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Abstract 

Our research question was whether we could develop a feasible technique, using 
Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age 
participants completed tasks designed to measure conceptual knowledge, procedural 
knowledge, and problem-solving skills related to circuit analysis. A Bayesian network 
was used to model the knowledge dependencies among the circuit analysis concepts. 
Preliminary results suggested that the Bayesian network was generally working as 
intended. When high- and low-performing groups were formed on the basis of 
posterior probabilities, significant group differences were found favoring the high-
performing group with respect to circuit definitions and circuit analysis problems, for 
both actual and self-assessments, and higher major GPA. The Bayesian network was 
able to predict participants’ performance on a problem-solving item on average 75% of 
the time. The findings of this study are promising for our long-term goal of developing 
scalable and feasible online automated reasoning techniques to diagnose student 
knowledge gaps.  
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An Exploratory Study Examining the Feasibility of Using Bayesian Networks to 

Predict Circuit Analysis Understanding 

Renewed interest in individualizing instruction, particularly with the use of 
technology, has resulted in a search for methods that can accurately diagnose student 
knowledge gaps and prescribe appropriate remediation.  While the idea of 
individualized instruction has its roots in the programmed instruction movement of 40 
years ago, the major difference now is the availability of far more sophisticated, 
affordable, and accessible delivery technologies (e.g., Internet/Web, low-cost personal 
computers) and technologies to support knowledge representation and automated 
reasoning (e.g., Bayesian networks). Together, these technologies provide the 
mechanism to make feasible and practical individualized assessment and instruction. 

In this study, we explored the feasibility of using Bayesian networks to estimate 
students’ understanding of introductory circuit analysis topics (e.g., Kirchoff’s current 
law). Our work focused on two major activities: (a) modeling the knowledge 
dependencies among the various concepts, and (b) gathering validity evidence on the 
quality of the model. This research directly supports our long-term goal of developing 
online assessment and instruction for individual students in distributed and distance 
learning settings. In such contexts, we believe automated reasoning techniques to be the 
only feasible method for diagnosing knowledge gaps for large numbers of students. 
Note that our interest is not in whether automated reasoning techniques are superior to 
traditional techniques (e.g., an instructor diagnosis) but rather in the extent to which 
automated reasoning techniques can be used to diagnose knowledge gaps.  

Bayesian networks are one of the most influential tools for modeling and 
reasoning under uncertainty (Jensen, 2001). A Bayesian network is a graphical 
probabilistic model, which comprises two parts: (a) a directed acyclic graph, in which 
nodes represent variables of interest and edges represent direct causal dependencies, 
and (b) a set of conditional probability tables, which quantify the dependencies between 
variables. Considerable past research has focused on the use of Bayesian networks for 
user modeling or assessment purposes (e.g., Anderson, Corbett, Koedinger, & Pelletier, 
1995; Chung, Delacruz, Dionne, & Bewley, 2003; Martin & VanLehn, 1995; Mislevy & 
Gitomer, 1996; Mislevy, Steinberg, Breyer, Almond, & Johnson, 2002; O’Neil, Chuang, & 
Chung, 2003). In this study we use Bayesian networks to represent circuit analysis 
knowledge and gather validity evidence. 
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Our general approach to validating the use of Bayesian networks for diagnostic 
purposes consisted of the two components, a general modeling approach, and a 
validation approach. 

Domain Modeling 

We begin by modeling the domain in terms of knowledge dependencies. In our 
case, the domain was understanding the set of concepts related to node-voltage and 
mesh-current analyses in circuit analyses at the introductory level. Given that a student 
knows concept X, what are (a) the most directly related concepts, and (b) the extent to 
which students are likely to know those concepts? Conversely, given that a student 
does not know concept X, how likely is it that the student will know the related 
concepts? A key feature of Bayesian networks is the inclusion of uncertainty via 
probability estimates. This is critical as learning is inherently uncertain, occurring in 
many different ways and under many different conditions.  

Validation Approach 

Our general approach to validating the method was to gather evidence on the 
extent to which the probabilities yielded by the Bayesian network tracked with other 
measures of student learning. We interpreted the probabilities associated with each 
concept as an indication of how likely it was that a student understood that concept. 
Empirical evidence was gathered by examining the correlations between probabilities 
and other outcome measures, and background achievement measures. We also 
examined differences on various measures between high and low performers, as 
defined by Bayesian network probabilities.  

Research Question 

The main research question in this study was to what extent can Bayesian 
networks be used to diagnosis what students know and don’t know? 

Method 

Participants and Design 

Participants. The sample comprised 34 participants (27 males, 7 females) who 
were ethnically diverse (21 Asian-Americans, 4 White, 1 Latino/a, 1 Biracial, 1 African 



5 

American, and 6 unspecified) and with a mean age of 20.3 years old (SD = 2.1 years). 
Table 1 shows descriptive statistics and intercorrelations for GPA and self-reported SAT 
score measures; Table 2 shows the distribution of the sample by academic major and 
standing. In general, the sample was mostly male electrical engineering juniors with B-
average GPAs. With respect to grades in the particular course (Electrical Engineering 10 
[EE10]) that covered the concepts used in this study, 20 participants were currently 
enrolled in the course, 8 received an A in EE10, 3 received a B, 1 received a D or F, and 2 
participants did not take EE10. In addition, for participants currently enrolled in EE10, 
we tracked when the participants participated in this study with when they received 
instruction in EE10 and could thus code whether students received relevant instruction 
or not. Fifteen students were classified as having not received instruction on the 
relevant topics and 16 were classified as having received instruction. Thus, the sample 
appeared to be typical with respect to background variables, and the sample also 
appeared to have differential exposure to the main concepts used in this study.  

Table 1 
Descriptive Statistics and Intercorrelations (Spearman) for Achievement and SAT Measures (N = 34) 

Measure n M SD Min. Max. EE GPA 
SAT I Verbal 

Score 
SAT I Math 

Score 

Overall GPAa 29 3.32 0.45 1.90 3.84 .77** .07 .52* 

EE GPAb 30 8.64 2.04 3.75 12 — -.12 .45* 

SAT I Verbal Scorec 25 654.4 78.2 440 770  — .09 

SAT I Math Scorec 26 752.3 48.8 610 800   — 

aMax. = 4.0. b12 point scale.  cMax. = 800.  
 *p < .05 (two-tailed). **p < .01 (two-tailed). 
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Table 2 
Distribution of Participants by Academic Standing and Major (N = 34) 

Academic 
standing 

Electrical 
Engineering 

Mechanical 
Engineering 

Computer 
Science and 
Engineering 

Computer 
Science Other 

Sophomore 3 0 2 1 0 

Junior 13 1 7 0 0 

Senior 2 0 2 0 2 

Graduate 1 0 0 0 0 

Design. A single group correlational research design was used to support 
examination of how the various measures related to each other.  

Tasks and Measures 

Participants were administered a variety of tasks intended to provide the basis for 
measuring their understanding of circuit analysis concepts.  

Background Information. Participants were asked to complete a survey asking for 
their age, gender, and ethnicity. In addition, self-reported SAT I Verbal and SAT I Math 
scores, overall GPA, class standing, and major were gathered. Participants were asked 
for a list of courses they were currently taking, as well as their grades in all electrical 
engineering courses they had taken. The EE grades were computed to a 12-point scale 
(given that “+” and “-“ were part of the actual student grade). 

Knowledge Measures. Five tasks were administered to gather information on 
participants’ knowledge of circuit analyses: conceptual definitions of circuit concepts, 
procedural understanding of node-mesh and node-voltage analyses, conceptual 
understanding of circuit analysis concepts, circuit problem solving, and self-ratings of 
understanding.  

Conceptual definitions of circuit analysis concepts. Participants were asked to 
define, in a few sentences, 19 concepts related to circuit analysis. Participants were 
asked to state the concept in mathematical or descriptive form. The topics participants 
were asked to define were: combination of sources, constraint equation, current division, 
dependent source, equivalent resistance, essential node, KCL, KVL, mesh, mesh current, node, 
node voltage, Ohm’s law, parallel resistance, series resistance, sign convention, super mesh, 
super node, and voltage division. This task was intended to provide information on 
participants’ general familiarity of a concept.  
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Participants’ written responses to each concept measure were scored 
dichotomously and a summary measure was computed as the sum of correct responses. 
A second measure was obtained, based on participants’ self-assessment. Participants 
were asked to score themselves, on a scale of 0 to 10, on how well they understood each 
topic. The specific score ranges were:  

 0 = no understanding of the topic at all, could use a lot of help with the content 

 1 – 5 = some understanding, could use some help with the content 

 6 – 9 = more understanding than not, may need some help with the content but 
probably not 

 10 = complete understanding of the topic, don’t need any help with the content 

Circuit explanation essay. Participants were asked to write an essay to explain the 
importance of KCL, KVL, and Ohm’s Law with respect to circuit analysis. The 
instructions emphasized that the goal of the essay was to convey their conceptual 
understanding, and one way to help them write the essay was to imagine that they were 
asked to give a guest lecture to new EE students about why these topics (KCL, KVL, 
Ohm’s Law) are fundamental and important to circuit analysis. Some guiding questions 
were provided with the intention of helping participants start the essay and frame their 
response (Why is it important to know these laws? What do these laws let you do? What role do 
KCL, KVL, and Ohm’s Law play in electrical engineering in general—not only in solving simple 
circuits, but in the larger circuit analyses picture? Are KCL/KVL/Ohm’s Law simply a set of 
mathematical relationships used to figure out voltage current and resistance, or is there 
something more fundamental to these laws?). The specific prompt for this task was: 

Please explain the importance of KCL, KVL, and Ohm’s Law. Why are these topics so 
fundamental and important to circuit analysis? Remember, the essay should convey your 
conceptual understanding.  

The task was intended to provide information on participants’ deep 
understanding of the interrelationships among the fundamental concepts of Ohm’s 
Law, KVL, and KCL.  Participants’ responses were scored on a 5-point scale using the 
rubric shown in Table 3. 
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Table 3 
Explanation Essay Rubric 

Score Scoring guidelines 

1 No indication that the response shows understanding of any of the three concepts (Ohm’s 
Law, KCL, KVL). 

2 Basic understanding of one or more of the concepts.  
Includes only a description or a statement of the equations behind these concepts. 
No elaboration or insight into the concepts (i.e., why the concepts are important). 

3 All concepts are mentioned, and at least one is explained on a more conceptual level (i.e., 
goes beyond stating the definition of the concept). 
Descriptions and definitions are partially correct. 
Minimal elaboration. 

4 Two concepts discussed thoroughly or one in detail. 
Shows some principled understanding. 
Processes are elaborated. 
Response contains only a few minor misconceptions. 

5 Complete response. All three concepts are discussed and elaborated. 
High level of detail. 
High level of discussion of concepts. 
Descriptions and definitions are accurate. 

Knowledge mapping of circuit problem-solving procedures. A knowledge 
mapping task was administered which required participants to diagram the procedure 
to solve circuit problems using the node-voltage method and mesh-current analysis 
techniques. Seventeen steps (choose solution approach (1), conduct mesh current analysis (2), 
conduct node voltage analysis (3), determine what is being asked (4), draw and label mesh 
currents (5), identify dependent sources (current) (6), identify dependent sources (voltage) (7), 
identify essential branch(es) (8), identify essential node(s) (9), label node voltages (10), list given 
information (11), report results (12), simplify circuit (13), solve equation (14), use KCL to write 
equations (15), use KVL and Ohm's law to write source equation (16), write constraint 
equations (17)) and two links (if mesh current analysis, if node voltage analysis) were 
provided.  

Scoring of participants’ knowledge maps was done by counting the number of 
propositions (node-link-node) in the participant’s map that were also in the criterion 
map (Herl, Baker, & Niemi, 1996). This measure was intended to provide information 
on participants’ knowledge of the problem-solving procedure for node-voltage and 
mesh-current analyses. The criterion map was based on a written problem-solving 
procedure developed by the class instructor (Appendix A) and is shown in 
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Figure 1. 
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Figure 1. Criterion knowledge map for node-voltage and mesh-current analyses.  

Circuit problem solving. Eight circuit problems were administered to participants. 
The problems were designed to require a range of concepts. Each problem required 
various circuit analysis concepts and was decomposed into subparts such that each 
subpart mapped to one concept. Thus, while each problem appeared as a task, the 
subparts actually mapped to different concepts. In this way we were able to sample 
different concepts across individual problems.  

Participants were instructed to solve each subpart, explain each subpart in writing, 
and score themselves using the same 0-10 scale as in the definitions task on their 
understanding of that subpart. In addition, participants were instructed to score 
themselves holistically on their overall understanding of the entire problem. Figure 2 
shows a sample problem-solving task. Each numbered question is a subpart.  
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Figure 2. Sample circuit problem-solving task. Layout of figure and prompts was compressed for display 

purposes. 



Table 4 
Rubric for Assigning Probability Values to the Conditional Probability Table  

Parent node state: Understands Parent node state: Does not understand 
State State 

R W Explanation R W Explanation 
1.00 .00 Absolute correlation,; if you understand the 

concept you must get the question right. People 
will occasionally make mistakes even with a 
perfect understanding of the topic. An exception is 
a "true/false" question that is directly questioning 
the targeted concept with no computation. 

.00 1.00 It is impossible to get this question right if you do not understand the 
targeted concept. There is no chance of guessing the question correctly, so 
there must be significant, necessary computation involved. An undesirable 
question, since the extra computation could be responsible for the incorrect 
answer. Using the targeted concept must be the only way to arrive at the 
correct answer. 

.95 .05 Essentially a perfect question. If you understand 
the concept you will get the question right; this 
probability allows for "stupid" mistakes. 

.05 .95 It is unlikely that the correct answer could be guessed, so there must be 
more than a few possible answers. Using the targeted concept must be the 
only way to arrive at the correct answer. Incorrect ways of attempting the 
problem must not coincidentally result in the correct answer. 

.85 .15 This is a good question. It is a question designed 
to test only the targeted concept so there is very 
little chance of a computational error. No 
necessary computation. Very few false negatives. 

.15 .85 This is a question that may have only a handful of possible answers, such 
as a "How many?" question. Or, it is a question with no apparent ways to 
solve the problem that do not directly test the targeted concept. 

.70 .30 This question tests the desired concept but there 
may be a less significant influence from another 
concept that may cause an incorrect answer. Also, 
there may be minor, necessary computations. 

.30 .70 This question has just a few plausible options for answers. Guessing the 
right answer is possible, but not likely. There shouldn't be any easy or 
obvious way to get the answer without using the targeted concept. 

.60 .40 .40 .60 A question whose answer is easily guessed. An example is a "true/false" 
question. Or a question that can be easily solved using knowledge of a 
non-targeted concept. 

  

This is a fairly poor question. The targeted concept 
is still being tested, but there are many other 
concepts that may influence the answer of the 
question or there are significant necessary 
computational steps that may result in an 
incorrect answer. 

.45 .55 A poorly designed question. Attempting to solve the problem with a 
commonly held, incorrect assumption coincidentally yields the correct 
answer. 

.50 .50 A meaningless question. There is no correlation 
between knowing the concept and answering the 
question correctly. 

.50 .50 A meaningless question. There is no correlation between knowing the 
concept and answering the question correctly. 

R = right or correct. W = wrong or incorrect. 
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Bayesian Network-Based Measures. The basic measure from the Bayesian 
network (BN) used was the probability values associated with each hypothesis (i.e., 
unobserved) variable. The graphical model is shown in the Appendix. The construction 
of the network was based on the following:  

1. The hypothesis nodes were defined as “understanding C,” where C was a 
circuit analysis concept.  

2. The conditional probability table was based on a node being in two states: 
understands or does not understand. The guidelines used for assigning specific a 
priori probability values are given in Table 4. 

3. The BN was constructed using a causal framework. Understanding a concept C 
directly influences understanding Cchild, where Cchild is a descendent of C. For an 
observable node O connected to C, C directly influences whether the 
participant answers O correctly (or incorrectly). 

4. An observable node was an item, scored correct or incorrect, from a subpart in 
the circuit problem-solving questions. Each subpart targeted a specific concept. 

Concept understanding. The probability for each hypothesis node was interpreted 
as the probability that the participant understood circuit analysis concept C. The 
probability was treated as a score and was used as a measure of understanding of 
concept C. The higher the probability for C, the higher the understanding of C.  

Decision. Because of how we interpreted the probability values in each node, and 
how we intended to use the BN in a practical setting (to detect and administer 
feedback), we derived from the probabilities an understand/does not understand 
dichotomous measure. In a practical setting this measure would be used to detect 
understanding (or not understanding) and serve as the basis for remediation;  thus, it 
was important to examine the characteristics of this measure. 

Manipulation check measures. Self-reports were gathered about participants’ 
perception of the knowledge mapping, definitions, explanation essay, and circuit 
problem-solving tasks. For each task, participants were asked three questions: (a) How 
difficult they found the task (1 = not difficult, 2 = somewhat difficult, 3 = moderately 
difficult, 4 = very difficult); (b) In general, how well they thought their conceptual 
understanding of circuit analyses was reflected by the tasks (1 = not well at all, 2 = 
somewhat well, 3 = moderately well, 4 = very well); and (c) In general, how much effort (i.e., 
trying to really do their best to answer the question) did they put into the task (1 = not 
much at all, 2 = some amount, 3 = moderate amount, 4 = a lot). 
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Reliability of measures. Cronbach’s alpha was computed for each measure. 
Reliability of the measures was generally in the .80s and .90s. Three scales in the 
problem-solving scales were low or contained two items (combination of sources, 
parallel resistance, current division, Ohm’s law, constraint equations, and KVL). These 
scales were dropped from subsequent analyses at the scale level; however, the items 
were retained in total score analyses. Interestingly, the self-ratings of understandings 
were uniformly high, with α ranging from .82 to .97. Table 5 and Table 6 show the 
reliabilities for the measures used.  

Table 5 
Reliability of Measures 

Measure n No. of 
items Score  n No. of 

items Self-rating 

Circuit definitions 24 19 .85a 19 24 .92b 

Overall problem solving       

Total score 24 9 .81c 19 9 .92d 

Total holistic self-rating   -- 19 9 .93d 

ano. of items = 19 and n = 24. bno. of items = 24 and n = 19. cno. of items = 9 and n = 24. 
dno. of items = 9 and n = 19. 

Table 6 
Alpha Coefficient for Circuit Problem Solving Topic Scales, Scores and Self-rating 

Topics n No. of items Score Self-rating 

Combination of sources 24 5 .41 .82 

Parallel resistance 34 2 .13 .87 

Voltage division 33 3 .75 .88 

Current division 33 2 .76 .85 

Node 27 -- .78a .92b 

Essential nodes 34 3 .79 .95 

KCL 33 4 .62 .92 

Ohm’s law 34 2 .42 .97 

Constraint equations 33 2 .61 .90 

Mesh 34 4 .91 .97 

KVL 33 2 .57 .85 

ano. of items = 7. bno. of items = 5. 
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Procedure 

Participants were recruited via class announcements in introductory circuit classes. 
Participants who participated in prior research were also recruited via email. 
Participants were administered the tasks individually or in small groups. The set of 
tasks, order, and allotted time is shown in Table 7. Pilot testing of the measures 
provided the basis for the time; however, participants were allowed to complete the 
task at their own pace. In general, participants finished all the tasks within the allotted 
time.  

Table 7 
Administration Schedule 

Task 
Time 

allotted 

Introduction to study 5 

Knowledge mapping 25 

Conceptual definitions 30 

Circuit analysis essay 20 

Background survey 10 

Circuit problem solving 60 

Results 

Manipulation Check 

Prior to conducting the analyses, participants’ responses to manipulation check 
questions with respect to the knowledge map, the definitions, essay, and circuit 
problems were examined. Table 8 shows self-reported perception of task difficulty, 
utility, and effort. In general, participants perceived all tasks as having some difficulty, 
with the circuit problems rated as being the most difficult. With respect to how well 
participants perceived the measures as reflecting their conceptual understanding of 
circuit analysis, participants reported that they perceived the measures as moderately 
capturing their conceptual understanding of circuit analyses with the circuit problem-
solving questions being rated the highest. Finally, most participants reported a 
moderate amount of effort at completing the tasks. 
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Table 8 
Descriptive Statistics for Participant Self-Reports of Task Difficulty, Utility, and Effort (n = 33) 

Measure  M SD 

Difficulty of taska   

Knowledge mapping 1.36 0.49 

Definitions  1.79 0.65 

Essay 2.33 0.99 

Circuit problems 2.25 0.95 

How well task captured conceptual understandingb   

Knowledge mapping 2.64 0.82 

Definitions  2.61 0.70 

Essay 2.36 1.17 

Circuit problems 3.03 0.88 

How much effort put into taskc   

Knowledge mapping 2.94 0.83 

Definitions  3.15 0.67 

Essay 2.70 0.77 

Circuit problems 3.30 0.88 

a1 = not difficult, 2 = somewhat difficult, 3 = moderately difficult, 4 = very difficult. b1 = not well at all, 2 = 
somewhat well, 3 = moderately well, 4 = very well. c1 = not much at all, 2 = some amount, 3 = moderate amount, 4 
= a lot. 

For the knowledge mapping task, a significant correlation was found between 
participants’ ratings of how well the task represented their conceptual understanding 
and their knowledge map score (r = .46, p = .001). The higher participants reported that 
their conceptual understanding was reflected by their knowledge map, the higher their 
knowledge map score. For the essay task, significant correlation was found between 
participants rating of how much effort they point into the essay and their essay score (r 
= .35, p = .05). The more effort participants reported, the higher their essay scores. 

For the circuit problems, perceived difficulty of the circuit problems was 
negatively related to their problem-solving score across all problems (r = -.57, p = .001), 
and negatively related to their overall self-rating of each circuit problem (r = -.38, p < 
.06). In general, the more difficult the task was perceived, the lower the scores and self-
ratings. In addition to perceived difficulty, effort was positively associated with 
problem-solving scores (r = .35, p < .06). As participants put more effort into solving the 
problems, the higher their scores. 
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These data are consistent with the idea that participants were taking the tasks 
seriously and expended reasonable effort. The pattern of correlations, particularly 
between performance and perceived difficulty and perceived utility, is consistent with 
prior research (e.g., Chung & Baker, 2003; Chung et al., 2003). Thus, we concluded that 
the data were suitable for subsequent analyses. 

Validity Analyses 

Validity evidence was gathered by examining three questions: 

• What was the relation among the measures of knowledge? We expected to 
observe positive correlations among measures of circuit knowledge and 
participants’ self-reports. 

• To what extent is the model capturing systematic differences in student 
responses? We addressed this question by examining (a) the Bayesian network 
probabilities when random student performance data were entered, and (b) 
examining the relation between the Bayesian network probabilities and other 
measures (i.e., performance on the other knowledge measures, self-ratings, and 
EE GPA). We expected to observe null correlations when random student data 
were entered, and we expected to observe positive correlations between the 
Bayesian network probabilities and the other knowledge measures. 

• How accurate is the Bayesian network? One indicator of the quality of the 
model is the degree to which it can predict student performance. We used a 
variation of a “leave-one-out” analysis to examine this issue. 

What was the relation among the measures of knowledge? Overall, the results 
shown in Table 9 are consistent with the idea that the content and instruction are highly 
problem-focused. That is, one of the main desired instructional outcomes of a course at 
this level (EE10) is being able to solve a variety of different circuit analysis problems. 
Informal discussions with the instructor, the personal experience of all authors (all have 
electrical engineering backgrounds), a review of the instructor’s lecture notes, the 
textbook, and observation of discussion sections and lectures support this idea. 

With this context in mind, it is unsurprising that the EE GPA related most strongly 
to the circuit problem-solving measures. Much of the coursework in electrical 
engineering at the undergraduate level is developing competency in solving problems, 
and is reflected in the correlation with performance on the circuit problem-solving task 
(rsp = .65, p < .01). Similarly, the correlation between conceptual knowledge of circuit 
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concepts and success in solving problems is unsurprising (rsp = .45, p < .05) as basic 
knowledge of the concepts was required to solve the circuit problems. 

Participants’ self-ratings of their performance were significantly related to their 
actual performance, for both the circuit definition (rsp = .45, p < .05) and circuit problem-
solving (rsp = .77, p < .01) tasks. This is an important result for two reasons. First, the 
positive correlations suggest that participants were capable of evaluating their 
understanding of their own responses, and especially so when they were solving 
problems. That is, in general, participants knew when they got something right and 
when they didn’t. Our speculation as to why the self-reports were so accurate for the 
problem-solving task lay in how the task was structured: Participants were asked to 
judge their understanding immediately after attempting to solve a subpart of the 
problem (see Figure 2), resulting in a response that was highly contextualized and 
specific.  

The second reason the results are important is related to our long-term goal of 
developing automated methods for diagnosis of knowledge gaps (and remediation) in 
distance learning contexts. The use of self-ratings may provide (a) a short-term solution 
to the automated scoring of student responses by serving as proxy scores, as long as the 
actual response is still required; and (b) a quick measure of participants’ metacognitive 
skills. 

Unexpected results. The emphasis on solving problems may also explain the 
results related to the essay measure. In this case, it may have been too much to ask of 
participants who may have been too inexperienced in general to have developed much 
insight into the significance of the concepts the task was targeting. We also expected 
procedural knowledge to relate to circuit problem-solving performance, particularly 
because the knowledge mapping task asked participants to explicitly lay out their 
circuit problem-solving steps.  
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Table 9 
Descriptive Statistics and Non-parametric (Spearman)  Intercorrelations Among Circuit Knowledge Measures 

      Conceptual knowledge   
      Circuit definitions   

Circuit problem 
solving 

Measures n M SD Min. Max.  Essay 
Total 
score 

Total 
self-rating  

Procedural 
knowledge  

Total 
score 

Total 
self-rating 

Mean EE GPA 30 8.64 2.04 3.75 12  .06 .45* .29  -.01  .65** .63** 

Conceptual knowledge               

Essay 33 3.09 0.98 1 5  -- .20 .55*  .12  .15 .27 

Definitions—total score 25 14.68 3.93 0 19   -- .53*  .21  .62* .72** 

Definitions—total self-rating 30 186.80 34.85 96 239    --  .31  .52* .71** 

Procedural knowledge 34 4.79 2.11 1 8      --  .28 .40* 

Circuit problem solving               

Total score 33 13.27 5.66 1 21        -- .77** 

Total self-rating 26 166.73 52.84 5 218         -- 

 *p < .05 (two-tailed). **p < .01 (two-tailed). 
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To what extent is the model capturing systematic differences in student 
responses? We conducted three analyses to examine how well our Bayesian network 
was capturing systematic differences among participants’ knowledge. Our first analysis 
was essentially a verification that the Bayesian network did not contain any unusual 
dependencies. We replaced each participant’s actual responses (i.e., the 
correct/incorrect value that served as inputs to the Bayesian network) with randomly 
generated correct/incorrect responses. Our assumption was that with a random set of 
responses the Bayesian network should yield probabilities that show no relationship 
with the other outcome variables. Results confirmed this assumption. When a set of 
analyses (parallel to all analyses in this report) were conducted using the randomized 
data, there were no statistically significant relationships or differences on any group 
comparisons. This is an important piece of validity evidence as it verifies that the 
“machinery” was working as intended. 

The second analysis was also a check to verify that our Bayesian network was 
computing probabilities consistent with our interpretation of how we viewed the 
dependencies among the concepts. This analysis examined the relation between 
probabilities yielded by the Bayesian network and scores on our circuit problem-solving 
measures. As expected, there was a positive and statistically significant relation 
between the Bayesian network concepts and corresponding circuit problem solving 
measures as shown in Table 10. A more interesting result was the significant 
relationships between the Bayesian network scales with the corresponding self-ratings 
of understanding. In this case, most of the correlations were significant but of moderate 
magnitude, rsp = .40 – .83, compared to the aggregate self-rating scores (see Table 9).  
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Table 10 
Non-parametric (Spearman)  Correlations Between Bayesian Node Posterior Probabilities and 
Corresponding Circuit Problem-Solving Measures 

  Circuit problem solving 

Concept n Scale score Scale self-rating 

Combination of sources 24 --a .52** 

Voltage division 33 .95** .83** 

Node 27 .99** -- 

Essential nodes 34 .87** .51** 

KCL 33 .97** .65** 

Mesh 34 .68** .40* 

aDropped due to low reliability (α < .50). 

The third analysis examined the condition closer to our expected operational of 
Bayesian network to infer degree of learner understanding. We examined whether 
differences existed on various background measures when participants were classified 
into high- and low-performing groups, based on the posterior probabilities for each 
concept in the Bayesian network. The classification was based on the top and bottom 
thirds of the sample, when sorted by the total number of concepts in the Bayesian 
network that had posterior probabilities of understanding greater than .50. We reasoned 
that if the Bayesian network was detecting systematic differences in participants’ level 
of understanding, then performance on measures of knowledge should favor 
participants in the high-performing group. A similar result should be observed on 
background measures bearing on circuit analysis knowledge. 

Results confirmed significant differences between high and low groups in favor of 
the high-performing group. As shown in Table 11, high performers scored significantly 
higher on the definitions and circuit analysis problems, for both actual and self-
assessments, and had higher grades in EE courses. We interpret these results as 
evidence that our Bayesian network was sensitive in detecting overall differences in 
knowledge. (Note that the difference in the circuit problem solving total score measure 
is expected, as these scores served as inputs to the Bayesian network. ) 
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Table 11 
Non-parametric (Mann-Whitney) Test of Group Differences Between Bayesian Network Inferred High 
and Low Groups 

Bayesian Network Inferred Groups   

Low  High  

Mann-Whitney 
test of group 

difference   

Measure n M SD  n M SD  U p value  rpb 

Mean grade in EE courses 9 6.84 1.88  11 9.76 1.23 7.50 <.00 .70** 

Conceptual knowledge           

Essay 11 2.91 1.14   13 3.15 .99 62.50 .59 .12 

Definitions—total score 7 12.57 2.15  9 15.33 5.85 11.00 .03 .30 

Definitions—total self-
rating 

9 161.33 47.50  12 200.92 24.92 27.00 .05 .49* 

Procedural  knowledge 11 4.27 2.00  13 5.31 2.25 52.00 .25 .24 

Circuit problem solving           

Total score 11 6.55 3.01  13 18.54 1.81 .00 <.00 .93** 

Total self-rating 7 111.14 65.64  12 189.17 31.76 11.50 .01 .65** 

 *p < .05 (two-tailed). **p < .01 (two-tailed). 

How accurate is the Bayesian network in predicting performance? The last 
analysis examined the accuracy of the Bayesian network with respect to predicting 
performance using a “leave-one-out” analysis. Given all data less one response (the 
item left out), how accurate is the Bayesian network’s prediction of the left-out 
response? This question was asked for all 39 items across all circuit problem-solving 
items. Accuracy was computed as the percent of correct predictions. For example, 100% 
accuracy would indicate the Bayesian network correctly predicted a participant’s 
performance (correct or incorrect) on all 39 items. The mean percent correct, across all 
participants, was 79% (SD = 12%). The lowest accuracy rate was 43%, and the highest 
accuracy was 90%. 

When accuracy of prediction was examined by item (i.e., on a given item, for how 
many participants did the Bayesian network accurately predict performance?), results 
were similar. The mean was 72% (SD = 14%), the lowest accuracy was 36%, and the 
highest 94%. We interpreted these results as additional evidence that our Bayesian 
network was measuring systematic understanding. In addition, these results provide 
evidence that the network was reasonably robust against missing information.  
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Table 12 
Percent of Responses Accurately Predicted by the Bayesian Network (correct/incorrect) 

 n M SD Min. Max. 

Across participants 33 72 12 43 90 

Across circuit problem-solving items 39 72 14 36 94 

Summary and Discussion 

The focus of this work has been on gathering validity evidence to help us 
understand how well a particular automated reasoning technique, in our case Bayesian 
networks, could model the knowledge dependencies associated with node-voltage and 
mesh-current analyses. Said another way, to what extent can Bayesian networks be used 
to infer students’ understanding of various circuit concepts given their performance on 
various circuit problem-solving tasks? 

We found preliminary evidence in support of our general approach. Results 
suggested that the Bayesian network was working as intended. Interestingly, the 
posterior probabilities correlated significantly with participants’ self-ratings of 
understanding (r = .40 – .83). Further, when the posterior probabilities were used as the 
basis for forming high- and low-performing groups, significant differences were found 
favoring the high-performing group with respect to circuit definitions and circuit 
analysis problems, for both actual and self-assessments, and the high-performing group 
also had higher grades in EE courses. Additional evidence of the quality of the Bayesian 
network was found in the accuracy of the prediction of participants’ performance. The 
Bayesian network was successful on average 75% of the time in predicting whether a 
participant was going to get the item correct. However, we did not find evidence of an 
association between either conceptual knowledge (essay) or procedural knowledge and 
circuit problem-solving performance. This was surprising as we expected higher 
performance on the circuit problem solving to be linked to deeper understanding of the 
content or with more knowledge of how to solve the problems.  

The results of this study, while exploratory, are provocative for they suggest that 
probabilistic reasoning approaches can be fruitful in diagnosing students’ 
understanding of different circuit analysis concepts at the group level. We tested a 
method that is feasible: (a) simple scoring (dichotomous scoring of problem solving 
steps) and thus a candidate for online scoring, and (b) modeling of the knowledge 
dependencies via Bayesian networks.  
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Future Directions 

A clear next step is to gather additional validity evidence that would shed light on 
the accuracy of the network at the individual concept level in the Bayesian network. In 
the current study, we aggregated all concepts in the Bayesian network. Whether the 
probabilities at the individual concept level are in fact accurate in their diagnosis 
remains unknown. Thus, while probabilities of whether someone understands a 
concept are easy to compute given performance data, one is left wondering about the 
accuracy of the probabilities computed for concepts where there is no direct evidence 
(i.e., actual observable performance). This is clearly an important issue for 
individualized diagnosis, remediation, and instruction, where inferences are likely to be 
made not only about concepts directly tested (with the assessment items), but also 
about antecedent concepts. 

A second area that deserves attention is on examining the sensitivity of the a priori 
probabilities specified in the conditional probability tables. In this study we used a 
general rubric to guide specification of the probabilities. Further work is needed to 
investigate the robustness of the network against swings in the probability 
specifications. This issue becomes important for practical reasons. If such methods are 
to scale well, there needs to be a simple and feasible method to elicit the probabilities 
from subject-matter experts (e.g., deriving numerical values from qualitative statements 
[Druzdzel & van der Gaag, 2000; Renooij & Witteman, 1999]). 

Implications for Assessment and Instruction 

Over two generations have passed since the ideas of programmed, adaptive, and 
individualized instruction were introduced by Lumsdaine and Glaser (1960). Current 
technologies, particularly advances in delivery system (e.g., distributed learning 
technologies) and automated reasoning capabilities (e.g., Bayesian networks), make 
feasible and seamless many of the techniques and ideas that by today’s standards seem 
cumbersome and impractical. Having the capability to model and quantify the 
knowledge dependencies of a domain is a necessary step in establishing a credible link 
between assessment and instruction. Assessments provide data on a sampling of to-be-
learned content, the domain model articulates the dependencies among and between 
the antecedent concepts and the to-be-learned content, assessment data fusion occurs 
via probabilistic statements about performance on the assessments and whether 
concepts are learned, and inferences are drawn about what a student knows about 
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various concepts. Echoing the optimisms of Lumsdaine and Glaser (1960), we are well 
on the way to developing the means for detecting gaps in learning and understanding, 
and the methods for implementing individualized and dynamic instruction and 
assessment.  

While this work has been limited to group-level comparisons, our long-term goal 
is to develop interactive, individualized assessment and instruction to support student 
learning in distance and distributed learning settings. In such settings individualized 
diagnosis and prescription become a clinical judgment about knowledge of particular 
concepts, and much more work is needed to develop methods that are accurate on an 
individual basis. The findings of this exploratory study suggest that automated 
reasoning offers real opportunities to meet this challenge. 
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Appendix A 

Node-Voltage Analysis Problem-Solving Procedure (Kaiser, 2003) 

 
Procedure 

1. List the information that is requested by the problem. 

2. Examine the circuit to determine the approach for a solution. 

3. Determine if a circuit simplification may be accomplished using an equivalent circuit, for 
example, a parallel, series, delta, or Y, circuit structure. 

4. List known values of circuit variables. 

5. Identify and label the NE Essential Nodes. 

6. Choose one Essential Node and label it with a Reference Potential Symbol. The choice of this 
node will determine the level of simplicity of the calculation.  However, any choice of an 
Essential Node will yield the same problem results.  You should select in the circuit, that 
Essential Node that is connected to the most branches. 

7. Identify and label the non-reference node voltages. 

8. Each non-reference node voltage is labeled as positive. 

9. Use KCL to write down an equation for each non-reference node, writing the equations in 
terms of the resistances, and node voltages. 

10. Write down constraint equations associated with dependent sources 

11. If a voltage source exists between two essential nodes (and is not in series with any other 
elements), then introduce a current variable associated with this source that will appear in 
node voltage equations at each node at each terminal of this source. 

12. Write down NE – 1 equations. 

13. Solve the set of equations. 
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Appendix B 

Bayesian Network 
 

 


