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The focus of this study was to investigate mental computation conceptual frameworks that Heirdsfield (2001 c)

Jormulated to explain the difference between proficient (accurate and flexible) mental computers and accurate
(but not flexible) mental computers. A further aim was to explore the potential for students’ developing efficient
mental strategies.

INTRODUCTION

Mental computation is defined as “‘the process of carrying out arithmetic calculations without the aid of external
devices” (Sowder, 1988, p. 182). Literature at national and international levels argues the importance of including
mental computation in a mathematics curriculum that promotes number sense (e.g., Maclellan, 2001; McIntosh,
1998; Reys, Reys, Nohda, & Emori, 1995). International research (e.g., Blote, Klein, & Beishuizen, 2000;
Buzeika, 1999; Hedrén, 1999; Kamii & Dominick, 1998) has focussed on children formulating their own
mental computation strategies in the belief that when children are encouraged to do so, they learn how numbers
work, gain a richer experience in dealing with numbers, develop number sense, and develop confidence in their
ability to make sense of number operations. A common thread to this research has been valuing students’
strategies, promoting strategic flexibility, and encouraging student discussion. One difference between the
European (in particular, Dutch and German work) and American and New Zealand work is that models (e.g.,
Empty Number Line) are used as representations for mental computation in European classrooms. These do not
feature as much in the other classrooms (although Thomton, Jones, & Neal (1995) advocated the use of the
hundreds chart for supporting mental computation). While these studies are supported by a constructivist
approach, there is some support for a behaviorist approach to teaching mental computation (e.g., Morgan, 2000).
Morgan suggested teaching mental computation strategies in a sequential fashion. However, the sequence does
not take into consideration number combinations, merely strategies. That is, a sequence of strategies is introduced
over the seven years of primary school, regardless of the numbers involved. Some of this sequencing is based on
the sequential teaching of written algorithms; however, this sequence is not theoretically based. Although,
Morgan (2000) does conclude, ““The emphasis needs to remain on students exploring, discussing, and justifying
their mental strategies, as well as their solutions.” Currently, in Queensland (Australia), whether children should
be taught computational strategies or whether they should develop their own is being addressed while the new
curriculum is being developed.

In Australia, the inclusion of mental computation in the curriculum is a recent phenomenon. In the Queensland
context, there has been some research into mental computation, for example, a five-year longitudinal study
identified children’s mental computation strategies, and tracked changes in strategy use (e.g, Cooper,
Heirdsfield, & Irons, 1996; Heirdsfield, Cooper, Mulligan, & Irons, 1999; Heirdsfield, 1999). Further research
(Heirdsfield, 1996) identified some cognitive factors that were associated with proficient mental computation
(flexible use of efficient strategies and accuracy) in Year 4 children (approximately 9 years old): proficient
number facts (speedy recall and efficient number fact strategies) and proficient estimation. This study raised
further questions about other factors that appeared to be associated with mental computation. Thus, the focus of a
further study was the identification of cognitive, metacognitive, and affective factors that might be associated
with mental computation (Heirdsfield, 1998, 2001a, 2001b, 2001c; Heirdsfield & Cooper, 2002). For the
purposes of identifying flexibility, mental computation strategies were classified using a scheme (based on
Beishuizen, 1993; Cooper, Heirdsfield, & Irons, 1996; Reys, Reys, Nohda, & Emori, 1995) that divided
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strategies into the following categories: (1) separation (2) aggregation (3) wholistic and (4) mental image of pen
and paper algorithm (see Table 1).

Strategy Example
Separation right 1o left (u-1010) | 28+35: 8+5=13, 20+30=50, 63
52-24:12-4=8,40-20=20,28 (subtractive); 4+8=12,20+20=40, 28 (additive)
lef 10 right (1010) | 28+35: 204+30=50, 8+5=13, 63
52-24:40-20=20, 12-4=8, 28 (subtractive); 20+20=40,4+8=12, 28 (additive)
curmulative sum or | 28+35: 204+30=50, S0+8=58, 58+5=63
diference 52-24:50-20=30,30+2=32,32-4=28
Aggregation right to left (u-NI0) | 28+35: 28+5=33, 33+30=63
52-24: 52-4=A48,48-20=28 (subtractive); 24+8=32, 32+20=52,28 (additive)
lefto right (N10) 28+35: 28+30=58, 58+5=63
52-24: 52-20=32, 32-4=28 (subtractive); 24+20=44, 44+8=52, 28 (additive)
Wholistic compensation 28+35: 304+35=65, 65-2=63
52-24: 52-30=22, 22+6=28(subtractive); 24+26=50, S0+2=52, 26+2=28 (additive)
28+35: 30+33=63
levelling 52-24: 58-30=28 (subtractive); 22+28=50, 28 (additive)
Mental image of pen andpaper algorithm | Student reports using the method taught in class, placing numbers under each other, as on
paper, and carying out the operation, rightto left.

Table 1. Mental Strategies for Addition and Subtraction

Conceptual frameworks were developed to explain the differences in particular types of mental computers
(Heirdsfield, 2001a, c). The findings of this study showed that Year 3 students who were proficient in mental
computation (accurate and flexible) exhibited strategic flexibility, dependant on the number combinations of the
problems. It was posited that an integrated understanding of mental strategies, number facts, numeration, and
effect of operation on number supported strategic flexibility (and accuracy). Moreover, this cohort of students
also exhibited some metacognitive strategies, possessed reasonable short-term memory and executive
functioning, and held strong beliefs about their self developed strategies. Blote, Klein, and Beishuizen (2000) also
considered associated cognitive, metacognitive, and affective factors in their research into mental computation
and conceptual understanding. Further, Maclellan (2001) posited that mental computation was situated in a
richly connected web.

Where students exhibited less knowledge and fewer connections between knowledge, Heirdsfield (2001c)
found that students compensated in different ways, depending on their beliefs and what knowledge they
possessed. For instance, students who had sufficient knowledge to support the ability to compute mentally
(although not necessarily efficiently) generally held strong beliefs about teacher taught strategies, and used these
strategies to successfully obtain answers to mental computations. These students were identified as being
inflexible, that is, they employed a single strategy, mental image of pen and paper algorithm.

It has been argued elsewhere (Brown & Palincsar, 1989) that an aspect of a study of “knowing’ should address
Vygotsky’s zone of proximal development (ZPD) (Vygotsky, 1978). Vygotsky claimed that a child’s level of
development cannot be understood unless both the child’s actual developmental level (determined by
independent activity) and potential developmental level (determined by guidance provided to the child) were
established. The zone of proximal development is the “‘distance between the actual developmental level . .. and
the level of potential development” (Vygotsky, 1978, p. 86). Children at the same actual level of development
may have different zones of proximal development. Van der Heijden (1994) used a Vygotskian approach to
investigate mental addition and subtraction of primary school children. Vygotsky’s ZPD was considered an
important aspect of qualitative assessment of children’s mental addition and subtraction proficiency, defined by
speed, accuracy and efficient strategy use. Pre-determined scaffolding questions were presented to children who
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did not employ what was considered efficient mental procedures. Results indicated that students possessed a
considerable potential for efficient strategies, they generally agreed that the efficient strategy was easier.

In Heirdsfield’s study (2001c¢), it was found that most students possessed the potential to use efficient strategies,
as evidenced by their ability to access altemative strategies (although not always through to successful
completion). This concurred with the findings of Van der Heijden (19%), but the finding of students in
Heirdsfield’s study preferring their first strategy (not always the more efficient strategy they accessed) was in
contrast to that of Van der Heijden.

Another factor in mental computation research and teaching is how to assess mental computation. Some
researchers and teachers accept that mental computation is important in the curriculum, but fail to see it in the
bigger sense — as a means to develop number sense by actively engaging in the construction of efficient and
economical strategies, which make use of number understanding. If the goal of involving students in mental
computation is to improve their reasoning and thinking, then traditional tests cannot assess students’
understanding, merely whether they can calculate in their heads. It has been shown that there are students who
possess little number sense, yet they are “‘successful” (in terms of arriving at the comrect answer) on mental
computation tests (e.g., Heirdsfield, 1996, 2001b, c; Heirdsfield & Cooper, 2002; McIntosh & Dole, 2000).
These tests often take the form of directing students to solve problems mentally and write down the answer or
say the answer without explaining their strategies. Unfortunately, some teachers in Australia have mistaken the
term, mental computation for an out dated term used in the sixties (and before), mental arithmetic (Morgan,
1999). Lessons in mental arithmetic were “‘characterised by a series of short, low-level unrelated questions to
which answers are quickly calculated, recorded, and marked.” (Morgan 2000). Thus, the emphasis in mental
arithmetic was testing, rather than teaching/leaming.

The focus of the study reported here was to further investigate the conceptual frameworks that Heirdsfield
(2001c¢) developed for accurate mental computation, both flexible and inflexible (cognitive, metacognitive and
affective factors) in Years 3 and 4 students (8, 9, and 10 year olds), and to further explore the potential of students’
developing more efficient mental strategies.

METHOD

The research project was essentially qualitative in nature, with a focus on developing case studies (Denzin &
Lincoln, 2000). One-on-one structured and semi-structured clinical interviews were used to explore flexibility,
identify associated factors, and probe the potential for students to develop efficient mental strategies.

Participants

The participants were eight Year 3 students (8 and 9 year olds) and eight Year 4 students (9 and 10 year olds)
who attended a Brisbane school that served a middle socioeconomic area. The students were selected from a
cohort of forty-one Year 3 students (4 classes) and thirty-three Year 4 students (3 classes) (selected by teachers as
being reasonably proficient in mathematics), on the basis of accuracy in structured selection mental computation
interviews. They were able to complete successfully at least 80% of the addition tasks in the selection interview
(subtraction examples were generally less successfully solved than addition examples). In Year 4, four flexible
students and four inflexible students were selected for further indepth interviews; while in Year 3, six flexible
students and two inflexible students were selected for indepth interviews (only 2 inflexible and accurate students
could be identified in Year 3 —all other flexible students were flexible).

Instruments

The instruments were adapted from previously developed instruments (Heirdsfield, 2001c¢), and then modified
and extended for the two year levels (previously the instruments addressed Year 3 only). The instruments
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consisted of: a structured selection interview - one-, two-, and three-digit addition and subtraction mental
computation items, presented in picture form, while the question is verbally presented to the student (e.g., “What
is the total cost of the two computer games?” - $68 and $31); a series of semi-structured indepth interviews to
investigate factors associated with mental computation — focusing on strategies for mental addition and
subtraction (different from but similar to the selection items), number facts, numeration, effect of operation on
number, computational estimation, metacognition, affects, and classroom context. While many of the tasks for
Year 3 were repeated for Year 4 students, some were made more appropriate for Year 4 students by increasing
the complexity of the numbers involved (e.g., 107-15 for Year 3 was replaced by 127-35 for Year 4).

Procedure

The students were withdrawn, individually, from class to a quiet room in the school for all interviews. The
indepth interviews consisted of three sessions of videotaped interviews: (1) a number facts test and mental
computation interview; (i) computational estimation interview and numeration interview; and (iii) effect of
operation on number interview. Within each set of indepth interviews, further questions to probe for evidence of
metacognition and affects were posed. Of particular interest here, are the questions that were asked during the
indepth mental computation interviews. Following Van der Heijden (19%4), predetermined scaffolding
questions were presented to students who did not employ what was considered an efficient mental strategy (or
where a more efficient strategy might be used). These were: (1) Can you think of another way of solving the
problem? (2) What is (e.g., 99) close t0? (3) Can you work with this number? (4) What can you do now? If the
student accessed a more efficient strategy (whether resulting in a correct answer or not), he/she was then asked
which strategy was preferred and why.

Analysis

For the purposes of identifying flexibility in mental computation, mental computation strategies were identified
using a previously developed categorisation scheme (see Table 1). Mental computation responses were analysed
for strategy choice, flexibility, and accuracy. Evidence of each student’s number sense (understanding of the
effects of operation on number, numeration, computational estimation, and number facts) was also sought.
Analysis of the interviews investigating these individual factors was undertaken, with the intention of exploring
connections with mental computation. Students’ responses were also analysed for metacognition and affects
(although this was not investigated in depth). Each student’s results for aspects of number sense, metacognition,
and affects were summarised.

The findings of the present study were compared with the frameworks developed by Heirdsfield (20014, ¢) for

accurate mental computers. Individual student’s knowledge structures, metacognition and affects were analysed
to explain the effect on both selection and implementation of mental strategies.

Whether individual students could access more efficient mental computation strategies was noted. Success or
otherwise was analysed in relation to individual student’s knowledge and understanding within the conceptual
frameworks for mental computation.

FINDINGS
Mental computation strategies

Although all students in the present study were reasonably accurate mental computers, not all these students
employed what could be considered efficient mental strategies. Students who were considered flexible
employed a variety of mental computation strategies, including separation — lefi to right, right to lefi, cunulative
sunvdifference; aggregation; wholistic. Aggregation was used rarely (5 students used the strategy, only 1 student
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used the strategy more than once). Students did not necessarily solve very similar examples using the same
strategy at different times, for instance, one student used the following strategies:

Selection interview Indepth interview
148499: 147+100=247 246+199: 200+200=400,46+100=146,446-1=445
16599: 100:99=1, 1+65=066 23499:234-100=134, 134+1=135

Those who employed wholistic spontaneously stated that they often used the strategy in class to solve written
algorithms, although they had not been taught to use it, and that the teachers probably did not know they were
using it. Overall, the students improved their performance from the selection interview to the indepth interview,
both in accuracy and in flexibility (this is discussed below).

Number fact knowledge

Year 3 students tended to be slower than Year 4 students, although just as accurate. Most number facts were
solved using derived facts strategies. In both groups of students, more subtraction examples (than addition
examples) were solved using a count strategy. This was more prevalent with Year 3 students than with Year 4
students. Students who were fast and accurate, and solved number facts by recall or derived facts strategies
tended to be more proficient mental computers (accurate and used a variety of efficient mental strategies).
Students who were slow and used count strategies to solve number facts tended to be the students who
employed mental image of pen and paper algorithm to solve the mental computation tasks.

Numeration

All students required MAB material to regroup/rename 2-, 3-, and/or 4-digit numbers (e.g., “tell me about 209 in
as many ways as you can”). Many students renamed numbers as if using a numeral expander (e.g., 1634 =
16x100 + 3x10 + 4x1). When it was suggested that MAB might be helpful, one student (inflexible mental
computer) regrouped to make 15 hundreds, 13 tens and 4 ones, but she had to count the number of hundreds and
the number of tens, as she was simply manipulating material, rather than understanding what she was doing. In
conversation with the teachers, one teacher questioned the reason to be able to regroup in such a fashion. From
that conversation, it was inferred that students were not encouraged to think of numbers in more than one way (in
this school), resulting in inflexibility in numeration.

Effect of operation on number

The effect of operation on number, particularly the effect of changing the minuend, was not well understood by
any student, particularly the students who used mental image of pen and paper algorithm. However, many
students were able to use the concept in the mental computation indepth interviews, for instance, to solve 23499
and 53-29 using wholistic.

Computational estimation

Overall, computational estimation was poorly understood, particularly by students who used mental image of
pen and paper algorithm to solve the mental computation tasks. Many students simply guessed answers or
employed a rounding strategy whether it was appropriate or not. However, there was evidence of the more
proficient mental computers checking their working and solutions in the mental computation tasks, for instance,
“No, that can’t be right. It’s too big.”

Metacognition, affects, and classroom context

Although this study did not have a strong focus on metacognition, there was evidence of metacognitive strategies
being used by the proficient mental computers to make sense of their calculations. In contrast, the inflexible
students were not concemed that some of their answers were unreasonable. All students said that they valued
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mathematics and they thought it was important to calculate in their heads. Further, they all believed that they
were capable of solving the examples.

‘What were of interest though were the insights into the classroom through he students’ eyes. One Year 4 student
stated that “‘mentals are done in class, like 31+12. But we don’t discuss the strategies.”” Another student stated that
he “used to do sums in my head in class lessons [presumably mental anthmetic], but the teacher stopped me
because he/she realised that I was too good’”! Finally, another student who preferred to use mental image of pen
and paper algorithm throughout, said that 300-298 could not be solved, as she had difficulty with the regrouping
(not realising that she could have counted!).

Potential for accessing efficient mental strategies and factors that supported this

All students were scaffolded at least once in the indepth mental computation interviews, but levels of scaffolding
differed for individual students, from question 1 (see procedure above) — “Can you think of another way of
solving the problem?” to question 4 — “What can you do now?” As a result of scaffolding, all students accessed
wholistic for such examples as 56439, 246+100, 63-29, and 234-99, but with varying degrees of success. Failure
was generally a result of a lack of understanding of the effect of operation on number, and these students were
generally those who employed mental image of pen and paper algorithm. However, in many instances, students
who were unsuccessful attempting to solve these more complex examples in the selection interview or even in
the indepth mental computation interview were successful when they used wholistic. In particular, a Year 4
student who employed the “buggy algorithm” of “‘take smaller from bigger” in the selection interview for 265-
99, “spontaneously’” employed wholistic successtully for 234-99, possibly as a result of being prompted to find a
more efficient strategy to solve 80-49. Another Year 4 student who employed mental image of pen and paper
algorithm in the selection interview, with limited scaffolding (‘“What is close to7”), solved 56+39 (55+40) and
246+199 (245+200) (wholistic leveling). Other students, who accessed wholistic with scaffolding, stated that
they started to use this method, as it “is easier””. Many students started to use wholistic as the first strategy choice
for solving examples that could easily be solved using the strategy. In general, the employment of wholistic
resulted in improved accuracy. Further, most students stated that they found this method easier than their
previous strategies.
CONCLUSION AND DISCUSSION

In general, the results of this study confirmed the conceptual frameworks for the accurate mental computers
(Heirdsfield, 2001c); however, numeration understanding and understanding of the effect of operation on
number were not robust. It can be said, though, that the flexible students exhibited better understanding of these
two factors than the inflexible students. Further, flexible students employed more efficient number facts strategies
than the inflexible students. They employed metacognitive strategies, while the inflexible students did not. Thus,
the flexible students had more integrated and extensive conceptual structures to support flexible mental
computation (c.f., Blote, Klein, & Beishuizen, 2000). However, most students (flexible and inflexible) were able
to successfully access more efficient mental strategies with prompting and/or scaffolding, and all but one student
agreed that the accessed strategies were “easier”” (concurring with Van der Heijden, 1994).

No student in the present study had been taught mental computation strategies, nor had they been taught to
calculate using a number line, empty number line or 99/100 chart. The only representation they had access to
was MAB. However, students successfully employed efficient mental computation strategies (with and without
scaffolding), probably unknown to the teachers. Therefore, it is posited that students do not need to be taught
these strategies, merely encouraged to develop and use efficient strategies (c.f., Morgan, 2000).

It is also interesting to note that most of the Year 3 accurate mental computers were flexible, while only half the
accurate Year 4 students were flexible. In other words, accuracy at Year 3 level was a result of self-developed
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strategies — they could solve the examples without the taught strategies (c.f., Heirdsfield, 2001c); while accuracy
at Year 4 level resulted from both the taught strategies and self-developed strategies. This begs the question, why
are students taught computational procedures if they can already successfully and efficiently use their own
strategies?

The findings of this study add further support to students’ developing their own mental computation strategies

by valuing students’ strategies, promoting strategic flexibility, and encouraging student discussion. Further,
“Focus 1s needed, both in classroom and in research, on the teacher’s role in promoting pupil’s thinking at a
metacognitive level to gain efficiency with understanding”” (Beishuizen, 1998).
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