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REDUCING ABSTRACTION: THE CASE OF
ELEMENTARY MATHEMATICS

Orit Hazzan, Technion – Israel Institute of Technology

Rina Zazkis, Simon Fraser University

There is a growing interest in the mathematics education community in the notion of
abstraction and its significance in the learning of mathematics. "Reducing abstraction" is
a theoretical framework that examines learners' behavior in terms of coping with
abstraction level. This article extends the scope of applicability of this framework from
advanced to elementary mathematics.

The notion of abstraction in mathematics and in mathematical learning has recently
received a lot of attention within the mathematics education research community. The
significance of this topic, as well as the magnitude of community interest was highlighted
at the 2002 PME Research Forum #1. The purpose of this research forum was to discuss
and critically compare three theories of abstraction, all aimed at providing a means for
the description of the processes involved in the emergence of new mathematical mental
structures. The forum was geared towards formulating an integrated theoretical
framework that may serve to explain a vast collection of observations on mathematical
thinking.
This article examines the notion of abstraction from the perspective of "reducing
abstraction” – a mental activity of coping with abstraction. The theoretical framework of
reducing abstraction (Hazzan, 1999) is usually associated with advanced mathematical
thinking. Here we use it to describe and explain the mathematical thinking of preservice
elementary school teachers on topics of elementary mathematics. Our contribution is
twofold: (a) we provide a different perspective on the notion of abstraction in the learning
of mathematics, and (b) we expand the scope of abstraction theories by focusing on
elementary mathematics.

THEORIES OF ABSTRACTION IN MATHEMATICAL LEARNING
Abstraction is a complex concept that has many faces. As such, in a general context it has
attracted the attention of many psychologists and educators (e.g., Beth and Piaget, 1966).
In the more particular context of mathematics education research, abstraction has been
discussed from a variety of viewpoints (cf. Tall, 1991; Noss and Hoyles, 1996; Frorer,
Hazzan and Manes, 1997). There is no consensus with respect to a unique meaning for
abstraction; however, there is an agreement that the notion of abstraction can be
examined from different perspectives, that certain types of concepts are more abstract
than others, and that the ability to abstract is an important skill for a meaningful
engagement with mathematics.
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The aforementioned research forum was assembled in an attempt to explore the variety of
interpretations and the multi-faceted nature of abstraction. The theme of reducing
abstraction builds on this variety, focusing on learner's mental activities. Similarly to
other theories of abstraction, the theme of reducing abstraction, we believe, has “the
potential to provide insight into one of the central aspects of learning mathematics and
inform instructional practice.” (Dreyfus and Gray, 2002, p.113)

THE THEME OF REDUCING ABSTRACTION
The theme of reducing abstraction (Hazzan, 1999) was originally developed to explain
students’ conception of abstract algebra. Abstract algebra is the first undergraduate
mathematical course in which students “must go beyond learning ‘imitative behavior
patterns’ for mimicking the solution of a large number of variations on a small number of
themes (problems).” (Dubinsky, Dautermann, Leron and Zazkis, 1994, p. 268). Indeed, it
is in the abstract algebra course that students are asked, for the first time, to deal with
concepts that are introduced abstractly. That is, concepts are defined and presented by
their properties and by an examination of “what facts can be determined just from [the
properties] alone.” (Dubinsky & Leron, 1994, p. 42). This new mathematical style of
presentation leads students to adopt mental strategies which enable them to cope with the
new approach as well as with a new kind of mathematical objects. The theme of reducing
abstraction emerged from an attempt to explain students’ ways of thinking about abstract
algebra concepts. The following description is largely based on Hazzan (1999).
The theme of reducing abstraction is based on three different interpretations of levels of
abstraction discussed in literature: (a) abstraction level as the quality of the relationships
between the object of thought and the thinking person, (b) abstraction level as reflection
of the process-object duality, and (c) abstraction level as the degree of complexity of the
concept of thought. It is important to note that these interpretations of abstraction are
neither mutually exclusive nor exhaustive. What follows is a brief description of each of
the above three interpretations.

(a) The interpretation of abstraction level as the quality of the relationships between the
object of thought and the thinking person stems from Wilensky’s (1991) assertion that
whether something is abstract or concrete (or on the continuum between those two poles) is
not an inherent property of the thing, “but rather a property of a person’s relationship to an
object” (p. 198). In other words, for each concept and for each person we may observe a
different level of abstraction that reflects previous experiential connection between the two.
The closer a person is to an object and the more connections he/she has formed to it, the more
concrete (and the less abstract) he/she feels about it. Since new knowledge is constructed
based on existing knowledge, unknown (hence abstract) objects and structures are
constructed based on existing mental structures. Based on this perspective, some students’
mental processes can be attributed to their tendency to make an unfamiliar idea more familiar
or, in other words, to make the abstract more concrete. This is consistent with Hershkowitz,
Schwarz and Dreyfus (2001) perspective that emphasizes the learner’s role in the abstraction
processes. They claim that “abstraction depends on the personal history of the solver”. (p.
197). Specifically, based on Davidov’s theory (1972/1990) they claim that “when a new
structure is constructed, it already exists in a rudimentary form, and it develops through other
structures that the learner has already constructed”. (p. 219). Accordingly, abstraction is
defined as “an activity of vertically reorganizing previously constructed mathematics into a
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new mathematical structure”. Vertical mathematization is “an activity in which mathematical
elements are put together, structured, organized, developed etc. into other elements, often in
more abstract or formal form than the originals.” (Hershkowitz, Parzysz and van Dermolen,
1996 in Hershkowitz et al., 2001, p. 203).

(b) The interpretation of abstraction level as reflection of the process-object duality is based
on the process-object duality, suggested by several theories of concept development in
mathematics education (Beth & Piaget, 1966; Dubinsky, 1991; Sfard, 1991, 1992; Thompson,
1985). Some of these theories, such as the APOS (action, process, object and scheme) theory,
suggest a more elaborate hierarchy (cf. Dubinsky, 1991). However, for our current discussion
it is sufficient to focus on the process-object duality. Theories that discuss this duality
distinguish between a process conception and an object conception of mathematical notions,
and, despite the differences, agree that when a mathematical concept is learned, its
conception as a process precedes – and is less abstract than – its conception as an object
(Sfard, 1991, p. 10). Thus, process conception of a mathematical concept can be interpreted
as being on a lower (that is, reduced) level of abstraction than its conception as an object.

(c) The third interpretation of abstraction level examines abstraction by the degree of
complexity of the mathematical concept of thought. For example, a set of elements is a more
compound mathematical entity than any particular element in the set. It does not imply
automatically, of course, that it should be more difficult to think in terms of compound
objects. The working assumption here is that the more compound an entity is, the more
abstract it is. In this respect, this interpretation of abstraction focuses on how students reduce
abstraction level by replacing a set with one of its elements, thereby working with a less
compound object. As it turns out, this is a handy tool when one is required to deal with
compound objects that haven't yet been fully constructed in one's mind.

The theme of reducing abstraction has been used for explaining students’ conception in
different areas of advanced mathematics and in computing science. It was utilized to
analyze learners' work in abstract algebra (Hazzan, 1999), differential equations
(Raychaudhuri, 2001), data structures (Aharoni, 1999) and computability (Hazzan, in
press). These analyses illustrate that a wide range of cognitive phenomena can be
explained by one theoretical framework. Here we expand the applicability of the
framework by examining reducing abstraction in the area of elementary mathematics.

REDUCING ABSTRACTION IN ELEMENTARY MATHEMATICS
Examples in this section are taken from the work of preservice elementary school
teachers in the "Principles of Mathematics for Teachers" course at Simon Fraser
University (Canada), which is a core course for certification at the elementary level. Our
aim here is to describe teachers’ tendencies through the lens of reducing abstraction,
rather than to report frequency of occurrence.
(a) Relationships between the object of thought and the learner
This interpretation for abstraction is illustrated by the preservice teachers’
tendencies to retreat to the familiar base 10 when asked to solve problems in terms
of other bases.

Int: We're in base five now. Can you add 12 and 14 (read: one-two and one-four) in
base 5?
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Sue: 12 (read: one-two) in base five is what? 7, yea, 5,6,7 and 14 (one-four) would be
9. So together this is 16.

Int: Is this in base 5?
Sue: Oh - no. I have to put this back into base 5. So 10 is 5, and we go 11, 12 (read:

one-one, one-two, etc), 13, 14, 20… So I see, 20 is 10, and 30 will be 15 so 16
is 31, three-one base 5.

Different bases are often used in courses for elementary school teachers to reinforce the
common algorithms for multi-digit addition and subtraction and to create appreciation for
the meaning of "carrying" and "borrowing", rather than to perform these operations
automatically following learned rules. However, as the above excerpt illustrates, Sue
successfully avoids addition in base 5 by converting back to base 10, performing the
operation in base 10 and then calculating the result in base 5. Her solution can be
interpreted as reducing abstraction from the unfamiliar base-5-addition to the familiar
base-10-addition via conversion, which she achieved by counting and matching.
(b) Process-object duality
This interpretation for abstraction is illustrated by preservice teachers’ working
with the concept of divisibility.

Int: Consider the following number 33 ¥ 52 ¥ 7 . We'll talk about it a bit, so let's call
it M. Is M divisible by 7, what do you think?

Mia: OK, I'll have to solve for M… [pause] Yes, it does.
Int: Would you please explain, what were you doing with your calculator?
Mia: I solved and this, this is 1575, and divided by 7 gives 225. Like it gives no

decimal so 7 goes into it.

The tendency of students to calculate rather than attend to the structure of the number as
represented in its prime decomposition has been discussed in Zazkis & Campbell (1996).
It has been reported that even students who are able to conclude divisibility of M by 7 or
5 based on its structure, tend to calculation when prime non-factors (such as 11) or
composite factors (such as 15 or 63) are in question. These students reduce the level of
abstraction by considering the process of divisibility, that is, attaining the whole number
result in division, rather than the object of divisibility, which indicates a property of
whole numbers and is independent of the specific implementation of division.

(c) Degree of complexity of mathematical concepts
The following excerpt is taken from Zazkis & Campbell (1996).

Int: Do you think there is a number between 12358 and 12368 that is divisible
by 7?

Nicole: I'll have to try them all, to divide them all, to make sure. Can I use my
calculator?
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Int: Yes, you may, but in a minute. Before you do the divisions, what is your
guess?

Nicole: I really don't know. If it were 3 or 9, I could sum up the digits. But for 7 we
didn't have anything like that. So I will have to divide them all.

Nicole exhibits a common tendency – she wishes to find a number divisible by 7 between
the two given numbers in order to claim its existence. The task invites her to consider the
interval of ten numbers; however, Nicole prefers to consider and check for divisibility of
each number separately. In doing so she is considering a particular object, a number,
rather than a more complex object, a set or interval of numbers. Therefore, the abstraction
level is reduced: a property of a set of elements is being examined one by one, rather than
a property of the set as a whole.

(d) Multifaceted examination from the perspective of reducing abstraction

As mentioned earlier, the classification of ways in which learner's reduce abstraction is
neither exhaustive nor mutually exclusive. Consider for example the following problem:

A length of 3 cm on a scale model corresponds to a length of 10 meters in a park. A lake in
the park has an area of 3600 square meters. What is the area of the lake in the model?

In her solution, Brenda assigned the dimensions 90¥40 to the lake, converted each length
separately and then calculated the area of lake in the model. Some of her classmates
considered the lake to be a 36¥100 rectangle or a 60¥60 square. For most students, the
random assignments of units and even the random restriction of the lake shape to either a
square or a rectangle, still led students to a correct answer. However, no one could
explain why the final calculation of the area was not influenced by the choice of shape
and measurements.

The task in this example was geared at testing students' abilities to perform the
conversion of square units. Regression to the units of length can be interpreted as
reducing abstraction in several ways: In accordance with section (c), the assignment of
units of lengths provides learners with a lesser degree of complexity. That is, it provides
an opportunity to deal with one particular object rather than with any object of a given
area. In accordance with section (a), the measures of lengths could have been perceived
as more familiar, and therefore less abstract, than the measures of area. In accordance
with section (b), the calculation of area can be interpreted as students’ conception of area
as a process, rather than as an object that assigns a measure to a shape.
Noss & Hoyles (1996) state that “[t]here is more than one kind of abstraction.” (p. 49).
Consequently, as the above examples illustrate, there is more than one way to reduce the
level of abstraction and more than one way to describe a learner's activity in terms of
reducing abstraction level.

CONCLUSION
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Schoenfeld (1998) proposed four major criteria for judging theories and models that
embody them: descriptive power, explanatory power, predictive power and scope of
applicability. The theory of reducing abstraction meets each of these standards. It
provides a lens for describing, explaining and predicting students' encounters with a wide
variety of topics and concepts. This article has extended the scope of its applicability
from the content domains of advanced mathematics and computing science to elementary
mathematics. We conclude by inviting the readers to examine their own observations of
learners' mathematical encounters through a lens of reducing abstraction.
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