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This paper explores the role of instructional scaffolding in the development of
undergraduate students' understanding of mathematical proof during a one-year discrete
mathematics course. We describe here the framework adapted for the analysis of whole-
class discussion and examine how the teacher scaffolded students' thinking. Results
suggest that students who engage in whole-class discussions that include metacognitive
acts as well as transactive discussions about metacognitive acts make gains in their ability
to construct proof. Moreover, students' capacity to engage in these types of discussions is
a habit of mind that can be scaffolded through the teacher's transactive prompts and
facilitative utterances.

BACKGROUND FOR THE STUDY
Exploring Sociocultural Aspects of Students' Understanding of Proof

“The concept of proof is one which not only pervades work in mathematics but is also
involved in all situations where conclusions are to be reached and decisions to be made.
Mathematics has a unique contribution to make in the development of this concept, and […]
this concept may well serve to unify the mathematical experiences of the pupil” Harold P.
Fawcett (1938)

Since the statement above was written, the assumptions about proof as a logical argument
that one makes to justify a claim and to convince oneself and others, and its role in
mathematics, have not changed. Mathematicians and mathematics educators unanimously
agree on the importance of proof in mathematics and the necessity for students to develop
both the understanding of concepts related to proof and the skills to read and write proofs.
However, the ability to read and do proofs in mathematics is a complex one that depends
on a wide expanse of beliefs, knowledge, and cognitive skills and that is uniquely shaped
by the social context in which learning occurs.
Research on students' understanding of mathematical proof has focused on cognitive
issues, including the development of students’ proof schemes (Harel and Sowder, 1998)
and students' misconceptions and difficulties with proof (e.g., Balacheff, 1988; Chazan,
1993; Porteous, 1990; Senk, 1985). However, the effect of sociocultural factors on
students’ transition to mathematical proof, particularly in undergraduate settings, remains
a virtually unexplored domain. Thus, we are engaged in a study of the role of the social in
how students in a one-year, undergraduate mathematics course come to understand proof.
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We see an emphasis on the social character of proof as situated within the broader
theoretical perspective that development cannot be understood apart form the social
context in which it occurs (Vygotsky, 1962/1934). In particular, Vygotsky maintained
that “higher voluntary forms of human behavior have their roots in social interaction, in
the individual’s participation in social behaviors that are mediated by speech” (Minick,
1996, p. 33), and that students’ development of self-regulatory thinking occurs through a
process of internalizing events that originate on the social plane. As part of this, he
postulated the notion of a zone of proximal development (ZPD) as a way to conceptualize
learning.
Scaffolding and the Zone of Proximal Development
The ZPD is defined as the space characterizing one’s potential for development through
the assistance of a more knowing other (Vygotsky, 1962/1934; Litowitz, 1993). As a
diagnostic, the ZPD intends to assess not only those cognitive functions that one
possesses, but also those that are in the process of development by virtue of the learner's
interaction with more knowing others, cultural tools, and so forth (Kozulin, 1998). Since
learning is viewed as a product of interaction, it follows that one’s development within
the ZPD is affected by the intellectual quality and developmental appropriateness of these
interactions (Diaz, Neal, & Amaya-Williams, 1999). In other words, the extent of one's
development within the ZPD is predicated in part upon how the more knowing other
organizes, or scaffolds, the task at hand. Thus, if we intend to understand development
within the ZPD, we must think about if and how tasks can be scaffolded to extend one's
learning.
As a construct inseparable from the ZPD, instructional scaffolding is a mechanism for
observing the process by which the learner is helped to effect his or her potential learning
(Stone, 1993). Practically speaking, it refers to the "provision of guidance and support
which is increased or withdrawn in response to the developing competence of the learner"
(Mercer, 1995, p. 75), and it is based on the appropriation, not simple transfer, of ideas
between teacher and student. However, understanding the subtleties by which this occurs
is a complex process that requires sensitivity to the learner's goals as these goals emerge
in the course of activity (Wells, 1999). Thus, within the classroom, scaffolding
presupposes that the teacher is continuously attending to students' thinking in order to
access their individual (and communal) ZPD. For example, knowing how to give hints
that focus and challenge a student's thinking requires a deep knowledge of students'
individual learning capacities with respect to the task at hand. The complexity increases
for the teacher because hints are often given in large group settings that necessarily
conceal individual differences and thus diminish the teacher's capacity to attend to them.
From this perspective, we came to view the nature of scaffolding and when and how
one's learning is scaffolded as a critical part of understanding how students learn to
construct mathematical proofs. Thus, within the broader purpose of exploring
sociocultural factors in undergraduate students' transition to mathematical proof, we
focus here on instructional scaffolding and how it supported the development of students'
capacity to write and express rigorous mathematical proofs. In particular, we share our
findings on the following specific questions:
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h. What is the nature and meaning of instructional scaffolding in the classroom in the
development of students’ proof ability?

i. How do different types of scaffolding prompts from the teacher affect students’ self-
regulatory thinking about proofs?

METHODOLOGY
Participants, Data, and Setting
Participants for the study were two cohorts of undergraduate mathematics students, with
50 students per cohort, enrolled in a one-year discrete mathematics course that
emphasized mathematical argumentation and proof. Classroom instruction was
videotaped and selected small group discussions were audiotaped. Whole class and small-
group episodes were selected for transcription and analysis. Additionally, students were
given pre- and post-assessments which were analyzed to identify the generality, form and
competency of students’ arguments and which we took as evidence for shifts in students’
capacity for self-regulatory thinking (see Blanton & Stylianou, 2002). Finally, students'
individual written proof constructions were collected biweekly. The study reported here
focuses on data collected during whole-class and small-group discussions that occurred in
the first semester of the course.
The instructor (the same for both cohorts) worked to establish expectations that students
explain their reasoning and make sense of and challenge each other’s explanations and
justifications. Students submitted regular assignments in which they wrote proofs and
reflected about their thinking. Classroom activity focused on group problem solving and
included alternative forms of assessment (e.g., group exams, reflective writings).
RESULTS
A Framework for Analyzing Instructional Scaffolding
We begin here by describing how our focus narrowed to instructional scaffolding and the
subsequent framework we adapted for its analysis. Our previous work provided both a
general description of how students evolved in their capacity for argumentation and
written proof and quantitative results that students were learning to construct increasingly
rigorous proofs (see Blanton & Stylianou, 2002). However, we wanted to more carefully
detail the mechanisms of classroom interaction that mediated the collaborative, or public,
development of students’ proof ability. Consequently, our focus shifted to analyzing the
discourse structure in whole class discussions, using each speaker's turn as the unit of
analysis. For purposes of analysis, we found it useful to distinguish between public and
private cognition, where we take public cognition to mean mathematical knowledge that
is publicly owned and constructed. As we analyzed discourse data, it became apparent
that the teacher's utterances, because of their intent coupled with her function as a more
knowing other, were fundamentally different than those of students. Thus, we could not
analyze these data as a group discussion such as that among peers, but had to attend to the
dynamic created by the different purposes of the speakers. This redirected our attention to
the teacher's utterances in order to detail the nature of instructional scaffolding and how it
extended students' development within the ZPD.
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We based our framework for analysis on the work of Kruger (1993) and Goos, Galbraith,
and Renshaw (2002). In particular, we found Kruger’s (1993) framework for the analysis
of transactive discussion helpful in identifying each person's contribution to the
collaborative structure of the whole class interaction. Transactive discussion is
characterized by clarification, elaboration, justification, and critique (of one’s on or one’s
partner’s reasoning). Moreover, transactive discussion refers to the ways that people
publicly engage with metacognitive utterances. Thus, we drew from the work of Goos et
al, itself an extension of Kruger's framework, to analyze metacognitive utterances that
functioned as "New Idea" or "Assessment". However, since the work of Kruger (1993)
and Goos, et al (2002) is based on peer group analysis, we needed to extend their
frameworks by analyzing the intent of the teacher's utterances as well. Thus, in our
framework for analysis of whole-class discussion, utterances were cross-coded in terms
of metacognitive acts (New Idea; Assessment), transactive utterances, and the nature of
scaffolding in the teacher's utterances.
The Nature of Instructional Scaffolding in Students' Proof Construction
From our analysis, we found that the teacher's utterances consisted of transactive prompts
and facilitative utterances. By facilitative utterances, we mean instances of revoicing or
confirmation. We define transactive prompts to be a form of scaffolding in which the
teacher's questions promote transactive discussion among students. In particular, the
teacher’s utterances consisted primarily of requests for clarification, elaboration,
justification, and critique, all of which formed the basis for a complex, interconnected
dialogue by which students engaged in metacognitive acts, transactive discussion, and
transactive discussion about metacognitive acts. Goos, et al, (2002) found transactive
discussion of metacognitive acts to be a significant factor in successful (small group)
collaborative problem solving. We conjectured a similar effect on whole-class discussion
and we argue that, to the extent that the teacher's transactive prompts were able to
facilitate transactive discussion in whole-class dialogue, she was able to scaffold students'
thinking in publicly constructing mathematical proofs.
To support this claim, we share here the coding and analysis of an excerpt from a 60-
minute classroom episode that occurred during Week 4, where the task was to construct a
proof that 2  is irrational. Codes of utterances are italicized in the protocol. The analysis
focused on characterizing the structure of dialogue surrounding transactive prompts and
facilitative utterances in the whole class discussion in order to understand how the
teacher was able to scaffold student thinking and what this suggested about student
development within the ZPD. Student names are pseudonyms.

Teacher: Why is that true (‘2q2 = p2’ fails for odd numbers)? (request for justification)

Anthony: We could prove that an odd times an odd is an odd. (new idea)
Teacher: Yeah. We could do something like that. That would certainly work. That would

be a more general case in fact, instead of a particular case. (revoice and
confirm)

Degan: We already know that 2 times any integer is going to be an even number
anyway. (new idea)
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Jarrod: That's what I was going to say. The left side (2 p2) is always even.
(elaboration)

Teacher: OK, So here's something (2p2) that's always going to be even, so you're saying
that if p is odd, [then] p2 is odd, so you'd have an odd number equal to an even
number? (clarification)

Jarrod: Yeah.

Teacher: True. So if p is odd, it fails. (revoice and confirm) Are we done?
(request  assessment of proof status)

In the above episode the teacher aims to scaffold the students towards the construction of
a particular proof. The classroom had agreed the previous day that a proof by
contradiction would be an appropriate strategy to use, and the teacher initiated the
discussion by re-stating the agreed upon plan. The teacher restrains her comments in only
three types: (a) requesting clarification, elaboration, justification, or assessment, (b)
revoicing and/or confirming a student statement, and (c) elaborating on a student-
originated idea. While the teacher herself avoids engaging in transactive discussion
(except in the one case where she elaborates), her goal is to encourage her students to do
so as they gradually progress in their proof construction.
The scaffolding here takes two forms. The obvious form of scaffolding is the teacher’s
confirmation of students’ ideas. By revoicing and confirming student-originated ideas,
the teacher lends authority and confidence to students, as the “more knowing other”, to
proceed along the student-suggested path. The second form of scaffolding is the teacher’s
repeated requests for students to engage in transactive discussions. And while by the first
form of scaffolding the teacher shares responsibility for the proposed action (through a
tacit approval), the second is a transfer of responsibility for a construction of a proof from
the teacher to the students (through her requests for assessment and critique). A second
difference is with respect to the overall goal of each form of scaffolding. The former
involves utterances specific to a given mathematical problem. The latter is a theme that
permeates the entire semester; it is about the development of the habit of mind of being
inquisitive and engaging in metacognitive acts.
The question that arises is whether the teacher, through the two forms of scaffolding,
accesses students’ ZPD. Our coding and analysis suggest a tentative hypothesis:
Students’ proposal of “new ideas” and their subsequent elaboration and justification of
these ideas in a way that furthered the construction of a proof indicates their development
within the ZPD. Pre-test results (Blanton & Stylianou, 2002) suggested that prior to
instruction students were not able to construct this proof. However, the teacher’s transfer
of the proof responsibility through transactive prompts supported students in making
significant contributions to the proof. With respect to our first research question, we
claim that while both types of scaffolding prompts impact student proof ability, it is
likely that prompts that encourage transactive discussion are the most crucial in the
development of students’ proof ability. Further study is needed to understand whether the
two types of scaffolding prompts impact students’ reasoning differently at different
stages of the proof construction.
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We were further interested in examining possible patterns of transfer of the teacher’s
scaffolding prompts in students’ small group discussions. We conjectured that transactive
patterns in whole class dialogue, led initially by the teacher, eventually would be
internalized by students in their acquisition of self-regulatory thinking. Our subsequent
coding of students’ small group discussions provided evidence that students assumed the
role of scaffolding each other with the same transactive prompts their instructor earlier
urged them to use to scaffold their own thinking about proof. In this sense, we argue that
the forms of argumentation essential for proof-building were becoming a habit of mind
for students independent of the teacher's participation in the dialogue. The following
excerpt, which occurred during Week 5, is a small-group discussion for which the task is
to prove that for any even integer, n, n2+1 is odd.

Mike: Does this show this… this is true? (request for clarification)

Justin: Say, assume n2+1 is even so then you can throw out… (clarification)

Mike: Right…. (confirm)

Justin: [voicing his algebraic work] n2+4l2+1 … n2+4l2…. (elaboration)

Mike: So that’s where I show n is odd down here. (confirm)

Steve: Ummm….yeah (confirm)

Mike: But aren’t you trying to show n is odd? (request for clarification)

Justin: I did. (clarification)

Mike: I don’t know…I don’t really think you… I don’t think you proved it yet, but
that could be close.  Because you’re trying to show its odd and all you proved
is n2+1 is even. (critique)

Steve: Alright, what are we trying to show? (request for assessment of proof status)

Justin: I know but I showed its even when I say n=2l. (clarification)

Steve: We showed its odd… n2 we showed is…. (clarification)

The discussion in the small group is fundamentally different than the whole-class
discussions. While in both episodes the main objective is to produce a correct proof to a
given problem, in the small group discussion there is no instructional intent to  scaffold
student thinking. The “more knowing other” becomes the "more capable peer" in a
discussion among equal partners. This difference is reflected in the type of utterances in
the small group discussion that fall into two categories: (a) requests for
clarification/elaboration/justification (transactive), and (b) responses to these requests.
Justin appears to be the more inquisitive partner, but his requests do not imply that he
assumes the role of the scaffolding instructor. His requests are the expression of his
attempt to follow his partners’ reasoning and negotiate meaning with them, not to get his
partners to engage in transactive discussion for its own sake. However, indirectly and
unintentionally, his requests have an impact similar to the teacher’s earlier requests: The
other two students are forced to clarify their reasoning and, subsequently, advance their
own understanding and thinking. With respect to our second research question, we make
an initial claim that students appropriated the structure of whole-class dialogue,
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scaffolded by the teacher's transactive prompts and facilitative utterances, and used this to
advance their own and their classmates’ proof construction.

DISCUSSION
Concerning the notion of scaffolding, Stone (1993) notes that little attention has been
paid to the mechanism by which the transfer from mentor to student is accomplished.
Indeed, little, if any, research has focused on instructional scaffolding in tertiary
mathematics settings. As such, this study was intended to provide insights into how
students appropriate strategies for advanced mathematical reasoning and how
instructional scaffolding supports this. Our results suggest that students who engage in
whole-class discussions that include metacognitive acts as well as transactive discussions
about metacognitive acts make gains in their ability to construct mathematical proofs.
Moreover, students' capacity to engage in these types of discussions is a habit of mind
that can be scaffolded through the teacher's transactive prompts and facilitative
utterances. This has serious implications for the nature of whole-class discourse that
occurs in advanced mathematical settings, at least for those that deal conceptually with
mathematical proof. In effect, it suggests that students can internalize public
argumentation in ways that facilitate private proof construction if instructional
scaffolding is appropriately designed to support this.
More work is needed, however, to further detail the nature of instructional scaffolding
and its longitudinal effect on students' capacity for small-group and individual proof
construction. For example, analyses that would establish the increasing use of transactive
prompts in students’ private proof construction subsequent to whole-class discussion
would further our understanding of the development of students’ proof conception and
would provide a critical link between instructional acts and the development of one's
transition to mathematical proof.
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