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COLLECTIVE LEARNING STRUCTURES: COMPLEXITY
SCIENCE METAPHORS FOR TEACHING

Immaculate Namukasa and Elaine Simmt
University of Alberta

The purpose of this paper is to discuss the activities of collective learning structures.
Drawing from ecological-complexity theory it elaborates on a theoretical framework for
observing and acting upon collective learning. To interpret the relation between
individual action, social interaction and the collective cognitive domain we adopt the
thermodynamic notion of energy-rich matter and the enactivist notion of inter-objectivity.
We study the structure, the behavior and the ecology of the collective cognitive domain
not only as a catalyst for individual learning, but as a learning body in itself, that
emerges from the actions and interactions of individual learning agents.

OBJECTIVES
Through our research we seek to understand the character of collective learning structures
and to develop theoretical frameworks for observing and acting upon the learning
systems in which students and teachers, as individuals, are nested. To study the relation
between the individual and the social learning factors, we draw from ecological-
complexity theory. Specifically, we use von Foerster’s (1981) notion of energy-rich
matter and Maturana’s (2000) notion of inter-objectivity to interpret the collective
learning that emerged in the context of a grade 7 classroom. We then read those
interpretations against our theoretical framework in order to further develop it.
Many mathematics education researchers have recently turned their attention to the social
aspects of learning (see Educational Studies in Mathematics, 2002, a special issue on
discursive approaches). Even though most social cultural theorists engage in the
systematic study of social-cultural processes (e.g. power relations, classroom practices
and norms), a majority of them, akin to individual constructivists, unquestionably
privilege the individual student (singular) as the only learning agent (Burton, 1999).
Particular emphasis is placed on processes of interaction; less is said about the activities
of the collective structures that emerge from and co-emerge with the interactions.
Some researchers such as Burton (1999), Cobb et al. (1997), Kieren and Simmt (2002),
and Sfard (2001) have begun to reconceptualize the notion of “learning agents” to include
the collective learning structures. To Sfard (2001) mathematical ability is not only an
individual property but can be regarded as a property of the joint actions, “one that does
not have an existence beyond these individual interactions” (p.49). Sfard developed
analytical tools to explore joint activities of partnered students solving problems. Cobb et
al. (1997) developed a construct, collective reflection to distinguish collective
mathematics development. Cobb et al. recognize that the relation between the knowing
acts of the individuals and those of the class as a whole is not linear, but rather one of
recursive elaboration in which individual and collectives of learners are brought forth in
immediate action (Kieren & Simmt, 2002). Kieren and Simmt explore collective
understanding as a dynamical process arising from the “interactions of interactions” that
is  “related to the whole collective and its embodied setting rather than referenced to
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individual knowing per se” (p. 866). They call for further research on how collective
learning structures relate to individual acts and social interaction.

THEORETICAL FRAMEWORK
Ecological-complexity draws metaphors from complexity science. In the complexity
view such phenomena as thought are construed not as solely individual-psychological
events, but rather as part of a more inclusive phenomenon, namely, cognition (von
Foerster, 1981). Cognition is described as an emergent property of a level of organization
above that of the internal dynamics of a system (Maturana, 2000). In humans, cognition
is a property arising from the interplay of brain, body and environment. In a manner
compatible to that of distributed cognition theorists who suggest that intelligence is
distributed among the social and material dimensions (See Journal of Interchange on
Learning Research, a special issue on distributed cognition, 2002), complexity science
allows us to study both the cognitive domain of collectives and of individuals.
The ecological-complexity view encompasses the neo-Vygotskian view that emphasizes
the role of social activity in learning. However, individual learning is recognized as
nested in the activities of the class (as a social system that, in turn, is nested in broader
systems such as the cultures of a school). At each level of emergent organization new
activities appear (See Davis & Simmt, 2002). Hence, the cognitive domain of the organs,
of the individual learner, of collectives of students, and of the different cultures need not
be subjected to the same possibilities and rules (Davis & Sumara, in press).
Rather than evacuating individual students’ experiential and sensory-motor accounts as
some social-cultural theorists such as Lerman (2000) suggest, complexity theory explains
the behavior of collectivities in a classroom in a different domain. As individual students
act and interact, collective structures emerge. The behavior of the collective is a historical
consequence of individual and inter-individual actions and that, in a recursive manner,
the behavior of the collective occasions individual students’ sense making (Kieren &
Simmt, 2002). The emphasis on emergent structures offers insights into studying the
dynamics that afford learning systems (individual and collective) coherence without
collapsing them into one. The meaning of objects, artifacts and concepts are not pre-
given (in the culture or, even, in situated practice) but they arise in interactions and
actions  (Maturana, 2000). The objects that co-emerge with the learners acting and
interacting provide the energy-rich matter for collective as well as individual learning.
Von Foerster (1981) suggests that it is the thermodynamic concept of energy availability
and transformation that may metaphorically explain links between organizational levels:
the social to the individual level, the empirical to the abstract level, and so on.

MODES OF INQUIRY
Our research is classroom-based; and though some might suggest that it falls under the
paradigm of action research, we do not call it such. However, it is similar to action
research, for it is grounded in practice and our question is pragmatic. We ask: What can
be done to enlarge the sphere of the possible as we engage students in mathematical
activity? Our research, however, is also about theory building. We are interested in
developing ways of making our observations about learning coherent. To pursue our
practice-based and theoretical goals we find ourselves creating explanations based on our
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observations of the “learning bodies” that emerged in a mathematics classroom. In the
study Simmt taught grade 7 mathematics for one year. In a manner consistent with the
complexity theory (particularly enactivism) that frames our research, we understood the
students as complex systems nested within the class collective—also a complex system.
Individual bodies (whether humans or social systems) were observed to learn as a result
of their internal dynamics, and coupling with others and with the environment.
Burton (1999) maintained that over privileging the individual, as the only knowing agent,
is the basis for individualized syllabi. In today’s complex and changing world, teams and
networking are prevalent conditions of learning and working. Of particular relevance our
analyses are the structure, the behavior and the ecology of collective learning structures.
Studying collectives of many agents raises a possibility of construing collectives of
students as complex bodies possibly with emergent properties such as mind.

AN INTERPRETIVE POSSIBILITY
We draw illustrative cases from two consecutive lessons on transformational geometry,
the first one in which students began by exploring objects with three lines of symmetry.
Part 1
1. “Can you tell me the name of an object

that would have 3 lines of symmetry?
Some objects” A number of students
raised their hands immediately but
Edwin in a quiet voice blurted out.

2. “Triangle.”
3. Unaware that Edwin had made a

response the teacher continued,
“Imagine in your heads an object that
has 3 lines of symmetry. Agnes.”

4. “Triangle.”
5. “What kind of triangle?” the teacher

prompted.
6. “Equilateral.”
7. “Yeah. Do all triangles have 3 lines of

symmetry?” the teacher asked.
8. In chorus the students responded. “No.”
9. After a number of contributions, there

was soon some agreement that an
equilateral triangle was the only one that
had three lines of symmetry. “Okay,
how many lines of symmetry does a
square have? Joseph.”

10. “Ummm, eight.”
11. “Not a cube but a square,” the teacher

responded as she drew a square on the
overhead. A number of students began
to call out,

12.  “Four.”
13. But Joseph was not sure, “Four?”

14. “Four. Ah-ha, that is what people are
saying,” the teacher nodded.

15. But another student agreed with
Joseph’s first response. “No. Eight,”
Stella added loudly.

16. “Let us see …” The teacher began
drawing in a vertical bisector. “There is
a line here …”

17. “Horizontally and two diagonally,”
Joseph said guiding the teacher.

18. In a soft voice another student said,
“Eight.”

19. “Eight?” the teacher acted confused.
20. “Four,” another student asserted. “Can

you think of an object that would have
eight?” the teacher asked.

21. Again in a chorus most of the students
shouted, “Octagon.”

22. “This is an important question,” the
teacher began. “Why did I pose it?”

23. John’s hand shot up.
24. The teacher called on him to offer an

answer. “John.”
25. “I think it has more than eight.”
26. “Okay. Save it, save it for a second.

Somebody said octagon. Let’s take a
look.” The teacher drew an octagon.

27. Esther made an observation seemingly
to herself but out loud. “An octagon
doesn’t have …”
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28. Tim also speaking to himself in an
excited tone, “A circle, oh!”

29. “Has more than 8,” Edwin said,
possibly responding to Tim.

30. “Y-e-a-h,” Tim continued.
31. Janelle sitting close to Tim and Edwin

said, “A circle has 180.”
32. “Really?” Tim asked Janelle.
33. In the meantime, the teacher was still

drawing lines in the octagon. It was
obvious that she was unaware of Tim,
Janelle and Edwin’s conversation.

34. As the teacher was drawing in the
diagonals she and the students counted,
“two three four …”

35. A few students audibly interjected her
counting with a discussion of whether
the octagon has 8 or 16 lines of
symmetry: “That is 16.” “Eight.”

36. The teacher concluded her drawing by
counting together with the students “So
if we have 1, 2, 3, 4; 1, 2, 3, 4. I think
there are 8. Not 16. Where would the 16
be?”

37. James interrupted at the moment the
teacher was waiting to hear from the
students who thought it had 16.

Part 2
38. “I know one that has infi—nite!”
39. “You know one that has an infinite?” the

teacher asked. “Don’t say it,” she said
playfully.

40. “There is a shape with lots,” another
student added.

41. By now a number of hands were up.
“You know one that has … lots,” the
teacher pointed at students one by one as
they shot their hands up to show that
they knew.

42. “Me too,” a student uttered almost
inaudibly.

43. “You know one that has what?”

44. “Lots,” he replied.
45. “Me too.”
46. “Infinite,” another student said.
47. “Infinite,” the teacher repeated.

“Infinite,” another student said.
48. “There are 16,” another student said to

another in the midst of the new “game.”
She was likely referring back to the
octagon that was still being projected on
the screen.

49. “I think eventually … It will run
around,” another student commented.

50. Esther and Janelle had a side
conversation, “There is 16….” “Why
did she say [there is 8]?” Esther asked.

51. “Okay, at the count of 3,” the teacher
instructed. “An object with an infinite
number of lines of symmetry. 1, 2, 3.”

52. “Circle,” the students called out.
53. Edwin was a lone voice, “Nothing,” he

said.
54. Although the teacher did not take up his

suggestion. (It is not clear whether she
heard it.) On the video record Janelle,
John and Tim can be observed to
discuss the question, of whether it would
be possible to draw lines of symmetry
for nothing.

55. It was in that conversation that Tim
turned to his colleagues saying, “I was
thinking a sphere with the same
diameter as a circle; a sphere will have
more lines of symmetry than the circle.”

56. At the end of the class the researcher-
observer asked Tim about his
conjecture. He responded, “A sphere
might have 360 times more lines than
the circle.

Figure 2. Individual and collective knowing systems
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Energy-rich materials
In most lessons in the class, the moment-to-moment actions of individuals unfolded into
what can be observed as the behavior of a collective learning structure. It was not the
teacher’s explicit intention, to explore with seventh graders the symmetrical properties of
a circle. But by the time the teacher posed a question about the lines of symmetry a
square has, it appears, the teacher and the students were drifting into naming objects with
4, 8, 16, … lines of symmetry. While the teacher was drawing a square to assist students
in determining whether it had 4 or 8 lines (lines 16-27 [16-26]), in the collective domain
the project at hand arose to find an object with more lines. As the class was exploring
objects with 8 lines of symmetry, Tim and Janelle began examining the circle [28-32].
James interrupted the discussion [38] saying that he knew an object with infinite lines. In
the collective a project had emerged to find an object with most lines of symmetry.
The groups’ interactions and conversation (including the teacher’s drawings) appeared to
have potentially availed energy rich materials to individual students. For instance, the
numbers 180 and 360 that Janelle [31] and Tim [56] used in their conjectures, even at
first glance, were not arbitrary. Why was it convenient for the students to use 180 and
360 but not, for instance, 32 and 64? To Bussi (2000), who explored the emergence of
enriched use of mathematical tools, this is not arbitrary. Upon reflection we certainly
could see where the numbers might have come from. However in the moment those
interactions were simply part of the immediate collective intelligence of the class.
In the lesson that followed the significance of a protractor became apparent. When the
teacher returned to the idea of an object with most lines of symmetry, other students
conjectured, “a circle has 360 lines of symmetry; a circle has 1800 lines of symmetry”.
One student referred to taking a semi circle to deduce the properties of a circle. As the
students empirically tested Tim’s conjectures the teacher picked up a protractor. The
protractor was a significant object that even in its physical absence (in the earlier lesson)
had been a readily available visualization—the numbers 180 and 360. Yet the fact that it
was a significant object did not only require the teacher to initiate the students to its
cultural use. More was involved; the students together with the teacher, as they
recursively coordinated their actions (when measuring angles), brought forth a protractor
as energy-rich materials that could coordinate further actions even in transformational
geometry. It is probable that in another grade 7 class with different experiences such
conceptual blending of a measuring tool with lines of symmetry would not have been
possible. Here we adopt Maturana’s concept of inter-objectivity to elaborate on
Vygotsky’s notion of symbolic mediation. Whereas Vygotsky’s notion emphasizes
initiation and internalization, Maturana’s (2000) notion of inter-objectivity focuses on the
bringing forth of the objects in actions and interactions; objects emerge “as co-
ordinations of doings that coordinate doings” (p. 462). Our retrospective analysis
revealed how the protractor was frequently used and became a valued tool in the previous
weeks. For example, it was used in measurement and in the introduction of the
transformational geometry unit. Throughout these lessons the teacher showed special
interest in the need for every student to have a protractor. As students together with the
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teacher consensually coordinated actions, the protractor arose as an object that was
energy-rich matter not only for individuals but also in the collective domain.

IMPORTANCE OF THE STUDY
Educators are likely to benefit from conceptual tools for observing the nested learning
structures. Our analysis is in its early stages. We, nonetheless, speculate that the shifting
of teacher’s attention to include focusing on the class as a collective learning body has
the potential to generate insights as it transcends the duality between the social and
individual, the emergent and formal, and the mental and physical aspects of learning.
The complexity view of cognition makes nested learning structures visible. This
illuminates the relation between the individual acts, social interaction and collective
learning. For instance Tim’s brilliant conjectures in this (and other) lessons can be
explained as more than an individual attribute. Given the emergent classroom project and
the availability of common experiences with the protractor, he, as a structure-determined
system, was able to select “elements from rich sources on offer” in the collective and
transformed them for his own use (Kieren & Simmt, 2002, p. 871). To a larger extent
Tim’s conjectures about the sphere were occasioned by the collective project. He was,
perhaps, seeking to refute an earlier stated conjecture that the circle had most lines of
symmetry. His conjecture offered to a group of his classmates made sense to them and to
him because it arose in a community in immediate action, in the collective.
The role of the teacher is key to the nature of the class’ collective learning structure. Due
to limitations in space, it might suffice to observe the teacher is part of the collective who
shares in the control of the collective: indeed she is nowhere to be seen in the immediate
interactions around the lines of symmetry of “nothing” [53] or around the comparison of
the circle to the sphere [56]. The collective is able to persist in spite the lack of immediate
participation by some of its agents. On the other hand it is clear that the teacher’s
questions and comments were part of the collective project. When James interrupted,  “I
know one that has infinite, the teacher playfully said,  “… don’t say it” [39]. This
culminated into other students reflecting and offering what they knew. James’ comment
together with the teacher’s response appears to capture a pattern in the joint interaction, a
dynamic of mutual learning among members of the community.
Some students just like Esther, perhaps attending to the segments as the amount of
symmetry, grappled from far behind the great leaps that the emergent project afforded to
the majority of students. Even students, whose voices are not present in the collective,
still could never be considered not to support or be supported by the reflections of the
collective body. For instance, Joseph’s (mis)-understanding that a square had 8 lines of
symmetry was central to occasioning the joint project toward examining the symmetrical
properties of octagonal shapes [13-36]. It is not our intention to present the teaching in
the lesson above as a model. Rather, we emphasize that, on a moment-to-moment basis,
the actions and interactions of the students and the teacher in any mathematics class are
central to the mathematical behavior of the collective and of individual students. Even
conversations of sub-collectives such as Janelle, John and Tim [54] were in feedback
loops with the collective and individual students’ cognitive domain.
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CONSEQUENCES FOR THEORY
We have identified three characteristics of knowing observed in the nested systems:
reflections, insights and conceptual blends which co-emerge within the collective space;
individual knowing is nested in collective knowing; and the collective reflections,
conceptual blends, symbolic objects and the individual knowing recursively become the
energy-rich materials to be taken up at either the individual or the collective level.
Collective structures emerge
The class that Simmt taught was a collection of unique students. Despite the diversity, it
was apparent that, this group of seventh graders became a coherent collective, with
patterns of behaviors. In addition to the learning behaviors that the teacher explicitly
encouraged (see Davis & Simmt, 2002), students talked and played lots of the time, with
mathematics at the core of their talk and play; they spontaneously broke out into small
groups to offer conjectures to each other; and the labor of the mathematical tasks was
distributed among the students (not in some organized way but in a locally emergent
way) as they took advantage of each others’ expertise and interests.
Burton (1999) noted the difficulty of establishing communities of learning in secondary
classes that, unlike elementary classes, are taught by several teachers. This was an
obstacle to encouraging a community of active mathematics learners. (Simmt had the
opportunity of observing the same class with another subject teacher. She observed that
the same community brought forth a totally different collectivity with that other teacher,
one in which order, silence and independent seatwork was valued). Davis and Sumara (in
press) raise the question of studying the differences between collective characters in, for
instance, mathematics and language arts classrooms. Simmt’s experience supports this.
In this mathematics class the collective that emerged was a student community engaging
in mathematics. Moreover, the teacher worked towards avoiding a hierarchical
community in which the teacher or textbook was the sole author of knowledge. The
students recurrently interacted under mutual acceptance and, as such, the class was a
social collective, which maintained a central, although always evolving, character that
was  certainly distinct from the language arts class that Simmt observed. Using
Maturana’s (1988, 2000) work, this collective could be distinguished at three levels:
• The structural level of agents at which recognizably unique individuals with diverse abilities

and motivations contribute to the collective experiences. (At this level we might observe the
internal dynamics, the processes of interaction.)

• The behavioral level—the collective whole that emerges as individual students act and
interact has its own dynamics. It interacts with its medium that includes the teaching, the
materials, the setting and other collectives. The changes that appear as observable as the
collective body structurally changes to compensate for perturbations from its environment,
such as collective understanding and knowledge, are the collective structure’s behaviors
(Kieren & Simmt, 2002; Maturana, 1988).

• The ecological unity level—the collective is nested in a larger unity, say, of the wider school
mathematics community. In ecological contexts, the collective learning structure is defined
by the whole to which it is a part.
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We have discussed the activities of a collective learning structure in order elaborate on
previous research on collective understanding reported at the last PME-NA meeting. To
interpret how activities of the collective cognitive domain relate to individual acts and
social interaction, we have observed that individuals’ initial actions are important to both
the individual and the collective cognitive domain. At anytime any student’s structure is
also an expression of the network of the collectives in which he/she co-exists. The
behaviors of the collective are connected to its emergence from individual interactions,
and they recursively become the conditions of possibility for individual learning. We
have identified energy-rich materials, inter-objectivity and symbolic interactions as one
aspect of the relationship between joint and individual knowing. Our analyses raise a
question: What are the conditions of possibility for more intelligent learning collectives?
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