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STRONG AND WEAK METAPHORS FOR LIMITS
Michael C. F. Oehrtman
Arizona State University

The metaphorical nature of first-year calculus students’ reasoning about limit concepts is
explored using an instrumentalist approach. Analysis of written and verbal language
reveals that, while these students used motion terminology profusely when discussing
limits, it was typically not intended to signify actual motion and did not play a significant
role in their reasoning about limiting situations. In contrast, many of these students’
employed other non-standard metaphors, involving for example collapsing dimensions, to
explore these situations and to build their emerging understanding of limit concepts.

INTRODUCTION
Although limit concepts are foundational to the study of calculus, they have proven
especially difficult for beginning calculus students to understand. Williams (1990, 1991)
has revealed many ways in which students try to reason about limits using insufficient,
intuitive ideas and metaphors for the concept including boundaries, motion, and
approximation. Lakoff and Núñez (Lakoff & Núñez, 2000; Núñez, 2000) have attempted
to show how intuitive ideas can form a more rigorous metaphorical basis for
understanding limit concepts, but their work is neither based in student data nor intended
as a theory of learning.
This paper presents results of a study investigating actual students’ spontaneous
reasoning about limit concepts and the aspects which determine whether that reasoning is
helpful or a hindrance to developing a stronger understanding of limits.
Instrumentalism
Most previous research on students’ understanding and learning of limit concepts has
focused on the structural aspects of their knowledge. While it is important to account for
the content and internal structure of knowledge, equally significant are the functional
ways in which those knowledge structures are applied against specific problems. In order
to address this aspect of knowledge in the theoretical perspective of this study, we turn to
John Dewey’s “instrumentalism.”
To understand a human activity, according to Dewey, it is necessary to examine the ways
in which relevant tools are applied technologically against problematic aspects of
situations (Hickman, 1990). In its modern use, the word “technology” typically refers to
physical inventions rather than cognitive tools used in mental activity. Dewey argued,
however, that such Cartesian lines between environment and organism and between mind
and body are not so definite. The same principles that apply to human physical tool use
also apply to productive mental activity. For Dewey, describing tool use as technological
meant that it is active, testable, and productive. A cognitive tool is selected and applied in
a dynamic process which actively engages the attention of the individual. It is used to
perform tests upon the problem that gave rise to its selection, and reciprocally, the tool is
itself tested against the problem and evaluated for appropriateness. Fortuitous interactions
between aspects of the tool and problem are complex, reciprocal, and implicative, thus
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effecting change in both. The artifacts of this dialectic are new meanings, which as they
emerge, present situations that may themselves become the object of further inquiry.
In this process, an original idea becomes more “coherent” and “densely textured.” Since
inquiry is situated and ongoing, one cannot separate knowledge from the context of its
origins; it is bound to the unique circumstances and processes through which it was
created, and truth is emergent, not located externally. Consequently, Dewey’s focus is on
the process of inquiry rather than on transient pieces of knowledge. Meaning for a
proposition, symbol, or metaphor is defined in terms of the object’s function in particular
productive activity, just as it is for a physical tool such as a computer or hoe.
Metaphors
Consistent with an instrumentalist approach, Max Black’s “interaction” theory of
metaphorical attribution asserts that one must regard the two subjects of a metaphor as a
complex, interacting system (Black, 1962, 1977). This requires two levels in which new
and old meanings must be held active together: first, with respect to distinct meanings of
the metaphorical subject with and without the context of the metaphor, and second, with
respect to the extension of meaning imposed on the literal subject by the system. Strong
metaphors, such as those that would be necessary for supporting creative thinking, force
the relevant concepts involved to change in response to one another. The resulting
perspective created is one that would not otherwise have existed, that is, strong
metaphors are ontologically creative. In such metaphorical reasoning, one cannot simply
apply an antecedently formed concept of the metaphor as-is; something new and actively
responsive to the situation is required of all concepts involved. If pursued, the
implications can support a degree of discovery that leads far beyond one’s original
thoughts, providing the complexity and richness of background implications necessary
for generating new ways of perceiving the world.

METHODOLOGY
Students from a year-long introductory calculus sequence at a large southwestern
university participated in interviews and submitted writing samples covering their
attempts to make sense of problematic situations involving limit concepts. To observe
functional aspects of students’ thought, data collection in this study was intended to
encourage students’ technological application of their metaphors against challenging
problems. Ten questions, roughly paraphrased below, were presented to the students. The
first two were presented in clinical interviews with 9 students during which problematic
aspects were called out by the interviewer for resolution by the subjects. Problems 3 and
4 were given to the entire class of 120 students as a short writing assignment, and the
remaining six problems were offered as extra-credit writing assignments to the entire
class with 25-35 students responding to each one. Follow-up interviews were conducted
with an additional 11 students.

1. Explain the meaning of 

† 

lim
x Æ1

x 3 -1
x -1

= 3.

2. Let f(x) =x2 + 1. Explain the meaning of 

† 

lim
h Æ0

f (3 + h) - f (3)
h
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3. Explain why 

† 

0.9
—

=1

4. Explain why the derivative 

† 

¢ f (x) = lim
h Æo

f (x + h) - f (x)
h

 gives the instantaneous

rate of change of f at x.
5. Explain why L’Hospital’s Rule works.
6. Explain how the solid obtained by revolving the graph of y = 1/x around the x-

axis can have finite volume but infinite surface area.
7. Explain why the limit comparison test works.

8. Explain in what sense 

† 

sin x =1-
1
3!

x 3 +
1
5!

x 5 -
1
7!

x 7 + ...

9. Explain how the length of each jagged line can be  while the limit has length 1.

10. Explain what it means for a function of two variables to be continuous.
Multiple rounds of open and axial coding (Strauss & Corbin, 1990) were used to identify
emergent metaphorical themes in the language used by the students while confronting the
problematic issues presented in these problems. Refined metaphorical categories were
then analyzed for the following properties of instrumental use: support of implicative
reasoning, commitment to the context of the metaphor, change in understanding of the
problem, and change in meaning of the context.

RESULTS
Eight major metaphorical contexts emerged from the data. Five contexts, involving
collapse, approximation, closeness, infinity as a number, and physical limitation,
possessed all four instrumental properties listed above, and were thus labeled “strong”
metaphors. The other three contexts, involving motion, zooming, and arbitrary smallness,
exhibited none of these instrumental properties and were thus labeled “weak” metaphors.
A discussion of all eight contexts is beyond the scope of this paper (see Oehrtman, 2002
for details), so the following two sections present an example of one strong metaphor,
collapse, and one weak metaphor, motion.
An Example of a Strong Metaphor for Limits: Collapsing Dimensions
The collapse metaphor, while mathematically incorrect, did afford many students the
ability to reason powerfully about the mathematics. In this context, students characterized
a limiting situation by imagining a physical referent for the changing dependent quantity
collapsing along one of its dimensions, yielding an object one or more dimensions
smaller. A version of this metaphor, anecdotally familiar to most calculus teachers, is a
fallacious justification of the fundamental theorem calculus. In this incorrect argument,
students focus on the referent for the numerator of the difference quotient imagining, for
example, a “final thin rectangle” of area underneath the curve. Ignoring the denominator,
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they then argue that the limit as the width “becomes” zero causes that slice to “become”
the one-dimensional height of the graph.
The collapse metaphor was observed in two main versions involving the definition of the
derivative and volumes of unbounded solids of revolution. In both the interviews and
written assignments about the definition of the derivative, approximately one third of the
responses involved significant use of a collapse metaphor (3 of 9 students for Problem #2
and 36 of 98 students for problem #4). While describing the volume of a solid of
revolution, nearly one sixth of the students used a collapse metaphor (5 of 31 students).
In the case of the definition of the derivative, students would describe a dynamic secant
line through two points with the base and height of a right triangle as in a standard slope
illustration. Moving these points closer together yields secant lines closer to the tangent,
and the collapsed object is achieved when the two points are moved to the same location.
The result is the tangent line at that point (see Figure 1). Some students characterized this
as taking the slope at a single point while others reported thinking of the slope between
two points at the same location.

Figure 1: A secant line collapsing to a tangent. (a) Before collapse: a secant line between
two points. (b) After collapse: a tangent line through “two points” at a single location.

Consider the following interview excerpt in which Amy wrestles with the role of 
0hÆ

in the derivative definition and comes to the conclusion the two points become one:
As you take the limit, the value h is going to be getting continually smaller until it reaches
zero at which point you'll be finding - the slope - of the line between [3,10] and [3,10].…What
you're doing is taking the limit of the slope - of what is - actually it's the slo-, it's not the slope
of the tangent line, it's just what it ends up being, but you're taking the limit, you're taking the
slope of two points. It only - and the limit is involved to allow you to eventually phase out the
other point - and it just becomes to be, it would be just become the slope of the original po-, of
the line at the original point.… It involves taking x2 and - and making it gradually closer to x1 -
until x2 is equal to x1. Which - um - which you would also - you know y2would be equal to y1.
And so - basically what you're doing is you're taking the slope of two points that are infinitely
close together - so that they become the same point.

During the interviews, students were also asked to give an interpretation of the definition
of the derivative for the position of a car as a function of time. The students all struggled
with this new context, but while not ostensibly referring to their previous work, several
who had already used the collapse metaphor gave a similar account for the new problem,
imagining instantaneous speed to be an average taken over a time interval of no duration.

(b)(a)

x0 + h x0
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Point of collapse

Figure 2: A collapsing solid of revolution.

A different version of the collapse metaphor emerged while students attempted to explain
how the volume of a solid of revolution could be finite (Problem #6). Here the dynamic
object is a cross-sectional disk produced from revolving a point on the curve and varying
in the dimension of its radius (Figure 2). The radius is imagined to decrease to zero at
some definite point (possibly but not necessarily infinity) so that the two dimensions of
the disk collapse to a point. Simultaneously imagining all of the collapsed “disks” beyond
this point, one imagines the three
dimensional solid “pinching off” to a one-
dimensional line with no volume. Consider
Karrie’s explanation for how the volume of
a solid of revolution collapses in this
manner:

The finite volume is not really finite in the same way that familiar containers such as bowls
and ice cream cones are finite. The volume is the result of a line which stretches off into
infinity into the x direction. Thus, we cannot actually imagine it pinching off and ending like
an ice cream cone does. Rather, the radius of the disks in the volume gets so small as the x
values get extremely large that at infinity the radius becomes zero in the same way that
.9999‡ is actually exactly the same as 1. This progressively smaller disks actually add up to a
finite amount. I imagine this "pinching off" as the two-dimensional volume (looking only at
the disks, and taking two dimensions at a time) wrapping more and more closely around the
one-dimensional line that is the x-axis, and then, at infinity, losing that radius entirely to zero
and becoming one-dimensional, like the line. This is where volume ends, but surface area
continues to exist in that single dimension

For Karrie, the collapse occurs “at infinity” but the object continues to exist beyond this
where “volume ends, but surface area continues to exist in that single dimension.” This
caused some concern for Karrie, and her subsequent explanation was full of hedges to
soften her commitment to a complete idea of collapse.
Even though the collapse metaphor is mathematically incorrect, students like Karrie were
able to use it to see valid connections between different types of limits (e.g., 

† 

0.9
—

=1 and a
solid of revolution), between different contexts involving the same limits (e.g., the
definition of the derivative and instantaneous velocity), and between different
representations of limits (e.g,. the “collapsed” tangent discussed above and slope via
numerical approximations “collapsing” to an exact value). Making such connections
enabled these students to organize their thoughts for further inquiry and to make
substantial progress conceptualizing the meaning of limits in difficult contexts.
An Example of a Weak Metaphor for Limits: Motion
Several researchers have found that a dynamic conceptualization of functions and
variables in crucial to students’ understanding of key concepts in calculus such as limits
(Monk, 1987, 1992; Tall, 1992; Thompson, 1994b). Unexpectedly, strong motion
metaphors were nonexistent in the students’ responses in this study. While students
frequently used words such as “approaching” or “tends to,” these utterances were not
accompanied by any description of something actually moving. When asked specifically
about their use of the word “approaches,” students almost always denied thinking of
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motion and gave an alternate explanation. Motion for these students was something more
“literal” as suggested here by Karen:

I guess with motion I think of - with motion I'm thinking force and work. I'm thinking of
actual, like, locomotion. I don't necessarily think that that's what's happening when you’re
talking about a limit or talking about a number. I don't know that that's - I guess for me motion
is a more literal term, like cars moving along the ground or I'm walking. That's more what I'm
thinking than on the number line.

Only for Problem #10 about the continuity of functions of two variables were at least
10% of the students observed to discuss actual motion. In response to this question, 6 out
of 25 students explicitly described something moving. Another 11 of the 25 respondents
used motion language, but without applying it to an actual object. In the cases that
something was imagined to be moving, that motion tended to be simply superimposed on
another conceptual image that actually carried the structure and logic of their thinking.
For example, all 6 of the motion references in responses to Problem #10 were to an object
(an ant, a mouse, a moving truck, a baseball, the tip of a pencil, and a generic “you”)
moving along the graph of the function. For both single- and two-variable cases, these
students described the function as continuous if the object could move freely along the
graph without having to traverse a jump or hole. In the following excerpt, a student
describes continuity in terms of moving on the graph of a function of two variables.

A good example is the surface of a big wooden board. What does it mean for this to be
continuous? Imagine a tiny mouse is on the board. If the board was continuous, the cute little
mouse could venture all over the board without falling to its death. If the board wasn't
continuous, maybe [it] contains a hole in the center.

Thus, the concepts about discontinuity for these students were presented as topological
features of the surface (holes, cliffs, breaks, etc.). The addition of motion may add visual
effect or drama, but not conceptual structure or functionality.
Whenever students used motion language, such as “approaches,” during the interviews,
they were asked how they interpreted those terms. Of the 20 students interviewed, only
eight ever agreed that they thought of motion when using a variation of the word
“approaches.” Five of these students described the motion occurring on the graph of the
function, one described motion along the x-axis, and two gave explanations in which it
was impossible to tell what object was imagined to move. None of these students
mentioned explicit motion other than during these exchanges initiated by the interviewer.
Of the 12 students who denied imagining any type of motion, six explained that they
thought of “approaches” as indicating closeness, five described picking points
sequentially, and one student thought it meant that changing the value of input caused the
output to change. Below are brief descriptions and examples of the responses from each
of these categories.
Students’ descriptions of motion on the graph are exemplified by the previous excerpt
involving a mouse running on the surface of a graph in which the reasoning is actually
supported by static images such as breaks or holes. The single description of motion on
the x-axis was not accompanied by corresponding motion on the y-axis. Instead she
imagined moving to the point in question then “looking up” at the function value (or “the
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hole” where the function should be.) Interestingly, she reported thinking this because the
horizontal arrow in the limit notation indicated horizontal motion. Only one student
explained that “approaching” meant that changing the input of a function caused a change
in the output. In discussing the definition of the derivative, she described two points that
“both approach the same limiting position” but denied that these points actually moved.
Half of the students (6 out of 12) who claimed to not think about motion when using
words like “approaches” described a static closeness. For example, one used a metaphor
of two train tracks meeting in the same place, with lengthy descriptions of “meeting up”
in terms of being located in the same region in space. Karen, quoted earlier in this section
drawing a distinction between “literal motion” and “approaching,” described the latter as
meaning “close” in a very static sense:

I don't think that I necessarily picture motion, but picture that idea that you may have a value
that your points are really close to that - so close that they - like in the first problem that
they're almost that point but they're not quite that point, so I guess the way I think of
approaches is that it's not necessarily moving from 3 to 2_ to 2. You know, it's not moving,
but it's the idea behind that it may not be - it may not be 2, but it's really close to 2

Finally, five students specifically explicated the term “approaches” as a process of
sequentially selecting points closer to the point at which the limit was being evaluated.
Here, Darlene describes this as picking numbers.

Interviewer: OK. The word “approaches” has a lot of - it sounds kind of like something is
moving. Do you think of motion at all?

Darlene: No.

Interviewer: No?

Darlene: That’s just the way it’s always been explained to me.

Interviewer: OK. So, people have used that word before?

Darlene: Yeah. The book uses that word, too. [laughs] … I don’t really think about it
that way. I just, you know, pick numbers. [points at several distinct points on
the x-axis successively closer to 1]…I'm not saying like a car approaches
point a. I don't think of it as like that. I think of it as like, OK, I'm gonna take
this value [points at the x-axis near 1]. The next time I'm going to take this
value [points at a spot closer to 1], so it's approaching - approaching in
intervals basically. I don't - yeah. I'm not thinking - that's what I'm thinking
of. I'm not thinking of it like moving motion, like that. Like I take this interval
- like I take a point, then I take this point, then I take this point, then it's
approaching - yeah.

CONCLUSIONS
Students in this study did not reason about limit concepts using motion metaphors. This is
particularly surprising given the predominance of motion language used when talking
about limits and abundant proclamations that intuitive, dynamic views of functions
should help students understand limits. When these students did use motion language,
their actual reasoning typically relied on a static graphical setting or, at most, the
sequential selection of points. When they were asked to use limit concepts to think about
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something new or approach a difficult problem, motion language tended to remain in the
background and did not enter their descriptions as referring to anything actually moving.
Instead, other metaphors, such as collapsing dimensions, surfaced. This research found
students using such metaphors as organizers of ideas and touchstones for reasoning.
These metaphors became tools with which students were able to probe difficult problems,
ask interesting questions, and develop further connections. They supported dynamic
mental imagery that students were able to manipulate, extracting conclusions about the
relevant mathematics. Although such reasoning was often technically incorrect, it
remained a productive tool for the students’ emerging understanding.
Such results suggest that research cannot fully uncover the nature of students’ metaphors
by examining only their surface language and responses to direct questions about their
conceptualizations of the topic. Not only does this methodology miss the different
structures that might appear in such problem solving contexts, but it also lacks the
important characterizations of how conceptual tools are actually applied, of the questions
the tools are used to ask and the resulting answers, and of the changes the tools undergo
in the process. Students’ reported structural organization of mathematical concepts does
not account for their actual use of those ideas; research must look at richer data on their
functional application of ideas in addition to their structure and logic.
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