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EMERGENCE OF MATHEMATICAL KNOWLEDGE
STRUCTURES. INTROSPECTION1

Nada Stehlikova
Charles University in Prague, Faculty of Education

In the study, a part of longitudinal research focused on the emergence of mathematical
knowledge structures in a learner’s mind is presented. It concentrates on the analysis of
introspective data gained from the author’s study of a non-standard arithmetic structure
in terms of the model of abstraction in context (Hershkowitz, Schwarz and Dreyfus).
Some episodes are described by factual and interpretative accounts. It is shown that the
above model can be applied to introspective data and used for their interpretation. The
parallel between the model and Duffin and Simpson’s idea of understanding is discussed.
This study is a part of longitudinal research aimed at describing the emergence of
mathematical knowledge structures in a learner’s mind. It is a very broad field of research
and we concentrate on the construction of a new structure as an analogy to an existing
structure. The process of constructing an internal mathematical structure is a mental
activity, i.e. it is not directly observable. The methodology we used consists of think-
aloud interviews with university students and the author’s introspection. Introspection has
been chosen because we believe that by studying ourselves from the inside we can infer
about mental processes of other people, we “develop sensitivity” (Mason, 1998). “By
introspection we mean constantly seeking to discern our individual perceptions of
experiences, both past and present, and our reactions to them” (Duffin & Simpson,
2000a). Some of the research results have been reported elsewhere (Stehlikova &
Jirotkova, 2002; Stehlikova, 2002). Here we will concentrate on the introspective part.

THEORETICAL FRAMEWORK
One of the central aspects of learning mathematics are the processes of the emergence of
mathematical knowledge structures. Several theories are available which have a common
goal: “They aim to provide a means for the description of processes during which new
mathematical knowledge structures emerge” (Dreyfus & Gray, 2002). For our analysis,
we have chosen the model of abstraction in context.
Hershkowitz, Schwarz and Dreyfus (Dreyfus, Hershkowitz & Schwarz, 2001a;
Hershkowitz, Schwarz & Dreyfus, 2001; Schwarz, Hershkowitz & Dreyfus, 2002) have
recently proposed a model of dynamically nested epistemic actions for processes of
abstraction in context which has since been elaborated (e.g. Dreyfus, Hershkowitz &
Schwarz, 2001b; Tabach, Hershkowitz & Schwarz, 2001; Tabach & Hershkowitz, 2002;
Tsamir & Dreyfus, 2002). The proposers of the theory characterise abstraction as “an
activity of vertically reorganising previously constructed mathematics!into a!new
mathematical structure”. By reorganising into a new structure, they mean the
establishment of mathematical connections (making!a!new hypothesis, inventing or
reinventing a mathematical generalisation, a proof, or a new!strategy for solving a
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problem).!On the other hand, neither learning to mechanically perform a mathematical
algorithm nor rote!learning qualify as abstractions.
The authors of the theory also claim that abstraction strongly depends on context, on the
history of the learner and on artefacts available to them and in this sense structure is
internal, “personalised” (Schwarz, Hershkowitz & Dreyfus, 2002). Thus hereinafter by a
structure, we will mean a mental image which a person holds in his/her mind about a
mathematical structure.
The authors of the theory call mathematical methods, strategies, concepts, etc. structures.
We would have preferred to reserve the word ‘structure’ for more complex knowledge
and simply call what is being built ‘mathematical knowledge’. Similarly, the term
abstraction has a more specific meaning in mathematics for us, thus instead of ‘processes
of abstraction’, the term ‘processes of construction of knowledge’ seems to us to be more
appropriate.
The genesis of abstraction is seen as consisting of three stages (Hershkowitz, Schwarz &
Dreyfus, 2001):

1. A need for a new structure,!
2. The constructing of a new abstract entity in which recognizing and building-
with!already!existing structures are nested dialectically, and
3. The Consolidation of the abstract entity facilitating one’s recognizing it
with!increased!ease and building-with it in further activities.!

Three epistemic actions which are constituent of abstraction are (Schwarz, Herhskowitz
& Dreyfus, 2002):

Constructing is the central action of abstraction. It consists of assembling knowledge
artefacts to produce a new knowledge structure to which the participants become
acquainted. Recognizing a familiar mathematical structure occurs when a student realizes
that the structure is inherent in a given mathematical situation. Building-With consists of
combining existing artefacts in order to satisfy a goal such as solving a problem or
justifying a statement.

STUDY
The tool of our investigation of an internal mathematical structure is an arithmetic
structure A2!=!(A2,⊕,ƒ) which we call restricted arithmetic  (hereinafter RA) 2 where
A2!=!{1,2,3,...,99} is the set of z-numbers. The gate to RA is the mapping r:!N!Æ N, n Æ
n – 99!·![n/99], which we call reducing mapping; here [y] is the integer part of    y Œ R.
Reduction can also be introduced as an instruction illustrated by several concrete
examples3: Perform a ‘double-digit sum’ operation on a natural number until you get a
one or two digit number. A double-digit sum operation is similar to a digit sum operation
but instead of adding digits, we add two digits at a time. For example, r(682) = 82 + 6 =
88, r(7 945) = r(45 + 79) = r(124) = 24 + 1 = 25.

                                                  
2 It was elaborated by Milan Hejny.
3 The isolated models of reduction, e.g. the numerical examples, are introduced to the student at the same
time as its verbalised universal model (for the theory of isolated and universal model see Hejny, in press).
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The reducing mapping r is used to introduce binary operations of z-addition ⊕ and z-
multiplication ƒ in A2 as follows: � x, y!Œ!A2, x!⊕!y!=!r(x!+!y) and x!ƒ!y!=!r(x!·!y). For
instance, 72 ⊕  95 =  68, 72 ƒ 95 =  r(6 840) = 9.
Note: This context has been chosen as a tool of our research and not a different part of
mathematics because it presents a fresh part of mathematics, not elaborated elsewhere, it
is suitable with respect to the author’s mathematical knowledge and abilities and the
analogy with ordinary arithmetic allows her to pose questions and develop solving
methods herself.
The only participant of this part of our research is the author, a 30-year-old researcher.
The data available for analysis consists of the author’s detailed notes of her solutions to
problems. The notes are dated and besides the solutions themselves also contain her
comments on them as they occurred to her at the time of writing. In addition, the author
used, if possible, different pens at different times for writing her notes. When the
problems were considered to be solved, a descriptive table was made which consisted of:
the task, its solution, its interpretation by the author. The table together with all the notes
was subject to analysis.
The problems solved by the author which we will describe here consist of the study of
squares, of general powers in RA and of looking for multiplicative groups in RA. The
study spanned four months and used some results which the author found out previously.
The author’s investigations will be divided into several episodes which will be described
by factual accounts (written in first person singular in italics) which are shorter versions
of our comments in the descriptive table and interpretative accounts. The interpretation
will be mainly done in terms of abstraction in context.

FACTUAL AND INTERPRETATIVE ACCOUNTS OF INVESTIGATIONS
Study of Squares

The study of squares was motivated by my effort to get an
insight into the solutions of quadratic equations for which I
needed to know which z-numbers were squares. Using the
notion of squares from ordinary arithmetic and the fact that
additive inverses have the same square, I made a list of
squares (a part of it is in fig. 1). I noticed anomalies and
regularities (e.g. 452!=!45, 552!=!55, 222!=!88 and 882!=!22;
(ab)2!=!(ba)2, a2!=!a02, where a, b are non-zero digits) and
gradually ‘chains’ and ‘cycles’ emerged. For instance, 42!=!16,

162 = 58, 582 = 97, 972 = 4, etc. The list was not illustrative enough and I tried to represent it
in a graphical form. I decided to use arrows for the relationship ‘being a square of’ and

redrew the list several times. Finally, I got a visual
diagram consisting of nine clusters (one of them is in fig.
2). I had a strong sense of satisfaction because the
diagram was pleasing to the eye and it consisted of
clusters of certain shapes and I felt confident that I would
be able to get new information from it.

Next, I felt prepared to prove some of the found
regularities. While doing so, my attention was attracted
by the fact that the numbers in the diagram made various
sets. It seemed an obvious choice to check them for group

x2 x

1 1, 10, 98, 89

4 2, 20, 79, 97

9 3, 30, 36, 63, 69, 96

16 4, 59, 95, 40

Figure 1.

Figure 2.
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properties with respect to z-multiplication. I checked the following sets: numbers from the
inner ‘rectangle’ (e.g. numbers 4, 16, 97, 58 from fig. 2); all numbers from the cluster;
numbers which have the same square.

While checking the last sets, I became interested in the questions how the numbers with the
same square are connected. It was very easy for NN numbers4. To solve the problems for
zero-divisors was more difficult but I managed to find a rule which worked.

What has been constructed here, is the structure (in the author’s head) of squares, their
mutual relationship and of regularities (we will call it S1) which has quite a simple visual
representation (its part is in fig. 2). The need for the new structure was given by our study
of quadratic equations. Using the notion of squares from ordinary arithmetic and the fact
that additive inverses have the same square (recognising previously constructed
knowledge and building-with it something new), a list of squares was constructed. By
studying the list and noticing anomalies and regularities, ‘chains’ and ‘cycles’ were
constructed (recognising & building-with the knowledge of the relationship ‘being square
of’). By further recognising and building with the relationship ‘being square’, with
observed regularities and with the idea of using nodes and arrows for the visual
representation, the visual diagram was constructed in a rather raw form and by several
redrawings, the diagram consisting of nine clusters was constructed and S1 was
consolidated5. We think that the structure S1 was also consolidated when the author
proved regularities because she had to reflect on the properties of squares. The suggestive
clusters of the diagram led naturally to distinguishing some subsets and investigating
them for group properties (recognising & building with sets of numbers which seemed to
be mutually connected and with the knowledge of group structure).
The last part of the study was motivated by the author’s natural curiosity leading her to
the question if there was a simple rule connecting all the numbers in a cluster. It
contributes to the understanding of the structure S1 and enriches it. This raises the
question of what the construction is. Shall we say that a structure has been constructed if
after some time we will find out that we have missed some of its important
characteristics? Or shall we say that the structure is being constructed until all the
characteristics have been found? It would then require an external authority which would
judge that the learner has discovered everything about the structure and it has thus been
constructed. As we deal with introspection, it seems natural to speak about construction
when the solver feels that he/she constructed something which he/she did not know
previously and that he/she understands it in terms of the definition of understanding given
by Duffin and Simpson6: “When I understand, I feel comfortable ; I feel confident; I feel
able to forget the detail, confident that I can reconstruct it whenever I need it; I feel that
the thing belongs to me; I can explain it to others” (Duffin & Simpson, 2000b). The

                                                  
4 By NN numbers we will mean non-zero z-numbers which are not zero divisors.
5 An indication that it was consolidated is that when the author had to draw the diagram again after a long
time, she was able to reconstruct it without having to go through the same process again.
6 As we only deal here with introspection, we will not consider the outer demonstrations of understanding
the authors provide.
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process of construction is thus an iterative process and it belongs to a person, is
‘personalised’.
Study of Sequences

The discovery of some groups in the study of squares
motivated me to go back to my study of sequences {ak,   a �
A2, k � N}. I already knew that structures ({ak, a!is NN, k �
N},ƒ) are groups. However, I was not satisfied with this
result and I wanted to explore the structures more and to see
what the situation with zero divisors was. I made a table for
NN (its part is in fig. 3): k!is the number for which ak = 1 (I
knew from Euler’s theorem that k!must be a divisor of 60). It
was not difficult to fill in the table because I used the

knowledge that (a) inverse numbers generate the same set (e.g. 2 and 50) and (b) if I know
that e.g. 230=1, then 415=1 and similarly 810=1. A similar table was made for zero divisors
where also the length of the pre-period (if any) was given. I investigated sets from the table
for group properties and discovered some groups. I made an important ‘discovery’ of a
different multiplicative neutral element other than 1 – number 45.

What is being constructed (or rather what has started to be constructed) here is the
structure of multiplicative subgroups (we will call it S2). The need for it stemmed from
our feeling that there had to be an inner organisation of subgroups which had been so far
found in a rather haphazard way. Within it another construction was made – the
construction of the structure of sequences (we will call it S3). The structure S3 was
constructed via recognising and building with some knowledge taken from ordinary
arithmetic and adapted for RA (see (a) and (b) above).
As for the neutral element, it was not a discovery as such. During her university studies,
the author met many examples of different neutral elements other than those found in
ordinary arithmetic. However, the time showed that this knowledge was not immediately
available when needed (as the knowledge of e.g. group properties was). Some previous
knowledge gained at university was consolidated through a rediscovery in a different
context.
Study of Third Powers

I wanted to find more subgroups and realised that if I studied third powers similarly to
squares, I might find some new ones. I made a list and a  diagram of third powers. I was
surprised to see that unlike squares, third powers ‘repeated’ (x3 = (x + 33)3 = (x + 66)3), and
that they occurred ‘in threes’ (8, 9, 10; 17, 18, 19, etc.). From the visual diagram I was able to
discover a set {1, 10, 89, 98} (NN for which a = a3) which together with z-multiplication
formed group. By further investigating sets of numbers with the same third power, two more
groups were found of order 3.

The process of the construction of S2 continued, new groups were identified. The
structure of squares was further consolidated as it was used as a basis for the construction
of the structure of third powers
Further Study towards the Construction of S2
The lack of space does not allow for the detailed description of the rest of the process. Let
us only say that other subsets of z-numbers were investigated for group properties and
subgroups were organised in a table according to their order.

k a

30 2, 50, 68, 83, 5, 20...
15 4, 25, 16, 31...
10 8, 62, 17, 35,...

Figure 3.
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I felt the need to summarise all the found subgroups to see if the list was complete. I noticed
the relationship between the order of subgroup and the order of group and I remembered
Lagrange’s theorem. I listed all possible orders of subgroups and filled in a table. Two types
of subgroups were missing – of order 12 and 20. I went over all my notes trying to find a clue
even though I did not know what I am really looking for. Suddenly I saw that the set {4k, k �
N) equals the set of all squares which are NN. It occurred to me that something similar could
be true for third powers. When I checked the set of all third powers which were NN, I got a
multiplicative group of order 20. Then I investigated the fourth powers but it did not bring
anything new. (I started to use Maple at this stage.) When I investigated the fifth powers, I
discovered the last subgroup – of order 12. I really felt a sense of accomplishment.

The solver felt that the construction of S2 had finished (even though later, she went on
with the study and developed S2 further). This time the author built with the theory
(Lagrange’s theorem) and with all the knowledge she had constructed so far in her
investigations. An important part of the whole process was the chance recognition of the
equality of the two sets. From then on, she could build with the knowledge that if we
investigate the third, fourth, fifth, etc. powers, other subgroups might be found.
Lagrange's Theorem was re-constructed similarly to the neutral element above.
The structure of subgroups was later consolidated when the author had to present it to
others and describe it verbally. Moreover, this consolidation also went on when the
author carried out the presented analysis of her own work! She had to reflect on S2 even
more deeply than when investigating it earlier.

DISCUSSIONS AND CONCLUSIONS
Visual representations: The structures S1, S2 and to a certain extent S3 too are specific
in that there is a visual representation available for them (the visual scheme and tables)
and thus it is possible to analyse them more easily than structures with no visual
representation.
Introspection: We accept that introspection as a research method is rather controversial.
In agreement with Duffin and Simpson (2000a), we take into account that introspection
should be complemented by other techniques in order for us to get more creditable
results, and thus we made an attempt to accompany it by co-spection (Duffin and
Simpson characterise it as “sharing of our own personal reactions to experience”). In our
case, it is the sharing between the author and a colleague of hers to whom she presented
her account of her work and who tried to find flaws and inconsistencies in it.
One of the dangers when using introspection is that the researcher may reinterpret (albeit
unconsciously) his/her former reasoning in the light of what he/she knows at the time of
analysis. On the other hand, when analysing other people’s solutions, we naturally use
our own experiences and interpret them accordingly. We believe, that no two researchers
will analyse a solution in the same way. Thus, the findings from the introspection will be
complemented by results from interviews with university students.
Abstraction in context: The model of abstraction in context was used for different kinds
of data than previously. As far as we know, the model has been used for (a) an interview
with a single student, (b) an interview with a pair of students, (c) a series of interviews
with a single student, (d) a series of interviews with a pair of students. Here we applied
the model to introspective data. Moreover, we showed that the consolidation of new
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knowledge can also be done when one is analysing one’s own work, not merely reflecting
on it. An illustration was given as to the consolidation of the knowledge gained some
time ago. The question was raised if the consolidation can come about when proving.

The model of abstraction proposed by the theory of abstraction in context seems to be
able to account for the part of data of our research on structuring mathematical
knowledge presented above. It remains to be seen how the theory of abstraction in
context can be used for other data from our research and for results which have already
been found in terms of the grounded theory approach, procept theory or the theory of
isolated and universal models. Besides, our study brought to light some problems with
terminology which we had when using abstraction in context.

Understanding: When analysing the data, we could see a parallel between the processes
of abstraction and the processes of building understanding. If we have constructed
something, we understand it, understanding is in the very heart of constructing. Duffin
and Simpson (2000b) define understanding as “an ongoing process of the development of
connections (building), a state of the available connections at a given time (having), and
the act of using the connections in response to a problem (enacting)”. They characterise
the act of knowledge construction as follows: “Indeed, in solving a substantial problem, a
learner may use some recalled facts, enact some of their understanding, get stuck, find,
and resolve conflicts by building new connections, enact the understanding inherent in
those new connections, bring in more recalled ideas, and so on.” This characterisation
resembles the characterisation of the knowledge construction given by the model of
abstraction in context. The connection between these two theories will be further studied.
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