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TOWARDS A REDEFINITION OF THE MATHEMATICS
CULTURE IN THE CLASSROOM

Iñaqui de Olaizola Manuel Santos
Universidad Autónoma Metropolitana          Cinvestav-IPN

The questions addressed in this paper are: how do students interpret the non-solution
problems as a mathematical practice in the classroom?  What kinds of arguments do the
students offer? To deal with these questions the utterances of students working in the
classroom with problems in which they had to look for general relations in order to
argue such things as “there is no least positive fraction” or “it’s impossible to tessellate
a rectangle with some kind of pieces” are examined and discussed.

INTRODUCTION
The mathematics program for the secondary school in Mexico suggests the teaching of
the discipline should be based on problem solving approaches. Among its objectives are
that students develop their discovering abilities, recognize and analyze the components of
a problem and that they formulate conjectures, communicate and validate them (Alarcón,
et al., 1994).
To achieve these objectives, and also many of the objectives the NCTM (2000) has put
forward, it’s necessary to change radically the roles teachers and students usually enact in
those classrooms where teaching and learning goes under the School Mathematics
Tradition (Cobb et al., 1992)1. For instance, the students now explore open problems or
situations in which they must pose questions, make conjectures and argue or criticize
mathematical ideas.
In such situations they must recognize if it is possible or not to find or do what they are
supposed to do. In this paper we discuss student’s utterances that emerge when faced
with what we call non-solution problems, that is, problems in which they must answer
that it’s not possible to find or do what they are asked to do, so they must find general
relations within the problematic situation in order to argue such things as “the number
123 doesn’t belong to that sequence”, “there is no least positive fraction” or “it’s
impossible to tessellate a rectangle with that kind of pieces.” The questions addressed
here are: how do the students interpret the non-solution problems as a mathematical
practice in the classroom?  What kinds of arguments do the students offer?

COMPONENTS OF A CONCEPTUAL FRAMEWORK
The learning of mathematics is considered an individual process of construction and,
also, an acculturation process into the mathematical practices of a wider society2. The use

                                                  
1 Roughly speaking, this type of teaching is based on a teacher transmitting information and by the scheme
eliciting-answer-evaluation (Mehan, 1979).
2 We mean those practices accepted by math teachers, researchers in mathematics education,
professional mathematicians, etc. Even though this wider society is not homogeneous, each
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and meaning of the symbols and those mathematical practices are negotiated in the
process of constituting a mathematical community in the classroom. (Cobb, Jaworski, &
Presmeg, 1996; Yackel & Cobb, 1996).
The focus in this paper is on the argumentation process in the classroom. In this context,
the notion of argumentation is related to offering an intentional explanation of the
reasoning behind the solution. Several authors have reported the enormous difficulties
students experiment when faced to the task of arguing (Fischbein, 1982; Balacheff,
2000). Beyond the social factors that may inhibit the student’s processes of
argumentation, Fischbein (1982) y Balacheff (2000) claim that the cognitive belief
constitutes a major obstacle because students find no need to argue when they have
intuitively seen the solution. In this perspective, the type of tasks implemented during the
development of the study might function as a vehicle to promote students’ presentations
of arguments or convincing explanations.
Balacheff (2000) has differentiated two kind of proofs the students offer: pragmatic
proofs, those in which students show the actions they performed finding the solution and
intellectual proofs, based on the formulation of relations and characteristics of the
problematic situation, for instance when they use a generic example, that is, when they
refer to a particular case in order to show general relations. Pragmatic proofs imply the
realization of a material task. This suggests an exploration theme for instruction; facing
students with problematic situations where that material realization is not possible so that
the student is being forced to search for general relations.
Topic Problems
I  Numer ica l
patterns

* What’s the position of number 311 within the sequence    3,
6, 9, ···?
* What’s the position of number 123 within the sequence   2,
5, 8, ···?

II Tessellations
*  There are plenty pieces alike, formed by four 1-side
squares as shown in the figure on the right. Make a 3 ¥ 8
rectangle and a 5 ¥  10 rectangle using these pieces,
without overlapping them or leaving holes.

* Make a rectangle using pieces like the one on the figure
on the right.

III Arithmetic * Find the least positive fraction
* Which number has the greatest number of multiples?
* Which number has the greatest number of divisors?

                                                                                                                                                      
teacher acts in his classroom according to his own interpretation on which of those mathematical
practices are the accepted ones.
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Table 1. Non-solution problems
METHODS AND GENERAL PROCEDURES

We worked with a seventh grade group of 30 middle class students in a school located in
Mexico City. The students come from different primary schools (grade 1-6), which can
be considered within the School Mathematics Tradition.
The sessions developed in a cyclic mode: 1) It starts with a set of different kinds of
problems discussed within small groups of students (2 to 4 students). Each group writes
down a report and one of them is audio recorded; 2) the next two or three sessions are
dedicated to a plenary discussion of these problems, promoting the students to present
different interpretations and solutions to the task; 3) Based on the analysis of the reports
and the audio recording, a set of new problems is designed and a new cycle is initiated.
Within the school year, students worked with non-solution problems (Table 1). These
problems were mixed with other kind of problems so they couldn’t know, in advance,
which type they were dealing with.
Two weeks after the students had worked with the last of these problems they were asked
to write down, individually, the following items: Describe  non-solution problems and
give examples. How come do they appear? Are they important?

RESULTS
We discuss in separate sections each of the questions posed in the introduction of this
paper.
Interpretation of non-solution problems
The teacher systematically promoted the acceptation and valorization of the mathematical
practice of dealing with non-solution problems making explicit comments of how natural
is to pose questions and problems in which we cannot know, in advance, whether they
can or cannot be solved, and that recognizing that it’s not possible to do or find
something is an important form of knowledge. However, each student interpreted this
practice in different ways.
The first time students worked with a non-solution problem, we observed, as we
expected, difficulties in assuming that it was not possible to do what the teacher asked
them to do; only one fourth of the groups answered that 311 is not in the succession 3, 6,
9, ···. The audio-recorded group made the division 311÷3, obtaining 103 with remainder 2
and reported 103 as an answer. Few minutes later, a student from another group revealed
(whispering) “The first one is wrong”:

Pam: He is right, ’cause it’s not a sequence
Jim: Why is it not a sequence?
Pam: Because 311 is a multiple of 3, so it can’t be in a sequence that goes  3 plus 3,
plus 3…

It’s remarkable that Pam accepts without hesitation that their answer was wrong, as if she
was not comfortable with 103 as an answer, but she didn’t even consider the possibility
of saying no to what the teacher had asked them to do. Only after the revelation she did
establish, using a correct argument, that 311 is not in the succession.
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Once the possibility of a negative answer became part of the students’ answers repertory,
it was observed that some students gave up the explorations after a few tries, concluding,
“It’s not possible.” For instance, working with tessellation problems the answer “we tried
and it can’t be done” was relatively frequent3.  The audio-recorded group, trying to make
a 5 ¥ 10 rectangle with the L-shape pieces, failed for the second time:

John: There are two squares left.
Daniel: Two left! It can’t be done.
Mary: Let’s write, “There are always two squares left” ... but why are there always two
left? We have to write that too.

They quickly conjecture that it can’t be done but they also recognize that they have to
explain why it is so (they did explain it later). Something similar occurred when students
searched for the number with the greatest number of divisors; after a few tries some
groups concluded that there is no such number although they didn’t offer any argument
supporting their claim. Others didn’t easily accept the legitimacy of that kind of answer;
for instance, when trying to tessellate a rectangle with U-shape pieces (this was the fifth
non-solution problem he had met) a student asked the teacher: “is it possible that it is not
possible?”
This behavior is similar to the one observed by other authors: Schöenfeld (1992)
concluded that students don’t make long searches because they believe that “you know
the answer or you don’t” so there is no use in doing long searches. Also, as it has been
reported (Balacheff, 2000), students usually make generalizations after analyzing a few
particular cases. This author refers to this process as naive empiricism.
The analysis of the individual reports about what they think of non- solution problems
made clear that, for most of the students, non-solution problems are viewed as anomalous
or as a tool used by the teacher to make them aware of what they were doing, stopping
them from acting automatically. Only a few considered that “it’s normal that they appear
when you ask questions and they help you to find new ideas and theories.”
Most of the students showed correct examples of non-solution problems similar to those
they had worked with. Even an example as “find the transformation represented by 3 Æ
5, 5 Æ 9, 9 Æ 5”, which is wrong, mathematically speaking, because there is an infinite
number of transformations that satisfy the requested conditions, it is a good example in
the context they’ve been working, that is, transformations of the type ax + b,  x2 + a and
x3 + a. Others used inappropriate examples, again thinking in operating terms: “3 ¥ 2 is
not equal to 15.”
Arguments offered by the students
Number Pattern. Some groups operated with the numbers they had at hand, applying an
algorithm that showed to be successful in another situation and paid no attention to the
fractional quotient. This compulsory need to operate with the numbers in the problem,
even in the most absurd situations, has been widely documented (IREM, 1980;
Schubauer-Leoni, & Ntamakiliro, 1998).
                                                  
3 In his interactions with the students the teacher systematically used the phrase “is it that it can’t be done
or that you can’t do it?” trying to problematize their experience.
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In both problems the students recognized the pattern + 3 governing the succession, but
not all took into account the starting number and argued that 123 is the 41st number of the
succession 2, 5, 8, ... because 41 ¥ 3 = 123. Other students used a proportional approach
stating that 123 is the 43rd number of the succession because 20 is the seventh, so 120 is
the 42nd (120 = 20 ¥ 6 and 42 = 7 ¥ 6); some students simply generated the succession
using a calculator until number 122 concluding that 123 is not in the succession, finally,
some used a generic example as an argument: “Number 123 is not in the succession, we
know it because  7 ¥ 3 is 21 and because we started with 2 it’s 20 (this is a way of saying
that numbers in the succession are of the form 3n – 1) and 124 is not a multiple of 3.”
Tessellation problems. The problem of tessellating a rectangle using U-shape pieces
turned out to be quite a complex one. All of the groups concluded that it’s not possible to
do so but none could find a valid argument. On the other hand, the problem of tessellating
rectangles with L-shape pieces proved to be adequate. All the students could construct the
3 ¥ 8 rectangle.  The following discussion took place within the audio-recorded group
just after they found there were two squares left, in their second try to construct the 5 ¥
10 rectangle:

Mary: What were the dimensions of this one?
John: 3¥8
Daniel: And this one? Five times ten... I think that it’s only possible when… three
times eight, forty-eight, even number, five times ten, fifteen4, odd number... Hey! I
know why it can’t be done (very excited). Because it’s four (he refers to the four
squares in the L-shape pieces), four and forty-eight are even numbers… that’s why it
can be done, or something like that, right?
John. Five times ten... 50, 50 isn’t it an even number?
Daniel: Yeah, why?
John: Five times ten
D: Ay! Ay!

Daniels’ strategy is to find a property that holds in the 3¥8 rectangle but fails in the other
one. He first conjectured that the rectangle’s area should be of the same parity as the
piece’s area, which is true but this property holds in both rectangles and he missed this
point because of the mistake he made multiplying. He began conjecturing about multiples
of three but this exploring line is interrupted by the (correct) argument offered by John
that can be resumed as: the rectangle’s area must be a multiple of the piece’s area.

Daniel: Maybe it’s because of the multiples of three... Yeah, three times eight is 24 a
multiple of 3...and 50 isn’t. Let’s try with…
John: 24 divided by 4? Would it be exact?

                                                  
4 In Spanish the words three ( tres), six ( seis) and ten ( diez) rhyme and maybe this auditive
association can explain why Daniel answered 48 (6¥8) as the result of 3¥8 and 15 for 10¥5.
Three days after this episode took place, the teacher unexpectedly asked the student “3¥8?” and
he quickly answered 48. A few days later, the teacher asked him again and he could answer
correctly only after a brief pause.
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Mary: Yeah.
John: 50 divided by 4? That is not exact. Four because of those 4-pieces
Mary: It can’t be done, of course, because fifty, that is, five times ten…
John: And it isn’t a multiple of four.

Arithmetic Problems. The three arithmetic problems can be argued by absurdum
reductio. Searching for the least positive fraction the students realized that they can
always find a smaller one: “if we think we have found it we add a zero to the
denominator and we get a smaller one.” Also a fraction with a denominator like 999··· or
1000··· was reported.
Trying to find the number with the greatest number of multiples, students noticed that the
process of finding the multiples is potentially infinite. They also realized that not every
number has the same number of multiples: 0 has only one and some of them claimed that
1 has more multiples than any number, arguing that, for instance, “multiples of one go
one by one and the multiples of two go two by two.” This claim led to an interesting
discussion; many students argued that all, except zero, have the same number of
multiples because they are generated multiplying them by 1, 2, 3, ···.5

The problem of finding the number with the greatest number of divisors turned out to be
a more complex one. This time the search for the divisors doesn’t lead naturally to the
idea that you can always construct a number with more divisors. Only four out of 12
groups could argue using a generic example: “There is no such number with the greatest
number of divisors. For instance, 36, if we multiply it by 2, 72 has the same divisors as
36 and also 72 as a divisor and we can continue multiplying.”

CONCLUSIONS
Students are used to show the solution of a problem applying a known algorithm. The
algorithm is constituted as the main generator of answers. But when they have to make an
argument about the impossibility of something they can no longer hold on any known
algorithm. Most of the non-solution problems proved to be adequate for promoting the
search for general relations. In particular the problem of tessellating a rectangle with L-
shape pieces turned out to be a fruitful exploring situation that can be easily generalized
changing both the dimensions of the rectangle and the shape of the pieces.
Negotiation of new mathematical practices in the classroom is a process that takes time,
especially when they contradict strongly attached beliefs of the students. Although most
of the students got relatively quickly used to work with non-solution problems, they don’t
think of them as common and natural tasks when learning mathematics but only as a
didactical trick.

                                                  
5 Even older students clearly see that the succession 1, 2, 3, ··· has more elements than, for
instance, the succession 2, 4, 6, ··· and it’s hard to convince them that it’s not the case, but the
way these successions emerged made some of the students clearly see they have the same number
of elements.
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