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SUPPORTING TEACHER CHANGE: A CASE FROM
STATISTICS
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Vanderbilt University

This paper provides an analysis of a teacher development experiment (cf. Simon, 2000)
designed to support teachers’ understandings of statistical data analysis. The experiment
was conducted as part of collaborative efforts between the author and a cohort of middle-
school mathematics teachers during the 2000-2001 academic year. Analysis of the
episodes in this paper document the evolution of the teachers’ understandings as they
participated in activities from an instructional sequence designed to support conceptual
understanding of statistical data analysis. In this process, I highlight the mathematical
issues that emerged as the teachers worked to further their own understandings.

INTRODUCTION
The purpose of this paper is to provide an analysis of the development of one group of
teachers’ understandings of statistical data analysis. The analysis builds from the
literature on students’ understandings by taking prior research in classrooms as a basis for
conjectures about means of supporting teachers’ development. In particular, the analysis
in this paper will focus on a collaborative effort conducted between the author of this
paper and a cohort of middle-school teachers. The collaboration occurred during the
2000-2001 academic year. The teachers participated with the author in monthly work
sessions designed to support their understandings of effective ways to teach statistical
data analysis in the middle grades (ages 12-14). Fundamental to this effort was attention
to the development of the teachers’ content knowledge. The instructional activities
utilized during the course of the collaboration were taken from a classroom teaching
experiment conducted with a group of seventh-grade students during the fall semester of
1997 (for a detailed analysis of the classroom teaching experiment see Cobb, 1999;
McClain & Cobb, 2001). The intent of the instructional sequence is to support middle-
school students' development of sophisticated ways to reason statistically about
univariate data. The overarching goal is that they come to reason about data in terms of
distributions. Inherent in this understanding is a focus on multiplicative ways of
structuring and organizing data.
The intent of the teacher collaboration was then to take the seventh-grade instructional
sequence as a means of support for the learning of the teacher cohort. This support
included tasks from the instructional sequence, computer-based tools for analysis that
accompanied the sequence, the teachers’ varied inscriptions and solutions to tasks from
the sequence, and norms for argumentation that were negotiated during the work
sessions.
In the following sections of this paper, I begin by describing the theoretical framework
that guided the analysis. I then provide a description of the method of analysis and the
data corpus. I follow by outlining the instructional sequence that was the basis of the
teacher collaboration. Against this background, I provide an analysis of episodes from the
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work sessions intended to document the teachers’ developing understandings of statistical
data analysis.

THEORETICAL FRAMEWORK
The analysis reported in this paper was guided by the emergent perspective (cf. Cobb &
Yackel, 1996). The emergent perspective involves coordinating constructivist analyses of
individual activities and meanings with an analysis of the communal mathematical
practices in which they occur. This framework was developed out of attempts to
coordinate individual students’ mathematical development with social processes in order
to account for learning in the social context of the classroom. It therefore places the
students’ and teacher’s activity in social context by explicitly coordinating sociological
and psychological perspectives. The psychological perspective is constructivist and treats
mathematical development as a process of self-organization in which the learner
reorganizes his or her activity in an attempt to achieve purposes or goals. The
sociological perspective is interactionist and views communication as a process of mutual
adaptation wherein individuals negotiate mathematical meaning. From this perspective,
learning is characterized as the personal reconstruction of societal means and models
through negotiation in interaction. Together, the two perspectives treat mathematical
learning as both a process of active individual construction and a process of enculturation
into the mathematical practices of wider society. Individual and collective processes are
viewed as reflexively related in that one does not exist without the other. Together, these
two aspects provide a means for accounting for the teachers’ activity in the social context
of the work sessions.

METHOD OF ANALYSIS
The particular lens that guided my analysis of the data was a focus on the normative ways
of solving tasks, or what Cobb and Yackel (1996) have defined as mathematical
practices. These practices focus on the collective mathematical learning of the classroom
community and thus enable one to talk explicitly about collective mathematical learning
(cf. Cobb, Stephan, McClain, & Gravemeijer, 2001). This analytical lens therefore
enabled me to document the collective mathematical development of the teacher cohort
over the course of the year.
In order to conduct an analysis focused on the learning of the community, it is important
to account for the diverse ways in which the teachers participate in communal practices.
For this reason, the participation of the teachers in discussions where their mathematical
activity is the focus then becomes data for analysis. The diversity in reasoning also serves
as a primary means of support of the collective mathematical learning of the teacher
cohort. As a result, “an analysis of classroom mathematical practices characterizes
changes in collective mathematical activity while taking into account the diversity in
individual [teachers]’ reasoning” (Cobb, 1999, p. 10). An analysis focused on the
emergence of classroom mathematical practices is therefore a conceptual tool that reflects
particular goals (Cobb, et al., 2001).

DATA
Data for this study consist of videorecordings of each monthly work session and of the
weeklong summer work sessions. In addition to the videotape there is a set of field notes
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taken by a research assistant, copies of the teachers’ work, copies of their students’ work
on the same tasks, and audiotape of interviews conducted with each teacher. This
comprehensive data corpus allowed for the longitudinal analysis of the emergence of the
mathematical practices by testing and refining conjectures against both the activity of the
cohort and of the individual teachers within the cohort. This was done in a manner
described by Cobb and Whitenack (1996) and is consistent with Glaser and Strauss’
(1967) constant comparative method.

INSTRUCTIONAL SEQUENCE
In developing the instructional sequence for the seventh-grade classroom teaching
experiment, the goal of the research team was to develop a coherent sequence that would
tie together the separate, loosely related topics that typically characterize American
middle-school statistics curricula. The notion that emerged as central from the synthesis
of the literature was that of distribution. In the case of univariate data sets, for example,
this enabled the research team to treat measures of center, spreadout-ness, skewness, and
relative frequency as characteristics of the way the data are distributed. In addition, it
allowed the research team to view various conventional graphs such as histograms and
box-and-whiskers plots as different ways of structuring distributions. The instructional
goal was therefore to support the development of a single, multi-faceted notion, that of
distribution, rather than a collection of topics to be taught as separate components of a
curriculum unit. A distinction that was made during this process which later proved to be
important is that between reasoning additively and reasoning multiplicatively about data
(cf. Harel & Confrey, 1994; Thompson, 1994; Thompson & Saldanha, 2000).
Multiplicative reasoning is inherent in the proficient use of a number of conventional
inscriptions such as histograms and box-and-whiskers plots.
As the research team1 began mapping out the instructional sequence, it was guided by the
premise that the integration of computer tools was critical in supporting the mathematical
goals. The instructional sequence developed in the course of the seventh-grade teaching
experiment in fact involved two computer tools. In the initial phase of the sequence, the
students used the first computer tool to explore sets of data. This tool was explicitly
designed for this instructional phase and provided a means for students to manipulate,
order, partition, and otherwise organize small sets of data in a relatively routine way.
When data were entered into the tool, each individual data value was shown as a bar, the
length of which signified the numerical value of the data point (see Figure 1). A data set
was therefore shown as a set of parallel bars of varying lengths that were aligned with an
axis. The first computer tool also contained a value bar that could be dragged along the
axis to partition data sets or to estimate the mean or to mark the median. In addition, there
was a tool that could be used to determine the number of data points within a fixed range.

                                                  
1 The research team was composed of the author, Paul Cobb, Koeno Gravemeijer, Maggie
McGatha, Jose Cortina, Lynn Hodge and Carla Richards.
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Figure 1. Data displayed in first computer tool.
The second computer tool can be viewed as an immediate successor of the first. As such,
the endpoints of the bars that each signified a single data point in the first computer tool
were, in effect, collapsed down onto the axis so that a data set was now shown as a
collection of dots located on an axis (i.e. an axis plot as shown in Figure 2).

Figure 2. Data displayed in second computer tool.
The tool offered a range of ways to structure data. The options included: (1) making your
own groups, (2) partitioning the data into groups of a fixed size, (3) partitioning the data
into equal interval widths, (4) partitioning the data into two equal groups, and (4)
partitioning the data into four equal groups. The key point to note is that this tool was
designed to fit with students’ ways of reasoning while simultaneously taking important
statistical ideas seriously.
As the research team worked to outline the instructional sequence for the seventh-grade
classroom, it reasoned that students would need to encounter situations in which they had
to develop arguments based on the reasons for which the data were generated. They
would then need to develop ways to analyze and describe the data in order to substantiate
their recommendations. The research team anticipated that this would best be achieved by
developing a sequence of instructional tasks that involved either describing a data set or
analyzing two or more data sets in order to make a decision or a judgment. The students
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typically engaged in these types of tasks in order to make a recommendation to someone
about a practical course of action that should be followed.

RESULTS OF ANALYSIS
The initial activities of the teacher cohort involved the teachers analyzing data on the
braking distances of ten each of two makes of cars, a coupe and a sedan. The teachers
were given printouts of the data inscribed in the first computer tool as shown in Figure 1
and asked to decide which make of car they thought was safer, based on this data. My
decision to use printouts of the data was based on my own experience in working with
students on these tasks. I had noticed that when students were asked to make initial
conjectures based on informal analysis of the printouts, their activity on the computer tool
seemed more focused. They used the features on the tool to substantiate their preliminary
analysis instead of to explore the structures that resulted from the use of the features. I
was also curious to see if the tools we had designed offered the teachers the means of
analyzing data that fit with their initial, informal ways of analyzing the data.
As the teachers began their analyses, they proceeded to find ways to structure the data
that supported their efforts at analysis. In this process, they placed vertical lines in the
data to create cut-points and to capture the range of each set. As an example, Mary Jean
noted that, “A full forty percent of the coupes stopped in less than 60 feet and if you go to
62 [feet] it goes to sixty [percent] and there are only twenty percent of the sedans below
even 62 [feet].” But Gayle disagreed noting that, “Those two that took a long time to stop
are significant.” She continued by stating that, “all the sedans stop in around sixty to
seventy feet and it might even be better (pointing to the two data values that were less
than sixty feet).” Alice followed by arguing that “all of the sedans took over 58 feet to
stop” whereas “forty percent of the coupes were able to stop in less than 58 feet.”
It is important to note that the discussions of the various solutions were based on what the
teachers judged to be important about braking, not about the ways of structuring the data.
For example, creating cut points and reasoning about percentages or proportions of the
data set above or below the cut point was accepted without justification as a way to
structure the data. Questions arose not over the method (e.g. creating cut points), but over
warrants for the claims. As an example, Gayle’s disagreement with Mary Jean’s
argument was not based on the manner in which Mary Jean had structured the data, but
on the conclusion she reached as a result of her particular cut point. This was typical of
the discussions of all arguments that were presented on tasks using the first computer
tool. As a result, what became constituted in the course of public discourse was
partitioning data sets and reasoning about the proportions formed. Arguments then had to
be formulated to justify claims made from such partitions — not to justify the act of
partitioning and reasoning about proportions. This is an important distinction in that it
indicates that the first normative way of reasoning or mathematical practice that became
constituted within the cohort was that of partitioning data sets and reasoning about
resulting proportions.
A shift to the second computer tool began with the introduction of the speed trap task.
The task was based on data collected on the speeds of two sets of sixty cars. The first data
set was collected on a busy highway on a Friday afternoon. Speeds were recorded on the
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first sixty cars to pass the data collection point. The second set of data was collected at
the same location on a subsequent Friday afternoon after a speed trap had been put in
place. The goal of the speed trap (e.g. issuing a large number of speeding tickets by
ticketing anyone who exceeds the speed limit by even 1 mile per hour) was to slow the
traffic on a highway where numerous accidents typically occur. The task was to
determine if the speed trap was effective in slowing traffic (see Figure 2 for the speed
trap data displayed in the second computer tool).
As the teachers worked on their analysis, most of them drew a vertical line across the two
data sets to create a cut point at the speed limit and reasoned about the number of drivers
exceeding the speed limit both before and after the speed trap. They used a range of
strategies to describe the partitions including ratios and percentages. As they worked,
their arguments indicated that they were reasoning about the data as aggregate (cf.
Konold, et al, in preparation). In particular, the perceptual unit in their analysis was the
entire distribution of values. They reasoned about the relative number of cases in various
parts of the distribution (e.g. exceeding the speed limit), and did so in terms of
percentages and/or proportions. For this reason, they were concerned with the relative
density of the data in certain intervals. In particular, they were concerned about the
amount of data clustered within an interval across the data sets (e.g. number of cars
exceeding the speed limit both before and after the speed trap).
As an example, Regis created cut points at 50 miles per hour (mph), 53 mph, and 55 mph.
He then examined the data to look for shifts within those intervals. He argued that before
the speed trap, 25 drivers were traveling in excess of 55 mph. After the speed trap, that
number was reduced to 10. He then argued, “that’s 15 less and since the sample was 60,
15 out of 60 is 25%. So 25% fewer drivers were speeding.” It appeared that in the course
of making this argument, Regis was able to coordinate the differences in the frequencies
(e.g. analogous to the y values) across the x-axis in a multiplicative sense (cf. Thompson,
1994). This type of reasoning was typical of the solutions developed by the teachers and
indicates that the second normative way of reasoning involved a concern for relative
density across data sets where the teachers viewed data as aggregate.
The final collection of tasks in the instructional sequence involved data sets with unequal
numbers of data points. In the first task from this collection, data was presented on two
sets of AIDS patients enrolled in different treatment protocols — a traditional treatment
program with 186 patients and an experimental treatment program with 46 patients. T-
cell counts were reported on all 232 patients (see Figure 3). The task was to determine
which treatment protocol was better at producing high T-cell counts. As the teachers
worked on their analysis, they initially noted that the clump, cluster, or hill of the data
shifted between the two groups. In particular, they characterized the shift by creating cut
points around a T-cell count of 525 and reasoning about the percentage of patients in
each group with T-cell counts above the cut point. They noted that the cluster of T-cell
counts in the traditional treatment program was below the cut point whereas the cluster of
T-cell counts in the experimental was above. In addition, they could use the four-equal-
groups inscription to further tease out the differences in how the data were distributed. As
an example, Diane reasoned that, “seventy-five percent of the patients in the experimental
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treatment group are in the same range as only 25% of the patients in the traditional
treatment.”

Figure 3. AIDS data displayed in the second computer tool.
Thompson (personal communication, October, 2002) notes that the ability to scan the
axis from left to right and read the frequency as the rate at which the total accumulates
over the x-axis is what is entailed in seeing distributions as density functions. This
concern for relative density is a step towards what Thompson views as an endpoint in
reasoning about distributions. This density perspective is consistent with what Khalil and
Konold (2002) found in their analysis of expert data analysts.
Although this analysis does not permit claims about the teachers’ ability to view the data
sets in such a sophisticated manner, the results of their analysis do indicate that they were
coordinating the relative frequencies as they worked to find ways to describe the shifts in
the data. The third normative way of solving tasks that emerged was therefore that of
structuring the data multiplicatively to describe shifts and changes in the distributions.

CONCLUSION
The resulting shifts that emerged in the normative ways of reasoning indicate a
mathematical progression over the course of the year. In particular, the first practice to
emerge was that of partitioning data sets and reasoning about resulting proportions. The
second practice entailed a concern for relative density across data sets where the teachers
viewed data as aggregate. The third and final practice involved the ability to view the
data in two data sets distributed on the x-axis and simultaneously coordinate the relative
density of the distributions when structured multiplicatively. These normative ways of
reasoning or mathematical practices can be thought of as the realized learning route (cf.
Simon, 1995) of the community. As a result, the practices that emerged in the course of
interaction document the learning of the teacher cohort by characterizing changes in
collective mathematical activity while highlighting the diversity in individual teachers’
reasoning.
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