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We present results from a study which investigated the influence of dynamic geometry-
based activities in the development of proving skills (in geometry) in high-school students
(15-16 years of age). After a 12-week course on Cabri and the writing of conjectures and
proofs, students were asked to write and prove conjectures based on their observations in
six Cabri-based activities. We analyzed the written data in the light of Balacheff’s work
(1987, 1999). Although progress is shown on the level of the development of knowledge,
in that the objects and their relationships become more meaningful, there are still many
difficulties in decontextualizing the activities and in the development of a functional
language, necessary for the passage from pragmatic to intellectual tools.

INTRODUCTION AND THEORETICAL FRAMEWORK

For several years we have been investigating the role that new technologies play in the
stages of the development of a proof in mathematics education. The use of technological
tools bring the possibility for different types of conceptualizations of mathematical
objects which may help or hinder the processes involved in the development of proofs.
Most of the research regarding the use and influence of technological tools in proving has
been done with regards to dynamic geometry environments (Hoyles & Jones, 1998;
Balacheff, 1999; de Villiers, 1998, 2002; Jones, 2000), and in this paper we will present
data from a study involving dynamic geometry-based activities for the construction of
geometrical proofs; however, it is worth noting that it not all the research is exclusive to
geometry or to that tool (e.g. Sacristan & Sanchez, 2002).

Some researchers have called for using proofs to create a meaningful experience; that is,
as a means to help students understand why results are true (Hanna,1998), by providing
an opportunity for exploration, discovery, conjecturing, refuting, reformulating,
explaining, etc. which technological tools such as dynamic geometry environments can
provide (De Villiers, 2002). Computer tools can be used to gain conviction through
visualization or empirical verification, but as De Villiers (2002) points out, proofs have
multiple functions that go beyond mere verification and that can also be developed in
computer environments: such as explanation (providing insight into why it is true),
discovery (the discovery or invention of new results), communication (the negotiation of
meaning), intellectual challenge (the self-realization/fulfillment derived from
constructing a proof), systematization (the organization of various results into a deductive
system of axioms, concepts and theorems).

Balacheff (1987, 1999), in particular, has introduced certain ideas that we consider important
for our analysis. First of all, he distinguishes between the terms explanation, and two terms
which are generally both translated as proof into English: the French terms preuve (proof)
and démonstration (mathematical proof) to . For him, an explanation is a discourse that
aims to clarify the true makeup of a proposition or result. Preuve (proof) is an
explanation that can be accepted by the community and which leads to the existence of a
common system of validation. Finally the démonstration, or mathematical proof, is an

4—111



accepted proof by the community of mathematicians (Balacheff, 1987). Balacheff has
also proposed a distinction between pragmatic proofs and intellectual (or conceptual)
proofs; emphasizing the role of language in the passage from the former to the latter.
Pragmatic proofs are those based on effective action carried out on the representations of
mathematical objects. They lead to practical knowledge that the subject can use to establish
the validity of a proposition. Intellectual proofs demand that such knowledge is reflected
upon, and their production necessarily requires the use of language that expresses (detached
from the actions) the objects, their properties and their relationships. In other words,
pragmatic proofs are based on action, while the use of a functional language (which includes
a specific vocabulary and symbolism) and a “mental experience” (where actions are
interiorized) characterize the transition to the intellectual ones. The transition from pragmatic
proofs to intellectual proofs culminating in mathematical proof, involves three components:
the knowledge or levels-of-action component (the nature of knowledge: knowledge in terms
of practices — “savoir-faire”; knowledge as object; and theoretical knowledge); the
language or formulation component (ostentation, familiar language, functional language,
formal language); and the validation component (the types of rationale underlying the
produced proofs: from pragmatic, to intellectual, to mathematical proofs).

The development of a functional language involves processes of ‘“‘detemporalization” and
“decontextualization”. That is, it should be a language for talking about mathematical objects
and for communicating ideas related to them, independently of the situation, school context,
or of the persons with whom the communication takes place (e.g. the teacher).

In the next section, we present results from a teaching experiment using Cabri-Géometre,
that is part of our research in investigating the role that dynamic geometry environments
can have in the passage from pragmatic to intellectual proofs in geometry.

A TEACHING EXPERIMENT USING CABRI-GEOMETRE

The aim of the research presented here, was to investigate alternative types of activities,
in this case using dynamic geometry software, for improving proving skills in geometry
in high-school students. (It is worth noting, however, that in two other parts of our
research we have also investigated the same activities with teachers, and a group of
students different than the one reported here). To select our subjects, we applied a
diagnostic questionnaire, based on the questionnaire devised by Healy & Hoyles (1998),
to a group of 40 Mexican high-school students of ages 15-16 years, in order to evaluate
their understandings of aspects linked with mathematical proofs. We marked the correct
answers in order to get a general evaluation of each student according to the number of
right answers. The 8 top students from the results (which in this case coincided with the
students that their teacher considered the best in mathematics) then participated in an
experimental 35-hour course consisting of 3 hour-sessions once a week. These students,
as in general students of this educational level in Mexico, have studied some themes of
Euclidean geometry, but not a full course.

The aims of the course were to instruct students in three aspects: (i) the use of the Cabri-

Géometre software (knowledge of commands, construction of objects, etc.); (ii) a review

of basic geometrical knowledge (simple propositions on parallel lines, angles and

triangles); and particularly (iii) the writing of conjectures (with an emphasis of having

students recognize that a conjecture is a proposition formed by two parts: an antecedent
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and a consequent) aiming to have students learn to express explanations, verifications
and, if possible, proofs of geometrical theorems and properties. We are aware of concerns
that explorations in dynamic geometry environments, where conjectures are confirmed by
testing the figures through dragging may reduce the perceived need in students for
deductive proof (Chazan, 1993; Hanna, 1998; Hoyles & Jones, 1998), and that is one of
several reasons why we placed emphasis on the third aspect of the instruction process.

The didactical design of the course consisted in activities similar to those reported in this
paper: the teacher explained how to construct objects in Cabri, let the students explore
them freely, then there was a joint discussion on the writing and proving of conjectures
derived from the activity. At the end of each session, students were given an activity to
carry out on their own. During the last session, students were asked to work on six
activities, and for each one write and prove a conjecture.

Each of the activities (all related to medians and areas of triangles), was meant to lead
into a specific proposition. These propositions constitute a system in the sense that they
can be deduced from previous propositions. The background needed to construct the
proofs was simply the formula for the area of a triangle (base x height /2) and
propositions constructed or derived from the system of six activities. In this paper we will
only talk of the first two activities as they are representative of all the others.

A c t i \4 i t y 1
* Draw a triangle, label the vertexes with A, B, C. * Mark the
midpoint of segment BC; call it I. ® Define the triangles AAIB and
AACI. * Get the areas of the triangles AAIB and AACI. * Grab any
vertex A, B, or C and drag it to new position. Observe what occurs
with t he areas.
* Write a conjecture about your observations and write the B 1Y C
corresponding proof.

Activity 1 was designed to lead to the construction of a proposition related to the
theorem: If in the triangle AABC, AM is a median, where M is the midpoint of BC, then Area
(AAMB)=Area (AACM).

A c t i \4 i t y 2
* Draw a triangle AABC (label the vertexes). ®* Mark the midpoint
of segment BC (call it M). * Draw the ray AM ¢ Draw the
perpendicular line to AM that passes through the vertex B
Define the point of intersection between AM and the above
perpendicular; call it P,. ® Draw the perpendicular line to AM
that passes through the vertex C ¢ Define the point of intersection
between AM and the above perpendicular; call it P,. * Hide the
perpendicular lines BP, and CP, ®* Draw the segments BP, y CP, ®
Get the length of the segments BP, y CP, ® Drag the vertexes A,
B, or C and observe what happens with the lengths of the above segments
* Write and prove the conjecture about your observations.

Activity 2 was designed to lead to the construction of a proposition related to the
theorem: If in a triangle AABC, AM is a median, then the distance from B to AM is the same as
the distance from C to AM.
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SAMPLE DATA AND INTERPRETATION OF SOME RESULTS

We used the written propositions of the students as a window to get insights into their
abilities to understand the fundamental ideas involved in the proof, as well as evaluating
their skills to formulate and write conjectures and proofs. From a detailed analysis of the
propositions written by the students we deduce that, on the one hand, through the
exploration activities in the Cabri environment, students do develop a certain
“phenomenological” knowledge of the elements and notions involved; this shows some
progress on the level of the knowledge component. On the other hand, the written data
also shows the difficulties that students have in expressing the propositions; this suggests
little progress on the level of the language component. Most of the “proofs” that students
gave were really explanations, since few of them could be classified on the level of
intellectual proofs; all the others would be classified as pragmatic proofs.

The first example is from a student called Alexandra:

Alexandra’s Proposition - Activity 1: In every triangle, when drawing the [median'] the
height and the bases will measure the same and therefore will have the same area. Since we
found the midpoint for BC, the two bases will measure the same and because the height is
perpendicular to the base, both triangles will have the same height.

Anyone unfamiliar with the activity would be unable to understand it. There is an
absence of a reference to the two triangles that get formed when sketching the median of
a triangle; this makes the statements “the height and the bases will measure the same and
therefore will have the same area” very confusing. She also uses the symbols (she uses
the reference BC for the base of the triangle) referred to in the activity, but doesn’t
properly introduce them in her proposition. There are similar problems in her proposition
for the second activity:

Alexandra’s Proposition - Activity 2: In a triangle where we draw the [median’], the
perpendicular segments to it will measure the same if they are the height of the triangles that
are being formed. In the triangle ABM the segment BP, is its height because it is
perpendicular to the base in the same way for the triangle AMC.

This second proposition is even more confusing than the first: it mentions the segments
perpendicular to the median, but it doesn’t specify that they each pass through one of the
two remaining vertexes. Nevertheless, in spite of the problems with the written
proposition, it is worth noting that Alexandra was one of only two students who was able
to link the result of the first activity with this second one: in her “proof” she seems to be
using the congruence of the area of the two triangles that are formed with the median. In
a previous study to the one reported here, none of the students linked the two activities in
this way. Independently of that, it is clear from her written work that she has a good
understanding of the content of the proposition she makes, and although her statement is

' The quote has been translated from the original Spanish. In Spanish, Alexandra used the term mediatriz
which is the perpendicular bisector, but she was referring to the median because that is what she
constructed in the activity. Nevertheless, her mistake shows a confusion (very common due to the
similarity) between the terms mediana and mediatriz (perpendicular bisector).

? As in the previous activity, Alexandra used the term mediatriz to refer to the median.
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faulty, she does present the correct elements for the proof. Like Alexandra, most students
were able to identify the elements and relationships needed for the proof, but they were
unable to properly articulate them in their written propositions; nevertheless this is
important in making the activities meaningful (progress on the level of the knowledge
component).

In Alexandra’s case there is also an attempt to use symbolic references and to generalize
her propositions (“in every triangle”). However, although attempts to generalize were
found in most students, the use of symbolic notations wasn’t as common or was misused
(see further below), and students very often relied on familiar language.

In fact, students in general didn’t pay much attention to be rigorous in the writing of the
conjectures they observed. They centered more on the explanation and “proving” than on
clarifying the propositions they discovered through the Cabri-based activities. This is in
spite of the fact that during the instruction phase the emphasis was put on the writing of
the conjectures. In the written work from Activity 1: only three of the eight students made
any attempts of writing down the proposition, and only one of those three cases can be
considered almost correct (there was no reference to the original triangle). All the other
students wrote directly an explanation or a proof. In the second activity the situation is
even worse: only one student (Alexandra) tried to give a complete proposition with the
problems already discussed; three other students only gave the conclusion without stating
the conditions and hypothesis of the proposition; all of the other students directly wrote
an explanation or proof. It is also worth noting that most of the students (see sample data)
write both their proposition and their proof in a single paragraph, again indicating that
their focus was more on explaining than on writing a formal proof.

Zaira’s Proposition - Activity 2: The length of P, is equal to P,, because both are
perpendiculars to AM with respect to a point, but M is the midpoint of the triangle and
because of that it is the same measure that goes from M to B than the one from M to C.

Before the first coma, she tries to state the “result” (that the segments are equal),
followed by a failed attempt to prove it. We suggest two reasons why students avoid
writing their conjectures:

* The difficulties in describing and articulating the geometric elements that come into play

* The school setting: i.e. the habit of having the activity given by the teacher and knowing
that “he/she knows what is being talked about.” It is therefore enough to just give some
indication that the activity was carried out and understood.

An aspect which points to the difficulty in the appropriation of a functional language is
the fact that Zaira uses the symbols P, y P, in reference to the segments BP, and CP,
(Barbara does the same); this suggests that Zaira sees the symbols only as labels that can
simplify the writing ignoring how they can refer to the structure of an object and its
properties. (In this sense, another student used MP not in reference to a segment MP in
the figure, but simply as an abbreviation for the term midpoint).

However, it is important to mention that there may also be a cultural dimension to the
difficulties that students have in the writing and formulating of the propositions. General
writing difficulties have been found almost everywhere in the world, and we shouldn’t be
surprised that even more difficulties arise in the writing of conjectures and proofs. It is
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evident from the written work of the students as described above, that these students are
not used to expressing mathematical ideas (whether formally or informally) despite the
emphasis given to that in the teaching experiment. But it is important to note that in the
Mexican Mathematics School Curriculum there are no explicit objectives to teach proof.
Furthermore, although we have yet to substantiate the following statement, we have
observed a general lack of encouragement in schools for students to express mathematical
ideas with rigor and formality: the emphasis tends to be simply on producing the correct
solution. Thus the above deficiencies are even less surprising, and cultural aspects may
enhance this problem.

Problems of decontextualization

In the theoretical framework we mentioned the importance of decontextualization for the
development of a functional language. We found problems of decontextualization in
students in two ways: first, as mentioned above, in that they assume that the reader of
their propositions (the teacher) knows what they are talking about. There is another level
of “situatedness” which is more specific to the dynamic geometry environment. Take, for
example, Barbara’s proposition:

Barbara’s Proposition - Activity 1: The triangle has the same base and the same height and

because it is divided in two by the median, thus when I move one of the points of the triangle

they always have the same measure for their area.
It is worth noting that as the problems become more complex, references to actions
carried out with the software (e.g. “if I drag...”, “when I move...”) become more and
more common. This could be interpreted that as the problem is more complex, the more
difficulties students have in the decontextualization. We dare say that these “situated”
propositions by the students are akin to what Noss & Hoyles (1996) have called “situated
abstractions” where the generalizations that occur are still in terms of the actions and the
situation in which they arise. In terms of Balacheff’s theories, we would say that they are
still on the level of pragmatic proofs.

The construction of meaning through the DGE activities

Nevertheless, we find that the use of the dynamic geometry software, helped students
make progress on the level of the knowledge component. Students seem to grasp the
meaning of some of the theorems thanks to the phenomenological approach that the use
of Cabri makes possible. There is a fundamental difference in the construction of the
geometrical figure between doing it with paper-and-pencil and doing it in a dynamic
geometry environment: whereas in the first one it is the construction of a particular case,
in the latter one it is actually the construction of a “general case”. The construction in
Cabri also requires the definition of structural elements (e.g. the midpoint is intrinsically
defined as the midpoint); failure to do so will result in the figure “falling apart” through
dragging. In the first activity, for example, by dragging and experimenting they can
observe on the screen that the areas of the two triangles that get formed when dividing a
triangle with a median, are always equal: this gives students a clear reference of what the
proposition is about. When they are asked for a proof, they look for an explanation and
they are generally able to observe the necessary elements that are needed for the proof,
suggesting the fundamental idea of the proof.
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In terms of the theoretical framework and Balacheff’s ideas, we can say that the Cabri-
based activities seem to favor the knowledge component, while the development on the
level of language and formulation remains a difficult area. The benefit of the software
seems to be in that the construction activities produce appropriate meanings for the
objects and their relationships, but progress on the level of the validation component
depends on the other two components: both the knowledge and the language ones.

The written work that we have analyzed in particular in this paper, reveal the ways in
which some of the contextual elements involved in the implementation of the tasks are
difficult to abstract in order to produce an approximation to, not even a written proof, but
also to a modest written mathematical explanation of the geometrical propositions. The
students are still far from being able to produce written texts explaining the results
observed in an activity but that are independent of the situation of the activity.

The role of language is crucial in the intellectual work involved in geometry and our
research points to its complex nature. Geometrical activities involve two types of
treatments of the geometrical objects: the visual treatment and the discursive treatment.
The software favours the visual treatment, since it helps avoid the discursive treatment
and use of symbolic language; this in turn, by permitting an immediate access to
“concrete forms of abstract entities” (Laborde & Laborde, 1995, p. 243), helps develop a
phenomenological knowledge of the mathematical objects in a much faster way that in
paper-and-pencil activities.

But, on the other hand, the theoretical knowledge of geometry, that which supports a
mathematical proof, is developed in the transition between pragmatic and intellectual
proofs, and demands the development of a functional language. It seems that the
software-based explorations, without complementary activities specific to the
development of language, do not provide many opportunities for the development of first
a descriptive language and then a functional one.

We consider this one of the limitations of dynamic geometry environments where objects
are controlled through the mouse, as opposed to other computer tools, such as Logo,
where the objects are controlled through the symbolic notation of the programming code.

Finally, although a profound discussion of this issue is beyond the possibilities of this
paper, it is important to mention a further problem that we have identified in the use of
Cabri. We find that an important activity in the interpretation of a figure in order to
discover a conjecture and deduce its proof, is that which consists in the distinction and
regrouping of elements or subfigures of a given geometrical figure; what Duval (1995)
calls reconfiguration. Because of the sequential way in which figures are constructed in
Cabri, the process of reconfiguration is not facilitated, as we have observed in all our
research subjects. We believe this may be a reason why most students did not link the
propositions derived from one activity with the others, as Alexandra did (see above).

Despite the limitating influences of the use of Cabri in the development of functional
language and in facilitating reconfiguration, we believe that the advantages in creating
meaningful knowledge provide an important foundation for the passage and
understanding of mathematical proofs and deductive reasoning. And further research may
help develop complementary activities to assist students overcome those limitations.
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