
4—307

OBSTACLES FOR MENTAL REPRESENTATIONS OF
REAL NUMBERS:  OBSERVATIONS FROM A CASE

STUDY
Günter Törner

University of Duisburg
To probe beyond declarative knowledge about real numbers in secondary school, the
authors interviewed students in Grades 9, 10 and 12. The main question seems to be
whether the length of a decimal expansion is “indefinite” or “infinite”. It blurs the
mental representation of rational numbers as well.

INTRODUCTION
A central goal of mathematics instruction in secondary school is a conceptual
understanding of numbers, not only as an important ingredient of the basic numeracy, but
also as a foundation of continuous mathematics (e.g., the calculus) - and even as a major
step in the history of ideas. This goal is by no means trivial, since the concept of real
numbers intertwines numerical, arithmetical, algebraic, and topological strands.
The motivation of this study were confused and contradictory statements about irrational
numbers made time and again by university students who had successfully taken at least
one analysis course, and were competently studying fairly advanced mathematics. We
wanted to find the source of this confusion.
Of course there had been previous studies of the subject, notably the recent ones by
Fischbein et al. [FJC 95] and Peled and Hershkovitz [PH 99]. The former found that the
irrational muddle was caused neither by the inability to conceive of incommensurable
lengths nor by the notion that the rationals took up every bit of space on the number line.
The second one, surveying pre-service teachers, found that many had trouble placing
certain items like 0.33333... and 5  on the number line - although 5  occurred as the
diagonal of a 2¥1 rectangle in a geometry problem they solved - but that their declarative
knowledge of irrationals was quite satisfactory.
Since quantitative investigations are largely limited to this declarative aspect, we looked
for a qualitative approach, and decided to use the form of videotaped interviews
(subsequently transcribed) with small groups of students, which would prompt the
participants to discussions among themselves and allow the interviewer to follow up with
questions formulated on the spot. The conversation in the interviews was guided by the
queries and results mentioned in [FJC 95] and [PH 99].
With this aim in mind, we collected evidence on four levels: Grades 9, 10, and 12, as well
as prospective teachers in their fourth year of university. The results so obtained point to
consistent difficulties, which are still demonstrable in the prospective teachers'
understanding: the insufficient internalization of the notion of irrational number (and
thus, the problems with real numbers mentioned throughout the literature) are already
visible in the inconsistent mental representation of rational numbers. It is the weak
conceptual tie-in between a number like 22/7 and its theoretically equivalent decimal
counterpart 3,142857… According to the students on all our levels, the latter
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representation is flawed by a connotation of inaccuracy. Considering such “ infinite”
decimal expansions as legitimate and complete mental objects lies outside the naive range
of acceptance: to regard such serpents of digits as “rational” goes against the grain of the
students.
This sobering realization recalls the distinction found in [Kl 28], where Felix Klein
differentiates between approximation mathematics and precision mathematics1. The
numerical evaluation (!) of 22/7 as 3,142857, plus perhaps another few hundred places
which interest nobody, is a natural problem of approximation mathematics; but the
idealizing step of accepting this as the representation of an infinite, periodic expansion
implies a major shift of paradigm toward precision mathematics, a shift which apparently
Plato and Aristotle already argued about. It seems inevitable to us, that Klein's statement
([Kl 32], ibidem) “that the concept of irrational number belongs certainly only to
precision mathematics”, must be extended to include the mental objects known as infinite
periodic decimal expansions.
As far as the role and treatment of rational numbers in school mathematics is concerned,
our observations clearly entail and support certain consequences, which are discussed in
the literature again and again (cf. Stowasser [St 79], Groff [Gr 94]) but go beyond the
scope of this paper.

HISTORY
Klein's differentiation between approximation mathematics (AM for short) and precision
mathematics (PM for short) appears to us to be the key to understanding the process of
concept formation and the nature of concept images (for the terminology, cf. [TV 81]).
To avoid misunderstandings, we hasten to add that there is nothing imprecise about AM:
it means “approximate but refinable to any desired degree”. On the other hand, PM
means “totally precise”, i.e., zero-tolerance for error.
The opposition of those two styles goes back at least 25 centuries, to about the time when
the torch of scientific innovation passed from Babylon to Greece. Toeplitz ([To 63], Ch.I,
§4) says that Plato had a strong preference for PM, while his student Aristotle favored
AM - another good reason for these acronyms. However, it would be misleading to
confuse this distinction with that of Applied versus Pure Mathematics. Courant and
Robbins ([CR 41], Ch. I, § 6) point out that PM has brought with it a “tremendously
simplified description of physical phenomena”, and Klein calls it an “indispensable
support” for the development of AM itself. One page later, he finds nevertheless that
school is not the place to deal with it, since it “would hardly be adapted either to the
interest or the power of comprehension of most of the pupils.”
The difference between the two styles can be most clearly explained by an example: the
result of dividing 144 by 233 is, in decimal notation, 0.61802575... Being the quotient of
integers, it must of course be periodic, but its period happens to be of length 232 - too

                                                  
1 He later devoted a whole book to it: Elementarmathematik vom höheren Standpunkt aus. Band
III: Approximations- und Präzisionsmathematik. Berlin: Springer.
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long for practical purposes. AM will stand ready to work out some more places:
0.618025751073..., even more; but PM will insist on treating it as 144/233, not losing a
crumb. To PM the Golden Mean is 1/2 of 

† 

5 -1, while AM is content with
0.61803398875..., ready to work out some more places when required. To call one of
them “rational” and the other one not, would not even occur to AM. Even PM does not
depend on that distinction - it only makes it possible.
PM seems to have been a Greek invention, while the Babylonians always worked in
“AM-mode”. The glories of Greek mathematics are known well enough not to need any
further praise, but it is interesting to see ([To 63], p.17) how its greatest master,
Archimedes, struggled to get p stuck between the rationals 223/71 and 22/7, while
Ptolemy, still working in Babylonian mode 4 centuries later, produced an entire table of
sines - all of which (except one) are irrational.
Of course, the Babylonians worked in base 60 (as we still do with minutes and seconds)
and that tradition was amazingly durable - even in cultures whose spoken numbers were
thoroughly decimal. As late as 1250, Fibonacci displays the solution of a certain cubic
equation as 1 plus 22 minutes, 7 seconds, 42 thirds, 33 fourths, 4 fifths, and 40 sixths [To
63, p. 15], which differs from the today's answer by only 0.00000000003 in decimal
notation.
This method was translated into the decimal system in 1585 by the Flemish engineer and
mathematician Simon Stevin. In the preface to his slender booklet De Thiende (The
Tenth), he says that he did not invent but only found it, and urges all people having to
measure and calculate, be they astronomers or merchants, to use it. He makes no
reference to the Babylonians, but the point of this whole excursion is that, with Stevin's
modification, their system might be heading for a revival by the present “calculator
generation”  - to whom the distinction between rational and irrational is an anachronism,
and only finite decimal numbers are really “real”.

RESEARCH QUESTION AND METHODOLOGICAL CONSIDERATIONS
The over-all research question, then, was: what is the mental image of rational and
irrational numbers in the present generation of students?
Our study was carried out in the early autumn of 2002, in Northwestern Germany. The
first participants were two prospective teachers (Stan and Sue) in their 7th semester at the
university, whose ideas and conceptions will play a role in our conclusions, and about a
dozen students of Grade 9, who by their vivacious reactions mainly helped articulate our
procedure. Our principal sources were three groups of senior secondary students: 4
females (pseudonyms begin with F), later 4 males from Grade 10 (pseudonyms with G),
and finally 4 males from an enriched mathematics course in Grade 12 (pseudonyms with
M). The “field work” was conceived as a series of open interviews, which were
videotaped and are now available in transcribed form. The conversations varied in length
between 40 and 70 minutes. Their general themes were known to the students, but there
was no sign of any systematic preparation.
As a warm-up, they were asked to make crosses wherever appropriate in the empty fields
of an 8¥4 table, which was basically copied from [FJC 95]: the columns were labeled by
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the properties “number, rational, irrational, real” and the rows by the seven symbols in
[FJC 95], to which we had added ÷-5 as an eighth. Our intentional questions - as against
those, which came up spontaneously - were as follows.

1. When did you encounter these notions, and how did they strike you?

2. Can you give some examples?

3. Are these properties inherent, or are they aspects of the representation?

4. What is the relative abundance of rationals versus irrationals?

5. How can you recognize a periodic decimal?

Most of the time, however, was spent on the unexpected question of whether fractions, by
being represented decimally, could give rise to irrational numbers. It is important to note
that the interviewer did not somehow insinuate this. The reader can ascertain this at
www.pims.math.ca/~hoek/interviews/ where all transcriptions will be posted. The
consistency of the high school students' responses might also raise the suspicion that they
all got the wrong message at school. In fact, they were from two different schools, whose
common curriculum introduces irrationals in Grade 9, with a textbook of exemplary
clarity. We know their teachers as very competent, both mathematically and
pedagogically.

OBSERVATIONS, RESULTS AND INTERPRETATION
Because of the volume of our material, we must reduce our exposition to very few
aspects of our exploration. In particular, we leave aside the students’ ways of wrestling
with Question (4) - which led to reasonable conclusions more often than not. The furthest
off the mark was Stan, who did not wrestle with it, but simply voiced his opinion that
irrationals were “stop-gaps” and relatively rare. Nor shall we have enough space to
discuss how the “finiteness” of the string of digits for a number is seen to depend on the
base (e.g., 2, 10, 60) of the place value system used - cf. Question (3).
On the epistemology of understanding the concept of number.
To begin with, the observer is surprised that the conceptual equivalence of common
fractions and periodic decimal expansions is by no means evident for these students. For
one thing, their primary contact with numbers is through calculator displays. For another,
methods for moving between periodic decimal and fractional forms (possibly calculator-
assisted) are no longer widely known: since the New Math, they are mentioned only in
passing. This experiential deficit has the immediate epistemological consequence that
fractional and decimal representations are not on the same ontological level.
Even for Stan (4th year university), 1/3 is more accurate than 0.33333… (“For me, 1/3 is
more precise. When I compute with 1/3, I think back to the world of the Greeks, and I
calculate more accurately”). His classmate Sue tries to repair the perceived imperfection
of the latter by writing it as Â

•

=1
10/3

i

i , in other words, by completing the trans ition to
infinity.
The four young men of Grade 10, after asserting that irrationals are “infinite behind the
decimal point” and although coaxed to recognize the equally infinite 0.33333… as
rational, flatly declare that 1/3 is irrational, too, and stand by that opinion. The young
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women in the same grade are less certain and less unanimous. When asked, whether
periodic decimals could be irrational, Fanny says: “yes, I'd say that”, while Flora says
about 0.99999…: “we have learned that it is also 1”, thus avoiding a direct assertion. In
the end, three of the four women vote that 1/3 is irrational, while Flora remains doubtful.
In both of these Grade 10 groups, the lead-in question about irrational numbers had
produced the same reaction “not imaginable” (Fanny, Gilbert). More specifically, they
have “many” (Frieda), even “infinitely many” (Guido), places after the period, and cannot
be “determined exactly” (Fiona) because they are “apparently unending” (Flora). But this
feature of irrational numbers taints periodic decimals as well.
In the Grade 12 group, similar ideas come to the surface: “… an irrational number is …
not determined, goes on and on, … is not anchored to a certain point. The point can be
encircled, infinitely close, but cannot be grasped.” (Marco). “Put simply: an irrational
number has infinitely many places after the period. I think that some fractions, under
certain circumstances, can also be irrational numbers … (Moshe). It is striking that
Moshe brings up the word “fraction” which had not been mentioned previously. Manfred
summarizes part of the ensuing discussion as follows: “in the case of a fraction, you still
have a computation to do, a fraction is not yet a finished number. When you have a
decimal number with 0. and a great many digits behind it, you know that you have got a
number, no further computation is necessary.” It is clear from the rest of the conversation
that his “many” means “finitely many”. Michael agrees that 2/7 is “only the symbol” for a
number.
Let us emphasize that these students have no problem in interpreting a (finite) decimal
fraction and in locating it on the number line, at least in principle. They argue (in their
own words) that such a number contains an explicit and understandable locating
algorithm: after finitely many steps, you arrive at the correct point on the number line.
This perspective shows that they look at these entities as generalized natural numbers. In
their view, there is no essential difference between integers, decimal fractions, or even
common fractions and roots (!), as long as the latter two are regarded as “placeholders”
for numbers yet to be computed. It is amazing to see how closely this understanding
correlates with Stevin's notion of number from more than four centuries ago. [Ge 90]
To us, the conclusion seems inescapable that these high school students stand firmly on
the ground of what Klein calls approximation mathematics. Precision mathematics is far
from their minds: 2/7 is not seen as a number, but is relegated to the world of symbols.
The two university students do know the difference between rationals and irrationals, but
this knowledge is still more declarative than fully realized.
Verbal description and conceptual content
It is well known that everyday language impinges on mathematical notions even if these
have been carefully defined (cf. continuity of a function). This phenomenon appears to
affect the notion of “rational” number more strongly than we had expected. However, our
students are in good company: according to Klein, astronomers dealing with planetary
orbits would consider 2/7 as rational but 2021/7053 as irrational ([Kl 32], p. 36).
In our Grade 12 group, the literal meaning of the word “rational” formed an additional
obstacle to understanding what is meant. Early on Marco declares: “Ratio is that which is
given by the structure of thought. Ratio has to do with reason. And for me, a reasonable
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number is one that can be nailed down, that can be defined clearly.” The conversation
turns quite philosophical. Much later, Moshe says: “... Generally speaking, I think that a
number is rational, when I can represent it in its entirety, i.e., when I can work with it.
This I can do only with numbers that can be converted into natural ones. They need not
be natural or whole; they can also be decimal numbers, which have an end. That is, when
I have a number with an end, I can work with it, then it is rationally understandable …”
These linguistically induced conceptions make it difficult to accept infinite (periodic)
decimal fractions as rational numbers. Official teachings notwithstanding, prompted only
by their daily experience with calculators, these students do, in fact, exactly what Simon
Stevin had recommended.
Affective Components
Just like Stan (cf. the quote in 4.1 above), Fiona finds 1/3 more dependable than 0.333…:
“I find that 1/3 is more reliable, because you can depend on it. You know in the end, what
the result will be. With 0.333…, that is 3-period, I always feel: can I really depend on
that …?” Fanny finds 1/3 “friendlier” than its decimal expansion. Marco expresses his
incredulity that anybody could really imagine an infinite expression by saying: “If anyone
can imagine that, I’d be really impressed.” More importantly, all the students
interviewed have a positive, open attitude toward mathematics, and do some honest,
serious thinking. Nobody tries to fake it. At the end of the interview, the M-group even
agrees it had been “fun”.
Criteria of rationality
To explore our “intended” question (5), we handed out a sheet with 5 decimal fractions
between 0 and 1, each with 288 places printed out, and asked which ones were rational.
Initially, we were working under the assumption that only short periods would be
recognized as rational, and therefore tried to test the students’ understanding by
confronting them with long ones. Even when dealing with the first two, which had
moderate periods, it dawned on every group of students, that their rationality was not
decidable: a viscious teacher could always derail it at the 300th place. In their Platonic
existence as fractions or algebraic numbers, the third one had a period of 256, the fifth
one of 294, and the fourth one had none. Instead of clarifying the difference between
rational and irrational numbers in decimal form, these observations only deepened the
students’ distrust of infinite (!) decimal representations.
The serpent of nines
The question about the relation between 0.9999… and 1 comes up again and again, as
mentioned by many commentators. Tall2 says that “the primitive brain notices
movement”, and Zeno of Elea might have thought similarly. In our survey, the keyword
“asymptote” is brought into the open by Marco: “… I come infinitely close to it as to an
asymptote, but I can never say: that is the number.” Since asymptotes play a considerable
role in analytic geometry, these Grade 12 students would have been taught that the
function f(x)=1-10-x never quite reaches the constant g(x)=1. However, this very function
produces 0.9, 0.99, 0.999, and so on, for x=1, 2, 3, etc. This remarkable inconsistency of

                                                  
2 www.warwick.ac.uk/staff/David.Tall/themes/limits-infinity.html
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language and imagery (!), between functions, which never quite make it and numbers
which are eternally there, erects an additional obstacle.

CONCLUSIONS AND OUTLOOK
We must admit that our expectations were modest when we began to probe the
understanding of irrational numbers on these various grade levels. After all, we were
aware of Felix Klein’s opinion (quoted in Section 2) about the “pupils” appetite for
irrationals, and had diverse other reasons (in part also quoted above) to be skeptical.3

Nevertheless, we found our observations surprising. We had believed that an adequate
treatment of the real numbers was made difficult mainly by the massive influx of
mysterious irrationals into the orderly system of good, clean rational numbers. This was
clearly not the view of the students we questioned: their horizon was that of Klein's AM,
and their working environment was that of Stevin’s decimal fractions. Thus, what we had
believed to be a conceptual problem concerning irrational numbers turned out to be a
notational one which covered must of the rationals as well.
It is well known that mathematically equivalent statements are not always didactically
equivalent. The same is true for representations, for instance common fractions versus
decimal ones. For some one equipped with a calculator, the workability of the decimals
further tips the balance in their favor (remember Moshe's “… when I can work with it.”)
In some sense AM is the mode of action, PM that of contemplation. Conceptual problems
are abundant in the latter, while the former is more easily affected by problems of
notation and language. In it, the fact that infinite decimal expansions cannot be written
down produces a major cognitive obstacle, turned into mockery by the common meaning
of the word “rational” – as shown by the students’ affective utterances.
In retrospect, our surprise has given way to the realization that a shift in the mental image
of “number” was to be expected, when the actual contact with numbers had shifted from
relatively sparse markings on paper or blackboard to very explicit displays on calculators
and computers.
Sparse as it was, the older mode of communication probably left more room for the
imagination (of the lucky few) to delve into the immaterial realm of PM, while the
modern explicitness holds it back in work-a-day world of AM - which might be just as
well, according to Klein.
With hindsight, it all makes sense - but much more research would be required to
corroborate our conclusions on a large scale. If this should happen, it would clearly imply
that curricula stay with Stevin and in AM as long as possible. This does not mean
avoiding all references to common fractions (especially those with finite decimal

                                                  
3 Toeplitz hides his dim view in the folds of the following convoluted comment : If a high school
graduate were asked, what exactly was a number according to the mathematics he had been
taught, he would no doubt be able to consent to the suggestion that he say, what he had so far
understood to be a number was an infinite decimal fraction. Unfortunately, this sentence was not
included in the English translation [To 63] of the German edition of 1949, where it appears near
the top of page 15.
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expansions, or at least small denominators) or shirking all irrationals. But, as Stowasser
observes [St 79]: “The measurement of continuous magnitudes provides no sensible
motivation for the calculus of fractions.” So, we might make it at least as far as first Year
College without it.
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