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Results of a study involving pre-constructed, web-based, dynamic geometry sketches in
activities at the secondary school level revealed that the provision of accurate images is
an issue. Many students do not automatically understand that an onscreen image is
accurate. Others inadvertently create a special case by dragging, then generalise from
this static but unsuitable model. The research suggests that, for students to reap the
benefits of working with an accurate image, they need to set aside, during the exploration
phase, the traditional attitude of suspicion towards diagrams, and to recognize that
dynamic geometry diagrams offer valuable and accurate visual evidence.

INTRODUCTION

The study that informs this paper was undertaken to evaluate the benefits and limitations
of the use of pre-constructed, web-based, dynamic geometry sketches in activities related
to proof at the secondary school level. From the analysis of the data two main themes
were identified: 1) the relationship between the activities and the development of
geometric thinking skills, and 2) the relationship between the design of the materials and
the exploration process. Underlying these was an important sub-theme--how students
responded to a visually accurate image.

Many researchers have recommended an increased emphasis on the use of visual
reasoning in mathematics (cf., Duval, 1998; Goldenberg et al, 1998; Presmeg, 1999;
Dreyfus, 1991). With respect to computer images, Sutherland and Balacheff (1999)
reported that visual images displayed on computer screens allow students to gain access
to mathematical knowledge by “rendering more visible the nature of the objects with
which a student is engaging” (p. 2), and in a 1986 study of visualisation in high school
students, Presmeg found that dynamic imagery--although used by only a few
"visualisers"-- was effective in helping students generalise. The implication is that
visually accurate images are beneficial in helping students understand geometric ideas.

Visual geometric images whether printed or onscreen, fall into three categories: 1) special
case, 2) general case, and 3) inaccurate. One might argue that the last category is
unnecessary, however, an examination of most secondary texts will reveal many
diagrams that include measurements but are not drawn to scale. In keeping with tradition,
teachers warn their students that the diagrams are not necessarily accurate and that they
are to focus only on making logical deductions. The results of this study suggest that the
‘diagram bias’ thus created acts as a roadblock when students examine a pre-constructed,
and ‘accurate’ (i.e., to within a measurable error), dynamic sketch.

Pre-constructed sketches

Pre-constructed sketches created with Cabri Géometre (Baulac, Bellemain, and Laborde,
1992), or The Geometer's Sketchpad (Jackiw, 1991) as well as pre-constructed, web-
based sketches created with JavaSketchpad (Jackiw, 1998), or Cinderella (1999, Richter-
Gebert and Kortenkamp) can be used as an alternative to having students construct their
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own dynamic diagrams. In all pre-constructed dynamic sketches, points can be dragged;
pre-set relationships, such as measurements and ratios, update as a consequence of
dragging; and action buttons to hide or show details, to move and to animate objects can
be included. Web-based sketches created with JavaSketchpad do not permit the user to
construct or delete objects; however, those designed with Cinderella can provide options
for constructing a limited number of objects. Angles and lengths in these sketches are
represented accurately to within a small error, unlike those in textbook diagrams.

Interpretation and theoretical framework

Whether a pre-constructed sketch is web-based or not, it presents a geometric situation to
the student in visual format. Since the creator of an image knows details that are hidden
from an ordinary viewer, interpreting a pre-constructed sketch is similar to interpreting a
picture that someone else has drawn. Measurements or measurement tools are provided,
but students must apply their own organisation to the information, and draw conclusions
about how items are connected—a difficult task because mathematical pictures and
diagrams contain a great deal of information represented in a concise but "nonsequential”
format (Goldenberg, Cuoco and Mark, 1998).

Dynamic sketches include several options for motion including animation capabilities
and the dragging provision, which allows the student to explore an object in motion, at a
controlled speed. In 1998, Arzarello, Micheletti, Olivero, Robutti, Paola, and Gallino
classified modalities of dragging as: “Dragging test”, “wandering dragging”, and “lieu
muet” (dummy locus). They found that students who produced good conjectures made
use of "lieu muet" dragging, a purposeful mode which "can be seen as a wandering

dragging which has found its path" (p. 37).

Extensive studies of Cabri have shown that a geometry problem cannot be solved simply
by perceiving the onscreen images, even if these are animated. The student must bring
some explicit mathematical knowledge to the process (p.32). That is, an intuition about a
generalization involves more than observed evidence (Fischbein, 1987). This study, on
the use of pre-constructed, dynamic geometry sketches, found that the basic task of
perceiving detail, which involves noticing lengths, angles, measurements, labels,
markings, then noticing the change in these as a consequence of dragging, is difficult for
many students. I contend that this is in part due to traditional but limiting attitudes
towards diagrams that students bring to the dynamic environment.

DESCRIPTION OF THE STUDY

The research used a case study approach and multiple sources of information --
observation field notes, videotape, audiotape, a student questionnaire, and interviews with
teachers. Collected data was transcribed, then analysed by coding, developing categories,
describing relationships, and applying simple statistical tests where appropriate.

The transcripts were coded in several ways to allow analysis of student actions and
thinking, and to link these to particular labsheet questions or sketch features. During this
process, students’ uses of and responses to the visual images were examined (see
Sinclair, 2001 for further detail).

Three mathematics classes from two different secondary schools participated in this
study. The 69 students were enrolled in the Ontario grade twelve advanced mathematics
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program (replaced in 2002), which covered topics in algebra, geometry, analytic
geometry and trigonometry (Curriculum guideline, 1985). The study focused on
congruence and parallelism, the first section in the geometry unit. Although the students
had done introductory work on deductive geometry related to congruence and parallelism
in grade 10 and on similarity in grade 11, none had worked with dynamic geometry
software.

Three 75 minutes sessions or four 45 minutes sessions were held with each class. During
this time, students worked in pairs on four tasks. An additional task was done as a whole
class activity. In each class, several pairs were studied in more depth by audiotaping or
videotaping their activities.

JavaSketchpad, was used to prepare four web-based, dynamic geometry sketches for
student pairs to explore during the sessions, two extra sketches for those who finished
early, and one sketch for a group discussion. The labsheet that accompanied each sketch
provided directions for opening and manipulating the sketch, a statement of the problem,
and questions related to the task.

Problems chosen as the basis for the web-based sketches were similar in difficulty to
those in the student text, Mathematics: Principles and Process, Book 2 (Ebos, Tuck, and
Schofield, 1986) and related to triangles and quadrilaterals.

Each of the sketches supported the possibility of arriving at a solution from a
transformation perspective as well as from a straightforward application of congruency
theorems. The intention was to allow students to use symmetry considerations, a) to
visually confirm or negate conjectures, and b) to develop a new perspective on geometric
relationships.

In the pre-study interview the three study teachers identified difficulties that their
students experience in the geometry strand. For example, teachers mentioned that
students constructing congruency proofs frequently select sides or angles that do not
correspond to one another, or, in fact, do not even belong to the subject triangles. They
noted that this problem usually occurs when figures overlap or are presented in rotated,
reflected, or translated form. These student difficulties reveal an inability to “see” each
overlapping figure separately or to mentally transform a figure to a new orientation to
compare it with another. To address these difficulties, sketches included action buttons or
provisions to highlight particular figures, to toggle details on and off, and to rotate or
reflect shapes so that they could be superimposed, or viewed from the same orientation.

Overview of a session task
A very brief overview of one task is included here to help the reader understand the
context for the discussion.

Day 2, task 1.

This task gave students the opportunity to apply properties of parallel lines and to
investigate a problem using a rotation.

The triangles to be proven congruent were coloured to attract student attention. When a
vertex of quadrilateral ABCD was dragged, AD and BC appeared to remain equal and
parallel, as did AB and DC. When the "Show Given Information" button was used,
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students could deduce that ABCD was indeed a parallelogram since opposite sides were
marked equal and measurements were given.

Prove: Triangle AMD is congruent to Triangle CNB

'A Show Given Information .
DC =5.6 cm

BA =5.6 cm

AD =2.8cm

CB=2.8cm

m/BNC =90°

m/AMD =90°

‘A Show Trianglel

‘A Hide Triangle|

'+ Move O ->U

(0]
“uU

'+ Move O->Midpt Handle

Figure 1: Day 2, task 1— After selecting: "Show Given Information," "Show Triangle"
and “Move O—U.”

It was expected that students would use ASA (angle, side, angle congruency theorem) to
prove that AAMD and ABNC were congruent: AD = BC (given), ZDAM = ZBCN
(parallel line law), and ZMDA = ZNBC; however, students could also investigate the
relationship between the two by superimposing an additional given triangle over AABC
and then rotating it to fit over ACDA. This movable triangle was a tool for testing
whether AAMD and ABNC were congruent; however, it could also be used to
demonstrate the fact that congruent triangles have congruent altitudes (i.e., AABC and
AADC are congruent, which implies that AM must equal BN). Questions on the labsheet
such as: “What do you notice about the new triangle?” and “How can the information
provided by these images be used to explain why DM = BN?” were aimed at helping
students notice and address the information provided in the sketch.

DISCUSSION

The particular responses (or non-responses) to the provision of an accurate visual image
were related to three broad categories: noticing details, use of dragging, and entertaining
alternative methods.

Noticing details
The following (unconnected) comments show that students noticed details in the
sketches. (Note: all students are identified by pseudonymes.)
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Doug: Angle BED--hey!...Angle BED is 72.455.

Katy: Um, uh the angle shadings They're the same angles. Yeah, I would say that. The angle
shadings mean that they're congruent angles. So, congruent sides and congruent angles.

Dave: They match. It matched it with the other one. It shows us that they're congruent.

Bea: Oh, so the yellow and the purple

Familiar markings and colour drew attention--students noticed items that were coloured
or marked and sometimes missed those that weren't. Colour was also used as a simple
and effective means of referencing objects in discussion as shown by Bea’s comment. On
the other hand, despite Doug's comment, the transcripts show that measurements were
often ignored.

It is not clear whether some students did not notice the measurements (in JavaSketchpad
lengths and angles are in a list and not attached to the object), or whether they were so
attuned to the “rules” of deductive geometry that they did not expect to use measurement
data. The ability to display an accurate image is commonly assumed to be a benefit of
dynamic geometry software--it seems reasonable to conclude that the task of noticing and
interpreting relationships between objects is easier if figures are drawn to scale. However,
the study results showed that many students either do not realize or ignore the fact that
the onscreen image is accurate.

The tendency of study students to gloss over measurements is in stark contrast to their
awareness of colour and markings. It is of concern because the ability to explore how a
figure has changed requires focused attention to details that update under the operation of
dragging.

Use of dragging

Although initially intrigued by the ability to drag points, study students usually stopped
dragging after a short time and concentrated on interpreting a static figure. This led to
mixed results.

Some students treated the onscreen image as if it were a pencil sketch--as if the diagram
represented objects and their relationships, but was not drawn to scale. For example, two
above average students made the following (unconnected) comments:

Barb: Maybe cause it's slanted you can't tell it's a square.

Sue: If this is equilateral these sides would have to be equal. [In this instance, the triangle was
clearly not equilateral].

I hypothesised that such responses might stem from prior use of textbook diagrams.
Geometry teachers frequently warn their students not to make conclusions based on the
appearance of diagrams that are not necessarily accurate. These students used their
knowledge of deductive theorems to correctly solve the problems, but gained nothing
from being able to use an accurate model.

In the following example, abandoning dragging led to an erroneous conclusion. Doug and
Sal were looking at a triangle in Day 1, task 2 (not shown). Angle BEA may have been
very close to a right angle on their diagram, but if they had dragged the sketch they would
have seen it change.
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Doug: .. BEA--angle E is 90 degrees..

Sal: There's no thing [referring to the symbol for a 90 degree angle]
Doug: Well, you can't see it.

Sal: That's right

Doug: Well, I'm thinking this is an[sic]--cause it looks like it, right?

In this case, Doug and Sal, two average students, actually did treat the sketch as accurate!
Along with some other students they persisted in drawing conclusions based on what the
angles or sides looked like. Certainly many informal conjectures suggest themselves to
mathematicians because they “look like” they are true. Some withstand further
investigation; others prove false. The students’ problem was not in basing a guess on the
visual evidence before them but in failing to realise that they were observing a specific
case.

Entertaining alternate methods

Some student responses draw attention to the fact that we often focus on methods that are
more suited to symbolic rather than visual analysis. This tendency forces the student to
turn away from the image medium to compose a proof. For example, in Day2, task 1 (see
Fig 1), the sketch allowed students to use rotation to explain why two segments were
equal, instead of deducing the result via a triangle congruency proof. The question was:
"How can the information provided by these images be used to explain why DM equals
BN?" Students intuitively understood that when the triangle was rotated, DM would fall
on BN.

Clara: Because the triangle fits--the triangle fits both.

Despite this comment Clara did not follow up with a step-by-step analysis. She felt that
the result needed no further explanation, but she was unable to compose a written
transformation-based proof. Instead she used a traditional congruency proof.

If Clara wanted to justify her conclusion without abandoning the image that made the
congruency clear, what language would she use? I do not think most teachers are able to
step back from their deductive geometry experiences to provide a simple, clear proof that
uses transformation concepts and takes advantage of the visual reality offered by an
onscreen image.

Examples such as this also highlight students' unfamiliarity with describing visual
information in precise terms. We cannot intuit if we do not perceive and I contend that
students are not taught to perceive visual details—they are taught to select information
from diagrams—even if this information is false to the eye.
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CONCLUSION

In their 1996 summary analysis of research on computer-based learning environments in
mathematics, Balacheff and Kaput note that one of the ways in which the computer
makes its primary impact is by “changing the relationships between learners and the
subject matter and between learners and teachers—by introducing a new partner” (p.
495). The resulting environment is didactically complex. In addition to the usual teacher-
student interactions, there are interrelationships among the student, the computer and the
task (Sutherland & Balacheff, 1999). The nature of this student-computer interchange is
shaped by the unique characteristics of the software and its objects. This paper has briefly
presented how the accuracy of pre-constructed, dynamic geometry sketches affects and is
affected by the experience of the secondary school geometry student.

The study students who treated dynamic sketches like textbook models missed visual
evidence that might have provided support for a deeper understanding of geometric
relationships. Having always been provided with diagrams that carefully displayed a
general case, some students did not recognize the pitfalls of creating and analyzing a
special case. And when students were able to bring only traditional proof techniques to
bear on dynamic problems they failed to experience the true power of dynamic software.

As educators we need to be aware of the biases that our students bring to their work. In
the case of accurate and interactive images we need to explicitly focus students’ attention
on the differences between textbook diagrams and dynamic geometry sketches, and help
them find ways to mine the benefits of visual reality.

References

Arzarello, F., Micheletti, C., Olivero, F., Robutti, O., Paola, D., & Gallino, G. (1998). Dragging
in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier &
K. Newstead (Eds.), Proceedings of the 22nd Conference of the International Group for the
Psychology of Mathematics

Balacheff, N., & Kaput, J. (1996). Computer-based learning environments in mathematics. In A.
J. Bishop et al. (Eds.), International handbook of mathematics education (pp. 469-501).
Dordrecht: Kluwer Academic Publishers.

Cabri Géometre. (1992). 1. Baulac, F. Bellemain, & J. Laborde, designers. [Software]. Pacific
Grove, CA: Brooks-Cole Publishing Co.

Cinderella. (1999). J. Richter-Gebert & U. H. Kortenkamp, designers. [Software]. Berlin,
Hiedelberg: Springer-Verlag.
Curriculum Guideline: Mathematics Intermediate and Senior Divisions (1985). Toronto: Ontario

Ministry of Education.

Drefus, T. (1991) On the status of visual reasoning in mathematics and mathematics education. In
Fulvia Furinghetti, (Ed.), Proceedings of the Conference of the International Group for the
Psychology of Mathematics Education, (15", Assisi, Italy, June 29-July 4, 1991), 1, 32-48.

Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana, & V. Villani,
(Eds.). (pp 37-51) Perspectives on the teaching of geometry for the 21st century: An ICMI
study. Dordrecht: Kluwer Academic Publishers.

4—197



Ebos, F., Tuck, R., & Schofield, W. (1986). Mathematics: Principles & process, book 2.
Scarborough, Ontario: Nelson Canada.

Fischbein, E. (1987). Intuition in science and mathematics: An educational approach. Dordrecht:
Kluwer Academic Publishers.

Goldenberg, E. P., Cuoco, A. A., & Mark, J. (1998). A role for geometry in general education. In
R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing
understanding of geometry and space (pp. 3-44). Mahwah, NJ: Lawrence Erlbaum Associates.

JavaSketchpad. (1998). N. Jackiw, designer. [Software, under development]. Berkeley, CA: Key
Curriculum Press.

Presmeg, N. C. (1986). Visualisation in high school. For the Learning of Mathematics, 6(3), 42-
46.

Presmeg, N. C. (1999). On visualization and generalization in mathematics. In Fernando Hitt &
Manuel Santos (Eds.), Proceedings of the Annual Meeting of the North American Chapter of
the International Group for the Psychology of Mathematics Education (21*, Cuernavaca,
Morelos, Mexico, October 23-26, 1999. V1, 23-27.

Sinclair, M. P. (2001) Supporting student efforts to learn with understanding: An investigation of
the use of JavaSketchpad sketches in the secondary geometry classroom. Unpublished
doctoral dissertation, University of Toronto, Graduate Department of Education.

Sutherland, R., & Balacheff, N. (1999). Didactical complexity of computational environments for
the learning of mathematics. International Journal of Computers for Mathematical Learning,
4: 1-26.

The Geometer's Sketchpad. (1991). N. Jackiw, designer. [Software]. Berkeley, CA: Key
Curriculum Press.

4—198



