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ONE LINE PROOF: WHAT CAN GO WRONG?
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Simon Fraser University
Having an ability to appreciate, understand, and generate proofs is crucial in being able
to evaluate students’ mathematical arguments and reasoning. As such, the development
of this ability in perspective teachers is imperative. This study examines the work of a
group of preservice elementary school teachers in their efforts to generate one-line
proofs on closure statements. We provide a framework that allows us to carry out a fine
grain analysis of students’ proofs and also provides a tool for diagnosis and remediation.
Mathematics occupies a privileged position among the sciences as the discipline that is
most pure, most exact. The facet of mathematics that is most directly responsible for
facilitating this honor is that of proof. The mathematical proof provides the certainty that
is demanded in a field where precision and exactness is the currency of practice. A well-
constructed deductive proof offers humans the purest form of reasoning to establish
certainty. As such, proof is an important part of not only mathematical practice, but also
of mathematical learning and teaching (Hanna, 1989).
However, research has repeatedly shown that proofs and the ability to understand and
generate proofs is difficult for students in general (Hoyles, 1997) and for preservice
elementary school teachers in particular (Barkai, Tsamir, Tirosh, & Dreyfus, 2002;
Martin & Harel, 1989; Simon & Blume, 1996). This may be due, in part, to the fact that
proficiency with proof requires the coordination of a number of competencies,
identification of assumptions, and organization (or tracing) of logical arguments. The
teacher, as the person who establishes the expectations and norms of a mathematics
classroom, plays a crucial role in development of such competencies (Yackel & Cobb,
1996). Furthermore, the teacher’s own aptitudes are requisite in the evaluations of
students’ arguments and mathematical reasoning (Barkai et. al., 2002). Therefore, it is
imperative that, as difficult as it has proven to be, the ability to understand and generate
proofs be instilled in perspective teachers.
Having said that, however, it may be beneficial to the achievement of such goals to find
instances where the rigours and demands of exactness required in a proof are mediated by
a reduction in the length of the proof. As such, this study examines preservice elementary
school teachers’ efforts to generate one-line proofs. We examine the abilities of the
participants in generating such proofs as well as provide a framework for the analysis of
their efforts. The framework, which allows for a fine grain analysis of the participants’
work, also gives insights into the complex coordination of competencies that is required
even for the writing a very short proof.

THE STUDY
Participants in this study were preservice elementary school teachers (n=116)  enrolled in
a course “Principles of Mathematics for Teachers”, which is a core course in a teacher
education program. One of the issues that wove itself through all the topics of the course
was the need for support of mathematical claims. Extensive discussions and exercises
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were aimed at helping students understand when and where a general argument, or a
proof, was needed and when an example was sufficient.
During the course the participants were exposed to the concept of closure as part of the
discussion of number systems. The formal definition was provided – a set is said to be
“closed” under operation if and only if for any two elements in the set, the result of the
operation is in the set. Further, a variety of examples of sets closed or not closed with
respect to certain operations were provided and a variety of problems in which students
had to prove or disprove closure were posed. This included the invitation to prove or
disprove claims such as even numbers are closed under addition, multiples of 5 are
closed under multiplication, rational numbers are closed under division, prime numbers
are closed under addition, among others.
In this study we analyze two questions that sought a written response from the
participants:

(Q1) The set of perfect squares is closed under multiplication. Prove the
statement or provide a counterexample.
(Q2) The set of odd numbers is closed under multiplication. Prove the statement
or provide a counterexample.

MATHEMATICAL ANALYSIS AND FRAMEWORK
For our purposes, we considered the “ideal” solutions (that is, proofs) of these statements
to be:

(Q1): Let a2 and b2 be any two square numbers.
Then, a2 ¥ b2 = (ab)2 which is itself a square number.
(Q2): Let (2m+1) and (2n+1) be two odd numbers.

Then (2m+1)(2n+1) = 4mn+2m+2n+1 = 2(2mn+m+n)+1, which is
itself  odd.

However, the generation of such seemingly simple and short proofs is deceivingly intricate,
requiring an appreciation of the need for, and the coordination of many skills (see Figure 1).
First and foremost is the recognition that a proof is indeed required for the purposes of
establishing the truth of a statement. From a mathematical perspective, such a
requirement is obvious. The establishment of the validity of a statement requires the
treatment of the statement in general, as opposed to the examination of a few particular
cases. Once a need for a proof has been established, the students then need to be sensitive
to the fact that treatment of the general case requires the selection of some form of
representation. Representations play a crucial role in mathematics; they are considered as
tools for communication, as tools for symbolic manipulation, and as tools that promote
and support thinking (e.g. Skemp, 1986, Kaput, 1991). Furthermore, the choice of
representation is often linked to students’ understanding of the content (Lamon, 2001).
However, the recognition that a representation is needed is not enough. The students must
select one that is both correct and useful for the purposes of generating a proof. For
Q1(above), for example, choosing to represent the two square numbers as X and Y is in
itself not incorrect, but for the purposes of generating a proof, it is completely useless. A
much more effective (and natural) representation of two square numbers is a2 and b2.
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Once such a representation is established, the students must then be able to work with it.
That is, they must be able to perform correctly any manipulations necessary to transform
the expression into the form that clearly represents the nature of the number. In the
example of Q1 such a manipulation is not onerous. Q2, however, requires much greater
adeptness with algebraic manipulation in order to mould the expression into one that
clearly expresses its inherent ‘oddness’. There is an assumption in this last sentence,
though.

STUDENTS’ RESPONSES
A complete and correct proof was provided by 19% of the participants for Q1 and by
37% of the participants for Q2. However, it is not our purpose to quantify student’s
responses. Instead, we have organized students’ incorrect responses according to the
framework provided above. What follows are exemplars of this organization.

(Not) Recognizing the need for a proof
Among participants who did not attempt a proof we recognize two kinds of arguments.
One is a narrative style that reiterates the statement, at times explaining what is to be
proven. For example:

(Q1): The set of perfect squares is closed under multiplication because no matter
what 2 perfect squares you multiply together, your answer will always be
another perfect square.

Another is justification with a single numerical example. For instance:
(Q2): {1,3,5,7,9, …}

3¥ 5 =15
The product of 2 odd numbers is an odd number.

(Not) Recognizing the need for representation
We believe that a general argument in this case requires a representation of the objects in
question. However, some of the participants justified their decision of closure with an
inductive argument, as exemplified below.

(Q1): The set of perfect squares is closed under multiplication because if you
multiply 2 of the numbers inside the set you get another perfect square as a
result.

4¥25=100 4¥36=144  25¥36=900

etc.
 (Q2): O={1,3,5,7,9,11,13…}

5¥7=35 11¥9=99 15¥13=195
True, the set of odd numbers is closed under multiplication. Any two odd

numbers multiplied together will result in an odd number.

900 =30 144 = 12100 = 10
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The phrase clearly expresses
assumes that the students are
able to interpret the result of
the i r  man ipu la t ion  a s
representative of what they are
aiming to show. This is the last
step in the proof process. The
students must be able to
constantly interpret their
manipulations in order to know
what they have found, and when
they have found it.

The left side of the diagram in
Figure 1 represents the steps
towards a complete and correct
proof. The right side represents
the potential obstacles at every
step.

Figure 1. Pathway towards (and digression from)  a one line proof

We distinguish justification by a single example from justification by a series of
examples. In the former case a student may believe that one example is sufficient. In the
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latter case we recognize an attempt to build an inductive argument, which identifies
students’ empirical proof schemes (Harel & Sowder, 1998). While empirical verification
is very useful in clarifying the problem, it is only a preliminary stage towards a proof.
However, it is very common for students to prefer an empirical argument over any sort of
deductive reasoning (Hoyles, 1997).

(Not) Providing a useful representation
 Once the need for representation has been recognized, it is essential to choose a correct
and useful representation. Examples below demonstrate students’ choice of
representation that is inappropriate for the task at hand.

(Q1): Let X equal any whole number, then X2 equal a perfect square.
X2 ¥ X2 also a perfect square?

X2 ¥ X2 = X4 , yes X4  is a perfect square so the set of perfect squares is closed
under multiplication.
(Q2): kŒW, fi k+1ŒW, k+3ŒW

(k+1)(k+3) = k2+3k+k+3 = k2+4k+3 = (k2+4k)+3
adding 3 makes the # odd, so the set of odd #s is closed under multiplication.

The above response to Q1 does not satisfy the generality; while X2  is an appropriate
representation for a square number, using it for two different numbers compromises the
argument. In the response to Q2, k+1 and k+3 represent odd numbers only if k itself is
even, but this constraint was omitted. Furthermore, consideration of consecutive odd
numbers compromises the intended generality of a proof.

(Not) Manipulating the representation correctly
The ability to chose a correct and useful representation is a necessary condition, but not
sufficient. The next step is the ability to manipulate the chosen representation
successfully. Unfortunately, as shown below, manipulation of algebraic symbols
presented an obstacle for some participants.

(Q1): True. X,Y are whole numbers
a= X2 = perfect square, b = Y2 = perfect square
Prove: ab = number2

ab = X2Y2 = XY2 = perfect square
(Q2): a and b  and c are whole #s,
(2a+1) ¥ (2b+1) = 2ab+1, this is odd, since ab must be whole (set of whole #’s
closed under multiplication), and any whole # times 2 is even, so plus one must
be odd. So any odd # multiplied by any odd # equals an odd #.

Note the perfect structure of the argument in the second example. Unfortunately, it is
based on an incorrect symbolic manipulation.
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(Not) Interpreting the manipulation
The ability to manipulate algebraic expressions pays off only if a learner is able to
interpret the result of such manipulation. However, the data show, that several students
were on the brink of completing the proof, but did not recognize it. That is to say, they
were not able to interpret the result of their manipulation. Consider for example the
following response to Q2:

Let (2n+1) and (2m+1) represent odd numbers.
(2n+1)(2m+1) = 4mn+2n+2m+1
24mn+2n+2m+1;      22mn+n+m+1

This student has chosen a useful representation and also manipulated it correctly.
However, this correct manipulation is followed by rather random symbol pushing, and no
conclusion with respect to the closure of the set in question is presented. It appears that
this student wasn’t sure how to proceed in interpreting her manipulation.

CONCLUSION
The purpose of this study is twofold. One, it provides a framework for analyzing short
proofs related to the notion of closure. Two, it shows viability of this framework by
providing an analysis of students responses. For examining the work of students that did
not complete a proof, the framework assists in identifying the obstacle that threw the
student “off track”. In such it provides an avenue for remedial instruction.
The study demonstrates that the concept of closure was generally well grasped. That is to
say, the majority of students understood that they were expected to show that the product
of two perfect squares is a perfect square, and the product or two odd numbers results in
an odd number. What is considered as proper “showing” is a more general issue,
extensively discussed in prior research (e.g. Harel & Sowder, 1998).
However, it is troublesome that what prevented some students from completing the proof
was not their understanding of closure, or appreciation of the need for a proof, but a poor
ability to choose an appropriate representation or inability to manipulate the chosen
representation. The latter draws the focus from undergraduate teacher education and
invites regression to skills of simple algebraic manipulation. Lack of competence in these
skills presents an obstacle not only for correct manipulation, but also for interpreting the
meaning of manipulation, that is, the ability to represent the manipulated expression in a
desired form.
We believe that experience with one-line proofs is a valuable tool for sharpening the
proof skills. The content of closure provides appropriate grounds not only for generating
these proofs, but also for appreciating the role of useful representation. Furthermore, we
suggest that the framework that we developed is appropriate for analyzing a variety of
short proofs related to number properties. Future research will determine the scope of
applicability of this framework.
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