (ES = 0.657, ns; value added ES = 0.750, 
bordering on significance.). 

3) Using the data from the formative assessments as a basis for the content of peer-
assisted learning sessions. Results of the formative assessments were entered into a 
computer program that produced a graph of students’ progress overtime and a skills 
profile of each “student’s performance on each skill in the annual curriculum” 
(p. 240). Teachers used this report to group students into pairs for Peer-Assisted 
Learning (PALS). The teachers also used the reports to determine the content of the 
PALS lesson (Calhoon & Fuchs, 2003) [ES = 0.355, nonsignificant (ns)]. This is 
the only study that addressed high school mathematics instruction. 

4) Using the data from formative assessments as the basis for consultation between the 
classroom teacher and the special educator to determine what content to emphasize. 
The data from the formative assessments was used by the special education teacher 
to provide classroom teachers with specific information on which curricular areas 
require additional attention. Feedback from the formative assessments was also used 
to provide teachers with data on the effectiveness of various instructional strategies 
used to promote math achievement (Fuchs et al., 1996) (ES = 0.304; value added 
ES = -0.229, neither ES reached statistical significance).  

5) Self monitoring. The self-monitoring process was completed each time the 
formative assessment data suggested the need for an instructional change. Teachers 
answered a set of questions regarding their students’ progress and their future 
instructional plans. Using the information provided by the twice-weekly formative 
assessment, teachers responded to questions such as, “On what skill(s) has the 
student done well in the preceding 2 weeks? On what skill(s) has the student 
improved compared to the previous 2-week period? What skill(s) should be 
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targeted for the coming 2-week period? How will the teacher attempt to improve 
student performance on the targeted skill(s)?” (Allinder et al., 2000, p. 5). (ES = 
0.588, value added ES = 0.603, neither ES reached statistical significance.) 

6) Using formative assessment data as a means for teachers to provide specific 
instructional suggestions for small group instruction and computer-assisted 
instruction. Each teachers’ weekly report, based on the formative assessment data 
included the following: (a) content that needed to be taught or retaught during 
whole class instruction, (b) specific suggestions on how to break the class into 
small groups for small group instruction and which content to cover, (c) 
individualized computer-assisted problems for each student, and (d) suggested 
material to cover during peer tutoring sessions (Fuchs et al., 1994). (Effect sizes 
were 0.546 for low-achieving students, 0.292 for average achieving students and 
0.172 for students with learning disabilities; none of these effect sizes were 
statistically significant.) Note that for value added, effect size was 0.453 for low 
achievers, -0.021 for average achievers, and 0.37 for students with learning 
disabilities. However, effect sizes were negligible as none of them reached 
statistical significance.  

The overall picture provided by the data in Table 33 indicates that the set of 
enhancements are effective in enhancing students’ mathematics achievement. The average 
effect size, in this case, is significant for studies conducted at the student level [average ES = 
0.383, statistically significant, ES = 0.657, (ns) for the class level study]. As was the case for 
the first set of analyses, the same pattern emerges whether or not the full set of studies is 
included, or only those where an effect size could be computed at the student level. 

 
Note that the effect of formative assessment with enhancements increases 

dramatically from formative assessment alone. It appears that the approaches that provided 
specific suggestions directly to the teacher about what to teach during small group instruction 
or partner work, or provided specific instructional suggestions worked better than this more 
indirect method.  

 
Table 34 presents effect sizes for the value added by the enhancement. In other 

words, the comparison condition involves use of formative assessment only. As one would 
expect, with the more stringent criterion, the mean effect size is much lower, 0.194, which is 
not statistically significant. In two cases, the enhancement did not provide any additional 
gain in terms of student achievement to the mere use of formative assessment. On average 
the effect size doubles when an enhancement is added. 

 
It is important to note that the majority of these studies focus on students with 

diagnosed learning disabilities. Only two samples (both from the same study) involve 
students from the general population. It is also important to note that these studies involve 
only one of two dependent measures, the Mathematics Operations Test, or the Mathematics 
Concepts and Applications Tests. These tests were developed by the researchers. However, 
they do possess solid psychometric properties.  
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The final caveat is that many of the studies involve special education teachers. Thus, 
one should be cautious in interpreting implications for classroom teachers because few of the 
enhancements involved only the classroom teacher. 

E. Summary and Conclusions 

The set of ten well-designed and well-executed studies on formative assessment 
demonstrates that regular use of formative assessments in mathematics can enhance students’ 
mathematics achievement in the elementary grades, in both the areas of computation and 
concepts and applications. These studies were conducted with moderately large numbers of 
teachers in “real-world” settings; thus the external validity is high. The average effect size 
boost provided by use of formative assessments for studies conducted at the individual level 
is 0.206 and approaches significance. This corresponds to a boost of 9 percentile points. 

 
In addition, the set of studies describes a set of tools and procedures (what the Task 

Group calls “enhancements”) that can accompany formative assessment. These tools include 
specific activities that are linked to a student’s current needs. Activities range from a list of 
ideas for alternate means of teaching the material, to specific materials for use in peer 
tutoring, to a listing of skills and concepts that require additional explanation and discussion.  

 
Although many of the effect sizes doubled in value with these enhancements, the net 

contribution of 0.194 was not significant. Thus, the Task Group would more cautiously call 
these practices promising as opposed to evidence-based.  

 
Two other issues need to be considered in framing specific recommendations for 

improving practice. The first is that the preponderance of studies were conducted at the 
elementary school. Second, to date, only one type of formative assessment has been studied 
with rigorous experimentation. These are assessments that include random sampling of items 
that address state standards. These assessments tend to take between 2 and 8 minutes to 
administer and thus are feasible for regular use. However, as discussed in the Introduction, 
many other types of formative assessments have been developed. The Task Group simply 
cannot comment on how useful these other types are in terms of enhancing students’ 
performance at this point in time since the Task Group was unable to uncover any rigorous 
experiments involving their use. Hopefully, such research will be conducted in the near future.  
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F. Proposed Recommendations 

Schools should seriously consider regular use of formative assessments in 
mathematics.  

 
This might entail weekly assessments of students experiencing difficulties and less 

frequent (perhaps three times a year) assessments for others.  
 
The Task Group would recommend use of formative assessments with known validity 

and reliability. However, the Task Group is aware that at the current point in time, there is a 
paucity of such measures. The Task Group advocates serious research and development in 
this area. It appears such work has already begun and federal support of this effort seems 
critical. In particular, validity studies of methods other than those that sample from annual 
state or district goals could and should be explored.  

 
Research findings suggest that several enhancements can help teachers use 

formative assessment information more effectively. 
 
Here, the research base is smaller, and less consistent. Several major tools appear to be 

promising. The first is linking formative assessment information (via technology) with specific 
recommendations for a teacher in areas such as a) content and concepts that require additional 
work with the majority of the class and b) specific activities that could and should be used by a 
given student for either tutoring or computer-assisted intervention or intervention work 
provided by an adult (teacher, mathematics specialist, or trained paraprofessional). 

 
Use of formative assessments in mathematics can lead to increased precision in how 

time is used in class and assist teachers in providing appropriate instruction to students who 
need help on topics for which they need help. This should seriously be considered as 
districts consider the development and implementation of response-to-intervention models 
in mathematics. 

G. Suggestions for Future Research 

Several future research areas seem worth pursuing. The first is extending this line of 
research to the middle school and high school area. The second entails the same type of 
rigorous research studies of other, more clinical types of formative assessments such as those 
described in recent publications by NCTM.  

 
The Task Group also needs to know more about how formative assessment measures 

relate to mathematics tests that include items that are more mathematically sophisticated than 
those on current standardized achievement tests. It also is important to update the studies of 
the reliability and validity of publisher-developed tests. That research is now over 20-years-
old and the nature of mathematics instruction has changed dramatically. 
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Conclusion 

Mathematics instruction is a complex professional practice. Researchers in the 
educational research community have made important forays into several of the most 
controversial and pressing questions about the effectiveness and impact of various types of 
instructional practice and, in particular, have conducted some studies that examine the effects 
of various interpretations and implementations of practices that have been advocated in the 
“reform” documents in mathematics education during the past two decades.  

 
The question we asked is: What can be learned from a review of the best available 

evidence in six important aspects of practice? These practices included: the use of 
cooperative groups and peer instruction, the use of direct instruction with learning disabled 
students, the use of “real-world” problems in mathematics teaching, the use of technology, 
the enrichment and acceleration of instruction for mathematically precocious students, and 
the use of formative assessment. 

 
For none of the areas examined did the Task Group find sufficiently strong and 

comprehensive bodies of research to support all-inclusive policy recommendations of 
any of the practices addressed. Nor did the Task Group find sufficient evidence to 
support policy recommendations favoring the status quo in mathematics teaching.  

 
Across all of the areas, the Task Group found that several instructional practices in 

mathematics teaching show some promise, in comparison to typical practice, for 
affecting student learning. In each case the “promising” practice is clearly specified, 
somewhat prescriptive, and involves a mix, or combination, of particular, distinct practices. 
Thus, for example, it cannot be said that cooperative learning is a practice whose 
effectiveness is supported by research—but the Team Assisted Individualization (TAI) 
approach, with particular students in a particular area of mathematics, is effective. Although 
formative assessment to inform instruction is useful, it is enhanced when teachers use 
assessment tools with known validity and reliability. For students performing in the lower 
third of their grade level expectations, explicit instruction involving clear models of 
proficient performance, many opportunities to verbalize their problem solving strategies, and 
adequate practice and review should be a part of the mathematics program. It is not 
surprising that what the Task Group found about effective instructional practice is far more 
subtle and nuanced than direct answers to the starkly stated questions investigated.   

 
The Task Group found some rather robust findings but they must be accompanied by 

a caveat. When a practice is demonstrated by high-quality experimental research to have 
some promise, it is critical to be clear about the promise “for what aspects of mathematics 
proficiency?” Different practices and approaches impact different kinds of outcomes, ranging 
from computational performance, to “real-world” problem solving, to identifying extraneous 
problem information, to long-term participation and interest in studying mathematics.  
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Because researchers and practitioners use different definitions to describe their 
interventions, it is conceptually problematic to place too much stock in either generalizing 
that a broad category of practice (e.g., using technology, or using “real-world” problems) has 
impact because a set of studies working on the same particular component of this category 
have impact, which was the case in some of the Task Group’s reviews.  

 
The Task Group’s process included asking mathematicians and mathematics 

education reviewers to examine the mathematical content of the research studies—to look at 
the assessments and interventions, to the extent possible, based on the published reports. 
They expressed important concerns, including the possibility that an outcome measure item 
purported to measure computation might not do so because it really measured ability to use 
the context, for instance. They expressed concern that some topics were underdeveloped (i.e., 
failed to help students access the underlying mathematics in the topic covered), or that items 
were mislabeled (e.g., as “problem solving”) when a mathematics expert might classify them 
otherwise. However, they also did note that several of the studies we reviewed seemed to 
help students increase their knowledge of mathematics and their ability to apply that 
knowledge to novel situations is a fashion that is valid from a mathematical perspective.  

 
The reader may feel disappointed at this juncture, seeing how few robust findings 

emanated from a review of the rigorous research on the topics addressed. Yet even the 
inconclusive and limited findings can provide a real service to the profession. If an 
administrator, a curriculum developer or a parent comments, “Research says that lessons 
must start with ‘real-world’ problems,” or “Students will really learn mathematics only if 
they are taught using direct instruction,” consumers and professionals now know that 
research is inconclusive on these topics. This is a necessary step in the evolution of 
educational research into a more mature science. The paucity of findings and the paucity of 
high-quality experimental research in the field led the Task Group to realize, early on in the 
process, that few definitive answers to the research questions posed would be found.  

 
However, the Task Group did see this work as the starting point for creating a base of 

knowledge to answer the questions posed at the onset of this work. We also see the 
application of the rigorous standards (developed in large part through earlier work of the 
Institute of Education Sciences of U.S. Department of Education) as serving as guidelines for 
the next generation of researchers. 

 
The questions and topics studied and findings are briefly summarized below. 
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A. How Effective Is Teacher-Directed Instruction in Mathematics  

in Comparison to Student-Centered Approaches, Including 

Cooperative and Collaborative Groups, in Promoting Student 

Learning? Is One Approach Preferable to Another?  

If So, in Which Areas of Mathematics? 

A controversial issue in the field of mathematics teaching and learning is whether 
classroom instruction should be more teacher-directed or student-centered. These terms have 
come to incorporate a wide array of meanings, with teacher-directed ranging from highly 
scripted direct instruction approaches to interactive lecture styles, and with student-centered 
ranging from students having primary responsibility for their own mathematics learning to 
highly structured cooperative groups. Schools and districts must make choices about 
curricular materials or instructional approaches that often seem more aligned with one 
instructional orientation than another. This leaves teachers wondering about when to organize 
their instruction one way or the other, whether certain topics are taught more effectively with 
one approach or another, and whether certain students benefit more from one approach than 
the other.   

 
In the review, the Task Group limited the search to studies that directly compared 

these two extreme positions. Teacher-directed instruction was defined as instruction in which 
it is the teacher who is primarily communicating the mathematics to the students directly, and 
student-centered instruction as instruction in which primarily students are doing the teaching.  

 
Only eight studies were found that met the Task Group’s standards for quality that 

were consistent with this definition. The studies presented a mixed and inconclusive picture 
of the relative impact of these two forms of instruction. High-quality research does not 
support the contention that instruction should be either entirely “child-centered” or “teacher-
directed.” Research indicates that some forms of particular instructional practices can have a 
positive impact under specified conditions. All-encompassing recommendations that 
instruction should be entirely “child-centered” or “teacher-directed” are not supported by 
research. The limited research base of rigorous research does not support the exclusive use of 
either approach.  

 
1. Cooperative and Collaborative Groups 

One of the major shifts in education over the past 25–30 years has been advocacy for 
the increased use of cooperative learning groups and peer-to-peer learning (e.g., structured 
activities for students working in pairs) in the teaching and learning of mathematics.  

 
Research has been conducted on a variety of cooperative learning approaches. One 

such approach, Team Assisted Individualization (TAI) has been shown to significantly 
improve students’ computation skills. This instructional approach involves heterogeneous 
groups of students helping each other, individualized problems based on student performance 
on a diagnostic test, and rewards based on both group and individual performance. Effects on 
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conceptual understanding and problem solving were not significant. There is evidence 
suggesting that working in dyads with a clear structure also improves computation skills in 
the elementary grades. However, additional research is needed. 

B. What Is the Impact of Use of Formative Assessment in 

Mathematics Teaching? 

Formative assessment—the ongoing monitoring of student learning to inform 
instruction—is generally considered a hallmark of effective instruction in any discipline. The 
Task Group’s review of the high-quality studies of this topic produced several conclusions. 

 
Teachers’ regular use of formative assessment is marginally significant in improving 

their students’ learning. This is especially true if teachers have additional guidance on using 
the assessment to design and individualize instruction.  

 
Although the research base is smaller, and less consistent than that on the general 

effectiveness of formative assessment, the research does suggest that several specific tools and 
strategies can help teachers use formative assessment information more effectively. The first 
promising strategy is providing formative assessment information to teachers (via technology) 
on content and concepts that require additional work with the whole class. The second 
promising strategy involves using technology to specify activities needed by individual 
students. Both of these aids can be implemented via tutoring, computer-assisted instruction, or 
help provided by a professional (teacher, mathematics specialist, trained paraprofessional).  

 
We caution that only one type of formative assessment has been studied with rigorous 

experimentation. These are assessments that include random sampling of items that address 
state standards. These assessments tend to take between 2 and 8 minutes to administer and 
thus are feasible for regular use.  

 
The regular use of formative assessment particularly for students in the elementary 

grades is recommended. These assessments need to provide information not only on their 
content validity but also on their reliability and their criterion-related validity (i.e., 
correlation of these measures with other measures of mathematics proficiency). For 
struggling students, frequent (e.g., weekly or biweekly) use of these assessments appears 
optimal, so that instruction can be adapted based on student progress. 

 
Research is needed regarding the content and criterion-related validity and reliability 

of other types of formative assessments (such as unit mastery tests included with many 
published mathematics programs, performance assessments, and dynamic assessments 
involving “think alouds”). This research should include studies of consequential validity (i.e., 
the impact they have on helping teachers improve their effectiveness). 

 
Use of formative assessments in mathematics can lead to increased precision in how 

instructional time is used in class and can assist teachers in identifying specific instructional 
needs. Formative measures provide guidance as to the specific topics needed for assistance. 
Formative assessment should be an integral component of instructional practice in mathematics. 
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C. What Instructional Strategies for Teaching Mathematics to 

Students With Learning Disabilities and to Low-Achieving Students 

Show the Most Promise? 

A review of 26 high-quality studies, mostly using randomized control designs, was 
conducted. These studies provide a great deal of guidance concerning some defining features 
of effective instructional approaches for students with learning disabilities (LD) as well as 
low-achieving (LA) students.  

 
Explicit systematic instruction typically entails teachers explaining and demonstrating 

specific strategies, and allowing students many opportunities to ask and answer questions 
and to think aloud about the decisions they make while solving problems. It also entails 
careful sequencing of problems by the teacher or through instructional materials to 
highlight critical features. More recent forms of explicit systematic instruction have been 
developed with applications for these students. These developments reflect the infusion of 
research findings from cognitive psychology, with particular emphasis on automaticity and 
enhanced problem representation. 

 
Our analysis of the body of research indicated that explicit methods of instruction are  

consistently and significantly effective with students with learning disabilities in computation, 
solving word problems, and solving problems that require the application of mathematics to 
novel situations.  

 
Only a small number of studies were located that investigated the use of visual 

representations or student “think alouds.” Therefore no inferences about their effectiveness 
can be drawn. The research suggests that they are most useful when they are integrated with 
explicit instruction.  

 
Based on this admittedly small body of research, we conclude that students with 

learning disabilities and other students with learning problems should receive some time on a 
regular basis with explicit systematic instruction. There is no reason to believe that this type of 
instruction should comprise all the mathematics instruction these students receive. However, it 
does seem essential for building proficiency in both computation and the translation of word 
problems into appropriate mathematical equations and solutions. Some of this time should be 
dedicated to ensuring that students possess the foundational skills and conceptual knowledge 
necessary for understanding the mathematics they are learning at their grade level. 
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D. Do “Real-World” Problem Approaches to Mathematics  

Teaching and Efforts to Ensure that Students Can Solve  

‘Real-World’ Problems, Lead to Better Mathematics  

Performance Than Other Approaches? 

The meaning of the term “real-world” problem varies by mathematician, researcher, 
developer, and teacher. Conducting research in this area is complex; fidelity of the teachers’ 
implementation of the instructional materials or instructional strategy is difficult to assess. 
Although not addressed in the studies we examined, teachers’ knowledge and capacity to use 
such problems effectively varies greatly. Given these caveats, the Task Group addressed the 
question of whether using “real-world” contexts to introduce and teach mathematical topics 
and procedures is preferable to more typical instructional approaches.  

 
The body of high-quality studies for this topic is small. Five studies addressed the 

question of whether the use of “real-world” problems as the instructional approach led to 
improved performance on outcome measures of ability to solve “real-world” problems, as 
well as on more traditional assessments.  Four of these studies were similar enough to 
combine in a meta-analysis. The meta-analysis revealed that if mathematical ideas are taught 
using “real-world” contexts, then students’ performance on assessments involving similar 
problems is improved. However, performance on assessments of other aspects of 
mathematics learning, such as computation, simple word problems, and equation solving, is 
not improved. 

 
For certain populations (upper elementary and middle grade students and remedial 

ninth-graders) and for specific domains of mathematics (fraction computation, basic equation 
solving, and function representation), instruction that features the use of “real-world” 
contexts can have a positive impact on certain types of problem solving. Additional research 
is needed to explore the use of “real-world” problems in other mathematical domains, at 
other grade levels, and with varied definitions of “real-world” problems.  

E. What Is the Relative Impact on Mathematics Learning  

When Students Use Technology Compared to Instruction  

That Does Not Use Technology? 

1. Calculators 

A review of 11 studies that met the Task Group’s rigorous criteria (only one study 
was less than 20 years old) found limited to no impact of calculators on calculation skills, 
problem-solving, or conceptual development over periods of up to one year. Unfortunately, 
these studies cannot be used to judge the advantages or disadvantages of multiyear calculator 
use beginning in the early years, because such long-term use has not been adequately 
investigated. The Panel cautions that to the degree that calculators impede the development 
of automaticity, fluency in computation will be adversely affected. 
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2. Computer-Assisted Instruction and Computer Programming 

We found that CAI drill and practice, if of high quality, can improve students’ 
performance compared to conventional instruction, with the greatest effect on computation, 
and less effect on concepts and applications. Drill and practice programs can be considered 
as a useful tool in developing students’ automaticity, or fast, accurate, and effortless 
performance on computation, freeing working memory so that attention can be directed to the 
more complicated aspects of complex tasks. 

 
Research has demonstrated that tutorials (CAI programs, often combined with drill 

and practice) that are well designed and implemented can have a positive impact on 
mathematics performance, particularly at the middle and high school levels. CAI tutorials 
have been used effectively to introduce and teach new subject-matter content. However, 
these studies also suggest several important caveats. Care must be taken to ensure that there 
is evidence that the software to be used has been shown to increase learning in the specific 
domain and with students who are similar to those who are under consideration. Educators 
should critically inspect individual software packages and studies that evaluate them 
critically. Furthermore, the requisite support conditions to use the software effectively 
(sufficient hardware and software; technical support; adequate professional development, 
planning, and curriculum integration) should be in place, especially in large-scale 
implementations, to achieve optimal results. 

 
Research indicates that computer programming improves students’ performance 

compared to conventional instruction, with the greatest effects on understanding of concepts 
and applications, especially geometric concepts, and weaker effects on computation. 
However, computer programming by students can be employed in a wide variety of 
situations using distinct pedagogies, not all of which may be effective. Therefore, the 
findings are limited to the careful, targeted application of computer programming for 
learning used in the studies reviewed.  

F. What Instructional Arrangements for  

Engaging with Mathematics Are Most Promising for 

Mathematically Precocious Students? 

The Task Group’s review of the literature about what kind of mathematics instruction 
would be most effective for gifted students focused on the impact of programs involving 
acceleration, enrichment, and the use of homogeneous grouping. The extensive literature 
searches we conducted yielded few studies that met the Task Group’s methodologically 
rigorous criteria for inclusion. Thus for this topic—and this topic only—we relaxed these 
criteria in order to fulfill our charge of evaluating the “best available scientific evidence.” 
One randomized control trial study and seven quasi-experimental studies were located. All 
but one of these studies have limitations. 

 
Despite the flaws in any one study, the set of studies suggests there is value to 

differentiating the mathematics curriculum for students who are gifted in mathematics and 
possess sufficient motivation, especially when acceleration is a component (i.e., pace and 
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level of instruction are adjusted). A small number of studies suggest that individualized 
instruction, in which pace of learning is increased and often managed via computer 
instruction, produces gains in learning. 

 
Gifted students who are accelerated by other means not only gained time and reached 

educational milestones earlier (e.g., college entrance) but appear to achieve at levels at least 
comparable to those of their equally able same-age peers on a variety of indicators even 
though they were younger when demonstrating their performance on the various achievement 
benchmarks. One study suggests that gifted students also appear to become more strongly 
engaged in science, technology, engineering, or mathematical areas of study.  

 
Some support also was found for supplemental enrichment programs. Of the two 

programs analyzed, one explicitly utilized acceleration as a program component and the other 
did not. Self-paced instruction supplemented with enrichment seemed to have a positive 
impact on student achievement. This supports the view in the field of gifted education that 
acceleration and enrichment combined should be the intervention of choice. We believe it is 
important for school policies to support appropriately challenging work in mathematics for 
gifted and talented students.  

G. What Would the Instructional Practices  

Task Group Say to the Practitioner? 

There is no one ideal approach to teaching mathematics; the students, the 
mathematical goals, the teacher’s background and strengths, and the instructional context, all 
matter. The findings here do suggest that it is especially important: 

 
• to monitor what students understand and are able to do mathematically;  
• to design instruction that responds to students’ strengths and weaknesses, based on 

research when it is available; and 
• to employ instructional approaches and tools that are best suited to the mathematical 

goals, recognizing that a deliberate and conscious mix of strategies will be needed. 
 
Also, it is important for teachers, school administrators, and the public to understand 

the importance of helping to formulate research questions and being willing to participate in 
the types of experimental and quasi-experimental studies that are described here.  
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H. What Would the Instructional Practices  

Task Group Say to the Researcher? 

More research that can identify causal claims is needed to guide both policy and practice. 
Building the mathematics education research portfolio to include this work will involve: 

 
• Formulation of research questions that are of interest to practitioners and policymakers; 
• Collaborations among mathematicians, mathematics education researchers, 

methodologists, and psychometricians; and 
• Motivation to design and undertake rigorous studies. 

 
The work of this Task Group has substantiated our understanding of the complexity 

and challenge of effective mathematics instruction. It is now up to practitioners, 
policymakers, mathematicians, and mathematics education researchers to take up the 
challenges of clarifying the definitions of mathematics instructional practices, debunking 
myths about mathematics instruction, and formulating the types of research studies that can 
answer the pressing questions that need to be addressed. 
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APPENDIX A: Methodological Procedures  

Methodology for the Instructional Practices  

Task Group Research Reviews 

From the onset, the Instructional Practices Task Group was committed to assembling 
the most rigorous scientific research addressing questions of effectiveness about the types of 
interactions that occur in mathematics classrooms relative to student performance. The Task 
Group was aware that there might be a paucity of such studies. This issue of understanding 
the quality of evidence and design needed to lead to causal inference is discussed in the 
Standards of Evidence document approved by the National Mathematics Advisory Panel. 
However, it is particularly germane to this topic, in that before requiring widespread 
implementation of a particular instructional practice or intervention, or committing 
significant resources toward such implementation, it seems critical to know that it will in all 
likelihood lead to higher levels of mathematics proficiency than alternatives. Of the six topics 
investigated as part of the Panel report, the topic of instructional practices was the topic for 
which the most experimental research was available. The Task Group thus chose to review 
and synthesize only the highest quality experimental and quasi-experimental research, 
research that can lead to causal inference, as the primary goal. In some cases, the Task Group 
also relied on the best available evidence suitable to a particular issue. 

 
The recent report by the National Research Council (NRC), Scientific Research in 

Education (2002), was influential in the decision. The authors note, “[They] believe that 
attention to the development and systematic testing of theories and conjectures across 
multiple studies and using multiple methods—a key scientific principle … is currently 
undervalued in education relative to other scientific fields” (p. 124). They go on to note, 
“While large-scale education policies and programs are constantly undertaken… they are 
typically launched without an adequate evidentiary base to inform their development, 
implementation or refinement over time…” (p. 124). The report also states: “Randomized 
experiments are not perfect.… For instance, they typically test complex causal hypotheses, 
they may lack generalizability to other studies, and they can be expensive. However, we 
believe that these and other issues do not generate a compelling rationale against their use 
in education research and that issues related to ethical concerns, political obstacles and 
other potential barriers often can be resolved” (p. 125, emphasis added). Whereas the field 
of reading instruction has made great strides through a combination of randomized controlled 
trials (RCTs), longitudinal research, descriptive research and qualitative research, there is 
less of a history in mathematics education research of using RCTs until recently.  
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Selection of Topics 

The original members of the Task Group16 devoted the first two meetings to decisions 
about the array of topics to study. The Task Group followed a process similar to that used by 
the National Reading Panel. After extended brainstorming and discussion, a list of 
approximately 20 topics was developed and then each member selected the top six. 

 
No particular theoretical framework was used to generate this list. Panelists selected 

topics that were perceived as: a) high interest to the teachers and policymakers, b) areas 
requiring additional attention in terms of implementation of recent federal policies such as 
No Child Left Behind (NCLB) and Individuals with Disabilities Act (IDEA) of 2004, or c) 
topics deemed critical by organizations such as National Council of Teachers of Mathematics 
(NCTM). 

 
In addition, based on cumulative knowledge of the research literature, the Task Group 

wanted to include at least one or two topics for which adequate research was available to 
provide empirically based recommendations. This seemed particularly important because 
three recent reports by the National Research Council (2001, 2002, 2004)17 noted an 
extremely limited amount of rigorous research in this field; too few studies were available to 
draw causal inferences. 

 
This resulted in a list of 12 topics. Due to time constraints, the Task Group was 

unable to address all of the 12 topics. The following eight received the most support:  
 

1) “Real-world” problem solving 
2) Relative effectiveness of explicit or teacher-centered instruction vs. child-centered or 

inquiry based instruction 
3) Formative assessment 
4) Cooperative, collaborative learning and peer-assisted instruction 
5) Instructional strategies for students with learning disabilities 
6) Instructional strategies for low-performing students 
7) Instructional strategies for mathematically precocious students 
8) Technology with a particular focus on use of graphing calculators and single function 

calculators 
 
Among the topics that generated a good deal of interest, but were excluded due to 

time constraints, were: a) importance of time spent engaged in mathematics, b) guidelines for 
developing homework assignments, c) best practices in terms of review of previously taught 
material, and d) types of practice problems and the sequencing of practices. 

 

                                                             
16 One of the original members of the Task Group (Diane Jones) left when she was assigned to another position 
in the federal government; she was replaced by Irma Arispe in June, 2007. In April, 2007, Bert Fristedt and 
Douglas Clements joined the group and Joan Ferrini-Mundy replaced Kathie Olsen in January 2007. By that 
point, most of the topics had been finalized, although three topics were subsequently eliminated.  
17 Adding It Up (2001), Scientific Research in Education (2002), On Evaluating Curricular Effectiveness (2004). 
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The topic of curriculum and instructional materials was assigned to a small task force 
to preclude even the appearance of conflict of interest, upon advice from the ethics attorney 
of the U.S. Department of Education.  

Instructional Practices Task Group Methodology Statement 

The Instructional Practices Task Group organized the available scientific evidence 
into several categories of evidence for consideration as they reviewed studies related to each 
topic of mathematics instruction investigated. A discussion of the categories for studies with 
quantitative designs that were considered for inclusion as rigorous evidence is provided 
below followed by a discussion of the procedures for identifying relevant research and 
synthesizing the research. Any deviations from the general practices outlined below are 
specified in the individual sections of the report.  

 
Category 1: Experimental and Quasi-Experimental Studies that Meet or 
Meet with Reservations What Works Clearinghouse (WWC) Standards  

Studies in this category provide evidence of causal claims and include randomized 
control trials (RCT; use random assignment to create experimental groups) and strong quasi-
experimental studies (QED; experimental groups created by a method other than random 
assignment) that meet WWC Criteria. These criteria can be found at http://ies.ed.gov/ncee/ 
wwc/overview/review.asp?ag=pi and http://ies.ed.gov/ncee/wwc/twp.asp. 

 
The only cases where exceptions to WWC criteria were allowed are: 
 

• Differential attrition rates of up to 30% are permitted for RCTs and for QEDs if there 
is evidence that attrition does not affect the nature of the sample on a salient pretest 
variable. 

• Studies that assign only one school per condition are acceptable provided that there 
are several teachers per condition. 
 
In all other areas, the Task Group followed the WWC policies expressed on 

www.whatworks.org. QEDs were excluded if they fail to either provide evidence of pretest 
comparability or control for pretest differences. Thus, the Task Group downgraded RCTs and 
exclude QEDs if a) there is evidence of contamination; b) there is only one teacher per 
experimental condition. However, if both the treatment and control conditions were taught by 
the same teacher, these were reviewed on a case-by-case basis, and the study may have been 
included is there was reason to believe that there was no bias in delivery.    

 
Category 1 studies are the core of the results section for the Instructional Practices 

Task Group as they represent clear evidence to support causal claims. Category 1 studies 
correspond to high and moderate quality studies, as defined by the National Mathematics 
Advisory Panel Guidelines for Standards of Evidence. 
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Category 2: Weak Group Comparison Studies and Other Quantitative 
Designs that Attempt to Infer Causality   

Category 2 consisted of weak group comparison studies (failed RCTs and weak 
nonequivalent comparison designs). Category 2 studies are always open to multiple 
interpretations with regard to causal inferences, however, they are not necessarily weak 
studies for other purposes (e.g., descriptive). Category 2 studies correspond to moderate and 
low-quality studies, as defined by the National Mathematics Advisory Panel Guidelines for 
Standards of Evidence. 

 
Category 2: Weak Group Comparison Studies. These are attempts at experiments or 

quasi-experiments that are seriously flawed (e.g., one teacher per condition, widely 
differential attrition across the experimental groups, quasi-experiments with no evidence of 
pretest equivalence). This category would also include studies in which all the dependent 
measures are closely aligned to the instructional content of the intervention and not at all 
covered in the control condition. These studies are considered biased. Studies in which the 
experimental sample consists only of volunteers and the control group only of those who 
declined to participate would also be considered a weak comparison study. Because of the 
serious nature of the flaws, the Task Group would not consider these as providing valid 
causal evidence.  

 
Category 2 studies are used only when there is an insufficient body of information 

from the evidence provided by Category 1-level studies. Flawed studies can never 
compensate for high-quality experimental or quasi-experimental studies. However, if there 
are no acceptable experimental studies, the report may include brief discussion of Category 2 
studies. If there is a pattern of findings across the studies—and if the design flaws that 
compromise the studies are dissimilar (e.g., one study has differential attrition, another 
compares volunteers to non-volunteers)—the report may indicate that a pattern emerges that 
might be considered worthy of mentioning. Studies in this category, however, are highly 
variable in the nature of their flaws and will be assessed case by case by two Panelists and a 
researcher at Abt Associates before being used for this purpose. 

 
These two categories are studies that attempt to determine causal inference. However, 

panelists were free to use any type of research (descriptive, correlational, qualitative) to set 
the context for their meta-analysis. The reader will note that all of these types of research 
have been used to help explain the concepts examined in the chapter, and to help interpret 
findings from the experiments. However, these studies were not used to make claims of 
causality or effectiveness.   
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Procedures 

Literature search and study inclusion 
Literature searches were conducted to locate studies on evidence-based practices and 

learning in mathematics. Electronic searches were made in PsycInfo and the Social Sciences 
Citation Index (SSCI) using search terms identified by the Instructional Practices Task 
Group. A full list of the search terms used follows on page 206. A total of 1,733 studies18 
were identified based on these search terms. The identification of studies using formative 
assessments was based on work conducted by the Urban Institute and is described in 
Appendix B. Any other deviations from this general literature search procedure are specified 
in the report for each topic. Additional studies were identified through manual searches of 
relevant journals, reference lists, and recommendations from experts. Abstracts from these 
searches were screened for relevance to research questions and appropriate study design. For 
each of the 381 studies that met the screening criteria, the full study report was examined to 
determine whether it met the inclusion criteria specified below. Additionally, citations from 
relevant articles and research syntheses in each of the areas were reviewed to identify 
additional candidate studies.  

 
Criteria for Inclusion: 
 

• Study was published between 1976 and 2007. 
• Study involved K–12 students studying mathematics through algebra. 
• Study was available in English.  
• Study was published in peer-reviewed journal or government report.  
• Study design was (a) a randomized experiment or (b) a quasi-experiment with 

techniques to control for bias (matching, statistical control) or demonstration of initial 
equivalence on a salient pretest variable.  

• The study included at least two classrooms per condition if the intervention was 
performed at the classroom level. In cases where a single teacher or investigator 
administered both the treatment and control, one classroom may have been sufficient 
if there was evidence that no bias existed. 

• The intervention was not confounded with teacher, instructional time, or any other 
variable.  Studies with potential confounds were reviewed on a case-by-case basis. 

• There was no evidence of contamination (i.e., that control group teachers were using 
experimental curriculum or ideas from the experimental curriculum). 

• Attrition was less than 30% or evidence showed that the remaining sample was 
equivalent to the original sample on a salient variable. 

Effect size calculations 
For all studies that met the criteria for inclusion, the Panel applied the WWC 

guidelines to calculate standardized mean differences in mathematics achievement 
(see http://www.whatworks.ed.gov/reviewprocess/conducted_computations.pdf). Using 
Comprehensive Meta-Analysis, Version 2, software, Hedges g standardized mean 

                                                             
18 This number does not include studies that were identified from searches using combinations of terms that led 
to hundreds of largely irrelevant citations, studies that were identified from manual reviews, or studies that were 
recommended from experts. 



Task Group Reports of the National Mathematics Advisory Panel 

 

6. REPORT OF THE TASK GROUP ON INSTRUCTIONAL PRACTICES 

6-204 

differences were calculated for each of the studies. The standardized mean difference is 
defined as the difference between the mean score for the treatment group minus the mean 
score for the comparison group, divided by the pooled standard deviation of that outcome 
for both the treatment and comparison groups. 

 
For all quasi-experiments and for randomized controlled trials that showed 

differences in pretest scores at baseline, the effect size measure was calculated as an adjusted 
mean difference as per WWC guidelines. Specifically, whenever possible, the numerator in 
the effect size was calculated as the difference between the posttest means of the treatment 
and control groups minus the difference in the pretest means for those groups, divided by the 
pooled unadjusted between-student standard deviation on the posttest. 

 
In cases in which schools, teachers, or classrooms were assigned (either randomly or 

nonrandomly) into intervention and comparison groups and the unit of assignment was not 
the same as the unit of analysis, the effect size and accompanying standard error were 
adjusted for clustering within schools, teachers, or classrooms. This analysis used WWC 
guidelines to adjust for clustering,19 applying an intraclass correlation (ICC) adjustment of 
0.20 when actual ICC values were unavailable, which is the default ICC for achievement 
outcomes recommended by the WWC. 

Pooling effect sizes across study samples 
When judged appropriate, the Task Group pooled effect sizes across studies meta-

analytically using random effects models. Specifically, weighted mean effect sizes were 
computed using inverse variance weights to reflect the statistical precision of the respective 
studies stemming from both the subject-level and study-level sampling error. 

 
Multiple contrasts: For each study that included at least three conditions, effect sizes 

were calculated for all relevant contrasts, provided that they were orthogonal. When pooling 
the effects using meta-analytic techniques, only independent effect sizes per study were 
included, i.e., those not based on the same participant samples.  

 
Multiple outcomes: For studies that reported effects on more than one mathematics 

achievement outcome, Panel reviewers decided either to choose one outcome or to average 
the results from multiple outcomes on a case-by-case basis. Assessments that were overly 
aligned with an intervention were either not used or noted when used. 

 
Multiple independent samples within a study: In cases where impacts on independent 

samples within a study were reported, all independent effect sizes were included separately in 
the pooled analysis.   

 

                                                             
19 See http://ies.ed.gov/ncee/wwc/pdf/rating-scheme.pdf for more information on this issue. 
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Study Identification Procedure for Formative Assessment 
Studies that were included in the formative assessment analysis were based primarily 

on the literature search conducted by the Urban Institute as part of the U.S. Department of 
Education’s Promising Practices Initiative (Olsen, 2006). The Urban Institute study inclusion 
criteria focused on issues of relevance, appropriate research methods, and adequate reporting 
of program effects (See Olsen, 2006, for further detail). The Urban Institute research staff 
identified relevant studies by gathering studies recommended by content experts at the U.S. 
Department of Education’s Center on Instruction, examining reference lists, conducting 
database searches in Google Scholar, and searching through a dissertation database. Their 
efforts yielded 92 potentially relevant studies for consideration. Of these, nine studies met the 
criteria for inclusion in the Urban Institute’s meta-analysis. Reasons for exclusion were: 
qualitative studies, quantitative studies with no measure of program impacts, no relevance to 
formative assessment, formative assessment unrelated to mathematics. In addition, studies 
were excluded if they provided insufficient data to calculate effect sizes. The criteria for the 
search were virtually identical to WWC except that standards for differential attrition, and 
confounding of intervention with school were not as rigorous (See Methodology report for 
further discussion). In the search, the keyword string included was (“mathematics” OR 
“math”) (“formative assessment” OR “curriculum-based measurement”) (“estimate” OR 
“coefficient” OR “correlation”) (“student achievement” OR “teacher use”) (“random” OR 
“random assignment” OR “randomly assigned” OR “matched”). In order to identify 
dissertations in the area of formative assessment in mathematics using Proquest’s Digital 
Dissertation database, the keyword string included  (“formative assessment” OR “curriculum 
based measurement” OR “ongoing assessment”).  

 
The Urban Institute put “on hold” studies that measured the effect of various 

enhancements to the formative assessments. The Task Group viewed the “enhancements” as 
important for understanding best ways for teachers and school districts to use formative 
assessments. 

 
The National Mathematics Panel retrieved and reviewed all studies that had been 

excluded by the Urban Institute but were coded as quantitative with a comparison group. As 
a result, two additional studies were added to the Panel review: one that studied the effect of 
an enhanced formative assessment program against a control group (Calhoon & Fuchs, 
2003), and another where it was possible to estimate a student-level sample size and thus 
calculate effect sizes and standard errors (Allinder, Bolling, Oats, & Gagnon, 2000).  

 
In addition, after reviewing the nine original studies included by the Urban Institute, 

the Task Group determined that two of the papers (Spicuzza, Ysseldyke, Lemkuil, Kosciolek, 
Boys, & Telluchsingh, 2001; Ysseldyke, Spicuzza, Kosciolek, Teelucksingh, Boys, & 
Lemkuil, 2003) reported usable data based on the same study and sample. As a result, the 
Panel analysis includes a total of ten studies. 
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Search Terms Used for Instructional Practices Task Group 

By Research Question 

All of the terms in the lists below were searched with the term math* 
 

Teacher-Directed and Student-Centered Instruction 

active instruction  
active teaching  
CGI 
cognitively guided 
instruction 
constructivist  
cumulative review  
direct instruction 
discovery learning  

drill 
explicit instruction  
guided inquiry  
guided learning  
learner centered 
student directed strategies  
student explanations 
student feedback  
student reasoning  

teacher centered instruction  
teacher demonstration  
teacher-directed instruction  
teacher-directed strategies 
teacher explanations  
teacher feedback 
teacher led instruction 
teacher modeling 

 
Additional Searches Specifically for Cooperative Learning 

classwide peer tutoring 
collaboration 

cooperative learning 
cooperative mastery learning 

peer assisted learning 
peer tutoring 

 
Real World 

aligning everyday and mathematical 
reasoning 
anchored instruction 
applications project 
applied curricul* 
applied problems 
Arise 
authentic 
case-based 
complex mathematical tasks 
Connected Math 
contextual curricul* 
contextual problems 
Core Plus 
effectiveness of real world problem solving 
engagement potential 
everyday reasoning 
Freudenthal Institute 
integrated mathematics curricul* 
interactive mathematics program 
interactive mathematics project 
Jasper 

math in context 
mathematical complexity 
mathematical modeling 
mathematical reasoning 
mathematical word problems 
mathematization 
Middle School Math* 
modeling curricul* 
modeling our world 
multiple solution paths 
PISA 
problem-based curricul* 
problem-based learning 
realistic math* 
real-life mathematical problem solving 
real world problems 
SimCalc 
simulations 
situated cognition 
solution paths 
solving word problems  
video 
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Students With Learning Disabilities, Low-Achieving Students, and English 
Language Learners 

academically disadvantaged 
anchored instruction 
at-risk 
classroom practices 
cognitive strategy instruction 
cooperative learning 
curricula adaptation 
differentiated instruction 
direct instruction 
dyscalculia 
elementary education 
English as a second language 
English language learners 
heterogeneous group 
instructional design 

instructional practice 
intervention 
learning disabil* 
limited English proficient  
low achiev* 
math disability 
math dyslexia 
peer assisted learning 
problem solving strategy 
reform curricula 
school-based intervention 
secondary education 
slow learners 
teaching methods 

 
Gifted Students 

acceleration 
developmental placement 
differentiated curriculum 
differentiated instruction 
differentiation 
enrichment 

exceptional 
gifted 
grouping 
high achiev* 
talent* 

 

Technology 

artificial intelligence 
CAI 
calculator* 
calculator-based ranger 
CampOS 
CBL 
cellular 
computer manipulatives 
computer* 
computer-assisted instruction 
development  
education  
electronic blackboard 
enhanced anchored instruction 

graphing calculator 
handheld 
hypermedia 
instruction  
instructional tools 
interactive whiteboard 
interactive* 
internet 
learning  
Logo  
PDA 
pedagogy  
portable 
programming 

screen projection 
screen-based technology 
smart board 
software 
spreadsheet 
teaching  
technology 
turtle graphics  
tutor* 
virtual manipulatives  
visual representation 
web-based 
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APPENDIX B:  Research Questions 

This appendix lists only topics that fall within the areas that we addressed in our literature 
review. We recognize that there is much needed research on other topics about instructional 
practice, such as the teaching of specific mathematical topics and content (e.g., fractions). 

 
For future studies on teacher-directed versus student-centered instruction, our major 

suggestions include: 
 

• Studies that further unpack the underlying variables behind terms such as student-
centered, guided inquiry, teacher-centered, direct instruction, and explicit instruction. 
These studies should entail a strong classroom observational component.  

• Studies that describe and evaluate the impact of: 1) various models of teaching, 2) 
explicit instruction for specific topics, and, 3) the use of visual representations with 
manipulatives to link abstract concepts (i.e. equations, algorithms).  

• Studies that use curricula that are deemed to be mathematically accurate and rigorous 
and detail teaching practices that enhance understanding. 

• Both qualitative and correlational studies of classes with exceptionally high student 
growth in mathematics to provide deeper insights into the nature of effective practice. 

For future studies on the role of technology, our major suggestions include: 
 

• Improved measures and analyses of fidelity of Computer Based Instruction (CBI) to 
best ascertain the effectiveness of interventions and to reveal “true” effect sizes that 
are the result of high-quality interventions. Research must also reveal what actions 
support high-quality large-scale implementation of these interventions. 

• Studies that illuminate the particular cognitive and learning processes that different 
categories of software do or do not support.  

• The linking of CBI features to student outcomes so that software engineers and 
curriculum designers can improve the use of technology in the school setting.  

• The role of additional contextual variables (e.g., settings, such as urban, suburban, or 
rural and student or family characteristics), and implementation variables (e.g., 
duration, support and availability of resources, funds, and time) should be 
conscientiously addressed in future research. 

• The initiation of longitudinal studies that will assess whether the consistent use of 
computer-based tools, including computer programming, can benefit learning and 
improve student skills.  

• The implications of technology for the content of mathematics education must be 
adequately addressed philosophically, theoretically, and empirically. 
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For future studies on the role of calculators, our major suggestions include: 
 

• The contextualization of advances in technology, curricula, and pedagogical 
strategies within research that examines the benefits of using calculators. This 
research should standardize the use of graphing calculators to address education 
research questions.  

• An examination of whether appropriate pedagogical uses reinforce, or at least 
maintain, students’ learning of basic arithmetical facts and properties while 
simultaneously garnering educational advantages. The fidelity of these approaches 
should be evaluated alongside student outcomes. 

• An exploration of the cognitive processes that students use (e.g., in assessment 
situations) when calculators are available and the ramifications that these findings 
have for instruction and assessment with calculators. 

• An investigation as to why about two-thirds of algebra teachers use graphing 
calculators infrequently. Are there practical barriers to their use, does curriculum and 
professional development discourage their use, and do student experiences convince 
teachers they are not useful? Would the provision of resources and professional 
development change this situation? 

For future studies about instructional practices with low-achieving students and 
students with learning disabilities:  

 
• Studies of the issues discussed above that focus particularly on impact with students 

who experience difficulty in mathematics.  

• Studies to determine the amount of additional practice with feedback that these 
students require, the amount of highly systematic instruction needed, and the areas in 
which this instruction is required needs to be determined.  

• Studies that examine how various approaches that are linked to specific mathematical 
topics are needed. 

For future studies about instructional practices with gifted and mathematically 
precocious students: 

 
• Evaluations of academically rigorous enrichment programs.  

• Explorations of the extent to which effective enrichment programs are, in fact, 
acceleration programs. As students explore the mathematics that underlie their current 
work, the enrichment activities can develop skills in more advanced areas of mathematics, 
areas that the student may not cover in a formal sense for several more years. 

• Longitudinal studies examining career choices and persistence in mathematics for 
mathematically gifted students who have participated in various intervention programs. 
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For future studies about the use of “real-world” problems in mathematics instruction: 
 

• Studies to examine, describe, and clarify the multiple definitions of “real-world” 
problems and “real-world” problem-based instruction, and to relate those definitions 
to the interventions and to student learning. 

• Development of valid and reliable outcome measures that clearly distinguish what is 
being assessed (mathematical concepts, mathematical procedures, problem solving, etc.). 

• Studies that explore the possibly differential impact of “real-world” approaches to 
instruction for specific mathematical topics and concepts. 

• Studies to examine the nature of the impact of “real-world” problem instructional 
approaches on student motivation and interest in mathematics, for different student 
groups. 
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APPENDIX C: Additional Technology Tables  

 
Table C-1: Results from Prior Meta-Analyses on Drill and Practice 

Study Pooled effect size   
 Achievement Attitudes Study information 

Hamilton, 1995 .19    
Burns & Bozeman, 1981 .34    
Hartley, 1978 .34    
Lee, 1990 .35 .23   
Slavin et al., 2007 (one ES only, 

not “pooled”) 
.36    

Kuchler, 1999 .51  Junior/Senior students 
     
Specific education goals Computation Concept 

development 
Applications Combination of 

goals 
Burns, 1981, cited in Kuchler, 

1999 
.38 .18 .14  

Lee, 1990 .45 .19 (concepts & applications) .28 
     
Contextual variables     
Age/grade level Preschool Elementary Middle/Junior Junior/Senior 

Burns & Bozeman, 1981  .35  .24 
Lee, 1990  .34 .41  
Hamilton, 1995  .17 (Grades 0–6)  .25 (Grades 9–12) 

     
Ability level Low Average Average High 

Burns & Bozeman, 1981 .31 .14 .47 (high/avg) .32 
Lee, 1990 .36 .16  .16 
Hamilton, 1995 .12 (very low) .57 (low/avg) -.04 (average) .27 

     
Gender Males Females   

Burns & Bozeman, 1981 .42 .17   
Lee, 1990 .31 -.06   
Hamilton, 1995 .26 .14   

     
Implementation variables     
Duration 1–18 weeks 19–36 weeks 37+ weeks  

Lee, 1990 .44 .25 .46  
     
Substitute vs. supplement Substitute Supplement   

Lee, 1990 .57 .33   
     
     
Developer Experimenter /teacher Commercial  

Lee, 1990 .42  .34  
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Table C-2: Results from Prior Meta-Analyses on Tutorials 

Study  Pooled effect size  
Overall Achievement Attitudes Study information 

Hamilton, 1995 .20    
Lou et al., 2001 .20    
Kuchler, 1999 .25  Secondary school 
Hartley, 1978 .34    
Kulik, 1994 .38    
Kulik, 2003 .38b  Study focused on ILS 
Becker, 1992 .40  Study focused on ILS 
Burns & Bozeman, 1981 .45    
Lee, 1990 .55 .02a   
     Specific education goals Computation Concept & Applications Combination 
Lee, 1990 .42 .63  .62 
     Topic Arithmetic Geometry Algebra General 
Lee, 1990 .47 .47 1.19 .41 
     

Contextual variables     
Age/grade level Preschool Elementary Middle/Junior Secondary 

Hartley, 1978  .66 (Grades K–8)  .58 (Grades 9–12) 
Lee, 1990  .49 .85  
Hamilton, 1995  .14 (Grades 0–6)  .29 (Grades 9–12) 
Burns & Bozeman, 1981  .43  .52 
     Ability level Low Average Average High 
Burns & Bozeman, 1981 .57 .58  .28 
Lee, 1990 .62 .20  .18 
Hamilton, 1995 .12 .08 (low/avg) .02 .57 
     Gender Males Females   
Lee, 1990 .82 a 1.58 a   
Hamilton, 1995 .58 c .14 c   
     

Implementation variables     
Duration     

 1–18 weeks 19–36 weeks 37+ weeks  
Lee, 1990 .55 .53 .57  
     Substitute vs. supplement Substitute Supplement   
Lee, 1990 (achievement) .30 .58   
Lee, 1990 (problem solving) .09 .25   
     Developer Experimenter / 

teacher 
Commercial Both  

Lee, 1990 .62 .39 .58  
     Audience Specific General   
Lee, 1990 .58 .29   

a Only two effect sizes were included. 
b Pooled effect size was .40 when the ILS instruction was in mathematics only, and .17 when it was in both 
mathematics and reading. 
c Only three effect sizes were included. 
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Table C-3: Results from Prior Meta-Analyses on Calculators 

Study Pooled effect size  
 Achievement Attitudes Study information 
Ellington, 2003aa  0.20b    
Hembree, 1984; Hembree  & Dessart, 

1986 
 0.190   

Hembree, 1992 0.29     
Smith, 1997  0.3655   
     
 Calculator type  
 Basic/scientific Graphing All  
Ellington, 2003a (operational skills, 

testing with calculators) 
0.55 0.40 0.25  

Ellington, 2003a (conceptual skills, 
testing with calculators) 

0.13 0.69   

Ellington, 2003a (problem solving 
skills, testing with calculators) 

0.23 0.61 3  

     
 Specific education goals  

 
Operational Computational Conceptual 

Problem 
solving 

Ellington, 2003aa (testing without 
calculators) 

0.14b -0.02b -0.05b 0.16 

Ellington, 2003a, a (testing with 
calculators) 

0.32b 0.41b 0.44b 0.22b 

Hembree, 1984; Hembree & Dessart 
(1986) (testing with calculators) 

 0.636   

Hembree, 1984; Hembree & Dessart, 
1986 (testing without calculators) 

  0.018  

Hembree, 1984 (special calculator 
instruction, testing without 
calculators) 

0.798 0.564 -0.268 0.534 

Smith, 1997  0.2054 0.1972  0.1468 
Smith, 1997  (Graphing calculators, 

graphing skills) 
-0.523   (concept 

development) 
 

     
Contextual variables     
Age/grade level Preschool Elementary Middle/Junior Secondary 

Ellington, 2003)a (conceptual skills, 
testing without calculators) 

 -0.06 0.522 -0.152 

Ellington, 2003aa (operational skills, 
testing with calculators) 

 0.481 0.57 0.32 

Ellington, 2003aa (conceptual skills, 
testing with calculators) 

 -0.142 0.70 0.43 

Continued on p. 6-218 
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Table C-3, continued 

Study Pooled effect size  
Ability level Low Average High Mixed 

Ellington, 2003aa (operational skills, 
testing with calculators) 

  0.69e  0.35 

Ellington, 2003aa (conceptual skills, 
testing with calculators) 

  0.84 0.29 

Ellington, 2003aa (problem solving skills, 
testing with calculators) 

-0.18c  0.15c 0.43 

Hembree, 1984; Hembree & Dessart, 
1986 (operational skills, testing without 
calculators)  

-0.107  -0.031  

Hembree, 1984  [Hembree & Dessart, 
1986 (operational skills, testing with 
calculators)] 

0.325 0.737   

Hembree, 1984; Hembree & Dessart, 
1986 (computation skills, testing 
without calculators)  

-0.009  -0.024  

Hembree, 1984; Hembree & Dessart, 
1986 (problem solving composite skills, 
testing without calculators)  

0.005  -0.118  

Hembree, 1984; Hembree & Dessart, 
1986 (problem solving composite skills, 
testing with calculators)  

0.436 0.271 0.458  

     
Implementation variables     

Duration 0–3 weeks 4–8 weeks 9+ weeks  
Ellington, 2003aa (operational skills, 

testing without calculators) 
0.31 -0.17e 0.24  

Ellington, 2003aa (computational skills, 
testing without calculators) 

0.14e -0.25e 0.06  

Ellington, 2003a a (conceptual skills, 
testing without calculators) 

0.26d -0.29d 0.08e  

Ellington, 2003aa (operational skills, 
testing with calculators) 

0.47 0.34 0.49  

 .285 -.21 .16  
a Included both graphing and scientific calculators.  
b Outliers removed. 
c Only one study. 
d One two studies. 
e Only three studies. 
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Table C-4: Results from Prior Meta-Analyses on Graphing Calculators Only 

Study Pooled effect size   
 Achievement Attitudes Study information 

Khoju, Jaciw, & Miller, 2005 .85  One study was of college students 
Ellington, 2006 0.19 0.21a Calculators not allowed in testing 
 0.29a  Calculators allowed in testing 
     

 Specific education goals  
 Procedural Conceptual Combined skills  
Ellington, 2006 (testing without 

calculators) 
–0.21 0.29a 0.19  

Ellington, 2006 (testing with 
calculators) 

0.32a 0.42a 0.29a  

a Outliers removed. 
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Table C-5: Results from Prior Meta-Analyses on Programming 

Study  Pooled effect size  
Overall Achievement Problem solving Attitudes Study information 

Kulik, 1994 .09   All but Logo 
Lou et al., 2001 .22    
Gordon, 1992 .26 .34   
Kuchler, 1999 .35   Secondary 
Lee, 1990 .36 .23 .29  
Khalili, 1994 .45   Logo 
Kulik, 1994 .58   Logo 
     Specific education goals Computation Concept & Applications Combination of goals 
Lee, 1990 -.04a .56  .15 
     Topic Arithmetic Geometry Algebra General 
 .40b .68 -.02 .29 
     

Contextual variables     
Age/grade level Pre-school Elementary Middle/Junior  

Lee, 1990 (achievement)  .76 .09  
Lee, 1990 (problem solving)  .29 .27  
     Ability level Low Middle   High  
Lee, 1990 (achievement) .22 .11 .37  
Lee, 1990 (problem solving) .20 -.02   -0.4  
     

SES Low Average   High  
Lee, 1990 .10 .33 .19  
     

Implementation variables     
Duration 1–18 weeks 19–36 weeks 37+ weeks  

Lee, 1990 .45 .30 .03  
     Substitute vs. supplement Substitute Supplement   
Lee, 1990 (achievement) .40 .34   
Lee, 1990 (problem solving) .08 .43   
     Specific languages Logo BASIC Scientific languages Other 
Kuchler, 1999c .78 .34 .42 .47 
Khalili, 1994 .45   .33 
Lee, 1990 .41 .48  -.15 
Kulik, 1994 .58   .09 

a Only three effect sizes. 
b Only two effect sizes. 
c Secondary students. 
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Table C-6: Results from Prior Meta-Analyses on Tools and Problem Solving 
Environments 

Study  Pooled effect size  
Overall Achievement Attitudes Study information 

Lou et al., 2001 .04  Tool and exploratory environments 
Kulik & Kulik, 1991 .10  Computer-enhanced instruction 
Kuchler, 1999 .24  Problem solving software 

 
Table C-7: Results from Prior Meta-Analyses on Simulation and Games 

Study  Pooled effect size  
Overall Achievement Attitudes Study information 

Kulik, 1994 .10    
Kuchler, 1999 .23  Secondary school 
Lee, 1990 .28 .24a   
     

Specific education goals Computation Concept & Applications 
Combination of 

goals 
Lee, 1990 .61b .24  .63b 
     Topic Arithmetic Geometry Algebra General 
Lee, 1990 .61b .24 .15a 1.12a 
     

Contextual variables     
Age/grade level Elementary Junior   

Lee, 1990 .24 .45   
     Gender Males Females   
Lee, 1990 .31 .12   
     

Implementation variables     
Duration 1–18 weeks 19–36 weeks   

Lee, 1990 .33 .14   
     Substitute vs. supplement Substitute Supplement   
Lee, 1990 (achievement) .18 .39   

    Lee, 1990 (problem solving) -.83    
     

Developer 
Experimenter / 

teacher Commercial 
  

Lee, 1990 .26 .29   
a Only one effect size included. 
b Only two effect sizes included. 
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Table C-8: Subgroup Analysis for Calculator Studies 
  Computation  Applications  Concepts 

    

N 
studies/

ES 
Hedges 

g   se   

N 
studies/

ES 
Hedges 

g   se   

N 
studies/

ES 
Hedges 

g   se 
Contextual variables              
Grade level               
 Elementary 4 / 5 0.367  0.330  2 / 3 0.074  0.371  3 / 3 0.267  0.236 
 Secondary 3 / 4 0.113  0.169  3 / 4 0.437 ** 0.164  1 / 1 0.328  0.489 
 Mixed 1 / 1 0.855 ~ 0.512  0 / 0 na  na  0 / 0 na  na 
Implementation variables             
Duration  *             

 
Less than 
3 months 5 / 7 0.503 * 0.218  3 / 5 0.295  0.239  2 / 2 0.084  0.307 

 
3 months or 
greater 3 / 3 -0.134  0.198  2 / 2 0.328  0.249  2 / 2 0.458  0.295 

~ p < .10, * p < .05, ** p < .01, *** p < .001 

Table C-9: Calculator Effect Sizes not Included in Meta-Analytic Tables 

Study 
Grade  
Level Contrast Measure 

Hedge’s  
g 

Standard  
Error 

Assessments in which calculator group was able to use calculator 

Szetela, 1982 Grade 3 
Regular instruction plus 
calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items 0.568 ~ 0.297 

Szetela, 1982 Grade 5 
Regular instruction plus 
calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items -0.29  0.342 

Szetela, 1982 Grade 7 
Regular instruction plus 
calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items 0.633 * 0.294 

Szetela, 1982 Grade 8 
Regular instruction plus 
calculator-specific materials vs. 
Regular instructional activities 

Problem-solving: Posttest 2: 
20 researcher-designed items 0.589 * 0.274 

Alternate interventions/enhancements 

Standifer & 
Maples, 1981 Grade 3 

Programmed feedback 
calculator vs. No calculator in 
regular math curriculum 

Computation: Science 
Research Associates 0.296  0.395 

Standifer & 
Maples, 1981 Grade 3 

Programmed feedback 
calculator vs. No calculator in 
regular math curriculum 

Concepts: Science Research 
Associates -0.28  0.395 

Standifer & 
Maples, 1982 Grades 3&4 

Programmed feedback 
calculator vs. General remedial 
math curriculum 

Computation: Science 
Research Associates 0.363  0.326 

Standifer & 
Maples, 1982 Grades 3&4 

Programmed feedback 
calculator vs. General remedial 
math curriculum 

Concepts: Science Research 
Associates 0.064  0.325 

Duffy & 
Thompson, 
1980 

Grade 4 
Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Computation: CTBS -0.01  0.428 

Duffy & 
Thompson, 
1980 

Grade 4 
Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Problem-solving:  CTBS 
Applications -0.15  0.429 

Continued on p. 6-223 
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Table C-9, continued 

Study 
Grade  
Level Contrast Measure 

Hedge’s  
g 

Standard  
Error 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Concepts: CTBS -0.27  0.430 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Computation: CTBS 0.222  0.450 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Problem-solving: CTBS 
Applications -0.090  0.449 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Concepts: CTBS -0.09  0.449 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Computation: CTBS -0.22  0.440 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Problem-solving: CTBS 
Applications 0.191  0.440 

Duffy & 
Thompson 
1980 

Grade 6 
Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Concepts: CTBS -0.21  0.440 

Total math achievement (calculator vs. control) 

Standifer & 
Maples, 1981 Grade 3 

Hand-held, four function 
calculator vs. No calculator in 
regular math curriculum 

Total achievement: Science 
Research Associates 0.309  0.396 

Standifer & 
Maples, 1982 Grades 3&4 

Hand-held, four function 
calculator vs. General remedial 
math curriculum 

Total achievement: Science 
Research Associates 0.341  0.330 

Duffy & 
Thompson, 
1980 Grade 4 

Calculator only group vs. No 
calculator (classroom-level 
effect size) 

Total achievement: CTBS 
0.062  0.428 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator only group vs. No 
calculator (classroom-level 
effect size) 

Total achievement: CTBS 
0.008  0.449 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator only group vs. No 
calculator (classroom-level 
effect size) 

Total achievement: CTBS 
-0.113  0.439 

Total math achievement (calculator + enhancement vs. control) 

Standifer & 
Maples, 1981 Grade 3 

Programmed feedback 
calculator vs. No calculator in 
regular math curriculum 

Total achievement: Science 
Research Associates -0.047  0.394 

Standifer & 
Maples, 1982 Grades 3&4 

Programmed feedback 
calculator vs. General remedial 
math curriculum 

Total achievement: Science 
Research Associates 0.194  0.325 

Duffy & 
Thompson, 
1980 Grade 4 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Total achievement: CTBS 
-0.089  0.429 

Duffy & 
Thompson, 
1980 Grade 5 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Total achievement: CTBS 
0.207  0.450 

Duffy & 
Thompson, 
1980 Grade 6 

Calculator plus materials vs. No 
calculator  (classroom-level 
effect size) 

Total achievement: CTBS 
0.021  0.428 
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Table C-10: Computer Programming Effect Sizes (Comparing Programming to CAI) 
not Included in Meta-Analytic Tables 

Study Design Sample 
Duration/ 
Content Contrast Measure 

Hedge’s 
g 

Standard 
Error 

Programming 
11 fourth-
graders in two 
midwestern 
middle schools 

Gr 4: 
Logo vs. 
CAI 

0.409 0.611 

Battista & 
Clements, 1986 RCT 26 sixth-graders 

in two 
midwestern 
middle schools 

42 sessions 
(2 40-min per 
week)/LOGO Gr 6: 

Logo vs. 
CAI 

Problem-
solving 
Combine 
Test 
1&2, 
Total 0.326 0.395 

24 first-grade 
students from a 
middle-class 
midwestern 
school system 

Gr 1: 
Logo vs. 
CAI 

0.486 0.415 

Clements, 1986 RCT 24 third-grade 
students from a 
middle-class 
midwestern 
school system 

44 sessions 
(22 weeks)/ 
LOGO Gr 3: 

Logo vs. 
CAI 

WRAT 
Math 
score 

0.473 0.414 

Clements, 1987 

RCT 

16 third-grade 
students who 
had received 
Logo or CAI 
experience in 
first-grade 

3 months/ 
LOGO 

Gr 3: 
Logo vs. 
CAI 

CAT - 
Total 0.452 0.511 

Emihovich & 
Miller, 1988 

RCT 

36 first-grade 
students in five 
classrooms in an 
elementary 
school in the 
southeast 

20, 30-min 
sessions (3 
months)/ 
LOGO 

Gr 1: 
Logo vs. 
CAI 

CTBS - 
Math 0.214 0.410 

~ p < .10, * p < .05, ** p < .01, *** p < .001 
a Data were adjusted for clustering that occurred within classrooms. 
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I. Accuracy of Textbooks 

It might be assumed that textbooks for middle school and high school math would be 
free of errors. When mathematicians have reviewed already published middle and high 
school textbooks, however, they have identified a nontrivial number of errors, and a large 
number of ambiguous and confusing statements and problems. Many of these errors and 
ambiguities arise on word problems that are intended to elicit use of the mathematical 
concepts and procedures in real-world contexts. The Subcommittee recommends that 
publishers obtain reviews from mathematicians prior to publication, so that these errors and 
ambiguities can be identified and corrected. This is especially needed for first editions of 
textbooks, which tend to have the greatest numbers of errors and ambiguities. Having 
mathematicians also read textbooks in the formative stages may increase the coherence of the 
presentation of mathematics between earlier and later grades. 

II. Length, Coherence, and Sequencing of Topics 

U.S. mathematics textbooks are extremely long. Not counting study guides and 
answers at the end of the books, middle and high school textbooks typically range from 600 
to more than 900 pages. Including the study guides and answers at the end, the books 
sometimes exceed 1,000 pages. Even elementary school textbooks sometimes exceed 700 
pages. The length of math textbooks was much shorter in previous decades and continues to 
be much shorter in many nations with higher mathematics achievement than the United 
States.1 Thus, the great length is not needed for effective instruction. 

 
Textbook publishers emphasize that a major source of the textbooks’ length is the 

need to cover all of the benchmarks encompassed in any state’s standards. A topic covered in 
sixth grade in one state may be covered in seventh grade in another state and in eighth grade 
in a third state; this leads to the topic being included in all three grades’ math textbooks. The 
large influence of this factor is illustrated by the fact that the state-specific editions of 
Algebra I textbooks published for California, Texas, and Florida are roughly 25% (more than 
200 pages) shorter than the national edition published for the other 47 states. Coverage of all 
of the states’ benchmarks for a given grade is likely to increase length and decrease 
coherence—this is despite the fact that mathematics is especially amenable to a coherent 
treatment. Integrating new concepts with previous ones is impossible when textbook writers 
cannot anticipate which topics students already have encountered. The Subcommittee 
                                                
1 Publishers’ Testimony. (2006). Testimony of representatives of Harcourt School Publishers, Holt, Rinehart 
and Winston, Mcdougal Littell/ Houghton Mifflin and Company, Pearson Scott Foresman, Pearson Prentice 
Hall, and McGraw-Hill Companies at the meeting of the National Mathematics Advisory Panel, Cambridge, 
MA, September, 2006. (Supporting materials on textbook lengths submitted to the National Mathematics 
Advisory Panel.) 

Schmidt, W.H., McKnight, C.C., & Raizen, S.A. (1997). A splintered vision: An investigation of U.S. science 
and mathematics education (pp. 1–26). Boston, MA: Kluwer Academic Publishers. 

U.S. Department of Education, National Library of Education. (2008). Archived Textbook Collection. 
Washington, DC. 
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recommends that states and districts strive for greater agreement regarding which topics will 
be covered in which grades and that textbook publishers publish editions that include only 
the material that these states and districts agree to teach in specific grades. 

 
Another indicator and source of lack of coherence of some textbooks is the table of 

contents. Tables of contents should provide students, teachers, and textbook adoption teams 
with a sense of the organization of the mathematical topics in the book. In some textbooks, 
however, tables of contents emphasize not the mathematics but rather specific applications 
(e.g., Ferris wheels, penny jars). Tables of contents that emphasize the mathematical content 
seem more likely to help students appreciate the coherence inherent in mathematics. 

 
Other potentially useful ways of decreasing length and increasing coherence are 

1) reducing the number of photographs that are not essential to the mathematical content; 
2) placing content aimed at providing extra review, enrichment, or motivation in supplements 
rather than in the main textbook; and 3) excluding applications in which the primary 
challenge is posed by social studies or science content. 

III. The What Works Clearinghouse 

The What Works Clearinghouse (WWC) identifies and evaluates studies of the 
effectiveness of educational interventions (i.e., programs, products, practices, and policies). 
Using published studies and additional information, such as technical reports, WWC 
summarizes the strength of evidence about each intervention in terms of established 
standards. Among these standards is the time frame, design, sample, intervention, outcome, 
and statistical reporting. Based on the evidence, products are characterized in terms of their 
effects on student achievement (i.e., positive, potentially positive, negative, potentially 
negative, mixed, or no discernable effect). WWC also provides information on the extent of 
evidence, and provides a registry of outcome evaluators (individuals or organizations) who 
conduct research on the effects of educational interventions. The goal of this registry is to 
help schools, school districts, and education program developers. 

 
Although many aspects of studies are well characterized within WWC, other aspects 

are less well specified. The WWC does not evaluate the content of the curriculum, so formal 
assessments of the length, coherence, and correctness of items within the curricula are not 
available. In addition, information about methods used to train teachers is often limited or 
unavailable. This lack of information about teacher training no doubt reflects the level of 
description within the supporting studies; without such information, however, understanding 
reasons for the effects or lack of effects of interventions is difficult.  

 
The Subcommittee therefore recommends that WWC report information on 

1) curriculum content (including variables related to coherence, length and accuracy) and 
2) teacher training and professional development. Such information would help teachers and 
school districts use the instructional materials. Although this information may not be 
available from existing studies, requiring it from programs that are evaluated in the future 
may create a data source that can be used to establish best practices from the perspective of 
the teacher.  
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IV. Research Recommendations 

A large amount of research has been conducted on instructional materials, but most of 
it does not meet even moderately stringent methodological criteria. These methodological 
deficiencies limit the usefulness of the studies in guiding education decisions. The 
Subcommittee recommends that governmental funding agencies give priority to research that 
meets stringent methodological criteria, especially randomized controlled designs in which 
students, classrooms, or schools are randomly assigned to conditions and studied under 
carefully controlled circumstances. Studies that include large enough samples of students, 
classrooms, teachers, and schools to identify effects that are present should also be given 
priority. Such studies are considerably more expensive than studies with small samples, but 
they provide a much sounder basis for education policy. 
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Executive Summary  

Introduction  

Achievement tests are widely used to estimate what students know and can do in 
specific subject areas. Tests make visible to teachers, parents, and policymakers some of the 
outcomes of student learning. They also can drive instruction. Due to their important role in 
education today, especially after enactment of the No Child Left Behind Act, the Panel 
examined the quality of released items from the mathematics portions of the National 
Assessment of Educational Progress (NAEP) and six state tests, and reviewed the relevant 
scientific literature on the appropriate distribution of test content, the setting of performance 
categories, factors affecting measurement accuracy, and appropriate test design. 

Key Questions Addressed by the Task Group  

To address the charges in the Executive Order, the Assessment Task Group 
developed five primary questions: 

 
Part One: Test Content and Performance Categories 

1) What should the mathematics content of the NAEP and state tests be at Grades 4 and 
8? How does the content of state tests compare with NAEP?    

2) How are performance categories determined? 
 

Part Two: Item and Test Design 

3) How does item response format affect performance on multiple-choice and various 
kinds of constructed-response items?  

4) What are some nonmathematical sources of difficulty or confusion in mathematics test 
items that could inappropriately affect performance? How prevalent are they on the 
NAEP and the six state tests examined? 

5) How are calculators used in NAEP and state assessments and how does calculator use 
affect performance? 
 
These questions are not independent of each other; they overlap because what one 

tests and how one chooses to test are intertwined. For example, the verbal context of the test 
items or calculator use could have bearing on what is actually measured.   

Test Content 

The content strands in most state mathematics tests are similar to the content strands 
in the NAEP mathematics test. Thus, the Task Group focused its investigation on the NAEP 
content strands, knowing that any suggestions for the NAEP would have implications for 
most state mathematics tests as well. 
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The Task Group presents in Table 1 possible recommendations that could flow from 
the general principles for organizing the content of the NAEP—that tests should measure 
what students should be learning. In preparation for algebra, students should become 
proficient in the critical foundations for algebra as described in the Conceptual Knowledge 
and Skills Task Group report.  

 
Table 1: Suggested Reorganization of NAEP Content Strands 
Grade 4 Grade 8 
Number: Whole Numbers Number: Integers  
Number: Fractions and Decimals Number: Fractions, Decimals, and Percents 
Geometry and Measurement Geometry and Measurement 
Algebra Algebra 
Data Display Data Analysis and Probability 

 
The most critical skills to be developed before beginning algebra are extensive work 

with whole numbers, including whole number operations, and facility with fractions. The 
NAEP Validity Study (NVS), as well as others, have noted the relative paucity of items 
assessing fractions in both the fourth- and eighth-grade NAEP.  

 
Moreover, the NVS indicates that half of the data analysis and probability section of 

the Grade 4 NAEP is probability-related. Given the importance of fractions for the 
conceptual understanding of probability, the Task Group questions whether probability can 
be measured appropriately in the fourth grade. Thus, the Task Group suggests that this strand 
at the fourth-grade level be limited to data analysis and titled as Data Display. 

 
The review of NAEP content also led the Task Group to conclude that there needs to 

be a more appropriate balance in how algebra is defined and assessed at both the fourth- and 
eighth-grade levels of the NAEP. At the fourth-grade level, most of the NAEP algebra items 
relate to patterns or sequences. While the inclusion of patterns in textbooks or as state 
curriculum expectations may reflect a view of what constitutes algebra, patterns are not 
emphasized in the curricula of high-achieving countries.  In the Major Topics of School 
Algebra set forth in the Task Group on Conceptual Knowledge and Skills report, patterns are 
not a topic of major importance. The prominence given to patterns at the preschool through 
Grade 8 level is not supported by comparative analysis of curricula or by mathematical 
considerations. Applying the general principle for selecting content for the NAEP and state 
tests, the Task Group strongly recommends that “algebra” problems involving patterns be 
greatly reduced in these tests. 

 
It might be useful to note that the Trends in International Math and Science Study 

(TIMSS) content domains were changed at the time the Task Group was conducting its own 
work. Adopting the Task Group’s recommendations would bring NAEP into greater 
alignment with TIMSS (Mullis et al., 2007). 
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Performance Categories  

Once content is selected, decisions must be made about what the performance 
categories should be and how to assign student scores to them. The Task Group did not 
investigate what the cut scores for each category should be but, rather, how they should be 
determined. Although the states and NAEP varied in both process and method for such 
standard setting (setting cut scores), the six states studied in the NVS report and NAEP 
employed currently acceptable educational practices to quantify judgments of the standard-
setting panelists and to map their judgments onto test scores. Limited research is available on 
standard-setting methods and processes. The Modified Angoff method requires the most 
plausible assumptions about raters and tests, but more research is needed comparing the 
outcomes based on alternative methods.   

 
In the states the Task Group examined, classroom teachers, most of whom are not 

mathematics specialists, predominate in the standard-setting process. The expertise of 
mathematicians, as well as of mathematics educators, curriculum specialists, classroom 
teachers, and the general public, should be consistently used in the standard-setting process. 
The Task Group also found that the standard-setting panelists often do not take the test as 
examinees before attempting to set the performance categories, and that they are not 
consistently informed by international performance data. On the basis of international 
performance data, there are indications that the NAEP cut scores for performance categories 
are set too high. This does not mean, however, that the mathematical content of the test is too 
hard; it is simply a statement about the location of cut scores for qualitative categories such 
as “proficient” and “beyond proficient.”   

Recommendations for Test Content and Performance Categories  

1) NAEP and state tests must ensure a focus on the mathematics that students should 
learn with achievement on critical mathematics content reported and tracked over 
time. NAEP should ensure that the Conceptual Knowledge and Skills’ Critical 
Foundations and elements of the Major Topics of School Algebra are integral 
components of the mathematics assessed. The Task Group proposes reorganization, 
as well as possible title changes, of NAEP’s current five content strands:   
 
a. Number Properties and Operations should be renamed and expanded into two 

separate categories—Grade 4 Number: Whole Numbers; and Fractions and 
Decimals; and Grade 8 Number: Integers; and Fractions, Decimals, and Percent. 

 
1. Whole Numbers will include emphasis on place value, comparing and 

ordering, and whole number operations at Grade 4. This will be expanded to 
include work with all integers, including operations with negative and positive 
integers at Grade 8. 

 
2. Fractions and Decimals will include recognition, representation and 

comparing and ordering at Grade 4. This will be expanded to include 
operations involving fractions, decimals, and percent at Grade 8. 
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b.  Geometry and Measurement should be combined into one content area. Topics 
related to both Measurement and Geometry should serve as important contexts for 
problems in the Grade 4 and Grade 8 NAEP. 

c. Within Algebra, a better balance is needed within the subtopic of patterns, 
relations, and functions at Grades 4 and 8. That is, there should be far fewer items 
on patterns. 

d. Data Analysis and Probability should be renamed as Data Display at Grade 4 and 
expanded to include both data interpretation and probability at Grade 8. 

2) Procedures should be employed to include a broader base for setting performance 
categories:  

a.  The Task Group recommends that standard-setting (setting cut scores) panels 
include individuals with high levels of expertise, such as mathematicians, 
mathematics educators, and high-level curriculum specialists, in addition to 
classroom teachers and the general public. 

b.  The standard-setting panelists should take the test as examinees before attempting 
to set the performance categories. 

c.  The standard setting should be informed by international performance data. 

d.  Research is needed on the impact of standard-setting procedures and methods (e.g., 
Bookmark Method, Modified Angoff procedure) in promoting the representation of 
a broad base of judgments.   

Item and Test Design 

It is important not only that appropriate content is measured and cut scores for student 
performance are set appropriately, but also that test scores reliably reflect the competencies 
intended to be measured. That is, the measurement itself must be carried out in a high-quality 
and appropriate manner. 

 
Item Response Format 

Many educators consider constructed-response items (e.g., short answer) as superior 
to multiple-choice (MC) items in measuring mathematical competencies and a more 
authentic measure of mathematical skill. They believe such items also offers the opportunity 
for students to explain principles and display a range of math skills including verbal 
explanations. The Task Group examined the literature on the psychometric properties of 
constructed-response items compared with multiple-choice items. The evidence found in the 
scientific literature does not support the notion that a constructed-response format, 
particularly the short-answer type, measures different aspects of mathematics competency 
compared with a multiple-choice format. While there are skills that may be measured only 
using a constructed-response format, concern about use of multiple-choice items in these 
tests at the fourth- and eighth-grade level is not warranted. 
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Nonmathematical Sources of Difficulty  

The NVS panel found many examples of flawed items on NAEP and state assessments 
that could affect performance of all or some students and trend lines. The Task Group 
undertook its own examination of released items on state and NAEP tests, looking specifically 
for nonmathematical sources of difficulty (e.g., particular context portrayed within an item) 
and found many items on the NAEP and state tests affected by these sources of difficulty, 
resulting in too many flawed items. The Task Group presents seven types of flawed items 
illustrating nonmathematical sources of influence that could affect scores. Test developers 
should be sensitive to the presence of these types of flaws in the test development process.  

 
Careful attention must be paid to exactly what mathematical knowledge is being 

assessed by a particular item and the extent to which the item is, in fact, focused on the 
intended mathematics. In other words, significant attention should be devoted to the actual 
design of individual mathematics items and to the evaluation of items for inclusion. More 
mathematicians should be involved in the process of designing and evaluating items, as should 
mathematics educators, curriculum specialists, linguistics experts, and cognitive psychologists. 

 
The frequency of flawed items points to another possible gap in test development 

procedures that needs to be addressed. Psychometricians are trained to use highly sophisticated 
statistical models and data analysis methods for measurement, but are not as familiar with 
issues of item design with respect to measuring mathematical constructs. Item writers and item 
evaluators often do not have a college degree in the appropriate subject, and apparently do not 
have the kind of background in task and item design that would lead to a lower percentage of 
items that are flawed or marginal according to the mathematicians. Moreover, they receive 
limited feedback from psychometricians on how the items they develop end up functioning for 
students at varying levels of performance. That is, the feedback mechanism does not provide 
sufficient information to help pinpoint the sources of item deficiencies. 

 
Calculators  

Use of calculators in assessment is another frequently discussed design issue. While 
findings from the literature revealed that using calculators in assessment has no significant 
impact on performance overall or in problem solving, the research indicates that calculator 
use affects performance on computation-related items and also could change the nature of the 
competencies tested. 

 
Recommendations on Item and Test Design  

1) The focus in designing test items should be on the specified mathematical skills 
and concepts, not item response format. The important issue is how to most 
efficiently design items to measure content of the designated type and level of 
cognitive complexity.   

2) Much more attention should be paid to what mathematical knowledge is being assessed 
by a particular item and the extent to which the item addresses that knowledge.    
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3) Calculators (the use of which constitutes a design feature) should not be used on test 
items that seek to measure computational skills. In particular, NAEP should not 
permit calculator use in Grade 4. 

4) Mathematicians should be included in greater numbers, along with mathematics 
educators, and curriculum specialists (not just classroom teachers and the general 
public), in the standard-setting process and in the review and design of mathematical 
item content for state, NAEP, and commercial tests. 

5) States and NAEP need to develop better quality control and oversight procedures to 
ensure that test items reflect the best item design features, are of the highest quality, 
and measure what is intended, with nonmathematical sources of variance in 
performance minimized. 

6) Researchers need to examine whether the language in word problems is suitable for 
assessing their mathematical objectives before examining their impact in state 
assessments on student performance, especially the performance of special education 
students or English language learners.  

7) More scientific research is needed on item and test design features.   
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I. Introduction 

Achievement tests are widely used to estimate what students know and can do in 
specific subject areas. Tests make visible to teachers, parents, and policymakers some of the 
outcomes of student learning. Tests also can provide an efficient and fair way to assess student 
achievement. Finally, tests can drive both the content and format of classroom instruction.  

 
Widespread, large-scale testing began in the 1960s after passage in 1965 of the 

Elementary and Secondary Education Act and the appropriation of Title I funds.  
Policymakers desired information to gauge the progress of education in the United States as a 
whole and, thus, the idea for a National Assessment of Educational Progress (NAEP) 
emerged. NAEP was implemented in 1969, and the long-term trend tests began during the 
1972–73 school year. The main NAEP came later, in 1990.   

 
With passage of the No Child Left Behind Act (NCLB) in 2001, the use of testing was 

expanded beyond its many uses at the time: end-of-course evaluations of learning by teachers; 
admission tests for college, graduate, or professional programs; loosely structured 
accountability systems at the school district level; and what had been required under ESEA as 
reauthorized in 1994 by IASA (the Improving America’s Schools Act). In 1994, IASA required 
states to test students in all schools in reading and mathematics in three grade spans, and to use 
state assessments.  NCLB expanded the number of grades required to be tested.  NCLB also 
mandated, among other things, use of state assessments and other measures to hold schools and 
districts accountable for increasing all students’ achievement, including the achievement of 
different subgroups of students. A few states had already created content standards on which 
their state tests, if developed, were based to ensure that students were learning the topics 
judged important for students to master. And some of these states had made passing state tests 
a requirement for high school graduation. NCLB, however, required all states to develop 
standards and state assessments in reading and mathematics in Grades 3–8 and once in high 
school, and set forth measures of teacher quality, as well. States could choose their own tests 
and set their own cut scores, but they had to demonstrate annual improvement for all subgroups 
of students through a measure called Adequate Yearly Progress (AYP). 

 
A provision in NCLB also required all states to participate in NAEP beginning with 

the 2003 cycle. NAEP was to sample each state every 2 years so that the results on NAEP 
tests could be compared with the results of state tests. It is intended that NAEP and the state 
assessments, along with results from international assessments when they are available, 
inform the public and policymakers on the condition of education in the United States. Given 
the importance of the NAEP and state tests for measuring the outcomes of education, it is 
vital that the NAEP and state tests measure appropriately what is deemed important for 
children to learn in school. For more details on the history of NAEP and the two types of 
tests it gives, see Appendix A and the NAEP Web site. Descriptions of six state testing 
programs are provided in Tables 3 and 4.  
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In this context, the Assessment Task Group of the National Mathematics Advisory 
Panel (Panel) was formed to address the following charges in the Executive Order: 

 
(b) the role and appropriate design of standards and assessment in promoting 
mathematical competence;   
 
(f) the role and appropriate design of systems for delivering instruction in 
mathematics that combine the different elements of learning processes, curricula, 
instruction, teacher training and support, and standards, assessments, and 
accountability (Executive Order No. 13398). 

II. Key Questions Addressed by the Task Group 

To address the charges in the Executive Order, the Task Group developed five 
primary questions (divided into two areas): 

 
Part One: Test Content and Performance Categories  

1) What should the mathematics content of the NAEP and state tests be at Grades 4 and 
8? How does the content of state tests compare with NAEP?    

2) How are performance categories determined? 
 
Part Two: Item and Test Design 

3) How does item response format affect performance on multiple-choice and various 
kinds of constructed-response items?  

4) What are some nonmathematical sources of difficulty or confusion in mathematics 
test items that could inappropriately affect performance? How prevalent are they on 
the NAEP and the six state tests examined?   

5) How are calculators used in NAEP and state assessments, and how does calculator 
use affect performance? 
 
These questions are not independent of each other. They overlap because what one 

tests and how one chooses to test are intertwined. For example, the verbal context of the test 
items or calculator use could have bearing on what is actually measured.   

III. Background  

Two studies were shared with the Task Group that offered a strong foundation for its 
work and began to answer the key questions. These were: 1) Validity Study of the NAEP 
Mathematics Assessment: Grades 4 and 8 (Daro et al., 2007), 2) Response to the Validity 
Study of the NAEP Mathematics Assessment: Grades 4 and 8 (Schneider, 2007). These two 
documents, while addressing some of the Task Group’s main concerns, led the group to 
probe some of the reports’ findings in deeper and more specific ways. 
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A. NAEP Validity Study (NVS) Report 

The NVS convened an expert panel involving mathematicians, mathematics educators, 
and an expert on state-based mathematics standards. They compared the NAEP mathematics 
framework with the standards and frameworks (test blueprints) of six states (California, 
Massachusetts, Indiana, Texas, Washington, and Georgia), two high-performing nations 
(Singapore and Japan), and standards outlined by the National Council of Teachers of 
Mathematics (NCTM) and Achieve, Inc.  

 
The NVS examined the content areas of number properties and operations, algebra, 

geometry, measurement, and data analysis and probability strands in the 2005 NAEP 
mathematics framework to determine if NAEP was missing something or overemphasizing 
topics in a given content area.1 The reviewers then described what was missing or being 
overemphasized, and rated the emphasis of each content topic as compared to each of the six 
states and Singapore and Japan. The panel of mathematicians also examined individual items 
from the NAEP tests and the six states’ tests and found serious problems. 

Quoting from the NVS Report: 

Five percent of NAEP items were found to be seriously flawed mathematically 
at Grade 4, and 4 percent were designated seriously flawed at Grade 8. The 
state items were classified as 7 percent seriously flawed in fourth grade and 
3 percent seriously flawed in eighth grade. For marginal items, NAEP had 
28 percent at Grade 4 and 23 percent at Grade 8, while the state sample had 
30 percent at Grade 4 and 26 percent at Grade 8. By this estimation, NAEP is 
less flawed than some critics have suggested, but it is also less than perfect 
mathematically. The substantial number of marginal items in NAEP and the 
states is cause for concern. Marginal items may well be leading to 
underestimates of achievement, although this study did not produce empirical 
evidence on this possibility (Daro et al., 2007, p. 79–80). 
 
The NVS report showed that a high percentages of marginal and flawed items 

appeared in four major content areas in these tests: Algebra, Geometry, Measurement, and 
Data Analysis and Probability. The Number Properties and Operations section was better 
than the other four. As Exhibits IV-3 and IV-4 (pp. 82 and 83) of the NVS report show, for 
Grade 4, 16 of the 28 NAEP Algebra items and 8 of the 16 state Algebra items were 
classified as marginal or seriously flawed. As Exhibit IV-5 shows (p. 83) at Grade 8, 16 of 59 
NAEP Algebra items were similarly classified. For Grade 4, 15 of 34 NAEP Geometry items, 
15 of 42 NAEP Measurement items, and 12 of 19 state Measurement items were so 
classified. At Grade 8, 11 of 45 NAEP Geometry items, 10 of 37 NAEP Measurement items, 

                                                
1 The NVS was asked to address the following questions: 

1. Does the NAEP framework offer reasonable content and skill-based coverage compared to the assessments 
of states (six were selected for study and are described in Table 1 and 2) and other nations? 

2. Does the NAEP item pool and assessment design accurately reflect the NAEP framework? 
3. Is NAEP mathematically accurate and not unduly oriented to a particular curriculum, philosophy, or pedagogy? 
4. Does NAEP properly consider the spread of abilities in the assessable population? 
5. Does NAEP provide information that is representative of all students, including students who are unable to 

demonstrate their achievements on the standard assessment? (Daro et al., 2007, p. i). 
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and 10 of 25 state Geometry items were so classified.  For Grade 4, 5 of 12 state Data 
Analysis and Probability items were so classified. For Grade 8, 15 of 32 NAEP Data 
Analysis and Probability items, and 7 of 15 state Data Analysis and Probability items were so 
classified. In other words, more than one-fourth to more than one-half of the items in these 
four areas were rated by five mathematicians as not suitable for high-stakes tests.    

 
The NVS report also was concerned about whether the percentage of marginal and 

flawed items in the NAEP tests might have influenced test results. Quoting from the report: 
 
Is it possible or likely that the presence of seriously flawed or marginal items 
could have altered overall NAEP results? Some of the flaws categorized as 
“serious” are the mathematical equivalent of grammatical errors: students 
can still understand the problem situation and answer the questions, so the 
results are not affected. Still, there is something unacceptable about having 
such errors on a test. Other types of serious flaws, however, could alter 
results by creating real obstacles for test takers. The mathematicians also 
were clear that many of the items they classified as marginal exhibited 
construct-irrelevant difficulties that could affect performance for some test 
takers (p. 82).  
 
Nonetheless, one central finding of the NVS was, “The NAEP mathematics 

assessment is sufficiently robust to support the main conclusions that have been drawn about 
United States and state progress in mathematics since 1990” (p. ii and 119). They noted, 
however, that while the framework was reasonable, the specifications communicated to test 
developers were not detailed enough. In addition, while they thought item quality was typical 
of large-scale assessments, it could be improved.  

 
The NVS made recommendations for improving the NAEP that flowed from its study. 

Two of these recommendations are of particular importance to the Task Group. First was its 
recommendation to sharpen the focus of the current NAEP framework. Specifically, it 
recommended, “[F]ocus: don’t worry about leaving things out; worry about targeting the most 
important things…Explicitly address high priority issues that cut across content areas” (p. vi).   

 
The second recommendation in the NVS report of importance to the Task Group 

involved item quality and the provision of exemplars of good items for future NAEP tests. 
NVS recommended improved quality assurance, with particular attention focused on the 
following: mathematical quality of the items, quality of the situated mathematics problems 
(e.g., word problems), measurement of complexity, non-construct relevant sources of item 
difficulty (i.e., nonmathematical sources of difficulty; e.g., verbiage; complex graphical 
displays; vocabulary), item performance and construction (e.g., response format such as 
multiple choice versus constructed response), and the range of item difficulty and 
curricular reach.   
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B. NCES Response to the NVS Report 

In its response to the NVS report, the National Center for Education Statistics 
(NCES) claimed that student gains on the main NAEP have not been underestimated by the 
number of poor-quality items. The NCES statistical analysis of marginal and flawed items 
revealed that their mean discrimination indices (mean r-biserial for each category) did not 
differ from the items judged as adequate (Schneider, 2007). NCES was also less critical of 
NAEP’s quality control process for item development, but NCES concurred with the NVS 
recommendation about the importance of item quality and the provision of exemplars of 
good items for future NAEP tests. 

IV. Methodology 

The Task Group determined a strategy to probe the quality of the state tests given their 
particular charge. The Task Group needed to determine if the recommendations for the NAEP 
also applied to the state tests they could inspect and if there potentially were other issues.  
Thus, the Task Group undertook a review of released test items from six state tests and NAEP. 
Moreover, it wanted to explore more deeply the validity of the process for setting performance 
categories, especially given the recent NCES report, Mapping 2005 State Proficiency 
Standards onto the NAEP Scales (National Center for Education Statistics, 2007). In that study, 
NCES mapped state performance categories in reading and mathematics onto the appropriate 
NAEP scale using data from fourth and eighth grades in the 2004–05 school year. Finally, the 
Task Group took some of the recommendations for the NAEP a step further, explored 
appropriate content, and posed additional questions, such as the impact of calculator usage. 

 
With the assistance of Abt Associates Inc. (Abt), the Task Group conducted searches 

of the scientific literature with respect to the questions posed. The Institute for Defense 
Analyses Science and Technology Policy Institute (henceforth STPI) also assisted, in 
particular, with the review of released test items from the NAEP and state assessments. See 
Appendix B for more detail on the Task Group’s methodology.   

 
The Task Group conducted its work during a three-month time period. Consequently, 

it was limited in its ability to collect, examine, and analyze an extensive amount of 
information. For example, the identification of relevant literature was limited to what could 
be identified and reviewed in that time period. Furthermore, there was insufficient time to 
field a survey. The analysis was, thus, based on information readily available on state and 
NAEP Web sites, in publications, and in prior analysis and research. 
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V. Part I: Test Content and Performance Categories 

A. Question 1: What Should the Mathematics Content of NAEP and  

State Tests Be at Grades 4 and 8? How Does the Content of State 

Tests Compare with NAEP?    

1. Background 

Currently, NAEP assesses mathematics organized by the following five content strands:  
 

• Number Properties and Operations 
• Geometry 
• Algebra 
• Measurement 
• Data Analysis and Probability 

 
These strands were developed to meet the requirement that large-scale achievement 

tests of this nature must measure competencies reflecting all areas of mathematics taught and 
considered most important at a given developmental level. To assess the appropriateness of 
the content strands, the Task Group examined five sources: 1) the Critical Foundations, the 
skills and knowledge essential for success in algebra as described in the Conceptual 
Knowledge and Skills Task Group report; 2) the NAEP Validity Study (Daro et al., 2007); 3) 
findings from the Task Group’s literature review; 4) the Task Group-generated review of 
released items from NAEP and selected state tests; and 5) the Panel’s National Survey of 
Algebra Teachers (Hoffer, Venkataraman, Hedberg, & Shagle, 2007).2 In the Panel’s survey, 
teachers identified particular aspects of mathematical content areas (e.g., fractions and 
success with word problems) as both critically important to the preparation for algebra and 
insufficiently acquired by students in introductory algebra courses. These findings added to 
the Task Group’s basis for reviewing these topics. In addition, the Task Group’s review of 
some state tests and their released items provided further information on how one might reset 
the focus of test content frameworks. 

 
2. Reorganizing the Content Strands of NAEP and Implications for  
State Assessments 

Based on the review of the five sources described earlier in this section, the Task 
Group proposes several principles for reorganization, as well as possible title changes, for 
the five content strands of the NAEP and, potentially, for state tests. The suggested 
reorganization is presented in Table 1 and represents the possible outcome of employing 
the principles for organizing the content of the NAEP. This possible reorganization has 
implications for state mathematics tests, as well. 

 

                                                
2 The order in which the sources are listed bears no significance of the importance of each source. 
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Table 1: Suggested Reorganization of NAEP Content Strands  
Grade 4 Grade 8 
Number: Whole Numbers Number: Integers  
Number: Fractions and Decimals Number: Fractions, Decimals, and Percent 
Geometry and Measurement Geometry and Measurement 
Algebra Algebra 
Data Display Data Analysis and Probability 

 
The suggested principles are as follows: 

 
1) NAEP and state tests must ensure a focus on the mathematics that students should learn 

with achievement on critical mathematics content reported and tracked over time. 
NAEP should ensure that the Conceptual Knowledge and Skills’ Critical Foundations 
and elements of the Major Topics of School Algebra are integral components of the 
mathematics assessed. The Task Group proposes for reorganization, as well as possible 
title changes, for NAEP’s current five content strands:   
 
a. Number Properties and Operations should be renamed and expanded into two 

separate categories—Grade 4 Number: Whole Numbers; and Fractions and 
Decimals; and Grade 8 Number: Integers; and Fractions, Decimals, and Percent. 
 
1. Whole Numbers will include emphasis on place value, comparing and 

ordering, and whole number operations at Grade 4. This will be expanded to 
include work with all integers, including operations with negative and positive 
integers at Grade 8. 

 
2. Fractions and Decimals will include recognition, representation and 

comparing and ordering at Grade 4. This will be expanded to include 
operations involving fractions, decimals, and percent at Grade 8. 

 
b.  Geometry and Measurement should be combined into one content area. Topics 

related to both Measurement and Geometry should serve as important contexts for 
problems in the Grade 4 and Grade 8 NAEP. 

 
c. Within Algebra, a better balance is needed within the subtopic of patterns, 

relations, and functions at Grades 4 and 8. That is, there should be many fewer 
items on patterns. 

 
d. Data Analysis and Probability should be renamed as Data Display at Grade 4 and 

expanded to include both data interpretation and probability at Grade 8. 
 
These principles and their possible implications are now explained in greater detail.   
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Number Properties and Operations 

The Task Group suggests that Number Properties and Operations be expanded and 
renamed as Number. It should include a focus on whole numbers, including place value, 
comparing and ordering, and whole number operations (i.e., addition, subtraction, 
multiplication, division—arithmetic) at Grade 4 and then be expanded to include extensive 
work with all integers (negative and positive) at Grade 8. A proposed additional content area 
involving number would focus on fractions. At the Grade 4 level, this would involve beginning 
work with fractions and decimals including, recognition, representation, and comparing and 
ordering. This would be expanded to include operations with fractions, decimals, and percent at 
Grade 8.  Similarly, the focus of work with whole numbers and fractions on state tests should 
expand as concepts and operations are developed from year to year, particularly at Grades 5, 6, 
and 7, which are grade levels when the NAEP test is not offered.   

 
A review of the eighth-grade NAEP Number Properties and Operations content area 

(Daro et al., 2007) found an emphasis on topics from number theory—factorization, multiples, 
and divisibility. Their review suggests, however, the need to ensure that eighth-grade students 
have developed proficiency with whole numbers, positive and negative integers, fractions, 
decimals, and percent given their importance as prerequisites for algebra. Because this content 
area stood out in the NVS review as under-sampling grade-level content, “It is possible that 
students are making gains in this content area that are not being detected by NAEP” (p. 123). In 
the Panel’s judgment, it is also possible that students are losing ground that goes undetected. 
Indeed, because the NAEP minimizes this area, this could be a driving force for reduced 
attention to it within the school curriculum. 

 
One of the Task Group’s greatest concerns is that fractions (defined here as fractions, 

decimals, and related percent) are underrepresented on NAEP. The NVS, as well as others, 
have noted the relative paucity of items assessing fractions in both the fourth- and eighth-
grade NAEP. The validity study identified fewer than 20% of items as involving fractions 
and decimals in Grade 8. It also was noted that, while Number Properties and Operations 
should be the most emphasized content area at the fourth-grade level, the NAEP provides a 
very limited assessment of fractions at this level. Implementation of the Task Group’s 
recommendations would result in a more appropriate balance of content and address the issue 
of underrepresentation of fractions on the NAEP.   

 
Geometry and Measurement  

As seen in Table 1, the Task Group also suggests that Geometry and Measurement be 
combined into one content area, which would make the Grade 4 and 8 test frameworks 
consistent with that of Grade 12 NAEP (2005).The proposed merging of these content areas 
also would address the concern that there is a “need for a close look at how the NAEP 
measurement objectives compare to the treatment of measurement elsewhere” (Daro et al., 
2007, p. 9).  Such an examination was deemed important given that measurement is second 
only to number properties and operations in the fourth-grade NAEP in terms of the number 
of items assessed in a particular content area. The larger number of measurement items 
within NAEP however, is “not well leveraged to include fractions or decimals used in 
realistic situations” (p. 126). It is also noted that while there is considerable overlap in the 
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NAEP and Trends in International Math and Science Study (TIMSS) assessments involving 
measurement, there is greater emphasis in NAEP on using measurement instruments and 
units of measurement. As a result, NAEP may be underestimating achievement in 
measurement. TIMSS includes a higher percentage of items on estimating, calculating, or 
comparing perimeter, areas, and surface area.   

 
The review of the Geometry items indicated wide variation across six states. For 

example, the NAEP at Grade 8 includes more geometry than the comparison states or 
nations. Also, the eighth-grade NAEP Geometry items assess symmetry and transformations 
more than those of the states and emphasize parallel lines and angles less than the 
comparison states. Finally, it should be noted that topics related to both measurement and 
geometry (e.g., perimeter, area, and circumference) could serve as important contexts for 
problems within the Grade 4 and Grade 8 NAEP.  This constitutes another principle for 
organizing the content of the NAEP not previously noted. 

 
Algebra 

Algebra is the most heavily weighted content topic on the eighth-grade NAEP, with 
30% of the assessment targeting algebra objectives (NAEP 2007 framework). Fifteen percent 
of the fourth-grade NAEP is dedicated to algebra. At the fourth-grade level most of the NAEP 
algebra items relate to patterns or sequences (Daro et al., 2007).  Chazan et al. (2007) also note 
that released Grade 4 NAEP items place a heavy emphasis on pattern completion at the 
expense of other types of algebraic reasoning. This is cause for concern. While states’ inclusion 
of patterns in textbooks or as curriculum expectations may reflect their views of what 
constitutes algebra, patterns are not emphasized in high-achieving countries (Schmidt, 2007). 
The NVS (Daro et al., 2007) recommended better item balance within the algebra subtopic of 
patterns, relations, and functions at the Grade 4 level. In the Conceptual Knowledge and Skills 
Task Group’s Major Topics of School Algebra (MTSA), patterns are not a topic of major 
importance. The prominence given to patterns at the preschool to eighth-grade level is not 
supported by comparative analysis of curricula or by mathematical considerations (Wu, 2007). 
In addition, this has broad implications for interpreting student performance. For example, 
although student performance on the eighth-grade NAEP Algebra strand has increased, 
reviewers note the underrepresentation of high-complexity items in algebra (Daro et al., 2007). 
Thus, one cannot be clear on what this increased performance means. 

 
Data Analysis and Probability 

While recognizing that data analysis provides the context for many interesting 
problems in mathematics, the Task Group notes that the work of the NVS indicates that half 
of the Data Analysis and Probability section of the Grade 4 NAEP is probability related, 
whereas TIMSS has a greater proportion of items than NAEP that emphasize reading, 
interpreting, and making predictions from tables and graphs, and data representation, 
especially at the fourth-grade level. Given the importance of fractions for the conceptual 
understanding of probability, the Task Group questions whether probability can be taught 
and measured appropriately at the fourth-grade level. As students begin work with fractions, 
probability becomes a more viable mathematics topic and thus should come later in 
elementary and middle school. The Task Group, therefore, suggests that the Grade 4 content 
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area be renamed as Data Display, consistent with TIMSS 2007, and at Grade 8, as Data 
Analysis and Probability. The focus at the eighth-grade level would be expanded to include 
both data interpretation and probability.     

 
Comparison to TIMSS 

It is useful to note here that the TIMSS content domains were changed (Mullis et al., 
2007) at the time the Task Group was conducting its own study. The Grade 4 content 
domains are now identified as Number, Geometric Shapes, and Measures and Data Displays. 
At this level, TIMSS has merged Geometry and Measurement, as the Task Group also 
suggests, and deleted the domain formerly called Patterns, Equations, and Relationships, 
again consistent with the concerns the Task Group raises about patterns and algebra at the 
fourth-grade level. The Grade 8 content domains are Number, Algebra, Geometry, and Data 
and Chance. At this level, TIMSS has infused Measurement within Geometry and expanded 
Data to include Probability. The Task Group’s suggested principles for reorganizing the 
NAEP would bring it into greater alignment with TIMSS. 

 
3. A Comparison of State Test Content with NAEP Content 

How does the content of State Tests Compare with the Content of the NAEP Tests? 
 
A comparison by strand of the percentage of items on state tests for Grades 4 and 8 

with the percentage of items on the Grade 4 and Grade 8 NAEP test in 2007 yields the 
following results in Table 2: 

 
Table 2: A Comparison of State Test Content with NAEP Content 

Grade 4 Grade 8 
 NAEP (2007) State Tests  NAEP (2007) State Tests 
Numbers 40% 15–48% Numbers 20% 10–26% 
Measurement and 
Geometry (combined) 35% 18–34% 

Measurement and 
Geometry (combined) 35% 20–28% 

Algebra 15% 12–28% Algebra 30% 20–28% 
Data Analysis, Statistics 
and Probability 10% 6–20% 

Data Analysis, Statistics 
and Probability 15% 12–20% 

Source: Daro et al., 2007. 
 
What do these comparisons indicate? First, they show considerable differences in 

content distribution across these six states for most strands at both Grades 4 and 8, as well as 
differences from the weight given a strand on the corresponding NAEP test. The percentages 
or content emphasis for each strand at each grade level for each of the six states can be seen 
in Table 3. Table 4 shows the percentages for each strand on the 2003 and 2007 NAEP tests. 
In Grade 4, NAEP has a greater emphasis on Numbers and in Measurement and Geometry 
combined than all six states but a much lower percentage in Algebra and Data Analysis, 
Statistics, and Probability.  In Grade 8, NAEP still has a greater emphasis on Measurement 
and Geometry combined than all six states, but (because of a change in the weight assigned 
Algebra from 2003 to 2007) now has a higher percentage of its 2007 test in Algebra than all 
six states. The NAEP tests tend to be lower in the percentage of items in Data Analysis, 
Statistics, and Probability at both grade levels than most of the six states. 
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More information from a literature review offers additional support for organizing 
NAEP and state assessments in the areas of content frameworks can be found in Appendix C. 

 
Table 3: Summary of State Mathematics Test Content, Grade 4 and 8 

Content Strand Weights -  
Number of Questions or Points Possible (% of total) Item Formats Use of testing aids 

State Grade Number Measurement Geometry 
Algebra and 

Functions 

Statistics, Data 
Analysis, and 
Probability Other 

Total 
Questions 
or Points 

Constructed 
Response Calculators Manipulatives 

Formula 
Sheets 

4th 31 
(48%) 

12 
(18%) 

18 
(28%) 

4 
(6%)   65 

(100%) 
Multiple 
Choice No  —   —  

California 
8th 100% 65 Multiple 

Choice No No No 

4th  —  
(20%) 

 —  
(23%) 

 —  
(12%) 

 —  
(10%) 

 —  
(35%) 

 —  
(100%) No  —   —  

Georgia (QCC) 
8th  —  

(17%) 
 —  

(22%) 
 —  

(23%) 
 —  

(12%) 
 —  

(26%) 
 —  

(100%) 

Multiple 
Choice No  —   —  

5th 13* 
(15%) 

13* 
(15%) 

11* 
(13%) 

14* 
(17%) 

10* 
(12%) 

23* 
(27%) 

84* 
(100%) No  —  No 

Indiana 
9th 9* 

(10%) 
16* 

(17%) 
10* 

(11%) 
25* 

(27%) 
11* 

(12%) 
22* 

(24%) 
93* 

(100%) 

Multiple 
Choice, 

Constructed 
Response Yes  —  Yes 

4th 19* 
(35%) 

13* 
(25%) 

11* 
(20%) 

11* 
(20%)   54* 

(100%) No Yes No 
Massachusetts 

8th 14* 
(26%) 

14* 
(26%) 

15* 
(28%) 

11* 
(20%)   54* 

(100%) 

Multiple 
Choice, Short 
Answer, Open 

Response by section No Yes 

4th 11 
(26%) 

6 
(14%) 

6 
(14%) 

7 
(17%) 

4 
(10%) 

8 
(19%) 

42 
(100%) No ruler measurement 

conversions Texas 
8th 10 

(20%) 
5 

(10%) 
7 

(14%) 
10 

(20%) 
8 

(16%) 
10 

(20%) 
50 

(100%) 

Multiple 
Choice, some 

Gridded No ruler measurement 
conversions 

4th 3–6 
(8–17%) 

3–6 
(8–17%) 

3–6 
(8–17%) 

3–6 
(8–17%) 

3–6 
(8–17%)   35 

(100%) by section by section High School 
only 

Washington 
8th 4–7 

(9–20%) 
4–7 

(9–20%) 
4–7 

(9–20%) 
4–7 

(9–20%) 
4–7 

 (9–20%)   50 
(100%) 

Multiple 
Choice, Short 

Answer, 
Extended 
Response 

by section by section High School 
only 

Notes:  
* Content strand weight based on number or points possible instead of number of items in strand. 
— Information not available 

California: The expectation for 8th grade is that students will take CST Algebra 1 test. However, only about half 
the cohort takes that test. The others take a general math test as they are not ready for algebra. 

Indiana’s ISTEP+ is administered in the fall of each academic year and draws from the curricula of all 
previous grades. 

Other strands are Computation and Problem Solving (Georgia and Indiana) and Mathematical Processes and 
Tools (Texas). 

Source: This table was created for the Task Group by STPI using publicly available data from state Web sites. 
Data on California from S. Valenzuela (personal communications, February 1, 2008). 
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Table 4: Summary of 2003 and 2005 NAEP Mathematics Test Content, Grade 4 and 8 
Content Strand Weights - (% of total) Use of testing aids 

Year Grade Number Measurement Geometry 

Algebra 
and 

Functions 

Statistics, 
Data  

Analysis,  
and 

Probability Cognitive Dimension Item Formats Calculators Manipulatives Formula Sheets 

4th 40% 20% 15% 15% 10% 

four function 
calculators 

provided for 
approximately 

1/3 of items 

students are 
provided rulers  

20
03

 

8th 25% 15% 20% 25% 15% 

Conceptual: 
at least 1/3 
of items 

Procedural: 
at least 1/3 of 

items 

Problem 
Solving: at 
least 1/3 of 

items 

Multiple Choice 
(50%), Short and 

Extended 
Constructed 

Response (50%) 
scientific 

calculators 
provided for 

approximately 
1/3 of items 

students are 
provided rulers 
and protractors 

4th 40% 20% 15% 15% 10% 

Multiple Choice 
(64%), Short 
Constructed 

Response (32%), 
Extended 

Constructed 
Response (4%) 

four function 
calculators 

provided for 
approximately 

1/3 of items 

students are 
provided rulers  

20
05

 

8th 20% 15% 20% 30% 15% 

Low 
Complexity 

25% of 
score 

Moderate 
Complexity  

50% of score 

High 
Complexity: 
25% of score Multiple Choice 

(69%), Short 
Constructed 

Response (28%), 
Extended 

Constructed 
Response (4%) 

scientific 
calculators 

provided for 
approximately 

1/3 of items 

students are 
provided rulers 
and protractors 

Selected formulas 
and conversion 
factors (ones 

students are not 
necessarily 

expected to have 
memorized) are 
given on a per-
item basis (e.g., 

volume of a 
cylinder, number 
of feet in a mile). 

Notes: 
Various populations, rather than individual students, are the targets of the NAEP assessments. In particular, the 
assessment administered to any given student does not follow all the strict NAEP guidelines for mathematics 
assessment composition. Instead, the guidelines apply to the entire set of items for a given year and grade. The 
entire set of items consists of ten 25-minute blocks. The booklets administered to students participating in the 
mathematics assessment contain only two 25-minute blocks, in part to minimize the burden on students 
participating in the assessment. In effect, each student takes one-fifth of an assessment. 

Assessments in 2003 and earlier classified the “cognitive dimension” of an item according to the “mathematical 
ability” required of a student responding to the item (conceptual understanding, procedural knowledge, and 
problem solving). The 2005 assessment changed the focus to the item itself; it classified the cognitive 
dimension of an item according to its complexity (low, moderate, high). On the 2003 assessments, a single item 
may be assigned to more than one mathematical ability level. Thus, this rule means that at least one-third of the 
items must have a major element of conceptual understanding. For 2005 Item Format Percentages see 
http://www.ed.state.nh.us/education/doe/organization/Curriculum/NAEP/2005/NAEPReport4MathWCoverRec
overedCorrect.pdf. 

Source: STPI compiled this table using information from 1) National Assessment Governing Board, U.S. 
Department of Education, Mathematics Framework for the 2005 National Assessment of Educational Progress, 
September 2004, retrieved on October 1, 2007 from http://www.nagb.org/pubs/m_framework_05/toc.html and 
2) National Assessment Governing Board, U.S. Department of Education, Mathematics Framework for the 
2003 National Assessment of Educational Progress, September 2002, retrieved on October 1, 2007 from 
http://www.nagb.org/pubs/math_framework/toc.html. 
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B. Question 2: How Are Performance Categories Determined? 

Question 1 concerned the nature and the weighting of the content that should appear 
on the assessment of mathematics. Question 2 examines how students’ scores on 
mathematics tests are assigned to a particular performance category, e.g., Basic or Proficient. 
Of foremost concern is the minimum performance level on a test required for a student to be 
placed in a certain category. Performance level categories appear on both NAEP and the state 
tests, but the labels and underlying procedures may differ.    

 

1. Background 

Establishing performance categories involves a set of procedures currently known in 
educational measurement as standard setting (or setting cut scores). Judgments about 
performance categories are made by a panel of persons selected for their expertise or 
educational perspective. The exact procedures for determining performance categories can 
range from the panel’s judgment about the test as a whole (i.e., the minimum percent of items 
passed at the various levels) to quantified judgments of individual items with respect to 
expected performance of students in the categories.   

 
Several procedures and methods for combining judgments in standard setting have 

been developed. These procedures typically involve training panelists on the definitions of the 
standards and the nature of performance within the categories, soliciting judgments about the 
relationship of the test to the performance categories, and providing successive feedback to 
the panelists about their judgments. Various methods to combine judgments have been 
developed. Variants of the Bookmark method and the Modified Angoff method involve 
panelists judging how students at varying levels of competency will respond to representative 
test items. In these two methods, the cut score for competency classifications is determined by 
linking the judgments to empirical indices of item difficulty. In contrast, the Body of Work 
method requires the panelist to classify representative students into competency categories by 
examining their full pattern of item responses. While the methods are all scientifically 
acceptable, they may differ in effectiveness. The Bookmark method may involve the most 
assumptions about the data, while the Body of Work method may demand the highest level of 
rater judgment. While more research is needed in this area, the Modified Angoff method 
performs well against several criteria for psychometric adequacy (Reckase, 2006). 

 
The Task Group was interested in determining the nature of the performance 

categories and the standard-setting procedures and methods for NAEP and the six states.  
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2. A Review of State Assessments and NAEP 

The standard-setting procedures of NAEP and six states were examined with respect 
to the following seven questions. Not all information was fully available on all questions for 
each state.  

 
1) What are the performance standards of NAEP and the states? 
2) How were the NAEP and state performance standards established?  
3) Are they based on procedures in which experts inspect actual item content or on 

global definitions?   
4) Are empirical procedures used to combine individual expert opinions?   
5) What is the background of the experts?   
6) What descriptions or instructions are given, if any, about the nature of performance at 

different levels?  
7) Do the experts receive the items in an examination under the same conditions as 

the students?  
 
To answer these questions, documents available from Web sites of NAEP (National 

Assessment Governing Board) and six states (California, Georgia, Indiana, Massachusetts, 
Texas and Washington) were retrieved by STPI and provided to the Task Group. These 
documents were reviewed for relevant data by the Task Group members.  

 
For the first question, NAEP employs a three-category system, Basic, Proficient and 

Advanced. The six states employed similar categories, although some made more distinctions 
than others. California’s performance categories are labeled as Far Below Basic, Below Basic, 
Basic, Proficient, Advanced; Georgia, Does Not Meet, Meets, Exceeds Standard; Indiana, Did 
Not Pass, Pass, Pass+; Massachusetts, Warning, Needs Improvement, Proficient, Advanced; 
Texas, Basic, Proficient, Advanced; and Washington, Basic, Proficient, Advanced. For NAEP 
and all six states, global definitions of the performance categories are available. The 
definitions are all characterized as “global” because the definitions were fairly abstract 
characterizations of behavior that would require high degrees of judgment to determine the 
categorization of student performance. 

 
For the other six questions, we draw on data in Table 5. First, although there is 

variability in the methods, all states use a contemporary method for standard setting or setting 
cut scores. Second, the Bookmark method was most frequently applied in standard setting. 
Second, individual item content is judged in NAEP and in all states except Massachusetts, 
where whole tests from students at various performance levels are examined. Third, empirical 
combination of judgments is implemented in all states. Fourth, the background of the experts 
varies within panels and probably somewhat across states. For example, Georgia uses 
primarily classroom teachers as experts while Texas represents broader contingencies, 
including curriculum experts from higher education and non-educators. However, in both 
NAEP and the six states, classroom teachers generally predominate as standard-setting 
panelists. Fourth, all six states train the panelists prior to eliciting their ratings. Fifth, although 
all six states applied some training procedures for panelists, the Task Group cannot judge the 
quality without having access to exact content. Sixth, only two states have the panelists 
experience the items in the same way as the test-takers. 
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Table 5: Information on Features of Standard-Setting Procedures (Setting Cut Scores) 
for NAEP and the Six States 

 1.  
How 
Established? 

2.   
Item Content 
Judgments? 

3.  
Combination 
Procedures 

4.   
Background of  
Experts 

5.   
Instructions 
& Definitions 

6.  
Test  
Taken? 

NAEP Modified 
Angoff 
Method 

Yes Empirical with 
successive 
feedback. 

55% teachers, 15% non-
teacher educators, and 30% 
members of the general 
public. Panelists should be 
knowledgeable in 
mathematics.  Panelists 
should be familiar with 
students at the target grade 
levels. Panelists should be 
representative of the 
nation’s population in 
terms of gender, race and 
ethnicity, and region.  

Yes N/A 

California Bookmark 
Method 

Yes N/A N/A Yes Yes 

Georgia Modified 
Angoff 
Method 

Yes Empirical with 
successive 
feedback. 

Primarily the panelists 
selected were educators 
currently teaching in the 
grade and content area for 
which they were selected 
to participate. 

Yes Yes 

Indiana Bookmark 
Method 

Yes Empirical 
preliminary 
followed by 
feedback & 
consensus. 

Not specifically given, but 
appears to be classroom 
teachers. 

Yes None 
specified.  
Probably 
first viewed 
in panel 
setting. 

Massachusetts Expert 
Opinion – 
Body of 
Work Method 

No Empirical 
aggregation of 
first judgments. 
Details not 
available about 
feedback & 
consensus. 

The panel consists primary 
of classroom teachers, 
school administrators or 
college and university 
faculty, but also non-
educators including 
scientists, engineers, 
writers, attorneys, and 
government officials. 

Yes None 
specified. 
Probably 
first viewed 
in panel 
setting. 

Texas Item-
mapping 

Yes Empirical 
preliminary 
followed by 
feedback & 
consensus. 

The majority of the 
panelists on each 
committee were active 
educators—either 
classroom teachers at or 
adjacent to the grade level 
for which the standards 
were being set, or campus 
or district administrative 
staff. All panels included 
representatives of the 
community “at large.” 

Yes None 
specified. 
Items 
probably 
first viewed 
in panel 
setting.  

Washington Bookmark 
Method 

Yes Empirical 
preliminary 
followed by 
feedback & 
consensus. 

The majority of the 
panelists on each 
committee were active 
educators—either 
classroom teachers with 
some representation of 
higher education. 

Yes Yes 

Source: This table was created by the Task Group using publicly available information from state Web sites. 
Data on California from S. Valenzuela (personal communications, February 1, 2008). 
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3. Conclusion  

Although NAEP and the six states the Task Group examined varied in both process 
and method for standard setting or setting cut scores, NAEP and all states for which 
information was available employed currently acceptable educational practices. The methods 
may differ in effectiveness; however, scant evidence on their efforts is available. The 
Bookmark method may involve the most assumptions about the data while the Body of Work 
method may demand the highest level of judgment from the raters. The Modified Angoff 
method is preferred (Reckase, 2006) because the assumptions of the Bookmark method (e.g., 
unidimensionality) are probably not met in practice. The Body of Work method is less often 
applied to year-end tests because it requires higher levels of judgments from the experts. 
More research is needed on standard-setting methods and processes.  

 
It was found that classroom teachers, most of whom are not mathematics specialists, 

predominate in the standard-setting process. Higher levels of expertise, including the 
expertise of mathematicians, as well as mathematics educators, curriculum specialists, 
classroom teachers and the general public, should be consistently used in the standard-setting 
process. The Task Group also found that the standard-setting panelists often do not take the 
complete test as examinees before attempting to set the performance categories, and that they 
are not consistently informed by international performance data. On the basis of international 
performance data, there are indications that the NAEP cut scores for performance categories 
are set too high. This does not mean that the test content is too hard; it is simply a statement 
about the location of cut scores for qualitative categories such as “proficient” and “beyond 
proficient.” Additional information on this literature review can be found in Appendix D.   

C. Part I: Recommendations on Test Content  

and Performance Categories  

1) NAEP and state tests must ensure a focus on the mathematics that students should 
learn with achievement on critical mathematics content reported and tracked over 
time. NAEP should ensure that the Conceptual Knowledge and Skills’ Critical 
Foundations and elements of the Major Topics of School Algebra are integral 
components of the mathematics assessed. The Task Group proposes reorganization, 
as well as possible title changes, of NAEP’s current five content strands:   
 
a.  Number Properties and Operations should be renamed and expanded into two 

separate categories—Grade 4 Number: Whole Numbers; and Fractions and 
Decimals; and Grade 8 Number: Integers; and Fractions, Decimals, and Percent. 

 
1. Whole Numbers will include emphasis on place value, comparing and 

ordering, and whole number operations at Grade 4. This will be expanded to 
include work with all integers, including operations with negative and positive 
integers at Grade 8. 
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2. Fractions and Decimals will include recognition, representation and 
comparing and ordering at Grade 4. This will be expanded to include 
operations involving fractions, decimals, and percent at Grade 8. 

 
b.  Geometry and Measurement should be combined into one content area. Topics 

related to both Measurement and Geometry should serve as important contexts for 
problems within the Grade 4 and Grade 8 NAEP. 

 
c. Within Algebra, a better balance is needed within the algebra subtopic of 

patterns, relations, and functions at this level. That is, there should be many 
fewer items on patterns. 

 
d. Data Analysis and Probability should be renamed as Data Display at Grade 4 and 

expanded to include both data interpretation and probability at Grade 8. 
 

2) Procedures should be employed to include a broader base for setting performance 
level categories:  
 
a. The Task Group recommends that standard-setting (setting cut scores) panels 

include high levels of expertise, such as mathematicians, mathematics educators, 
and high-level curriculum specialists, in addition to classroom teachers and the 
general public. 

 
b. The standard-setting panelists should take the complete test as examinees before 

attempting to set the performance categories. 
 
c. The standard setting should be informed by international performance data.  
 
d. Research is needed on the impact of standard-setting procedures and methods 

(e.g., Bookmark Method, Modified Angoff procedure) in promoting the 
representation of a broad base of judgments.   
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VI. Part II: Item and Test Design 

It is important not only that appropriate content is measured and cut scores for student 
performance are set appropriately but also that test scores accurately reflect the competencies 
intended to be measured. That is, the measurement itself must be carried out in a high-quality 
and appropriate manner. Test specifications that dictate the content of mathematics are not 
sufficient to ensure that valid assessments will be obtained. Thus, the Task Group reviewed 
the area of item and test design.    

A. Question 3. How Does Item Response Format Affect 

Performance on Multiple-Choice and Various Kinds of 

Constructed-Response Items? 

1. Background 

Constructed-response formats, in which the examinee must produce a response rather 
than select one, are increasingly utilized in standardized tests. One motivation to use the 
constructed-response format arises from its presumed ecological validity, the belief that it 
reflects tasks in academic and work settings, and stresses the importance of “real-world” 
tasks.  Constructed-response formats also are believed to have potential to assess dynamic 
cognitive processes (Bennett, Ward, Rock, & Lahart, 1990), and systematic problem solving 
and reasoning at a deeper level of understanding (Webb, 2001), as well as to diagnose the 
sources of mathematics difficulties (Birenbaum & Tatsuoka, 1987). Finally, constructed-
response formats also may encourage classroom activities that involve skills in problem 
solving, graphing, and verbal explanations of principles (Pollack, Rock, & Jenkins, 1992).  
However, these purported advantages can incur a cost. The more extended constructed-
response formats require raters to score them. Hence, they are more expensive and create 
delays in test reporting, as well as possibly introducing subjectivity in scoring. 

 
In contrast, multiple-choice items have been the traditional type used on standardized 

tests of achievement and ability for over a century. Multiple-choice items can be 
inexpensively and reliably scored by machines or computers; they may require relatively little 
testing time and they have a successful history for psychometric adequacy. 

 
Constructed-response (CR) items vary substantially in the amount of material that an 

examinee must produce. There are three basic types of CR items: 
 

• The grid-in constructed-response format (CR-G) requires the examinee to obtain the 
answer to the item stem and then translate the answer to the grid by filling in the 
appropriate bubble for each digit.   

• The short answer constructed-response format (CR-S) varies somewhat. The 
examinee may be required to write down just a numerical answer or the examinee 
may need to produce a couple of words to indicate relationships in the problem. The 
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CR-S format potentially can be scored by machine or computer, given a computerized 
algorithm that accurately recognizes the varying forms of numerical and verbal 
answers. Further, an intelligent algorithm also may provide for alternative answers 
(e.g., slightly misspelled words, synonyms).   

• The extended constructed-response format (CR-EE) requires the examinee to provide 
the reasoning behind the problem solution. Thus, the CR-EE format would include 
worked problems or explanations. This format readily permits partial credit scoring; 
however, human raters are usually required. Use of human raters, however, can lead 
to problems with consistency and reliability of scoring. 
 
The stems of CR-G and CR-S items and multiple-choice (MC) items can be identical, 

especially if the correct answer is a number. It is not clear how the stems of CR-EE can be 
identical to MC items, although this possibility cannot be excluded. 

 
The NMP Assessment Task Group examined the literature on the psychometric 

properties of constructed-response items as compared to multiple-choice items. The original 
focus was to address the following three questions: 

 
1) Do the contrasting item types (e.g., multiple choice, constructed response) capture the 

same skills in these tests equally well?   
2) What does the scientific literature reveal?   
3) What are the implications for NAEP and state tests? 

 
2. A Review of the Literature  

Impact of response format on mathematical skills, knowledge, and strategies. 
Potentially the most pressing issue about response format is the extent to which the same 
skills, knowledge, and strategies can be measured by the MC and CR item formats. The 
research generally does not support major differences in the nature of the construct that is 
measured by CR and MC items, nor in the strategies that are applied. However, much more 
data on this issue are potentially available because many state accountability, graduation, and 
year-end tests employ both item formats. 

 
Impact of response format on psychometric properties. The evidence about the 

psychometric properties of constructed-response items as compared to multiple-choice items is 
inconsistent and depends on the source and the design of the comparison. If the studies utilize 
operational test data, comparisons of MC and CR items have indicated greater omit rates and 
greater difficulty for the CR items. This pattern is probably repeated on many state tests and 
would be a strong finding if such data were available for study by the methods employed in the 
Task Group’s study. It should be noted, however, that studies on operational test items were 
not designed to isolate the impact of format by controlling or measuring other properties of 
items. If the studies utilized stem-equivalent versions of MC and CR items, the difference in 
psychometric properties depended on other design features of the items, such as the nature of 
the distractors and the use of grid-in responses. For example, some studies have found the CR 
format to be more difficult, which is consistent with the operational test studies. Other studies, 
however, have found the MC items to be more difficult when the distractors are constructed to 
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represent common error patterns. Moreover, little evidence from any design is available to 
support differences between MC and CR items on item discrimination levels, differential item 
functioning (DIF), strategy use, and the nature of the construct that is measured.   
 

Impact of response format on differences between groups. The results on the 
interaction of the magnitude of gender-related differences in performance and item format 
are inconsistent and depend on the design of the specific study. However, the evidence 
suggests either no impact of response format on gender-related differences or that the 
relatively lower scores of girls than boys on mathematics items may be lessened in the 
constructed-response format.  

 
The interaction of racial-ethnic differences with item format also has been 

examined in several studies. The research provides some evidence that Black-White 
differences in performance in mathematics are lessened on CR item format as compared to 
the MC item format.  

 
Other results on item format that are potentially interesting include Hastedt and 

Sibberns (2005) finding on TIMSS data that scores based on MC versus CR items produced 
only slight differences in the relative ranking of the various participating countries. And, 
DeMars (2000) found that the difference between MC and CR items in difficulty depended 
on the test context.  The two item formats differed less in difficulty on high-stakes tests than 
on low-stakes tests. 

 
Additional information from this literature review can be found in Appendix E.  
 

3. Conclusion   

The available evidence on comparing the psychometric properties of MC items and 
CR items must be interpreted in the context of several factors. These factors include the 
following limitations: 1) the limited scope of the available scientific literature, 2) the 
uncontrolled design features for comparisons based on operational tests, 3) the design 
strategy in available controlled comparisons of MC and CR items, 4) the limited scope of the 
controlled comparisons, and 5) the impact of test context on the relative performance on MC 
and CR items. These limitations and the methodology for this review are discussed in more 
length in Appendix E.   

 
Given the limitations of the research, there is little or weak evidence to support the 

CR format as providing much different information than the MC format. For example, the 
available evidence provides little or no support for the claim that different constructs are 
measured by the two formats or that item discrimination varies across formats. Although 
some evidence suggests that CR items are more difficult, especially for the more extended 
CR formats, there is some contrary evidence that indicates that more difficult MC items can 
be constructed for their stem-equivalent CR items. Finally, the impact data do not support 
much difference between the two item formats. That is, the impact of response format on 
gender differences is inconsistent, while the impact on racial-ethnic differences is weak. 
Suggestions to guide the evaluation of assessment item design are listed in Appendix F.  
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B. Question 4: What are Some Nonmathematical Sources of  

Difficulty or Confusion in Mathematics Test Items That Could  

Negatively Affect Performance? 

Because flawed and marginal items on NAEP and state assessments could affect 
performance of students and could affect trend lines, the Task Group probed this issue.   

 

1. Background  

A crucial skill in learning mathematics is gaining the ability to understand what 
mathematical relationships and operations are intended by the language of word problems. 
Word problems are very common in most if not all state assessments, as well as in school 
curriculum materials. Nevertheless, it is clear that several nonmathematical aspects of word 
problems can adversely influence performance on tests of mathematical competence. These 
include misleading language and confusing visual displays. Problems also can emerge when 
reading, writing, and other skills that overlap with mathematical competence have an undue 
influence on performance. 

 
The chapter of the NVS report on “Language that is unclear, inconsiderate, or 

misleading” provides only three examples of test items that show language or wording 
defects, even though many test items exhibited difficulties of this nature, as suggested by the 
comments on pages 94 and 95 (Daro et al., 1997). In addition, only two of the examples in 
this section were mathematical story problems, or, as they may also be labeled, situated 
mathematics problems.  

 
How prevalent are poorly worded problems on high-stakes assessments? The Task 

Group wanted to find out if there was evidence on the frequency of language or wording 
issues from other analyses of test items on state, NAEP, or commercial mathematics 
assessments. Have any researchers systematically analyzed state, national, or commercial tests 
to determine the number of problems with poorly chosen, or developmentally inappropriate, 
unnecessary, or misleading language? Have any researchers found empirical evidence on the 
difficulties that students in general or various subgroups of students have with items that could 
be judged as linguistically defective? Are there research-based recommendations on language 
or wording issues to avoid, not only in abstract mathematics problems (problems not 
contextualized in real life) but especially in applied, or situated, problems that typically use 
everyday language to describe the givens of a mathematical problem? 

 
2. A Review of the Literature 

The Task Group undertook a review of the literature by examining 28 studies that met 
the Panel’s criteria for quantitative empirical studies. The methodology for this review can be 
found in Appendix F. The Task Group was able to group most of these 28 studies into three 
general areas of interest in mathematics assessments. Seven looked at gender-related issues, 
two of which (Sappington, Larsen, Martin, & Murphy, 1991; McLarty, Noble, & Huntley, 
1989) examined whether gender-related wording in mathematics word problems could lead 
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to a difference in scores between boys and girls. A third (Low & Over, 1993) reported on 
whether girls more often incorporated irrelevant information into constructed responses than 
did boys. The other four examined the differences in boys’ and girls’ scores on mathematics 
word problems with respect to their format, i.e., whether they provided MC options for 
response or required CR (Reiss & Zhang, 2006; Pomplun & Capps, 1999; Ryan & Fan, 1996; 
Wilson & Zhang, 1998).   

 
The studies that examined differential responses by gender to the format of a test item 

found that, as also noted in the section comparing MC and CR formats, that for the most part, 
females do better on CR formats, while boys do better on MC formats. However, 
complexities appear when these differences are explored in greater depth. Reiss and Zhang 
(2006) found, when they controlled for language skills, that girls did less well than boys on 
both types of formats, more so on MC than on CR. The researchers observed that “the 
advantage females have in reading and writing improves their mathematics scores” while 
“males’ lower reading and writing scores negatively impact their mathematics performance” 
(p. 13). In no way, however, do the researchers suggest that reading and writing skills are not 
important in mathematics; at issue was the role these skills play in mathematics assessments. 
It was not clear to the researchers whether raters rated responses by females more favorably 
because their responses were more complete (and of a higher quality) or because the females 
wrote more words, a dilemma in interpretation that has been found in writing assessments.   

  
Another four studies examined, in differing ways, mathematical problem-solving 

difficulties for students who have learning disabilities, mathematics disabilities, or low 
reading skills (Fuchs & Fuchs, 2002; Moyer, Moyer, Sowder, & Threadgill-Sowder, 1984; 
Moyer, Sowder, Threadgill-Sowder, & Moyer, 1984; Larsen, Parker, & Trenholme, 1978). 
These students have difficulty reading and understanding how to solve mathematics word 
problems, sometimes because of the syntactic complexity of the language. Indeed, three other 
studies (Ketterlin-Geller, Yovanoff, & Tindal, 2007; Bolt & Thurlow, 2006; Johnstone, 
Bottsford-Miller, & Thompson, 2006) used a “read-aloud” method to explore what these 
kinds of students find difficult, in part to determine how items might be altered to remove 
what these students verbalized as difficulties. But in none of these studies did the researchers 
explore what the tests were actually measuring or whether the test items were defective or 
abnormal in any way. As a result, they did not explore the effects of erroneous, misstated, or 
poorly constructed items on student performance. 

 
Five other studies examined assessment issues for English language learners (ELLs) 

(Brown, 2005; Butler & Stevens, 1997; Abedi & Lord, 2001; Abedi, Lord, Hofstetter, & 
Baker, 2000; Abedi, 2003). The researchers were interested in the effects of these students’ 
English language limitations on test performance, in ways to accommodate their English 
language limitations on test items, or in the effects of accommodations in test items on them.  
In none of these studies, however, did the researchers examine how appropriate the language 
in test items was for assessing their mathematical objectives, whether the studies examined 
the effects of the original language or of altered language. 

 
The remaining studies examined a variety of other issues, ranging from correlations of 

socioeconomic status (SES), race, and ethnicity with achievement (Lubienski, 2001; 
Lubienski, 2002; Lubienski & Shelley, 2003), the influence of scoring quality on assessment 
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reliability (Myerberg, 1999), and various issues in mathematics education (Romberg, 1992), 
to the features of mathematics and language arts tests constructed in various ways 
(Perkhounkova & Dunbar, 1999), a processing model to predict difficulty (Kintsch & Greeno, 
1985), and the effects of personalized and reworded mathematics word problems on problem-
solving skill (DeCorte, Verschaffel, & De Win, 1985; Davis-Dorsey, Ross, & Morrison, 
1991). However, none of these studies addressed the relationship between flawed items and 
individual or group differences in performance.  That is, this research did not examine the 
suitability of the language in a word problem for assessing a mathematical objective. 

 
The Task Group examined other research that focused on content validity, reliability, 

and item performance. They reviewed the bibliography of the NVS for references to studies 
addressing the language or wording of test items. The five-page NVS bibliography revealed 
no published studies on language-related factors in test items influencing mathematical 
performance. The Task Group also examined the table of contents of a newly published 
volume on mathematics assessment. Not one of the titles of the 22 chapters in Assessing 
Mathematical Proficiency, edited by Alan Schoenfeld, published by Cambridge University 
Press in May 2007, hints at a discussion of language or wording issues in test items. Nor does 
a recent article by Lane and Stone (2006). None of these works addressed the Task Group’s 
specific interest in language or wording issues.   

 
The Task Group’s review of research on content frameworks also noted no studies 

examining mathematical item quality, aside from the NVS itself. Most of the studies describe 
content validity, and examine scope of content and depth of treatment within content areas in 
relation to national and international tests. Only a few comment extensively on item 
difficulty and complexity, which may be considered aspects of item quality or test content or 
both, as seems to be the case in a 2004 analysis of the contents of six state exit tests by 
Achieve, Inc.    

 
In sum, while the Task Group found many studies on other aspects of mathematics 

assessments, including item performance and item difficulty, they did not locate any studies 
that examined how suitable the wording of a test item may be for its mathematical objectives 
or the effects of wording-related issues in test items on student performance. Therefore, the 
Task Group proceeded to examine an array of test items from NAEP and state tests to see 
what kinds of language or wording flaws could be found.   

 
3. Seven Types of Flaws in Released Items from State Assessments  
and NAEP 

The Task Group determined first the extent to which quality is an issue as it relates to 
the language or wording of an item. The Task Group did an initial cursory reading of the 
word problems in the 2005 NAEP assessments for Grade 4 and Grade 8, and in assessments 
for Grade 4 and Grade 8 from six states: California, Georgia, Indiana, Massachusetts, Texas, 
and Washington. No special significance should be attached to these particular states, except 
that they were included in the NVS report. The Task Group simply wanted a sufficiently 
varied pool of items. In all cases, it used only released items that were supplied to them. 
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The Task Group did not look for all kinds of defects in test items. It focused only on 
defects in the language or visual displays for word problems. It did not try to determine 1) 
correctness of answers, 2) appropriateness of constructed-response items, 3) the quality of the 
rubrics given for grading constructed responses, or 4) the quality of wrong options in 
multiple-choice items. A test item was judged unsatisfactory if its language or visual display 
seemed to be distracting, confusing, or misleading, or if its wording or context made the test 
item too difficult for some students with grade-level mathematics skills. That is, the Task 
Group focused on the wording or the context for the problem that might, in its judgment, lead 
some students to give wrong responses independent of their mathematical skills.    

  
A sufficient number of unsatisfactory items were found to warrant a detailed review 

of released items, with the goal of pinpointing various types of flaws. An array of released 
test items from NAEP and state tests were then examined. The Task Group stresses that 
examples could have equally been selected from other states to illustrate the types of flaws 
found. Enough flawed items were found to support a recommendation that, in future test 
development, careful attention should be paid to exactly what mathematical knowledge is 
being assessed by a particular item and the extent to which the item is, in fact, focused on 
that mathematics.  

 
Below are seven types of flaws that the Task Group identified. Some of the graphics 

below have been reduced in size for ease of presentation. The Task Group also found many 
examples of satisfactory word problems in which the nonmathematical knowledge is minimal 
and for which the student is expected, as appropriate for a mathematics test, to convert 
relationships described verbally into mathematical symbolism or calculations. See Appendix G 
for examples of satisfactory word problems. 

 

1)  Use of nonmathematical knowledge in a word problem that might not be equally 
available to all students, or use of terms whose meaning might not be equally 
available to all students.   

For example: Grade 8: Block 8, M12-Item 11 on NAEP 2005 

Ms. Thierry and 3 friends ate dinner at a restaurant. The bill was $67. In 
addition, they left a $13 tip. Approximately what percent of the total bill did they 
leave as a tip? 

A)  10 % B)  13 % C)  15 % D)  20 % E)  25 % 

Comment: This problem assesses conversion of a relationship described verbally 
into appropriate mathematical symbolism. But there are terminology issues that 
might trip up some students who would otherwise be able to understand the 
relationship described. They might not know what a tip is. More importantly, the 
use of ‘bill’ in one place and ‘total bill’ in another place clouds the relationship: 
Which is correct: 13/67 or 13/80?  Some students will have the nonmathematical 
knowledge needed for this problem. For others, it will be unfamiliar or vague. It is 
this feature that makes this question flawed.   
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2)  Use of a “real-world” setting for an essentially mathematical problem, a use that 
seems to serve only as a distraction because there is no apparent mathematical 
purpose for that setting.  

For example: Grade 4, Massachusetts, 2006 
Question 16: Multiple Choice 
Reporting Category: Number Sense and Operations 
Standard(s): 4.N.4 (No calculator permitted)  

The picture below shows four fractions and a number line. Wilson’s homework is 
to place a point on the number line for the location of each of the fractions. 

1

6
 1

3
 1

12
 1

4
  

 

If Wilson places the fractions correctly, which fraction will be closest to 0 on the 
number line? 

A.  1

6
 B.  1

3
 C. 1

12
 D. 1

4
 

Comment: The content of this problem is strictly mathematical. The test-taker 
must identify which of four given fractions is closest to 0 on the number line. 

Students who know that 
12
1  is the smallest of the four fractions and understand 

the relationship between smallness and closeness to 0 should choose the correct 
answer.  But some fourth-graders might be confused by seeing the fractions listed 
twice or be distracted by the story about Wilson. Straightforward mathematical 
questions should not be turned into questions about what someone else might do. 

0 1 
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3)  A focus on logical reasoning in what is essentially a nonmathematical problem.  

For example: Grade 4, Texas, Problem 32 in probability and statistics  

Kyle will spin the arrow on a spinner like the one shown below.   

 

If Kyle spins the arrow twice, which of these is NOT a possible outcome? 

F. Green, green G. Purple, green H. Blue, blue J.  Red, orange 

Comment: There is no mathematics involved in selecting Option J, the right 
answer. The student who did not choose Option J did not read the problem with 
care. While careful reading is part of solving a mathematics problem, a problem 
involving logical reasoning on a broadly given mathematics assessment also 
should have a mathematical component. 

4)  An unnatural sequence of sentences in the word problem, probably created to 
make the problem “suitable” for assessing mathematical reasoning. 

For example: Grade 8, Washington, Problem 33  

Barb’s class is conducting a walkathon. Her mother pledges $15.00. Her father 
pledges $3.50 per mile. Barb says she can determine the amount of money she 
will earn using the equation p = 3.5 m + 15. Explain the meaning of m in the 
equation. Explain the meaning of p in the equation. 

Comment: The natural question has been convoluted so as to permit the test-
maker to ask for explanations.  



 Task Group Reports of the National Mathematics Advisory Panel 

 8. REPORT OF THE TASK GROUP ON ASSESSMENT 

8-27 

5)  Use of a visual display having little connection with mathematics.   

For example: Grade 4, Massachusetts, 2006, Question 20: Multiple Choice 
Reporting Category: Data Analysis, Statistics, and Probability 
Standard(s): 4.D.1 (No calculator permitted) 

The picture below shows the balls that are for sale at a store. 

 

Which of the following graphs shows the correct number of each kind of ball? 

 

Comment: Solving this problem requires good eyesight as well as the ability to 
point and count with one hand while covering already counted items with the other.  
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6) A reliance on general understanding or ingenuity beyond the level of the actual 
mathematics involved.   

For example: Grade 4, NAEP 2005, Problem 11, Page 3–16  

Audrey used only the number tiles with the digits 2, 3, 4, 6, and 9. She placed one 
tile in each box below so that the difference was 921. Write the numbers in the 
boxes below to show where Audrey placed the tiles. 

 

Comment: The mathematics involved is an understanding of the subtraction 
algorithm. But some students who are proficient with the subtraction algorithm 
might get this problem wrong because of its puzzle format. While the skills for 
doing this puzzle can be taught, they are not critical skills in mathematics, and 
large-scale assessments should not, in effect, be saying that it is important that 
every teacher teach these skills. Although it might be argued that this problem 
also involves mathematical reasoning and that only students who can reason at 
this level will do the problem correctly, this particular type of mathematical 
reasoning is not central to mathematics. 
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7)  A required understanding of a pedagogical technique or tool that might be used 
for teaching mathematics but is not a part of its content.   

For example: Grade 4, Indiana, Problem 3, Page 2–3 

Look at the place-value blocks below.  

 

What number does the following place-value model represent? 

 

Answer ______________ 

Comment: Place-value blocks are a tool for teaching, but one should not expect 
all students to be familiar with them. A student could figure out how to do the 
problem without ever having heard of a place-value block, but this makes the item 
more difficult for such a student than for a student who used one in class.   
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4. Discussion 

A crucial skill in mathematics is the ability to understand what mathematical 
relationships and operations are intended by the language of word problems. But, flawed 
items that contain misleading language or confusing visual displays could affect performance 
of students and could affect trend lines and comparisons from NAEP and state assessments. 
Because the NVS report indicated that NAEP and state assessments include many items with 
misleading language and confusing visual displays, the Task Group searched the literature 
for relevant studies.   

 
No directly relevant studies were identified on how suitable the wording of a test item 

may be for its mathematical objectives or the effects of wording-related issues on student 
performance. Thus, research on how aspects of mathematical problems and their item context 
(e.g., item format, problem scenario, wording, visual displays) are related to the construct 
that is measured, psychometric properties, and adverse impact should be supported, 
conducted, and reported. Furthermore, positive examples of well-designed items are needed 
to guide test development.   

 
To begin this process, the Task Group examined state tests to provide examples of 

both undesirable and desirable content in mathematics word problems. In approaching this 
task, the Task Group’s premise was that the major purpose of word problems on broadly 
given assessments should be to assess skill in converting relationships described verbally into 
mathematical symbolism or calculations.  Many flawed items were found on the state tests in 
sufficient quantity to raise further concerns about item quality. The examples given above 
illustrate seven types of flaws that were found. Our findings, when combined with NVS 
findings on the large percentage of flawed and marginal items, point to possible gaps in test 
development procedures that need to be addressed.  Developers of NAEP and state tests use 
sophisticated psychometric models and methods to select items and yet, according to NCES, 
these statistics are unable to detect the type of flaws noted in the NVS study.    

 
Several aspects of the item and test development process may contribute to the large 

numbers of undetected flawed and marginal items.   
 
First, there is a gap in the educational background of psychometricians and item 

writers.  Psychometricians are trained to use highly sophisticated statistical models and data 
analysis methods for measurement but are not as familiar with issues of item design with 
respect to measuring mathematical constructs. Typical item writers and item evaluators often 
do not have a college degree in the appropriate subject and typically have little or no training 
in task and item design.  

 
Second, item writers receive limited feedback from psychometricians on how the 

items they develop end up functioning for students at varying levels of performance. That is, 
the feedback mechanism does not provide sufficient information to help pinpoint the sources 
of item deficiencies.   

 



 Task Group Reports of the National Mathematics Advisory Panel 

 8. REPORT OF THE TASK GROUP ON ASSESSMENT 

8-31 

Third, traditional psychometric indices of item quality are not sufficient indicators of 
item quality. According to the NCES report, the flawed and marginal items differed little 
from the adequate items in the average biserial correlations with total score, which is a 
classical test theory indicator of item quality. On other achievement tests, such as the state 
tests, the statistical criteria for evaluating item quality may be set much lower than the 
indices reported by NCES for NAEP. The lowered statistical criteria may be necessary to 
accommodate the inherent heterogeneity of educational achievement tests. Requiring high 
item discrimination may counter efforts to broadly represent an item domain. But an 
unintended consequence of broad representation is that it can allow even more items with 
marginal features to meet the low standard.   

 
Fourth, it is increasingly maintained in some educational circles that ensuring that test 

items fulfill blueprints, along with traditional psychometric indices of item quality, provides 
sufficient evidence for test validity (e.g., Lissitz & Samuelson, 2007).  As the findings of NVS 
suggest, these criteria do not provide the necessary assurance that students are responding to 
the items in the manner assumed by the test developers. Further, relying only on content 
specifications contrasts sharply with current standards for constructing tests (Myerberg, 1999), 
which expect multiple kinds of evidence for the construct validity of any test. While content 
specifications are part of the required evidence to support educational test validity, other kinds 
of evidence are also needed, including evidence based on theory, logical analysis, and 
scientific research (Embretson, 2007). Specifically, they include the current theory of the 
domain structure (e.g., the Conceptual Knowledge and Skills Task Group’s view of how 
content “strands” relate to performance in algebra) and item design features. For the latter, the 
Task Group cannot assume without empirical evidence that students do indeed apply the 
knowledge, processes, and strategies that are intended for an item classified in a blueprint. 

 
These several factors, taken together, work against ensuring that the items used to 

assess mathematical competencies are of the highest quality. Better procedures in item 
development, quality control, and oversight appear needed to counter this problem. 

 
5. Conclusion  

The Task Group examined state tests to provide examples of desirable content in 
mathematics word problems. In approaching this task, the Task Group’s premise was that the 
major purpose of word problems on broadly given assessments should be to assess skill in 
converting relationships described verbally into mathematical symbolism or calculations. 
However, word problems also should satisfy the following conditions: 

 
a) be written in a way that reflects natural and well-written English prose at the grade 

level assessed; 
b) assess mathematics knowledge and skills for the grade level of the assessment, as 

judged by agreed-upon benchmarks, while restricting nonmathematical knowledge to 
what would be general knowledge for most students.  
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c) clearly assess skill in converting relationships described verbally into mathematical 
symbolism or calculations or, if a “real-world” setting is used, the problem uses a 
setting that aids in solving a problem that would be more cumbersome to state in 
strictly mathematical language. 
 
Appendix G offers examples of word problems that follow these guidelines.   

C. Question 5: How Are Calculators Used in NAEP and State 

Assessments and How Does Calculator Use Affect Performance? 

1. Background 

Tests that assess achievement in mathematics are administered under a variety of 
conditions, and using a variety of procedures, instructions, and technologies. For example, 
some tests are administered in large groups using paper and pencil booklets while other tests 
are administered in small groups in which each student is seated at a computer. These 
conditions may affect performance. Taken together, the diverse conditions under which tests 
are administered constitute an area of test design.   

 
A very salient aspect of test design is the use of calculators. On some tests, 

calculators are made available for all items while, on other tests, calculators are available for 
only some items or for no items at all. Calculator use may affect performance in several 
ways, including total time on test, the strategies that students apply, the skills that are 
measured, and might result in differences between diverse groups. 

 
Abt Associates Inc. conducted a review of the scientific literature on the effects of 

calculator usage on mathematics achievement test scores, using selection criteria described in 
the Assessment Task Group methodology statement. Below is a description of the studies 
identified, followed by a synthesis of the results of that literature search. 

 
2. A Review of the Literature 

Loyd (1991) noted, in a study involving eighth-graders completing a summer 
enrichment program (45% of the 160 students), that there was no evidence that use of 
calculators increased or decreased the speed with which examinees performed on four 
different types of items on a test. Calculator use was found to be advantageous with some 
item types (computation-based items), but less so with others. 

 
Loveless (2004a) investigated the extent to which the use of calculators on NAEP 

computation items at the fourth-grade level produced significantly different results compared to 
student performance when calculators were not used. He also analyzed the impact of using 
calculators on performance gaps among black, white, and Hispanic students. Findings indicated 
that large differences in performance on computation items occurred when students used 
calculators on the fourth-grade NAEP. In 1999, students averaged 85% correct on whole 
number computation items when using calculators. On the same items, students who did not 
have access to calculators averaged only 57% correct on whole-number computation items. 
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Deeper analyses showed differences in achievement within the whole number operations of 
addition, subtraction, multiplication, and division. Interestingly, when comparing white, black, 
and Hispanic students, the gaps relative to achievement in computation narrow when black and 
Hispanic students have access to and use calculators. A conclusion drawn from this work is 
that, when young children have access to calculators on test items that focus on computations 
involving whole numbers, the results will not be indicative of their computational fluency with 
the operations assessed.  In support of Loveless (2004a), Carpenter et al. (1981) also found 
increased performance on the long-term NAEP computation items for all three age groups if 
calculators were allowed but not on the problem-solving items. 

 
Dye (1981) assessed eighth-graders using one of the forms used in a prior state 

mathematics assessment. One student group had access to calculators, one group was told 
that they could bring calculators and use them if they wished, and one group did not use 
calculators. The results indicated that the use of a calculator did not make any significant 
difference on final test scores; however, it was found that, if a mathematics test included 
many computation items, using a calculator would increase scores. It needs to be noted, 
however, that some design problems in this study lessened the Task Group’s confidence in 
the conclusions drawn. 

 
Hanson et al. (2001) studied 50 eighth-grade students completing a set of NAEP 

problems and a set of computation tests with their own calculator and comparable sets of 
problems with a scientific calculator provided to them. The researchers found no 
performance advantages associated with calculator type, nor was there an advantage related 
to student background characteristics (gender, race, math ability, socioeconomic status). 
Hanson et al. did find that calculator preference depended on the complexity of the student’s 
own calculator relative to the standard one provided. The researchers concluded that there 
was no compelling reason to prohibit students from bringing their own calculators to a testing 
situation. On the other hand, the work of Chazan et al. (2007) seems to indicate that 
experience with calculators matters. They discovered, on the 2003 eighth-grade NAEP, that 
students who use calculators on a regular basis in their schooling scored higher on algebra 
and functions items than students who reported little use of calculators. Among all eighth-
graders, regardless of socioeconomic status, the average scale scores of students who 
reported that they used calculators was 6 to 11 points higher on algebra and functions items 
than those who reported that they did not use calculators.   

 
Brooks et al. (2003) analyzed calculator use on the Stanford Series Achievement 

Tests. They found that the score differences between calculator users and nonusers on the 
Stanford 10, which is the latest edition of the Stanford Achievement Series, were not large 
enough to warrant development of separate score conversion tables. This decision is 
consistent with findings on recent prior editions of the Stanford Series. The American College 
Testing Program (ACT) conducted a study in 1996 to assess effects of using a calculator on 
ACT’s mathematics tests.  The main purpose was to determine the effect of calculator use on 
the ACT’s PLAN-ACT score scale. This study found that calculator use did not affect scores 
on either the PLAN or ACT tests. Additionally, the study revealed no differences related to 
gender and ethnicity with regard to calculator use on the PLAN and ACT tests. On the 
College Board Scholastic Assessment Test (SAT), however, Lawrence and Dorans (1994) did 
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find that, while most of the items on experimental versions of a pretest taken by thousands of 
students were unaffected, calculator usage affected item difficulties of those test items that 
had a heavy computational load. Such items became less difficult with calculator usage. 

 
Long et al. (1989) looked at the role of calculators on the performance on the Missouri 

state test in 1987 for the tested 8th- and 10th-graders. In these two grades, the use of calculators 
was allowed but calculators were not provided. Students who used calculators did perform 
better but the advantage decreased as problem complexity increased. Ansley et al. (1989) and 
Forsyth and Ansley (1982) reported similar results with two samples of Iowa high school 
students. Use of calculators did not affect scores on the quantitative test of the Iowa Test of 
Educational Development, which is purported to be a test of problem solving. In the Ansley et 
al. (1989) study, all students in the 10th grade of a single high school were tested and randomly 
assigned to calculator or no-calculator condition. In the Forsyth and Ansley (1982) study 
several high schools that were matched on student characteristics participated, with each school 
being randomly assigned to calculator or no-calculator condition. 

 
3. Conclusion  

Based on the literature review conducted by the Task Group, it does not appear that 
using a calculator has a significant impact on test scores overall. However, the use of a 
calculator does seem to increase scores on computation-related items. Tables 3 and 4 capture 
key features of the NAEP and the six state tests, including information on calculator and tool 
use in assessment. Calculators are permitted for use in solving 35–40% of the fourth-grade 
NAEP test items. This is not the case for the six state tests reviewed. (One of the six states 
allowed calculators but only on certain sections.) 

 
Thus, care must be taken to ensure that computational proficiency is not assessed 

using calculators. Additionally, the Task Group highlights one more aspect of this issue. It 
appears as if students who are comfortable with the calculator may have an advantage in 
knowing how and when the calculator may be used profitably in problem solving. If there are 
differences, therefore, in comfort level, the use of calculators might add nonmathematical 
sources of difficulty to test scores.  This should be avoided. 

D. Part II: Recommendations on Item and Test Design  

1) The focus in designing test items should be on the specified mathematical skills 
and concepts, not item response format. The important issue is how to most 
efficiently design items to measure content of the designated type and level of 
cognitive complexity.   

2) Much more attention should be paid to what mathematical knowledge is being assessed 
by a particular item and the extent to which the item addresses that knowledge.    

3) Calculators (the use of which constitutes a design feature) should not be used on test 
items that seek to measure computation skills. In particular, NAEP should not permit 
calculator use in Grade 4.  
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4) Mathematicians should be included in greater numbers, along with mathematics 
educators, and curriculum specialists (not just classroom teachers and the general 
public), in the standard-setting process and in the review and design of mathematical 
item content for state, NAEP, and commercial tests. 

5) States and NAEP need to develop better quality control and oversight procedures to 
ensure that test items reflect the best item design features, are of the highest quality, 
and measure what is intended, with nonmathematical sources of variance in 
performance minimized. 

6) Researchers first need to examine whether the language in word problems is suitable 
for assessing their mathematical objectives before examining their impact in state 
assessments on student performance, especially the performance of special education 
students or English language learners.  

7) More scientific research is needed on item and test design features.   
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APPENDIX A: National Assessment of  
Educational Progress (NAEP) 

Background 

Since 1969 the National Assessment of Educational Progress (NAEP) has been 
regularly conducting assessments of samples of the nation’s students attending public and 
private schools at the elementary, junior high, and high school levels. NAEP’s goal, since its 
inception, has been to make available reliable information about the academic performance 
of U.S. students in various learning areas. To this end, NAEP has produced more than 200 
reports in 11 instructional areas.  

 
Teachers, administrators, and researchers from across the United States have helped 

propel NAEP into the valuable informational source it is today. As a result, members of the 
educational community are able to make use of NAEP’s findings on students’ learning 
experiences to inform policymakers and to improve students’ educational experiences.  

 
NAEP is an indicator of what students know and can do. Only group statistics are 

reported, no individual student or teacher data are ever released. 
 
NAEP is conducted under congressional mandate and is directed by National Center 

for Educational Statistics (NCES) of the U.S. Department of Education. NCES currently 
contracts with the Educational Testing Service (ETS) to design instruments, and conduct data 
analysis and reporting; Westat, Inc., to conduct sampling and data collection activities; and 
National Computer Systems to manage materials distribution, scoring, and data processing.  

Who Is Sampled?  

Every 2 years, NAEP assesses nationally representative samples of more than 
120,000 students in public and private schools in Grades 4, 8, and 12. The NAEP state 
assessment samples also include students from both public and private schools to be 
representative of schools in the participating state. Scientific sampling procedures are used to 
ensure reliable national, regional, and state samples.  

Schools 

Schools are randomly selected for NAEP based on demographic variables 
representative of the nation’s schools. Trained NAEP staff members administer the 
assessment. In NAEP state assessments, the participating schools work with a coordinator 
designated by the respective state department of education to collect information on a 
statewide level.  
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Students 

Students are selected randomly; their names are not collected. Confidentiality of all 
participants is ensured and their names do not leave the school.  

What Subjects Are Assessed?  

The academic subject areas assessed vary from year to year. According to the law 
authorizing NAEP, all subjects listed under National Educational Goal 3 are to be tested 
periodically in the national assessment. Reading, writing, mathematics, and science are the 
most frequently assessed subjects. To minimize the burden on students and schools, no student 
takes the entire assessment. Instead, assessment sessions are limited to 1 

2
1  to 2 hours. 

Questionnaires are also given to students, teachers, and principals to obtain current information 
about school and instructional practices that may influence learning and student performance.  

When Do Assessments Take Place?  

Assessments occur throughout the school year; however, most are conducted January 
through March. State assessments occur in February.  

 
Source: http://www.nagb.org/about/abt_naep.html. 
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APPENDIX B: Methodology of the Assessment Task Group 

The Assessment Task Group addressed several different kinds of questions related to 
the influence of different item types and test administration procedures on student responses; 
the content validity, item types, and item difficulties of the National Assessment of 
Educational Progress (NAEP) and state tests; and the way NAEP and state performance 
categories are established. Several different sources of information contributed to the 
resulting report, each involving somewhat different methodological considerations. These 
included a review of relevant research literature, elaboration of findings from a recently 
completed report by the NAEP Validity Studies (NVS) Panel, and an analysis of the content 
and performance categories of NAEP and selected state mathematics achievement tests. 

Literature Review 

Literature searches were conducted by Abt Associates Inc. (Abt) to locate studies on 
mathematics assessment that included the content validity of NAEP, the effect of test 
administration procedures, the influence of item wording, and the skills and concepts 
captured by various item types. The criteria for selecting relevant studies required that they a) 
be published between 1970 and 2007 in a journal, government or national report, book, or 
book chapter; b) involve K–12 mathematics assessments; c) be available in English; and d) 
use quantitative methods for analyzing data. Because of the diversity of pertinent topics and 
associated forms of research, no other general methodological criteria were imposed but, 
rather, the Task Group made individual judgments about the appropriateness and quality of 
each candidate study located in the search. 

 
Electronic searches were made in Education Resource Information Center (ERIC), 

PsycInfo, and the Social Sciences Citation Index (SSCI) using the search terms identified by 
the Assessment Group, shown below.   

 
Assessment or testing and math and each of the following: 

 
item language  
item wording 
question language 
question wording 
item wordiness 
language bias 
linguistic simplification 
language density 
essential language 

verbiage 
excessive language 
validity 
reliability 
item type 
item structure 
multiple choice 
constructed response 
open response 

short answer 
true-false 
administration procedure 
manipulatives 
calculators 
formulas 
accommodations 
Bloom’s taxonomy 
bias 
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Additional studies were identified through manual searches of relevant journals, 
Internet search engines, and reference lists and recommendations from experts. Abstracts 
from these searches were screened for relevance to research questions and appropriate study 
design. For studies deemed relevant, the full study report was obtained. Citations from those 
articles and research reviews were also examined to identify additional relevant studies. Abt 
extracted summary information from the qualifying studies and provided it to the Task Group 
along with the complete articles. The Task Group then further screened the studies to narrow 
those included in their reviews to the most relevant and highest quality available. 

The Task Group drew on the studies located and screened through this procedure for 
its reviews of the content validity of NAEP mathematics assessment, the influence of item 
format on test performance, and calculator use during mathematics achievement assessments. 

Analysis of NAEP and State Test Mathematics Items 

The Task Group’s assessment of the mathematics items used in NAEP and state 
achievement tests initially drew on a report of a validity study released in the early fall of 2007 
(Daro et al., 2007). The Task Group was briefed on the NAEP Validity Study by the authors, 
given access to an embargoed early version of the report, and shown the response of National 
Center for Education Statistics (NCES) to that report. The Task Group then conducted its own 
further analysis of the items in the six state tests represented in the NVS sample.  

The IDA STPI (Institute for Defense Analyses Science and Technology Policy Institute) 
provided the Task Group with information on the test frameworks, testing procedures, and test 
items for the six state mathematics tests used in the NVS report: California, Georgia, Indiana, 
Massachusetts, Texas, and Washington. STPI collected the state assessment information it 
provided to the Task Group from each state’s Department of Education Web site and the NAEP 
information from the U.S. Department of Education’s National Center for Education Statistics 
Web site. STPI assembled the relevant material it located in response to the Task Groups 
request but did not conduct any analyses of that material. 

One of the mathematicians on the Task Group then analyzed the released items for 
the Grade 4 and Grade 8 state tests and NAEP provided in the STPI material. The results of 
that analysis were then further reviewed by the other Task Group members and incorporated 
in the Assessment Report to supplement the analysis by five mathematicians that was 
reported by the NVS. 

Analysis of the Content and Performance Categories of  

NAEP and State Mathematics Tests 

The material provided to the Task Group by STPI on the test frameworks, testing 
procedures, and test items for the six state mathematics tests used in the NVS report included 
descriptions of the content of each test, the performance categories, and the procedures for 
establishing the performance categories. STPI collected this information from each state’s 
department of education Web site and the NAEP information from the NCES Web site. The 
reports and descriptive summaries they provided were reviewed by the members of the Task 
Group and used, along with studies from the literature review, as the basis for their analysis 
of these topics. 
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APPENDIX C:  
Test Content Frameworks and Items: A Review 

Ten studies that assessed, in various ways, the content validity of the mathematics 
portion of the National Assessment of Educational Progress (NAEP) for Grades 4 and 8 were 
reviewed for this portion of the report, most of which are reviewed in this section. Two of the 
studies (Daro et al., 2007; Kenney et al., 1998) compared the NAEP framework with the 
framework of other mathematics assessments (among other topics). Five of the studies 
(Kenney et al., 1998; Loveless, 2004b; Neidorf et al., 2006; Silver & Kenney, 1993; 
Zieleskiewicz, 2000) compare NAEP items to frameworks from other mathematics 
assessments. Three studies (Daro et al., 2007; Silver & Kenney, 1994; Silver et al., 1992) 
compared NAEP items to the NAEP framework. The remaining three studies used a variety 
of methods to explore NAEP content and items. Kenney (2000) discussed the rationale for 
creating families of items and demonstrates the creation of families with released NAEP 
items. Linn and Kipplinger (1994) tested whether an equating function could be developed to 
equate standardized achievement test scores to NAEP scores.  

Test Content Frameworks 

Daro et al. (2007) convened an expert panel involving mathematicians, mathematics 
educators, and an expert on state-based mathematics standards. They compared the NAEP 
mathematics framework with the standards and frameworks (test blueprints) of six states 
(California, Massachusetts, Indiana, Texas, Washington, and Georgia), two high-performing 
nations (Singapore and Japan), and standards outlined by the National Council of Teachers of 
Mathematics (NCTM) and Achieve, Inc. In examining the content areas of Number 
Properties and Operations, Algebra, Geometry, Measurement, and Data Analysis and 
Probability in the 2005 NAEP mathematics framework, the reviewers attempted to determine 
if NAEP was missing something or overemphasizing topics in a given content area. The 
reviewers then described what was being overemphasized and rated the emphasis of each 
content topic as compared to each of the six states and Singapore.   

Item Comparisons within Content Frameworks  

Daro et al. (2007) indicated that, at the fourth-grade level, the only area where NAEP 
has a higher percentage of items than the other frameworks was Measurement. It also was 
noted that, while Number Properties and Operations is the most emphasized content area at 
the fourth-grade level, the NAEP provides a very limited assessment of fractions at this level. 
The NAEP Geometry items assess symmetry and transformations more than the other states, 
and emphasize parallel lines and angles less than the comparison states. Moreover, the 
fourth-grade NAEP Algebra content area appears to be especially problematic. The pattern 
items overemphasize sequences of numbers that grow in a regular way; and, this type of 
pattern is used in NAEP more than in the other frameworks. Mathematics reviewers 
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suggested that NAEP consider pattern items based on the relationship between two 
quantities. The review panel recommended better item balance within the algebra subtopic of 
patterns, relations, and functions at this level. 

 
The review of the eighth-grade NAEP Number Properties and Operations content 

area found an emphasis on topics from number theory—factorization, multiples, and 
divisibility. Given this review, a focus dedicated to ensuring that eighth-grade students have 
developed proficiency with whole numbers, negative integers, and fractions, decimals, and 
percent may be considered given their importance as prerequisites for algebra. Because this 
content area stood out in the review as undersampling grade level content, “It is possible that 
students are making gains in this content area that are not being detected by NAEP” (p. 123). 
In the Panel’s judgment, it is also possible that students are losing ground that goes 
undetected. Indeed, because the NAEP minimizes this area, this could be a driving force for 
reduced attention to it within the school curriculum. 

 
The eighth-grade Measurement content area appears to be assessing lower-level 

concepts and skills and, as a result, NAEP may be underestimating achievement. It also was 
noted that the larger number of measurement items is “not well leveraged to include fractions 
or decimals used in realistic situations” (p. 126). The review of the Geometry items indicated 
wide variation across the six states. The NAEP at Grade 8 includes more geometry than the 
comparison states or nations. A consensus does not appear to exist on what is important in 
geometry at Grade 8.   

    
Loveless (2004b) found that the majority of the fourth- and eighth-grade NAEP items 

assessing problem solving, algebra and numbers sense involve whole numbers.  While this is 
understandable at the fourth-grade level, it is cause for serious concern at the eighth-grade 
level. Fractions, decimals, and percent are under-assessed. In items assessing problem 
solving, whole numbers make up approximately 72% of the fourth-grade items and 
approximately 70% of the eighth-grade items. The possible overemphasis regarding whole 
numbers continues for the eighth-grade NAEP algebra items as well. This suggests again 
raising the level of arithmetic to include more direct assessment of fractions, decimals, and 
percents within the number and algebra content areas and that the confinement of arithmetic 
to whole numbers is largely responsible for the low grade-level demands of many of the 
items Loveless also questions the identification of some of the items as algebra.   

 
Neidorf et al. (2006) compared the mathematics content in NAEP, Trends in 

International Mathematics and Science Study (TIMSS), and the Program for International 
Student Assessment (PISA). They note that the NAEP and TIMSS content frameworks are 
quite consistent with regard to their basic organization of mathematics content. They both 
have five main content areas: Number, Measurement, Geometry, Data, and Algebra.  They 
did note different emphases within topics and subtopics and in some grade level expectations. 
PISA differs from both NAEP and TIMSS in that it samples 15-year-olds rather than specific 
grades and that it focuses on problem-solving using what are called, in the world of K–12 
education, “real-world” problems, rather than curriculum content areas. However, the 
mathematics content assessed by PISA is consistent with the NAEP eighth-grade 
mathematics framework.   
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Neidorf et al. (2006) noted that PISA has more items classified as Data Analysis and 
fewer as Algebra and Number Sense than the other two assessments. The NAEP and TIMSS 
comparison indicates that there is a greater emphasis by NAEP on applications. Moreover, 
TIMSS includes a higher proportion of items involving ratio and proportion and, thus, has a 
more appropriate balance for assessing number using fractions, decimals, and percent. While 
there is considerable overlap in the NAEP and TIMSS assessments involving measurement, 
there is greater emphasis in NAEP on using measurement instruments and units of 
measurement. TIMSS included a higher percentage of items involving estimation, 
calculation, or comparing perimeter, area, volume, and surface area. With regard to data, 
NAEP has a greater proportion of probability items, whereas TIMSS has a greater proportion 
of items than NAEP that emphasize reading, interpreting, and making predictions from tables 
and graphs and data representation, especially at the fourth-grade level. Finally, in NAEP, 
“mathematical reasoning” is included in making conjectures and other related subtopics. This 
is not the case in TIMSS.   

 
The Task Group notes that the TIMSS content domains were recently changed (Mullis 

et al., 2007). The Grade 4 content domains are now identified as Number, Geometric Shapes, 
and Measures and Data Displays. At this level, TIMSS has merged Geometry and Measurement 
and deleted the domain formerly called Patterns, Equations, and Relationships. The Grade 8 
content domains are Number, Algebra, Geometry, and Data and Chance. At this level, TIMSS 
has infused Measurement within Geometry and expanded Data to include Probability. 

 
Kenney et al. (1998) compared the mathematics portion of the 1996 NAEP and 

Maryland State Performance Assessment Program (MSPAP) at the eighth-grade level as part 
of the Content Analysis Project supported by National Assessment Governing Board 
(NAGB). It should be noted that the MSPAP is no longer used as Maryland’s eighth-grade 
assessment due to a host of problems. Nonetheless, based on a comparison of the content 
frameworks, there was moderate congruence regarding the content characteristics of the 
MSPAP and NAEP Grade 8 tests. Content areas and topics were similar; however, the 
similarity was more evident in some content areas than in others. For instance, the 
Measurement items were nearly identical. The differences between the two tests are not 
sufficient to account for the magnitude of the difference between proficient performance on 
the MSPAP (48%), a high-stakes assessment, and on the NAEP (24%). This is likely the 
result of different performance categories.  

 
Zieleskiewicz (2000) completed a study that involved 30 raters who were selected to 

evaluate math items on the long-term trend NAEP and the main NAEP. The reviewers felt 
that both the long-term trend and main NAEP frameworks assess important mathematics, 
with little variation across the types of raters, which included classroom teachers and 
mathematics specialists (e.g., university professors, leaders in professional organizations, 
assessment specialists). 
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Linn and Kiplinger (1994), moreover, in their work linking statewide tests to NAEP, 
found substantial content differences between the state tests and NAEP, with the majority of 
the statewide test items falling into one of the NAEP content areas—Number and Operations. 
They note that, if linking state assessments and NAEP is a goal, tests should be developed 
with a common framework.   

 
Finally, Kenney (2000) reviewed the rationale for creating a family of items about a 

specific topic. She suggests that the ideal method for creating an item family for the NAEP 
would be to begin with the topic (e.g., algebra) and information based on research about 
students’ understanding of the topic. A family of items would be built based on theoretical 
grounds and validated by examining results from tests. It was proposed that item families 
would increase NAEP’s potential to provide important information about the depth of 
students’ knowledge in a particular content strand or across content strands.  It was suggested 
that research could support creating item families on fractions, decimals, probability, with 
vertical item families assessing depth in these content areas.  Proportionality in measurement, 
geometry, and number would be a horizontal item family that would assess an important 
concept (proportionality) across content areas. 

 
These studies guided the Task Group’s thinking when developing the principles for 

organizing the content of the NAEP and state tests. Together, they form the rationale for any 
recommendations drawn from the general principles.   
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APPENDIX D: Establishing Performance Categories  

Establishing performance categories involves a set of procedures currently known in 
educational measurement as standard setting (or setting cut scores). Judgments about 
performance categories are made by a panel of persons selected for their expertise or 
educational perspective. The exact procedures to classify students’ test scores into performance 
categories can range from a panel consensus global judgment about the test as a whole (i.e., the 
minimum percentage of items passed at the various levels) to quantified judgments of 
individual items with respect to expected performance of students in the categories.   

 
Several procedures and methods for combining judgments in standard setting have 

been developed. These procedures typically involve training panelists on the definitions of the 
standards and the nature of performance within the categories, soliciting judgments about the 
relationship of the test to the performance categories and providing successive feedback to the 
panelists about their judgments. Various methods to combine judgments have been developed. 
Variants of the Bookmark method and the Modified Angoff method involve panelists judging 
how students at varying levels of competency will respond to representative test items. In 
these two methods, the cut score for competency classifications is determined by linking the 
judgments to empirical indices of item difficulty. In contrast, the Body of Work method 
requires the panelist to classify representative students into competency categories by 
examining their full pattern of item responses. While the methods were all scientifically 
acceptable, they may differ in effectiveness. The Bookmark method may involve the most 
assumptions about the data, while the Body of Work method may demand the highest level of 
rater judgment. While more research is needed in this area, the Modified Angoff method 
performs well against several criteria for psychometric adequacy (Reckase, 2006). 

 
The Task Group was interested in the following questions about standard setting in 

NAEP and the six states: 
 

1) What are the performance categories of NAEP and the states? 
2) How were the NAEP and state performance categories established?  
3) Are they based on procedures in which experts inspect actual item content or on 

global definitions? (Definitions are characterized as “global” when fairly abstract 
characterizations of behavior necessitate high degrees of judgment to determine the 
categorization of student performance.)  

4) Are empirical procedures used to combine individual expert opinions?   
5) What is the background of the experts?   
6) What descriptions or instructions are given, if any, about the nature of performance at 

different levels?  
7) Do the experts receive the items in an examination under the same conditions as the 

students?  
 



Task Group Reports of the National Mathematics Advisory Panel 

 

8. REPORT OF THE TASK GROUP ON ASSESSMENT 

8-54 

Method 

To answer these questions, documents available from Web sites of NAEP (National 
Assessment Governing Board) and six states (California, Georgia, Indiana, Massachusetts, 
Texas and Washington) were retrieved by Institute for Defense Analyses Science and 
Technology Policy Institute (STPI) and provided to the Task Group. These documents were 
reviewed for relevant data by the Task Group members.   

Results 

Table D-1 shows the performance categories and definitions given by the NAEP and 
six states that were studied. Information was not fully available on all questions for each state. 

 
Table D-1: Standard-Setting Procedures of NAEP and Six States 

  Performance Categories Definitions 
NAEP  Basic, Proficient, Advanced Global  
California Far Below Basic, Below Basic, Basic, Proficient, Advanced Global and by Area 
Georgia  Does Not Meet, Meets, Exceeds Standard Global 
Indiana  Did Not Pass, Pass, Pass+ Global, brief 
Massachusetts Warning, Needs Improvement, Proficient, Advanced Global  
Texas  Basic, Proficient, Advanced Global 
Washington  Basic, Proficient, Advanced Global 

 
The first question that was examined was the definitions of performance categories on 

NAEP and the six states. NAEP and all six states employed a three category system, although 
the labels varied somewhat. NAEP’s performance categories are Basic, Proficient, Advanced. 
California’s performance categories are labeled as Below Basic, Basic, Proficient, Advanced; 
Georgia, Does Not Meet, Meets, Exceeds Standard; Indiana,  Did Not Pass, Pass, Pass+; 
Massachusetts, Warning, Needs Improvement, Proficient, Advanced; Texas, Basic, Proficient, 
Advanced; and Washington, Basic, Proficient, Advanced. For NAEP and all states, global 
definitions of the performance categories are available. Data on the NAEP and six states are 
tabulated in Table D-2.   

 
For question number 2, several different standard-setting (or setting cut scores) 

methods have been developed over the last decade. The most widely used methods involve a 
generally similar standard-setting process. That is, the standard-setting process begins with a 
training session for the panelists, focusing on the definitions of the standards and the relevant 
behaviors. Then, the panelist was asked to rate, categorize, or set cutlines, depending on the 
exact standard-setting method. The process is iterative, with feedback about the results given 
and opportunities to revise judgments.   

 
Three different standard-setting methods were employed in the states for which 

information was available. Historically, the Bookmark method (Lewis, Mitzel, & Green, 
1996) is the most widely used method. Prior to the standard-setting process, items are ordered 
by their empirical difficulty in the item response theory metric. Then, the panelist sets marks 
in the ordered set of items to designate the points at which the minimally competent student in 
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a category (e.g., Basic, Proficient, Advanced) is more likely to pass than to fail the item (often 
defined as a probability of .67). Although panelists are instructed to examine all items, items 
near the marks probably receive the most scrutiny.  Item mapping is a modified Bookmark 
method, which differs somewhat in the standard-setting process as compared to the standard 
Bookmark method. The Modified Angoff method requires each panelist to consider each test 
item and to estimate for each item what percentage of students who minimally qualify for a 
category (e.g., “meets standards”) would answer the item correctly (this is also referred to as 
assigning a p-value). This method involves empirically aggregating ratings and giving 
feedback to panelists, followed by opportunities to revise ratings. Because each item must be 
rated, close scrutiny of each item is required. The Body of Work method is more holistic, 
because panelists examine test protocols for students at varying score levels. Their material 
includes item content, actual item responses, and the scoring rubrics. The panelist’s task is to 
determine which students fall in the various categories.   

 
As summarized by Karantonis and Sireci (2006), scant research is available on how 

the popular Bookmark method compares to other methods. Thus, insufficient empirical 
evidence is available to recommend it over the other methods. Further research should be 
conducted, and variables such as reliability across panelists, exact item content, domain 
multidimensionality, as well as resulting levels set for the standards, should be examined.    

 
For question number 3, the standard-setting (or setting cut scores) methods reviewed 

by the Task Group all involve the actual inspection of item content by the panelists. 
However, some methods involved more intensive consideration of item content than others. 
In particular, the Modified Angoff method requires judgments for each item. The Bookmark 
method involves discussion of items, but the quantified judgments are for the category 
distinctions. Items with more extreme difficulties may be not considered extensively.  In the 
Body of Work method, items are given but they are not judged. 

 
For question number 4, judgments that are elicited from the panelist may be 

combined empirically. In practice with the various methods, judgments are often taken 
repeatedly and combined, thus allowing feedback and possible revision of judgments. 

 
For question number 5, the background of the experts used to set standards varies 

within panels and possibly between states. Classroom teachers may be predominantly 
represented, but other experts, such as curriculum experts from higher education, may be 
present.  Further, community representatives also may be panelists. 

 
For question number 6, the standard-setting process for the methods described above 

typically involve extensive instruction about the definitions of the standards and the 
procedures used to set standards. Such instructions are expected to have substantial impact on 
the judgments. This question was scored separately because states may deviate from typical 
procedures or methods. 

 
For question number 7, the experience of actually taking test items not only serves to 

establish the panelist’s understanding of the subject area test items but also to have the 
experience of the students who take the tests. Judgments of items that are viewed under 
operational conditions are based more on individual information than on panel consensus.  
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All states for which information was available applied one of the current standard-
setting (or setting cut scores) methods. The data in Table D-2 can be summarized as follows. 
First, although there is variability in the methods, all states use a contemporary method for 
standard setting. The Bookmark method was most frequently applied in standard setting. 
Second, item content is judged in all states except Massachusetts. Third, empirical 
combination of judgments is implemented in all states. Fourth, the background of the experts 
varies within panels and probably somewhat across states. For example, Georgia uses 
primarily classroom teachers as experts while Texas represents broader contingencies, 
includes curriculum experts from higher education and non-educators. Fifth, all states train 
the panelists prior to eliciting their ratings. Finally, only two states have the panelists 
experience the items in the same way as the test-takers.  

 
Table D-2: Information on Features of Standard-Setting Procedures (Setting Cut 
Scores) for NAEP and the Six States 

 1. 
How 

Established? 

2. 
Item Content 
Judgments? 

3.  
Combination 
Procedures 

4.   
Background of 

Experts 

5.  
Instructions 

& Definitions 

6. 
Test 

Taken? 
NAEP Modified 

Angoff 
Method 

Yes Empirical with 
successive 
feedback. 

55% teachers, 15% 
non-teacher educators, 
and 30% members of 
the general public. 
Panelists should be 
knowledgeable in 
mathematics. Panelists 
should be familiar 
with students at the 
target grade levels. 
Panelists should be 
representative of the 
nation’s population 
in terms of gender, 
race and ethnicity, 
and region.  

Yes N/A 

California Bookmark 
Method 

Yes N/A N/A Yes Yes 

Georgia Modified 
Angoff 
Method 

Yes Empirical with 
successive 
feedback. 

Primarily the 
panelists selected 
were educators 
currently teaching in 
the grade and content 
area for which they 
were selected to 
participate. 

Yes Yes 

Indiana Bookmark 
Method 

Yes Empirical 
preliminary 
followed by 
feedback & 
consensus. 

Not specifically 
given, but appears to 
be classroom 
teachers. 

Yes None 
specified. 
Probably 
first viewed 
in panel 
setting. 

Massachusetts Expert  
Opinion – 
Body of 
Work 
Method 

No Empirical 
aggregation of 
first judgments. 
Details not 
available about 
feedback & 
consensus. 

The panel consists 
primary of classroom 
teachers, school 
administrators, or 
college and university 
faculty, but also non-
educators including 
scientists, engineers, 
writers, attorneys, and 
government officials. 

Yes None 
specified. 
Probably 
first viewed 
in panel 
setting. 

Continued on p. 8-57 
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Table D-2, continued 
 1. 

How 
Established? 

2. 
Item Content 
Judgments? 

3.  
Combination 
Procedures 

4.   
Background of 

Experts 

5.  
Instructions 

& Definitions 

6. 
Test 

Taken? 
Texas Item-

mapping 
Yes Empirical 

preliminary 
followed by 
feedback & 
consensus. 

The majority of the 
panelists on each 
committee were 
active educators—
either classroom 
teachers at or adjacent 
to the grade level for 
which the standards 
were being set, or 
campus or district 
administrative staff. 
All panels included 
representatives of the 
community “at large.” 

Yes None 
specified. 
Items 
probably 
first viewed 
in panel 
setting.  

Washington Bookmark 
Method 

Yes Empirical 
preliminary 
followed by 
feedback & 
consensus. 

The majority of the 
panelists on each 
committee were 
active educators—
either classroom 
teachers with some 
representation of 
higher education. 

Yes Yes 

Source: This table was created by the Task Group using publicly available data from state Web sites. Data on 
California is from S. Valenzuela (personal communication, February 1, 2008). 

Discussion 

Although the NAEP and states varied in both process and method for standard setting 
(or setting cut scores), all states for which information was available employed currently 
acceptable educational practice.  The methods may differ in effectiveness; however, scant 
evidence is available. The Bookmark method may involve the most assumptions about the 
data, while the Body of Work method may demand the highest level of judgment from the 
raters. The Modified Angoff method is preferred (Reckase, 2006) because the assumptions of 
the Bookmark method (e.g., unidimensionality) are probably not met in practice. The Body 
of Work method is less often applied to year-end tests because it requires higher levels of 
judgments from the experts. More research is needed on the standard-setting process.  

 
It was found that classroom teachers, most of whom are not mathematics specialists, 

predominate in the standard-setting process. Higher levels of expertise, including the 
expertise of mathematicians, as well as mathematics educators, high-level curriculum 
specialists, classroom teachers and the general public, should be consistently used in the 
standard-setting process. The Task Group also found that the standard-setting panelists often 
do not take the complete test as examinees before attempting to set the performance 
categories, and that they are not consistently informed by international performance data. On 
the basis of international performance data, there are indications that the NAEP cut score for 
performance categories are set too high. This does not mean that the test content is too hard 
(sufficient mathematical item complexity). 
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APPENDIX E: Item Response Format and  
Performance on Multiple-Choice and Various Kinds  

of Constructed-Response Items 

Introduction 

Constructed-response (CR) item formats, in which the examinee must produce a 
response rather than select one, are increasingly utilized in standardized tests. One motivation 
to use the CR format arises from its presumed ecological validity by more faithfully 
reflecting tasks in academic and work settings, and stressing the importance of “real-world” 
tasks. CR formats also are believed to have potential to assess dynamic cognitive processes 
(Bennett, Ward, Rock & Lahart, 1990) and principled problem solving and reasoning at a 
deeper level of understanding (Webb, 2001), as well as to diagnose the sources of 
mathematics difficulties (Birenbaum & Tatsuoka, 1987).  Finally, CR formats also may 
encourage classroom activities that involve skills in demonstrating problem-solving methods, 
graphing, and verbal explanations of principles (Pollack, Rock & Jenkins, 1992). However, 
these purported advantages can incur a cost. The more extended CR formats require raters to 
score them. Hence, they are more expensive and create delays in test reporting. 

 
In contrast, multiple-choice (MC) items have been the traditional type used on 

standardized tests of achievement and ability for over a century. MC items can be 
inexpensively and reliably scored by machines or computers, they may require relatively 
little testing time, and they have a successful history for psychometric adequacy. 

 
The Assessment Task Group examined the literature on the psychometric properties 

of constructed-response items as compared to multiple-choice items. The original focus was 
to address the following three questions: 

 
1) Do the contrasting item types (e.g., MC, CR) capture the same skills in these tests 

equally well?   
2) What does the scientific literature reveal?   
3) What are the implications for National Assessment of Educational Progress (NAEP) 

and state tests? 
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Methodology 

Constructed-response formats. CR items vary substantially in the amount of material 
that an examinee must produce. There are three basic types of CR items: 

 
• The grid-in constructed-response format (CR-G) requires the examinee to obtain the 

answer to the item stem and then translate the answer to the grid by filling in the 
appropriate bubble for each digit.   

• The short answer constructed-response format (CR-S) varies somewhat. The examinee 
may be required to write down just a numerical answer or the examinee may need to 
produce a couple of words to indicate relationships in the problem.  The CR-S format 
potentially can be scored by machine or computer, given a computerized algorithm that 
accurately recognizes the varying forms of numerical and verbal answers. Further, an 
intelligent algorithm also may provide for alternative answers (e.g., slightly misspelled 
words, synonyms).   

• The extended constructed-response format (CR-EE) requires the examinee to provide 
the reasoning behind the problem solution. Thus, the CR-EE format would include 
worked problems or explanations. This format readily permits partial credit scoring; 
however, human raters are usually required. Use of human raters, however, can lead 
to problems with consistency and reliability of scoring. 
  
The stems of CR-G and CR-S items and MC items can be identical, especially if the 

correct answer is a number. It is not clear how the stems of CR-EE can be identical to MC 
items, although this possibility cannot be excluded. 

 
Coding. With the Task Group’s guidance, Abt Associates Inc. (Abt), a research group 

hired to assist the National Mathematics Advisory Panel, developed a list of variables to code 
for identified studies on this topic.  The coding scheme is as follows: 
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Table E-1: List of Variables for Coding Studies 
Category Description 
Citation Reference citation. 
Purpose of Study Brief summary of the purpose/focus of the publication. 
Content area Studies that were not about math were excluded. Give more information on type of 

math if available. 
Assessment Assessment being investigated, if available. 
Grade level Grade being investigated. If not provided, age or other grouping characteristic 

(e.g., high school). 
Item type(s) investigated CR-G = constructed response, grid format 

CR-SR = constructed response, short response 
CR-EE = constructed response, extended essay 
CR-O = constructed response, other—provide details 
MC = multiple choice 
Other = other—provide details 

General description of 
design Brief summary of study design. 

Number of items Number of items for each type included in the study. 
Description of Sample Sample size, sampling technique (e.g., random, matrix, stratified, purposive), 

source of sample (e.g., national, region, locale, school district), specific 
characteristics (e.g., college-bound, general population, special population). 

Appropriateness of 
sample 

Enter Y if sample is representative of test taking population. Enter N if sample is 
not representative of test taking population and describe gap.  

Source of items Operational test, specially constructed for study, etc. 
Summary of findings Brief summary of findings.  Possible reference to more detail in original text. 
Subgroup performance English language learners, gender, race/ethnicity, etc. 
Psychometric properties Item/test reliability, item/test difficulty (p-value), differential item functioning 

(DIF) results. 
Information on scoring  Information on scoring of test (e.g., rubrics, criterion-referenced, norm-referenced). 
Design flaws Describe any obvious design flaws. 

 
Search procedures. Abt used key words to search the literature and identify a broad 

band of potentially relevant research to all research questions addressed by the Task Group.   
Abt identified 161 articles that were potentially relevant for the specific research question on 
item format. They were then screened for several criteria: 1) inclusion of comparisons based 
on mathematics items, 2) presentation of empirical evidence, 3) published as a document 
other than a conference paper, 4) relevancy to the research question, 5) had the appropriate 
grade level or assessment [i.e., nothing higher than Advanced Placement (AP) or SAT, and 6] 
availability of the article.   

 
Abt then extracted information from the 31 articles that remained and provided it to 

the Assessment Task Group. The full articles also were provided. An examination of the 31 
articles by the Task Group led to further restriction of the set for the following reasons: 1) 
technical reports that were superseded by a published version, 2) irrelevant purpose for this 
specific research question, 3) inappropriate sample, and 4) inclusion of only MC or CR 
items, but not both. Ten additional articles were excluded; thus, 21 relevant articles were 
available to address the question on item format. To analyze the results, the 21 articles were 
examined in detail by the Task Group for relevant data on the several issues of concern. 
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Results 

Impact of response format on mathematical skills, knowledge, and strategies.  
Potentially the most pressing issue about response format is the extent to which the same skills, 
knowledge, and strategies can be measured by the MC and CR item formats.  Traub and Fisher 
(1977) found that stem-equivalent MC and CR mathematics items measured the same construct 
on a national math achievement test.  That is, items from the two formats loaded on the same 
factor. Further, the skills and abilities measured by separate tests (i.e., ability to follow 
directions, recall and recognition memory, and risk-taking) had similar correlations with 
mathematics scores based on the two formats. Behuniak et al. (1996) also found that items in 
MC and CR format loaded on the same factor, but CR items were significantly more difficult. 
In contrast, Birenbaum et al. (1992) found a format effect in which there were larger 
performance differences on stem-equivalent MC and CR items than on parallel (i.e., 
superficially different) items in the same task format. Pollock and Rock (1997) examined 
National Education Longitudinal Study (NELS) data and found that MC items loaded on a 
different factor than CR items, although the factors correlated highly (r = .86). DeMars (1998) 
found that competencies on a state achievement test that were calculated from MC items versus 
CR items correlated in the .90s when the measures were statistically corrected for unreliability.   

 
Katz, Bennett, and Berger (2000) studied strategy choice for stem-equivalent MC and 

CR items by analyzing verbal reports of problem solving processes during item solving, 
using “talk-aloud” procedures. Katz et al. (2000) found that the “plug-in strategy,” which is 
usually associated with MC items, was used nearly as commonly with CR items. For MC 
items, examinees “plug-in” numbers from the response alternatives to identify the key. 
Students were observed adapting the plug-in strategy to CR items by estimating potential 
solutions and plugging-in numbers. O’Neil and Brown (1998) administered a questionnaire 
following the administration of a state standardized achievement test that contained both CR 
and MC items. Students reported greater use of systematic cognitive strategies for CR items 
than for MC items. However, they reported greater self-checking activity for MC items.   

 
Thus, these studies generally do not support major differences in the nature of the 

construct that is measured by CR and MC items, nor in the strategies that are applied.  
However, much more data on this issue is potentially available because many state 
accountability, graduation, and year-end tests employ both item formats. 

 
Impact of response format on psychometric properties. Several studies have results 

that are relevant to the psychometric properties of CR and MC items. Specifically, the 
psychometric properties that have been examined include item difficulty, item discrimination, 
omission rates, and differential item functioning (DIF) by diverse subgroups. The results vary 
somewhat over the exact type of CR format that is used.   

 
The psychometric properties of MC items to their equivalent CR-G format were 

compared in three studies. Behuniak, Rogers, and Dirir (1996) found a moderate effect size 
(eta2 of .057), which indicated that the CR-G items were harder. However, item format was 
unrelated to item discriminations and to gender-related DIF. Burton (1996) was interested 
primarily in the impact of item format on gender differences with mathematics items. She 
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reports only DIF as item-level statistics and found that MC items exhibited no gender-related 
DIF, while the CR-G format had very small and inconsistent DIF. Hombo, Pashley, and 
Jenkins (2001) found that CR-G items were more difficult than the MC stem-equivalent items 
for most items. They also found sizable differences between the grid-in responses and their 
accompanying written responses, suggesting that examinees have difficulty translating their 
answer to the grid. Hombo et al. (2001) did not report results on item discrimination or DIF. 

 
In summary, these studies are consistent in supporting the conclusion that the CR-G 

format leads to higher levels of item difficulty as compared to stem-equivalent MC items. 
Yet, the results suggest that some, but not all, of the increased difficulty may be attributable 
to examinee difficulties in translating answers to grids. These studies do not provide support 
for format differences in item discrimination or gender-related DIF. Again, it should be noted 
that the number of studies yielded by the search procedures is very small. 

 
Other studies comparing the psychometric properties of MC and CR items use the CR-

S response format, which may be either in written or verbal format. Birenbaum, Tatsuoka, and 
Gutvirtz (1992) and Birenbaum and Tatsuoka (1987) found that stem-equivalent MC items 
were more difficult and less discriminating than CR-S items.  However, because the MC items 
were constructed from previously administered CR-S items, they were able to contain 
common CR errors as distractors. This item design presumably minimizes the feedback 
received by examinees when their calculated answer does not appear as an alternative. Katz, 
Bennett, and Berger (2000) find MC items somewhat more difficult (proportion correct of .78 
and .75 versus .66 and .74, with difference between .78 and .66 being statistically significant) 
than their stem-equivalent CR-S items. However, they note that large differences between 
item formats occurred when the MC stem-equivalent item did not have distractors 
representing common errors.  Thus, MC items may be substantially easier than their CR-S 
counterparts because feedback about incorrect answers may have been provided.    

 
In other studies, operational test data are used to examine the psychometric properties 

of MC and CR items. These comparisons do not involve specially constructed items (e.g., no 
stem-equivalent items) to control for other design differences. The nature of the MC items and 
the CR items that were compared is typically less well specified. In fact, the CR items may 
have been expressly constructed to represent other aspects of performance. DeMars (1998) 
found CR items on a low-stakes form of a state high school proficiency test more difficult 
than MC items. DeMars (2000) also found a similar format effect in a study that included both 
low-stakes and high-stakes high school proficiency tests. Koretz, Lewis, Skewes-Cox, and 
Burstein (1993) found that the omit rates are higher for CR items than for MC items on the 
National Assessment of Educational Progress (NAEP), which can lead to greater apparent 
difficulty for the CR items. Dossey et al. (1993) reported that, although NAEP CR-S items 
have proportions correct in the target range of .40 to .60, CR-EE items are very difficult. 
Garner and Engelhard (1999) also reported that the CR items on a state achievement test are 
more difficult than MC items, but the CR items exhibited less gender-related DIF. 

 
In summary, the evidence about the psychometric properties of CR items as compared 

to MC items is inconsistent and depends on the source and the design of the comparison. If the 
studies utilize operational test data, comparisons of MC and CR items have indicated greater 
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omit rates and greater difficulty for the CR items. This pattern is probably repeated on many 
state tests and would be a strong finding if such data were available for study by the methods 
employed in this study. It should be noted, however, that studies on operational test items 
were not designed to isolate the impact of format by controlling or measuring other properties 
of items. If the studies utilized stem-equivalent versions of MC and CR items, the difference 
in psychometric properties depended on other design features of the items, such as the nature 
of the distractors and the use of grid-in responses. For example, some studies have found the 
CR format to be more difficult, which is consistent with the operational test studies. Other 
studies, however, have found the MC items to be more difficult when the distractors are 
constructed to represent common error patterns. Moreover, little evidence from any design is 
available to support differences between MC and CR items on item discrimination levels, 
DIF, strategy use and the nature of the construct that is measured.   

 
Impact of response format on differences between groups. Finally, the impact of 

response format on differences between diverse groups has been examined in several studies. 
The most information is available on how item format might differentially affect 
mathematics performance of males and females. Historically, boys score higher than girls on 
many tests of mathematical competency (see the Learning Processes Task Group report). 
Hastedt and Sibberns’ (2005) analysis of Trends in International Math and Science Study 
(TIMSS) data indicated that the magnitude of gender-related differences depended on item 
format, with girls scoring relatively higher on the CR item format. DeMars (1998) found that 
the interaction of gender with response format differed between two forms of a low-stakes 
state high school proficiency test, which included both CR-S and CR-EE as well as MC 
items. On one form, no significant interaction was found, while on the other form a small 
significant interaction was observed, indicating that girls scored relatively higher on the CR 
items, but still not as high as boys. DeMars (2000) examined both low-stakes and high-stakes 
high school proficiency tests and found that gender interacted with item format; namely, girls 
scored relatively higher on the CR format while the MC format favored boys. Although 
Gallagher (1992) also found that gender differences were greater on CR items (i.e., boys 
performing better), her comparison was based on high-ability students only. Garner and 
Engelhard (2000), moreover, examined a state high school graduation test. They found small 
gender-related differences on MC items, favoring boys, and smaller gender-related 
differences on CR items, but again favoring boys. Pollock and Rock’s (1996) analysis of 
NELS data found that performance of males and females did not vary as a function of MC 
versus CR items.  Thus, while girls scored lower, this was not due to item format. Burton 
(1996), moreover, found that the changes in item content on math section of the Math 
Scholastic Aptitude Test (SAT-M), among which was the inclusion of CR-G items, did not 
impact gender-related differences in quantitative scores, which traditionally has favored 
boys. Finally, Koretz, Lewis, Skewes-Cox, and Burstein (1993) report that gender-related 
differences in omitting either MC items or CR items were infrequent on NAEP.    

 
Thus, the results on the interaction of the magnitude of gender-related differences in 

performance and item format are inconsistent and depended on the design of the specific 
study. However, the evidence suggests either no impact of response format on gender-related 
differences or that the relatively lower scores of girls than boys on mathematics items may be 
lessened in the constructed-response format.  
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The interaction of racial-ethnic differences with item format also has also been 
examined in several studies. Historically, minority groups score lower on tests of 
mathematical performance (see the Learning Processes Task Group report). In DeMars’s 
(2000) study, proportion minority interacted with format, indicating that black-white 
differences were greater on MC items. Pollock and Rock’s (1996) analyses of NELS data, 
moreover, indicated that demographic variables based on race-ethnicity (black versus white, 
Hispanic versus white) correlated more highly with the MC item factor than the CR item 
factor, indicating greater adverse impact on MC items. Finally, Koretz, Lewis, Skewes-Cox, 
and Burstein (1993) found that racial-ethnic groups differed on the relative rate of omitted 
items for MC and CR items on NAEP. Thus, as a set, these studies provide some evidence 
that black-white differences in performance in mathematics are lessened on CR item format 
as compared to the MC item format.   

 
Other results on item format that are potentially interesting include Hastedt and Sibberns 

(2005) finding on TIMSS data that scores based on MC versus CR items produced only slight 
differences in the relative ranking of the various participating countries. And, DeMars (2000) 
found that the difference between MC and CR items in difficulty depended on the test context. 
The two item formats differed less in difficulty on high-stakes tests than on low-stakes tests. 

Discussion 

The available evidence on comparing the psychometric properties of MC items and CR 
items must be interpreted in the context of several factors. These factors include the following 
limitations: 1) the limited scope of the available scientific literature, 2) the uncontrolled design 
features for comparisons based on operational tests, 3) the design strategy in available controlled 
comparisons of MC and CR items, 4) the limited scope of the controlled comparisons, and 5) 
the impact of test context on the relative performance on MC and CR items.    

 
First, the literature that could be retrieved by the methods in this study did not yield 

many journal articles and widely circulated technical reports. Yet, analyzing the 
psychometric properties of test items is routine test development procedure for many state 
and national tests, many of which contain both MC and CR item formats and most of which 
contain demographic information on examinees. It is unclear if these results are unavailable 
due to lack of appropriate publication outlets, lack of incentives to provide results, or some 
combination of these features. Despite some limitations in these comparisons (discussed 
further in this section), it would be useful to know if the CR items on current tests measured 
the same construct, had greater difficulty but equal discrimination and DIF, and result in 
lessened adverse impact on some groups of test takers as compared to MC items. Given the 
lack of evidence from the wider sphere of operational tests, the best conclusion about these 
issues from the studies that are available is that the evidence is weak or inconsistent. 

 
Second, even if comparison data from operational tests were more available, the 

evidence is limited by the design of the items that appear on operational tests. That is, the 
goal of operational tests is to assess mathematical competency broadly, not to compare the 
MC and CR item formats. Thus, MC and CR items differ on a number of features, only one 
of which is format. Thus, more carefully controlled comparisons are desirable to isolate the 
impact of response format. 
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Third, however, the available comparisons between MC and CR items under 
controlled designs (i.e., stem-equivalent items) have yielded inconsistent results.  Moreover, 
there is another design issue that has emerged—namely, the strategy for constructing stem-
equivalent items. In some studies, CR items are created by removing the distractors from 
operational MC items. Evidence from these studies suggests that CR items are more difficult. 
In other studies, MC items are created to correspond to CR items by using common errors as 
distractors. Evidence from these studies suggests that MC items are more difficult.   

 
Fourth, the controlled designs for comparing MC items to CR items have had limited 

scope. The items that were compared involved short numerical responses. Items at a higher 
level of complexity, those that involve understanding principles or showing steps, have not 
been compared between formats. Perhaps MC items that involve higher levels of complexity 
cannot be constructed; but then again, maybe they can but appropriate studies have not been 
undertaken.    

 
Fifth, test context may interact with comparisons of MC and CR item formats.  For 

example, one study found that a high-stakes context versus a low-stakes context of the same 
operational test was associated with decreased differences between the item formats. One 
interpretation is that the high-stakes test context may evoke sufficient levels of motivation in 
the examinees to complete the more time-consuming constructed-response formats. 
Moreover, tests with mixed item formats may lead to reduced format differences, due to 
item-solving strategies carrying over from one format to another.  That is, in one study 
reviewed in this section, the plug-in strategy that can be effectively applied to the MC format 
may be extended to the CR format if the MC format precedes it. 

 
Given the limitations described in this section, there is little or weak evidence to 

support the CR format as providing much different information than the MC format. For 
example, the available evidence provides little or no support for the possible claim that 
different constructs are measured by the two formats or that item discrimination varies across 
formats. Although some evidence suggests that CR items are more difficult, especially for 
the more extended CR formats, there is some contrary evidence that indicates that more 
difficult MC items can be constructed for their stem-equivalent CR items. Finally, the impact 
data does not support much difference between the two item formats. That is, the impact of 
response format on gender differences is inconsistent, while the impact on racial-ethnic 
differences is weak. 

 
Item response format is one of the several design features that may impact item 

complexity. The evidence found in the scientific literature did not support the notion, 
however, that CR format, particularly the short answer type, measures different aspects of 
mathematics competency compared to MC. The impact of item format may interact with 
other design features, such as test context or strategy for developing controlled comparisons 
items. Thus, the important issue is not whether to select MC versus CR format, but rather 
how to most efficiently design items to measure content of the designated type and level of 
cognitive complexity.   



  

 

 8. REPORT OF THE TASK GROUP ON ASSESSMENT 

8-67 

APPENDIX F: Factors to Evaluate the Quality of  
Item Design Principles 

Ensuring that high-stakes tests, such as the NAEP and various state tests, are of the 
highest quality psychometrically is critical. Measurement instruments need to be accurate and 
unbiased.  The Task Group presents suggestions, or factors, for how quality control might be 
carried out. These factors, posed in the form of questions to be addressed, are relevant to 
principles such as item format and problem context (word problems), as well as item 
administration methods, such as including calculators and manipulatives. 

 
1) Are the items generated from the principles appropriate for the targeted construct, or 

are they more likely to have nonmathematical sources of difficulty? What additional 
factors can reduce this vulnerability?  

a. For example, do items created in constructed-response (CR) formats rely more 
heavily on verbal skills than mathematical skills? Which CR formats or rubrics 
are less likely to involve these skills? 

b. Are items generated with “real-world” context more likely to contain confusing or 
irrelevant verbal material, visual displays, or practical knowledge? What 
mechanisms reduce this confounding? 

2) Are the items generated from the principles generally appropriate to provide maximal 
information for the competency levels targeted by the assessment? 

a. Several factors reduce information, including unreliability in the scoring 
mechanisms, inappropriate item difficulty for the targeted levels, low item 
discrimination, and high vulnerability to guessing. 

b. What mechanisms reduce this source of confounding (e.g., machine scoring of CR)? 

3) Are the items generated from the principles more likely to be vulnerable to 
differential item functioning (DIF)?   

4) Are the items generated from the principles appropriate for model-based approaches 
to measurement? 

a. Current state and national assessment typically apply item response theory (IRT) 
approaches to scaling items. These approaches allow equating of tests across forms 
and time, which is necessary to examine trend and maintain comparable standards.     

Are there special mechanisms to adapt diverse item design principles to IRT models? 
IRT easily accommodates binary and polytomous formats, including partial credit scoring. 
Formats known to produce local dependence (a violation of IRT assumptions) can sometimes 
be accommodated by special mechanisms, such as testlet scoring.  
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APPENDIX G: Descriptors Used in the Literature Search and 
Exemplars of Satisfactory Word Problems 

To help the Assessment Task Group locate any previous work that might have been 
done with respect to language or wording defects in test items used in mathematics 
assessments, Abt Associates Inc. (Abt) conducted an extensive search of the research 
literature and related items. The descriptors used by Abt appear in the following chart. 

 
Table G-1: Descriptors Used in Literature Search 

Math* and  
Assessment*  
Test*  
Testing*  
 Item language 
 Item wording 
 Question language 
 Question wording 
 Item wordiness 
 Language bias 
 Linguistic simplification 
 Language density 
 Essential language 
 Non-essential language 

*Note: All of the terms in the list were searched 
simultaneously with math, and assessment or test or testing. 

Examples of Satisfactory Word Problems 

The Task Group examined state tests to provide examples of desirable content in 
mathematics word problems. The major purpose of word problems on broadly given assessments 
should be to assess skill in converting relationships described verbally into mathematical 
symbolism or calculations. Moreover, they should satisfy the following conditions: 

 
a) be written in a way that reflects natural and well-written English prose at the grade-

level assessed; 

b) assess mathematics knowledge and skills for the grade level of the assessment as 
judged by international benchmarks while restricting nonmathematical knowledge to 
what would be general knowledge for most students;  
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c) clearly assess skill in converting relationships described verbally into mathematical 
symbolism or calculations, or, if they use a “real-world” setting, they use a setting 
that aids in solving a problem that would be more cumbersome to state in strictly 
mathematical language.  

 
The following five items illustrate some features that are relevant for quality word 

problems. 
 

1)  The following is an appropriate example of a satisfactory item for which the 
nonmathematical knowledge is minimal and the student is expected (as 
appropriate in a mathematics test) to convert relationships described verbally into 
mathematical symbolism or calculations: 

For example: Grade 4, Georgia, No. 1, Page 2–5 

The local park is having a game day. There are 5 teams, with 3 boys and 4 girls 
on each team. How many children are there in all? 

 12  15  20  35 

Comment: This problem assesses whether the student can convert a relationship 
described verbally into appropriate mathematical symbolism. Moreover, the 
nonmathematical nouns are at an appropriately low level of vocabulary. 

2)  Here is an appropriate word problem in which the real-world setting is an aid to 
the student in solving a problem that could have been expressed in strictly 
mathematical language:    

For example: Grade 8, Massachusetts, N.12 on Page 2–20  

Mona counted a total of 56 ducks on the pond in Town Park. The ratio of female 
ducks to male ducks that Mona counted was 5:3. What was the total number of 
female ducks Mona counted on the pond? 

A. 15 B. 19 C. 21 D. 35 

Comment: A student has to decide which fractions are relevant. Moreover, any 
statement of a ratio problem similar to this problem becomes harder to read if the 
context is removed. [However, the problem could be improved by making the 
total number of ducks equal to 120, so that the total could be divided by any of 3, 
5, and 8 without giving a remainder.]  
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3)  Here is an appropriate example of a test item requiring logical reasoning with 
appropriate mathematical aspects:  

For example: Grade 8, NAEP 2005, Problem 5, page 5–28 

Ravi has more tapes than magazines. He has fewer tapes than books. Which of the 
following lists these items from the greatest in number to the least in number? 

A) Books, magazines, tapes B) Books, tapes, magazines  
C) Magazines, books, tapes D) Tapes, magazines, books  

Comment: Although this problem could also be appropriate for a language arts 
assessment, it is also appropriate for a mathematics assessment because the 
language of inequalities is so closely related to the terminology in the item. 

4) Here is an appropriate item with a natural sequence of sentences in which 
disciplined mathematical reasoning is the cornerstone:  

For example: Grade 8, Washington, No. 20 

Mrs. Bartiletta’s class has 7 girls and 3 boys.  She will randomly choose two 
students to do a problem in front of the class.  What is the probability that she will 
choose 2 boys? 

A. 
15
1  B. 

5
2  C. 

7
3  D. 

19
5  

Comment: The student must first realize that this is a “without replacement” 
problem. Then the student is free to choose either permutations or combinations 
for the denominator. After that, however, the student must be consistent for the 
numerator. Finally, a fraction reduction is needed to match Option A. [This 
problem could reasonably be viewed as beyond the level required for 
performance at Grade 8.] 
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5) Here is an appropriate problem focused on one of the three methods of making 
planar pictures to represent 3-dimensional objects:   

For example: Grade 8, Texas, No. 50 

Melody made a solid figure by stacking cubes. The solid figure is shown below. 

 

Which drawing best represents a front view of this solid figure? 

F 

 

 

H 

 
 

G 

 

 

J 

 
 
Comment: The problem is stated nicely. In particular, the phrase “by stacking” 
and the attribution to Melody make it clear to the student that he/she is being 
faced with a static situation. 
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Executive Summary 

This report presents findings from a study by the National Opinion Research Center 
(NORC) of a nationally representative sample of public school Algebra I teachers, the 
National Survey of Algebra Teachers (NSAT).  A sample of 310 schools was selected from a 
comprehensive list of public schools that included the eighth grade or higher. Of the 310 
schools selected, 258 agreed to provide rosters of their Algebra I teachers. A total of 1,026 
teachers were identified on this basis, and 743 (72%) returned completed questionnaires by 
the July 1, 2007, close of data collection. The report begins with a demographic and 
professional profile of the public school Algebra I teachers, and then presents findings related 
to the research questions identified by the National Mathematics Advisory Panel (National 
Math Panel, NMP, Panel) to guide the study.   

Teacher Background 

The Algebra I teachers who completed the survey were predominately female (66%), 
white (91%), and had a median age of 41 years old.  The median years of teaching 
experience was nine years, and these teachers had taught algebra for a median of six years.  

In terms of education, all had at least a baccalaureate degree and 51% had an M.A. or 
M.S., or other advanced degree.  About 44% majored in mathematics and another 24% 
minored in mathematics during college; 8% earned an advanced degree in mathematics. 

About 28% of the Algebra I teachers were teaching at the middle or junior high 
school level, while almost all of the other 72% were teaching in high schools (less than 5% 
were in combined middle-high schools). 

Student Preparation 

Research Question #1: How do the teachers rate the preparation of students coming into 
their Algebra I classes? Are there widespread problems, or are problems confined to 
individual students? 

The teachers generally rated their students’ background preparation for Algebra I as 
weak. The three skill areas in which teachers reported their students have the poorest 
preparation are rational numbers, word problems, and study habits (Table 7).    

The teachers’ ratings of student preparation generally did not vary much by school 
demographic.  The main point of difference was that teachers of classes that primarily enroll 
seventh- or eighth-graders rated their students’ backgrounds more highly, by 0.87 standard 
deviations (p < .001).  The grade level of the class is likely to be a proxy for the ability level 
of the class, with eighth grade being the advanced group, ninth grade the average group, and 
10th and higher the lower groups. 
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Research Question #2: To the degree that the teachers believe students need to be better 
prepared, what are the major shortcomings? 

The teachers were asked to rate the importance of a “solid foundation” in the each the 
15 skill and knowledge areas asked about with respect to their target class students’ 
background preparation. Since the same background skills and knowledge for which the 
teachers rated student background as inadequate were also rated as important, the following 
areas emerge as the major shortcomings: rational numbers, word problems, and study habits.  

Research Question #3: Given their experience with incoming students, would teachers 
change the level of emphasis placed on mathematics topics at the elementary level? If so, 
how would they change it?  

• Would they put more or less emphasis on basic understandings or arithmetic and 
whole number, fraction and decimals operations? 

• Would they put more or less emphasis on helping students master basic concepts? 
 

These questions are covered to some extent in the open-ended survey question #2 in 
section 3 (item 3.2), “Please provide a brief description of any changes you would like to see 
in the curriculum leading up to Algebra I in your district.”  Of the 743 teachers who returned 
completed questionnaires, 578 provided verbatim responses to this item.   

The most frequent type of suggestion among the 578 respondents was a greater focus 
in primary education placed on mastery of basic mathematical concepts and skills.   

Curriculum and Instruction 

Research Question #4: How do teachers rate their state and local district curricular 
expectations in algebra for PreK–12?  How do they rate the state or local school district 
mathematics standards and math tests that they currently use? 

• The modal response (67%) from teachers is that they feel that local expectations for 
student proficiency in Algebra I are “about right,” while about equal numbers rated 
them as “too high” (8%) or “too low” (11%) (see Figure 3).  

• The teachers were also generally favorable about content standards for Algebra I in 
their state or local district. A majority (53%) of teachers feel that the content 
standards are good and 16% rate them as excellent. Only about 5% rated their content 
standards as poor (see Figure 4).  

• Teachers were less positive about state and local assessment standards, but the modal 
response (43%) was still that they were “good.” About 9% rated them as excellent 
and 15% rated them as poor (see Figure 5).    
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Research Question #5: How do they rate their textbook (or textbooks in general) regarding 
algebra instruction? 

The questionnaire included several items asking for the teacher’s evaluation of the 
textbook they use in the target class (survey items 1.8a–i).  For the most part, teachers were 
satisfied with their texts’ topics (Figure 7).  The teachers rated their textbook least positively 
on the degree to which it is well suited for the needs of a diverse population of students 
(Figure 6).  

Research Question #6: How do the teachers rate online technology tools? 

The questionnaire included questions asking how often the teachers used computer-
based instructional tools (item 1.5f), the extent to which insufficient access to computers is a 
problem in their school (item 2.1a), and how much they agreed or disagreed with the 
proposition that “Computer-based instructional tools (software) are helping Algebra I 
students in my Target Class” (item 1.6).  

The data indicated that the average response to how frequently these tools are used 
was about 1 (= less than once a week) on a scale that ranged from (0 = never) to (4 = 
everyday) (Table 9 and Appendix D). The generally low levels of computer use does not 
appear to be a reflection of insufficient access.  About half (49%) of the teachers reported 
that insufficient access to computers was not a problem in their schools and another 28% 
reported insufficient access to be a minor problem (Table 9). The teachers’ ratings of the 
helpfulness of computer-based instructional tools were mixed, with 29% agreeing somewhat 
or agreeing strongly with the proposition that computers were helpful and 38% disagreeing 
somewhat or disagreeing strongly (34% neither agreed nor disagreed) (Figure 8).   

Research Question #7: What is the role of the calculator in the algebra course? 

Questionnaire item 1.5d asked how often the teacher uses graphing calculators in her 
or his target class.  Overall, 33% of the teachers reported never using graphing calculators 
and another 29% report using them less than once a week. About 31% used them everyday 
(18%) or almost everyday (13%) (Table 10). Teachers’ reports of insufficient access to 
graphing calculators was correlated with reports of low usage (Table 11).  

Research Question #8: To what extent do the Algebra I teachers use physical objects 
(manipulatives) as instructional tools? 

The relevant questionnaire item for this question asked how often the teacher uses 
physical objects, commonly referred to as manipulatives, in her or his target class (item I.5e).  
Overall, use of manipulatives on an occasional basis was widespread, but very few (9%) teachers 
report using them more than once a week or everyday.  About 12% of the teachers reported never 
using manipulatives, and about 60% reported using them less than once a week (Table 12).   
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Research Question #9: How do teachers rate their professional training? 

Questionnaire items pertaining to professional training and development included 
questionnaire items 3.4a,b and possibly 4.19;  items 2.1f and j are also relevant.  These items 
were examined by the teachers’ years of teaching experience, and school classification variables. 

• Teachers were asked to report the extent to which they believe inadequate preparation 
to teach Algebra 1 and opportunities for professional development are problems in 
their respective schools. The responses showed that both of these were generally 
viewed as very minor problems in their schools (see Table 13).  When asked to rate 
their own Algebra I-related preservice training and in-service professional 
development opportunities, the teachers on average rated these experiences as just 
“adequate” (see Table 13 and Figures 10 and 11), suggesting room for improvement 
in the preservice training programs and professional development opportunities 
experienced by some teachers. 

 
Research Question #10: Is there sufficient and effective remedial help for students who are 
struggling in algebra? What sort of assistance-based interventions would struggling students 
benefit from the most? 

Questionnaire items 2.8a–b asked the teachers to rate the availability and quality of 
tutoring or other remedial services for students struggling with Algebra I in their schools. 

• On average, teachers were generally satisfied with the services available (Table 14). 

• Controlling for other demographic variables, remedial services were rated somewhat 
higher by teachers in schools with high minority enrollments. Also controlling for 
other demographic variables, female and black teachers are less satisfied with their 
schools’ remedial services. (See Appendix Table C-8.) 

Research Question #11: Would students learn more if they were grouped by ability for 
instruction, or is this approach counterproductive? 

Questionnaire item 2.2 asked whether the school offers different levels of Algebra I 
based on ability; and 46% of the teachers indicated their schools did differentiate.  
Questionnaire item 2.1h asked teachers to rate the extent to which they see different levels of 
students in the same class as a problem in their school. A substantial number of teachers 
considered mixed-ability groupings to be a “moderate” (28%) or “serious” (23%) problem 
(see Figure 12).  Teachers in schools that did not offer different levels of Algebra I based on 
ability were more likely than their counterparts in schools that do use ability grouping to 
consider mixed-ability classrooms to be a moderate or serious problem (Table 15). 

Research Question #12: Do teachers find more parents helpful in encouraging students in 
their mathematics studies, or do too many parents make excuses for their children’s lack of 
accomplishment?   

Questionnaire item 2.1i asked teachers to rate the extent to which they see “too little 
parent/family support” as a problem in their school. The responses indicate that about 28% of 
the algebra teachers felt family participation is a serious problem and another 32% believed 
lack of family participation is a moderate problem (Figure 13).   
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Research Question #13: What do they see as the single most challenging aspect of teaching 
Algebra I successfully?  

This question (4.20) included 10 response options: explaining material to students, 
handling accelerated students, teaching procedures, explaining concepts, using diagrams or 
models effectively, interpreting student errors and difficulties, working with unmotivated 
students, working with advanced students, helping students whose home language is not 
English, making mathematics accessible and comprehensible, and an “other” option.   

The overwhelmingly most frequent response to this question was “working with 
unmotivated students.”  This was chosen by 58% of the middle school teachers and 65% of 
the high school teachers (Table 16).  The next most frequent response was “making 
mathematics accessible and comprehensible to all my students,” selected by 14% of the 
middle school teachers and 9% of the high school teachers.   

Conclusions 

The Algebra I teachers generally reported that students were not adequately prepared 
for their courses. The teachers rated as especially problematic students’ preparation in 
rational numbers, solving word problems, and basic study skills. A lack of student motivation 
was by far the most commonly cited biggest challenge reported by the teachers.  The 
problems the teachers identified with the pre-Algebra I mathematics curriculum and 
instruction and with the lack of parental support for mathematics were likely to be 
contributing factors to the lack of adequate student preparation and motivation. 

In contrast, the teachers generally held favorable views with respect to their own 
professional preparation and the Algebra I curriculum and instructional services. Taken 
together with the generally negative ratings of students’ preparation and motivation suggests 
that careful attention to pre-algebra curriculum and instruction in the elementary grades is 
needed, both to remedy the specific skill deficiencies reported by the Algebra I teachers and to 
identify ways in which negative attitudes toward mathematics develop and might be changed. 
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I. Introduction 

The National Survey of Algebra Teachers (NSAT) conducted by the National Opinion 
Research Center (NORC) surveyed a national sample of public school Algebra I teachers 
during the 2007 spring school semester.  The survey was designed to collect detailed 
information about the teachers’ views on student preparation, motivation, work habits, and 
skills—as well as teachers’ insights on how math is now taught, how earlier math education 
could be improved to prepare more children to succeed at algebra, and what would help all 
math teachers do a better job. The survey was designed to shed light on the experiences of 
algebra teachers in different kinds of school systems—for example, low-income, mainly 
minority schools versus higher income, mainly white schools. Learning algebra is often a 
turning point in a student’s math education—when the student either thrives and moves 
forward or struggles and perhaps gives up on math—and the algebra teachers have a unique 
perspective on math education that is well worth understanding in some detail. 

The NSAT was designed to provide a nationally representative sample of Algebra I 
teachers in public schools.  A sample of 310 schools was selected from a comprehensive list 
of public schools which included the eighth grade or higher. The list was stratified by the 
type of grade configuration in the school (middle or junior high school, high school only, 
combined middle and high school), the number of students from low-income households, the 
number of racial and ethnic minority students enrolled in the school, and school location 
(urban, suburban, rural).  Within the strata defined by these variables, schools were selected 
with probabilities of selection proportional to the estimated numbers of Algebra I teachers. 
Of the 310 schools selected, 258 agreed to provide rosters of their Algebra I teachers. A total 
of 1,026 teachers were identified on this basis, and 743 (72.4%) returned completed 
questionnaires by the July 1 close of data collection.  

This report presents the survey results and provides initial analyses to identify 
important sources of variability in the teacher reports.  It begins with a demographic and 
professional profile of the public school Algebra I teachers, and then presents findings related 
to the research questions identified by the National Mathematics Advisory Panel to guide the 
study.  The survey methodology and data collection results are described in Appendix A. A 
full set of tabulations of the main survey variables is included in Appendix B.  Tables and 
figures are used throughout the report to improve readability, and the numbers upon which 
they are based are displayed in the Appendix B tables. Multiple regression models are 
estimated to provide compact summaries of the influences of several variables on the 
outcomes focused on in the report, and the regression tables are included in Appendix C 
along with a descriptions of the independent variables used in the models. Appendix D is the 
means and confidence intervals for items in the National Survey of Algebra Teachers. 
Appendix E is a copy of the questionnaire used to collect the data. The report concludes with 
a summary of the main findings and a discussion of their implications.  
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II. Analysis of Survey Variables 

Teacher Background and Work Situation 

A profile of the demographic and professional backgrounds of the academic year 
2006–07 Algebra I teachers in U.S. public schools is shown in Table 1.  These teachers were 
predominately female (66%), white (91%), and had a median age of 41 years old.   The 
Algebra I teachers’ median years of teaching experience was nine years and had taught 
algebra for a median of six years. In terms of education, all had at least a baccalaureate 
degree and about half had an M.A. or M.S., or other advanced degree.  About 44% majored 
in mathematics and another 24% minored in mathematics during college; about 15% of those 
who earned an advanced degree specialized in mathematics (Table 1).    

Table 1: Demographic and Professional Characteristics of Algebra I Teachers: 2007 
Characteristic Values Valid N Weighted % 
Teacher is female 0–1 733 65.5 

Teacher racial/ethnic background    

Hispanic 0–1 727 5.7 

American Indian or Alaska Native 0–1 715 2.1 

Native Hawaiian or other Pacific Islander 0–1 715 0.2 

Asian 0–1 715 2.5 

Black or African-American 0–1 715 3.6 

White 0–1 715 91.0 

1st: 22–30 yrs   27.4 

2nd: 31–40 yrs   21.6 

3rd: 41–50 yrs   25.1 

4th: 51–65 yrs   26.0 

Teacher age (quartiles)  

All 729 100.0 

1st: 0–3 yrs   31.1 

2nd: 4–9 yrs   30.6 

3rd: 10–18 yrs   21.6 

4th: 19–41 yrs   16.7 

Teacher’s total years teaching experience (quartiles)  

All 733 100.0 

1st: 0–2 yrs   24.4 

2nd: 3–6 yrs   24.4 

3rd: 7–14 yrs   26.4 

4th: 15–40 yrs   24.8 

Teacher’s years teaching algebra (quartiles) 

All 733 100.0 

Bachelor’s   51.4 

Master’s   40.9 

Other advanced degree   7.7 

Teacher’s highest degree 

All 737 100.0 

Math major 738 43.6 Baccalaureate math background 

Math minor 729 24.2 

Graduate degree math background Math specialty 400 15.2 

Teacher has regular or standard state certification 0–1  733 82.4 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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The distribution of Algebra I teachers by grade level (8–12) and by the main school-
level classification variables used throughout the report is shown in Table 2.  The first three of 
these school-level variables largely reflect student enrollment patterns across the country: 

• Type of locale: the standard three-level indicator of urban (27%), suburban (39%), 
and rural (34%) school location. 

• Percentage of students receiving free or reduced-price lunch: the percentage variable 
was recoded into quartiles of the distribution of Algebra I teachers (median was 10% 
of the students are eligible).  

• Percentage of students who are black or Hispanic: the percentage variable was 
recoded into quartiles of the distribution of Algebra I teachers (median is 27% of the 
students are black or Hispanic). 

The grade level variable at the bottom of Table 2 indicates that 32% of the algebra 
teachers were teaching at the middle or junior high school level, while 50% were teaching in 
high schools and 18% were in combined middle-high schools. 

Table 2: Characteristics of Schools With Algebra I Teachers: 2007 

School Characteristics Values UnWtd. N Wtd. N Wtd. % 

Urban 252 23,088 26.9 

Suburban 381 33,796 39.4 

Rural 110 28,891 33.7 

School urbanicity 

Total 743 85,775 100 

Low thru 10% 119 22,923 26.7 

11 thru 27% 184 20,100 23.4 

28 thru 48% 265 24,549 28.6 

49 thru 81% 175 18,202 21.2 

Percentage minority—quartiles  

Total 743 85,775 100 

Low thru 3% 219 21,998 25.6 

4 thru 10% 227 24,537 28.6 

11 thru 40% 182 22,318 26 

41 thru 82% 103 16,358 19.1 

Percentage free/reduced-price lunch  
status—quartiles 

Total 731 85,210 99.3 

Middle, junior high, or  
K–8 school 128 27,508 32.1 

High school (9–12 or 10–12) 532 43,234 50.4 

Other schools  83 15,033 17.5 

School grade level 

All schools 743 85,775 100 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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The Algebra I teachers were asked to report several characteristics about a “target” 
Algebra I class they were currently teaching.  The following table shows the portion of 
algebra teachers and their classes that fit various criteria.  Most teachers reported that their 
class meets everyday (83%) and that they have enough time to teach algebra adequately 
(77%).  About half of the teachers’ schools offer different levels of algebra based on student 
needs, and about one-third of teachers reported that their class is part of block scheduling in 
their school.  

The teachers were asked which student grade levels they were currently teaching in 
their Algebra I  classes. The ninth grade was reported most often, by 58% of all the algebra 
teachers.  Tenth grade was next (43%), followed by eighth grade (38%) and 11th grade 
(28%).  A significant portion taught seniors (17%), and only 7% reported teaching seventh-
graders. A significant number of the teachers (15%) reported teaching special education 
students in their Algebra I class(es). (See Table 3.) 

Table 3: Percentages of Algebra I Teachers Reporting Various Characteristics of Their 
Classes and Schools: 2007 

Classes and School Lower 95% CI Mean Higher 95% CI 

Target class meets everyday 76.1% 82.8% 89.4% 

Feel they have enough time to adequately teach 70.7% 76.3% 81.9% 

School offers different levels of Algebra I based on ability 39.3% 46.6% 54.0% 

Target class is part of block scheduling 26.4% 33.9% 41.4% 

Teachers Who Teach Algebra I to 

7th-graders 3.7% 6.7% 9.7% 

8th-graders 31.2% 38.4% 45.7% 

9th-graders 50.6% 57.5% 64.5% 

10th-graders 36.9% 43.2% 49.5% 

11th-graders 22.3% 27.6% 32.8% 

12th-graders 12.3% 16.8% 21.3% 

Special education students 10.8% 15.1% 19.4% 

Teachers’ Estimates of How Many Students Will Fail Their Algebra I Course 

None of the students in target class 15.6% 21.7% 27.9% 

1–10% of the students in target class 33.9% 40.7% 47.4% 

11–20% of the students in target class 12.4% 18.0% 23.6% 

21–30% of the students in target class 5.3% 8.3% 11.4% 

31–40% of the students in target class 3.5% 5.6% 7.6% 

41–50% of the students in target class 2.2% 3.3% 4.4% 

50% or more of the students in target class 1.4% 2.5% 3.7% 

Note: CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted 
for design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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With regards to rates of failing Algebra I, 22% of the teachers believed that none of 
the students in their target class would fail, and another 41% expected 1–10% of their 
students would fail.  A substantial proportion of the teachers (20%) expected to fail more 
than 20% of their students. 

Time allocations. Teachers were asked to report the number of minutes spent on 
various activities.  On average, a class period of algebra lasted about one hour.  Teachers also 
averaged about 1 hour per day preparing for their classes during the school day.  Teachers 
also spent time outside of school in preparation, which averaged 54 minutes per day.  In 
comparison, teachers expected their students to spend about 25 minutes per day on their 
Algebra I homework. 

Table 4: Average Time (in Minutes) Algebra I Teachers Spent on Various Activities: 2007 
Activity Lower 95% CI Mean Higher 95% CI 

In class per period 59.28 62.14 65.00 

In preparation during a school day 57.25 61.16 65.07 

In preparation for algebra outside of school 50.14 54.38 58.62 

Expected time needed for target class students to complete 
homework per day 

23.28 24.81 26.33 

Note: CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted 
for design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

As for the students in their target class, teachers were generally satisfied with their in-
class behavior.  On average, teachers felt that most of their students came to class on time 
and attended class regularly.  Teachers also felt that more than half of their students generally 
came to class prepared, paid attention, participate, take notes, and care about the grades they 
receive.  Disruptions do not appear be a major problem, as teachers report that few of their 
students create behavior problems.  Finally, teachers felt that few of their students have 
serious difficulties reading English. 

Further analyses found that teachers in urban schools were more likely to report that 
their students presented behavior problems, while teachers in rural schools reported the best-
behaved students.  
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Table 5: Teacher-Reported Algebra I Target Class Student Behavior Characteristics: 2007 
Student Behavior Characteristics Lower 95% CI Mean Higher 95% CI 

Come to class on time 3.49 3.57 3.65 

Attend class regularly 3.39 3.46 3.54 

Come to class prepared with appropriate supplies and books 2.79 2.92 3.05 

Create serious behavior problems 0.53 0.61 0.69 

Regularly pay attention in class 2.70 2.82 2.93 

Actively participate in class activities 2.57 2.69 2.80 

Take notes 2.59 2.72 2.86 

Have serious difficulties reading English 0.41 0.47 0.54 

Care about what grade they receive 2.78 2.90 3.02 

Note: Scale: 0 = None, 1 = Some, 2 = About Half, 3 = Most, 4 = Nearly All 

CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted for 
design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

Size of target class.  Most teachers have classes between 15 and 30 students, with 21–
25 students reported most often.  However, NORC’s analysis found a strong correlation (r = 
0.54) between the size of a teacher’s target class and whether or not he or she felt that class size 
is a problem (see Table 6).  Of those that felt it was not a problem, 90% of those teachers had 
class sizes of 25 students or below.  Of those that felt it was a serious problem, almost 75% of 
those teachers had a class size above 25 students.  There is a clear connection between class 
size and teachers feeling that it is a problem; this correlation is across the board.  

Table 6: Size of Target Class, by Extent to Which the Teacher Considers Large Class 
Sizes to Be a Problem in the School: 2007 

 How much of a problem is class size? 

Size of  
Target Class 

Not a 
Problem 

Minor 
Problem 

Moderate 
Problem 

Serious 
Problem 

All  
Teachers 

Less than 15 students 19.19% 4.05% 2.00% 0.41% 9.90% 

15–20 students 40.44% 21.93% 11.24% 4.24% 26.11% 

21–25 students 29.56% 41.89% 24.07% 19.84% 30.82% 

26–30 students 7.58% 28.13% 51.19% 38.46% 24.37% 

31–35 students 1.99% 2.78% 10.05% 30.37% 6.90% 

More than 36 students 1.24% 1.21% 1.45% 6.67% 1.90% 

Total 100% 100% 100% 100% 100% 

Note: Chi-square = 296.6 (p < 0.000), Correlation = 0.54 (p < 0.00) 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Student Preparation 

Research Question #1: How do the teachers rate the preparation of students coming into 
their Algebra I classes? Are there widespread problems, or are problems confined to 
individual students? 

As noted in the previous section, the teachers were asked to report several 
characteristics about a target Algebra I class they were currently teaching. The questionnaire 
items asking about students’ preparation are in Section 1, question #4 (items 4a–4o). The topics 
are listed in Table 7 and ranked from the biggest problem (on the bottom) to the smallest (the 
top).  These items range from 1 = excellent [preparation] to 4 = poor [preparation]. 

Table 7: Teachers’ Survey Responses on Student Preparation for Algebra I: 2007 
 
 

 
95% CI 

Based on your experience with incoming Algebra I students in your Target 

Class, how would you rate students’ background in each of the following areas 

of mathematics? Mean Low High 

Whole numbers and operations with whole numbers 1.86 1.80 1.92 

Working cooperatively with other students  2.32 2.26 2.37 

Plotting points, and graphing lines on the four-quadrant coordinate plane  2.44 2.37 2.51 

The concept of variables  2.48 2.42 2.54 

Computation skills  2.53 2.47 2.60 

Positive & negative integers and operations with positive & negative integers 2.58 2.51 2.64 

Working independently 2.58 2.52 2.64 

Solving simple linear equations and inequalities 2.80 2.74 2.86 

Measurement formulas of basic geometric shapes  2.81 2.75 2.87 

Manipulation of variables  2.82 2.76 2.88 

Ratios, percents, rates, and proportions  2.83 2.77 2.90 

Ability to use math in context that are identified as real-world situations  2.94 2.89 3.00 

Basic study skills and work habits necessary for success in math 3.00 2.94 3.06 

Rational numbers and operations involving fractions and decimals  3.10 3.04 3.16 

Solving word problems  3.26 3.20 3.32 

Note: CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted 
for design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

As Table 7 shows, the three skill areas in which teachers report their students have the 
poorest preparation are solving word problems, rational numbers and operations involving 
fractions and decimals, and basic study skills and work habits.  Student preparation is 
relatively strong in whole numbers and operations with whole numbers, working 
cooperatively with other students, and plotting points and graphing lines on the four-quadrant 
coordinate plane. 
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The teachers’ responses to the various items in this battery are highly correlated with 
one another and can be combined into a single “student preparation” summary scale. As is 
evident in Figure 1, teachers generally feel their students are fair-to-poorly prepared for their 
algebra class (alpha = 0.94). 

Figure 1: Percentage Distribution of Composite Student Preparation Scale Score: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

Differences in the teachers’ scale scores associated with types of classes and schools 
were assessed using regression analysis. The estimated regression coefficients of the class-
type and school-level covariates are reported in Appendix Table C-1. 

• The most consistent finding from the analyses is that, holding other factors constant, 
teachers of classes of primarily seventh- or eighth-graders rated their students’ 
backgrounds more highly, by 0.88 standard deviations (p < .001).  The grade level of 
the class is likely to be a proxy for the ability level of the class, with eighth grade 
being the advanced group, ninth grade the average group, and tenth and higher the 
lower groups. 

The regression analysis also finds that some school-level covariates were associated with 
whether teachers feel their students are prepared.  Teachers in schools with a high concentration 
of minority students (greater than 81%) felt that their incoming students were less prepared, but 
this difference was reduced and not statistically significant in the full regression equation.  
Interestingly, there was only a weak association of teacher ratings with the schools’ free and 
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reduced-price lunch concentrations.  Teachers’ opinions of their students’ preparations varied 
across urban-suburban-rural lines, with urban teachers having the lowest opinion and rural 
teachers having the highest, but these differences were not significant in the full regression. 

Research Question #2: To the degree that the teachers believe students need to be better 
prepared, what are the major shortcomings? 

The teachers were asked to rate the importance of a “solid foundation” in the each the 
15 skill and knowledge areas asked about with respect to their target class students’ 
background preparation (see questionnaire items 3.1a–o).  We addressed this research 
question by combining the teachers’ responses to the 15 student preparation items (1.4a–o) 
with teacher responses to the questionnaire items asking how important each of the 
preparation items is for success in Algebra I (3.1a–o).  Information from the two batteries 
was combined to weight the preparation rating by its importance.  A “preparation problem” 
score for each item was calculated by multiplying the teacher’s rating of his or her students’ 
preparation by that teacher’s rating of the importance of a solid foundation in that particular 
area to students’ success in Algebra I.  

• Referring to Figure 2, weighting each topic by the teachers’ level of importance, yields 
a similar pattern to that shown in Table 7 for the teachers’ ratings of student 
backgrounds, with only minor differences in the ordering of the items. 

 
Figure 2: Teachers’ Ratings of Student Preparation Problems in Various Areas of 
Mathematics: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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The set of preparation-problem items are highly intercorrelated and, like the 
background-preparation items, can be combined into a summary scale to facilitate analysis of 
factors related to differences among teachers in their ratings. For NORC’s analysis, a 
summary “preparation problem” scale was constructed using the full set of weighted items 
and it was regressed based on the standard classroom and school classification variables.  

• The regressions of this scale on the classroom, school, and teacher variables also 
confirm the patterns from the ratings of background preparation—students in the 
seventh- and eighth-grade Algebra I classes are better prepared than those taking 
Algebra I in Grade 9 and higher (see Appendix Table C-2).  

 
The consistency of Table 7 and Figure 2 reflects the fact that virtually all of the “how 

important” items (3.1a–n) were rated as “very important” or “extremely important” by almost 
all respondents. Because these are largely invariant across the whole sample, the weighting 
method just outlined did not yield different results than the analysis of the preparation items 
discussed under research question #1. 

Research Question #3: Given their experience with incoming students, would teachers 
change the level of emphasis placed on mathematics topics at the elementary level? If so, 
how would they change it?  

• Would they put more or less emphasis on basic understandings of arithmetic and 
whole number, fraction, and decimals operations? 

• Would they put more or less emphasis on helping students master basic concepts? 
 

These questions are covered to some extent in the open-ended item 3.2, “Please 
provide a brief description of any changes you would like to see in the curriculum leading up 
to Algebra I in your district.”  Of the 743 teachers who returned completed questionnaires, 
578 provided verbatim responses to this item.   

A substantial number of the 578 would like to see a greater focus in primary 
education placed on mastery of basic mathematical concepts.  For example: 

“Students need to be better prepared in basic math skills and not be quite so 
calculator dependent. Also, more training in thinking skills.” 
 
“Make sure the 1st–8th grade teachers teach the foundations of math and that 
the students know their basic skills.” 
 
“More focus on basics - students should already know order of operations, 
positive vs. neg. numbers, fractions, and decimals.” 
 
“Stronger basic math facts, less rigor and rushing to higher math and more 
arithmetic.” 
 
“Please do not allow students to use calculators, especially fraction calculators.” 
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As these examples suggest, responses to this item will also be the best source in the 
questionnaire for answers to the National Math Panel’s research question “What are the 
teachers’ views on students using calculators in the early grades?” Of those that wrote an 
answer for item 3.2, (N = 578), 13% (N = 75) specifically mentioned that they would like to 
see less use of calculators before students take their Algebra I class. 

Additionally, 8% of the teachers (N = 46) also mentioned changing pre-algebra 
standards.  These responses not only include teachers stating that students need to prove their 
pre-algebra competence before entering Algebra I, but also indicate that pre-algebra is not 
even offered to all students before entering Algebra I.  For example:  

“Make pre-alg or Alg I a requirement for middle schools.” 
 
“I would like to see a pre-algebra class as a requirement prior to taking 
Algebra.” 
 
“Most students in my class have a different curriculum in middle school, so 
they do not officially have pre-algebra. A better diagnostic and year end 
assessment is essential. Many students are dependent on calculators.” 
 
“The curriculum issue is being address next year. We are adding general 
math and pre-algebra and we will hopefully insist on mastery before allowing 
students to take Algebra I.” 
 
“Students should have at least 80% proficiency in pre-algebra skills. Class for 
high schools students not proficient in these skills. Alternative classes or 
students with behavior and/or attendance issues.” 
 
“Student mastery of pre-alg concepts before enrolling in Alg.” 
 
“Mandatory success in a pre-algebra course.” 

Curriculum and Instruction 

Research Question #4: How do the Algebra I teachers rate their state and local district 
curricular expectations in algebra for PreK–12?  How do they rate the state or local school 
district mathematics standards and math tests that they currently use?  Are they setting the 
right expectations? Too low or unrealistically high? Clear and helpful, or confused and 
counterproductive? [This combines two separate research questions as requested by the 
National Mathematics Advisory Panel (NMP) subcommittee]. 
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The questionnaire included one item asking the teachers to rate their local district’s 
expectations for student proficiency in Algebra I (3.3) and two items asking about state 
standards and assessment tools (3.7a,b).  A fourth related question asked whether students are 
required to pass Algebra I in order to graduate high school (3.6). These responses were 
examined these responses by the school classification variables. 

• The modal response (67%) from teachers is that they feel that local expectations for 
student proficiency in Algebra I are “about right,” while about equal numbers rated 
them as “too high” (8%) or “too low” (11%)  (see Figure 3).  

 
Figure 3: Teachers’ Ratings of Local District Expectations for Student Proficiency in 
Algebra I: 2007 

 
Source: Based on responses to the National Opinion Research 
Center’s National Survey of Algebra Teachers, 2007. 

 
The teachers were also generally favorable about content standards for Algebra I in 

their state or local district. A majority (54%) of teachers felt that the content standards are 
good and 19% rate them as excellent.  Only about 3% rated their content standards as poor 
(see Figure 4).  However, the regression analysis shows that teachers who teach in schools in 
the second quartile of minority student population also feel that the standards are better (.37 
SD), compared with the feelings of teachers with low levels of minority students (see 
Appendix Table C-3).  
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Figure 4: Teachers’ Ratings of State or Local School District Mathematics Content 
Standards for Algebra I: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

Teachers were less positive about state and local assessment standards, but the modal 
response was still that they were “good” (see Figure 5).  The regression analysis did not find 
any differences based on teacher or school characteristics (see Appendix Table C-4).  

Figure 5: Teachers’ Ratings of State or Local School District Mathematics Assessment 
Standards of Algebra I Outcomes: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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School Problems.  The NSAT questionnaire also included a battery of questions 
regarding possible problems with the teacher’s school, and the next table reports the means 
and 95% confidence intervals for these items.  From poor computer access to inadequate 
administrative support, examination of the confidence intervals show that teachers have a 
problem with each aspect of their school to a similar degree. Teachers feel that each aspect is, 
on average, a minor problem. 

Table 8: School Problems Reported by Algebra Teachers: 2007 

School Problem Lower 95% CI Mean Higher 95% CI 

Insufficient access to computers 1.68 1.86 2.04 

Inadequate access to graphing calculators 1.58 1.70 1.81 

Poor quality or out-of-date textbooks 1.43 1.59 1.75 

Too large class sizes 1.84 1.97 2.10 

Too little coordination between classes in the mathematics 1.62 1.75 1.87 

Lack of teacher planning time 1.63 1.74 1.85 

Inadequate administrative support 1.52 1.64 1.75 

Note: Scale: 1 = Not a problem, 2 = Minor, 3 = Moderate, 4 = Serious problem 

CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted for 
design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 
Research Question #5: How do they rate their textbook (or textbooks in general) regarding 
algebra instruction? 

The questionnaire included several items asking for the teacher’s evaluation of the 
textbook they use in the target class (items 1.8a–i).  In NORC’s review, these were first 
examined item-by-item and then assessed whether they form a scale. The items and scale are 
then broken down by school classification variables and grade level of the Algebra I class.  

• Figure 6 shows, item by item, how strongly the teachers agreed that their textbooks 
were well suited for a specific task.  This figure shows there is little variation across 
items. For the most part, teachers were satisfied with their texts’ list of topics.  The 
only point of (possible) contention is that some teachers felt that their textbooks were 
not well suited for the needs of a diverse population of students.  
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Figure 6: Teachers’ Ratings of Various Aspects of the Algebra I Textbook Used in 
Target Class: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

The data indicate that the nine items form a strong scale, with reliability of alpha = .90.  
Figure 7 shows the average composite scale score of the textbook rating questions across 
respondents.  As is clear, the majority of the teachers have a positive view of their text. 

Figure 7: Percentage Distribution of Teacher Composite Textbook Favorability Ratings 
Scale Score: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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• The regression results for this composite scale show that teachers of smaller classes 
had more favorable ratings of their textbooks (Appendix Table C-5).  Teachers with 
small classes (15 or fewer) like their text more by 0.56 standard deviations.  
Likewise, teachers in rural schools also like their books more, in this case by 0.35 
standard deviations.  However, teachers in schools with a high concentration of 
minority students have a less favorable view of their texts.  On average, they like their 
texts less by .52 standard deviations. 

This generally positive evaluation was corroborated by the teachers’ responses to an 
item asking them to rate the extent to which “poor quality or out-of-date textbooks” are a 
problem in their school. On a scale that ranged from 1 = not a problem to 4 = serious 
problem, the average rating was 1.59, indicating that poor textbooks are considered about 
midway between 1 = not a problem and 2 = a minor problem (Table 8). 

Research Question #6: How do the teachers rate online technology tools? 

The questionnaire included questions asking how often the teachers used computer-
based instructional tools (item 1.5f), the extent to which insufficient access to computers is a 
problem in their school (item 2.1a), and how much they agreed or disagreed with the proposition 
that “Computer-based instructional tools (software) are helping Algebra I students in my Target 
Class” (item 1.6). These responses were examined by the grade level of the class and the 
standard school classification variables in the regression analysis (see Appendix Table C-6).  

The data indicated that the average response to how frequently these tools are used was 
about 1 (= less than once a week) on a scale that ranged from 0 = never to 4 = everyday. The 
teachers’ ratings of the helpfulness of computer-based instructional tools were mixed, with 
29% agreeing somewhat or agreeing strongly with the proposition that computers were helpful 
and 38% disagreeing somewhat or disagreeing strongly (34% neither agreed nor disagreed).   

Figure 8: Teachers’ Ratings on Helpfulness of Computer-Based Instructional Tools in 
Algebra I Target Class: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Use of computers and access. The generally low levels of computer use does not 
appear to be a reflection of insufficient access. About half  (49%) of the teachers reported 
that insufficient access to computers was not a problem in their schools and another 28% 
reported insufficient access to be a minor problem. Similar portions of those who do not feel 
access is a problem use computers less than once a week or never (74%) as do those who feel 
access is a serious problem (73%). This suggests that if those without access did get 
computers they would not use them much.  

Table 9: Frequency of Using Computers in the Target Class, by Extent to Which 
Insufficient Access to Computers Is a Problem in the School:  2007 
 How much of a problem is insufficient access to computers? 

Use of Computers  
and Software 

Not a  
Problem 

Minor 
Problem 

Moderate 
Problem 

Serious 
Problem 

Use  
Total 

Never 40.75% 46.80% 38.69% 51.72% 43.40% 

Less than once a week 33.42% 33.17% 46.79% 20.58% 33.66% 

About once a week 10.76% 9.49% 9.37% 9.02% 10.03% 

Several times a week 6.62% 3.30% 1.14% 2.53% 4.52% 

Everyday 8.47% 7.24% 4.00% 16.15% 8.39% 

Total 100% 100% 100% 100% 100% 

Note: Chi-square = 27.1 (p = 0.46), Correlation = 0.03 (p = 0.73) 

CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted for 
design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

Figure 9 shows the frequency of use of various materials across grades.  As the chart 
shows, the level of use for texts and technology generally remains constant across grades.  In 
other words, no matter what the age is of the students, the level of use for each material is 
about the same. Software is used least of all. 
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Figure 9: Frequency of Using Various Instructional Materials and Tools in Algebra I, 
by Grade Level of Target Class: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 
Research Question #7:  What is the role of the calculator in the algebra course? 

Questionnaire item 1.5d asked how often the teacher uses graphing calculators in her 
or his target class.  Overall, 33% of the teachers report never using graphing calculators and 
another 29% report using them less than once a week.  About 31% use them everyday (18%) 
or almost everyday (13%).  (See Table 10). 

Table 10 shows rates of graphing calculator use by grade and urbanicity.  Teachers in 
urban schools were less likely to use graphing calculators than their suburban and rural 
counterparts, and teachers of eighth-grade Algebra I were more likely than others to use them 
in all three types of locale.   
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Table 10: Frequency of Graphing Calculator Use, by Grade Level of Target Class and 
Urbanicity: 2007 

Frequency of Use Grade 7 & 8 Grade 9 Grade 10–12 Total 
Never 22.8% 39.4% 38.7% 33.0% 

Less than once a week 41.9% 22.6% 15.6% 29.4% 

About once a week 7.1% 5.7% 8.5% 6.4% 

Several times a week 10.1% 14.2% 17.5% 13.2% 

Everyday 17.4% 18.1% 19.7% 18.0% 

Total 100% 100% 100% 100% 

Sample Size (Total) 128 518 73 719 

 Urban 

Never 18.6% 39.4% 44.3% 31.8% 

Less than once a week 44.4% 22.8% 17.8% 30.7% 

About once a week 8.6% 6.4% 13.6% 7.4% 

Several times a week 20.9% 19.9% 9.0% 20.0% 

Everyday 7.5% 11.6% 15.3% 10.1% 

Total 100% 100% 100% 100% 

Sample Size (Urban) 37 202 10 249 

 Suburban 

Never 30.3% 44.8% 36.5% 38.6% 

Less than once a week 43.3% 18.8% 10.1% 26.7% 

About once a week 9.5% 7.2% 11.6% 8.6% 

Several times a week 7.6% 11.3% 22.1% 11.2% 

Everyday 9.3% 17.9% 19.7% 15.0% 

Total 100% 100% 100% 100% 

Sample Size (Suburban) 66 247 55 368 

 Rural 

Never 18.0% 32.9% 42.1% 27.2% 

Less than once a week 38.4% 27.0% 27.5% 31.8% 

About once a week 3.3% 3.2% 0.0% 3.0% 

Several times a week 6.9% 12.2% 9.5% 9.9% 

Everyday 33.4% 24.8% 20.9% 28.1% 

Total 100% 100% 100% 100% 

Sample Size (Rural) 25 69 8 102 

Note: Cells are weighted percentages within each urbanicity.   

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

Use of graphing calculators and access. While only about 30% of teachers use 
graphing calculators more than about once a week, many of those who use them with less 
frequency do report that access to this technology is a problem (Table 11).  Of those that feel 
that access is not a problem, only 26% never use them.  This contrasts with the over 50% that 
never use them among those who report insufficient access is a moderate or serious problem. 
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The correlation coefficient summarizing the linear relationship between the two items is 
moderately high (r = 0.32).  This suggests that that if they had access, more—though by no 
means all—of the Algebra I teachers would use graphing calculators.    

Table 11: Frequency of Using Graphing Calculators, by Extent to Which Insufficient 
Access to Graphing Calculators Is a Problem in the School: 2007 
 How much of a problem is insufficient access to graphing calculators? 

Use of Graphing  
Calculators 

Not a  
Problem 

Minor 
Problem 

Moderate 
Problem 

Serious 
Problem 

Use  
Total 

Never 25.9% 32.1% 50.0% 58.1% 32.7% 

Less than once a week 22.7% 42.7% 35.4% 23.2% 29.6% 

About once a week 7.8% 2.7% 8.6% 4.7% 6.5% 

Several times a week 14.6% 18.4% 2.3% 4.6% 13.3% 

Everyday 29.0% 4.1% 3.7% 9.4% 18.0% 

Total 100% 100% 100% 100% 100% 

Chi-square = 121.6 (p < .000), Correlation = 0.32 (p < 0.000) 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 
Research Question #8: What about the use of manipulatives as instructional tools? 

The relevant questionnaire item for this question asked how often the teacher uses 
physical objects (manipulatives) in her or his target class (item 1.5e).  Overall, use of 
manipulatives on an occasional basis is widespread, but very few (9%) teachers report using 
them more than once a week.  About 12% of the teachers reported never using manipulatives, 
and about 60% reported using them less than once a week (Table 12).  As evident in Table 12, 
there does not seem to be a relationship between the class grade level and the frequency of use.  

Table 12: Frequency of Physical Object Use, by Grade Level of Target Class: 2007 

Frequency of Use Grade 7 & 8 Grade 9 Grade 10–12 Total 
Never 11.4% 12.9% 12.8% 12.3% 

Less than once a week 62.1% 57.8% 53.7% 59.1% 

About once a week 19.2% 18.5% 28.9% 19.5% 

Several times a week 7.4% 10.1% 3.9% 8.6% 

Everyday 0.0% 0.7% 0.7% 0.4% 

Total 100% 100% 100% 100% 

Sample Size 128 518 73 719 

Note: Cells are weighted percentages. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 



 Task Group Reports of the National Mathematics Advisory Panel 

 9. REPORT OF THE SUBCOMMITTEE ON THE NATIONAL SURVEY OF ALGEBRA I TEACHERS 

9-21 

Views on Changing Secondary School Math Education 

Research Question #9: How do teachers rate their professional training? 

Questionnaire items pertaining to professional training and development include items 
3.4a,b and possibly 4.19; items 2.1f and j are also relevant. These items were examined by the 
teachers’ years of teaching experience, and school classification variables. With one exception, 
satisfaction with training did not vary by teacher characteristics; Hispanic teachers reported 
more satisfaction with preservice training by .64 standard deviations.  

Looking at Table 13, teachers reported that inadequate preparation to teach Algebra I 
and inadequate professional development opportunities for Algebra I teachers are not problems 
for the teachers in their respective schools.  When asked to report on their own preservice and 
professional development experiences as preparations for teaching Algebra I, Figures 10 and 
11 show that most teachers evaluated the experiences as preparing themselves adequately or 
very well. However, substantial minorities of the teachers indicated that improvements can be 
made in preservice training programs and professional development opportunities. 

Table 13: Teachers’ Evaluation of Selected Professional Development Factors: 2007 
 95% CI Professional  

Development Factor Scale Mean Low High 

Inadequately prepared 
teachers 

1 = Not a Problem … 4 = Serious Problem         1.49 1.43 1.55 

Inadequate opportunities for 
professional development 1 = Not a Problem … 4 = Serious Problem         1.65 1.59 1.71 

Rating of own pre-service 
teacher education 

1 = Prepared Teacher Very Well … 4 = Very Poorly   1.96 1.89 2.02 

Rating of own professional 
development opportunities 

1 = Help Teach Very Well … 4 = Very Poorly        1.98 1.91 2.04 

Note: CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted 
for design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Figure 10: Distribution of Teachers’ Ratings of How Well Their Preservice Education 
Program Prepared Them to Teach Algebra I: 2007  

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 
Figure 11: Distribution of Teachers’ Ratings of How Well Their Professional 
Development Opportunities Have Helped Them Teach Algebra I: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Research Question #10: Is there sufficient and effective remedial help for students who are 
struggling in algebra? What sort of assistance-based interventions would struggling students 
benefit from the most? 

Questionnaire items 2.8a–b asked the teachers to rate the availability and quality of 
tutoring or other remedial services for students struggling with Algebra I in their school. The 
average ratings by the school classification variables were examined. 

• On average, looking at Table 14, teachers were generally satisfied with the services 
available, even if not extremely so.  

• These services were rated more favorably by teachers in high minority schools.  

• Female and black teachers were less satisfied with their schools’ remedial services.  

Table 14: Teachers’ Ratings on Availability and Quality of Remedial Help for Algebra I 
Students: 2007 
Evaluation of Remedial Help Lower 95% CI Mean Higher 95% CI 
Availability of remedial help 2.35 2.52 2.69 
Quality of remedial help 2.26 2.42 2.58 

Note: Scale: 1 = Excellent, 2 = Good, 3 = Fair, 4 = Poor 

CI = confidence interval, calculated as +/- two standard errors from the mean. Standard errors adjusted for 
design effects. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 
Research Question #11: Do teachers believe that students would learn more if they were 
grouped by ability for instruction, or is this approach counterproductive? 

Questionnaire item 2.2 asked whether the school offers different levels of Algebra I 
based on ability; 46% of the teachers indicated their schools did differentiate.  Questionnaire 
item 2.1h asked teachers to rate the extent to which they see different levels of students in the 
same class as a problem in their school. 

 A substantial number of teachers considered mixed-ability groupings to be a 
“moderate” (28%) or “serious” (23%) problem (see Figure 12).  Teachers in schools that did 
not offer different levels of Algebra I based on ability were more likely than their 
counterparts in schools that do use ability grouping to consider mixed-ability classrooms to 
be a moderate or serious problem (Table 15). 
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Table 15: Percentage of Algebra I Teachers Reporting Students With Different Abilities 
And Skills Taking the Same Class is a Problem, by Whether School Offers Different 
Levels Based on Ability: 2007 

 
Level of Problem 

Available at 
Teachers’ School 

Not Available at 
Teachers’ School 

All  
Teachers 

Not a problem 21.3% 19.3% 20.2% 

Minor problem 33.4% 25.9% 29.4% 

Moderate problem 26.2% 29.5% 27.9% 

Serious Problem 19.2% 25.4% 22.5% 

Total 100% 100% 100% 

Note: Twelve respondents did not know whether or not their school mixed ability levels.  

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007.  
 
Figure 12: Extent to Which Students With Different Abilities and Interests Taking the 
Same Algebra I Class Is a Problem: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Looking at Appendix Table C-9, the data indicate that for larger classes, high school 
teachers do feel that mixed-ability classes are a problem. Also, data obtained indicate that 
black teachers were more favorable of the practice. In this case teachers were describing their 
feelings about the practice in general.  Teachers with larger classes and later grades are less 
likely to feel that it is a good practice.   

Research Question #12: Do teachers find more parents helpful in encouraging students in 
their mathematics studies, or do too many parents make excuses for their children’s lack of 
accomplishment?   

Questionnaire item 2.1i asked teachers to rate the extent to which they see “too little 
parent/family support” as a problem in their school. The data in Figure 13 shows that more 
teachers feel that family participation is a moderate (32%) or serious (28%) problem than feel 
it is a minor problem (26%) or not a problem at all (14%).   

Figure 13: Extent to Which Too Little Parent or Family Support Is a Problem in 
School: 2007 

 
Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

To estimate relationships between the teachers’ family participation rating and the 
teacher and school background variables, regression analysis was used (see Appendix Table 
C-10).  High school teachers were much more likely than middle school and other teachers to 
report lack of family participation as a problem (the effect size is 0.65 SD units). Also, teachers 
in schools with higher percentages of free and reduced-priced lunch students also felt that lack 
of family participation was more of a problem, the second quartile by .31 standard deviations, 
the third by .46 SD units, and the fourth quartile by .54 SD units.  Female teachers, on the other 
hand, feel that lack of family participation is less of a problem by .22 standard deviations.   
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Research Question #13: What do teachers see as the single most challenging aspect of 
teaching Algebra I successfully?  

This question (4.20) included 10 response options: explaining material to students, 
handling accelerated students, teaching procedures, explaining concepts, using diagrams or 
models effectively, interpreting student errors and difficulties, working with unmotivated 
students, working with advanced students, helping students whose home language is not 
English, making mathematics accessible and comprehensible, and an “other” option.   

Table 16 shows the percentages of each response for the categories of high schools 
and middle/other schools. The overwhelmingly most frequent response to this question was 
“working with unmotivated students.”  This was chosen by 65% of the high school teachers 
and 58% of the middle school teachers.  

Table 16: Frequencies of Reported Challenges to Teaching Algebra I by Class Grade 
Level and Type of School: 2007 

 
Reported Challenge 

High 
School 

Teachers 

Middle/Other 
School 

Teachers 

High and 
Middle/ 
Other 
School 

Teachers 
Working with unmotivated students  65.4% 58.2% 61.8% 

Making mathematics accessible and comprehensible  9.1% 13.6% 11.3% 

Explaining concepts  5.5% 3.1% 4.4% 

Explaining material to struggling students  2.1% 4.1% 3.1% 

Interpreting students errors and difficulties  0.3% 2.7% 1.5% 

Handling accelerated students  1.4% 1.4% 1.4% 

Helping students whose home language is different than English 1.6% 0.6% 1.1% 

Using diagrams or models effectively  0.5% 1.4% 0.9% 

Working with advanced students  0.0% 1.2% 0.6% 

Teaching procedures  0.0% 0.6% 0.3% 

Other, verbatim responses  14.1% 13.2% 13.7% 

Sample Size 100% 100% 100% 

Column N 530 207 737 

Note: Cells are weighted percentages.  

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
 

The next most frequent response was “making mathematics accessible and 
comprehensible to all my students,” selected by 14% of the middle school teachers and 9% of 
the high school teachers.   
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Many teachers wrote in additional challenges in response to this question. The written-
in verbatim responses most often mentioned included handling different skill levels in a single 
classroom, motivation issues, and student study skills. Some notable responses were: 

Walking into a class of 30 students in which 1/3 of them don’t have the 
prerequisite skills necessary to be in the class. Many of whom don’t know 
their basic arithmetic facts and know they aren’t going to be successful from 
day one no matter how hard they try. 

Students come to me without a basic understanding of math. I am constantly 
reteaching concepts that should have been mastered in the earlier grades. 

Parents not letting me do my job as I see fit. (Autonomy in the classroom.) 

Getting students and parents to believe that education is important. Students 
don’t do their homework ... you call the parents ... they say that the student 
will start doing the work (and coming to tutorials). The students still don’t do 
the h.w.— and still don’t come to tutorials. 

Engaging students who have come to believe that they are stupid because they 
are struggling with my state’s cognitively inappropriate standards. 

NORC staff examined whether there is a relationship between the types of challenges 
identified and the experience of an algebra teacher. Table 17 displays the percentages 
selecting the three most frequently-selected responses separately by the teacher’s years of 
teaching experience. The differences among age groups in the percentages selecting 
“working with unmotivated students” were slight and not statistically significant; this is 
evidently not a challenge related to teaching experience. In contrast, the least experienced 
teachers were more likely than others to identify “making mathematics accessible and 
comprehensible” as their greatest challenge (18%). The most experienced teachers were 
much less likely to view that as their greatest challenge (6%). 

Table 17: Reported Challenges to Teaching Algebra I by Years of Experience: 2007 
Years of Experience  

Reported Challenges Up to 3 4 to 9 10 to 18 19 or more 
All  

Teachers 
Working with unmotivated students  61.3% 60.0% 61.4% 65.6% 61.6% 

Making mathematics accessible and 
comprehensible  17.5% 7.8% 11.9% 6.0% 11.3% 

Other and Rest of Items 21.2% 32.3% 26.7% 28.3% 27.0% 

Total 100% 100% 100% 100% 100% 

Column N 209 229 167 122 727 

Note: Cells are weighted percentages.  

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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III. Summary and Conclusions 

The main findings of the survey can be summarized in terms of the guiding research 
questions for the project.  

Student Preparation. The first question concerned the adequacy of student 
preparation coming into the Algebra I classes.  In an important sense, any rating of the 
knowledge areas and skills asked about in the questionnaire of less than “good” represents an 
important problem that should be addressed in the math classes leading up to Algebra I.  The 
topics that were rated as especially problematic were rational numbers, solving word 
problems, and basic study skills.  But the only item that had an average rating better than 
“good” was “whole number operations.” Coupled with the teachers’ verbatim responses to 
the question asking for changes they would like to see in the curriculum leading up to 
Algebra I (item 3.2), the teachers indicate that students are often ill prepared to think about 
how to solve novel or more complex problems than familiar arithmetic operations.  In sum, 
the teachers generally rate their students’ background as less than satisfactory, and this no 
doubt poses additional challenges to teaching Algebra I.  

The teachers’ ratings of student preparation varied mainly according the grade level 
of the students, with preparation rated highest for the Grade 7 and 8 Algebra I classes and 
rated lowest for the Grade 10 and higher classes.  This likely reflects the ability-grouping 
regime, whereby the higher achievers take the class earlier. The staggering of entry grades is 
intended to enable each group of students to reach a good level of preparation for success, 
and not simply open the way for the highest achievers to advance through the high school 
mathematics curriculum.  In any case, these finding emphasize the importance of improving 
student performance among those entering Algebra I after the eighth grade. 

Curriculum and Instruction. In contrast to their views on student preparation, the 
teachers are relatively favorable about the algebra curriculum and instructional materials at 
their disposal. Local expectations for student proficiency in algebra are viewed as reasonable, 
and local and state content and assessment standards for algebra are generally regarded 
favorably.  The teachers gave their textbooks high average marks on all aspects identified in 
the questionnaire. The composite-scale ratings were somewhat less favorable among teachers 
in schools with higher minority student enrollments, and this likely reflects a more negative 
evaluation among those teachers on the specific point of how adequately “the textbook and 
accompanying materials provide useful suggestions for meeting the needs of diverse 
learners” (item 1.8.i. and see Appendix Table C-8). 

The teachers generally reported favorable views of their own preservice training for 
teaching and of the helpfulness of the in-service professional development opportunities they 
have had. At the same time, it should be noted that about a quarter of the teachers evaluated 
their preservice as “less than adequate” or “very poor,” and about the same number rated their 
in-service professional development as such.  Further analysis to try to identify systematic 
factors related to those negative evaluations is needed in order to suggest remedies. 
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Views on Changing Secondary School Math Education.  When asked to identify the 
single most challenging aspect of teaching Algebra I successfully, the teachers overwhelmingly 
indicated “working with unmotivated students.”  This was selected by 62% of the teachers; the 
next most frequent item was “making mathematics accessible and comprehensible to all my 
students” selected by a distant-second 11% of the teachers.  

In light of the generally favorable views the teachers report with respect to curriculum 
and instruction, the issue of unmotivated students implicitly is something the teachers view 
as more of a “algebra-student problem” than an “algebra-teacher problem.” The generally 
negative views expressed by the teachers of parental support for mathematics reinforce that 
attribution.  Taken together with the generally negative ratings of background preparation, 
the lack of student motivation suggests that careful attention to pre-algebra curriculum and 
instruction in the elementary grades is needed, both to remedy the specific skill deficiencies 
as well as to identify ways in which negative attitudes toward mathematics are developed.  
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APPENDIX A: Survey Methodology 

In February 2007, NORC began work under direction of the National Mathematics 
Advisory Panel established within the U.S. Department of Education to conduct the National 
Survey of Algebra Teachers (NSAT). The main tasks on the project were to (a) develop the 
survey instrument, (b) design the sampling plan and draw the sample, (c) collect rosters of the 
Algebra I teachers in each school, (d) contact the teachers and collect the survey data, and (e) 
produce data files and perform statistical analysis. This section summarizes these activities. 

Instrument Development 

The questionnaire development was done in close consultation with the National 
Math Panel to ensure that key areas of analytic interest were covered.  A first draft of the 
NSAT questionnaire was assembled by NORC and submitted to the Panel in early February.  
This draft included questions directly mapped to the key items identified by the Panel, as 
well as additional items which helped develop the key research questions or provide 
analytical leverage in addressing them.  These items were drawn from a variety of sources 
including the Education Longitudinal Study of 2002 (Teacher questionnaire), the National 
Education Longitudinal Study of 1988, the National Education Association’s Status of the 
American Public School Teacher 2000–01 survey, the Consortium for Chicago School 
Research 2005 teacher survey, and the Longitudinal Study of American Youth (LSAY, 
beginning in 1987) math teacher questionnaires.  

NORC project staff then met with local Chicago-area teachers, other education 
researchers with experience on mathematics teacher surveys, and NORC questionnaire 
design experts to test the instrument and obtain feedback. In general, the teachers responded 
positively to the survey and had a few minor changes to the wording and ordering of the 
questions.  Almost all of the teachers interviewed wanted additional items or questions added 
that focused on the pre-algebra skills.  They provided a list of additional questions targeted 
towards students’ pre-algebra skills.  NORC’s questionnaire design team had few issues with 
the content of the questions being asked, and they provided essential feedback on 
questionnaire wording and answer categories.  Additionally, they suggested that a few items 
be dropped (see the comments in the questionnaire), either due to their repetitive nature or 
because they did not add much analytic value.  

Comments from the Panel on the first draft of the survey were received by NORC 
mid-February.  NORC incorporated comments provided by the Panel, the teachers, and 
NORC’s questionnaire design team into the second draft of the questionnaire.  The final 
version of the questionnaire was submitted for OMB approval on February 20, 2007. 
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Sampling 

NORC utilized the U.S. Department of Education’s Common Core of Data (CCD) 
file for the 2004–05 school year (this was the most recent year available as of February 2007) 
to compile the sample frame of public schools. All schools listed in the CCD as located 
within the 50 states and District of Columbia with an eighth grade or higher, and which were 
not classified by CCD as special education, vocational education centers, or alternative 
schools were considered eligible for the sample.   

To ensure the sample would represent public school Algebra I teachers in different 
types of schools and settings across the country, the frame was stratified by four variables, all 
defined from data included in the CCD file: 

1) Type of locale. A standard three-level indicator of urban, suburban, or rural school 
location was used for this variable. 

2) Percentage of students eligible to receive free or reduced-price lunch.  This was 
simplified to a dichotomous indicator of “40 percent or lower” versus “more than 
40 percent.” 

3) Percentage of students who are black, Hispanic, and American Indian. This was 
also simplified to a dichotomous indicator of “40 percent or lower” versus “more 
than 40 percent.” 

4) Graded configuration of the school. Since Algebra I instruction starts in earnest in the 
eighth grade and continues throughout high school, eligible school configurations 
include K–8 elementary schools, grade 6–8 middle schools, grade 7–9 junior high 
schools, grade 9–12 and 10–12 high schools, and K–12 combined elementary and 
secondary schools. The various configurations were trichotomized into “grade 9–12 
and 10–12 high schools,” “K–8 elementary schools, grade 6–8 middle schools, and 
grade 7–9 junior high schools,” and “all other schools where Algebra I is taught.” 

The cross-classification of the stratification variables created 36 sampling strata. 
Approximately 2,300 of the 36,353 eligible schools were missing information on the 
percentage of students eligible for free or reduced-price lunch, and a total of 440 of the New 
York City Public School District schools were listed as having zero students eligible. Since 
this is certainly incorrect for many if not most of these NYCPSD schools, NORC staff 
recoded the Percentage of Students Eligible to Receive Free or Reduced-price Lunch from 0 
to missing for all of them. To mitigate the impact of the missing data on the sample design, 
the missing data was replaced with the same data from the 2003–04 school year CCD file if 
available. If the data were also missing in the 2003–04 CCD, the missing data was replaced 
with data from the 2002–03 CCD if available.  After consultation with the NMP it was 
decided to define a special supplemental stratum consisting of schools with missing 
stratification data in the final sample file, and to sample schools from that stratum. 
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Target numbers of 300 schools and 1,000 Algebra I teachers were defined for the 
survey, based on project objectives and statistical power calculations. These targets were 
supplemented with a target of 10 schools and 40 teachers from the missing data stratum 
noted above. To select the sample, the target number of 310 schools was systematically 
sampled from the frame with the selection probability proportional to the estimated number 
of Algebra I teachers per school. The number of Algebra I teachers per school was estimated 
on the basis of grade-specific enrollment data from the CCD, coupled with data on the 
number of Algebra I teachers collected in February from a small sample of schools and 
average rates of Algebra I course-taking and class-size data obtained from recent national 
surveys. Because the schools were selected with probability proportional to the number of 
Algebra I teachers, schools with more Algebra I teachers are more likely to be selected into 
the sample. Therefore, a fixed number of sample schools will represent a greater number of 
teachers than under simple random sampling. 

Roster and Data Collection 

On March 21, 2007, NORC mailed letters to all district superintendents and principals 
of the selected school. This letter informed them that a school in their district (for 
superintendents) or their school (for principals) had been selected to participate in the study and 
alerted them that a NORC staff member would be calling the school in the next few weeks to 
obtain roster information on their Algebra I staff.  The letter also included NORC’s contact 
information should the district or school like to request more information on the study.  NORC 
began roster collection on March 26. This process included collecting Algebra I teacher 
information (names, e-mails, number of Algebra I classes taught, other classes taught, last day 
of school) from either the school principal, the office secretary, or the head of the math 
department. At this point, it was determined if a school was ineligible or if a school refused to 
participate.  Refused or ineligible schools were replaced with other schools with the same strata 
qualifications.  Of the 300 schools in the original sample, 52 schools had to be replaced.  
Ineligible supplemental samples were not replaced.  Rosters were collected from a total of 258 
schools.  All data collected were entered into a receipt control system which also helped to 
keep track of sent and returned mail to districts, principals, and teachers. This system was also 
utilized to track and prompt nonrespondents to the survey during data collection. 

The following table breaks down the number of rosters collected by the possible 36 
different strata, as well as three additional schools drawn from those lacking information on 
the number of students eligible for the federal free and reduced-price lunch program. 
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Table A-1: Numbers of Sampled Schools, Schools That Provided Rosters of Algebra I 
Teachers, and Algebra I Teachers, by Sample Stratum: 2007 

 
Strata 

Total # of Schools  
in Sample 

Total # of Schools That 
Provided Roster Information 

Total # of 
Teachers 

Missing FRPL Information 3 2 12 

1. Rrl HS < 40 % Mnr & < 40 % FRPL    25 22 70 

2. Rrl HS < 40 % Mnr & > 40 % FRPL    6 6 17 

3. Rrl HS > 40 % Mnr & < 40 % FRPL    2 2 5 

4. Rrl HS > 40 % Mnr & > 40 % FRPL    5 4 10 

5. Rrl M/JH < 40 % Mnr & < 40 % FRPL    7 7 17 

6. Rrl M/JH < 40 % Mnr & > 40 % FRPL    4 3 4 

7. Rrl M/JH > 40 % Mnr & < 40 % FRPL    1 0 0 

8. Rrl M/JH > 40 % Mnr & > 40 % FRPL    2 2 4 

9. Rrl OtherS < 40 % Mnr & < 40 % FRPL    8 8 18 

10. Rrl OtherS < 40 % Mnr & > 40 % FRPL    4 4 7 

11. Rrl OtherS > 40 % Mnr & < 40 % FRPL    1 1 2 

12. Rrl OtherS > 40 % Mnr & > 40 % FRPL    2 2 3 

13. Srb HS < 40 % Mnr & < 40 % FRPL    61 51 233 

14. Srb HS < 40 % Mnr & > 40 % FRPL    5 5 18 

15. Srb HS > 40 % Mnr & < 40 % FRPL    12 7 56 

16. Srb HS > 40 % Mnr & > 40 % FRPL    16 11 63 

17. Srb M/JH < 40 % Mnr & < 40 % FRPL    23 22 57 

18. Srb M/JH < 40 % Mnr & > 40 % FRPL    7 6 15 

19. Srb M/JH > 40 % Mnr & < 40 % FRPL    2 1 5 

20. Srb M/JH > 40 % Mnr & > 40 % FRPL    10 9 17 

21. Srb OtherS < 40 % Mnr & < 40 % FRPL    7 5 12 

22. Srb OtherS < 40 % Mnr & > 40 % FRPL    1 0 0 

23. Srb OtherS > 40 % Mnr & < 40 % FRPL    1 1 9 

24. Srb OtherS > 40 % Mnr & > 40 % FRPL    3 3 20 

25. Urb HS < 40 % Mnr & < 40 % FRPL    18 16 82 

26. Urb HS < 40 % Mnr & > 40 % FRPL    3 2 14 

27. Urb HS > 40 % Mnr & < 40 % FRPL    9 8 48 

28. Urb HS > 40 % Mnr & > 40 % FRPL    28 18 136 

29. Urb M/JH < 40 % Mnr & < 40 % FRPL    5 5 12 

30. Urb M/JH < 40 % Mnr & > 40 % FRPL    4 3 10 

31. Urb M/JH > 40 % Mnr & < 40 % FRPL    1 1 1 

32. Urb M/JH > 40 % Mnr & > 40 % FRPL    14 12 25 

33. Urb OtherS < 40 % Mnr & < 40 % FRPL    2 2 12 

34. Urb OtherS < 40 % Mnr & > 40 % FRPL    1 1 6 

35. Urb OtherS > 40 % Mnr & < 40 % FRPL    1 1 4 

36. Urb OtherS > 40 % Mnr & > 40 % FRPL 6 5 16 

All Strata 310 258 1,040 

Note: FRPL: Free and Reduced-Price Lunch Srb HS: Suburban High School 
 Mnr: Minority  Srb M/JH: Suburban Middle/Junior High 
 Rrl HS: Rural High School Urb HS: Urban High School 
 Rrl M/JH: Rural Middle/Junior High Urb M/JH: Urban Middle/Junior High 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Because roster collection was an ongoing process, NORC conducted the necessary 
mail outs in batches to collect the teacher information.  Prior to mailing the questionnaires to 
the teachers, NORC sent out prenotice letters informing the teachers of the survey, and 
notifying them that their principals had consented for them to participate.  A week later each 
teacher was sent (via FedEx) a questionnaire, along with a $20 check, a business reply 
envelope, and a letter informing them of the survey and requesting their participation.  A 
week after each initial questionnaire mailing NORC sent out a postcard to all teachers 
reminding them of the survey and requesting their participation. This was followed 
approximately two weeks later by a second questionnaire mailing to all nonrespondents.  
NORC staff began phone and e-mail prompting of all remaining nonrespondents at this time.  
Marian Banfield provided assistance in the prompting process by sending out e-mails from 
the Department of Education to teachers requesting their participation.  A final, third 
questionnaire was sent one to two weeks after the second questionnaire depending on when 
the school was going to be closed for the summer.  Appendix Table A-2 summarizes the 
exact mail-out dates for each mail-out cohort or batch. 

Table A-2: Questionnaire and Follow-Up Mailing Dates and Numbers of Algebra I 
Teachers, by Mail-Out Cohort: 2007 
Disposition Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6 Cohort 7 Total 
# of Teachers 147 147 189 274 134 68 81 1040 
Prenotice 4/9/2007 4/16/2007 4/23/2007 4/30/2007 5/7/2007 5/14/2007 5/21/2007 1040 

Quex 1 Mail Out 4/17/2007 4/20/2007 4/25/2007 5/2/2007 5/10/2007 5/16/2007 5/23/2007 1040 

Post card 

Mail-Out Date 4/27/2007 4/27/2007 5/4/2007 5/11/2007 5/17/2007 5/25/2007 6/1/2007  

# Mailed 136 147 183 262 134 68 68 998 

Quex 2 Mail Out 

Mail-Out Date 5/9/2007 5/9/2007 5/16/2007 5/18/2007 5/23/2007 6/1/2007 6/8/2007  

# Mailed 64 76 120 178 94 56 64 652 

Quex 3 Mail Out 

Mail-Out Date 5/23/2007 5/23/2007 5/30/2007 6/1/2007 6/8/2007 6/15/2007 6/22/2007  

# Mailed 39 49 77 98 55 35 38 391 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Response Rates 

Of the 1,040 teachers NORC prompted to complete the survey, 743 completed 
questionnaires were received.  An additional 14 teachers also notified us that they, in fact, 
were not Algebra I teachers and therefore were ineligible to participate in the survey, while 
two teachers explicitly refused to participate.  Appendix Table A-3 provides a breakdown of 
how many teachers completed the survey by each of the four sample stratification variables, 
and Appendix Table A-4 shows the results for each of the 36 strata. 

Table A-3: Number of Algebra I Teachers Sampled, Ineligible, Refusing, and 
Completing the Questionnaire, and Survey Response Rate, by Sample Stratification 
Variables: 2007 
 
 
 
 
Sample Stratification Variable 

 
 
 

Total # of 
Teachers 

 
 

Total # of 
Teachers Who 
Are Ineligible 

Total # of 
Teachers Who 

Refused to 
Complete 

Questionnaire 

 
Total # of 

Teachers Who 
Completed 

Questionnaire 

 
 
 

Response 
Rate (%) 

Urbanicity 
Urban     505 6 2 370 74.1% 
Suburban 366 7 0 251 69.9% 
Rural 157 1 0 110 70.5% 
School Type 
High School 752 12 1 521 70.4% 
Middle School or Junior High 167 1 1 128 77.1% 
Other Type of School 109 1 0 82 75.9% 
Percentage of Students Who Are Minority 
Less than 40% 604 10 2 432 72.7% 
More than 40% 424 4 0 299 71.2% 
Percentage of Students Who Are Eligible or Receive Free or Reduced-Price Lunch 
Less than 40% 643 7 2 462 72.6% 
More than 40% 385 7 0 269 71.2% 

Note: Response rates were calculated on the basis of eligible teachers. 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table A-4: Number of Algebra I Teachers Sampled, Ineligible, Refusing, and 
Completing the Questionnaire, and Survey Response Rate, by Sample Stratum: 2007 
 
 
 
 
Sample Stratum 

 
 
 

Total # of 
Teachers 

 
 

Total # of 
Teachers Who 
Are Ineligible 

Total # of 
Teachers Who 

Refused to 
Complete 

Questionnaire 

 
Total # of 

Teachers Who 
Completed 

Questionnaire 

 
 
 

Response 
Rate (%) 

Supplemental Stratum  

(Missing Data on FRPL) 
12 0 0 12 100 

1. Rrl HS < 40 % Mnr & < 40 % FRPL    70 1 0 45 65.2 

2. Rrl HS < 40 % Mnr & > 40 % FRPL    17 0 0 9 52.9 

3. Rrl HS > 40 % Mnr & < 40 % FRPL    5 0 0 3 60.0 

4. Rrl HS > 40 % Mnr & > 40 % FRPL    10 0 0 8 80.0 

5. Rrl M/JH < 40 % Mnr & < 40 % FRPL    17 0 0 14 82.4 

6. Rrl M/JH < 40 % Mnr & > 40 % FRPL    4 0 0 3 75.0 

7. Rrl M/JH > 40 % Mnr & < 40 % FRPL    0 0 0 0 N/A 

8. Rrl M/JH > 40 % Mnr & > 40 % FRPL    4 0 0 3 75.0 

9. Rrl OtherS < 40 % Mnr & < 40 % FRPL   18 0 0 14 77.8 

10. Rrl OtherS < 40 % Mnr & > 40 % FRPL   7 0 0 7 100 

11. Rrl OtherS > 40 % Mnr & < 40 % FRPL   2 0 0 2 100 

12. Rrl OtherS > 40 % Mnr & > 40 % FRPL   3 0 0 2 66.7 

13. Srb HS < 40 % Mnr & < 40 % FRPL    233 4 1 167 72.9 

14. Srb HS < 40 % Mnr & > 40 % FRPL    18 1 0 12 70.6 

15. Srb HS > 40 % Mnr & < 40 % FRPL    56 0 0 40 71.4 

16. Srb HS > 40 % Mnr & > 40 % FRPL    63 1 0 50 80.6 

17. Srb M/JH < 40 % Mnr & < 40 % FRPL    57 0 1 43 75.4 

18. Srb M/JH < 40 % Mnr & > 40 % FRPL    15 0 0 10 66.7 

19. Srb M/JH > 40 % Mnr & < 40 % FRPL    5 0 0 3 60.0 

20. Srb M/JH > 40 % Mnr & > 40 % FRPL    17 0 0 13 76.5 

21. Srb OtherS < 40 % Mnr & < 40 % FRPL  12 0 0 8 66.7 

22. Srb OtherS < 40 % Mnr & > 40 % FRPL  0 0 0 0 N/A 

23. Srb OtherS > 40 % Mnr & < 40 % FRPL  9 0 0 7 77.8 

24. Srb OtherS > 40 % Mnr & > 40 % FRPL  20 0 0 17 85.0 

25. Urb HS < 40 % Mnr & < 40 % FRPL    82 1 0 59 72.8 

26. Urb HS < 40 % Mnr & > 40 % FRPL    14 2 0 8 66.7 

27. Urb HS > 40 % Mnr & < 40 % FRPL    48 1 0 31 66.0 

28. Urb HS > 40 % Mnr & > 40 % FRPL    136 1 0 89 65.9 

29. Urb M/JH < 40 % Mnr & < 40 % FRPL    12 0 0 9 75.0 

30. Urb M/JH < 40 % Mnr & > 40 % FRPL    10 0 0 10 100 

31. Urb M/JH > 40 % Mnr & < 40 % FRPL    1 0 0 1 100 

32. Urb M/JH > 40 % Mnr & > 40 % FRPL    25 1 0 19 79.2 

33. Urb OtherS < 40 % Mnr & < 40 % FRPL  12 0 0 12 100 

34. Urb OtherS < 40 % Mnr & > 40 % FRPL  6 1 0 2 40.0 

35. Urb OtherS > 40 % Mnr & < 40 % FRPL  4 0 0 4 100 

36. Urb OtherS > 40 % Mnr & > 40 % FRPL 16 0 0 7 43.8 

Total 1,040 14 2 743 72.4 

Note:  Response rates were calculated on the basis of eligible teachers. 

 FRPL: Free and Reduced-Price Lunch Srb HS: Suburban High School 
 Mnr: Minority  Srb M/JH: Suburban Middle/Junior High 
 Rrl HS: Rural High School Urb HS: Urban High School 
 Rrl M/JH: Rural Middle/Junior High Urb M/JH: Urban Middle/Junior High 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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APPENDIX B: Table Means for Survey Variables,  
By School Classification Variables 

Table B-1: Means for Survey Variables by School Locale 
Locale Overall Sample Urban Suburban Rural Variable Name Variable Label Wtd. 

Mean 
Wtd. 
SD 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

TC_Student Target Class - total number of students 2.98 1.16 3.26 0.07 3.29 0.07 2.39 0.07 
TC_Studnt7 Target Class 7th-grade students 0.21 0.80 0.29 0.08 0.24 0.05 0.13 0.05 
TC_Studnt8 Target Class 8th-grade students 1.65 1.93 1.67 0.16 1.56 0.12 1.75 0.13 
TC_Studnt9 Target Class 9th-grade students 2.00 1.73 2.11 0.13 1.98 0.11 1.92 0.11 
TC_Studt10 Target Class 10th-grade students 0.68 0.91 0.60 0.05 0.81 0.07 0.59 0.06 
TC_Studt11 Target Class 11th-grade students 0.33 0.52 0.30 0.04 0.36 0.04 0.31 0.03 
TC_Studt12 Target Class 12th-grade students 0.17 0.39 0.23 0.04 0.17 0.03 0.15 0.03 
TC_StudtSE Target Class special ed students 0.61 0.69 0.63 0.06 0.61 0.05 0.59 0.04 
TC_StudtBi Target Class bilingual students 0.34 0.73 0.43 0.06 0.36 0.05 0.25 0.05 
Come_Time Come to class on time 3.57 0.61 3.26 0.05 3.59 0.04 3.80 0.03 
Attend_Reg Attend class regularly 3.47 0.63 3.28 0.05 3.42 0.04 3.66 0.04 
Come_Prep Come to class prepared 2.92 0.90 2.53 0.07 2.92 0.05 3.23 0.04 
Creat_Prob Create serious behavior problems 0.61 0.68 0.76 0.04 0.62 0.04 0.48 0.04 
Pay_Attn Regularly pay attention 2.82 0.83 2.63 0.06 2.80 0.05 2.98 0.05 
Activ_Part Actively participate 2.69 0.89 2.64 0.06 2.61 0.05 2.81 0.06 
Take_Note Take notes 2.72 1.01 2.68 0.07 2.60 0.06 2.90 0.06 
Diff_ReadE Serious difficulties reading English 0.47 0.64 0.69 0.05 0.46 0.04 0.31 0.04 
Care_grade Care about what grade received 2.90 0.88 2.69 0.08 2.92 0.05 3.04 0.04 
Whole_Numb Whole number-background 1.86 0.80 2.01 0.06 1.86 0.05 1.73 0.05 
Pos_Neg Positive and negative integers-background 2.58 0.91 2.82 0.06 2.59 0.06 2.37 0.06 
Rat_Numb Rational numbers-background 3.10 0.86 3.20 0.06 3.23 0.05 2.86 0.06 
RatoPrRteP Ratio_percent_rate_propor-background 2.83 0.84 3.04 0.06 2.92 0.05 2.56 0.05 
Wd_Prob Solving word problems-background 3.26 0.81 3.35 0.06 3.27 0.05 3.18 0.05 
variables Concept of variables-background 2.48 0.80 2.66 0.06 2.49 0.05 2.32 0.05 
Mani_Var Manipulation of variables-background 2.82 0.78 3.06 0.05 2.84 0.05 2.60 0.05 
Simp_eq Solve simple linear equations & inequalities-background 2.80 0.83 2.91 0.06 2.84 0.05 2.64 0.05 
PlotGraph Plotting and graphing-background 2.44 0.93 2.65 0.07 2.48 0.06 2.22 0.06 
Geo_Shapes Formulas for geometric shapes-background 2.81 0.82 2.93 0.06 2.78 0.05 2.76 0.05 
StudyHabit Study skills & work habits-background 3.00 0.87 3.18 0.06 2.99 0.05 2.87 0.05 
ComputeSk Computation skills-background 2.53 0.89 2.69 0.06 2.56 0.05 2.37 0.06 
Use_real Use math in real-world-background 2.94 0.77 2.97 0.06 3.01 0.05 2.84 0.05 
Work_Indep Work independently-background 2.58 0.85 2.78 0.06 2.60 0.06 2.38 0.05 
Work_Coop Working cooperatively-background 2.32 0.77 2.56 0.05 2.36 0.05 2.07 0.04 
Textbooks Textbooks 2.92 1.18 2.48 0.10 2.94 0.07 3.25 0.07 
PrintMat Printed instructional materials 2.60 0.93 2.73 0.07 2.62 0.06 2.46 0.06 
TeacherMat Teacher written materials 2.11 1.17 2.23 0.08 2.21 0.07 1.89 0.08 
GrCalculat Graphing calculators 1.53 1.50 1.45 0.10 1.37 0.09 1.80 0.11 
PhyObj Physical objects-manipulatives 1.26 0.80 1.45 0.07 1.15 0.04 1.22 0.05 
Software Computer-based instructional tools-software 1.00 1.21 1.20 0.10 0.85 0.06 1.02 0.09 
Computer_help Computer-based tools help 3.33 1.32 3.14 0.10 3.41 0.07 3.40 0.09 
TextTopic Appropriate textbook topics 1.77 0.83 1.85 0.06 1.86 0.05 1.59 0.05 
TextSeqCon Appropriate math concept sequences 2.23 1.03 2.46 0.08 2.41 0.06 1.84 0.05 
TextExampl Examples & lessons on concepts 2.09 0.98 2.28 0.08 2.22 0.06 1.77 0.06 
TextProbSo Development of problem-solving skills 2.16 0.98 2.47 0.08 2.21 0.06 1.87 0.05 
TextPrac Practice on topics 2.29 1.14 2.60 0.09 2.29 0.06 2.04 0.07 
TextSugges Textbook suggestions for homework 2.24 1.05 2.55 0.08 2.28 0.06 1.93 0.07 
TextSupp Adequate textbook support materials 2.27 1.10 2.53 0.08 2.35 0.07 1.97 0.07 
TextTitle_A Textbook title 2.01 0.89 2.27 0.07 2.07 0.05 1.74 0.05 
TextDivers Textbook suggestions for diverse learner 2.73 1.10 2.84 0.08 2.94 0.06 2.38 0.07 
StudentFail Number of Target Class student fail 2.55 1.44 3.11 0.12 2.57 0.09 2.08 0.06 

Continued on p. 9-40 
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Table B-1, continued 
Locale Overall Sample Urban Suburban Rural Variable Name Variable Label Wtd. 

Mean 
Wtd. 
SD 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

TimeAssign Time on assignments 3.10 0.86 3.17 0.07 3.10 0.05 3.05 0.04 
ComAssign Frequency of completes 2.06 0.97 2.42 0.07 2.02 0.06 1.81 0.06 
Min_Meet Average minutes of class time 271.80 84.52 258.70 5.76 280.55 5.58 272.15 4.58 
Class_Period Minutes of class period 62.77 25.23 63.95 1.91 63.09 1.27 61.45 1.75 
InsuffComA Insufficient access to computers 1.86 1.01 1.73 0.07 2.00 0.06 1.79 0.07 
InsuffGrCa Insufficient access to graphing calculators 1.70 0.92 1.72 0.06 1.94 0.06 1.40 0.04 
PoorTextBk Poor quality or out-of-date textbooks 1.59 1.01 1.70 0.07 1.60 0.06 1.50 0.07 
LargeClas Class sizes are too large 1.97 1.04 2.08 0.08 2.22 0.07 1.60 0.05 
Insuffcoor Insufficient access to computers 1.75 0.92 1.96 0.07 1.81 0.06 1.50 0.05 
InadTeach Inadequately prepared teachers 1.41 0.75 1.64 0.06 1.39 0.04 1.25 0.04 
LackPlan Lack of teacher planning time 1.74 0.93 1.97 0.07 1.69 0.05 1.62 0.06 
DiffStudnt Diverse students take same class 2.53 1.05 2.81 0.08 2.47 0.06 2.38 0.06 
LittleFamS Too little parent/family support 2.74 1.03 2.98 0.07 2.73 0.07 2.57 0.06 
InadProLng Inadequate opportunities for professional learning 1.66 0.84 1.87 0.06 1.66 0.05 1.50 0.05 
InadAdminS Inadequate administrative support 1.64 0.91 1.88 0.07 1.63 0.05 1.45 0.05 
Class_Wk Class periods per week 18.71 9.83 18.88 0.67 19.27 0.57 17.93 0.65 
Min_Prep Average minutes for class preparation 63.06 40.88 62.65 2.94 65.07 2.68 61.05 2.27 
UnschdPrep Average Min for unscheduled class prep 61.66 81.22 69.47 4.98 68.50 6.28 47.54 3.26 
AvailTutor Availability of tutoring or other 2.52 1.10 2.31 0.08 2.47 0.07 2.74 0.07 
QualTutor Quality of tutoring or other 2.42 1.05 2.36 0.07 2.37 0.06 2.52 0.07 
WholNumIm Whole number operations-importance 4.65 0.59 4.60 0.05 4.61 0.04 4.74 0.03 
PosNegIm Positive & negative integers-importance 4.77 0.46 4.75 0.03 4.80 0.03 4.76 0.03 
RatNumbIm Rational numbers-importance 4.59 0.59 4.52 0.04 4.56 0.04 4.70 0.03 
RatoPrRtePIm Ratio_percent_rate_propor-importance 4.19 0.78 4.18 0.05 4.08 0.05 4.32 0.05 
Wd_ProbIm Solving word problems-importance 4.51 0.62 4.47 0.05 4.51 0.04 4.54 0.04 
variablesIm Concept of variables-importance 4.61 0.67 4.49 0.06 4.68 0.04 4.63 0.04 
Mani_VarIm Manipulation of variables-importance 4.55 0.75 4.39 0.06 4.60 0.05 4.61 0.04 
Simp_eqIm Solve simple linear equations & inequalities-importance 4.44 0.84 4.26 0.07 4.46 0.05 4.55 0.05 
PlotGraphIm Plotting and graphing-importance 4.35 0.80 4.23 0.06 4.35 0.05 4.44 0.05 
Geo_ShapesIm Formulas for geometric shapes-importance 3.45 0.97 3.47 0.07 3.37 0.06 3.52 0.06 
StudyHabitIm Study skills & work habits-importance 4.72 0.50 4.69 0.04 4.74 0.03 4.71 0.03 
ComputeSk_A Computation skills-importance 4.54 0.65 4.56 0.04 4.50 0.04 4.56 0.04 
Use_realIm Use math in real-world-importance 4.10 0.83 4.12 0.06 4.09 0.05 4.10 0.05 
Work_IndepIm Work independently-importance 4.34 0.71 4.25 0.05 4.35 0.04 4.39 0.04 
Work_CoopIm Working cooperatively-importance 4.02 0.86 4.03 0.06 4.04 0.05 3.98 0.06 
AlgbraProf Expected student algebra proficiency 2.30 0.93 2.39 0.07 2.23 0.05 2.32 0.06 
Preservice Preservice teacher education 2.06 0.89 2.02 0.06 2.09 0.06 2.05 0.06 
ProfDev Professional development 2.05 0.84 2.08 0.07 2.00 0.05 2.09 0.05 
ContentStd Algebra I content 2.29 0.94 2.26 0.06 2.20 0.06 2.43 0.06 
AssessOut Assessments of Algebra I outcomes 2.66 1.01 2.57 0.06 2.57 0.06 2.82 0.07 
T_Age Teacher’s age 41.11 11.69 42.33 0.86 41.29 0.69 39.94 0.71 
ElemYrs Elementary years taught 2.07 4.86 1.57 0.41 3.35 0.51 1.06 0.24 
SecYrs Secondary years taught 12.15 9.99 11.83 0.74 11.78 0.59 12.81 0.64 
TotalYrs Total years taught 12.77 10.35 12.16 0.91 13.08 0.71 12.84 0.76 
T_YrsSchool Teacher’s years in current school 8.00 8.09 6.86 0.48 8.29 0.48 8.59 0.56 
T_YrsExp Teacher’s years of algebra experience 9.49 8.56 8.88 0.57 9.15 0.48 10.38 0.59 
T_ColegeYr Teacher’s college graduation year 1993.70 10.97 1993.65 0.77 1993.39 0.68 1994.08 0.67 
T_Skill Teacher’s skill 1.33 0.58 1.34 0.04 1.35 0.04 1.31 0.03 

Note: SE’s are not adjusted for design effect.   

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table B-2: Means for Survey Variables by School Minority Concentration 
Percent Minority 

1st Quartile 
(Low) 2nd Quartile 3rd Quartile 4th Quartile 

(high) Variable Name Variable Label 
Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

TC_Student Target Class - Total Number of Students 2.52 0.08 3.25 0.09 3.05 0.08 3.16 0.08 
TC_Studnt7 Target Class 7th-grade students 0.19 0.06 0.26 0.06 0.20 0.07 0.22 0.08 
TC_Studnt8 Target Class 8th-grade students 1.78 0.15 1.83 0.16 1.50 0.15 1.48 0.17 
TC_Studnt9 Target Class 9th-grade students 1.87 0.13 1.88 0.14 2.13 0.12 2.10 0.14 
TC_Studt10 Target Class 10th-grade students 0.49 0.06 0.77 0.09 0.78 0.06 0.70 0.07 
TC_Studt11 Target Class 11th-grade students 0.29 0.04 0.32 0.04 0.33 0.04 0.40 0.06 
TC_Studt12 Target Class 12th-grade students 0.13 0.03 0.08 0.03 0.21 0.03 0.30 0.04 
TC_StudtSE Target Class Special ED Students 0.57 0.04 0.56 0.06 0.72 0.06 0.55 0.06 
TC_StudtBi Target Class bilingual Students 0.20 0.06 0.29 0.05 0.38 0.05 0.52 0.08 
Come_Time Come to class on time 3.83 0.03 3.72 0.04 3.51 0.04 3.17 0.06 
Attend_Reg Attend class regularly 3.62 0.04 3.63 0.04 3.42 0.04 3.15 0.05 
Come_Prep Come to class prepared 3.12 0.05 3.25 0.06 2.88 0.06 2.36 0.08 
Creat_Prob Create serious behavior problems 0.47 0.04 0.56 0.06 0.65 0.05 0.80 0.05 
Pay_Attn Regularly pay attention 2.97 0.05 2.95 0.07 2.77 0.06 2.53 0.07 
Activ_Part Actively participate 2.85 0.06 2.80 0.07 2.57 0.06 2.52 0.07 
Take_Note Take notes 2.85 0.07 2.75 0.08 2.68 0.06 2.58 0.09 
Diff_ReadE Serious difficulties reading English 0.38 0.04 0.32 0.05 0.49 0.04 0.75 0.06 
Care_grade Care about what grade received 3.02 0.05 3.10 0.06 2.92 0.06 2.51 0.08 
Whole_Numb Whole number-background 1.80 0.05 1.69 0.06 1.95 0.06 1.98 0.06 
Pos_Neg Positive and negative integers-background 2.39 0.05 2.45 0.07 2.59 0.07 2.91 0.07 
Rat_Numb Rational numbers-background 2.93 0.06 3.01 0.07 3.25 0.06 3.20 0.07 
RatoPrRteP Ratio_percent_rate_propor-background 2.66 0.06 2.63 0.07 2.91 0.06 3.17 0.05 
Wd_Prob Solving word problems-background 3.17 0.06 3.10 0.07 3.30 0.06 3.49 0.06 
variables Concept of variables-background 2.44 0.05 2.31 0.07 2.46 0.06 2.75 0.06 
Mani_Var Manipulation of variables-background 2.68 0.05 2.66 0.07 2.88 0.05 3.07 0.06 
Simp_eq Solve simple linear equations & inequalities-background 2.75 0.05 2.64 0.07 2.85 0.06 2.94 0.07 
PlotGraph Plotting and graphing-background 2.29 0.06 2.32 0.07 2.48 0.07 2.69 0.07 
Geo_Shapes Formulas for geometric shapes-background 2.79 0.05 2.51 0.07 2.89 0.06 3.06 0.06 
StudyHabit Study skills & work habits-background 2.80 0.05 2.81 0.08 3.13 0.06 3.27 0.06 
ComputeSk Computation skills-background 2.51 0.06 2.37 0.07 2.53 0.07 2.73 0.06 
Use_real Use math in real world-background 2.77 0.05 2.88 0.06 3.06 0.06 3.06 0.06 
Work_Indep Work independently-background 2.38 0.05 2.46 0.08 2.64 0.06 2.86 0.06 
Work_Coop Working cooperatively-background 2.14 0.04 2.25 0.07 2.34 0.06 2.57 0.05 
Textbooks Textbooks 3.16 0.07 3.16 0.08 2.85 0.09 2.43 0.10 
PrintMat Printed instructional materials 2.48 0.06 2.46 0.08 2.67 0.07 2.80 0.07 
TeacherMat Teacher written materials 1.91 0.08 2.10 0.09 2.15 0.09 2.30 0.08 
GrCalculat Graphing calculators 1.61 0.11 1.53 0.11 1.41 0.11 1.60 0.12 
PhyObj Physical objects-manipulatives 1.23 0.06 1.15 0.06 1.13 0.05 1.57 0.07 
Software Computer-based instructional tools-software 1.03 0.09 0.99 0.08 0.70 0.07 1.39 0.12 
Computer_help Computer-based tools help 3.53 0.10 3.33 0.10 3.44 0.09 2.94 0.11 
TextTopic Appropriate textbook topics 1.63 0.05 1.72 0.07 1.86 0.06 1.87 0.06 
TextSeqCon Appropriate math concept sequences 1.90 0.06 2.16 0.08 2.30 0.07 2.66 0.09 
TextExampl Examples & lessons on concepts 1.83 0.06 2.17 0.09 2.10 0.07 2.33 0.08 
TextProbSo Development of problem-solving skills 1.86 0.06 1.99 0.07 2.21 0.07 2.71 0.09 
TextPrac Practice on topics 2.14 0.08 2.34 0.09 2.22 0.08 2.52 0.09 
TextSugges Textbook suggestions for homework 2.05 0.08 2.26 0.08 2.12 0.07 2.62 0.09 
TextSupp Adequate textbook support materials 2.02 0.08 2.36 0.09 2.18 0.07 2.65 0.09 
TextTitle_A Textbook title 1.73 0.05 1.93 0.07 2.10 0.06 2.36 0.07 
TextDivers Textbook suggestions for diverse learner 2.57 0.09 2.88 0.09 2.59 0.07 2.98 0.09 

Continued on p. 9-42 
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Table B-2, continued 
Percent Minority 

1st Quartile 
(Low) 2nd Quartile 3rd Quartile 4th Quartile 

(high) Variable Name Variable Label 
Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

StudentFail Number of Target Class student fail 2.10 0.07 2.10 0.09 2.81 0.11 3.26 0.13 
TimeAssign Time on assignments 3.08 0.05 3.11 0.06 3.16 0.06 3.04 0.08 
ComAssign Frequency of completes 1.79 0.06 1.74 0.07 2.17 0.06 2.59 0.09 
Min_Meet Average Minutes of class time 264.29 4.48 259.75 5.84 278.83 6.49 284.99 7.91 
Class_Period Minutes of class period 60.42 2.09 58.20 1.33 68.25 1.91 63.37 1.76 
InsuffComA Insufficient access to computers 1.93 0.08 1.72 0.07 1.85 0.07 1.92 0.08 
InsuffGrCa Insufficient access to graphing calculators 1.56 0.06 1.60 0.07 1.64 0.06 2.04 0.08 
PoorTextBk Poor quality or out-of-date textbooks 1.47 0.07 1.34 0.06 1.60 0.07 2.02 0.09 
LargeClas Class sizes are too large 1.68 0.06 1.91 0.08 2.12 0.08 2.21 0.09 
Insuffcoor Insufficient access to computers 1.52 0.06 1.53 0.05 1.82 0.07 2.17 0.08 
InadTeach Inadequately prepared teachers 1.22 0.04 1.26 0.05 1.49 0.05 1.69 0.08 
LackPlan Lack of teacher planning time 1.49 0.05 1.61 0.06 1.86 0.08 2.05 0.07 
DiffStudnt Diverse students take same class 2.42 0.07 2.23 0.08 2.61 0.07 2.90 0.08 
LittleFamS Too little parent/family support 2.60 0.07 2.31 0.08 2.82 0.07 3.30 0.07 
InadProLng Inadequate opportunities for professional learning 1.53 0.05 1.45 0.05 1.74 0.06 1.95 0.08 
InadAdminS Inadequate administrative support 1.40 0.05 1.42 0.06 1.74 0.07 2.04 0.09 
Class_Wk Class periods per week 18.00 0.73 19.75 0.73 19.04 0.65 18.01 0.81 
Min_Prep Average minutes for class preparation 63.31 2.56 60.90 2.90 63.64 2.82 64.35 4.10 
UnschdPrep Average Min for unscheduled class prep 49.69 3.66 59.32 6.81 57.45 6.40 85.31 6.91 
AvailTutor Availability of tutoring or other 2.85 0.08 2.40 0.08 2.55 0.08 2.19 0.08 
QualTutor Quality of tutoring or other 2.62 0.08 2.24 0.08 2.50 0.08 2.27 0.08 
WholNumIm Whole number operations-importance 4.64 0.04 4.66 0.05 4.71 0.04 4.57 0.05 
PosNegIm Positive & negative integers-importance 4.72 0.03 4.81 0.04 4.85 0.03 4.69 0.04 
RatNumbIm Rational numbers-importance 4.65 0.04 4.60 0.05 4.62 0.04 4.48 0.05 
RatoPrRtePIm Ratio_percent_rate_propor-importance 4.26 0.06 3.97 0.07 4.29 0.05 4.21 0.06 
Wd_ProbIm Solving word problems-importance 4.50 0.04 4.50 0.05 4.57 0.04 4.46 0.05 
variablesIm Concept of variables-importance 4.55 0.05 4.69 0.05 4.67 0.05 4.50 0.06 
Mani_VarIm Manipulation of variables-importance 4.48 0.05 4.68 0.06 4.60 0.06 4.43 0.06 
Simp_eqIm Solve simple linear equations & inequalities-importance 4.41 0.06 4.55 0.06 4.47 0.06 4.29 0.07 
PlotGraphIm Plotting and graphing-importance 4.31 0.06 4.37 0.06 4.41 0.06 4.27 0.07 
Geo_ShapesIm Formulas for geometric shapes-importance 3.44 0.07 3.17 0.07 3.55 0.07 3.64 0.07 
StudyHabitIm Study skills & work habits-importance 4.71 0.04 4.69 0.04 4.78 0.03 4.67 0.04 
ComputeSk_A Computation skills-importance 4.52 0.05 4.50 0.05 4.60 0.05 4.50 0.05 
Use_realIm Use math in real world-importance 4.02 0.05 4.06 0.07 4.08 0.06 4.30 0.06 
Work_IndepIm Work independently-importance 4.33 0.05 4.44 0.05 4.29 0.05 4.28 0.06 
Work_CoopIm Working cooperatively-importance 3.95 0.06 4.03 0.07 3.96 0.07 4.17 0.06 
AlgbraProf Expected student algebra proficiency 2.31 0.06 2.20 0.06 2.31 0.06 2.39 0.08 
Preservice Preservice teacher education 2.19 0.06 2.08 0.08 1.94 0.06 2.02 0.06 
ProfDev Professional development 2.15 0.06 1.99 0.06 2.03 0.06 2.03 0.07 
ContentStd Algebra I content 2.41 0.06 2.24 0.08 2.21 0.06 2.30 0.08 
AssessOut Assessments of algebra I outcomes 2.82 0.07 2.61 0.08 2.65 0.07 2.51 0.07 
T_Age Teacher’s age 40.62 0.83 41.22 0.90 40.50 0.75 42.43 1.03 
ElemYrs Elementary years taught 1.27 0.36 3.70 0.69 1.26 0.31 2.22 0.51 
SecYrs Secondary years taught 13.59 0.74 11.66 0.73 12.86 0.73 9.89 0.76 
TotalYrs Total years taught 13.51 0.94 13.71 0.89 12.57 0.78 10.90 1.03 
T_YrsSchool Teacher’s years in current school 9.40 0.65 8.75 0.63 7.06 0.50 6.68 0.58 
T_YrsExp Teacher’s years of algebra experience 10.96 0.68 8.82 0.56 9.86 0.58 7.88 0.66 
T_ColegeYr Teacher’s college graduation year 1993.99 0.82 1994.21 0.84 1993.54 0.69 1992.99 0.94 
T_Skill Teacher’s skill 1.38 0.04 1.26 0.04 1.29 0.04 1.43 0.05 

Note: SE’s are not adjusted for design effect.   

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table B-3: Means for Survey Variables by Percentage of Students in the School Eligible 
for Free and Reduced-Price Lunch 

Percent Free/Reduced-Price Lunch 
1st Quartile 

(Low) 2nd Quartile 3rd Quartile 4th Quartile 
(high) Variable Name Variable Label 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

TC_Student Target Class - total number of students 3.13 0.09 2.83 0.08 2.89 0.08 3.15 0.09 
TC_Studnt7 Target Class 7th-grade students 0.23 0.06 0.30 0.08 0.17 0.06 0.12 0.06 
TC_Studnt8 Target Class 8th-grade students 1.74 0.15 1.12 0.14 1.70 0.15 2.36 0.19 
TC_Studnt9 Target Class 9th-grade students 1.96 0.14 2.31 0.12 1.86 0.13 1.73 0.15 
TC_Studt10 Target Class 10th-grade students 0.68 0.07 0.74 0.07 0.71 0.07 0.50 0.06 
TC_Studt11 Target Class 11th-grade students 0.31 0.04 0.37 0.04 0.36 0.04 0.22 0.05 
TC_Studt12 Target Class 12th-grade students 0.13 0.03 0.18 0.03 0.21 0.03 0.17 0.04 
TC_StudtSE Target Class Special ED students 0.55 0.05 0.66 0.05 0.68 0.06 0.46 0.06 
TC_StudtBi Target Class bilingual Students 0.30 0.06 0.36 0.07 0.29 0.04 0.41 0.08 
Come_Time Come to class on time 3.71 0.04 3.66 0.04 3.53 0.05 3.31 0.06 
Attend_Reg Attend class regularly 3.56 0.04 3.53 0.04 3.40 0.05 3.34 0.06 
Come_Prep Come to class prepared 3.08 0.06 2.96 0.06 2.79 0.07 2.85 0.08 
Creat_Prob Create serious behavior problems 0.59 0.05 0.60 0.04 0.62 0.05 0.63 0.06 
Pay_Attn Regularly pay attention 2.82 0.06 2.88 0.05 2.85 0.06 2.67 0.08 
Activ_Part Actively participate 2.68 0.06 2.77 0.07 2.59 0.07 2.71 0.07 
Take_Note Take notes 2.71 0.08 2.67 0.07 2.81 0.07 2.73 0.09 
Diff_ReadE Serious difficulties reading English 0.44 0.05 0.35 0.04 0.51 0.04 0.66 0.06 
Care_grade Care about what grade received 3.00 0.06 3.02 0.06 2.85 0.07 2.68 0.08 
Whole_Numb Whole number-background 1.76 0.06 1.86 0.06 1.96 0.07 1.84 0.06 
Pos_Neg Positive and negative integers-background 2.43 0.06 2.66 0.06 2.68 0.07 2.50 0.08 
Rat_Numb Rational numbers-background 3.06 0.06 3.11 0.06 3.26 0.06 2.91 0.08 
RatoPrRteP Ratio_percent_rate_propor-background 2.75 0.06 2.85 0.06 2.92 0.06 2.80 0.08 
Wd_Prob Solving word problems-background 3.24 0.06 3.27 0.06 3.35 0.05 3.12 0.08 
variables Concept of variables-background 2.37 0.06 2.42 0.06 2.62 0.06 2.55 0.06 
Mani_Var Manipulation of variables-background 2.66 0.06 2.85 0.05 2.95 0.06 2.82 0.07 
Simp_eq Solve simple linear equations & inequalities-background 2.69 0.06 2.76 0.06 2.90 0.06 2.84 0.07 
PlotGraph Plotting and graphing-background 2.41 0.07 2.50 0.06 2.47 0.07 2.33 0.08 
Geo_Shapes Formulas for geometric shapes-background 2.64 0.06 2.85 0.06 2.93 0.06 2.83 0.07 
StudyHabit Study skills & work habits-background 2.88 0.06 2.89 0.07 3.15 0.06 3.10 0.07 
ComputeSk Computation skills-background 2.58 0.06 2.41 0.07 2.66 0.07 2.48 0.06 
Use_real Use math in real world-background 2.92 0.06 2.93 0.05 3.07 0.05 2.80 0.07 
Work_Indep Work independently-background 2.56 0.06 2.45 0.07 2.70 0.06 2.63 0.07 
Work_Coop Working cooperatively-background 2.28 0.05 2.25 0.06 2.30 0.06 2.48 0.06 
Textbooks Textbooks 3.24 0.07 2.89 0.09 2.61 0.10 2.95 0.08 
PrintMat Printed instructional materials 2.45 0.07 2.45 0.07 2.83 0.06 2.72 0.07 
TeacherMat Teacher written materials 2.13 0.09 2.10 0.09 2.24 0.09 1.87 0.09 
GrCalculat Graphing calculators 1.42 0.10 1.27 0.10 1.52 0.11 2.02 0.14 
PhyObj Physical objects-manipulatives 1.07 0.05 1.21 0.05 1.21 0.06 1.65 0.08 
Software Computer-based instructional tools-software 0.96 0.08 0.87 0.07 0.77 0.07 1.56 0.14 
Computer_help Computer-based tools help 3.35 0.10 3.42 0.09 3.52 0.09 2.96 0.12 
TextTopic Appropriate textbook topics 1.84 0.07 1.69 0.06 1.90 0.06 1.62 0.06 
TextSeqCon Appropriate math concept sequences 2.23 0.08 2.08 0.07 2.38 0.07 2.29 0.09 
TextExampl Examples & lessons on concepts 2.14 0.08 1.99 0.07 2.24 0.08 1.99 0.07 
TextProbSo Development of problem-solving skills 2.04 0.07 1.97 0.06 2.35 0.08 2.37 0.09 
TextPrac Practice on topics 2.51 0.09 2.07 0.08 2.31 0.08 2.30 0.09 
TextSugges Textbook suggestions for homework 2.34 0.08 2.09 0.07 2.28 0.08 2.25 0.09 
TextSupp Adequate textbook support materials 2.36 0.09 2.12 0.08 2.28 0.07 2.36 0.10 
TextTitle_A Textbook title 1.99 0.07 1.94 0.07 2.15 0.06 1.99 0.07 
TextDivers Textbook suggestions for diverse learner 2.88 0.08 2.58 0.09 2.81 0.07 2.66 0.09 

Continued on p. 9-44 
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Table B-3, continued 
Percent Free/Reduced-Price Lunch 

1st Quartile 
(Low) 2nd Quartile 3rd Quartile 4th Quartile 

(high) Variable Name Variable Label 
Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

StudentFail Number of Target Class student fail 2.22 0.09 2.36 0.10 2.75 0.11 2.98 0.13 
TimeAssign Time on assignments 3.18 0.06 3.20 0.05 2.95 0.07 3.08 0.08 
ComAssign Frequency of completes 1.83 0.06 1.97 0.07 2.24 0.08 2.23 0.08 
Min_Meet Average Minutes of class time 265.71 5.44 262.28 5.30 275.06 6.99 291.62 7.26 
Class_Period Minutes of class period 63.77 2.48 61.44 1.56 63.90 1.52 62.39 1.73 
InsuffComA Insufficient access to computers 1.75 0.07 1.73 0.06 1.65 0.07 2.48 0.10 
InsuffGrCa Insufficient access to graphing calculators 1.75 0.07 1.63 0.06 1.68 0.07 1.78 0.08 
PoorTextBk Poor quality or out-of-date textbooks 1.36 0.06 1.41 0.06 1.75 0.09 1.98 0.09 
LargeClas Class sizes are too large 2.04 0.07 1.86 0.07 1.94 0.08 2.12 0.08 
Insuffcoor Insufficient access to computers 1.59 0.06 1.72 0.07 1.71 0.07 2.04 0.08 
InadTeach Inadequately prepared teachers 1.35 0.05 1.35 0.05 1.43 0.05 1.54 0.08 
LackPlan Lack of teacher planning time 1.64 0.07 1.77 0.06 1.80 0.07 1.76 0.07 
DiffStudnt Diverse students take same class 2.36 0.08 2.49 0.07 2.59 0.08 2.76 0.08 
LittleFamS Too little parent/family support 2.35 0.07 2.69 0.07 2.88 0.07 3.18 0.08 
InadProLng Inadequate opportunities for professional learning 1.58 0.06 1.67 0.06 1.51 0.05 1.97 0.08 
InadAdminS Inadequate administrative support 1.54 0.06 1.59 0.06 1.67 0.07 1.81 0.08 
Class_Wk Class periods per week 19.97 0.68 18.63 0.68 18.94 0.68 16.71 0.91 
Min_Prep Average minutes for class preparation 65.01 2.96 62.16 2.99 68.41 3.05 54.67 3.13 
UnschdPrep Average Min for unscheduled class prep 61.46 6.35 63.76 4.22 63.81 8.33 56.94 3.93 
AvailTutor Availability of tutoring or other 2.54 0.08 2.48 0.07 2.33 0.08 2.84 0.09 
QualTutor Quality of tutoring or other 2.36 0.08 2.36 0.07 2.30 0.08 2.78 0.08 
WholNumIm Whole number operations-importance 4.58 0.05 4.73 0.03 4.73 0.04 4.54 0.06 
PosNegIm Positive & negative integers-importance 4.81 0.03 4.81 0.03 4.78 0.03 4.66 0.04 
RatNumbIm Rational numbers-importance 4.60 0.05 4.61 0.04 4.62 0.04 4.55 0.05 
RatoPrRtePIm Ratio_percent_rate_propor-importance 4.16 0.07 4.11 0.06 4.32 0.05 4.18 0.05 
Wd_ProbIm Solving word problems-importance 4.49 0.05 4.53 0.04 4.55 0.05 4.47 0.05 
variablesIm Concept of variables-importance 4.66 0.05 4.60 0.05 4.59 0.05 4.58 0.05 
Mani_VarIm Manipulation of variables-importance 4.62 0.06 4.55 0.05 4.49 0.06 4.55 0.05 
Simp_eqIm Solve simple linear equations & inequalities-importance 4.44 0.06 4.48 0.06 4.36 0.06 4.46 0.07 
PlotGraphIm Plotting and graphing-importance 4.41 0.06 4.34 0.06 4.31 0.06 4.31 0.07 
Geo_ShapesIm Formulas for geometric shapes-importance 3.35 0.07 3.44 0.07 3.36 0.07 3.73 0.08 
StudyHabitIm Study skills & work habits-importance 4.68 0.04 4.77 0.03 4.73 0.04 4.69 0.04 
ComputeSk_A Computation skills-importance 4.50 0.05 4.58 0.05 4.49 0.05 4.59 0.05 
Use_realIm Use math in real world-importance 4.11 0.06 4.03 0.06 4.00 0.07 4.34 0.06 
Work_IndepIm Work independently-importance 4.37 0.05 4.41 0.05 4.25 0.06 4.29 0.06 
Work_CoopIm Working cooperatively-importance 3.97 0.07 4.01 0.06 3.89 0.07 4.27 0.05 
AlgbraProf Expected student algebra proficiency 2.20 0.06 2.25 0.06 2.46 0.08 2.32 0.07 
Preservice Preservice teacher education 2.10 0.07 2.05 0.07 2.00 0.06 2.08 0.07 
ProfDev Professional development 2.08 0.06 2.00 0.06 2.03 0.06 2.11 0.08 
ContentStd Algebra I content 2.23 0.07 2.41 0.07 2.37 0.07 2.12 0.07 
AssessOut Assessments of Algebra I outcomes 2.67 0.08 2.74 0.08 2.76 0.07 2.39 0.07 
T_Age Teacher’s age 41.55 0.82 41.08 0.78 40.34 0.85 41.84 1.08 
ElemYrs Elementary years taught 3.92 0.73 1.04 0.26 1.72 0.35 2.05 0.63 
SecYrs Secondary years taught 12.25 0.75 12.95 0.70 12.17 0.74 10.91 0.85 
TotalYrs Total years taught 13.31 0.85 14.37 0.82 11.83 0.84 10.00 1.23 
T_YrsSchool Teacher’s years in current school 8.81 0.56 8.37 0.58 7.08 0.58 7.72 0.69 
T_YrsExp Teacher’s years of algebra experience 9.69 0.63 10.53 0.63 9.08 0.58 8.27 0.68 
T_ColegeYr Teacher’s college graduation year 1994.34 0.84 1993.72 0.75 1993.72 0.75 1992.61 0.96 
T_Skill Teacher’s skill 1.35 0.04 1.27 0.03 1.32 0.04 1.43 0.06 

Note: SE’s are not adjusted for design effect.   

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table B-4: Means for Survey Variables by Grade Level of the Target Class and 
School Grade Level 

Target Class Grade School Grade  
(High School vs. Others) 

7th & 8th 
Grade 9thGrade 10th, 11th, & 

12th Grade High School Others Variable Name Variable Label 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

TC_Student Target Class - total number of students 3.35 0.07 2.78 0.06 2.55 0.12  --   --  --   -- 
TC_Studnt7 Target Class 7th-grade students 0.50 0.07 0.00 0.00 0.00 0.00  --   --  --   -- 
TC_Studnt8 Target Class 8th-grade students 3.61 0.06 0.01 0.01 0.11 0.05  --   --  --   -- 
TC_Studnt9 Target Class 9th-grade students 0.05 0.02 3.31 0.04 0.42 0.09  --   --  --   -- 
TC_Studt10 Target Class 10th-grade students 0.00 0.00 0.82 0.03 2.83 0.13  --   --  --   -- 
TC_Studt11 Target Class 11th-grade students 0.00 0.00 0.46 0.03 1.07 0.11  --   --  --   -- 
TC_Studt12 Target Class 12th-grade students 0.00 0.00 0.27 0.03 0.48 0.09  --   --  --   -- 
TC_StudtSE Target Class Special ED students 0.38 0.04 0.75 0.04 0.72 0.10  --   --  --   -- 
TC_StudtBi Target Class bilingual students 0.29 0.05 0.36 0.04 0.47 0.15  --   --  --   -- 
Come_Time Come to class on time 3.75 0.03 3.49 0.03 3.30 0.10  --   --  --   -- 
Attend_Reg Attend class regularly 3.74 0.03 3.32 0.03 3.15 0.11  --   --  --   -- 
Come_Prep Come to class prepared 3.32 0.04 2.71 0.05 2.49 0.12  --   --  --   -- 
Creat_Prob Create serious behavior problems 0.46 0.04 0.70 0.03 0.74 0.09  --   --  --   -- 
Pay_Attn Regularly pay attention 3.11 0.05 2.66 0.04 2.50 0.10  --   --  --   -- 
Activ_Part Actively participate 2.92 0.05 2.60 0.04 2.17 0.11  --   --  --   -- 
Take_Note Take notes 3.05 0.05 2.58 0.05 2.08 0.13  --   --  --   -- 
Diff_ReadE Serious difficulties reading English 0.25 0.03 0.59 0.03 0.77 0.11  --   --  --   -- 
Care_grade Care about what grade received 3.28 0.04 2.71 0.05 2.33 0.10  --   --  --   -- 
Whole_Numb Whole number-background 1.49 0.04 2.07 0.04 2.19 0.10  --   --  --   -- 
Pos_Neg Positive and negative integers-background 2.11 0.05 2.88 0.04 2.82 0.12  --   --  --   -- 
Rat_Numb Rational numbers-background 2.64 0.05 3.37 0.04 3.46 0.10  --   --  --   -- 
RatoPrRteP Ratio_percent_rate_propor-background 2.49 0.05 3.03 0.04 3.13 0.11  --   --  --   -- 
Wd_Prob Solving word problems-background 2.75 0.05 3.57 0.03 3.55 0.09  --   --  --   -- 
variables Concept of variables-background 2.17 0.05 2.68 0.04 2.65 0.11  --   --  --   -- 
Mani_Var Manipulation of variables-background 2.52 0.04 3.03 0.04 2.85 0.10  --   --  --   -- 
Simp_eq Solve simple linear equations & inequalities-background 2.60 0.05 2.92 0.04 2.91 0.12  --   --  --   -- 
PlotGraph Plotting and graphing-background 2.03 0.05 2.67 0.04 2.86 0.12  --   --  --   -- 
Geo_Shapes Formulas for geometric shapes-background 2.52 0.05 2.98 0.04 3.18 0.08  --   --  --   -- 
StudyHabit Study skills & work habits-background 2.56 0.06 3.24 0.04 3.46 0.08  --   --  --   -- 
ComputeSk Computation skills-background 2.11 0.05 2.76 0.04 3.05 0.10  --   --  --   -- 
Use_real Use math in real world-background 2.46 0.04 3.21 0.03 3.45 0.08  --   --  --   -- 
Work_Indep Work independently-background 2.22 0.05 2.75 0.04 3.12 0.10  --   --  --   -- 
Work_Coop Working cooperatively-background 2.05 0.05 2.43 0.04 2.82 0.10  --   --  --   -- 
Textbooks Textbooks 3.03 0.06 2.81 0.07 3.12 0.13  --   --  --   -- 
PrintMat Printed instructional materials 2.49 0.05 2.66 0.05 2.79 0.11  --   --  --   -- 
TeacherMat Teacher written materials 1.98 0.07 2.19 0.06 2.19 0.16  --   --  --   -- 
GrCalculat Graphing calculators 1.58 0.08 1.49 0.08 1.64 0.22  --   --  --   -- 
PhyObj Physical objects-manipulatives 1.23 0.05 1.28 0.04 1.26 0.11  --   --  --   -- 
Software Computer-based instructional tools-software 1.06 0.07 1.00 0.06 0.77 0.15  --   --  --   -- 
Computer_help Computer-based tools help 3.36 0.08 3.30 0.07 3.45 0.18  --   --  --   -- 
TextTopic Appropriate textbook topics 1.67 0.05 1.83 0.05 1.83 0.12  --   --  --   -- 
TextSeqCon Appropriate math concept sequences 2.07 0.06 2.36 0.06 2.22 0.14  --   --  --   -- 
TextExampl Examples & lessons on concepts 2.02 0.06 2.14 0.05 2.09 0.15  --   --  --   -- 
TextProbSo Development of problem-solving skills 1.99 0.05 2.30 0.06 2.11 0.12  --   --  --   -- 
TextPrac Practice on topics 2.23 0.06 2.32 0.06 2.35 0.18  --   --  --   -- 
TextSugges Textbook suggestions for homework 2.10 0.06 2.32 0.06 2.30 0.16  --   --  --   -- 
TextSupp Adequate textbook support materials 2.15 0.06 2.34 0.06 2.43 0.17  --   --  --   -- 
TextTitle_A Textbook title 1.89 0.05 2.09 0.05 2.12 0.13  --   --  --   -- 
TextDivers Textbook suggestions for diverse learner 2.60 0.06 2.78 0.06 3.02 0.14  --   --  --   -- 

Continued on p. 9-46 
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Table B-4, continued 
Target Class Grade School Grade  

(High School vs. Others) 
7th & 8th 

Grade 9thGrade 10th, 11th, & 
12th Grade High School Others Variable Name Variable Label 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

Wtd. 
Mean 

Wtd. 
SE 

StudentFail Number of Target Class student fail 1.81 0.06 2.92 0.08 3.69 0.22  --   --  --   -- 
TimeAssign Time on assignments 3.34 0.04 2.97 0.05 2.87 0.13  --   --  --   -- 
ComAssign Frequency of completes 1.63 0.04 2.28 0.05 2.65 0.13  --   --  --   -- 
Min_Meet Average Minutes of class time 263.72 4.64 277.61 4.47 271.19 10.55  --   --  --   -- 
Class_Period Minutes of class period 58.53 0.96 64.93 1.47 68.96 3.51  --   --  --   -- 
InsuffComA Insufficient access to computers  --  --  --  --  --  -- 1.83 0.05 1.89 0.05 
InsuffGrCa Insufficient access to graphing calculators  --  --  --  --  --  -- 1.74 0.05 1.65 0.05 
PoorTextBk Poor quality or out-of-date textbooks  --  --  --  --  --  -- 1.64 0.05 1.54 0.05 
LargeClas Class sizes are too large  --  --  --  --  --  -- 2.07 0.05 1.87 0.06 
Insuffcoor Insufficient access to computers  --  --  --  --  --  -- 1.82 0.05 1.67 0.05 
InadTeach Inadequately prepared teachers  --  --  --  --  --  -- 1.44 0.04 1.38 0.04 
LackPlan Lack of teacher planning time  --  --  --  --  --  -- 1.76 0.05 1.72 0.05 
DiffStudnt Diverse students take same class  --  --  --  --  --  -- 2.68 0.05 2.38 0.06 
LittleFamS Too little parent/family support  --  --  --  --  --  -- 3.08 0.05 2.40 0.05 
InadProLng Inadequate opportunities for professional learning  --  --  --  --  --  -- 1.76 0.05 1.56 0.04 
InadAdminS Inadequate administrative support  --  --  --  --  --  -- 1.74 0.05 1.53 0.05 
Class_Wk Class periods per week  --  --  --  --  --  -- 19.46 0.49 17.94 0.53 
Min_Prep Average minutes for class preparation  --  --  --  --  --  -- 70.60 2.42 55.42 1.76 
UnschdPrep Average Min for Unscheduled class prep  --  --  --  --  --  -- 66.57 5.16 56.71 3.15 
AvailTutor Availability of tutoring or other  --  --  --  --  --  -- 2.30 0.06 2.75 0.06 
QualTutor Quality of tutoring or other  --  --  --  --  --  -- 2.27 0.05 2.58 0.06 
WholNumIm Whole number operations-importance  --  --  --  --  --  -- 4.61 0.03 4.69 0.03 
PosNegIm Positive & negative integers-importance  --  --  --  --  --  -- 4.71 0.03 4.83 0.02 
RatNumbIm Rational numbers-importance  --  --  --  --  --  -- 4.48 0.03 4.71 0.03 
RatoPrRtePIm Ratio_percent_rate_propor-importance  --  --  --  --  --  -- 4.14 0.04 4.24 0.04 
Wd_ProbIm Solving word problems-importance  --  --  --  --  --  -- 4.43 0.04 4.59 0.03 
variablesIm Concept of variables-importance  --  --  --  --  --  -- 4.55 0.04 4.67 0.03 
Mani_VarIm Manipulation of variables-importance  --  --  --  --  --  -- 4.48 0.04 4.61 0.04 
Simp_eqIm Solve simple linear equations & inequalities-importance  --  --  --  --  --  -- 4.44 0.05 4.44 0.04 
PlotGraphIm Plotting and graphing-importance  --  --  --  --  --  -- 4.29 0.04 4.40 0.04 
Geo_ShapesIm Formulas for geometric shapes-importance  --  --  --  --  --  -- 3.32 0.05 3.59 0.05 
StudyHabitIm Study skills & work habits-importance  --  --  --  --  --  -- 4.69 0.03 4.75 0.03 
ComputeSk_A Computation skills-importance  --  --  --  --  --  -- 4.45 0.04 4.63 0.03 
Use_realIm Use math in real world-importance  --  --  --  --  --  -- 3.99 0.05 4.21 0.04 
Work_IndepIm Work independently-importance  --  --  --  --  --  -- 4.25 0.04 4.42 0.04 
Work_CoopIm Working cooperatively-importance  --  --  --  --  --  -- 3.96 0.05 4.08 0.05 
AlgbraProf Expected student algebra proficiency  --  --  --  --  --  -- 2.21 0.05 2.39 0.05 
Preservice Preservice teacher education  --  --  --  --  --  -- 1.97 0.04 2.15 0.05 
ProfDev Professional development  --  --  --  --  --  -- 2.04 0.04 2.06 0.04 
ContentStd Algebra I content  --  --  --  --  --  -- 2.13 0.04 2.45 0.06 
AssessOut Assessments of Algebra I outcomes  --  --  --  --  --  -- 2.59 0.05 2.73 0.06 
T_Age Teacher’s age  --  --  --  --  --  -- 40.80 0.62 41.42 0.60 
ElemYrs Elementary years taught  --  --  --  --  --  -- 1.14 0.24 2.89 0.40 
SecYrs Secondary years taught  --  --  --  --  --  -- 11.58 0.53 12.71 0.53 
TotalYrs Total years taught  --  --  --  --  --  -- 12.41 0.62 13.18 0.65 
T_YrsSchool Teacher’s years in current school  --  --  --  --  --  -- 7.26 0.39 8.76 0.45 
T_YrsExp Teacher’s years of algebra experience  --  --  --  --  --  -- 9.83 0.45 9.15 0.45 
T_ColegeYr Teacher’s college graduation year  --  --  --  --  --  -- 1994.44 0.56 1992.93 0.59 
T_Skill Teacher’s skill  --  --  --  --  --  -- 1.37 0.03 1.29 0.03 

Note: SE’s are not adjusted for design effect.   
-- : No data available 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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APPENDIX C: Variables Used in the Regression Equations  
And Tables of Regression Estimates 

This appendix contains results of ordinary least squares regression analysis for the 
main outcome variables described in the report. The dependent variables used in the 
regressions were all transformed to standardized z-scores, such that the estimated effects of 
the independent variables refer to standard deviation units of the dependent variable. Sample 
weights were used to weight the observations, and the standard errors of the estimates were 
adjusted for design effects. 

The regressions referred to in the report use a common set of predictor or independent 
variables.  These are defined as follows: 

• Type of locale:  the standard three-level indicator of urban, suburban, or rural school 
location. This was dichotomized into two variables, one indicating an urban school 
and another indicating a rural school; each references the difference between those 
schools and suburban schools.  

• Percentage of students receiving free or reduced-price lunch: a dichotomous indicator 
of “40 percent or lower” versus “more than 40 percent” was used as a stratifying 
variable in the sample design. The analysis was structured to capture more linear effects 
by using quartile indicators.  Dichotomous variables were created to indicate in which 
quartile (of the sample) of students receiving free or reduced-priced lunch a school was 
located.  The sample was divided into the following quartiles based on the following 
cut points: 

First Quartile (low) 0.102  
Second Quartile 0.274 

Third Quartile 0.478 
Forth Quartile (high) 0.809 

 
With dummy variables indicating membership in the second, third, or fourth quartile 

(referenced to the first quartile, low number of students receiving free or reduced-price lunch).  

• Percentage of students who are black or Hispanic: a similar dichotomous indicator of 
“40 percent or lower” versus “more than 40 percent” was used as a sample stratification 
variable. For the regression analysis, the percentile range was recoded into quartiles and 
separate dummy variables for the second, third, and fourth quartiles were used (the first 
quartile was the reference group) based on the following cut points: 

First Quartile (low) 0.028 
Second Quartile 0.099 

Third Quartile 0.401 
Forth Quartile (high) 0.816 
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• School size.  The percentile distribution of school enrollment size was recoded into 
quartiles, and dummy variables defined based on these cut points: 

 
First Quartile (low) 213 

Second Quartile 436 
Third Quartile 725 

Forth Quartile (high) 1681 
 

Note, however, that these dummies reference the second quartile, not the first.  

Classroom Variables 

• Graded configuration of the school: a three-level indicator of “grade 9–12 and 10–12 
high schools,” “grade 6–8 middle schools and grade 7–9 junior high schools,” and 
“all other schools where pre-algebra or algebra are taught.” These are used in the 
regressions of non-target class dependent variables only. 

Results showed that there were differences among high schools, middle schools, and 
other types of schools teaching algebra.  However, on further inspection, it was found 
that the effects were generated not by the types of schools, but by the grades of those 
schools.  In other words, it is not the middle school that is different than the high 
school, but that it is 7th-grade that is different from 9th-grade classes.  For this 
reason, two dummy variables were included in the models of target class dependent 
variables, one that indicates that the class is primarily 7th- and 8th-grade students, 
and another dummy variable indicating that the class is primarily either a 10th-, 
11th-, or 12th-grade class.  The effects of each reference the difference between those 
classes and the traditional ninth-grade class. 

• NORC controlled for the size of the classroom with dummies that indicate smaller 
classes (15 or fewer, 16 to 20, 26 to 30, 31 to 35, and more than 36 students).  These 
variables reference the typical size of 20 to 25. While these refer to the target class, 
dummies were also included in the regressions of the nontarget dependent variables 
on the assumption that they proxy student-teacher ratios in the school more generally.  

Teacher Background Variables 

• All of the regression tables included controls for teacher sex, age, and race/ethnicity 
(dummy variables for Hispanic and for non-Hispanic black; reference group is all 
other identifications).  Teacher age is centered on age = 40 to improve interpretability 
of the regression intercept (constant) term. 
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Table C-1: Regressions of Teachers’ Summary Ratings of Student Background 
Preparation for Algebra I on Grade Level and Class Size of the Target Class, and 
School and Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
Class is 7th or 8th grade (ref: 9th) -0.879*** -0.978***     
  (0.17) (0.14)     
Class is 10th, 11th, or 8th grade (ref: 9th) 0.288 0.209     
  (0.17) (0.15)     
Class size LE 15 students (ref: 21–25) 0.0323  0.0515    
  (0.28)  (0.23)    
Class size 16–20 students (ref: 21–25) -0.0462  -0.0620    
  (0.12)  (0.16)    
Class size 26–30 students (ref: 21–25) -0.108  -0.256    
  (0.12)  (0.15)    
Class size 31–35 students (ref: 21–25) 0.263  0.0598    
  (0.22)  (0.25)    
Class size GE 36 students (ref: 21–25) -0.285  -0.775*    
  (0.29)  (0.31)    
School size: 1st quartile (ref: 2nd) 0.140  0.472*    
  (0.20)  (0.21)    
School size: 3rd quartile (ref: 2nd) 0.239  0.287    
  (0.21)  (0.23)    
School size: 4th quartile (ref: 2nd) 0.212  0.799***    
  (0.20)  (0.19)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.277   -0.0426  -0.224 
  (0.18)   (0.20)  (0.20) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.137   0.305  0.124 
  (0.15)   (0.18)  (0.17) 
Sch N of minority students: 4th quartile (ref: 1st) 0.0507   0.572**  0.341 
  (0.19)   (0.18)  (0.19) 
School N FRPL: 2nd quartile (ref: 1st) 0.0000157    0.0906  
  (0.15)    (0.16)  
School N FRPL: 3rd quartile (ref: 1st) 0.264    0.299  
  (0.19)    (0.16)  
School N FRPL: 4th quartile (ref: 1st) 0.0416    0.0836  
  (0.22)    (0.26)  
Urban school (ref: suburban) 0.150     0.0168 
  (0.14)     (0.15) 
Rural school (ref: suburban) -0.264     -0.345* 
  (0.15)     (0.14) 
Teacher is female (ref: male) -0.0614      
  (0.11)      
Teacher’s age (centered on age 40) -0.000181      
  (0.0046)      
Teacher is black (ref: white, Asian) -0.121      
  (0.22)      
Teacher is Hispanic (ref: Non-Hispanic) 0.0814      
 (0.11)      
Constant -0.0475 0.0353 -0.722*** -0.524*** -0.445*** -0.273 
  (0.28) (0.063) (0.19) (0.14) (0.11) (0.14) 
Observations 660 720 723 725 713 725 
R-squared 0.31 0.23 0.10 0.06 0.01 0.07 

*** p < 0.001, ** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = excellent [preparation] to 4 = 
poor [preparation]. Negative coefficients in this table thus represent more favorable ratings and positive 
coefficients less favorable ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-2: Regressions of Teachers’ Summary Ratings of Importance-Weighted 
Preparation for Algebra I on Grade Level and Class Size of the Target Class, and 
School and Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
Class is 7th or 8th grade (ref: 9th) -0.715*** -0.789***     
  (0.17) (0.13)     
Class is 10th, 11th, or 8th grade (ref: 9th) 0.203 0.149     
  (0.13) (0.13)     
Class size LE 15 students (ref: 21–25) 0.0551  0.132    
  (0.29)  (0.24)    
Class size 16–20 students (ref: 21–25) -0.0974  -0.0932    
  (0.11)  (0.13)    
Class size 26–30 students (ref: 21–25) -0.0952  -0.227    
  (0.12)  (0.12)    
Class size 31–35 students (ref: 21–25) 0.250  0.111    
  (0.22)  (0.23)    
Class size GE 36 students (ref: 21–25) -0.367  -0.735*    
  (0.27)  (0.29)    
School size: 1st quartile (ref: 2nd) 0.0123  0.283    
  (0.19)  (0.17)    
School size: 3rd quartile (ref: 2nd) 0.134  0.199    
  (0.18)  (0.19)    
School size: 4th quartile (ref: 2nd) 0.204  0.677***    
  (0.19)  (0.15)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.166   0.000194  -0.121 
  (0.16)   (0.17)  (0.17) 
Sch N of minority students: 3rd quartile (ref: 1st) 0.0369   0.325*  0.232 
  (0.16)   (0.15)  (0.15) 
Sch N of minority students: 4th quartile (ref: 1st) 0.227   0.530**  0.416* 
  (0.19)   (0.16)  (0.17) 
School N FRPL: 2nd quartile (ref: 1st) -0.0319    0.0711  
  (0.15)    (0.15)  
School N FRPL: 3rd quartile (ref: 1st) 0.140    0.225  
  (0.18)    (0.15)  
School N FRPL: 4th quartile (ref: 1st) -0.0307    0.0752  
  (0.21)    (0.20)  
Urban school (ref: suburban) 0.0879     -0.0697 
  (0.14)     (0.14) 
Rural school (ref: suburban) -0.113     -0.250 
  (0.14)     (0.13) 
Teacher is female (ref: male) 0.130      
  (0.098)      
Teacher’s age (centered on age 40) 0.00270      
  (0.0044)      
Teacher is black (ref: white, Asian) -0.128      
  (0.22)      
Teacher is Hispanic (ref: Non-Hispanic) 0.117      
 (0.14)      
Constant -0.351 -0.00488 -0.594*** -0.500*** -0.387*** -0.320* 
 (0.25) (0.056) (0.15) (0.11) (0.10) (0.13) 
Observations 640 697 700 702 690 702 
R-squared 0.23 0.17 0.09 0.05 0.01 0.06 

*** p < 0.001, ** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 0 = not a problem [preparation] to 
4 = serious problem [preparation]. Negative coefficients in this table thus represent more favorable ratings and 
positive coefficients less favorable ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-3: Regressions of Teachers’ Summary Ratings of Content Standards for 
Algebra I in Their State or Local District on School Grade Level and Class Size of the 
Target Class, and School and Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
0.187 

 
0.212     

  (0.14) (0.16)     
Class size LE 15 students (ref: 21–25) 0.432  0.495    
  (0.33)  (0.40)    
Class size 16–20 students (ref: 21–25) -0.0409  -0.0104    
  (0.16)  (0.18)    
Class size 26–30 students (ref: 21–25) -0.193  -0.139    
  (0.13)  (0.13)    
Class size 31–35 students (ref: 21–25) -0.0323  -0.0191    
  (0.19)  (0.17)    
Class size GE 36 students (ref: 21–25) 0.0671  -0.0597    
  (0.19)  (0.19)    
School size: 1st quartile (ref: 2nd) 0.126  0.177    
  (0.28)  (0.26)    
School size: 3rd quartile (ref: 2nd) -0.0607  0.0239    
  (0.18)  (0.18)    
School size: 4th quartile (ref: 2nd) -0.162  -0.198    
  (0.18)  (0.12)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.365*   -0.495*  -0.402 
  (0.16)   (0.22)  (0.21) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.131   -0.197  -0.124 
  (0.26)   (0.26)  (0.31) 
Sch N of minority students: 4th quartile (ref: 1st) -0.142   -0.220  -0.140 
  (0.24)   (0.24)  (0.26) 
School N FRPL: 2nd quartile (ref: 1st) 0.110    0.276  
  (0.18)    (0.22)  
School N FRPL: 3rd quartile (ref: 1st) 0.0563    0.279  
  (0.16)    (0.18)  
School N FRPL: 4th quartile (ref: 1st) -0.374    -0.0607  
  (0.19)    (0.14)  
Urban school (ref: suburban) 0.179     0.0981 
  (0.15)     (0.15) 
Rural school (ref: suburban) 0.0501     0.221 
  (0.17)     (0.22) 
Teacher is female (ref: male) -0.00636      
  (0.14)      
Teacher’s age (centered on age 40) 0.00154      
  (0.0039)      
Teacher is black (ref: white, Asian) 0.158      
  (0.37)      
Teacher is Hispanic (ref: Non-Hispanic) 0.580      
 (0.38)      
Constant 0.0660 -0.0171 0.111 0.299 -0.0530 0.139 
 (0.40) (0.053) (0.15) (0.21) (0.076) (0.20) 
Observations 663 721 719 721 710 721 
R-squared 0.12 0.01 0.06 0.03 0.02 0.04 

*** p < 0.001, ** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = excellent [standards] to 4 = 
poor [standards]. Negative coefficients in this table thus represent more favorable ratings and positive 
coefficients less favorable ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-4: Regressions of Teachers’ Summary Ratings of Assessment Standards for 
Algebra I in Their State or Local District on School Grade Level and Class Size of the 
Target Class, and School And Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
0.00919 

 
0.0642     

  (0.14) (0.15)     
Class size LE 15 students (ref: 21–25) 0.326  0.393    
  (0.29)  (0.32)    
Class size 16–20 students (ref: 21–25) 0.153  0.217    
  (0.18)  (0.19)    
Class size 26–30 students (ref: 21–25) -0.0656  -0.0100    
  (0.13)  (0.14)    
Class size 31–35 students (ref: 21–25) -0.0754  -0.131    
  (0.18)  (0.18)    
Class size GE 36 students (ref: 21–25) -0.150  -0.243    
  (0.18)  (0.18)    
School size: 1st quartile (ref: 2nd) 0.0933  0.118    
  (0.28)  (0.27)    
School size: 3rd quartile (ref: 2nd) 0.215  0.169    
  (0.22)  (0.22)    
School size: 4th quartile (ref: 2nd) 0.0594  -0.0318    
  (0.21)  (0.20)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.308   -0.373  -0.284 
  (0.19)   (0.24)  (0.22) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.0853   -0.0576  0.000997 
  (0.23)   (0.24)  (0.24) 
Sch N of minority students: 4th quartile (ref: 1st) -0.332   -0.281  -0.219 
  (0.24)   (0.24)  (0.25) 
School N FRPL: 2nd quartile (ref: 1st) 0.00595    0.151  
  (0.20)    (0.20)  
School N FRPL: 3rd quartile (ref: 1st) 0.148    0.254  
  (0.23)    (0.17)  
School N FRPL: 4th quartile (ref: 1st) -0.210    -0.109  
  (0.24)    (0.17)  
Urban school (ref: suburban) 0.225     0.125 
  (0.14)     (0.15) 
Rural school (ref: suburban) 0.166     0.219 
  (0.18)     (0.18) 
Teacher is female (ref: male) 0.0360      
  (0.14)      
Teacher’s age (centered on age 40) 0.00110      
  (0.0045)      
Teacher is black (ref: white, Asian) -0.0489      
  (0.33)      
Teacher is Hispanic (ref: Non-Hispanic) 0.446      
 (0.27)      
Constant -0.166 -0.00235 -0.0979 0.190 -0.0576 0.0311 
 (0.38) (0.068) (0.19) (0.21) (0.097) (0.19) 
Observations 650 708 706 708 697 708 
R-squared 0.07 0.00 0.03 0.02 0.02 0.03 

Note: The items used to construct the dependent summary scale range from 1 = excellent [standards] to 4 = 
poor [standards]. Negative coefficients in this table thus represent more favorable ratings and positive 
coefficients less favorable ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-5: Regressions of Teachers’ Summary Ratings of Algebra I Textbooks on 
Grade Level and Class Size of the Target Class, and School and Teacher Demographic 
Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
Class is 7th or 8th grade (ref: 9th) -0.234 -0.251     
  (0.12) (0.16)     
Class is 10th, 11th, or 8th grade (ref: 9th) -0.0392 -0.00355     
  (0.19) (0.21)     
Class size LE 15 students (ref: 21–25) -0.561*  -0.726*    
  (0.23)  (0.32)    
Class size 16–20 students (ref: 21–25) -0.105  -0.206    
  (0.14)  (0.18)    
Class size 26–30 students (ref: 21–25) -0.0487  -0.155    
  (0.15)  (0.18)    
Class size 31–35 students (ref: 21–25) -0.139  -0.145    
  (0.16)  (0.19)    
Class size GE 36 students (ref: 21–25) -0.287  -0.367*    
  (0.16)  (0.17)    
School size: 1st quartile (ref: 2nd) 0.151  0.355    
  (0.23)  (0.29)    
School size: 3rd quartile (ref: 2nd) 0.117  0.401*    
  (0.18)  (0.18)    
School size: 4th quartile (ref: 2nd) -0.00993  0.469**    
  (0.18)  (0.17)    
Sch N of minority students: 2nd quartile (ref: 1st) 0.0229   0.298  0.0631 
  (0.18)   (0.21)  (0.19) 
Sch N of minority students: 3rd quartile (ref: 1st) 0.0214   0.275  0.0283 
  (0.16)   (0.17)  (0.16) 
Sch N of minority students: 4th quartile (ref: 1st) 0.517*   0.705**  0.387* 
  (0.23)   (0.23)  (0.19) 
School N FRPL: 2nd quartile (ref: 1st) -0.204    -0.255  
  (0.15)    (0.19)  
School N FRPL: 3rd quartile (ref: 1st) -0.0127    0.0508  
  (0.18)    (0.16)  
School N FRPL: 4th quartile (ref: 1st) -0.362    -0.0705  
  (0.21)    (0.27)  
Urban school (ref: suburban) 0.0482     0.0683 
  (0.14)     (0.15) 
Rural school (ref: suburban) -0.347*     -0.441*** 
  (0.15)     (0.13) 
Teacher is female (ref: male) -0.172      
  (0.11)      
Teacher’s age (centered on age 40) 0.00235      
  (0.0044)      
Teacher is black (ref: white, Asian) -0.132      
  (0.27)      
Teacher is Hispanic (ref: Non-Hispanic) -0.500*      
 (0.24)      
Constant 0.193 -0.0116 -0.284 -0.404** -0.0353 -0.0844 
 (0.26) (0.11) (0.17) (0.15) (0.12) (0.14) 
Observations 636 693 696 698 686 698 
R-squared 0.17 0.02 0.07 0.06 0.02 0.10 

*** p < 0.001, ** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = strongly agree [that the text has 
some quality] to 5 = strongly disagree [that the text has some quality]. Negative coefficients in this table thus 
represent more favorable ratings and positive coefficients represent negative ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-6: Regressions of Teachers’ Summary Ratings of Technology Use in  
Algebra I on Grade Level and Class Size of the Target Class, and School and  
Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
Class is 7th or 8th grade (ref: 9th) -0.134 -0.00412     
  (0.16) (0.17)     
Class is 10th, 11th, or 8th grade (ref: 9th) 0.142 0.181     
 (0.16) (0.21)     
Class size LE 15 students (ref: 21–25) 0.292  0.385    
  (0.28)  (0.36)    
Class size 16–20 students (ref: 21–25) 0.545**  0.604*    
  (0.18)  (0.24)    
Class size 26–30 students (ref: 21–25) 0.254  0.255    
  (0.17)  (0.18)    
Class size 31–35 students (ref: 21–25) 0.374  0.413    
  (0.23)  (0.22)    
Class size GE 36 students (ref: 21–25) 0.276  0.350    
  (0.22)  (0.27)    
School size: 1st quartile (ref: 2nd) -0.135  -0.115    
  (0.30)  (0.35)    
School size: 3rd quartile (ref: 2nd) 0.255  0.246    
  (0.22)  (0.19)    
School size: 4th quartile (ref: 2nd) -0.0777  0.00865    
  (0.25)  (0.17)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.152   -0.0642  -0.116 
  (0.16)   (0.19)  (0.18) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.0132   0.124  0.142 
  (0.16)   (0.18)  (0.19) 
Sch N of minority students: 4th quartile (ref: 1st) -0.417   -0.443  -0.398 
  (0.28)   (0.32)  (0.26) 
School N FRPL: 2nd quartile (ref: 1st) 0.0692    0.0791  
  (0.18)    (0.16)  
School N FRPL: 3rd quartile (ref: 1st) 0.275    0.173  
  (0.20)    (0.15)  
School N FRPL: 4th quartile (ref: 1st) -0.295    -0.475  
  (0.29)    (0.29)  
Urban school (ref: suburban) -0.0101     -0.225 
  (0.15)     (0.19) 
Rural school (ref: suburban) -0.176     -0.146 
  (0.17)     (0.15) 
Teacher is female (ref: male) 0.241*      
  (0.12)      
Teacher’s age (centered on age 40) -0.000164      
  (0.0072)      
Teacher is black (ref: white, Asian) -0.250      
  (0.22)      
Teacher is Hispanic (ref: Non-Hispanic) 0.273      
 (0.30)      
Constant -0.229 -0.0194 -0.326 0.0638 0.0171 0.170 
  (0.40) (0.13) (0.21) (0.15) (0.11) (0.15) 
Observations 650 709 712 714 702 714 
R-squared 0.14 0.00 0.05 0.04 0.05 0.04 

** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = strongly agree [that the 
technology is helpful] to 5 = strongly disagree [that the technology is helpful]. Negative coefficients in this table 
thus represent more favorable ratings and positive coefficients represent negative ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-7a: Regressions of Teachers’ Summary Ratings on the Helpfulness of Pre-
Service Teacher Training in Teaching Algebra I on Grade Level and Class Size of the 
Target Class, and School and Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
0.114 

 
0.209     

  (0.14) (0.14)     
Class size LE 15 students (ref: 21–25) 0.192  0.187    
  (0.32)  (0.35)    
Class size 16–20 students (ref: 21–25) 0.0981  0.0940    
  (0.17)  (0.16)    
Class size 26–30 students (ref: 21–25) 0.350*  0.389*    
  (0.16)  (0.16)    
Class size 31–35 students (ref: 21–25) 0.377  0.452*    
  (0.24)  (0.23)    
Class size GE 36 students (ref: 21–25) 0.737**  0.733**    
  (0.27)  (0.25)    
School size: 1st quartile (ref: 2nd) 0.110  0.0961    
  (0.25)  (0.24)    
School size: 3rd quartile (ref: 2nd) -0.123  -0.0998    
  (0.23)  (0.18)    
School size: 4th quartile (ref: 2nd) -0.290  -0.231    
  (0.21)  (0.14)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.123   -0.123  -0.200 
  (0.21)   (0.22)  (0.22) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.303   -0.287  -0.372 
  (0.22)   (0.20)  (0.21) 
Sch N of minority students: 4th quartile (ref: 1st) -0.179   -0.187  -0.296 
  (0.21)   (0.18)  (0.19) 
School N FRPL: 2nd quartile (ref: 1st) -0.000303    -0.0585  
  (0.18)    (0.21)  
School N FRPL: 3rd quartile (ref: 1st) -0.0584    -0.117  
  (0.18)    (0.16)  
School N FRPL: 4th quartile (ref: 1st) -0.0590    -0.0236  
  (0.19)    (0.18)  
Urban school (ref: suburban) 0.0632     0.00919 
  (0.14)     (0.13) 
Rural school (ref: suburban) -0.274     -0.159 
  (0.18)     (0.18) 
Teacher is female (ref: male) 0.0959      
  (0.12)      
Teacher’s age (centered on age 40) 0.000408      
  (0.0045)      
Teacher is black (ref: white, Asian) 0.0355      
  (0.34)      
Teacher is Hispanic (ref: Non-Hispanic) -0.642***      
 (0.19)      
Constant 0.197 0.0143 0.0266 0.269 0.169 0.385* 
 (0.35) (0.054) (0.16) (0.17) (0.12) (0.18) 
Observations 673 734 732 734 722 734 
R-squared 0.08 0.01 0.04 0.01 0.00 0.02 

*** p < 0.001, ** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = Very Well to 4 = Very 
Poorly. Negative coefficients in this table thus represent more favorable ratings and positive coefficients less 
favorable ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 



Task Group Reports of the National Mathematics Advisory Panel 

 

9. REPORT OF THE SUBCOMMITTEE ON THE NATIONAL SURVEY OF ALGEBRA I TEACHERS 

9-56 

Table C-7b: Regressions of Teachers’ Summary Ratings on the Helpfulness of 
Professional Development for Teaching Algebra I on Grade Level and Class Size of the 
Target Class, and School and Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
-0.123 

 
0.0320     

  (0.11) (0.11)     
Class size LE 15 students (ref: 21–25) 0.0342  0.0142    
  (0.20)  (0.19)    
Class size 16–20 students (ref: 21–25) 0.0811  0.0829    
  (0.14)  (0.13)    
Class size 26–30 students (ref: 21–25) 0.154  0.157    
  (0.15)  (0.15)    
Class size 31–35 students (ref: 21–25) 0.261  0.278    
  (0.23)  (0.22)    
Class size GE 36 students (ref: 21–25) 0.663**  0.594**    
  (0.21)  (0.23)    
School size: 1st quartile (ref: 2nd) -0.0784  -0.0831    
  (0.23)  (0.21)    
School size: 3rd quartile (ref: 2nd) 0.120  0.0239    
  (0.23)  (0.21)    
School size: 4th quartile (ref: 2nd) -0.263  -0.248    
  (0.22)  (0.17)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.245   -0.194  -0.194 
  (0.19)   (0.16)  (0.19) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.195   -0.144  -0.182 
  (0.18)   (0.15)  (0.18) 
Sch N of minority students: 4th quartile (ref: 1st) -0.281   -0.145  -0.207 
  (0.25)   (0.16)  (0.19) 
School N FRPL: 2nd quartile (ref: 1st) -0.170    -0.0963  
  (0.16)    (0.14)  
School N FRPL: 3rd quartile (ref: 1st) -0.100    -0.0636  
  (0.17)    (0.15)  
School N FRPL: 4th quartile (ref: 1st) -0.0769    0.0324  
  (0.24)    (0.18)  
Urban school (ref: suburban) 0.184     0.128 
  (0.15)     (0.14) 
Rural school (ref: suburban) 0.0300     0.0263 
  (0.18)     (0.15) 
Teacher is female (ref: Male) -0.00290      
  (0.11)      
Teacher’s age (centered on age 40) -0.00502      
  (0.0043)      
Teacher is black (ref: white, Asian) 0.464      
  (0.28)      
Teacher is Hispanic (ref: Non-Hispanic) 0.313      
 (0.36)      
Constant 0.539 0.0741 0.111 0.207 0.128 0.188 
 (0.33) (0.062) (0.19) (0.11) (0.100) (0.16) 
Observations 675 736 734 736 724 736 
R-squared 0.05 0.00 0.02 0.01 0.00 0.01 

** p < 0.01.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = Very Well to 4 = Very 
Poorly. Negative coefficients in this table thus represent more favorable ratings and positive coefficients less 
favorable ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-8: Regressions of Teachers’ Summary Ratings of Remedial Help for Algebra I 
Students on Grade Level and Class Size of the Target Class, and School and Teacher 
Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
0.243 

 
0.440*     

  (0.16) (0.17)     
Class size LE 15 students (ref: 21–25) -0.0591  0.0301    
  (0.21)  (0.25)    
Class size 16–20 students (ref: 21–25) -0.176  -0.00806    
  (0.17)  (0.20)    
Class size 26–30 students (ref: 21–25) -0.237  0.0607    
  (0.17)  (0.20)    
Class size 31–35 students (ref: 21–25) 0.0786  0.408    
  (0.23)  (0.24)    
Class size GE 36 students (ref: 21–25) -0.302  -0.173    
  (0.34)  (0.23)    
School size: 1st quartile (ref: 2nd) -0.0702  -0.310    
  (0.32)  (0.37)    
School size: 3rd quartile (ref: 2nd) -0.287  -0.486    
  (0.28)  (0.32)    
School size: 4th quartile (ref: 2nd) -0.449  -0.767**    
  (0.28)  (0.29)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.258   -0.463  -0.412 
  (0.22)   (0.24)  (0.26) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.0232   -0.188  -0.113 
  (0.27)   (0.27)  (0.32) 
Sch N of minority students: 4th quartile (ref: 1st) -0.814**   -0.587*  -0.485 
  (0.26)   (0.23)  (0.27) 
School N FRPL: 2nd quartile (ref: 1st) -0.137    -0.0589  
  (0.20)    (0.18)  
School N FRPL: 3rd quartile (ref: 1st) -0.0906    -0.107  
  (0.23)    (0.24)  
School N FRPL: 4th quartile (ref: 1st) 0.576*    0.351  
  (0.28)    (0.27)  
Urban school (ref: suburban) -0.119     -0.0722 
  (0.16)     (0.18) 
Rural school (ref: suburban) -0.188     0.0913 
  (0.22)     (0.24) 
Teacher is female (ref: male) 0.273*      
  (0.12)      
Teacher’s age (centered on age 40) -0.0128**      
  (0.0049)      
Teacher is black (ref: white, Asian) 0.520*      
  (0.21)      
Teacher is Hispanic (ref: Non-Hispanic) -0.473      
 (0.35)      
Constant 1.100** 0.0259 0.682* 0.531** 0.225 0.464 
 (0.41) (0.082) (0.29) (0.20) (0.14) (0.24) 
Observations 660 717 715 717 705 717 
R-squared 0.20 0.04 0.07 0.04 0.02 0.04 

** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = excellent [tutoring] to 5 = poor 
[tutoring]. Negative coefficients in this table thus represent more favorable ratings and positive coefficients 
represent negative ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-9: Regressions of Teachers’ Summary Ratings of Extent to Which They See 
Different Levels of Students in the Same Algebra I Class as a Problem in Their School 
On Grade Level and Class Size of the Target Class, and School and Teacher 
Demographic Variables 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
-0.314** 

 
-0.292*     

  (0.12) (0.13)     
Class size LE 15 students (ref: 21–25) -0.152  -0.280    
  (0.22)  (0.24)    
Class size 16–20 students (ref: 21–25) 0.0738  -0.0492    
  (0.16)  (0.19)    
Class size 26–30 students (ref: 21–25) 0.252  0.155    
  (0.17)  (0.18)    
Class size 31–35 students (ref: 21–25) 0.620*  0.514*    
  (0.26)  (0.25)    
Class size GE 36 students (ref: 21–25) -0.0995  -0.318    
  (0.26)  (0.31)    
School size: 1st quartile (ref: 2nd) 0.428  0.548*    
  (0.25)  (0.26)    
School size: 3rd quartile (ref: 2nd) 0.0937  0.126    
  (0.23)  (0.23)    
School size: 4th quartile (ref: 2nd) 0.200  0.357    
  (0.22)  (0.20)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.253   -0.194  -0.258 
  (0.18)   (0.17)  (0.17) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.0220   0.183  0.0684 
  (0.18)   (0.16)  (0.17) 
Sch N of minority students: 4th quartile (ref: 1st) 0.198   0.478*  0.318 
  (0.25)   (0.19)  (0.18) 
School N FRPL: 2nd quartile (ref: 1st) 0.107    0.130  
  (0.16)    (0.15)  
School N FRPL: 3rd quartile (ref: 1st) 0.152    0.229  
  (0.21)    (0.17)  
School N FRPL: 4th quartile (ref: 1st) 0.156    0.401  
  (0.30)    (0.23)  
Urban school (ref: suburban) 0.155     0.155 
  (0.14)     (0.16) 
Rural school (ref: suburban) -0.0467     -0.102 
  (0.18)     (0.14) 
Teacher is female (ref: male) 0.116      
  (0.12)      
Teacher’s age (centered on age 40) 0.00645      
  (0.0050)      
Teacher is black (ref: white, Asian) -0.432*      
  (0.20)      
Teacher is Hispanic (ref: Non-Hispanic) 0.317      
 (0.24)      
Constant -0.674 0.0620 -0.399 -0.192 -0.255* -0.117 
 (0.38) (0.080) (0.21) (0.11) (0.12) (0.14) 
Observations 675 735 733 735 723 735 
R-squared 0.12 0.02 0.05 0.05 0.02 0.06 

** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = not an problem [mixed classes] 
to 5 = is a serious problem [mixed classes]. Negative coefficients in this table thus represent more favorable 
ratings and positive coefficients represent negative ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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Table C-10: Regressions of Teachers’ Summary Ratings of Family Participation is a 
Problem in Algebra I on Grade Level and Class Size of the Target Class, and School 
And Teacher Demographic Variables, 2007 

Model  
Independent Variable (1) (2) (3) (4) (5) (6) 
School is a middle or other school  
(ref: 9th to 12th grade high school) 

 
-0.650*** 

 
-0.681***     

 (0.12) (0.12)     
Class size LE 15 students (ref: 21–25) -0.0983  -0.284    
  (0.21)  (0.28)    
Class size 16–20 students (ref: 21–25) 0.0749  -0.132    
  (0.14)  (0.19)    
Class size 26–30 students (ref: 21–25) 0.0953  -0.0917    
  (0.17)  (0.16)    
Class size 31–35 students (ref: 21–25) 0.316  0.0871    
  (0.22)  (0.25)    
Class size GE 36 students (ref: 21–25) -0.415*  -0.945**    
  (0.19)  (0.32)    
School size: 1st quartile (ref: 2nd) 0.0318  0.137    
  (0.22)  (0.27)    
School size: 3rd quartile (ref: 2nd) 0.00348  0.00244    
  (0.21)  (0.22)    
School size: 4th quartile (ref: 2nd) -0.0545  0.184    
  (0.21)  (0.19)    
Sch N of minority students: 2nd quartile (ref: 1st) -0.301   -0.292  -0.358 
  (0.20)   (0.18)  (0.19) 
Sch N of minority students: 3rd quartile (ref: 1st) -0.0448   0.214  0.170 
  (0.17)   (0.16)  (0.19) 
Sch N of minority students: 4th quartile (ref: 1st) 0.369   0.701***  0.655** 
  (0.22)   (0.17)  (0.20) 
School N FRPL: 2nd quartile (ref: 1st) 0.314*    0.346*  
  (0.15)    (0.17)  
School N FRPL: 3rd quartile (ref: 1st) 0.458*    0.531**  
  (0.19)    (0.19)  
School N FRPL: 4th quartile (ref: 1st) 0.543*    0.830***  
  (0.23)    (0.20)  
Urban school (ref: suburban) -0.129     -0.0898 
  (0.15)     (0.14) 
Rural school (ref: suburban) -0.200     -0.157 
  (0.18)     (0.16) 
Teacher is female (ref: male) -0.223*      
  (0.10)      
Teacher’s age (centered on age 40) -0.00146      
  (0.0043)      
Teacher is black (ref: white, Asian) -0.426      
  (0.26)      
Teacher is Hispanic (ref: Non-Hispanic) -0.0157      
 (0.17)      
Constant 0.179 0.206** -0.138 -0.270* -0.526*** -0.155 
  (0.31) (0.075) (0.21) (0.12) (0.13) (0.17) 
Observations 673 733 731 733 721 733 
R-squared 0.25 0.11 0.03 0.11 0.08 0.11 

*** p < 0.001, ** p < 0.01, * p < 0.05.  Standard errors in parentheses. 

Note: The items used to construct the dependent summary scale range from 1 = not an problem [family help] to 
5 = is a serious problem [family help]. Negative coefficients in this table thus represent more favorable ratings 
and positive coefficients represent negative ratings. 

LE: Less than or equal to; GE: Greater than or equal to; FRPL: Free or reduced-price lunch 

Source: Based on responses to the National Opinion Research Center’s National Survey of Algebra Teachers, 2007. 
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APPENDIX D: Means and Confidence Intervals for Items in the 
National Survey of Algebra Teachers 

Item Low 95% CI Mean 
High 95% 

CI 

Section 1: Your Algebra I Class 

1. How many students are in your Target Class?    

Number of students in Target Class less than 15 0.05 0.10 0.15 

Number of students in Target Class 15–20 0.21 0.27 0.32 

Number of students in Target Class 21–25 0.26 0.32 0.38 

Number of students in Target Class 26–30 0.18 0.25 0.31 

Number of students in Target Class 31–35 0.04 0.07 0.10 

Scale = Proportion    

2. How many of the students in your Target Class:    

a. Are in the 7th grade 0.10 0.21 0.33 

b. Are in the 8th grade 1.35 1.65 1.96 

c. Are in the 9th grade 1.74 2.00 2.25 

d. Are in the 10th grade 0.56 0.68 0.80 

e. Are in the 11th grade 0.26 0.33 0.40 

f. Are in the 12th grade 0.11 0.17 0.23 

g. Are in special education (i.e., have an IEP) 0.53 0.61 0.69 

h. Are currently enrolled in your school’s bilingual 
program 0.23 0.34 0.44 

Scale = Proportion    

Continued on p. 9-62 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

3. How many students in your Target Class:    

a. Come to class on time 3.49 3.57 3.65 

b. Attend class regularly 3.39 3.46 3.54 

c. Come to class prepared with appropriate supplies and 
books 2.79 2.92 3.05 

d. Create serious behavior problems in your class 0.53 0.61 0.69 

e. Regularly pay attention in class 2.70 2.82 2.93 

f. Actively participate in class activities 2.57 2.69 2.80 

g. Take notes 2.59 2.72 2.86 

h. Have serious difficulties reading English 0.41 0.47 0.54 

i. Care about what grade they receive 2.78 2.90 3.02 

Scale: 0 = None  1 = Some  2 = About Half  3 = Most   
4 = Nearly All    

4. Based on your experience with incoming Algebra I 
students in your Target Class, how would you rate 
students’ background in each of the following areas of 
mathematics?    

a. Whole numbers and operations with whole numbers 1.77 1.86 1.95 

b. Positive and negative integers and operations with 
positive and negative integers 2.46 2.58 2.69 

c. Rational numbers and operations involving fractions and 
decimals 2.97 3.10 3.22 

d. Ratios, percents, rates, and proportions 2.71 2.83 2.95 

e. Solving word problems 3.14 3.26 3.38 

f. The concept of variables 2.38 2.48 2.58 

Continued on p. 9-63 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

g. Manipulation of variables 2.72 2.82 2.92 

h. Solving simple linear equations and inequalities 2.70 2.80 2.89 

i. Plotting points and graphing lines on the four-quadrant 
coordinate plane 2.32 2.44 2.56 

j. Measurement formulas of basic geometric shapes 2.71 2.81 2.92 

k. Basic study skills and work habits necessary for success 
in math 2.90 3.00 3.10 

l. Computation skills 2.42 2.53 2.64 

m. Ability to use math in contexts that are identified as real 
world situations 2.84 2.94 3.04 

n. Working independently 2.48 2.58 2.68 

o. Working cooperatively with other students 2.22 2.32 2.41 

Scale: 1 = Excellent  2 = Good  3 = Fair  4 = Poor    

5. On average how often do you use the following 
instructional materials and tools in your Target Class?    

a. Textbooks 2.76 2.92 3.07 

b. Printed instructional materials other than textbooks 2.49 2.60 2.71 

c. Teacher/colleague written instructional materials 1.96 2.11 2.25 

d. Graphing calculators (the school’s or their own) 1.29 1.53 1.78 

e. Physical objects (manipulatives) 1.13 1.26 1.38 

f. Computer-based instructional tools (software) 0.81 1.00 1.20 

Scale: 0 = Never  1 = Less than once a week  2 = About 
once a week  3 = Several times a week  4 = Everyday    

Continued on p. 9-64 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

6. Please indicate your level of agreement or 
disagreement with the statement: “Computer-based 
instructional tools (software) are helping Algebra I 
students in my Target Class.” 3.16 3.33 3.51 

Scale: 1 = Strongly agree  2 = Somewhat agree   
3 = Neither agree nor disagree  4 = Somewhat disagree   
5 = Strongly disagree    

8. Please indicate your level of agreement or 
disagreement with each of the following statements 
regarding the Algebra I textbook you use in your 
Target Class.    

a. The textbook includes the appropriate topics and content 
to teach the course. 1.67 1.77 1.87 

b. The textbook appropriately sequences math concepts. 2.09 2.23 2.38 

c. The textbook provides examples and lessons that are 
focused directly on the mathematics involved and that 
explain concepts clearly. 1.96 2.09 2.22 

d. The textbook provides opportunities for the development 
of problem-solving skills. 2.02 2.16 2.31 

e. The textbook provides adequate practice for each topic 
covered. 2.12 2.29 2.45 

f. The textbook and the supporting materials which come 
with it  provide the right mix of useful suggestions and 
problems for homework assignments. 2.08 2.24 2.39 

g. The textbook provides adequate supplementary/support 
materials. 2.12 2.27 2.43 

h. The textbook is clearly focused on Algebra I and 
contains very few if any distractions to the instructional 
focus (e.g., off-task activities pictures with no sense of 
purpose, etc.). 1.90 2.01 2.13 

Continued on p. 9-65 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

i. The textbook and the accompanying materials provide 
useful suggestions for meeting the needs of diverse 
learners. 2.57 2.73 2.89 

Scale: 1 = Strongly agree  2 = Somewhat agree   
3 = Neither agree nor disagree  4 = Somewhat disagree   
5 = Strongly disagree    

9. About what percentage of your current Algebra I 
students in your Target Class do you anticipate will fail 
your course?     

None will fail 0.16 0.22 0.28 

1–10% will fail 0.34 0.41 0.47 

11–20% will fail 0.12 0.18 0.24 

21–30% will fail 0.05 0.08 0.11 

41–50% will fail 0.03 0.06 0.08 

More than 50% will fail 0.02 0.03 0.04 

Scale = Proportion    

10. On average, about how much time per day do you 
expect your Algebra I students in your Target Class to 
spend on assignments outside of class?     

None 0.01 0.04 0.07 

1–15 minutes 0.10 0.14 0.17 

16–30 minutes 0.46 0.53 0.60 

31–45 min 0.18 0.24 0.30 

46–60 minutes 0.02 0.04 0.06 

More than 60 minutes 0.00 0.00 0.00 

Scale = Proportion    

Continued on p. 9-66 



Task Group Reports of the National Mathematics Advisory Panel 

 

9. REPORT OF THE SUBCOMMITTEE ON THE NATIONAL SURVEY OF ALGEBRA I TEACHERS 

9-66 

Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

11. On average, about how many of your Algebra I 
students in your Target Class complete their outside-of-
class assignments?  1.87 1.97 2.06 

Scale = 1 All or almost all  2 = About two-thirds   
3 = About one-third  4 = None or almost none    

12. On average how many minutes per week does your 
Algebra I Target Class meet? 116.96 118.24 119.52 

Scale = Minutes    

13. Does your Algebra I Target Class meet everyday? 0.76 0.83 0.89 

Scale = Proportion    

14. How long is each period during which you teach 
Algebra I? 58.85 61.74 64.63 

Scale = Minutes    

15. Is this enough instructional time to adequately teach 
Algebra I to your Target Class? 0.71 0.76 0.82 

Scale = Proportion    

Section 2: Your School and Algebra I 

1. Below is a list of factors that may cause problems in 
Algebra I instruction. For each factor please indicate 
whether it is not a problem, a minor problem, a 
moderate problem, or a serious problem in your school.     

a. Insufficient access to computers 1.68 1.86 2.04 

b. Inadequate access to graphing calculators 1.58 1.70 1.81 

Continued on p. 9-67 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

c. Poor quality or out-of-date textbooks 1.43 1.59 1.75 

d. Class sizes are too large 1.84 1.97 2.10 

e. Too little coordination or articulation between classes in 
the mathematics curriculum 1.62 1.75 1.87 

f. Some teachers are inadequately prepared to teach 
Algebra I 1.32 1.41 1.49 

g. Lack of teacher planning time 1.63 1.74 1.85 

h. Students with different abilities and interests taking the 
same math classes 2.40 2.53 2.66 

i. Too little parent/family support 2.61 2.74 2.87 

j. Inadequate opportunities for professional learning 1.55 1.66 1.77 

k. Inadequate administrative support 1.52 1.64 1.75 

Scale: 1 = Not a problem  2 = Minor problem   
3 = Moderate problem  4 = Serious problem    

2. Does your school offer different levels of Algebra I to 
groups of students based on ability? 0.39 0.47 0.54 

Scale = Proportion    

3. How many CLASS PERIODS do you teach a 
WEEK? (Exclude study halls and homeroom periods.)    

Scale = Number of Periods 17.58 18.86 20.15 

4. Is your Algebra I class part of block scheduling at 
your school? 0.26 0.34 0.41 

Scale = Proportion    

5. On average how many minutes are you scheduled 
during the school day to prepare for classes? 55.69 59.29 62.89 

Scale = Minutes    

Continued on p. 9-68 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

6. On average how much time do you spend outside of 
the regular school day preparing for your Algebra I 
classes? 47.82 52.11 56.39 

Scale = Minutes    

7. To what grades are you currently teaching Algebra I? 
(Check all that apply)    

% 7th grade .04 .07 .10 

% 8th grade 0.31 0.38 0.46 

% 9th grade 0.51 0.58 0.65 

% 10th grade 0.37 0.43 0.50 

% 11th grade 0.22 0.28 0.33 

% 12th grade 0.12 0.17 0.21 

Scale = Proportion    

8. How do you rate the remedial help in your school for 
students who are struggling in Algebra I?     

a. Availability of tutoring or other remedial assistance 2.35 2.52 2.69 

b. Quality of tutoring or other remedial assistance 2.26 2.42 2.58 

Scale: 1 = Excellent  2 = Good  3 = Fair  4 = Poor    

Section 3: Your Views of Mathematics Education 

1. How important is a solid foundation in each of the 
following areas to students’ success in Algebra I?    

a. Whole numbers and operations with whole numbers 4.58 4.65 4.72 

b. Positive and negative integers and operations with 
positive and negative integers 4.71 4.77 4.83 

Continued on p. 9-69 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

c. Rational numbers and operations involving fractions and 
decimals 4.52 4.59 4.67 

d. Ratios, percents, rates, and proportions 4.09 4.19 4.28 

e. Solving problems involving whole numbers fractions 
and decimals 4.45 4.51 4.58 

f. The concept of variables 4.53 4.61 4.69 

g. Manipulation of variables 4.46 4.55 4.64 

h. Solving simple linear equations and inequalities 4.34 4.44 4.53 

i. Plotting points and graphing lines on the four-quadrant 
coordinate plane 4.25 4.35 4.44 

j. Measurement formulas of basic geometric shapes 3.32 3.45 3.58 

k. Basic study skills and work habits necessary for success 
in math 4.66 4.72 4.78 

l. Computation skills 4.46 4.54 4.61 

m. Ability to use math in contexts that are identified as real 
world situations 4.01 4.10 4.20 

n. Working independently 4.26 4.34 4.42 

o. Working cooperatively with other students 3.92 4.02 4.12 

Scale: 1 = Not at all important  2 = Slightly important   
3 = Moderately Important  4 = Very Important   
5 = Extremely Important    

3. In your opinion are the local district expectations for 
student proficiency with Algebra I 1.92 1.97 2.02 

Scale: 1 = Too low  2 = About right  3 = Too high    

4a. How well do you feel your preservice teacher 
education program prepared you to teach Algebra I? 1.94 2.06 2.17 

Continued on p. 9-70 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

4b. How well do you feel your professional development 
opportunities have helped you to teach Algebra I? 1.96 2.05 2.14 

Scale: 1 = Very well  2 = Adequately   
3 = Less than adequately  4 = Very poorly    

5. Does your district have teachers at the K–8 level who 
are mathematics specialists (even if they are called 
something else)? 0.36 0.45 0.55 

a. Do these teachers work with classes of students? 0.51 0.63 0.74 

b. Do these teachers provide support to other teachers? 0.76 0.84 0.93 

c. Are these teachers specifically qualified or trained to be 
mathematics specialists? 0.51 0.70 0.88 

Scale = Proportion    

6. Are students required to pass Algebra I in order to 
graduate high school in your district? 0.85 0.88 0.92 

Scale = Proportion    

7. How do you rate the state or local school district 
mathematics standards and math tests that they 
currently use for Algebra I?    

a. Content standards for Algebra I 2.05 2.17 2.29 

b. Assessments of Algebra I outcomes 2.39 2.52 2.64 

Scale: 1 = Excellent  2 = Good  3 = Fair  4 = Poor    

Section 4: Teacher Background 

1. What is your sex? 0.60 0.66 0.72 

Scale = Proportion Female    

Continued on p. 9-71 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

2. Are you Hispanic or Latino? 0.04 0.06 0.08 

Scale = Proportion    

3. Which of the following best describes your Hispanic 
origin or descent?    

Mexican/a or Chicano/a 0.50 0.50 0.50 

Puerto Rican 0.05 0.05 0.05 

Cuban 0.08 0.08 0.08 

Other Hispanic 0.18 0.18 0.18 

Scale = Proportion 0.83 0.83 0.83 

4. What is your racial background?     

American Indian or Alaska Native 0.00 0.02 0.04 

Native Hawaiian or other Pacific Islander 0.00 0.00 0.01 

Asian 0.01 0.03 0.04 

Black or African-American 0.01 0.04 0.06 

White 0.88 0.91 0.94 

Scale = Proportion    

5. What is your age? 39.46 41.11 42.75 

Scale = Age    

6. What is your employment status in this school 
system?    

Regular full-time teacher 0.94 0.97 0.99 

Regular part-time teacher 0.00 0.02 0.04 

Continued on p. 9-72 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

Long-term substitute teacher 0.00 0.01 0.02 

Other    

Scale = Proportion    

7. Counting this year how many years in total have you 
taught at either the elementary or secondary level? 
Please also note the number of years in total.    

a. Elementary (K–6) 1.06 2.07 3.08 

b. Secondary (7–12) 10.99 12.15 13.31 

c. Total (K–12) 11.51 12.77 14.02 

Scale = Number of Years    

8. Counting this year how many years in total have you 
taught in this school? 6.93 8.00 9.08 

Scale = Number of Years    

9. How many years of experience do you have teaching 
Algebra I? 8.55 9.49 10.44 

Scale = Number of Years 1.07 1.15 1.23 

10. In which subject area have you taught the most 
during this school year?    

Math 0.86 0.92 0.97 

Science -0.01 0.05 0.10 

English 0.00 0.02 0.04 

Continued on p. 9-73 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

Social Studies/History 0.00 0.00 0.00 

Other 0.00 0.02 0.03 

Scale = Proportion    

11. What type of teaching certification do you currently 
hold?    

Regular or standard state certificate 0.78 0.82 0.87 

Probationary certificate 0.01 0.02 0.03 

Provisional or temporary certificate 0.07 0.11 0.14 

Waiver or emergency certificate 0.00 0.01 0.02 

Other   0.02 0.04 0.06 

Scale = Proportion    

12. Which of the following best describes your national 
certification status?    

I have achieved certification by the National Board for 
Professional Teaching Standards. 0.08 0.12 0.17 

I am currently working on National Board certification but 
have not achieved it. 0.02 0.04 0.06 

I am not working on National Board certification. 0.79 0.84 0.88 

Scale = Proportion    

13. Under the No Child Left Behind Law (NCLB) are 
you considered to be a highly qualified teacher of:    

a. High school mathematics 0.77 0.83 0.89 

b. Middle school mathematics 0.91 0.94 0.98 

Continued on p. 9-74 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

14. What is the highest academic degree you hold?    

Bachelor’s 0.45 0.51 0.57 

Master’s 0.35 0.41 0.46 

Education specialist or professional diploma based on at 
least one year of work past Master’s-degree level 0.04 0.06 0.09 

Doctorate 0.00 0.01 0.01 

Professional degree (e.g., M.D., L.L.B., J.D., D.D.S.) 0.00 0.01 0.01 

Scale = Proportion    

15. In what YEAR did you receive your highest college 
degree? 1992.16 1993.70 1995.24 

Scale = Year    

16. What was your major field of study for your 
bachelor’s degree?    

Education 0.14 0.20 0.25 

English 0.00 0.01 0.02 

History 0.00 0.02 0.03 

Mathematics 0.38 0.44 0.49 

Natural/Physical science 0.02 0.07 0.12 

Foreign language 0.00 0.00 0.01 

Other 0.22 0.27 0.31 

Scale = Proportion    

Continued on p. 9-75 



 Task Group Reports of the National Mathematics Advisory Panel 

 9. REPORT OF THE SUBCOMMITTEE ON THE NATIONAL SURVEY OF ALGEBRA I TEACHERS 

9-75 

Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

17. What was your minor field of study for your 
bachelor’s degree?    

Education 0.10 0.15 0.20 

English 0.00 0.01 0.01 

History 0.02 0.06 0.10 

Mathematics 0.25 0.33 0.41 

Natural/Physical science 0.05 0.10 0.15 

Foreign language 0.02 0.05 0.08 

Other 0..24 0.30 0.37 

Scale = Proportion    

18. If you have earned a graduate degree, what was 
your major field of study for your highest graduate 
degree?    

Education 0.43 0.50 0.58 

Mathematics 0.09 0.15 0.21 

Natural/Physical science 0.00 0.01 0.02 

Other 0.26 0.33 0.41 

Scale = Proportion    

19. How skillful would you say you are at helping 
students master Algebra I? 1.27 1.33 1.40 

Scale: 1 = Very skillful  2 = Somewhat skillful   
3 = Sometimes less skillful than I would like to be   
4 = Much Less Skillful than I would like to be    

Continued on p. 9-76 
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Appendix D, continued 

Item Low 95% CI Mean 
High 95% 

CI 

20. What do you find most challenging in teaching 
Algebra I successfully?    

Explaining material to struggling students 0.01 0.03 0.05 

Handling accelerated students 0.00 0.01 0.03 

Teaching procedures 0.00 0.00 0.01 

Explaining concepts (e.g., why procedures work, what 
ideas mean) 0.00 0.04 0.09 

Using diagrams or models effectively 0.00 0.01 0.02 

Interpreting students’ errors and difficulties -0.01 0.01 0.04 

Working with unmotivated students 0.55 0.62 0.68 

Working with advanced students 0.00 0.01 0.02 

Helping students whose home language is other than 
Standard English 0.01 0.01 0.02 

Making mathematics accessible and comprehensible to all 
of my students 0.08 0.11 0.15 

Other 0.10 0.14 0.17 

Scale = Proportion    
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APPENDIX E:  NSAT Questionnaire 

 
 

Sponsored by: Conducted by: 
The U.S. Department of Education 

National Mathematics Advisory Panel 
 

NORC  
at the University of Chicago 

 

The National Survey of Algebra Teachers seeks to obtain information from Algebra I teachers 
about their views on students’ preparation, curriculum and instruction.   

Participation of teachers is voluntary and no negative consequences will attend a decision not to 
participate.  Responses to this data collection will be used only for statistical purposes. The reports 
prepared for this study will summarize findings across the sample and will not associate responses 
with a specific district, school, or individual. We will not provide information that identifies you or 
your district to anyone outside the study team, except as required by law.  

You may use either pen or pencil. 
Please clearly circle your answers. 
If you need to change an answer, please make sure the old answer is either completely erased 

or clearly crossed out. 

The time required to complete this form varies according to individual circumstances, but the 
average time is estimated to be 25 minutes.  If you have any comments regarding this time 
estimate, please write to: U.S. Department of Education, The National Mathematics Advisory 
Panel, Washington, D.C. 20202-4651.  If you have any specific questions or comments regarding 
this study, please contact Lekha Venkataraman of NORC at 1-866-696-4580. 

Thank you for taking the time to complete this questionnaire.  

 

OMB No: 1875-0243 

Expiration Date: 09/30/2007 
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Section 1:  Your Algebra I Class 

In this section of the survey we would like for you to report on ONE specific class, which we 
will call your Target Class.  When you see this referred to in a question, please report on this 
ONE class, even if it is not typical of the Algebra I classes you teach. 

How to determine your Target Class 
Your Target Class is the first Algebra I class you teach on Mondays.  If you do not teach an 
Algebra I class on Monday, your Target Class is the first Algebra I class you teach on the 
following day. 

Please answer the following questions regarding your Target Class. 

1. How many students are in your Target Class?  

1  

Less than  
15 students 

2  

15–20  
students 

3  

21–25  
students 

4  

26–30  
students 

5  

31–35  
students 

6  

More than  
35 students 

 
2. How many of the students in your Target Class: (Please circle one per line) 
 None Some About 

half 

Most Nearly 

all 

2a. Are in the 7th grade 0 1 2 3 4 

2b. Are in the 8th grade 0 1 2 3 4 

2c. Are in the 9th grade 0 1 2 3 4 

2d. Are in the 10th grade 0 1 2 3 4 

2e. Are in the 11th grade 0 1 2 3 4 

2f. Are in the 12th grade 0 1 2 3 4 

2g. Are in special education (i.e., have an IEP) 0 1 2 3 4 

2h. Are currently enrolled in your school’s bilingual 
program 0 1 2 3 4 

 
3. How many students in your Target Class: (Please circle one per line) 
 None Some About half Most Nearly all 

3a. Come to class on time 0 1 2 3 4 

3b. Attend class regularly 0 1 2 3 4 

3c. Come to class prepared with appropriate 
supplies and books 0 1 2 3 4 

3d. Create serious behavior problems in your class 0 1 2 3 4 

3e. Regularly pay attention in class 0 1 2 3 4 

3f. Actively participate in class activities 0 1 2 3 4 

3g. Take notes 0 1 2 3 4 

3h. Have serious difficulties reading English 0 1 2 3 4 

3i. Care about what grade they receive 0 1 2 3 4 
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4. Based on your experience with in-coming Algebra I students in your Target 
Class, how would you rate students’ background in each of the following areas 
of mathematics? (Please circle one per line) 

 Excellent Good Fair Poor 

4a. Whole numbers and operations with whole numbers  1 2 3 4  

4b. Positive and negative integers and operations with 
positive and negative integers 1 2 3 4  

4c. Rational numbers and operations involving fractions 
and decimals 1 2 3  4  

4d. Ratios, percents, rates, and proportions 1 2 3  4  

4e. Solving word problems  1 2 3  4  

4f. The concept of variables 1 2 3  4  

4g. Manipulation of variables 1 2 3  4  

4h. Solving simple linear equations and inequalities 1 2 3  4  

4i. Plotting points, and graphing lines on the four- 
quadrant coordinate plane 1 2 3 4  

4j. Measurement formulas of basic geometric shapes 1 2 3 4  

4k. Basic study skills and work habits necessary for 
success in math 1 2 3  4  

4l. Computation skills  1 2 3  4  

4m. Ability to use math in contexts that are identified as 
real world situations 1 2 3  4  

4n. Working independently 1 2 3  4  

4o. Working cooperatively with other students 1 2 3  4  

 
 
5. On average, how often do you use the following instructional materials and tools 

in your Target Class? (Please circle one per line) 
 

Never 

Less than 

once a week 

About once 

a week 

Several times 

a week Everyday 

5a. Textbooks 0 1 2 3 4 

5b. Printed instructional materials 
other than textbooks 0 1 2 3 4 

5c. Teacher/colleague written 
instructional materials 0 1 2 3 4 

5d. Graphing calculators (the 
school’s or their own) 0 1 2 3 4 

5e. Physical objects (“manipulatives”)  0 1 2 3 4 

5f. Computer-based instructional 
tools (software) 0 1 2 3 4 
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6. Please indicate your level of agreement or disagreement with the statement 
“Computer-based instructional tools (software) are helping Algebra I students in 
my Target Class.” (check one) 

1  

Strongly  
agree 

2  

Somewhat  
agree 

3  

Neither agree  
nor disagree 

4  

Somewhat disagree 

5  

Strongly 
disagree 

 
 
7. What is the name of the textbook you primarily use in your Algebra I Target 

Class?  If you do not use a textbook please write N/A in the space provided. 
  
7a. Title  
  
7b. Author  
  
7c. Publisher  
  
7d. Date of Publication  
 
8. Please indicate your level of agreement or disagreement with each of the 

following statements regarding the Algebra I textbook you use in your Target 
Class. (Please circle one per line) 

 Strongly 

Agree Agree 

No 

Opinion Disagree 

Strongly 

disagree 

8a. The textbook includes the appropriate topics and 
content to teach the course. 1 2  3  4  5 

8b. The textbook appropriately sequences math 
concepts. 1 2  3  4  5 

8c. The textbook provides examples and lessons that 
are focused directly on the mathematics involved 
and that explain concepts clearly. 

1 2  3  4  5 

8d. The textbook provides opportunities for the 
development of problem-solving skills. 1 2  3  4  5 

8e. The textbook provides adequate practice for each 
topic covered. 1 2  3  4  5 

8f. The textbook and the supporting materials which 
come with it, provide the right mix of useful 
suggestions and problems for homework 
assignments. 

1 2  3  4  5 

8g. The textbook provides adequate 
supplementary/support materials. 1 2  3  4  5 

8h. The textbook is clearly focused on Algebra I and 
contains very few if any distractions to the 
instructional focus (e.g. off task activities, pictures 
with no sense of purpose, etc.). 

1 2  3  4  5 

8i. The textbook and the accompanying materials 
provide useful suggestions for meeting the needs 
of diverse learners. 

1 2  3  4  5 
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9. About what percentage of your current Algebra I students in your Target Class 
do you anticipate will fail your course? (check one) 

1  

None 

2  

1–10 % 

3  

11–20% 

4  

21–30% 

5  

31–40% 

6  

41–50% 

7  

More than 50% 

8  

No answer 

 
 
10. On average, about how much time per day do you expect your Algebra I students 

in your Target Class to spend on assignments outside of class? (check one) 
1  

None 

2  

1–15  
mins 

3  

16–30  
mins 

4  

31–45  
mins 

5  

46–60  
mins 

6  

More than  
60 mins 

7  

No answer 

 
 
11. On average, about how many of your Algebra I students in your Target Class 

complete their outside-of-class assignments? (check one) 
1  

All or  
almost all 

2  

About  
two-thirds 

3  

About  
one-third 

4  

None or  
almost none 

5  

Not applicable/ 
no homework 

 
 
12. On average how many minutes per week does your Algebra I Target Class meet? 
 

(FILL IN MINUTES)  

 
 
13. Does your Algebra I Target Class meet everyday? 

   1  Yes  2  No  

 
 
14. How long is each period during which you teach Algebra I? 
 

(FILL IN MINUTES)  

 
 
15. Is this enough instructional time to adequately teach Algebra I to your Target 

Class? 

   1  Yes  2  No  
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Section 2:  Your School and Algebra I 
 
1. Below is a list of factors that may cause problems in Algebra I instruction.  For 

each factor, please indicate whether it is not a problem, a minor problem, a 
moderate problem or a serious problem in your school.  (Please circle one per line) 

 Not a  

problem 

Minor 

problem 

Moderate 

problem 

Serious 

problem 

1a. Insufficient access to computers 1 2 3 4 

1b. Inadequate access to graphing calculators 1 2 3 4 

1c. Poor quality or out-of-date textbooks 1 2 3 4 

1d. Class sizes are too large 1 2 3 4 

1e. Too little coordination or articulation between 
classes in the mathematics curriculum 1 2 3 4 

1f. Some teachers are inadequately prepared to 
teach Algebra I 1 2 3 4 

1g. Lack of teacher planning time 1 2 3 4 

1h. Students with different abilities and interests 
taking the same math classes 1 2 3 4 

1i. Too little parent/family support 1 2 3 4 

1j. Inadequate opportunities for professional 
learning 1 2 3 4 

1k. Inadequate administrative support 1 2 3 4 

 
 
2. Does your school offer different levels of Algebra I to groups of students based 

on ability? 

   1  Yes              2  No              3  Don’t know 

 
 
3. How many CLASS PERIODS do you teach a WEEK? (Exclude study halls and 

homeroom periods.) 
 

(Please enter a number)  

 
 
4. Is your Algebra I class part of block scheduling at your school? 

   1  Yes              2  No 
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5. On average, how many minutes are you scheduled during the school day to 
prepare for classes? 

 
(FILL IN MINUTES)  

 
 
6. On average how much time do you spend outside of the regular school day 

preparing for your Algebra I classes? 
 

(FILL IN MINUTES)  

 
 
7. To what grades are you currently teaching Algebra I? (Check all that apply) 

1  

7th grade 

2  

8th grade 

3  

9th grade 

4  

10th grade 

5  

11th grade 

6  

12th grade 

7  

Special 
Education 

 
 
 
8. How do you rate the remedial help in your school for students who are struggling 

in Algebra I?  (Please circle one per line) 
 Excellent Good Fair Poor 

8a. Availability of tutoring or other remedial assistance 1 2  3 4  

8b. Quality of tutoring or other remedial assistance 1 2  3 4  
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Section 3:   Your Views of Mathematics Education 
 
1. How important is a solid foundation in each of the following areas to students’ 

success in Algebra I? (Please circle one per line) 
 Not at all 

important 

Slightly 

important 

Moderately 

important 

Very 

important 

Extremely 

important 

1a. Whole numbers and operations with 
whole numbers 1 2 3 4  5  

1b. Positive and negative integers and 
operations with positive and negative 
integers 

1 2 3 4  5  

1c. Rational numbers and operations 
involving fractions and decimals 1 2 3 4  5  

1d. Ratios, percents, rates, and 
proportions 1 2 3 4  5  

1e. Solving problems involving whole 
numbers, fractions, and decimals 1 2 3 4  5  

1f. The concept of variables 1 2 3 4  5  

1g. Manipulation of variables 1 2 3 4  5  

1h. Solving simple linear equations and 
inequalities 1 2 3 4  5  

1i. Plotting points, and graphing lines on 
the four-quadrant coordinate plane 1 2 3 4  5  

1j. Measurement formulas of basic 
geometric shapes 1 2 3 4  5  

1k. Basic study skills and work habits 
necessary for success in math 1 2 3 4  5  

1l. Computation skills 1 2 3 4  5  

1m. Ability to use math in contexts that 
are identified as real world situations 1 2 3 4  5  

1n.  Working independently 1 2 3 4  5  

1o.  Working cooperatively with other 
students 1 2 3 4  5  
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2. Please provide a brief description of any changes you would like to see in the 
curriculum leading up to Algebra I in your district. 

 
 
 
 
 
 
 
 
 
 
3. In your opinion, are the local district expectations for student proficiency with 

Algebra I: (Please check one) 
1  

Too low 

2  

About right 

3  

Too high 

4  

I do not know the 
expectations 

5  

There are no district 
expectations 

 
 
 
4a. How well do you feel your preservice teacher education program prepared you  

to teach Algebra I? 
1  

Very well 

2  

Adequately 

3  

Less than adequately 

4  

Very poorly 

 
4b. How well do you feel your professional development opportunities have helped  

you to teach Algebra I? 

1  

Very well 

2  

Adequately 

3  

Less than adequately 

4  

Very poorly 

 
 
 
5. Does your district have teachers at the K–8 level who are “mathematics 

specialists” (even if they are called something else)? 

      1  Yes               2  No    skip to question 6          3  Not sure    skip to question 6   

 Yes No Not Sure 

5a. Do these teachers work with classes of students? 1 2  3 

5b. Do these teachers provide support to other teachers? 1 2  3 

5c. Are these teachers specifically qualified or trained to be 
mathematics specialists? 1 2  3 
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6. Are students required to pass Algebra I in order to graduate high school in your 
district? 

   1  Yes               2  No              3  Don’t know 

 
 
 
7. How do you rate the state or local school district mathematics standards and 

math tests that they currently use for Algebra I? (Please circle one per line) 

 Excellent Good Fair Poor 

Not 

applicable—

no standards 

defined 

7a. Content standards for Algebra I 1 2  3 4  5 

7b. Assessments of Algebra I outcomes 1 2  3 4  5 
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Section 4:  Teacher Background 

 
1. What is your sex? 

   1  Male              2  Female               

 
 
2. Are you Hispanic or Latino? 

1  Yes    If Yes, answer question 3            

2  No    If No, skip to question 4               

 
 
3. Which of the following best describes your Hispanic origin or descent?  

(Please check all that apply) 
1  

Mexican/a or Chicano/a 

2  

Puerto  
Rican 

3  

Cuban 

4  

Other Hispanic, Specify 

 

_______________________ 

 
 
4. What is your racial background? (Please check all that apply) 

1  

American Indian or 
Alaska Native 

2  

Native Hawaiian or 
other Pacific Islander 

3  

Asian 

4  

Black or African 
American 

5  

White 

 
5. What is your age? 
 

(FILL IN AGE)  

 
 
 
6. What is your employment status in this school system? 

1  

Regular full-time teacher 

2  

Regular part-time teacher 

3  

Long-term  
substitute teacher 

4  

Other, Specify 

 

_______________________ 
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7. Counting this year how many years in total have you taught at either the 
elementary or secondary level? Please also note the number of years in total. 

   
7a. Elementary (K–6)  Number of Years 
   
7b. Secondary (7–12)  Number of Years 
   
7c. Total (K–12)  Number of Years 

 
 
 
8. Counting this year, how many years in total have you taught in this school? 
   
  Number of Years 

 
 
9. How many years of experience do you have teaching Algebra I? 
   
  Number of Years 

 
 
 
10. In which subject area have you taught the most during this school year? 

1  

Math 

2  

Science 

3  

English 

4  

Social Studies/ 
History 

5  

Other, please specify 

 
_______________________ 

 
 
11. What type of teaching certification do you currently hold? 

1  Regular or standard state certificate  
2  Probationary certificate  
3  Provisional or temporary certificate  
4  Waiver or emergency certificate 
5  Other, please specify ____________________________________________ 
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12. Which of the following best describes your national certification status?  
(Check one) 

1  I have achieved certification by the National Board for Professional Teaching Standards.  
2  I am currently working on National Board Certification but have not achieved it.  
3  I am not working on National Board Certification.  

 
 
13. Under the No Child Left Behind Law (NCLB) are you considered to be a “highly 

qualified” teacher of: 
 Yes No Not 

Applicable 

13a.  high school mathematics 1 2  3 

13b.  middle school mathematics 1 2  3 

 
 
14. What is the highest academic degree you hold? 

1  Less than a Bachelor’s degree 
2  Bachelor’s 
3  Master’s 
4  Education specialist or professional diploma based on at least one year of work past  
  Master’s degree level 
5  Doctorate 

6  Professional degree (e.g., M.D. L.L.B., J.D., D.D.S.) 

 
 
15. In what YEAR did you receive your highest college degree? 
   
  YYYY 

 
 
16. What was your major field of study for your bachelor’s degree? 

1  Education 
2  English  
3  History  
4  Mathematics 
5  Natural/Physical science 
6  Foreign language 
7  Other specify: ________________________ 
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17. What was your minor field of study for your bachelor’s degree? 
1  Education 
2  English  
3  History  
4  Mathematics 
5  Natural/Physical science 
6  Foreign language 
7  Other specify: ________________________ 
8  Not applicable 

 
 
18. If you have earned a graduate degree, what was your major field of study for your 

highest graduate degree? 
1  Education 
2  English  
3  History  
4  Mathematics 
5  Natural/Physical science 
6  Foreign language 
7  Other specify: ________________________ 
8  Not applicable 

 
 
19. How skillful would you say you are at helping students master Algebra I? 

1  Very skillful 
2  Somewhat skillful  
3  Sometimes less skillful than I would like to be 
4  Much less skillful than I would like to be 
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20. What do you find most challenging in teaching Algebra I successfully?  
(Please check one) 
1  Explaining material to struggling students 
2  Handling accelerated students 
3  Teaching procedures 
4  Explaining concepts (e.g., why procedures work, what ideas mean) 
5  Using diagrams or models effectively 
6  Interpreting students’ errors and difficulties 
7  Working with unmotivated students 
8  Working with advanced students 
9  Helping students whose home language is other than Standard English 

10  Making mathematics accessible and comprehensible to all of my students 

11  Other, please specify: _____________________ 

 
 
 

 

 

Thank you! 
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Emeritus, University of Texas at Austin  

• Camilla Persson Benbow (Vice Chair), Patricia and Rodes Hart Dean of 
Education and Human Development, Peabody College, Vanderbilt University 

• Deborah Loewenberg Ball, Dean, School of Education and William H. Payne 
Collegiate Professor, University of Michigan  

• A. Wade Boykin, Professor and Director of the Graduate Program, Department of 
Psychology, Howard University 

• Douglas H. Clements, Professor, Graduate School of Education, University at 
Buffalo, State University of New York (Began with the Panel March 19, 2007) 

• Susan Embretson, Professor, School of Psychology, Georgia Institute of 
Technology (Began with the Panel March 19, 2007) 

• Francis “Skip” Fennell, Professor of Education, McDaniel College  

• Bert Fristedt, Morse-Alumni Distinguished Teaching Professor of Mathematics, 
University of Minnesota, Twin Cities (Began with the Panel March 19, 2007) 

• David C. Geary, Curators’ Professor, Department of Psychological Sciences, 
University of Missouri 

• Russell M. Gersten, Executive Director, Instructional Research Group; Professor 
Emeritus, College of Education, University of Oregon  

• Nancy Ichinaga, Former Principal, Bennett-Kew Elementary School, Inglewood, 
California (Served with the Panel through May 29, 2007) 

• Tom Loveless, The Herman and George R. Brown Chair, Senior Fellow, 
Governance Studies, The Brookings Institution  

• Liping Ma, Senior Scholar, The Carnegie Foundation for the Advancement of 
Teaching 

• Valerie F. Reyna, Professor of Human Development, Professor of Psychology, 
and Co-Director, Center for Behavioral Economics and Decision Research, 
Cornell University  
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• Wilfried Schmid, Dwight Parker Robinson Professor of Mathematics, Harvard 
University 

• Robert S. Siegler, Teresa Heinz Professor of Cognitive Psychology, Carnegie 
Mellon University 

• James H. Simons, President, Renaissance Technologies Corporation; Former 
Chairman, Mathematics Department, State University of New York at Stony 
Brook  

• Sandra Stotsky, Twenty-First Century Chair in Teacher Quality, University of 
Arkansas; Member, Massachusetts State Board of Education  

• Vern Williams, Mathematics Teacher, Longfellow Middle School, Fairfax County 
Public Schools, Virginia 

• Hung-Hsi Wu, Professor of Mathematics, University of California at Berkeley 

Ex Officio Members 

• Irma Arispe, Assistant Director for Life Sciences and Acting Assistant Director 
for Social and Behavioral Sciences, Office of Science and Technology Policy, 
Executive Office of the President (Began with the Panel May 30, 2007) 

• Daniel B. Berch, Associate Chief, Child Development and Behavior Branch and 
Director, Mathematics and Science Cognition and Learning Program, National 
Institute of Child Health and Human Development, National Institutes of Health  

• Joan Ferrini-Mundy, Division Director, Division of Research on Learning in 
Formal and Informal Settings, National Science Foundation (On an 
Intergovernmental Personnel Act Assignment from Michigan State University. 
Began with the Panel January 16, 2007) 

• Diane Auer Jones, Deputy to the Associate Director for Science, White House 
Office of Science and Technology Policy (Served with the Panel through May 23, 
2007) 

• Thomas W. Luce, III, Assistant Secretary for Planning, Evaluation, and Policy 
Development, U.S. Department of Education (Served with the Panel through 
November 1, 2006) 

• Kathie L. Olsen, Deputy Director, National Science Foundation, (Served with the 
Panel through January 11, 2007) 

• Raymond Simon, Deputy Secretary, U.S. Department of Education  

• Grover J. “Russ” Whitehurst, Director, Institute of Education Sciences, U.S. 
Department of Education  
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U.S. Department of Education Staff 

• Tyrrell Flawn, Executive Director, National Mathematics Advisory Panel, U.S. 
Department of Education 

• Ida Eblinger Kelley, Special Assistant, National Mathematics Advisory Panel, 
U.S. Department of Education 

• Jennifer Graban, Deputy Director for Research and External Affairs, National 
Mathematics Advisory Panel, U.S. Department of Education 

• Marian Banfield, Deputy Director of Programs and Special Projects, National 
Mathematics Advisory Panel, U.S. Department of Education  

Additional support was provided by the following:  Anya Smith, Director of 
Special Events and the Events Team, Office of Communications and Outreach, U.S. 
Department of Education; Holly Clark, Management and Program Analyst, Office of 
Innovation and Improvement, U.S. Department of Education; Mike Kestner, Math and 
Science Partnership Program, Office of Elementary and Secondary Education, U.S. 
Department of Education; Kenneth Thomson, Presidential Management Fellow, Office of 
Planning, Evaluation, and Policy Development, U.S. Department of Education; and Jim 
Yun, Math and Science Partnership Program, Office of Elementary and Secondary 
Education, U.S. Department of Education. 

Consultants 

• Alina Martinez, Abt Associates, Inc., Project Director 

• Ellen Bobronnikov, Abt Associates, Inc. 

• Fran E. O’Reilly, Abt Associates, Inc. 
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• Pamela Flattau, Institute for Defense Analyses Science and Technology Policy 
Institute, Project Director 
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• Kay Sullivan, Institute for Defense Analyses Science and Technology Policy 
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• Jason Smith, Widmeyer Communications, Project Director  
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