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Rethinking Formalisms in Formal Education 
Mitchell J. Nathan 

When Dr. Jeffrey Wigand, the protagonist of the film The Insider (directed by Michael 
Mann; written by Eric Roth; 1999), blows the whistle on nicotine research, this leading 
biochemistry researcher at a highly successful cigarette company leaves the corporate world and 
goes on to teach high school chemistry. To no one’s surprise, he is a brilliant, if understated, 
chemistry teacher. He keeps his students sitting on the edge of their seats, completely engaged 
with his lessons. Viewers are expected, I suppose, to attribute Dr. Wigand’s inspirational 
teaching to his extensive knowledge of his field. It is natural for the audience to assume that the 
master scientist will also be a master teacher. His years of research as a biochemist are supposed 
to have more than adequately prepared him to teach chemistry to 13- to 18-year old boys and 
girls.  

Dr. Wigand’s teaching rapport may be readily accepted by the typical moviegoer. But, as 
educators, do we accept it too easily? As it turns out, the actual Dr. Wigand did go on to teach at 
the high school level—but he taught Japanese, not chemistry. This little change is not merely 
about Hollywood retelling a story to make it more marketable. I contend that it reflects deep and 
abiding views about learning and teaching.  

As an educational psychologist who studies teaching and learning, I am interested in the 
beliefs that those of us in education, and in society more generally, have about how people learn 
and how they should be taught. Currently, two beliefs have caught my attention. The first is that 
subject matter expertise is sufficient for success in teaching. The second is that to learn a specific 
content area, one needs to begin with an understanding of the formal structure and abstract 
principles that underlie the conceptual framework of the content area. This is what many people 
mean when they say we should start with “the basics.” As one might expect, beliefs about 
teachers’ subject matter expertise and about the path to learning through an understanding of 
formalisms are related. In this paper, I expose these beliefs and the foundation upon which they 
are built. I also describe how, together, these beliefs exert strong pressures on formal education 
that may not be for the betterment of learning and teaching for all students.  

Belief #1: Subject Matter Expertise Is Sufficient for Good Teaching  

In light of the introductory vignette, it seems reasonable to ask if those with greater 
expertise in a content area, such as mathematics, are better at predicting the problem-solving 
behaviors and difficulties of algebra students. This question is different than asking if expert 
mathematicians are better at doing mathematics. Instead, the question asks whether teachers who 
are more knowledgeable in mathematics understand their students better than teachers with less 
advanced subject matter knowledge. This is surely plausible. Experts in a wide range of fields—
such as musical and athletic performance, strategic games, and medical practice—have been 
found to reason more accurately and more quickly, multitask better, and assimilate far more 
information than non-experts (e.g., Ericsson & Smith, 1991). 

However, careful research into the cognitive processes of experts has shown that, despite 
perceptions and historical views to the contrary (e.g., de Groot, 1965; Galton, 1869; Salomon & 
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Perkins, 1989), experts function with the same internal limitations as non-experts (Ericsson & 
Chase, 1982; Ericsson, Chase, & Faloon, 1980; Frensch & Buchner, 1999). To exhibit superior 
performance, experts in many domains must train themselves to operate more efficiently within 
these limits through the use of refined perceptual processes, highly structured knowledge, 
deliberate practice, and strategies for limiting input (Bereiter & Scardamalia,1993; Ericsson, 
Krampe, & Tesch-Romer, 1993; Ericsson & Lehmann 1996).  

Training of this sort typically leads to routine expertise that exploits the regularity of 
tasks and the environment (Hatano & Inagaki, 1986). Yet the highly tuned perception and 
knowledge of the expert can also lead to below-average performance on some tasks (Wiley, 
1998) and poor recall of the expert’s own actions and thought processes (Ericsson & Simon, 
1993; Feldon, 2004). One particularly striking example comes from a case study of an expert in 
literature who was training to be a secondary school reading teacher (Holt-Reynolds, 1999). The 
subject matter expertise of this teacher was well established: She was a lifelong reader with 
straight A’s in her college literature classes. In interviews, she demonstrated sophisticated 
literary analyses for a range of texts, using such techniques as intertextual references and parallel 
analyses of the writings, life, and times of the author. Yet this teacher’s expertise did not 
translate into an understanding of how to model or instruct others in the reading process. Her 
own reading and analytic processes were so well developed and automated that they left no 
memory trace to reflect upon. She had no awareness of her own reading process—she did not 
even recognize reading as something that she once had learned—and she was unable to 
transform her own disciplinary knowledge into a form that novice learners could use and apply. 
As Holt-Reynolds described, this preservice teacher apparently imagined all students to be 
“replications of herself” (p. 41); she simply could not imagine someone not knowing how to read 
and needing to be taught. Her skills were so refined that she was unable to retrieve them, reflect 
on them, and use them as the basis for instruction. This limitation interfered greatly with her 
teacher training and contributed to a rather lackluster style of teaching, as evident from follow-up 
observations of her classroom teaching practices. 

Thus, an alternative expectation is that experts’ routine knowledge of a subject area may 
lead them to make inaccurate judgments of the actual performance demands of the task for non-
experts (e.g., Brophy, 2001; Feldon, 2004).  

I begin this inquiry by reviewing research on the influence of content area expertise on 
teachers’ judgments of student performance in a specific area: algebra. Later, I will show that 
these studies reveal a common pattern that can be found in other areas of education, including 
science and language arts instruction.  

First, let us examine students’ problem-solving performance patterns when they are given 
problems that span arithmetic and beginning algebra. As shown in the examples of Table 1, 
arithmetic and algebra problems can look structurally similar yet differ in the location of the 
unknown quantity. For algebra problems, students are asked to reason about unknown quantities 
in relation to other quantities (the second row of Table 1). Students find these problems more 
difficult than arithmetic problems because students cannot directly model the situation as stated 
or directly apply arithmetic (e.g., Carpenter & Moser, 1983). In addition, the problems can vary 
in their presentation formats, as shown by the columns of Table 1. Symbolic problems use formal 
syntax and notation. Verbal problems use words and can further be compared. Story problems 
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include a situational context, whereas word equations verbally describe the relations found in 
symbolic equations without an explicit problem context. Comparing performance on these 
problems allows us to isolate the impact of two important dimensions: context (story vs. word 
equation), as well as the differences between symbolic formats and verbal formats, independent 
of context (word equation vs. equation).  

Table 1 
A Sample of the Structurally Matched Problems Given to Educators to Elicit Their Expectations 
of Student Arithmetic and Algebraic Problem Difficulty, Organized by the Presentation Format 
(Columns) and the Position of the Unknown Value (Rows) 

 Verbal problems Symbolic problems 

Presentation 
format  → 

Story Word equation Equation 

Position of the 
unknown value 

 ↓ 

   

Result unknown 
(Arithmetic) 

When Ted got home from 
his waiter job, he took the 
$81.90 he earned that day 
and subtracted the $66 he 
received in tips. Then he 
divided the remaining money 
by the 6 hours he worked 
and found his hourly wage. 
How much per hour does 
Ted make? 

Starting with 
81.90, if I 
subtract 66 and 
then divide by 6, 
I get a number. 
What is it? 

Solve for X:  
(81.90—66) / 6 = X 

Start unknown 
(Algebra) 

When Ted got home from 
his waiter job, he multiplied 
his hourly wage by the 6 
hours he worked that day. 
Then he added the $66 he 
made in tips and found he 
earned $81.90. How much 
per hour does Ted make? 

Starting with 
some number, if 
I multiply it by 6 
and then add 66, 
I get 81.90. 
What number 
did I start with? 

Solve for X:  
6X + 66 = 81.90 

 

Algebra students show superior performance (about 65% correct) solving the verbally 
presented story and word-equation problems through the strategic application of highly reliable, 
intuitive solution strategies, while at the same time struggling to solve carefully matched 
equations (getting about 43% correct; Koedinger & Nathan, 2004). This higher performance on 
verbal problems has been replicated for middle school, high school, and college students in 
several studies (Koedinger, Alibali, & Nathan, 1999; Nathan, Stephens, Masarik, Alibali, & 
Koedinger, 2002) and has proven quite reliable (also see Knuth, Alibali, McNeil, Weinberg, & 
Stephens, in press; Weinberg, 2004).  
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Given this pattern of performance, it is reasonable to ask how educators fare in their 
predictions of student problem-solving difficulty. Specifically, we would like to know how 
educators’ predictions vary based on their levels of content knowledge. Recent research on 
teachers’ beliefs can shed light on these questions.  

In one study (Nathan & Koedinger, 2000b), teachers across the K–12 range were asked to 
predict the difficulty level of various mathematics problems for students just entering algebra-
level instruction. With the teachers as with the students (see Table 1), problems were presented 
in verbal or symbolic formats, and verbally presented problems were presented with and without 
a story context. In all, 105 teachers from a single school district shared their expectations of 
problem difficulty. The teachers identified themselves either as mathematics teachers (middle 
and high school grades) or as elementary school teachers who taught all of the major subject 
areas, including mathematics. All of the high school teachers who participated in the study had 
been mathematics majors or reported equivalent training. In contrast, none of the middle grade 
mathematics teachers reported a college major in mathematics or the equivalent.  

The high school mathematics teachers’ predictions of student problem-solving difficulty 
were the least accurate. In contrast, the predictions made by middle school teachers who 
participated in the study were far closer to students’ actual problem-solving performance and 
predicted the behavior of the majority of the students. Elementary teachers also were more 
accurate than high school teachers, though their rankings were only marginally predictive of 
student performance.  

It is the differences between high school and middle school teachers that seem most 
relevant and most surprising. Middle and high school teachers of mathematics self-identify as 
mathematics teachers, and they each teach students within the algebra corridor. Yet the high 
school teachers have had substantially more mathematics education. How could they be worse at 
predicting student difficulty than their less mathematically advanced peers? One possibility is the 
nature of expertise. It is possible that the advanced mathematical knowledge of the high school 
teachers negatively affected their judgment. Nathan and Koedinger (2000a) speculated that these 
teachers may have exhibited expert blind spot, a phenomenon whereby teachers’ own fluency 
with mathematics—their subject matter knowledge, per se—prevented them from seeing the 
difficulties that novice learners experienced (Nathan, Koedinger & Alibali, 2001). An alternative 
is that there are differences based on professional affiliation or expectations in primary or 
secondary education due, perhaps, to different course materials, curricular standards, or other 
factors.  

A study of the beliefs of preservice teachers (PSTs) addressed these alternatives (Nathan 
& Petrosino, 2003). The PSTs were enrolled in a reform-based teacher education program at a 
major research university. Participants’ knowledge of mathematics was rated high if they had 
completed calculus or above, and basic if their mathematics education had not reached 
precalculus. Those participants in the high-knowledge category can be thought of as “developing 
experts” in mathematics, and many went well beyond a first course in calculus, completing 
majors in fields of mathematics and the physical sciences. 

Some of the PSTs with advanced mathematics knowledge were in a specialized program 
for mathematics and science majors and were seeking secondary licensure in mathematics or 
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science education. The remaining PSTs with advanced mathematics knowledge were from the 
general population of teacher education students and, like the PSTs in the basic math knowledge 
group, sought elementary licensure. My colleague and I asked these budding educators to predict 
the relative problem-solving difficulty that students entering algebra instruction would 
experience if given problems similar to those in Table 1.  

If those with advanced mathematics knowledge, regardless of whether they were enrolled 
in the secondary or elementary program, performed similarly to the high school teachers in the 
earlier study and provided relatively poor predictions of student performance, then there would 
be further evidence for expert blind spot. However, if the exposure to different curricula or 
teaching methods was the basis for inaccurate judgments of students, then we could expect to see 
poor predictions from those with advanced mathematics knowledge only if they were in enrolled 
in the secondary mathematics and science program.  

The results strongly favored the expert blind spot hypothesis. Those with advanced 
mathematics education, regardless of program affiliation, misjudged student problem-solving 
difficulty. In fact, those with greater expertise in mathematics showed the same pattern as the 
high school teachers in other studies (Brophy, 2001; Bransford, Vye, Bateman, Brophy, & 
Roselli, 2004; Nathan & Koedinger, 2000a, 2000b). A similar result was found among preservice 
high school teachers in Belgium: they favored the use of algebraic methods for solving 
arithmetic and algebraic problems both for themselves and for their students, even when 
arithmetic methods were more straightforward (Van Dooren, Verschaffel, & Onghena, 2002). 
The views of the primary grade–level PSTs in that study were more adapted to the specific 
demands of the problem-solving tasks.  

It is apparent from these findings that educators’ content knowledge influences how they 
think about student performance and problem difficulty. At a general level, expert knowledge 
can impede instruction because it masks what is difficult and easy for novices (Bransford, 
Brown, & Cocking, 2000). However, I believe that it is possible to be even more specific about 
how expert content knowledge influences educators’ views of learning and why their views 
systematically differ from the actual performance patterns of students. 

Belief #2: Conceptual Development Proceeds From the Formal to the Applied  

Recall that the high school teachers and PSTs with advanced mathematics expected 
students to solve symbolic equations more readily than story or word-equation problems (Nathan 
& Kedinger, 2000a; Nathan & Petrosino, 2003). Yet the actual performance of students in a 
number of studies has shown that they are far more likely to correctly solve verbally presented 
problems, largely because of their strategic use of invented solution methods (Koedinger & 
Nathan, 2004). To understand why educators with greater knowledge of mathematics are 
particularly inclined to misjudge student performance, it is important to examine the exact nature 
of content experts’ predictions.  

When asked to justify their predictions, the experts (see Nathan & Koedinger, 2000a) 
argued that symbolic reasoning was more basic and “pure” than verbal reasoning, and the natural 
way to introduce arithmetic and algebraic problem solving. They also argued that solving 
equations was a necessary prerequisite for algebra “applications” such as solving story problems, 
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since one needs to first translate words into mathematical notation. In their responses to survey 
items about the development of algebraic reasoning, content experts were far more likely than 
non-experts to assert that symbolic reasoning ability necessarily precedes story problem solving 
and that symbolic procedures are the most effective method for solving mathematics problems 
(Nathan & Koedinger, 2000a; Nathan & Petrosino, 2003). Math experts were also less likely to 
believe that students enter the classroom with intuitive methods for reasoning about algebra-level 
problems, and they tended to discount the role that students’ invented solution methods could 
play as the basis for further mathematics instruction and learning.  

It is not my intention here to question the power and utility of formalisms. Formal 
representations such as symbolic equations, graphs and diagrams, scientific laws, and formal 
theories are vitally important because of the central organizing role they play in a given 
discipline. Formalisms support computational efficiency and can mitigate ambiguity (e.g., 
Tabachneck, Koedinger, & Nathan, 1995). Formalisms can also reveal the common deep 
structure of quantitative and qualitative relations of seemingly disparate phenomena (such as 
mechanical and electrical circuits) and thereby provide important conceptual bridges to support 
transfer, discovery, and theory building. These are properties of formalisms that serve the needs 
of those with competence in their field. However, the primary role formalisms play in organizing 
a given discipline for experts appears to have been appropriated by many educators as the model 
of conceptual development for one initially coming to learning in that discipline. As educators, 
we need to be careful to distinguish the conceptual structure as apparent to experts in a 
discipline, from Bruner’s (1960) account of structure as that which makes salient the relations 
among seemingly unrelated things for the purpose of transfer. “If earlier learning is to render 
later learning easier, it must do so by providing a general picture in terms of which the relations 
between things encountered earlier and later are made as clear as possible” (p. 12). For an area 
like algebra, it is common to believe that algebraic equations constitute that structure and that 
students will naturally and necessarily reason about formal mathematical symbols before they 
can reason about mathematical relations and problems presented in words. Nathan and 
Koedinger (2000b) labeled this the symbol precedence view of algebraic development.  

The symbol precedence view has a great deal of intuitive appeal, is evident among 
popular algebra textbooks (Nathan, Long & Alibali, 2002), and leads to a natural justification for 
educating novices by teaching formalisms first. However, the data on student performance do not 
support this view. Koedinger and colleagues (Koedinger et al., 1999; Koedinger & Nathan, 
2004) found that high school and college students, despite formal instruction in pre-algebra and 
algebra, often did not know what to do with equations; they frequently gave no response to these 
problems, indicating a basic failure to comprehend the meaning of the notations. When students 
did try to apply symbolic solution methods directly, their attempts were highly error-prone.  

This overall finding is not restricted to algebra. A multiyear study of over 400 
undergraduates showed that beginning physics students were more likely to correctly answer 
questions involving Newton’s Third Law when those questions were presented verbally rather 
than using vector diagrams (Meltzer, 2005).  

In light of these findings, it may not be so surprising that the pattern of student algebra 
problem-solving performance is, in fact, more consistent with a verbal precedence view of 
development: Several studies (e.g., Koedinger & Nathan, 2004; Nathan et al., 2002) have now 
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shown that verbally presented “application” problems are far more accessible, and they are 
solved correctly more often, because students seem to comprehend them better and are therefore 
able to make use of intuitive solution methods that circumvent the need for formal notation and 
equations. These intuitive methods seem to have been invented on demand in many cases, 
drawing on the meaning of the problems formed by the students and students’ knowledge of the 
behavior of quantities.  

Students were also more likely to solve symbolic problems correctly if they also correctly 
solved verbal problems (e.g., Nathan & Koedinger, 2000b). It was extremely rare to see students 
who could solve the arithmetic and algebraic equations but not the verbal problems (only 1 in 76 
students; Nathan & Koedinger, 2000b). This finding suggests that the development of students’ 
symbolic reasoning may in fact depend on and draw on their verbal reasoning skills, a notion that 
has support from research in a variety of other areas of intellectual development (e.g., Case, 
1991; Case & Okamoto, 2000; Kalchman, Moss, & Case, 2001).  

One explanation for students’ poor understanding of algebraic formalisms is that students 
do not achieve a grounded understanding of the meaning of the symbolic equations in terms of 
other concepts they already understood (Koedinger & Nathan, 2004). Algebra is an arbitrary 
system of representation that obtains its power through its abstract nature. In this way, algebraic 
symbols are “second-order” descriptions of actual objects and events in the world (Laurillard, 
2002). The computational properties of algebra come about because of the rules that govern the 
relations and transformations of this system of notation. Yet, when rules and symbols are merely 
understood through self-reference to other second-order descriptions in the form of abstract rules 
and symbols, it leads to an ungrounded form of understanding. Meaning, I would argue, comes 
ultimately from reference to nonsymbolic entities such as perceptions and experiences from the 
world (Glenberg, 1997, 1999; Harnad, 1990; Searle, 1980). Indeed, some of the most profound 
advances in mathematics—such as the creation of negative numbers, logic, and infinity—have 
been shown to have been achieved by prominent mathematicians who made the appropriate links 
to the grounded behavior of objects and events in the everyday world (Lakoff & Johnson, 1999; 
Lakoff & Nunez, 2000). And it is through grounded relationships that these formal entities 
ultimately attain their meaning and utility.  

The symbol precedence view in mathematics education is but one of many views of 
conceptual development that give formalisms a privileged status in education. In science 
education, formal symbols and laws are seen as primary, and their understanding is considered 
crucial for students’ later success with physics word problems and for understanding technology 
and other scientific applications (e.g., Bloomfield, 1998; Cajas, 1998, 2001). In language arts, 
teachers who are expert in literature but have never been in a teacher education program often 
see formal methods of textual analysis and the rules of grammar as prerequisites to students’ 
reading and creative writing performance (e.g., Grossman, 1990). In my own field of educational 
psychology, I see how formal theories and domain-general principles of learning and 
development are taken as prerequisites, to be understood before teacher education students can 
apply them to specific areas of instruction. In a related fashion, the practical skills needed to 
perform technical and service trades—such as carpentry, plumbing, and hairstyling—are 
generally held in lower regard within the public education system than the knowledge associated 
with an academically oriented education (Rose, 2004). Across a wide range of areas, knowledge 
of formalisms is privileged over practical and applied knowledge.  
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The privileged view of formalisms and theory over applied knowledge is historically 
rooted. That is, biases about the elevated status of formal and theoretical knowledge as compared 
with applied knowledge seem to be based not on a scientific understanding of the manner in 
which learning occurs or of the relative intellectual demands of formal and practical skills. 
Rather, these judgments—prevalent in education and in society as a whole—seem to be based 
largely on the character of those demands. As Rose (2004) states, “the more applied and 
materialized the mathematics is, the less intellectually substantial it is” (p. 98).  

The split between the practical work of the “hand” and the intellectual work of the 
“brain” is woven into the very fabric of people’s thinking about science in the modern age. 
Vannevar Bush, the first director of the U.S. Office of Scientific Research and Development, 
wrote that “basic research”—that is, “research performed without thought of practical ends”—is 
preeminent and the driving force behind the major advances in science, whereas “applied 
research drives out the pure” (Stokes, 1997, p. 3). This fervent bias in favor of formal reasoning 
and theoretical research was evident as early as the Classic Hellenic Era, when scientific inquiry 
was considered to reach its highest form when it was purely for the pursuit of knowledge (the 
“philosophical arts”) and offered no practical outcomes (as in the “manual arts”; Plato, Republic 
VII). 

The conceptions of training for those who specifically choose to pursue fields of applied 
science and mathematics are also steeped in this view. The Nobel laureate Herbert Simon 
(1969/1996) observed that “Engineering schools gradually became schools of physics and 
mathematics; medical schools became schools of biological science, business schools became 
schools of finite mathematics” (p. 111). As Cajas (1998) noted, this is still true 30 years later: 

The way in which future technologists (e.g., engineers or medical doctors) are generally prepared 
is the following: Students first take science classes with the assumption that such classes can be 
applied to specific technological problems (e.g., engineering problems, medical problems). The 
justification of taking science classes (physics for example in the case of engineers or physiology 
in the case of medicine) is that these classes are the bases of their future professional work (p. 5). 

I have even encountered this view lurking in a book on the hobby of kite making. The 
book (Hosking, 1992) is full of practical aspects of kite design, with many traceable designs, 
kite-flying techniques, and so on. Yet the author felt compelled to provide a scientific primer on 
lift and air pressure in the opening chapter, complete with vectors, diagrams with angles of 
attack, and illustrations of airflow. The role of this formal knowledge in advancing kite design 
must be acknowledged, surely. Many expert kite makers and fliers have a strong formal and 
intuitive understanding of the science. But its utility is doubtful for those who are just learning to 
build and fly kites. It, too, reveals beliefs the author has about how a book on kites can be 
legitimized by its ties to formalisms in physics.  

Implications 

Well-developed content knowledge is, of course, vital for teachers, and it is legitimate to 
expect it from teachers at all grade levels. Yet, with advanced knowledge come certain biases 
about one’s field and about how others will learn the knowledge and participation norms for that 
field. The formalism-first view of conceptual development, although lacking strong empirical 
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support, is widespread among educators and throughout society. In this last section, I explore 
some of the implications of these beliefs for education, particularly their effect on classroom and 
curricular practices and on education policy.  

Classroom and Curricular Implications 

Teachers’ beliefs about the developmental processes of their students serve as the bases 
for their judgments about classroom assignments, selection of curriculum materials, and even the 
evaluation of students’ thinking and progress (Grossman, 1990). Misconceptions about the 
developmental process can lead teachers, curriculum designers, and education leaders toward 
non-optimal, or even incorrect, conclusions about the progress of a child. For example, a teacher 
may withhold algebra story problems from an algebra student who is struggling with equations 
based on beliefs about the relative difficulty of these tasks. As a result, the teacher may never see 
the informal reasoning approaches available to that child that could form the basis of future 
algebra understanding. Alternatively, a teacher may take the correct or expected answer as a 
direct indicator that the student has learned the taught method, unaware that the student has 
actually used another method and thus achieved only a “veneer of accomplishment” (Lave, 
Smith, & Butler, 1988; Hennessy, McCormick, & Murphy, 1993).  

Education Policy Implications 

One of the greatest problems stemming from the formalism-first view is that it 
undermines some of the central tenets of public education, particularly for those students who 
focus on vocational and technical education. Public education is entrusted with providing equal 
access to excellent educational opportunities. But, in practice, schools restrict that access for 
students who pursue a technically oriented education instead of college. Career and technical 
education courses, with their focus on less valued applied skills, are often completely devoid of 
the theoretical and formal content that educators consider necessary to support later 
generalization and abstraction. Rose (2004) calls this the “fundamental paradox of vocational 
education” and argues that the lack of attention to theory and generalization in vocational 
education classes withholds essential knowledge and perpetuates stereotypes of who is capable 
of abstract thought and worthy of the tremendous resources of the educational system to foster 
upward economic and social mobility.  

Belief in the centrality of discipline-specific formalisms has also shaped recent policy and 
practices of teacher licensure. By downplaying the value of practical knowledge of teaching that 
preservice teachers acquire through their teacher education programs and privileging the 
development of content knowledge, the education community has created a double standard for 
teacher licensure. Federally funded programs like Transition to Teaching provide a streamlined 
licensure process for content experts to recruit mid-career professionals and recent college 
graduates to classrooms. However, teacher education graduates must go through full licensure 
and also pass standardized tests of subject matter knowledge and pedagogy in the areas in which 
they will teach. These policies can be justified through an appeal to the power of formal content 
knowledge in much the same way that algebra teachers justify their predictions of student 
problem-solving difficulty and that we justify our acceptance of the Hollywood story of 
biochemist turned dazzling high school chemistry teacher. Ironically, the most likely cause of 
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teacher ineffectiveness is a deficiency in pedagogical content knowledge, whereas deficiencies in 
content knowledge are the least likely cause (Torff, 2005). Clearly, these deep-seated views must 
be called into question when they promote inaccurate views of learning.  

I personally agree with the essential importance of well-developed subject matter 
knowledge: Teachers need strong content knowledge to understand their curricula and their 
students. However, “subject matter expertise across disciplines can, if unchecked, lead teachers 
to be blind to certain developmental needs of novice learners” (Nathan & Petrosino, 2003, p. 
921) and to favor instructional approaches that build from the formalisms central to that 
discipline. This may be surprising, even counterintuitive. But now that I know to look, I see this 
pattern in many surprising places, even in my own field of educational psychology. We, as 
members of the educational community, need to look deeper at the relationship between content 
knowledge and teaching, and we need to acknowledge that our beliefs about learning and 
education should be subject to the same scrutiny we expect from any scientific endeavor that has 
such a profound influence on the youth of today and the education of future generations.  
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