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W e explore the nature and consequences of teachers’ problem solving through an
example of a teacher’s mathematical problem solving as it was occasioned by a student’s
mathematics. This illustration demonstrates the value of an interpretive framework that
points to the mathematics of the classroom as a collective. Arising from this exploration
is our core assertion, that the mathematics teacher has an obligation to be curious about
mathematics. Our research has significant implications for teacher education as it points
to the significance of the teacher’s mathematics within the classroom collective and the
possibilities for the growth of the teachers’ understandings within that collective.

THE WAY TEACHERS NEED TO BE WITH MATHEMATICS
Every now and then, the mathematics teacher is compelled to engage in mathematical
problem solving. We use one such event to frame this paper. In a recent classroom-based
study, a test question, a student’s response to that question, and the teacher’s response to
the student’s response prompted us to rethink some of our own assumptions about the
way teachers need to be with mathematics.
We borrow this idea from Ball and Bass (2002) who argue that the teacher’s knowledge
of mathematics is of a different sort than that of the research mathematician. Briefly, the
research mathematician’s work might be characterized in terms of the formulation of
increasingly powerful generalizations. One might say, such efforts are oriented toward
the compression of ideas. By contrast, the grade school teacher’s responsibilities are more
about decompressing mathematical ideas and student responses to those ideas. The
teacher, that is, must have well-honed abilities to “pull apart”, “unpack”, and otherwise
interpret the mathematizations that she encounters.
The focus of this writing is another aspect of the way a teacher needs to be with
mathematics. We argue the teacher also has an obligation to be curious about the subject
matter that she teaches—which, although clearly an issue in psychology, is not a topic
that is often addressed an the contemporary psychology of mathematics education
literature. The idea does find support in related literatures, however. For example, the
importance of curiosity in research mathematics is a common theme (e.g., Burton,
1999a). As well, as Damasio (1994) develops from a neurological and cognitive scientific
perspective, curiosity is among the many emotions that are necessary to the development
of the rational faculties.
As a route into our discussion, we invite you to review, first, a seventh grade student’s
response to an exam question that was posed after a unit on patterns and relations (Figure
1), and then the teacher’s log entry in response to Arlene’s answer.
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Figure 1: Arlene’s Response
THE TEACHER’S JOURNAL ENTRY

In marking this exam paper, I scanned the student’s response and found myself looking at a
“correct number” with an equation for finding that number that I did not recognize. It was
neither like my solution nor any of the student solutions that I had already marked. My
immediate response to Arlene’s work was to wonder, “Is her computation correct?” Within
her solution there are some errors; however, it is the case that 62 + 32 = 45, the correct number
of matchsticks for the case given.
I turned to her written work and could not find anything in it that helped me understand why
summing the squares of the length and the width would produce the correct result. I
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speculated that Arlene’s generalization certainly would not work for the 10 x 15 case and
went about testing it only to find out that it does lead to a correct answer. (Her work was not
of much help to me given the mistakes and apparently incorrect reasoning.) Finding that the
10 x 15 case could also be calculated by adding the squares of the dimensions was highly
bothersome for me since I had carefully (or thought I had carefully) selected the “test” case. I
was deliberate to select a second example that was unrelated to the first case—unrelated in
the sense that I worried about it being a multiple of the first case for example, thus making
the second one a case of the first.

Figure 2: Extracts from the teacher’s specializing and generalizing
Seeing two cases that both could be solved with a model that I could not yet “see” related to
the problem I realized that in order for Arlene’s method to work that it must be equal to the
expression I wrote to model the problem. I wondered, “Is l2 + w2 = l(w+1) + w(l+1) in
general?” With only two lines of algebraic manipulations it was clear this is not the case.
Hence, it could only be true under special circumstances and clearly a 3 x 6 rectangle and a
10 x 15 were two of those special cases.

Figure 3: The teacher’s proof
Muddling my way through this new problem and trying to make sense of the situation I was
now in I specialized and put the dimensions back into the two equations and saw where they
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came together but it did not help much. So, I tried yet another case. This time I tried a 2 x 3
rectangle. I now had a case that did not work with Arlene’s model. Now my curiosity was
fully engaged. I needed to know: “Under what conditions does l2 + w2 = l(w+1) + w(l+1) ?”

After 4 pages of work in which I moved from specializing to generalizing and back again I
learned that l2 + w2 = l(w+1) + w(l+1) when l and w are two numbers, n and n+1, such that n
is the sum of the first x whole numbers and n+1 is the next such number. When shown the
problem, a colleague noticed these were triangular numbers; only then did I recall that fact.

As I researcher, I reflect back on my response to Arlene’s mathematics and wonder, How
was I with the mathematics?

A TEACHER’S OBLIGATIONS
One of the major themes to emerge in the mathematics education literature over the past
few decades is the matter of teacher attendance to students’ efforts to represent their
emergent understandings. The topic of teachers attending to learners has been particularly
prominent within the constructivist literature, as radical and social constructivists alike
have highlighted the issue. See, for example, Pirie and Kieren’s (1994) model for
observing the growth of mathematical understanding and the Cognitively Guided
Instruction Group’s (Franke & Kazemi, 2001) strategy of engaging teachers in careful
observation of students’ mathematical activity.
More recently, Ball and Bass (2002) have tied this issue of teacher attendance to the issue
of teacher knowledge of mathematics. This research focuses mainly on the sorts of
conceptual competencies and interpretive abilities that are necessary for one individual to
make sense of another’s understandings. In the interpretations that follow, we concern
ourselves more with the classroom collective than with individual understandings. Our
intention is to examine the contribution to the collective of teachers’ responses to student
work. (Note that, as demonstrated in the example presented, we are not limiting the
discussion to teachers’ responses to students themselves. Our more general concern is the
matter of their responses to student work, whether or not the substance of those responses
are represented to students.) As elaborated below, we view the individual student as just
one of a number of nested complex learning systems, and we wonder if the individual
learner is the learning system that should be the primary focus of the teachers’ attentions.
In effect, we are trying to ask, if we change our assumptions about the individual as the
locus of mathematics learning in school classrooms—and instead focus on the classroom
collective as the learning system of interest—then what becomes the obligations of
mathematics teachers?
In the case presented, the teacher’s mathematizations were neither brought back to the
student nor represented to other members of the class. At first pass, then, it might seem
odd that we have framed our core assertion—that mathematics teachers have a sort of
obligation to be curious about the subject matter—with this particular narrative. After all,
the most common rationale for the teacher to engage in mathematical inquiry is so that
she or he can better model for students what it means to engage with mathematical
problems and processes. For us, the rationale of modeling is hinged to some deeply
engrained but problematic assumptions. In particular, the notion that teaching is a
modeling activity seems to be rooted in the assumption of radical separations among
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persons in the classroom. The teacher models, the learner mimics, but their respective
actions are seen to be separable and to spring from different histories, interests, and so on.
We favor a different interpretation of human interaction, one that posits more profound
intertwinings of identities and intentions. Framed by ecological theories (e.g., Bateson,
1979) and complexity science (e.g., Johnson, 2001), we argue that the reason for the
teacher to engage in mathematical inquiry—or, more specifically, the reason the teacher
is obligated to be curious about mathematics—has to do with her or his role in the
emergence of a mathematical community, not with modeling. In terms of classrooms,
whereas the imperative for the teacher to model mathematical engagement appears to be
rooted in the assumption that the classroom is a collection of learners, we believe that the
teacher needs to be mathematically curious because he or she is a part of the collective
learning system of the classroom. This shift in phrasing is more than a rhetorical gesture.
Academically speaking, it corresponds to a recent elaboration of established interests in
the psychology of learners toward an interest in the psychology of social systems. (See,
e.g., Burton, 1999b.) This conception of a classroom, in terms of a collective character
rather than a collection of individual characters, is consistent with insights from the
emergent field of complexity science.
Elsewhere we have discussed some of the common ground and some of the divergences
of complexity science (and related discourses, such as enactivism) and many of the
theoretical perspectives that currently figure prominently among mathematics education
researchers, including radical constructivism and social constructionism (see Davis &
Simmt, in press; Gordon Calvert, 2001; Towers & Davis, 2002). As such, we do not
address that topic here. Instead we use complexity as a window into the role of teachers’
mathematical curiosities in the project of school mathematics.

 “SITUATED IN” VERSUS “PART OF”
In the main, when matters of individual learning and collective groupings are both
addressed, the discussions tend to be framed in terms of what it means for learning
agent(s) to be situated in particular social context(s). The locus of learning, that is, is
generally assumed to be the solitary human who is cast as a sort of fundamental particle
of cognition. Complexity science challenges the deeply engrained cultural assumptions
that underpin this habit of interpretation. For the complexivist, learning is a broader
notion, coterminous with the idea of evolutionary adaptation. Whenever a coherent
system undergoes transformations in a manner that enable it to maintain its coherence
within its dynamic circumstances, in complexity terms, it can be said to have learned.
Events of learning thus include such diverse phenomena as the formation of the European
Union, adjustments in stock market values, the rise of life on the earth, and the
emergence of consciousness in a species. In terms of the project of modern schooling,
some relevant learning systems include societies, mathematics (understood in terms of
the intertwined activities of a mathematical culture), schools, and classrooms—in
addition to individuals. Culturally speaking, this recent assertion of complexity science
might be interpreted as a remembering of an ancient intuition. There has long been a
tendency to discuss and describe each organization’s level in this range of phenomena in
terms of bodies (e.g., a body of knowledge, a student body) that grow and adapt.
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This shift in frame is what prompts us to speak differently about individuals and
classrooms—not as agents in situations, but as coherent forms that are parts of coherent
forms (that are parts of coherent forms, and so on). The classroom collective unfolds
from and is enfolded in learners and teachers. This frame undercuts many of the binary
oppositions that are so often used to characterize learners and schooling—most
obviously, perhaps, the common contrast of teacher-centered and student-centered
instruction. There are no centers to complex systems.
There is a problem with this manner of characterization, especially when applied to
something as deliberate as mathematics teaching. In our experience, it is rare and unusual
that a classroom collective emerges around the generation of mathematical knowledge.
Rather, the collective project (and when humans gather together, there is always some
manner of collective project, even if is mutual destruction) seems most often to be
organized around matters of social positioning. For us, the interesting question—and the
common feature of our varied research efforts over the last decade—has to do with the
emergence of collective possibility around the mathematics itself. With regard to the
topic at hand, it is here that the issue of a teacher’s personal engagement with
mathematics takes on a particular relevance. The example of Arlene and the teacher
provides a good example of what we mean by the expression, “a classroom collective
emerges around the generation of mathematical knowledge”. As we examine the 11
pages of the teacher’s mathematizing, we encounter several mathematical claims that are
new to us. To mention one, in terms of a theorem, for every pair of consecutive triangular
numbers, a and b—but only for pairs of consecutive triangular numbers—the following is
true: a2 + b2 = 2ab + a + b.
Whose insight is this? Following the conventions of contemporary research culture, and
assuming it hasn’t already been published, it clearly belongs to the teacher. However, an
attention to the events that surround the emergence of the insight reveals that, in fact, the
idea arose in the cogitations in a few overlapping communities, which themselves are
hooked into still broader communities. For instance three key events that contributed to
the emergence of the idea, and without which the insight might never have arisen, are
Arlene’s erroneous response, the teacher’s accidental selection of two pairs of numbers
that satisfy the theorem, and a colleague’s casual mention that the numbers generated by
the teacher are triangular.
An error by a student, a coincidental choice by a teacher, and a comment from a
colleague. Such elements are not the typical fare of mathematical progress. Or are they?
A close examination of the strew of interests represented in current mathematics research
suggests that the there is something troublesome about the classic definition of ‘progress’
as a linear movement toward a perceptible goal. Progress seems to be neither linear nor
directional, but more about the pursuit of interests that unfold as individuals and
collectives negotiate their ways through constantly shifting interpretive backgrounds. We
might further highlight the recursively elaborative nature of the event to emphasize the
nonlinear, nondirectional nature of mathematical insight. Culminating in this paper, this
writing might be described as the interpretation of a group of mathematics education
researchers to an interpretation of a teacher-researcher to the interpretation of a colleague
to the interpretation of the teacher-researcher to the interpretation of a student’s
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interpretation of a test question. These qualities of complex intertwinings, recursive
elaborations, and unforeseeable ends are what prompt us to argue that the teacher must be
mathematically curious. This curiosity cannot be framed in terms of causal influence in
one’s teaching. It is more a matter of necessary contribution. To underscore this point, we
would hazard the claim that, in our combined recollected experiences as researchers,
teachers, and learners, every “teachable moment” that we’ve encountered has been
dependent on (but, of course, not determined by) the teacher’s expressed curiosities.
Teachable moments, we believe, are moments of complex emergence—that is, moments
in which diverse agents cohere into collectives with shared purposes and insights. And
although we argue that teacher curiosity is a critical element, we would not want to
diminish the significance of student’s individual interpretations, their private interactions,
the texts and other artifacts that are made available, and so on. However, we do feel that
teacher curiosity stands out as a critical element in the mathematics classroom. As the
above example demonstrates, it compels teacher attendance to student articulations, it
opens up close-ended questions, and (as described elsewhere, see Davis & Simmt, in
press) it can trigger similar contributions from learners. Indeed, we would go so far as to
suggest that one of the biggest problems facing contemporary school mathematics is that,
generally speaking, mathematics teachers are not curious about the subject matter.

TEACHER EDUCATION
Many of our preservice teacher education students arrive to our classes with a genuine
curiosity about the subject matter, particularly at the secondary level. At the other
extreme, many arrive with a fear of the subject matter, especially at the primary levels. A
few arrive neither curious nor fearful, having opted into the route of a mathematics
teacher because the subject matter seems so easy to teach. It is, after all (and in their
opinions), unambiguous. Over the years, it has been curious to observe that, contrary to
prominently expressed opinions in the mathematics education literature (see, e.g., Ernest,
1991), it seems the aspects that most frame these diverse students’ engagements with the
subject matter in our classes are not their beliefs about the nature of mathematics, but the
extent to which they can become curious about the subject matter. Platonist and social
constructionist alike can be profoundly engaged or frustratingly detached.
Our experience has also shown that curiosity is not an innate proclivity, but can be
learned, to some extent at least. Shifts in attitudes can be occasioned as prospective
teachers take part in mathematical activities—and, in particular, in those sorts of
activities that require them to be participants in a learning collective. (Such activities are
not difficult to design. For instance, it can be done by extending almost any mathematical
activity with the simple task of formulating a new question to pose to—and hopefully
stump—classmates.) A key seems to be that such activities are neither teacher-centered
nor learner-centered, but mathematics-oriented. The agents are brought together by
common activity with shared purposes—which, psychologically- and sociologically-
speaking, is a critical element in transforming a collection of me’s into a collective of us
(see Johnson, 2001). We thus support the current and widespread practice of structuring
courses for preservice mathematics teachers around mathematical activities, and would
advocate for an elaborated practice of framing those activities in terms of collective or
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joint inquiries. This suggestion stems from our belief that, like mathematical knowledge,
curiosity is a collective phenomenon, even when it is expressed in private pursuits.
To return to the example that we used to frame this paper, we cannot say how the
teacher’s response to the student’s response affected the course of activity in the
classroom. But it is precisely the fact that we cannot specify the consequences that
prompts us to argue that curiosity around the subject matter is an obligation, not an option
for the teacher. Complexity does not tell us how a teacher’s attitudes and activities
contribute to the collective, only that they do.
Note
1. This paper is based on data collected in a year-long teaching experiment (funded by the Social
Sciences and Humanities Research Council grant 410-2000-0500) in which Simmt taught a grade
7 mathematics class. That teaching experiment was part of a collaborative research project in
which Towers, Gordon and Simmt are exploring the implications of high activity and interaction
rich mathematics classes.
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