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Many theoretical explanations for knowledge transfer or generalization assume that such
processes are rooted in the acquisition of abstract rules, principles, or schemata
applicable in context-independent ways. This case study is part of a larger research
program examining how what often appears to be generalized knowledge or performance
is, in fact, supported by systems of context-sensitive knowledge. A microgenetic analysis
of an undergraduate student’s solution to two mathematically isomorphic probability
problems demonstrates how he perceived the two problems as structurally and
phenomenologically different despite his ability to apply a single, correct, schematic
solution to both. The means by which he finally perceived the problems as structurally
“alike” was influenced by both the relevant solution principle and the problem context.

INTRODUCTION

Many theoretical attempts to understand and explain what has been traditionally called
the “transfer of knowledge” make a distinction between the underlying structure of a
problem or situation and its “real world” context or surface features (see, for example,
Anderson, Reder, & Simon, 1996; Gick & Holyoak, 1987; Reed, 1993; Singley &
Anderson, 1989). From this perspective, the perception of two problem situations as
supporting the same means of solution requires the problem solver to notice sufficiently
the “objective structural similarity” of the problems, although the saliency of such
similarities may depend on the individual’s expertise (Gick & Holyoak, 1987). Thus,
while problem contexts have long been understood to influence the types of structure
perceived in a situation, successful transfer of an abstract mathematical solution or
principle is said to depend on a presumably objective, context-independent structural
similarity across problem situations.

The “surface features” of a problem are generally understood to refer to objects or object
attributes non-essential to the problem’s solution. Structural similarity across two
situations depends on their sharing relational properties as well. One of the most widely
cited theoretical frameworks for modeling the perception of structural similarity is
Gentner’s structure-mapping model (Gentner, 1983; Gentner & Markman, 1997), which
posits the representation of situations as systems of object nodes, object attributes, and
hierarchies of relations among nodes. The perception of a particular hierarchy of nodes
and relations in one problem situation permits it to be mapped onto another problem of
similar structure whose solution is known; or, perhaps, the problem’s structure may be
directly associated with an abstract solution method, principle, or schema for problems of
such structure (Reed, 1993). Ultimately, abstract rules, principles, or schemata serve to
explain how it is that knowledge is transferred and applied across contexts.

While numerous researchers have critiqued the very cognitive foundations of the
traditional transfer paradigm from the perspective of situated cognition (see, for example,
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Bransford & Schwartz, 1999; Greeno, Moore, & Smith, 1993; Lave, 1988), recent
attempts have been made to reconsider the problem of transfer, and the surface/structure
distinction in particular, while maintaining a focus on the individual and cognitive
dimensions of the phenomenon (Lobato & Siebert, 2002; Wagner, 2002). The case study
analyzed in the present research demonstrates that the successful application of abstract
rules can depend upon the acquisition of context-sensitive ways of perceiving structure
within a problem situation. Most significantly, such structure is not located objectively in
the problem situation itself; nor is it determined by the problem situation alone. Rather, it
arises through the interaction of the problem solver’s understanding of both the problem
context and the relevant mathematical principle. From this perspective, the application of
abstract rules or principles may depend on acquiring a network of supporting knowledge
that is often sensitive to the variety of situations and contexts in which those rules or
principles may apply.

THEORETICAL FRAMEWORK

The theoretical perspective of this analysis originates in diSessa’s (1993) epistemological
framework for the learning of concepts of science and mathematics. From this
perspective, the acquisition of such concepts depends on the organization and
systematization of prior knowledge that is often highly sensitive to context. Wagner
(2002) offered the beginnings of how diSessa’s epistemology could be used to address
transfer phenomena. In his case-study analysis, descriptive and explanatory statistical
ideas initially used by a student only in isolated situations coalesced into associations of
knowledge more likely to be cued in a wider variety of contexts in which they had not
been used before.

A second aspect of diSessa’s work relevant to generalization and transfer is the theory of
coordination classes (diSessa & Sherin, 1998). diSessa and Sherin argued that
understanding at least some concepts (coordination classes) requires the acquisition of
particular readout and coordination strategies, often dependent on context. In a
prototypical example, the ability to perceive a single concept such as a force in different
situations might require a student to learn to attend to (“read out”) information about
different features of the situation and coordinate this information in different ways in
different contexts. While students may well be able to learn and state abstract principles
or solution schemata, the use of those ideas across contexts depends on the development
of increasingly sophisticated networks of context-sensitive knowledge. Such knowledge
might include acquired means of perceiving different types of structure by attending to
and coordinating different problem features in different situations.

The analysis presented here reveals how Philip, an undergraduate student, demonstrated
himself capable of correctly applying normative probabilistic reasoning to two
mathematically isomorphic problems while nevertheless denying that such reasoning
applied in one of the two cases. Despite his ability to recognize and coordinate all the
essential features of both problems to obtain a correct solution, the structure he perceived
in the two problems differed substantially, and he resisted my extensive efforts to
convince him of their normative isomorphism. Using fine-grained methods of
microgenetic analysis (Schoenfeld, Smith, & Arcavi, 1993), I analyzed transcripts of
Philip’s interviews to reveal instances of useful, normative reasoning that he had used in

4364



other situations, but had not yet applied to the problem offering him difficulty. I will
argue that I was able to use that analysis to construct a reformulation of the problem that
convinced Philip of its normative solution by cueing his good reasoning strategies used in
other contexts. Moreover, the means by which Philip learned to perceive new structure in
the problem arose not from the problem situation itself, but through his understanding of
both the relevant mathematical principle and the particular context. Philip’s learned
means of perceiving structure is thus shown to apply to some but not all situations in
which the statistical principle applies. This behavior is not readily explained by those
who posit that transfer takes place through the recognition of “objective” situational
structure, or that problems supporting a particular abstract principle are understood to be
alike because they all support a common structural interpretation.

METHODS

Philip was one of fourteen undergraduate students who participated in this research
during the summer of 2001 or 2002. The students were enrolled in an introductory course
in statistics at a large, public, university in the United States, and each agreed to meet
with me for two hours each week in one-on-one sessions for the duration of their eight-
week course. During the first half of each interview, I offered myself as a personal tutor,
and the use of our time depended largely on the questions and concerns each student
brought to the meeting. During the second half of each interview, students engaged in a
variety of activities including think-aloud problem-solving sessions, computer
simulations, experiments with simple randomization devices such as dice or spinners, and
interviews and discussions about their understanding of probability and statistics. These
interviews were audio- and video-taped, and salient portions of them were later
transcribed for fine-grained examination. All work done during these interviews was
directly related to the material the students were studying in their course, so most subjects
indicated that they found their participation in this research both useful and motivational.

Among the problems given to the students to examine were collections of problems
deemed mathematically similar or isomorphic because their solutions involved the same
mathematical principle. The problems examined in the present analysis were presented to
students after the mathematical principles relevant to their solution had been covered in
their course. When students offered different or non-normative solutions to problems that
I perceived to be similar, I asked the students to compare them and explain how they saw
them as similar or different. I engaged in a deliberately instructive role only if students
found such comparisons unhelpful in assisting their normative reasoning. The data
permitted detailed analyses of how students succeeded or failed in offering normative
solutions to problems deemed mathematically “alike,” and how they came to identify
problems as similar or isomorphic after failing to do so in their initial solutions to them.

THE CASE OF PHILIP

For reasons that will become clear as this section unfolds, the case of Philip will be told

as a chronological narrative. The interviews relevant to this analysis took place during the

final two weeks of Philip’s eight-week course. Philip appeared to be highly engaged in all

of our activities, and he showed himself to be successful in his coursework by earning an

A in the course from his instructor (not the researcher). During the seventh of our

interviews, I asked Philip to solve the following problem, which was accompanied by a
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picture of a circular spinner divided into ten sectors of equal size, seven of which were
colored blue and three of which were colored green:

Suppose someone spins the spinner at the right ten times in a row. Of the following possible
outcomes, which is the most likely to occur?

a)  The spinner will land on blue five times and on green five times.

b)  The spinner will land on blue seven times and on green three times.
¢)  The spinner will land on blue all ten times.

d)  All of the above are equally likely.

e) Itis not possible to answer this question.

A normative solution to this problem would require an understanding of a principle that
might be stated as follows:

The most likely (expected) result of a series of n observations of a binomial random variable
with probability p of success on each observation is np successes.

For convenience, this principle will be referred to in this paper as the binomial
principle. Neither Philip nor his classmates would have been expected to learn this
principle in so specific a form. It is an idea that they would have been more or less
expected to deduce from their study of the expected value of a random variable. It has,
however, an intuitive appeal, since it predicts that the most likely outcome to occur from
a series of ten spins of a spinner is the one that most closely resembles the proportion of
blue and green sectors on the spinner, namely, seven blues and three greens.

Philip took very little time before offering a normative solution to the Spinner Problem:

Philip: Well, it's still a small group of spins, so you could get all blue or about 50-50 green
and blue, um, more often than if you were to spin it a hundred times. Because,
obviously, I guess it would get closer to a 70-30 split. But, um, it's only ten spins, but
I still think it would be close to about a 7-3 split, just because, it's kind of like a
problem where, if you have an average of a box, and they say after 400 draws, what
do you expect the average to be? You expect it to be right around the average of the
box. And even for five draws I would expect it to be around the same. So, that's why
I, I picked B. I mean, it's most likely it would be seven and three.

Not only was Philip’s answer correct, his explanation was virtually picture-perfect as he
correctly noted the role of sampling variability in samples of such a small size. He
nevertheless recognized that the most likely outcome was a seven-to-three ratio,
regardless of the size of the sample. In referring to “the average of the box,” Philip made
use of his classroom experience of using box models to simulate random draws. The
average of the box was the expected value of the draws (in this case, 70% blue).

Immediately after solving the Spinner Problem, I presented Philip with the Box Problem.
In this problem, he was asked to imagine a box containing 500 tickets, 350 labeled “B”
for blue and 150 labeled “G” for green. If ten tickets were drawn at random from the box,
what would be the most likely outcome? The five multiple-choice solutions offered to
Philip corresponded precisely to those accompanying the Spinner Problem. From a
mathematical perspective, the two problems are isomorphic, both asking for the most
likely outcome of a series of ten draws of a binomial random variable with probability (of
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drawing blue) 0.7. Only a “surface feature,” the means of making the random selection,
has been changed. Philip, however, perceived something very different:

Philip: If I were to keep the same logic, I'd say seven are B and three are G, and that would
be the most likely. But the, the difference in this is there are so many, now, that are
blue. There are a lot. I mean, in this case [indicates the Spinner Problem] there’s only
four more that are blue. In this case [indicates the Box Problem] there’s, like, two
hundred more that are blue, and, um, I’'m pulling ten. OK, I’'m gonna, I’m actually
gonna s-, [’m gonna say C, that all ten of the slips say B, is, is most likely....

Philip’s response is particularly striking because he demonstrated that he both
remembered his reasoning from the Spinner Problem and could apply it to the Box
Problem, but he nevertheless denied that such reasoning was appropriate. Thus, it cannot
be argued that Philip simply did not recall the correct rules or that he did not learn them
at a sufficiently abstract level to apply them. In extensive follow-up discussion, Philip
maintained that draws from the box differed from spins of the spinner because the large
number of blue tickets “overwhelmed” the green ones in a way that the few extra blue
sectors of the spinner did not. In short, the structure Philip perceived in the problems that
permitted him to recall and apply the binomial principle was not the same as the structure
that would permit him to perceive both problems as appropriate instances of the principle.

Following Philip’s initial solution to the two problems, he and I engaged in a 23-minute
conversation during which I tried to no avail to convince Philip of the two problems’
normative isomorphism. A detailed analysis of that conversation is beyond the scope of
this paper, so I summarize here only particularly salient highlights. During our
conversation, Philip repeatedly acknowledged the 70% proportion of blue in both
problems, but found that correspondence insignificant compared to the difference in
absolute numbers. While Philip’s “problem” might be seen simply as a failure to realize
that only the percentage of blues and not their absolute number was relevant, it became
clear that for me as an instructor merely to fe/l him this was insufficient. Philip
spontaneously acknowledged that the “mathematical” answer was “probably” the same
for both problems, but he did not believe that such a mathematical solution had anything
to do with what would really happen in the two situations. Even had he accepted the
normative answer on my authority, it would not have changed his perception of the
situations —the structure he saw —that led him to consider the problems differently.

Most of my attempts to convince Philip of the isomorphic nature of the two problems
involved presenting him with reformulations of the spinner. At first, for example, I took
the ten-sectored spinner and began sketching in extra lines as though to increase the
number of sectors to 500, corresponding to the number of tickets in the box. Philip denied
the relevance of this move, however, pointing out that by increasing the number sectors I
did not increase the overall amount of blue present on the spinner. This stood in contrast
to increasing a set of 10 tickets to 500 tickets, which would introduce an “overwhelming”
amount of blue to the box not initially present. I countered by asking Philip to imagine
my taking the 500 tickets and laying them on the spinner, as though to reconstruct the
face of the 10-sectored spinner with the 500 tickets. Philip again denied the
correspondence, noting that each sector of the spinner should correspond only to one
ticket in the box. Thinking I finally had him, I suggested that we take all 500 tickets and
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lay them around the circumference of the spinner, with blue and green tickets lined up
along the edge of their corresponding sectors. Then, I said, the needle would point to only
one ticket at a time. Philip acknowledged that this “put a hole” in his argument, but he
then surprised me by suggesting a reformulation of his own. In my suggested
reconsiderations of the spinner, I never changed the placement of the original ten blue
and green sectors, so even after subdividing them into a larger number of sectors, the
actual distribution of color on the spinner’s face remained unchanged. Philip asserted that
if the spinner were subdivided into 500 sectors and the blue and green sectors were
randomly scattered on the spinner’s face, then the spinner and the box would match and
the most likely outcome of ten spins of the spinner would be ten blues! He stated that the
large number of blue sectors would overwhelm the intermingled green ones, and the
needle would have a more difficult time picking out the green from among the blue.

In response to my questioning, Philip suggested that it would take a demonstration of
draws from a box to convince him of the normative solution. Not only did I not have the
requisite supplies to carry out such a demonstration, I was also skeptical of the wisdom of
doing so. What if we had drawn ten blues on the first try? Even if a demonstration had
supported my argument, would it have offered Philip any new understanding of the
situation to convince him that the normative solution should be the correct one? After 23
minutes of debate, Philip and I agreed to take up the issue again during our next meeting.

In the five days before our next meeting, I closely examined Philip’s reasoning about the
Spinner and Box Problems, hoping to devise a means of convincing him of the problems’
isomorphism. I looked for reasoning strategies Philip used successfully in contexts other
than the Box Problem, and I noted two in particular. Philip twice defended his correct
reasoning about the ten-sectored spinner by noting a one-to-one correspondence between
the number of sectors on the spinner and the size of the sample: “There’s only ten slots.
And seven are blue and three are green. And you’re only spinning it ten times, so you
have to get one thing on, on each spin.” Also, Philip reasoned normatively about spinner
and box situations in which the number of blues and greens were equally likely. So, for
example, he acknowledged the likelihood of five blues and five greens in ten spins of a
spinner colored half blue and half green, as well as in ten draws from a box containing
250 blue and 250 green tickets. I predicted that a reformulation of the Box Problem
designed to cue these reasoning strategies would enable Philip to reason normatively
about draws from the box.

When we next met, Philip indicated that he remained firm in his non-normative
expectations about draws from a box. In reply, I asked him to imagine a box of balls
numbered 1 through 10, and a separate box of 500 balls, with 50 balls each numbered 1
through 10. Philip took a short time to acknowledge that there should be no discernable
difference in drawing (with replacement) from either box, emphasizing his awareness that
there were “the same number” of each class of ball in each box, and thus drawing on his
good reasoning about equally likely outcomes. Finally, I asked him to imagine that the
balls numbered 1 through 7 were colored blue and those numbered 8 through 10 were
colored green. Philip immediately responded, “Yeah, that would convince me, then.”
After some probing on my part, Philip explained his change of reasoning:
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Interviewer:  You're, you're not just going along with me? [laughs]

Philip:  No, it's a good way, it's a good way of looking at it. Because, I, I think about it with
just the numbers on it, one through ten, and I'm thinking, well, now there's so many
different choices in there, it's not just blue and green. It's, uh, it's any numbers. But,
uh, it, but then when you throw the catch in, on the back, one through seven were
blue, then it, it makes perfect sense, then. Because you're gonna pull some eights,
and you're gonna pull some ones, and, the numbers between, you're gonna get
seventy percent of the numbers one through seven. Yeah. And then, you throw the
clause in that those are colored blue, it sheds light on it. [laughs] Yeah.

Philip’s account that “it’s a good way of looking at it” is precisely that: a learned way of
looking at the situation and perceiving a new kind of structure in the problem. Whereas
Philip had earlier attended only to the absolute number of blue, the numbering scheme
encouraged him to attend to equal classes of balls, and his earlier reasoning about one-to-
one correspondences between the spinner sectors and the sample now informed his
reasoning about the box as he saw that “you’re gonna get seventy percent of the numbers
one through seven,” thereby highlighting the proportional nature of the situation.

DISCUSSION

The means by which Philip arrived at a normative understanding of the Box Problem is
of theoretical importance. First, the structure he came to perceive in the situation was by
no means suggested merely by the situation itself. Rather, it was mutually influenced by
the nature of the binomial principle and the problem context that permitted Philip to
imagine the population under an imposed classification system. Thus, learning this “way
of looking at it” is inherently tied to one’s understanding of the binomial principle and
should not be imagined as a structure that one first perceives in a situation that then
reminds one of an appropriate rule or solution. Second, while Philip learned a powerful
way of perceiving some situations, the means by which he perceived the normative
solution to the Box Problem is not useful in all instances of the binomial principle. More
specifically, Philip learned a way of perceiving structure in drawing from an available
population, and such structure is not readily perceived in instances of the binomial
principle for which no such population is available. Finally, the structure Philip learned to
perceive in the Box Problem enabled him to reason directly that a draw of seven blues
and three greens was the most likely outcome of ten draws; he did not need to “apply” an
abstract rule or principle. While it is quite likely that students learn in the long run to
apply such reasoning schematically (as Philip, in fact, initially did), this analysis suggests
that the similarity of problems governed by a common mathematical principle lies not in
a single structure shared by all, but in learned, context-sensitive ways of structuring them
that enable problem solvers to perceive them as instances of that principle.
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