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An overview of the conceptual underpinnings, reasoning abilities and notational issues
related to learning the Fundamental Theorem of Calculus is provided.  Using this
theoretical framework, curricular materials were developed to promote these
understandings and reasoning abilities in students. Results from a study that investigated
the effectiveness of these materials on first semester calculus students’ understandings of
the FTC revealed significant advances in their understandings of accumulation and the
FTC. Some specific difficulties that were observed in select students provided insights for
further refinement of the theoretical framework and for revision of the FTC activities.

INTRODUCTION AND BACKGROUND
The Fundamental Theorem of Calculus has been described as one of the intellectual
hallmarks in the development of the calculus (Boyer, 1959). However, studies have
documented that most first semester calculus students do not emerge from the course
with an understanding of this concept; nor do they appear to be developing the
foundational reasoning abilities needed to understand and use the FTC in applied settings
(Bezuidenhout & Olivier, 2000; Kaput, 1994). Student difficulties with the Fundamental
Theorem of Calculus have been attributed primarily to their impoverished view of
function (Carlson, 1998; Thompson, 1994) and rate-of-change (Thompson, 1994).
However, little research is available articulating what is involved in knowing and
learning this concept. The purpose of this paper is to provide additional clarity about the
understandings and reasoning abilities involved in learning and using the FTC. It also
reports the results of a study that investigated the effectiveness of curricular materials for
first semester calculus students that were developed using this framework as a guide.
Reasoning about and with the Fundamental Theorem of Calculus involves mental actions
of coordinating the accumulation of rate-of-change with the accumulation of the
independent variable of the function. The accumulating quantity can be imagined to be
made of infinitesimal accruals in the quantities, which when thought of multiplicatively,
make up the accruals in the accumulating quantity. Both a process view of function and
covariational reasoning have been shown to be foundational for coordinating these
accumulations (Thompson, 1994).
Covariational reasoning refers to the coordination of an image of two varying quantities,
while attending to how they change in relation to each other (Carlson, Jacobs, Coe,
Larsen and Hsu, 2002). A more detailed characterization of covariational reasoning has
been articulated in a Covariation Framework that characterizes covariational reasoning in
terms of the mental images that support the mental actions of coordinating: i) changes in
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one variable with change in the other variable; ii) the direction of change in one variable
with changes in the other variable; iii) the amount of change of one variable with changes
in the other variable; iv) the average rate-of-change of a function with changes of the
independent variable; and v) the instantaneous rate-of-change of the function with
continuous changes in the input variable. The mental image that supports all five mental
actions has been classified as Level V covariational reasoning. As this body of literature
suggests, it seems reasonable that students should develop both a process view of
function and Level V covariational reasoning abilities prior to their study of the
Fundamental Theorem of Calculus.
Thompson (1994) has described the Fundamental Theorem of Calculus as a means of
expressing the relationship between the accumulation of a quantity and the rate-of-change
of the accumulation. He advocates that an understanding of the FTC involves
coordinating images of respective accruals in relation to the total accumulation.
According to Thompson, this is the idea that motivated Newton’s development of the
Fundamental Theorem. Newton first determined the average rate-of-change of an area
and determined that the total area could be computed by multiplying the rate-of-change
by the accumulation of the independent variable. This led to his observation that the rate
of change of the accumulated quantity is equal to the immediate accrual. This line of
thinking emphasizes the importance of understanding that the accrual is a multiplicative
relationship and that the total accumulation is made of infinitesimal (multiplicatively
composed) accruals of the quantities (e.g., accruals of lines compose area and accruals of
area compose volume). It is these understandings that enable the relationship expressed
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the reasoning abilities and understandings related to accumulation and the Fundamental
Theorem of Calculus are provided in the theoretical framework for this study.

THEORETICAL PERSPECTIVE:

The FTC Framework
This framework contains four dimensions that describe the foundational reasoning
abilities and understandings of the Fundamental Theorem of Calculus.
Part A: Foundational understandings and reasoning abilities
(FR1) Ability to view a function as an entity that accepts input and produces output.
(FR2) Ability to coordinate the instantaneous rate-of-change of a function with continuous
changes in the input variable (Level V covariational reasoning).

(FU1) Understanding that the average change of a function (on an interval) = the average 
rate-of- change (multiplied by) the amount of change in the independent variable.

(FU3) Understanding that the multiplicative relationship that represents the accrual of change
on an interval can be represented by area.

Part B: Covariational reasoning with accumulating quantities.
The Mental actions of the Fundamental Theorem of Calculus (The function refers to the rate-of-
change function, f).
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(MA1) Coordinating the accumulation of discrete changes in a function’s input variable with the
accumulation of the average rate-of-change of the function on fixed intervals of the
function’s domain.

(MA2) Coordinating the accumulation of smaller and smaller intervals of a function’s  input
variable with the accumulation of the average rate-of-change on each interval.

(MA3) Coordinating the accumulation of a function’s input variable with the accumulation of
instantaneous rate-of-change of the function from some fixed starting value to some
specified value.

Part C: Notational aspects of accumulation
Notation Meaning

Ú= dxxfxF )()( i) The antiderivative of f is F
ii) f is the function that describes the rate-of-change of F.
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i) The value of F(x) represents the accumulated area
under the  curve of f from a to x;

ii) The value of F(x) represents the total change in F
from a to x.

Part D: The statements and relationships of the FTC
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i) The accumulated area under the curve of f from a to b
is equal to the total change in F from a to b.
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i) The instantaneous rate-of-change of the accrual
function at x is equal to the value of the rate-of-
change function at x

METHODS

The subjects were 24 beginning calculus students enrolled in the same section of first
semester calculus at a large university in the United States. A Pre-Calculus Concept
Assessment Instrument (focused primarily on assessing the reasoning abilities and
understandings described in Part A of the FTC Framework) was administered to the
students at the beginning of the semester, and a post-instruction written assessment
instrument was administered at the end of the course. The mean score and number of
correct responses for each item were compiled.  Four students who were somewhat
representative of the diverse understandings of the class (based on their performance on
the Pre-Calculus Concept Assessment Instrument) were invited to participate in eight
(~75 minute) clinical interviews. The interviews were conducted in pairs and were
designed to gain information about students’ ability to understand and reason using the
major concepts of the course (covariation, limit, derivative, accumulation, the FTC).
During each interview the students were asked to complete a collection of thought
revealing tasks (Lesh, 2002) that paralleled the conceptual focus of instruction during the
previous two weeks of the course. Each pair verbalized their thinking while responding to
the written problems and questions. The role of the interviewer was to promote
discussion among the pair of interviewees and to gain insight into the understandings and
reasoning of the individuals. Digital videos of the sessions were transcribed, coded and
analyzed, using the FTC framework.
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THE COURSE
The text for the course was Calculus Early Transcendentals (Stuart, 1999). However,
about half of the instruction was delivered using the Conceptual Calculus Modules
currently under development by the first author. Each module contains a collection of in-
class and take-home activities designed to promote the development of students’
conceptual connections and reasoning abilities relative to the central concept of the
module. Carefully sequenced prompts and tasks (situated in context whenever possible)
were included to promote students’ articulation of their thinking.
The Precalculus Concept Assessment instrument was administered to the students at the
beginning of the semester. Instruction during the first two weeks of the semester included
a strong focus on the foundational reasoning and understandings described in Part A of
the FTC framework.  Post-instruction assessment of these understandings suggested that
most students emerged from this instruction with these reasoning abilities and
understandings. Instruction leading up to the FTC module included a balanced focus on
concept development, acquisition of notational understanding, facts and procedures, and
the development of students’ mathematical practices and problem solving behaviors.
Students were expected to be regular participants in the classroom. Whole class
discussion, group work and lecture were the primary modes of instruction.

RESULTS
Select data from administering a post-instruction written assessment of students’
understandings related to accumulation and the FTC are reported. The presentation of
results provides a statement of the item, the number of students who provided a correct
response (out of the 24 who completed the course), and the mean score (out of 3) on each
part of each item.
The collection of responses on Item 1 suggests that the beginning calculus students in this
study were proficient in applying covariational reasoning with accumulation tasks. Over
70% of the students completing the course provided a completely correct response to
parts d, e and f (Item 1), suggesting proficiency in coordinating the accumulation of a
function’s input variable with the accumulation of instantaneous rate-of-change of the
function from some fixed starting value to some specified value (MA3). Over 90% of
these same students also provided a correct response to the prompts that assessed
students’ understanding of the notational aspects of the FTC (parts b and c).

Item 1: The Water Problem
Let f represent the rate at which the amount of water in Phoenix’s water tank changed in (100’s of
gallons per hour) in a 12 hour period from 6 am to 6 pm last Saturday (Assume that the tank was
empty at  6 am (t=0)). Use the graph of f, given below, to answer the following.
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Number Correct Mean Score
(out of 24) (out of 3)

a. How much water was in the tank at noon? 21 2.8

b. What is the meaning of g(x) = f (t)dt
0

x

Ú
24 3.0

c. What is the value of g(9)? 22 2.7
d. During what intervals of time was the water level
decreasing?

22 2.7

e. At what time was the tank the fullest? 17 2.3
f. Using the graph of f given above, construct a rough
sketch  of the graph of g and explain how the graphs
are related.

17 2.4

Student responses on Item 2 also suggest that this collection of students possessed both a
strong understanding of notational aspects of the FTC (parts a, b) and proficiency in
applying covariational reasoning with accumulation tasks (parts f, g, and h). Responses
on parts c, e and i indicate moderate proficiency in understanding the statement of the
FTC, with only about 60% of these students providing correct responses on this
collection of questions.
Item 2: The Circle Problem
Consider a circle that expands in size from r = 0 to r = x. Let A be a function that represents the
accumulation of the rate-of-change of the circle as it increases in size from r = 0 to r = x.

Number
Correct

(out of 24)

Mean
Score

(out of 3)
a. Define A(x) as an accumulation function. 18 2.3

b. Construct a circle and illustrate what Ú
4 

2
 2 drrp  represents. 22 2.8

c. Describe what Ú
x

a
drr

dx

d  
 2 p  represents relative to the circle.

14 1.8

d. Construct the graph of f (the rate of change of the area of a
circle), on the axes on the left and the graph of A  (as defined
above) on the graph on the right. Label your axes.

20 2.6

e. Explain how the two graphs are related. 16 2.2
f. Construct the graph of A. Estimate the area under the graph of
A  from r = 1 to r = 5 using eight approximating rectangles and
right endpoints

19 2.5

Rate of change of
w a t e r  ( i n
h u n d r e d s  o f
gallons)

Number of
hours
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right endpoints
g. Given that n represents the number of subdivisions on the
interval from r = 1 to r = 5, explain what is involved  in letting
the lim •Æn  for this interval.

20 2.6

h.What is the result of this evaluation? 19 2.7
i. What does A’(x) = f(x) mean in the context of this situation? 16 2.1

Results for item 3 reveal that most of these students recognized this question as an
application of the FTC. They were also successful in translating the situation to symbols
(Part D of the FTC framework). However, most students had difficulty recognizing that
they needed to sum the distance traveled in both the positive and negative directions.
Item 3: The Distance Problem

A particle moves along a line so that its velocity at time t is v(t) = t2 – t – 6 (measured in feet
per second). Find the distance traveled during the time period from t = 1 to t = 4.  Show Work!
Number Correct (out of 24): 12   Mean Score (out of 10): 7.2
Number of students who set up the integral correctly: 23
Common Error: Computed position from start instead of total distance traveled.

The collection of student-responses on these items suggests that most of the students
completing the course emerged with proficiency in using and understanding notational
aspects of the FTC (Item 1, parts b and c; Item 2, parts a, b). These results also suggest
that these students were able to apply covariational reasoning with accumulation tasks.
Their understanding of the statements and relationships of the FTC tasks were weaker,
with only a little over half of the students completing the course providing correct
responses to the collection of questions assessing this ability.

Interview Results
The four interview subjects were Lisa, Harold, Chad and Katie. Lisa received a C in the
course, Harold and Chad received B’s, and Katie received an A. Analysis of the four
interviews revealed that: i) all four students were able to apply covariational reasoning
with accumulation tasks; ii) all four students possessed a strong understanding of most of
the notational aspects of the FTC; and iii) Chad, Katie and Harold possessed a strong
understanding of the statements and relationships of the FTC. Select interview excerpts
from the interviews in which these four students explained the reasoning they used to
respond to the above items follow.
When responding to Item 1, Chad demonstrated that he was able to coordinate the
accumulation of time and accumulation of rate (MA3).  He also demonstrated that he
understood the role of the input variable to g (i.e., determining the upper limit of the
integral); however, further probing suggests that he had some confusion about the role of
x and the rationale for labeling the independent variable of f using another variable.
I:  So what did you notice about the relationship?
Chad: One figure is always twice the area of the other.
I: Explain the meaning of g(x) (see item 1c above).
Chad: I see g as giving the amount of area under the graph of f.
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I: What does the input variable x represent?
Chad: This tells you how far out on the right on the graph of f you want to go (student sweeps

his hand across the graph.)
I: Can you explain this in the context of the question.
Chad: Um…since f is the rate of water flowing into the tank and g is the integral of f from 0 to

x, when you find g(x) you are finding how much water came in or went out of the tank
from the starting time, up until the time that you want….that is the time x (MA3).

I: So, how do you think about evaluating g(9)?
Chad: I see that as finding the time that passes from 0 to 9 and thinking about how much area

gets added under the curve as I move along. I see that water is coming into the tank, first
at an increasing rate, then at a decreasing rate. Then after 4_ hours, water starts to go out
of the tank (MA3). As you add up the area under the curve you see that the same amount
of water comes in between 0 and 4 _ that goes out between time 4_ and 9….so, the result
is that there is no water in the tank after 9 hours have passed.

I: How are g and f related?
Chad: The derivative of g gives the graph of f. What I don’t get is why t is the variable that is

used in f.  I never really understood this on some of the other problems we did either.
The interview responses to item 2 (parts d and e) revealed that three of the interview
subjects (Harold, Chad and Katie) held a strong understanding of the statement of the
FTC for the circle problem. These three students were proficient in constructing the
graphs of f and A. They were also able to provide a clear articulation of how the two
graphs are related.  Harold set up a table that computed the accumulation of the area
under the graph of f from 0 to various values of x.  He continued to explain that he
viewed the accumulation of the area from 0 to specific values of the input to f as
producing a value that provided the total area. He went on to explain that he also viewed
the accumulation of area as the output of A. Later in the interview, he expressed that he
viewed the accumulation of rate-of-change of the circle as adding up “infinitely many
infinitesimally small” circumferences. When probed to explain how to use the graphs to
compute Ú

5 

2
 2 drrp , he responded that it could be computed in several ways.  He continued

by subtracting the two areas under the graph of f; he then drew a picture of the circle and
shaded the area represented by this definite integral. He went on to explain that what he
was actually finding was A(5) – A(2) and expressed that this value was just the difference
in the heights of the graph of A between r = 5 and r = 2.
The interview with Lisa revealed some weaknesses in her understanding of the statements
and relationships of the FTC. More specifically, she was unable to articulate what
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 2 p = 2 xp expressed about the relationship between accumulation and accrual.

Her response suggested that she did not view Ú
x

a
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 2 p  as a representation of the accrual

of 2 rp from some specific value a, to some specified value for x. Her utterances
suggested that she did not view this as an object that she was able to differentiate.
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CONCLUSIONS AND DISCUSSION
The quantitative and qualitative data suggest that most of the first semester calculus
students in this study completed the course with a strong understanding of notational
aspects of accumulation. They also demonstrated an ability to coordinate the
accumulation of a function’s input variable with the accumulation of instantaneous rate-
of-change, from some fixed starting value to some specified value, for various
contextualized situations. Although some weaknesses were observed in some students’
understandings of the statements and relationships expressed in the FTC, the performance
of this collection of students relative to the attributes of accumulation and the FTC
expressed in this framework were relatively good, especially if one compares this with
what has been reported of secondary teachers and graduate students (Thompson, 1994).
The framework for this study served as a useful tool for analyzing students’ reasoning
abilities and understandings relative to both conceptual and notational aspects of the
FTC.  The results of this study suggest that further refinement of Part D of the framework
is needed. In particular, the weaknesses that were observed suggest that the framework
needs to include a more careful articulation of the mental actions involved understanding
and applying the statements and relationships expressed by the Fundamental Theorem of
Calculus. This refinement should also lead to the development of additional ideas for
curricular tasks and prompts to better assist students in developing these understandings
and reasoning abilities.
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