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THE ODDS OF UNDERSTANDING THE LAW OF LARGE
NUMBERS: A DESIGN FOR GROUNDING INTUITIVE
PROBABILITY IN COMBINATORIAL ANALYSIS

Dor Abrahamson and Rose M. Cendak
University of California, Berkeley

Twenty-eight Grade 4 — 6 students participated in 1 hr. clinical interviews in a
design-based study that investigated: (a) probability-related intuitions; (b) the
affordances of a set of innovative mixed-media learning tools for articulating these
intuitions; and (c) the utility of the learning-axes-and-bridging-tools framework
supporting diagnosis, design, and data-analysis. Students intuited qualitative
predictions of mean and variance, yet only through grounding computer-based
simulations of probability experiments in discrete-scalar, non-uniform, multiplicative
transformations on a special combinatorial space, the combinations tower, could
students articulate their intuitions. We focus on a key learning axis, students’
confusing likelihoods of unique events with those of classes of events.

INTRODUCTION
Objectives

This paper reports on a design-based study in mathematics education. The study was
designed to advance three interdependent lines of research: (a) theory of learning—
probing late-elementary and middle-school students’ intuition for probability; (b)
design—examining the roles a set of innovative learning tools may play in supporting
students’ articulation of any probability-related intuitions they may have; (c) design
theory—evaluating and improving a framework for mathematics education that
guides a researcher from diagnosing a learning problem through to design and to data
analysis." The mathematical domain of probability was chosen as particularly
auspicious for studying student articulation of intuitive interaction with specialized
tools due to: (a) an “intuition gulf” created by this domain’s ambiguous treatment of
‘prediction’—the indeterminism of the individual sampling action as compared to the
by-and-large predictability of aggregated results of sufficiently numerous sampling
actions; (b) students’ deep rooted and lingering confusion and even superstition that
such ambiguity entails and the detrimental effect of these confusions on problem
solving; and (c) the roles learning tools could play in enabling students to confront
this ambiguity and reconcile it in the form of coordinated conceptual understanding
(Abrahamson & Wilensky, 2004a; Liu & Thompson, 2002; Stohl Drier, 2000;
Wilensky, 1997).

The study reported in this paper was the first stage of a larger design-based research
project that includes: (1) one-to-one clinical interviews; (2) focus-group studies; and
(3) classroom interventions. The objective of the interviews was to elicit students’
learning issues (Fuson & Abrahamson, 2005) in this design, that is, potentially

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
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problematic aspects of the targeted mathematical content (probability) as embedded
in, and emerging from, student interactions with the designed materials. In particular,
we investigated whether students could build a coherent, if largely qualitative,
account of the Law of Large Numbers—an account that recruits students’ relevant,
yet possibly conflicting, intuitions and bridges these intuitions. By ‘intuition’ we
refer broadly to mental/perceptual action models that students tacitly bring to bear to
interpret situations in the context of a mathematical problem (Fischbein, Deri, Nello,
& Marino, 1985; Lakoff & Nufiez, 2000; Polanyi, 1967).

Theoretical Perspectives

Three related theoretical perspectives informed the design of this study, including its
materials, procedure, and data analysis. One perspective, learning axes and bridging
tools (Abrahamson & Wilensky, 2004b) characterizes learning as tackling and
resolving pairs of conflicting ideas residing along conceptual “axes” [plural of
‘axis’]. Based on a domain analysis, a designer taking on a design problem can depict
students’ difficulty in terms of a lack of opportunities for addressing a set of concept-
specific learning axes. These axes then frame a design plan. Once the axes are vested
in actual tools, one speaks of ‘learning issues,’ i.e., the pragmatics of constructing
new conceptual understandings within a particular design. Thus, the learning
materials and activities are designed to embody, foreground, and juxtapose the axes
to enable students to resolve the conflicts. Such juxtaposition is enhanced by
embedding both conflicting ideas within a single ambiguous object. The second
perspective, the apprehending zone, is that students learn through building
connections within and between situations and mathematical objects—teachers model
problem solving to facilitate the building of these connections (Fuson &
Abrahamson, 2005). The third perspective positions mathematical objects as more
than arbitrary epiphenomena aiding mathematical reasoning. Rather, conceptual
knowledge may be embodied in learners’ growing relations with artifacts supporting
the construction of understanding (Gigerenzer, 1994; Pirie & Kieren, 1994;
Vygotsky, 1978). Together, these perspectives suggest the criticality of the craft of
design: Mathematical objects could be more than learning ‘supports’—they could
become internalized as permanent and inextricable imagistic vehicles of
mathematical reasoning.

A key domain-analysis principle implemented in the design is that reasoning about
probability from a complementarity of ‘macro’ and ‘micro’ perspectives is critical for
deep and ‘connected’ understanding of the domain (Wilensky, 1997).

METHOD

In 9 visits spanning 3 weeks, 28 Grades 4-6 students from a K-8 suburban private
school (33% on financial aid; 10% minority students) each participated in a one-to-
one semi-clinical interview (Ginsberg, 1997; mean 56 min., SD 12 min.). From the
pool of volunteering students, we selected students representing the range of
mathematical performance in their grade levels as reported by their teachers. Also,
we balanced for gender. All sessions were videotaped for data analysis.

2-2 PME30 — 2006
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Figure 1. Selected materials: marble scooper, combinations tower, and 4-Blocks.

The materials were all embodiments of the 4-block stochastic device from the
ProbLab experimental unit (Abrahamson & Wilensky, 2002, 2005), implemented in
different media (see Figure 1, above). The marble scooper device scoops a fixed
number of marbles out of a vessel containing many, e.g., 100 green and 100 blue. The
combinations tower is the combinatorial space of all 16 possible 4-blocks arranged by
the number of light-colored squares in each. Students use crayons to build the tower
from paper cards, each featuring an empty 4-block grid. Two simulations built in
NetLogo, a multi-agent modeling-and-simulation environment (Wilensky, 1999),
included: 4-Blocks, where four squares independently choose randomly between two
colors—the program dynamically records the blocks by number of green squares; and
4-Blocks Stalagmite (see Figure 2, next page), in which 4-blocks are generated
randomly, yet the samples themselves are stacked in a pictograph bar chart. The
simulation can be run under various conditions, e.g., rejecting repeat samples (Figure
2a) or keeping them (2b).

Using microgenetic analysis (Siegler & Crowley, 1991), we studied the data to
characterize properties of the learning tools, activities, and prompts that enabled
students’ to move from difficulty to understanding during the interview, where
‘understanding’ was operationalized as students’ manifesting stable and coherent
discourse about new content in terms of the tools and connections between them.

RESULTS AND DISCUSSION
Intuitive Judgements and Strategies

All but two students initially predicted a 2-green/2-blue 4-block as the most common
scoop from the bin (“half-half”). Others said they had “picked this [idea] up” or that
they did not know. Not a single student initiated an exploration of the combinatorial
space as a means to warrant or validate that intuition. Even following prompts to
construct the combinatorial space, all students asked whether they should include the
permutations. Typically, the event classes, e.g., patterns with. Asked to support this
guess, most students said, “It just seems so,” pointing to the apparently equal
numbers of green/blue marbles in the bin 1 green square, emerged only through
actions of generating different patterns and assembling the combinations tower. For
example, a student who had created only one pattern with a single green square

PME30 — 2006 2-3
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realized that this square could be located in each of the four 4-block locations. Thus,
attending to event classes emerged as a pragmatic principle for mathematical inquiry.

Figure 2. Two appearances of a 4-block stalagmite.”

Drawing a Compound Event From a Hat

Students understood that each 4-block outcome
resulted from the concurrence of 4 independent
- random outcomes. Yet, in referring both to the
g combinatorial space (the combinations tower) and to
outcome distributions from repeated sampling (the
simulated experiments), students came to treat the 16
possible compound events as though these were 16
independent events of equal likelihood—as though,
for example, the experiment were analogous to
drawing one of the 16 cards from a hat. Such
“clumping” of compound events, supported by the
combinatorial-analysis format (the cards), appears to
: have enabled students to reflexively apply to the set
of compound events their intuition for a set of
independent events. Albeit, this recursive strategy
does not easily apply for p # .5.

0 S B B0 DN 0 I
u m |

TFFJ9T TR I

2a. 2b.
Learning Axes: “My Mind Keeps Going Back and Forth”

The learning axis ‘specific event vs. event class’ (see Figure 3, next page), which we
perceive as key to this design (see next section), posed great difficulty for several
Grade 6 “‘High’ students, who required a mean of 9 min. until stability.

Student Discrete-Scalar Insight Into the Law of Large Numbers

Students understood that event classes have different likelihoods according to their
relative sizes, with larger event classes having “better odds” in the experiments, e.g.,
it is more likely to randomly get any two-green 4-block than any three-green 4-block,
because there are six items in the former group and only four in the latter. Although
only two ‘High’ students could express these inter-class relations multiplicatively,
students learned to use these relations to express what we have termed a discrete—
scalar multiplicative model of the outcome distribution.

2-4 PME30 — 2006
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The traditional representation of binomial distribution (see Figure 4, next page, on the
left) can be interpreted as an ambiguous figure enfolding theoretical and empirical
constructs. These can be bridged by an itemized distribution, i.e., the combinations
tower. This bridging tool illuminates stochasm as theoretical-to-empirical
transformation, as follows. All events have equal opportunities to be repeated in the
experiment, so outcome categories holding a larger variety of different events collect
more groups of repeated events and therefore collect a larger total of outcomes. For
instance, if each of the 16 different possible events appears in the experiment about 3
times, then a column collecting 4 types of outcomes (e.g., see Figure 4, next page, on
the right) accumulates a mixture of 4 sets, each of about 3 outcomes, for a total of
about 12 outcomes (see also Figure 2).

B. Confusion:
Students say that the
specific three-white
block is 4 times more
likely to occur than
the four-white

block —the students
experience great
difficulty in
disengaging from the
“group perspective.”

4ssEEEEEEENENEEERENER

e
X
o

R =Lk

1

0

A. Task: Once the combinations tower is assembled, students
are asked to compare the likelihoods of these two specific
items of the combinatorial space. These likelihoods are even.

Figure 3. Students’ difficulty with the learning axis ‘specific event vs. event class.
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Binomial Distribution

DHHUD a
] l p 3 N D 3
ﬁThcoruticul Bri:ilging ) Empirical m
.. —
Fl .
= L L
|:1|:||:||]1:| k.. EII:||:||:|EI —> D —> &

] [ 3 ] 4

' oo 2t Detail the Scale Up Random Hide
T T Permutations Uniformly Reorder Details

Figure 4. Bridging theoretical and empirical aspects of binomial distribution.

Students could investigate this line of reasoning within the 4-Block Stalagmite
simulation, because, unlike in traditional representations, the samples themselves
were all stacked in the columns (see Figure 2). Further, students could readily
compare the outcome distribution and the combinatorial space, because these two
structures were designed to appear similar (see Figure 1). We envisage such
understanding as supporting a treatment of the sequence of column heights, e.g., 1-4-
6-4-1, as a set of multipliers, i.e., as coefficients in the binomial function; the
multiplicand ‘scalar unit” would be the events’ mean number of occurrences.

CONCLUSIONS
Design

The design was an example of a framework by which the designer first identifies a
learning axis, then actuates this axis in the form of objects and activities that embody
this axis as a learning issue; students must confront this issue and unravel it toward
deep understanding of mathematical content. The demonstrated ubiquity of students’
probability-related intuition together with the effectiveness of this design in enabling
students to investigate this intuition suggest that this design could potentially be
developed into a unit used in late elementary school and certainly in middle school.
Whereas basic fluency with rational-number models appears to have helped a couple
of Grade 6 students perceive the outcome distribution as a proportionally-equivalent
scaling-up of the combinatorial space, such fluency is not necessary for appreciating
the scalar—discrete and stochastic transformations explored in our design. Finally, in
future development of the design we will explore its potential extension to cases in
which p # .5 and also study its connections to normative, symbol-based,
mathematical expressions.

Building on Intuition: “It’s What | Was Trying to Say But Didn’t Know How”

Just how intuition is grounded in teaching—learning contexts is a difficult yet
Important question to pursue, because not all students are able to recognize a
resonance of their intuition within these contexts. Moreover, just because the

2-6 PME30 — 2006
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combinations tower enabled students to validate and possibly ground their intuitive
judgment, it does not necessarily follow that this validation was an articulation of the
intuition itself. The intuitive judgment needn’t have been combinatorial—it may have
been some manner of proportional reduction or mapping of the marble population
onto the marble-scooper 4-block template. This should be researched.

Teaching

Focusing classroom discussion on the learning axes is challenging, because students
may hold fast onto their confusions. Nevertheless, intuitions should be recruited into
learning spaces even if these intuitions initially appear vague or misleading, because
they will persist anyway—students will achieve a sense of understanding only if the
learning issues are faced head-on by probing and discussing interpretations of objects
within problem-solving activity contexts.

This study has contributed an innovative design. The design framework outlined
herein, too, could help education practitioners, both in the domain of probability and
beyond. Finally, we call for further research on the nature of intuition and how it may
be sustained through to deep mathematical understanding.

Note and acknowledgments

'Design-theoretical aspects are elaborated in a full report. The Seeing Chance project is
supported by a NAE/Spencer Postdoctoral Fellowship to the first author. The participation
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IMAGINARY-SYMBOLIC RELATIONS, PEDAGOGIC
RESOURCES AND THE CONSTITUTION OF MATHEMATICS
FOR TEACHING IN IN-SERVICE MATHEMATICS TEACHER

EDUCATION

Jill Adler Zain Davis
University of the Witwatersrand University of Cape Town

We take as axiomatic (1) that in any pedagogical situation there are always two
modes of identification at work: imaginary and symbolic (Lacan), and (2) today the
imaginary dominates social relations. We focus on a model of in-service mathematics
teacher education where the imaginary is rendered largely under the aspect of the
symbolic, producing a pedagogic form that appears to generate a productive
discursive space for the production of mathematics for teaching. Disruption occurs,
however, when the notion of community is used as a pedagogic resource because, we
reason, it renders the imaginary dominant in relation to the symbolic.

INTRODUCTION

In Davis et al (2005), we presented part of an emerging and challenging theme in our
study?, that of adequately capturing the pedagogic modalities that prevail in the field
of mathematics teacher education but differ substantively in how consciousness
might be specialised (Bernstein, 1996); in this instance, of mathematics for teaching.
We analysed three cases of pedagogies circulating in mathematics education for in-
service teachers in South Africa, and found that each recruited the image of the
teacher (and teaching). In teacher education discourse, all, unspurprisingly, recruited
some notion of ‘practice’. Learning to teach (whether in pre- or in-service) requires
modelling (an image of the adept) and/or experience of the practice of teaching. What
Is interesting is how differently ‘practice’ manifests in three cases we are studying?

In this paper we focus in on one of those cases, as it exemplifies the constitution of a
potentially productive discursive space where mathematics teaching is interrogated
by examining records of practice with a set of symbolic resources that lift the practice
beyond the specific. This imaginary-symbolic relation provides for a specialisation of
consciousness that is at once practical and theoretical, empirical and principled:.

! Our study is concerned with what and how mathematics and teaching, as dual objects in
mathematics teacher education, are co-produced. We contend that this will contribute to an
elaboration of the notion mathematics for teaching. See Adler (2005) and Adler et al (2005).

2 In Davis et al (2005) we point to questions that emerge about equity in the practice of teacher
education, a point not in focus here.

3 Implicit here is that this relation provides a theoretical resource for describing mathematics for
teaching.

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 9-16. Prague: PME. 2-9



Adler & Davis
METHODOLOGICAL COMMENT

In any pedagogic practice, there are always two principle modes of identification at
work: one is the identification of the pedagogic subject with an image; the other is an
identification with one or more discursive fields. We refer to the first mode of
identification as imaginary identification, where the term imaginary should be
understood as referring to the image (in this case the image would be of the
mathematics teacher). The second mode of identification is referred to as symbolic
identification (cf. Lacan, 2002a, 2002b), and in this case identification would be with
the fields of mathematics, mathematics education and teaching. We have elaborated
these modes in Davis et al. (2005). We note briefly here that imaginary identification
Is produced through relations between subjects with the image of one in relation to
that of the other. Symbolic identification is produced through symbolic relations
entailing a subjection to social “institutions”, which include discursive fields.
Symbolic identification is predicated on the social existence of a legitimating field
external to the individual subject, including s/he who holds any particular
social/institutional mandate.

The relationship between the two modes of identification can be realised in a manner
such that the symbolic largely appears under the aspect of the imaginary, and does
not emerge in its full specificity. Here, the teaching is presented as largely a practical
accomplishment. Alternatively, the imaginary can be rendered under the aspect of the
symbolic, producing a distancing from the imaginary (cf. Zizek (2002: xi-xvii) for an
extended discussion of the relations between the imaginary and the symbolic). In the
latter, teaching is theorised and remains distant and abstracted from the realm of
practice. Both of these pedagogic forms in teacher education have been criticised,
suggesting resolution in the integration of theory and practice. As Bernstein reminds
us, there is always ideology at work in any pedagogic practice. From this we can
anticipate diverse forms of ‘integration’, of the imaginary and the symbolic. Our
concern is how, in a study of instances of mathematics teacher education, we can
adequately capture pedagogic forms in ways that reveal the mediation between the
imaginary and symbolic, and that illuminate possible social effects.

Elsewhere (Davis et al., 2005) we have elaborated how the manner in which actions
and statements of subjects are authorised reveals the nature of the forms of
identification at work; and, importantly, how it is that the symbolic qua discursive
order is constituted in a given pedagogic context. For the coherence of this short
paper we briefly detail aspects of our methodology. Our unit of analysis is referred to
as an evaluative event: a teaching-learning sequence focused on the acquisition of
some or other content. It derives from our use of Bernstein’s (1996) proposition that
the whole of the pedagogic device is condensed in evaluation. The purpose of
evaluation is to transmit criteria for the production of legitimate texts. However, any
act of evaluation has to appeal to some or other authorising ground in order to justify
the selection of criteria. In the complex practice of mathematics teacher education,
the interesting and challenging issue is that there is a spread of authorising social
institutions (e.g. disciplinary mathematics, mathematics education and/or teaching as
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fields; curriculum texts) and agents (experienced teachers, teacher educators,
researchers). In Davis et al. (2005) we have shown that what is taken as the ground
for an appeal varies substantially within and across sites of pedagogic practice in
teacher education, allowing us to examine the way in which identification is
functioning, and to begin to pose questions about possible effects.

THE STUDY

From an initial review of formalised in-service math teacher education programmes
across South African universities, we selected three sites of focus because of the
continuum they offer with respect to the integration of mathematics and teaching
(content and method) within courses. In two cases, the imaginary predominates. We
described that as a prioritising of sensibility, which is experiential. Sensibility is an
important feature of the teaching and learning, particularly of school mathematics,
where some meaning remains absent for many learners. What then of intelligibility?
Specialised knowledges, including mathematics and mathematics for teaching, in part
aim at rendering the world intelligible, that is, providing us with the means to grasp,
consistently and coherently, that which cannot be directly experienced. Consistency
and coherence, however, demand a principled structuring of knowledge.

The pedagogic forms that predominated in the two cases mentioned are familiar: in
one, the teacher educator models how Grade 7-9 algebra (for example) should be
taught; in the other, the pedagogy centres on self reflection by the teacher through an
action research project. We see these pedagogic practices as a function of ideologies
and discourses in teacher education that assert the importance of teacher educators
‘practicing what they preach’. This pressure is particularly strong when new practices
(reforms) are being advocated, and so is a significant feature of in-service teacher
education. At a more general level, these modelling forms are also explicable in
relation to the discourse of the integration of theory and practice, in particular, that
theories without investment in practice are empty. The pedagogic form in the case we
discuss here is different, and illuminating. With the evaluative event as unit of
analysis, we chunked course lectures and notes into a succession of evaluative events
over the period of a complete course, and identified and coded the legitimating
appeal(s) in each event. To capture, albeit briefly, the substance of the case, we start
with a general description followed by the production of analytic statements
supported by illustrations from selected teaching sequences. Following discussion of
the case, we move to a more general discussion of the implications for the production
of mathematics knowledge for teaching.

TEACHING AND LEARNING MATHEMATICAL REASONING

We have described the overall practice to be acquired by this course as the
interrogation of records of practice with mathematics education as a resource (Davis
et al, 2005). The course is structured by mathematics education texts on the nature,
teaching and learning of mathematical reasoning as a mathematical practice.
Teaching is presented through a variety of records of practice (videotapes of local
teachers, student work, curriculum texts and tasks, as well as teachers’ own
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experience). In other words Mathematics education texts are symbolic resources for
interrogating practice — for studying teaching. Throughout the lecturer’s interactions
with students, the function of the academic texts is fore-grounded. After twenty
minutes in the first session of this course, and during a discussion with students on
the meanings of mathematical reasoning and mathematical proficiency, the lecturer
states: “What is in the readings that help with our definitions — so that we look at
these systematically?” In and across sessions, activity typically requires teachers to
‘bring’ examples from and/or descriptions of their own practice. They are then
presented with a record of an other’s practice (e.g., a mathematics classroom video
extract; a transcript of a teaching episode), and a set of readings then function as the
mechanism through which their experience and images of teaching presented are both
interrogated. Thus, teaching, and in particular, teaching mathematical reasoning, is
constructed as a discursive space. What we have is a relation set up between the
Imaginary and the symbolic in the form of images of teaching mathematics on the
one hand, and a set of reasonably principled resources for interrogation those images
on the other.

To elaborate: Teachers were required to prepare for their first session by reading
three papers, one of which was on mathematical reasoning, and another on the five
strands of mathematical proficiency. The latter is a chapter from the book “Adding it
up: Helping children learn mathematics” by Kilpatrick and others. Teachers were also
required to bring an example (written) of an observation of each of the five strands in
one of their learners and were asked to “describe how you observed each strand (or
lack of) in an interaction with a learner or in their written work and give reasons why
you have identified that observation as a particular strand” (Course handout, Session
1). The discussion related to the fifth strand, productive disposition, is illustrative.
One of the teachers (S1) says she “could not get something about productive
disposition” from looking at her learners’ responses. Another (S2) offers an example
of productive disposition as “a learner who gets a hundred percent”, and a third (S3)
suggests “If learners can relate their mathematics to their everyday lives they have
productive disposition”. The short extract below is indicative of how the lecturer
moves to interrogate these offerings: (L = lecturer; Sn = student)

L: (referring to the offering from other teachers) S1, do those responses help you?

S1: Yes, | think so especially the last one.

L: Would Kilpatrick agree with S3? What do they say about this in the text ...?
Ss look at the reading, and L reads aloud from the text that “someone with productive
disposition sees mathematics as useful and worthwhile” and asks for other key
aspects of productive disposition. Discussion continues and she concludes this with:

L: It is not only belief in yourself it is also a belief about the subject — that mathematics can
make sense. ... and ... it is difficult to see. ... For me the important thing is whether you can see
that the learner believes they can do it and they can do it. What Kilpatrick et al are arguing is that
these (the strands beyond procedural fluency) are not developed. So this is what we need to be
teaching, and so this is why we are not getting people going into higher mathematics. Their
conjecture is that we need to be focusing on this, what it is and how to teach it? ... In practice all
the strands need to be done together ... the image of interwoven strands is very powerful. And
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the interesting question in all of this is how to assess this? The argument in the paper is that you
(teachers) should be able to recognise it and assess it.

Elsewhere (Adler et al., 2005) we have described another session in the course,
focused on the identification of and engagement with mathematical misconceptions.
The records of practice recruited here were a video-tape and transcript of a teaching
sequence where a teacher in a local school grappled with errors and misconceptions
as his grade 11 learners reasoned about the truth of the statement: x*+1 # 0 if x is real.
In addition, teachers were required to bring to class their own ideas about possible
misconceptions and errors their students might produce in this case. These were
interrogated drawing on mathematics education texts that located misconceptions
within a theory of knowledge construction, and that offered conceptual distinctions
between different types of misconceptions. Similarly to the first session, these texts
were used to interrogate both what learners (in the video-tape) produced, how the
local teacher interacted with these, as well as the participating teachers own
experience of misconceptions and errors in their classrooms. Mathematical
misconceptions (in relation to mathematical reasoning here) were produced as
empirical and localised on the one hand (the imaginary), but subordinated to
reasonably principled knowledge on the other (the symbolic).

There was an interesting disturbance to this structure during the fifth session of the
course. While it was but one instance, we include it here as it provides additional
insight into the imaginary-symbolic relation in the constitution of mathematics for
teaching. The topic for the week was “communities of learners ... creating a
community in the classroom” and it begins with the class watching a video “of
someone who it trying to do this”. As in previous sessions the resources for
interrogating practice here are a video extract (and an accompanying transcript), and
three relevant readings. Four questions are provided to structure discussion: “1. What
mathematical work is the teacher doing? 2. How is he teaching them to be a
community? 3. To what extent is he successful. 4. What would you do differently”.

For the next twenty or so minutes teachers offer what they think the teacher in the
video is doing to create a community. Teachers’ responses include statements like:
“he is encouraging them to participate ... he says ‘feel free to participate’ ”; “the
teacher is a facilitator”; “the teacher is democratic”; “the learners are actively
constructing knowledge”. The lecturer responds by asking that they point to what
they see as evidence of their claim or assertion in the transcript. The lecturer pushes
teachers to invest their utterances, utterances which proliferate in new teaching and
learning discourses, with meaning, and particularly practical meaning as revealed in
another teacher’s practice. For example:

L: ... that is not enough evidence for me — they could be talking about soccer — how do you
know they are actively constructing mathematical knowledge — anyone else got other evidence?

Included in this lengthy discussion are sceptical voices, that there is “noise in the
classroom”, suggesting that the teacher is not in control of his lesson, that “some
learners are not involved”, that the discussion in the tape is “time-consuming” and
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learners appear “confused”. These too are common in teacher discourses around
curriculum reform, and the lecturer pulls all of this into focus:

L: ... developing a mathematical community takes time; having mathematical conversations
takes time, there is no doubt about it, it takes longer. The argument is that it leads to better
mathematics in the end ... These learners spent fifteen minutes being confused about the
mathematical concepts and that is not a long time (and she refers to mathematicians and how
long they spend being confused about new ideas and continues...). You could just tell them, but
will this remove or eliminate all confusion?

L: The point is, 1 would like you to be able to make a choice. OK ... this mathematical
conversation and mathematical community is not something we were trained to do. It is part of
the new curriculum, ... of the new order in mathematics, because people do believe it will lead
to better mathematical learning. There may be many reasons why you can’t do it, number one
being a heavy syllabus and assessment, but then at least you are making a choice and you know
why you are making it, you know what it looks like. And it is possible, perhaps not possible all
the time, but it is possible, and | know there are people in this class who are doing this. He (the
teacher in the video) is also by the way, a Grade 11 teacher, and this is ... not a very strong class,
and this teacher feels the same pressures, and he doesn’t do this all the time. Time is an issue.

And she returns to focus on the teacher in the video, and how he is “building a
community” and this is the point (time for the session is running out) at which the
readings for the session are brought into focus:

... he apologises to a learner for interrupting her ... “sorry to break your word” .... He is
modelling that it is not polite to interrupt someone. ... he is trying to model what it is that he
wants the learners to be doing with each other and with him. ... The very, very important thing is
that teaching learners to be a mathematical community requires mathematical work and that was
Maggie Lampert’s article ... a long one ... hello ... the one you read for this week. The long
one? (Laughter) “Teaching to establish a classroom culture”. ...

There is then a relatively brief discussion of Lampert’s paper, and elements of a
second paper read, with a focus on how Lampert describes her own teaching to build
a community of mathematical learners. A pedagogic discourse that up to this point
legitimated its utterances largely by reference to a discursive field (and categorised as
‘mathematics education’ in Table 1 below), is now predominantly focused on the
image recruited for this session — the record of practice (and categorised as
‘experience’ in Table 1). It provokes a host of utterances from popular pedagogic
discourses, and it is interesting that here the lecturer recruits the field of mathematics
education only at the very end of the session. Two inter-related explanations follow.
Firstly, the reform jargon that the teachers offer (participation, active construction
...), and its oppositions (time consuming, confusing), needs to be engaged. Focusing
on a recognisable image (a teacher in a familiar context), makes pedagogic sense: it
offers the practical possibility of the proposed practice. Secondly, the field here
(community of practice) is itself still weak, rendering it less effective as a discursive
resource. The resulting pedagogy is a form where the imaginary is privileged over the
symbolic. This is somewhat inevitable, and so a challenge to the practice of
mathematics teacher education.
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Table 1 categorises and summarises the appeals made for legitimating the texts
within this pedagogic practice*. Evidence for our description of the practice to be
acquired lies in the table. In the total of thirty-four events across the course, thirty-
one (91%) direct appeals are made to mathematics education texts. We also note from
the table that there is a spread of appeals across possible domains, reflecting the
complex knowledge resources that constitute teaching for mathematics. Our analysis
of this data leads to the following claims. Firstly, appeals to the metaphorical and the
authority of the lecturer are, however, low, suggesting that mathematics is presented
as a reasoned activity, and interrogation of practice is through the field of
mathematics education. Secondly, the relatively high percentage of appeals to
experience, together with appeals to mathematics education shows a different kind of
identification in operation (contrasted with the other two courses we have studied).
Finally, we noticed with interest that in this course, there are 95 appeals across 34
events. This is considerably different from the 45 appeals across 36 events, and 74
appeals across 36 events respectively in the other two cases. We suggest that the
density of appeals is a key feature that reflects the different practices in these three
courses, at the same time that all three recruit the image of the teacher.
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Mathematics 5 6 5 0 0 0
Proportion of appeals (N=16) 31,3% 37,5% 31,3% 0% 0% 0%
Teaching 15 25 0 23 10 6
Proportion of appeals 19%  317% 0% 29,1% 13,7%  7,5%
(N=79)
Mathematics & Teaching 20 31 5 23 10 6
Proportion of appeals (N=95) 21,1% 32,6% 5,3% 24,2% 10-5% 6,3%
Proportion of events (N=34) 58,8% 91,2% 14,7% 67,7% 294% 17,7%

Table 1: Distribution of appeals in Case

* The six categories emerged from an interrogation of the data. We have already indicated the kind
of appeals that have been coded as either mathematics education or experience. Briefly, a coding of
curriculum was indicated when the legitimating resource was, for example, taken from a text book;
metaphorical was the coding when, for example, everyday experience was the legitimating
resource. An assertion like ‘this is a good example’, without any other justification was coded as an
appeal to Authority. See Davis et al (2005).
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CONCLUDING REMARKS

In the case presented here, the imaginary-symbolic relation is one where the image of
teaching (the local and practical) is strong, but at the same time subordinated to an
interrogative discursive space that is principled and theoretical: the image was always
interrogated by way of appeals to mathematics education as a discursive field. We
also noted the density of appeals in this course, a function, we propose, of a pedagogy
where images of practice (of other teachers, and the teachers themselves), are
constantly and explicitly interrogated, distanced from the lecturer, and positioned
under the aspect of the symbolic.

Two final comments are apposite here. Firstly, the records of practice deployed in
this course are not widely or readily available (relevant video tapes of local teachers
In practice, with accompanying transcripts), with implications then for large scale
education of teachers. Secondly, the disruption of the practice when the idea of a
(mathematical) community was inserted, and the difficultly of preventing the
Imaginary from over-asserting itself, begins to throw a new light on the complex
demands on pedagogical reform in through mathematics teacher education.
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RELATIONSHIP BETWEEN PRE-SERVICE MATHEMATICS
TEACHERS’ TEACHING AND LEARNING BELIEFS AND THEIR
PRACTICES

Hatice Akko¢ & Feral Ogan-Bekiroglu
Marmara University, Turkey

The purpose of this study was to determine pre-service mathematics teachers’
teaching and learning beliefs and examine the relationship between their beliefs and
practices. Qualitative and quantitative research methods were designed for this
study. Survey, semi-structured interviews, observations, and pre-service teachers’
written documents such as school practice portfolios were used to collect the data.
Under the developed theoretical framework, it was found that some of the pre-service
mathematics teachers’ beliefs were consistent with their practices; while some of
them presented different practices from their beliefs.

INTRODUCTION

Teachers’ beliefs related to instruction have direct effects on their classroom practice;
therefore, they have been a focus of attention in a large amount of research (Block
and Hazelip, 1995; Hoban, 2003; Kagan, 1990; McDiarmid, 1995; Peterman, 1993;
Thompson, 1992; Woolley & Woolley, 1999). Stipek, Givven, Salmon & MacGyvers
(2001) emphasize that influencing teachers’ beliefs is important to be able to change
their classroom practice. If the purpose is to shape teachers’ practices, their beliefs
should be examined at the earliest stages in their professional development especially
during their pre-service teacher training. Therefore, this study attempts to determine
pre-service mathematics teachers’ teaching and learning beliefs and examine the
relationship between their beliefs and practices.

BELIEF AND BELIEF SYSTEMS

Kagan (1990), defines teacher belief as “the highly personal ways in which a teacher
understands classrooms, students, the nature of learning, the teacher’s role in the
classroom and the goals of education” (p.423). Richardson (as cited in Woolley &
Wooley, 1999, p. 3) gives three sources of teacher belief: a) personal life experiences
which shape a teacher’s world view, b) experiences as a student with schooling and
instruction, and c) formal knowledge including pedagogical content knowledge.
Gates (2005) emphasized the social dimensions of the sources of teachers’ belief.

Fishbein & Ajzen (1975) define hierarchy of beliefs as a belief system. Green (1971)
categorizes belief system as the following three dimensions: primary and derivative
beliefs (primary beliefs are independent from other beliefs while derivative beliefs
are the consequences of primary beliefs), central and peripheral beliefs (central
beliefs are the ones that are most strongly hold and peripheral beliefs are the ones that
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are susceptible to change), and beliefs in clusters which might be isolated from each
other.

According to Thompson (1992), belief systems are dynamic, permeable mental
structures, susceptible to change in light of experience” (p. 149). In other words,
“teacher beliefs and belief systems are grounded in their personal experiences and,
hence, are highly resistant to change” (Block & Hazelip, 1995, p. 27). It can be
derived from the literature that teaching and learning beliefs emerge from personal
experiences and can be changed by having the related experiences.

RELATIONSHIPS BETWEEN BELIEF AND PRACTICE

There is ample research on the relationship between teachers’ beliefs and practices
(Kagan, 1992; Kane, Sandretto & Heath, 2002). Other research investigated pre-
service and in-service teachers’ mathematics related beliefs as they are central to the
belief-practice relationship (Raymond, 1992; Andrews & Hatch, 2000). Research
demonstrates the general inconsistency between pre-service teachers’ pedagogical
views of teaching and their classroom behaviour (Raymond, 1997). It is suggested
that future studies should seek to elucidate the dialectic relationship between
teachers’ beliefs and practices (Thompson, 1992).

PURPOSE OF THE STUDY

The purpose of this study was to determine pre-service mathematics teachers’
teaching and learning beliefs and examine the relationship between their beliefs and
practices. Pre-service teachers’ beliefs in relation to practice were investigated under
the theoretical framework developed from the previous research.

THEORETICAL FRAMEWORK

In the literature, teachers’ beliefs related to instruction are categorized mainly as
traditional and constructivist. Traditional belief is “based on a theory of learning
suggesting that students learn facts, concepts, and understandings by absorbing the
content of their teacher’s explanations or by reading an explanation from a text and
answering related questions” (Ravitz, Becker & Wong, 2000, p.1). Constructivist
belief, on the other hand, is “based on a theory of learning suggesting that
understanding arises only through prolonged engagement of the learner in relating
new ideas and explanations to the learner’s prior knowledge” (Ravitz et al., 2000,
p.1).

The theoretical framework of this study is based on the research done by Haney and
McArthur (2002) where they investigated constructivist and behaviourist beliefs in
relation to practice. They categorize constructivist beliefs as core beliefs which are
enacted in the practice, and peripheral beliefs which are stated but not enacted in the
practice due to external factors such as lack of resources in the schools. They present
a further categorization of core beliefs as constructivist, conflict and emerging core
beliefs. Constructivist core beliefs are the constructivist beliefs that are put into
practice. On the other hand, conflict constructivist beliefs are those beliefs that are
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enacted in the practice, but are in opposition to constructivist theory (e.g. believing in
hands-on student inquiry but relying on heavy lecturing). Emerging core beliefs are
the ones that are both stated and put into practice but are not directly related to the
constructivist practice (e.g. believing that good teachers are caring). Our theoretical
framework which was extended from Haney & McArthur’s (2002) framework is
summarized in Figure 1 below. A category called transitional was considered to
investigate beliefs in which neither constructivist nor traditional beliefs are dominant.

[Transit:ional ] [Constru:ctivist ]
Core | [Peripheral) [Core ) [Peripheral ) Core ) [Peripheral )

Traditional ] Transitional] Constructivist ]
Conflict | Conflict | Conflict |
Emerqing ] Emerqing ] Emerqing ]

Figure 1. The categorization of beliefs in relation to practice

METHODOLOGY

Qualitative and quantitative research methods were designed for this study. The data
was collected by using various instruments such as survey, semi-structured
interviews, observations and pre-service teachers’ written documents such as lesson
plans and school practice portfolios.

Participants and setting

Participants of the study were 58 pre-service mathematics teachers attending the
mathematics teacher education program. The age of the participants ranged from 20
to 25 and 45 % of them were female. Then, six pre-service teachers were selected to
examine the belief-practice relationship deeply. The data was collected in
“Instructional Methods in Mathematics-1” and “School Practice” courses.

Survey research

In order to examine pre-service teachers’ beliefs, modified version of the TLC
(Teaching, Learning, and Computing) survey developed by Becker & Anderson
(1998) was used. As discussed in the literature review, teachers’ beliefs are mainly
categorized as traditional and constructivist. The new category called transitional
beliefs was developed and pre-service teachers’ beliefs were examined in five
categories; traditional, close to traditional, transitional, close to constructivist and
constructivist.

Interview

On the basis of the results of the survey, two participants from each belief category
(constructivist, transitional and traditional) were randomly selected to be interviewed.

PME30 — 2006 2-19



Akkog¢ & Ogan-Bekiroglu

The interviews were semi-structured and had two purposes. The first purpose was to
examine pre-service teachers’ beliefs. The second purpose was to discover how pre-
service teachers prepared for their teaching practices in schools. Therefore the
structure of the interviews had two parts. The first part consists of stimulated-recalls
which required pre-service teachers to talk about their preparation and evaluation of
the lessons in the school practice. The second part included questions about
classroom environment, planning of teaching activities, assessment, the role of a
teacher in the classroom and instructional goals to reveal participants’ beliefs.

Observation and Written Documents

In order to evaluate pre-service teachers’ teaching practices, six participants were
observed in their method courses and school placements as they were teaching. To
analyze the data from the observations, Greer et al.”’s (1999) Constructivist Teaching
Inventory was used. This inventory is composed of 44 items in four clusters:
community of learners, teaching strategies, learning activities, and curriculum and
assessment. The data from the observations was triangulated with the written
documents and interviews.

RESULTS

The analysis of the data from the survey, interviews and observations were
summarized in table 1 below. Letters were used to refer to the participants who were
selected from different belief categories considering the results of the survey.

Beliefs Beliefs in relation to practice
Participant Survey Interview Method course School setting
Al Close to Constructivist Constructivist Constructivist core
constructivist core
A2 Close to Constructivist Constructivist Constructivist core
constructivist core
B1 Transitional Transitional Transitional core Transitional core
B2 Transitional Close to Constructivist Constructivist
constructivist conflict conflict
C1 Close to Transitional Transitional Transitional conflict
traditional conflict
C2 Close to Close to Traditional core Traditional core
traditional traditional

Table 1. Comparison of the participants’ teaching beliefs and practices

The columns named as method course and school setting represent the relationship
between belief and practice based on our theoretical framework. Categories of beliefs
in these columns were determined by comparing the participants’ beliefs revealed
from the interviews to their practices determined by observing practices in the
method and school practice courses. For instance, C1 has transitional beliefs as
determined from the interview and his practices were observed to be traditional,
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therefore, his belief in relation to practice both in the method course and school
setting were determined as transitional conflict.

As seen in table 1, two of the pre-service teachers (Al and A2) who were selected as
being constructivist on the basis of survey results were also constructivist in the
interview. They stated the following:

Al: I’d choose which method to use according to the topic. | would apply
discovery, and computer assisted methods and use concept maps. Some
topics are more appropriate for these methods such as functions and
absolute value, but not polynomials and logarithmic functions...teacher’s
role in the classroom shouldn’t be the leading one, he is like a secret hero.

A2: A teacher should be the facilitator when it’s a suitable topic for students to
discover for themselves... knowing why rules work is
important...students should be active and investigate.

Both of them were also constructivist in their teaching practices. To illustrate why the
practice of Al was considered as constructivist, a brief account for his practice in the
school setting will be given here. He taught absolute value in one of his lessons in the
schools. He started his lesson by reminding prior knowledge such as number line and
being non-negative. He tried to draw students’ attention to the difference between the
terms distance and length. He helped students to relate these to being non-negative.
After giving the definition, he illustrated examples by asking students to express the
algebraic expressions of absolute values in the colloquial language. He also
encouraged students to express the algebraic expression on the number line.

The practice of A2 was also considered as constructivist. In one of her school
placements she taught induction. She started her lesson with the story of Gauss and
explained how he found out the sum of the numbers up to 100. She noted that
generalization from specific cases may not always be true. She gave the example of

Fermat’s prime numbers as F, =2% +1 and mentioned that the induction method was

needed to prove such statements. While explaining the method of induction, she gave
the example of dominos. In her reflection report of the lesson, she wrote that:

A2: | had two choices to teach induction. One like the way the textbooks do
with the definitions in formal notation, secondly by using colloquial
language to give meaning to the notation. | chose the second way because
if I had chosen the first way then it would have been too abstract.

Practices of these two pre-service teachers were constructivist which reflected their
beliefs; thus, they were considered in the category of constructivist core.

B1 was selected as having transitional beliefs based on the survey results. Her beliefs
were also considered as transitional based on the interview transcripts. For instance,
in terms of classroom environment, she stated that:

B1: Students should listen and understand what is taught...they should
participate and they can correct my mistakes.
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Her practices in the method course and school practice reflected her transitional
beliefs; hence, her beliefs in relation to practice were considered as transitional core.

Although B2 was selected as having transitional beliefs based on the survey results,
his beliefs were analyzed as close to constructivist. In the interview, he stated that:

B2: | would choose the teaching method according to the topic and the
students’ level. | would use group work, experiments, demonstration
boards...I wouldn’t teach directly. Students should try for themselves.

However, his practices both in the method course and school setting were not
constructivist. For instance, in the school setting he heavily relied on giving
definitions and rules followed by examples which aimed instrumental understanding
as pointed out by Skemp (1978). Although, he tried to relate mathematics to real life,
he did not assess whether students could make this relationship. Consequently, his
beliefs in relation to practice were considered as constructivist conflicting.

Although C1 was selected as having traditional beliefs based on the survey results,
his beliefs were determined as transitional in the interview:

C1l: I wouldn’t want students be so quite or so noisy. | want them to
participate....One to one interaction is important in the classroom....l
want to share their problem...I would choose questions at different levels.

However, his practice was traditional. For instance, in the school setting, when he
was teaching probability, he mostly relied on using rules. When students asked the
reason why they multiplied the probabilities instead of adding, he mentioned that it
was because there were rules for this. In the interview, when he was asked the reason
for his answer to the students, he explained that he did not know the answer.

C2’s belief was considered as traditional. In the interview she said that:

C2: The teacher should teach thoroughly, not quickly...Group work becomes
chatting...Meaningful learning is important but curriculum should also be
followed.

Her practices reflected her traditional beliefs. For instance, when she was teaching
probability in her school placement, she heavily relied on applying rules without
reasons in the sense of instrumental understanding of Skemp (1978). She reacted
negatively towards the different solutions from the students as she deleted a student’s
solution on the board and wrote her solution instead.

CONCLUSIONS

The following conclusions can be drawn from this research. First, results showed
some inconsistencies between pre-service teachers’ teaching and learning beliefs and
practices. In this paper, these inconsistencies were described on the basis of our
theoretical framework developed from Haney & Mc Arthur (2002). The data
indicated that declared beliefs might not be enacted due to the various reasons such as
lack of subject knowledge and the complexity of classroom environment. For
example, one of the participants who believed in active participation of students
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could not put his beliefs into practice. This might be because surviving in a chaotic
classroom environment requires pedagogical skills and experience.

As a second conclusion, pre-service teachers believe that teaching approach should
be determined on the basis of the nature of the mathematical topic. As one of the pre-
service teachers who held constructivist beliefs stated that functions and absolute-
value could be taught using discovery methods and in a technology-rich environment
while polynomials and logarithmic functions could only be taught by heavy-
lecturing. More research is needed to investigate topic specific beliefs.

Finally, constructivist or traditional beliefs tend to be more consistent with practice.
In other words, pre-service teachers who held constructivist or traditional beliefs have
core beliefs in their practice.

The data revealed more comprehensive categories than the ones in the theoretical
framework developed by Haney & McArthur (2002). Similar to the research done by
Authors (2005), this study observed some of the categories (such as traditional core,
transitional conflict and transitional peripheral) in our extended theoretical
framework. Further studies need to be conducted for other categories which were not
observed in this study. The theoretical framework might have significance for other
studies which aim to change teachers’ beliefs.
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TEACHERS’ AWARENESS OF DIMENSIONS OF VARIATION: A
MATHEMATICS INTERVENTION PROJECT

Thabit Al-Murani
University of Oxford

This paper describes the findings of a 16-month longitudinal teaching intervention
exploring how deliberate and systematic variation can be used to raise awareness in
teaching and learning situations. The results indicate that intervention teachers
attending to variation produce significant learning benefits for their students.

INTRODUCTION

This paper reports the findings of a 16-month longitudinal intervention called the
Dimension of Variation Programme (DVP), investigating the deliberate and
systematic handling of content and its consequences in the teaching and learning of
mathematics. Informed by the findings of Runesson (1999), Leung (2003), Watson
and Mason (2004), and Marton and Tsui (2004), this study widens the application of
a theoretical framework to a new area of mathematics.

The work of Marton (e.g. Marton and Booth, 1997) has drawn on research results
spanning over 25 years culminating in an outlined theory on learning and awareness
called variation theory. The theory can be summarised as ‘if one aspect of a
phenomenon or event varies while another aspect or aspects remains unchanged, the
varying aspect will be discerned’. The part of the content that varies is called the
dimension of variation, hereafter referred to as DoV. Watson and Mason (2004) have
defined the variation within a DoV as the range of change, hereafter referred to as
RoC.

e For example, in the expression x + 3, one of the possible components that
can vary is the addend (others include: the letter representing the variable,
the operator and the order in which the variable and constant appear in the
expression) hence this is a DoV. The values that the addend can take (i.e.
natural numbers, negative numbers, rational numbers and so on...) would
constitute the RoC of the DoV.

Mathematical content which appears superficially to be the same can have different
characteristics for different students when being taught by different teachers (Marton
& Tsui, 2004, p.35). Teachers teaching the same formal curriculum *‘handle it’
according to their ways of understanding the subject as a whole. The meanings that
learners construct are inextricably linked to the teaching approaches used
(Sutherland, 1987), and the material with which they interact (Brousseau, 1997). The
gualitatively different ways situations can be experienced are related to the variation
in the individuals’ perception of the experience. It is therefore possible to gain new
insight into areas of mathematics that are familiar to you when the situation in which
you experience the circumstances differs with respect to time, place, approach
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(algebraic as opposed to geometric), discourse with others and so on. Hence,
awareness has a dynamic structure and, consequently, the variation that students
experience has a bearing on their learning. Deliberate and systematic use of variation
can be seen as a teaching tool to raise awareness of mathematical structure.

JUSTIFICATION FOR THIS APPROACH

All teachers naturally use variation in their teaching, either deliberately or
accidentally. For the purposes of this study, it was assumed that no single ‘standard
approach’ that used variation in a deliberate and systematic way to handle the algebra
content existed. Instead it was recognised that all teaching would exhibit variation
which could be distinguished by frequency and type. Hence, in order to determine
whether there were noticeable differences between this continuum of ‘other’
approaches and one where there was an awareness of DoV, it was not a simple matter
of identifying and observing two sets of classrooms where contrasting approaches
were being employed. Instead, a specific intervention, the DVP, was designed.

INTERVENTION

The DVP was not of the form of giving tasks, material or instruction, but of providing
information, discussion and support opportunities around variation theory. The
intervention teachers were committed to the use of variation as a means for handling
the content of an elementary algebra lesson. The DVP was designed to encourage
direct manipulation of expressions, making the process familiar and, as Lins (1994)
would say, ‘senseful’. This might lead to students appreciating generalities for
themselves. The desire to then articulate these generalities creates the need for
algebra (Brown and Coles, 1999). The field of algebra was chosen because the
theoretical position that awareness is dynamic in structure had clear parallels to the
following definition of algebra (Pimm, 1995):

Algebra is about transformation. Algebra, right back to its origins, seems to be
fundamentally dynamic, operating on or transforming forms. It is also about equivalence;
something is preserved despite apparent change.

One reason suggested for the failure of students to acquire the desired understanding
of algebra has been the inappropriate way in which the concrete and symbolic
representations can been related to one another. The DVP can endow the elements of
manipulative algebra with meanings that enable them to be applied to the solution of
entire families of problems. For example, in y = mx + ¢ you could choose ¢ = 1, but
until you augment this with other examples, the mathematical description of the
classes of objects or relations between them remains latent for the learner. If the
equation is handled so that m is varied systematically while c is kept invariant then
the learner has an increased chance of attributing ¢ as determining the y-intercept of
the straight line. The intervention acknowledges that understanding develops and
evolves relative to particular representations. Thus, for example, there is no static
absolute meaning for the mathematical word ‘variable’ but rather a whole web of
meanings built out of the many experiences of functions that student has had.
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Students do not necessarily conceive situations in the same way the teacher does. For
a student, recognition of the inherent properties of a particular system of
representation significantly assists the understanding process. Properties must be
recognised for their benefits to be available. Work by Stenning & Yule (1997) has
shown that humans display substantially individual variation in their ability to
recognise, and thus exploit, the benefits of particular representations. By deliberately
controlling the variation offered in progressively developed examples the teacher
focuses the learners’ attention on particular aspects of the algebra, hence increasing
the chances of common experiences. Carefully selected and presented generic
examples can provide algebraic experiences that develop both manipulative abilities
(Bell, 1996) as well as generalisations of structure rather than surface features (Bills
& Rowland, 1999).

e Example 1: the series of equations: x+1=6,Xx+2=6,X+3=6,X+4=6
might illustrate to the learner that the variable in this case is an unknown and
the value of this unknown can vary from question to question.

e Example 2: the series of equations: x + x = 2x, X + 2x = 3X, X + 3x = 4,
X + 4x = 5x might illustrate to the learner how like terms are added together.

The DVP followed students through Year 7 and Year 8. It was a quasi-experimental
design with 10 teachers and a total student cohort of 300 students. Stratified sampling
was used to produce two groups of classes and to reduce the presence of confounding
variables. While all teachers inevitably offered students dimensions of variation, the
difference between the experimental groups was that the intervention teachers did so
in a consistent, aware, deliberate and systematic manner while comparison teachers
were not offered opportunities to develop this awareness. The longitudinal nature of
the study produces multiple time-reference points. These provide an opportunity to
explore how the temporal characteristics of the intervention influence the students
learning. This feature is significant for two reasons. Firstly, the effects of an
intervention may be more marked during certain periods than others (Jordan, Kaplan,
& Hanich, 2002). Secondly, a student’s growth rate, which is crucial to
understanding learning and learning development, cannot be accurately ascertained
when using only one time point measurement (Francis et al. 1994).

DATA

Quantitative data in the form of pre-, post- and delayed post-tests using standardised
national exams was collected for each student. The average time between pre- and
post-tests was 16 months. After a subsequent 2 months a delayed post-test was
administered. It would be over-simplistic to assume the intervention only happened
between the pre- and post-tests as the experimental teachers’ understanding of
variation theory evolved and continued to develop up to and beyond the delayed post-
test. This data was augmented by two forms of qualitative data. First, each teacher
was observed for a total of 8 lessons, 4 consecutive lessons at the beginning of the
study and 4 consecutive lessons towards the end of the study. Second, two target
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students from each of the 10 classes were clinically interviewed. Each student was
interviewed twice using the same questions from the CSMS study (Kuchemann,
1981), near the times of the pre- and post-tests. While the quantitative data helps to
establish whether or not the intervention has ‘worked’, the qualitative data can be
used to conjecture the reasons why, and through which mechanisms it has worked.

ROLE OF TEACHERS

Both the comparison and intervention teachers retained overall control of their
teaching style as well as the content of what was to be taught. The intervention group
together with the researcher formed a micro-research community, meeting regularly
every few months during which time variation theory was introduced and discussed.
Critical aspects of the content were collectively identified and through negotiation it
was decided which DoV would be varied deliberately and systematically.

RESULTS

Table 1 below shows a summary of the adjusted post- and delayed post-test marks
after controlling for the pre-test marks. Due to partial or missing data, the total
number of students used in the analysis was less than 300.

Total marks  Experimental N Mean SD Std Error
on Group Mean
Post-test Comparison 89 71.81 27.89 2.96
Intervention 138 77.68 1751 1.49
Delayed Comparison 87 70.36 31.95 3.43
post-test _
Intervention 138 87.15 18.79 1.60
Table 1.

Two independent t-tests were carried out on the mean post- and delayed post-test
scores. This analysis produced a significant difference between experimental groups
for the post-test [t(225) = -1.95; p < 0.05], however there was only a small effect size
r = 0.13. There was also a significant difference between experimental groups for the
delayed post-test [t(223) = -4.97; p < 0.001], with a medium effect size r = 0.32. Two
multiple regression models were generated in order to investigate the temporal effects
of the intervention. The first used the post-test marks as the outcome measure with
the pre-test marks and the experimental group as predictors. While this model did
suggest that the experimental group had a significant effect on the outcome measure,
at p < 0.05, the related effect size, d, was only 0.13. The second model used the
delayed post-test marks as the outcome measure with the experimental group, the
pre- and post-test marks as predictors. The results of this model are below.
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Outcome
measure Marks on delayed-post test
Coefficient of linear SEB Beta
model, B
Marks on pre- 0.8 0.08 0.5
test
Marks on post- 0.65 0.08 055
test
Experimental 12 84 205 0.24

group

Table 2. Multiple regression in which the outcome measure was the marks scored on
the delayed post-test, p < 0.001

In this model the experimental group again had a significant effect on the outcome
measure, at p < 0.001, and represented a large effect size with d = 0.51. The
respective outcome variables were chosen because they were considered those most
linked to the developmental improvement of the students at those particular times
during the intervention.

SYSTEMATICITY

Field notes recorded three types of data during each lesson; general contextual
information such as: the number of students in the class, the time of the lesson,
classroom layout, and so on; resources and tasks used; and occurrences of variation.
The instances at which variation was offered and generated were the primary focus of
the observation, and as such, great care was taken to record them with accuracy.
Structured observation was used to record the variation in the lesson. Each lesson was
audio-recorded and later transcribed. This data supplemented the field notes to ensure
all the details pertaining to the variation in the lessons were captured. It provided
both quantitative information on the frequency of the variation as well as qualitative
information on its nature, type and degree.

The quantitative data showed that in both experimental groups there were some
lessons in which the frequency of variation offered by the teacher was greater than
that generated by their students; and other lessons where the reverse was true. A
Kruskal-Wallis test was carried out on the mean variation offered by teachers. This
analysis produced no significant difference between experimental groups [H(1) =
0.046; p < 0.05]. This evidence suggests that teachers across experimental groups do
not use different amounts of variation and that there must be something else that the
intervention teachers do to produce significantly better delayed post-test results. Any
suspicion that this effect is due solely to the professional development atmosphere
rather than their deliberate and systematic handling of the content and attendance to
variation is dispelled when the qualitative data is considered. This data shows that in
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some cases the variation offered and generated seem to be independent of each other
in nature. That is, students’ sense of appropriate variation bears little relation to what
teachers are trying to convey. In the intervention classes the variation offered and
generated are ‘in phase’ with each other. They are more reciprocal in nature. This is
perhaps because the intervention teachers are more aware that the variation generated
by the students is indicative of what the students pertain to be critical in the learning
situation. The excerpt below is presented as an illustration of this conjecture. The
intervention teacher is explaining how to solve the simultaneous equations (1) 3y +
2x=T7and (2)2y- x=0

1 T If the operator in (1) was a minus what would you have to do?

2 Sl Minus them

3 T Why?

4  S2: Because we are trying to get rid of one of the variables

5 T We are trying to get rid of either x or y

6 Sl How do you know which one to cancel out?

7 T Itfd(_)t?]sn’t matter, what’s important is that you understand you can get rid
of either

The teacher subsequently solves for y by eliminating x

8 T what do | do now?
9 S Sub into (1)
10 T: We could sub. into any of them, but we usually sub. into one of the

originals in case we made a mistake in the multiplying

The teacher then demonstrates this by substituting into both (1) and (2), in the
process illustrating that it is easier to substitute into (2). This elicits:

11 S Subbing into (2) is easier because there is less work to do
In response to line 6, the teacher then solves for x by eliminating y. The teacher keeps

control of the variation in a deliberate way by using the same equations but now
solving for the other variable.

12 T You don’t have to stick to multiplying just one equation. If necessary you
could multiply both equations, what would | do if | wanted to get rid of
the y’s?

13 S: Times (1) by 2 and (2) by 3

The desire to describe how the type, nature and degree of variation impacted the
handling of the content necessitated the development of a new analytical tool. The
systematicity of the variation can be used as a tool to analyse beyond the existence of
dimensions of variations. Considering how the systematic nature of presentation of
variation differed from teacher to teacher gives us the ability to describe sets of
instances in more detail, hence facilitating discrimination on a higher level.
Systematicity is different from RoC here in that it is sensitive to the number of
examples presented. One good example can illustrate the RoC along a DoV (in the
sense that it can encapsulate the potential along a particular DoV), but a sequence of
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examples is needed to discern the degree of systematicity. The degree is the number
of embedded variations that are actively or deliberately being illustrated.

Intervention teachers are not systematic with the RoC of DoVs that are already well
understood as this would be time consuming and inefficient. The systematicity of
intervention teachers is illustrated in two different ways:

e  The systematic handling of the RoC of a few selected DoVs pertinent to the
teaching aim

e When a new DoV is generated or the students ask a question showing
confusion relating to a particular DoV or its RoC then the teacher responds
with a deliberate and systematic exposition of it.

GENERAL DISCUSSION

In this study an intervention designed to raise awareness through the use of deliberate
and systematic variation was introduced in order to measure the effects, if any, on
teaching and learning. The students’ performance on three standardised national tests
and the relationship between this performance and classroom observations leads to
two main conclusions.

The first conclusion, as evidenced by amongst others the Kruskal-Wallis test, is that
the intervention teachers handle the content differently. This was also the conclusion
of an earlier paper by Runesson (1999). Further, an increased awareness of variation
amongst intervention teachers was reflected by an increase in the systematicity of
their teaching. Systematicity seems to explain the relevant regularities in the handling
of the mathematical content by them.

The second conclusion is that students involved in the intervention programme
performed significantly better than non-intervention students. The longitudinal data
showed that the relationship between increased awareness of variation and
understanding (test performance being just one of the criteria used to infer increased
understanding) holds over an 18-month period. The smaller difference between
experimental groups in the first 16-months of the study suggests that other factors
may have exerted an influence while the intervention was still taking root. The
subsequent finding that this connection was more pronounced over the last 2-month
period indicates that the intervention had a more powerful influence in the long run.
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THE STUDENT TEACHER AND THE OTHERS:
MULTIMEMBERSHIP ON THE PROCESS OF INTRODUCING
TECHNOLOGY IN THE CLASSROOM
Nélia Amado, University of Algarve

Susana Carreira, University of Algarve and CIEFCUL, University of Lisbon

This paper presents part of a study on a pre-service mathematics teacher use of
technology in the classroom during his initial year of teaching practice. It draws on
the idea that the student teacher learning and developing process is situated, mainly
in the ways of participation in communities of practice and in the need to articulate
and negotiate different repertoires. From this point of view, the data presented offer
a perspective on how the university, the school, the mathematics department and the
group of pre-service teacher training (student teachers and co-supervisors) frame
and account for the process of integrating technology.

INTRODUCTION

As a general background, this study encompasses the point of effectively introducing
information and communication technologies in mathematics classes.

One consensual issue is the understanding of the crucial role that teachers play within
the process of integrating technology in the classroom. This has been a strong
argument to urge for further preparation of future teachers on the use of technologies.
At the same time, several studies have shown strong resistance from a large number
of teachers to the integration of technology in their classes (Kaput, 1992; Mariotti,
2002). The case of Portugal is paradigmatic considering the compulsory use of
graphic calculators and the steady recommendation to introduce computers in
mathematics secondary classes contrasting with recently collected indicators on
considerable teachers' uneasiness and even rejection.

This study is focusing not only on the possible barriers that the beginner teachers face
regarding the pedagogical use of technology but mostly on the changes and
experiences they come across in their initial year of teaching practice. By endorsing
the profound social nature of such a developing process, this work tries to highlight
the transformations and bouncing moves that occur as part of perceiving membership,
participating in a constellation of practices and becoming a mathematics teacher.

THE PROBLEM AND THE METHOD

The purpose of the research is to provide knowledge and plausible explanations on
how pre-service mathematics teachers integrate technologies in their classes during
their initial year of teaching practice, considering that they are both graduate students
at a university and teachers at a school on a supervised training.
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In this paper, we are focusing on one student teacher and we offer a reading of the
way in which his activity and his discourse has changed and evolved in time,
concerning the use of technology in mathematics teaching.

The pre-service teaching team was composed of two student teachers and two
supervisors, one being a senior teacher from the school and the other a teacher from
the mathematics department of the university.

The data presented were selected among a much larger set of information gathered
throughout the whole school year and also a few months earlier when the student
teachers completed their fourth year of undergraduate studies at the university. The
selection of data was guided by the intention of offering a perspective of change over
time and allowing a view of the positions assumed by the student teacher within
multiple communities of practice.

The research takes on an interpretative approach and follows an inductive method in
giving sense to the data in the light of the conceptual framework developed, namely
focusing aspects of the student teacher's actions, discourse and ways of participation
in different communities. A variety of records were produced and combined: (i)
videos of classes with and without the use of technology, (ii) interviews to the student
teacher in the beginning, middle and end of the school year, (iii) written reports of the
student teacher, reflecting on his views on the use of technology, (iv) teaching
materials and plans of the classes produced, (v) researcher's field notes of class
observations, meetings with other teachers and visits to the school.

The empirical data are displayed and analysed considering the identification of
relevant events and the discourses and practices of each of the involved communities.

The researcher was the supervisor from the university. As one of the members of the
pre-service teaching team, she had direct access to the different settings where the
student teachers acted, that is, the university, the schools and their mathematics
departments. Participant observation was conducted along the school year, including
active involvement in some of the classes where computers were used.

THEORETICAL KEY ELEMENTS

A theoretical framework that draws on learning as situated in communities of practice
informs our point of view. The learning trajectories of novice teachers can not be
detached from the context in which their activity takes place. In their initial year of
teaching student teachers are involved in different practices and taking part in several
communities like the school and the mathematics department, among others that may
be conceived as defining a constellation of practices.

From this theoretical perspective, we want to pinpoint and briefly discuss the key
concepts that are more directly related and significantly connected to the research
problem: (i) learning as participation in communities of practice, (ii) shared
repertoire, mutual engagement and joint enterprise as distinctive features of such
communities, and finally (iii) the notion of constellation of practices.
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Learning as participation in communities of practice

In intersecting learning and participation (Clark & Borko, 2004), the concept of
communities of practice incites to look at groups of people who interact, work and
learn together in terms of developing meaning, sense of belonging and mutual
commitment (Wenger et al, 2002). Practice in a community is not homogeneous and
allows different levels of participation, ranging from core to periphery. Pre-service
teachers' trajectories within communities of practice, having supervision, guidance
and experience at its heart, tunes in with the idea the newcomers join the community
by participating in its practice (Wenger, 1998).

Features of a community of practice

Much in articulation with forms of interpreting mathematics teaching and learning,
some distinctive expressions integrate a particular form of discourse owned by
mathematics teachers. The use of a specific language is both a symbol of alignment
within the group and a sign that expresses membership. Communities of practice
have their own repertoires. They include language but also ways of acting, routines,
tools, gestures and shared stories and concepts produced and adopted by the
community over time. The repertoire integrates the discourse by which and through
which the members create ways of seeing the world that are inherent to the
community. A repertoire is ultimately an expression of a common identity.

Participation in a community of practice is not tantamount to collaboration. Still
practice exists and works as the source of coherence of a community because it rests
on the mutual engagement of its participants. "Practice resides in a community of
people and the relations of mutual engagement by which they can do whatever they
do" (Wenger, 1998, p. 73). Members mutually engage as they develop a shared
practice, giving and receiving, and contributing often in vary diverse ways to a
common enterprise that is defined and negotiated by the participants in the very
process of pursuing it. Divergence and difference as well as tension and conflict are
part of mutual engagement. Finding a way to do something together motivates
negotiation and requires coordination of aspirations and points of view among the
community members.

Constellation of practices

In a professional domain it is possible to identify a variety of communities of practice
that intersect and overlap, creating what may be defined as a constellation of
practices. Seeing several communities as forming a constellation does not depend on
a pre-established rule but emerges from existing common members, mutual purposes,
linked practices, shared resources and spaces, confluent discourses as well as related
enterprises. The styles and the discourses are the most immediately available
elements to export and import across the boundaries around the several practices
coexisting in a constellation. The process of diffusion of discourses is fundamental to
the continuity of the constellation. As they move across boundaries, discourses are
susceptible to combine to form broader discourses once negotiation, coordination and
reconciliation of perspectives are produced.
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TAKING THE PHENOMENON AS SITUATED

In addressing the phenomenon from a situated point of view, the more significant
settings elected to produce an understanding of the pre-service teacher's learning
processes were the university, the school, the school mathematics department and the
pre-service teaching team. The following is a sketch of some of the prominent
features of those settings, according to the student teacher whom we shall call Tiago.

The university

Tiago described his academic undergraduate studies as generally well organised but
found the courses on didactics of mathematics the ones that provided more fruitful
experiences to his coming future as mathematics teacher:

We have learnt to be in front of a blackboard and to face our classmates (since we had no
actual students) and we learnt to prepare lessons and to relate our lessons to technology!

The supervisor from the university had been one of Tiago's teachers in his first year
at the university. Later, in his fourth year, they had the chance to participate in
several activities related to mathematics education. This allowed the supervisor to
realise how Tiago was keen on the use of technologies and how he was competent
and committed to working with ICT. Therefore, at the beginning of his training at the
school, he was closer to the supervisor from the university than to his school
supervisor, whom he did not know before.

The student teachers' activity, during their first year of school practice, runs between
the school and the university. At the university they take a course on planning and
assessing educational practice and are also assigned to write an essay on a
mathematics topic. Both activities require students to be at the university one day per
week, a condition that stresses their twofold position of students and teachers.

The school

From the outside and also inside, the school has a nice appearance; it is well
organised and the staff of teachers is quite stable and solid.

For the mathematics classes there is a laboratory equipped with graphic calculators
and computers with a few programs suitable for mathematics teaching.

The school mathematics department

The mathematics department includes nine teachers with a permanent position and
the two student teachers.

Early in the school year the mathematics teachers of the school enrolled in a
continuous education course and they decided to invite the student teachers to join
them. There were several schools represented in the course and most of the activities
proposed were developed in small groups. Tiago came out as the chosen speaker of
his group and all the participants noticed his remarkable performance, especially the
colleagues from his school. The teacher educator who ran the course also
distinguished his work as very positive. This event reinforced the school teachers'
will to accept and embrace the student teachers as their legitimate fellow colleagues.
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Moreover the dynamics of the mathematics department and the cohesion between the
members have always surrounded the two beginner teachers. Such an attitude was
sensed and much appreciated by the student teachers who, in turn, tried to correspond
and give their contributions.

The pre-service teaching team

The school supervisor regularly used the graphic calculator in her classes but seldom
the computer. In turn, the university supervisor had in mind to encourage and to
stimulate every opportunity that student teachers could have to work with
technologies in their classes. Although the two supervisors were acquainted, they had
never had any experience of working together that could have informed about each
other's views on the matter. Initially, there was a certain caution_and some natural
retraction, both trying to figure out the other's intentions and positioning. At this early
stage both the student teachers and the supervisors tried, not always in an explicit
way, to understand the others' perspectives, aims and concerns. A crucial
circumstance in overcoming this phase was the university supervisor's statement on
her commitment to participate in a regular basis in the work developed by the pre-
service teachers in the school. She expected to co-operate in planning lessons and to
be an active element in the classroom whenever it was considered appropriate.

STUDENT TEACHERS, TECHNOLOGY AND THE OTHERS
Predisposition towards the use of technology in the classroom
The year before his school teaching training, Tiago's words were as follows:

(...) A special attention to the use of technology in mathematics teaching and learning is
needed. Graphic calculators and computers with adequate software are important tools
for the work in the classroom, making lessons less conventional, more discernible to the
students and raising their motivation.

At the university, before starting his teaching practice, Tiago had the chance to
simulate lessons where he introduced technological tools, adopting a pedagogical
perspective on its use. Those experiences seemed to have enhanced his convictions
on the value of technology as a resource for the classroom. At the beginning of his
work as a teacher he claimed:

Technology must be wisely integrated in mathematics teaching. Sometimes calculators
can be misused. A good use of technology is one that helps students to understand
mathematical ideas.

The entrance: Taking part in and being part of

The course in continuous teacher education in which Tiago took part was a first shift
from a student's position to one where he participated in a purely professional group
composed of leading mathematics teachers. Although he was a newcomer his
attendance was noticed by the senior teachers over his active and relevant
participation. He was impelled to move to a position of more centrality inside a
professional group and within the community of mathematics teachers of his school.
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Tiago was able to persuade the more experienced ones of his competence as a
teacher, which represented a fundamental step in his migration from peripheral
participation towards the centre of the community. While acknowledging the
curricular orientations, the mathematics teachers of his school were unanimous in the
idea that the use of technology in the classroom was an obstacle to cover the entire
contents in the curriculum. The overall determination consisted in sticking to one
lesson with computers per term and only in case time was felt to be enough.

Tiago has rather promptly accepted the opinion of his more experienced colleagues.
He absorbed the discourse of the community to which he aspired to belong. The
reproduction of such a discourse becomes a means to get closer to and to act as a
member of the community. His alignment with the type of statements that circulated
and his sharing of a repertoire that was contradictory with his previous dispositions
may be seen as a way of looking for acceptance. Newcomers join the community
with the prospect of becoming full participants in its practice.

Act |: Expectations and disappointment

On his first observed class, Tiago used a data projector and a laptop computer. He
handed out a worksheet having several activities and he selected one of those to work
on. The problem situation consisted of finding the path of an electrical string that
should connect two plugs in a room shaped as a rectangular prism, given the
locations of the plugs and the dimensions of the room and the length of string
available.

To illustrate the various possible solutions, he used a PowerPoint file along with
questions that were placed to the class. On the board he made records of suggestions
and calculations coming from the class. Students considered this an interesting and
motivating lesson and above all, an unusual one. Yet, they were not given the
possibility of working with the computer and either the students or the teacher's role
did not undergo any change compared to a traditional lesson. Besides it seemed to be
a kind of practice that was quite distant from Tiago's ideas on how technology should
be a tool to help students understand mathematics.

In the meeting after this class the university supervisor showed her disappointment in
face of the use of the technology that was adopted. It prevented students from think
by themselves on the problem and attempt to find the solution. This was the first
meeting where concrete and real facts of the classroom organisation gave the
opportunity to clarify and discuss the purpose and the ways of integrating technology
in the classroom. A few days later he asked to be observed again in a class.

Act Il: Reaction and reconciliation

The subsequent class took place in the mathematics lab. Students were divided in
small groups for the 12 computers available. Tiago used the software “Geometria” to
work on sections of solids. He gave students a quick guide of the software and a
worksheet with several tasks. Tiago had the immediate collaboration of his student
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teacher partner and also of the supervisor from the university. Together they
circulated in the classroom, supporting students' work on the computers.

Students were most receptive to the type of lesson developed and showed enthusiasm
and commitment, leaving Tiago nicely surprised:

I had never seen my students that much interested and that much involved all at once!

By thinking over the encouraging outcomes, the student teacher recognised how this
way of using computers contrasted with what he had done before. The effort to
change his prior experience in tune with the comments he received on the previous
lesson was rewarded.

The full involvement of the university supervisor was a relevant aspect in terms of
developing a climate of co-responsibility and mutual engagement. It also made clear
to the student teachers the role and the positioning of the supervisor in the process of
introducing technology in the classroom. Other important elements underpinning a
sense of mutual engagement were students' reactions to the activities proposed and
the positive consequences they had on their learning. Tiago's former conceptions on
the advantages of using technology in the classroom gained a new foundation. From
then on his discourse is refreshed with the experience and his convictions re-emerged
in reconciliation with his initial predisposition. At the end of the first term he stated:

I think that technology should not be used once in a while. | may do a series of lessons
with computers and then have two or three weeks without using them, but just once in
each term | won’t do it. | would use them even more often if the school had more and
better software.

CONCLUSIONS

From the presented data it is visible how Tiago's practice in what concerns the
integration of technology in the classroom was a process that involved different
communities of practice. We witnessed a bouncing movement concerning technology
use that expresses the multiple positionings of student teachers education trajectories.
From the early expectations and claims, clearly in favour of taking technology as a
tool for the learning context, Tiago moved to a discourse aligned with the presumable
more knowledgeable ones. Afterwards, already in the field of practice, he develops
two very distinct experiences. Even with opposite consequences, these contributed to
the construction of his own way of introducing technology in mathematics classes.

The trend and the willing to the use of technologies may help the student teachers to
react against some resistance when in touch with more conservative practices. But the
wish to become one of the others and to be part of the teachers group represents a
very important impetus in many of their attitudes, actions and adopted or even
imitated styles. Ultimately, the others are as much significant as the potential role of
technology in mathematics classes. Among those diverse others we can name the
members of the school mathematics department, the school supervisor, the university
supervisor, the other fellow colleagues and the students.
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In several occasions different repertoires, sometimes conflicting intermingled.
Nevertheless, Tiago was able to reorganise his ideas on the use of technology as he
became progressively more confident of its introduction in the classroom. In the field
of teaching practice, the sharing of tasks and responsibilities between the student
teachers and the supervisors together with students' reactions were determinant.

With technology a shift of the gravity centre from the teacher to the students' activity
was clearly produced and opened the way for learning to everyone involved.

In the context of the student teachers training, the use of technology in the classroom
turns into challenging work of reconciliation and negotiation of meanings.

As he experienced multimembership, Tiago's way of thinking, action and alignment
illustrate how the work of reconciliation is not necessarily harmonious and entails
struggling for ways of integrating participation in sometimes divergent coexisting
practices. The student teacher's learning trajectories show how the introduction of
technology in mathematics class became a profound socially constructed nexus
across the landscape of practice.
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IMPROVING STUDENT TEACHERS’ UNDERSTANDING OF
FRACTIONS
Solange Amorim Amato

Universidade de Brasilia, Brasilia, Brazil

The research results presented in this paper are only a small part of an action
research performed with the main aim of improving student teachers’ understanding
of mathematics. The teaching strategies were similar to those suggested for their
future use in teaching children and involved the use of multiple modes of
representation for most of the concepts and operations in the primary school
curriculum. One of the most interesting children’s activities performed by the student
teachers were trading games which clearly expose relationships among two or more
number concepts. The data collected indicated that playing these games was an
important strategy to improve student teachers’ understanding of, and attitudes to,
fractions.

INTRODUCTION

My initial experiences as a novice mathematics school teacher in Brazil and later my
experiences as a teacher educator led me to think that both mathematics student
teachers and primary school student teachers (STs) do not have an appropriate
understanding of the mathematics content they are supposed to teach. It did not take
long, after | started teaching at schools, to notice that | did not have enough
mathematics understanding to teach even the most basic curriculum contents to my
first class of 11 year olds (5" graders). I could present my students with correct
procedures, but could not answer most of their questions concerning the reasons for
using certain steps in the procedures (Amato, 2004). These experiences led me to
undertake a research project with the main aim of investigating ways of helping
primary school STs to improve their understanding of mathematics in pre-service
teacher education.

SOME RELATED LITERATURE

According to Skemp (1976), relational understanding involves knowing both what to
do and why it works, while instrumental understanding involves knowing only what
to do, the rule, but not the reason why the rule works. Research tends to show that
they often do not have sufficient relational understanding of the content they are
supposed to teach and this is not a problem restricted to developing countries (e.g.,
Goulding, Rowland, & Barber, 2002). Research has also revealed that some primary
school teachers and STs demonstrate negative attitudes towards mathematics (e.g.,
Philippou and Christou, 1998). They tend to blame instrumental teaching for these
attitudes (e.g., Haylock, 1995). So most of the attempts to help STs improve their
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attitudes to mathematics in teacher education seem to involve improving their
understanding of the subject. After a review of the literature about teacher education,
the main research question of the present study became: “In what ways can primary
school STs be helped to improve their relational understanding of the mathematical
content they will be expected to teach?”.

The integration between the re-teaching of mathematics and the teaching of
mathematics pedagogy is said to be a way of improving teachers and STs’
understanding (e.g., Bezuk and Gawronski, 2003) and attitudes to mathematics (e.g.,
Weissglass, 1983). Most of the literature reviewed concerning such integration
suggests re-teaching mathematics to teachers and STs by using the same methods that
could be used to teach mathematics in a relational way to school students. To develop
positive attitudes to mathematics in children, primary school teachers must learn how
to set up learning experiences that are enjoyable, interesting and give the learner a
sense of accomplishment. In order to be able to do this, the teachers must have had
such experiences themselves. Using children’s methods was also thought to help STs
acquire some initial pedagogical content knowledge (Shulman, 1986) in an
experiential or tacit way (Sotto, 1994) in initial teacher education.

According to the Swedish psychologist Claparede (in Tahan, 1965), playing does not
finish with childhood. Even adults can not maintain themselves in an activity for long
periods if the work involved is not done in a way that is amusing. It is very common
to see adults enjoying themselves while playing with cards, dominoes and even 22
mature men happily chasing a ball in a football game. Ernest (1987) presents the
rationale for the use of games in the teaching of mathematics. He argues that games
provide active learning, enjoyment, co-operation and discussion. The enjoyment
generated may result in an improvement in attitudes towards mathematics after a
period of time. According to Orton (1994), through playing games students have
mental practice which "it is not forced and it takes place in a natural and enjoyable
way" (p. 47).

Games which clearly expose important relationships among two concepts can be
called ‘relational games’ because they have the potential to develop students’
relational understanding of mathematics. They were thought to be particularly
Important in re-teaching rational numbers to STs. Research has shown that many
school students’ (e.g., Stafylidou and Vosniadou, 2004; and Ni and Zhou, 2005) and
even STs (e.g., Domoney, 2002) see fractions as two separate natural numbers and
not a single number and develop a conception of number that is restricted to natural
numbers. Ni and Zhou (2005) suggest that the teaching of fraction concepts should
start earlier than is it is often recommended by curriculum developers in order to
avoid the development of what they call ‘whole number bias’. Yet if teachers have
not develop themselves an understanding that fractions are numbers, they can not
help school students’ to avoid the development of such bias. Teachers must develop a
strong understanding of rational numbers which, among many other things, involves
the ability to differentiate and integrate natural numbers and fractions.
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METHODOLOGY

| carried out an action research at University of Brasilia through a mathematics
teaching course component (MTCC) in pre-service teacher education (Amato, 2004).
The component consists of one semester (80 hours) in which both theory related to
the teaching of mathematics and strategies for teaching the content in the primary
school curriculum must be discussed. There were two main action steps and each had
the duration of one semester, thus each action step took place with a different cohort
of STs. A teaching programme was designed in an attempt to: (a) improve STs’
relational understanding of the content they would be expected to teach in the future
and (b) improve their liking for mathematics. Four data collection instruments were
used to monitor the effects of the strategic actions: (a) researcher’s daily diary; (b)
middle and end of semester interviews; (c) beginning, middle and end of semester
questionnaires; and (d) pre- and post-tests. Much information was produced by the
data collection instruments but, because of the limitations of space, only some STs’
responses related to their use of games are reported. In the action steps of the
research, the re-teaching of mathematics was integrated with the teaching of
pedagogical content knowledge by asking the STs to perform children’s activities
which have the potential to develop relational understanding of the subject.

According to Thompson and Walle (1980 and 1981), teachers can help students to
translate from concrete to symbolic modes of representation by asking them to
simultaneously manipulate concrete materials and digits to solve word problems on a
place value board (PVB). Orton and Frobisher (1996) also argue that students should
not be asked to write symbols at a distance from the operations performed with
concrete materials and proposes similar association of concrete materials and
symbols on a PVB. The PVB | use with Brazilian school students and STs (Figures 1
and 2) is a cheaper version of the PVB proposed by Thompson and Walle. It consists
of a sheet of white A3 paper (or 2 sheets of A4 paper glued together) folded into 4
equal lines and 3 unequal columns: large, medium and small columns which can be
used to represent either (a) natural numbers with 3 digits such as 215 and 134 (Figure
1), (b) mixed numbers such as 15% and 344 (Figure 2), and decimals such as 27.8,

or (c) decimals with 3 digits such as 1.56 and 3.48 using paper strips (Figure 3).
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Pair work is used during the activities with the PVB to encourage STs’ interaction
and sharing of ideas. The pairs also interact among themselves if they get stuck.
Some of the representations used for natural numbers were extended to fractions,
mixed numbers and decimals in order to help students develop the concept of rational
numbers as an extension to the number system (Amato, 2005). Versatile
representations such as straws, part-whole diagrams, and number lines are often used
in practical and written activities in an attempt to help STs relate natural numbers to
fractions and decimals. The PVB is used to represent place value concepts and the
four basic operations with natural numbers, proper fractions, mixed numbers and
decimals. Therefore, the use of these versatile representations is a way of developing
STs’ learning of rational numbers in a meaningful way by relating rational numbers
to their prior learning of natural numbers (Ausubel, 2000). Natural numbers (Figure
1) and fractions (Figures 2 and 3) are represented together with plastic drinking
straws as follows: (a) units = loose whole plastic straws of any colour; (b) tens =
bunches of ten straws gathered with a rubber band; (c) hundreds = bunches of ten
tens gathered with a rubber band; (d) several pieces of straws: halves (red pieces),
quarters (yellow pieces), fifths (green pieces), eighths (blue pieces) and tenths and
hundredths (purple or pink pieces). The idea is to represent natural numbers and
fractions together in order to make their relationships clear. For example, 15 whole
straws and 3 pieces of ¥ to represent the mixed number 153 (Figure 2).

The forward and backward ‘trading games’ suggested by Thompson and Walle (1980
and 1981) to help students develop the concepts of place value with natural numbers
were extended to fractions and mixed numbers. In the forward version of the trading
game for mixed numbers, the pair of players select the materials needed for the game
(a box with 40 divisible units such as coloured drinking straws, 20 fifths, and 4
rubber bands). Each player chooses one of the lines of the PVB to play the game and
rolls a spinner with numbers such as 1, %, %, 2%, %, 1%, ¥ and 2% (for the
version of game with fifths) written on it. The player who gets the bigger number
starts the game. If both players score the same number, each player must roll the
spinner again. Each player in his/her turn: (a) rolls the spinner and gets as many units
and pieces as indicated by the spinner, (b) places the units and the pieces in the
correct places in his line of the PVB (i.e., units in the medium column and pieces in
the small column), (c) changes 5 fifths for 1 unit and places the new unit in medium
column (the units’ place) of the board. Players continue accumulating units and fifths
until they get 10 units. Then the units are joined together with a rubber band forming
a ten which should be placed in large column (the tens’ place). The winner is the
player who first gets two tens.

In the backward version of the trading game for mixed numbers, the materials
needed, and the way of deciding who starts the game, are the same for the forward
version of the game. Each player places the number defined by the teacher (e.g., 2
tens, 4 units and 3 fifths) in the correct places in his/her line of the PVB. Each player
in his/her turn, rolls the spinner and removes as many units and pieces as indicated by
the spinner. Players continue removing units and fifths from the PVB. If the player
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does not have enough units to remove the amount of units indicated by the spinner,
he/she removes one ten from the tens’ place and takes the rubber band from the ten to
get more loose units. If the player does not have enough fifths to remove the amount
of fifths indicated by the spinner, he/she removes one straw from the units’ place of
the PVB, and changes the straw for 5 fifths to get more fifths. The winner is the
player who first removes all his/her whole straws and pieces from the PVB. When
played with fractions and mixed numbers the trading games can help school students
and STs visualise the relationship between fractions of the type n/n, n = 0 (e.g., %)

and the natural number one (e.g., %¥ = 1) (Amato, 2005).

SOME RESULTS

One of my main worries related to the new teaching programme was the effect on the
STs of asking them, as adults, to perform many children’s activities along one whole
semester. The data tended to show that most of the STs did not mind experiencing
children’s activities (Amato, 2004). They appeared to accept it as a normal strategy in
a course component about teaching children. On the contrary, many STs mentioned
that experiencing children’s activities had been a positive aspect of the programme
and had improved their understanding of mathematics. For example, “To experience
the activities is very positive, as many times the teacher teaches the content to
children without having understood it him/herself” or “The way mathematics was
presented, through concrete materials and the relaxed way, led us to conclusions not
previously understood”.

A questionnaire asking the STs to evaluate the programme with respect to changes in
their understanding of mathematics was administered in the last lecture of the
semester (Amato, 2004). Question (1)(a) was: “What changes happened in your
understanding of the mathematical content discussed in this course component? Give
examples”. The examples given by the STs were not prompted and so they could be
said to be more convincing than their answers to the closed questions. All STs who
answered the questionnaire said there had been improvements in their understanding
of mathematics and/or in their pedagogical content knowledge of the content
discussed in the course component.

However, the predominance of remarks related to improvements in topics related to
fractions was clear. There were also a few responses to question (1)(a) about changes
in their attitudes towards certain mathematical content. An example is Juliana’s
response: “The most meaningful changes were the ones about the rediscovering of
mathematics. | learned, for example, that a fraction is not a beast of seven heads.”
Those responses to a question asking about changes in understanding tend to show
that some relationship seems to exist between the affective and cognitive domains for
those STs. Many other STs said in the interviews, and indicated in the post-tests, that
their understanding of fractions had improved. Another example extracted from one
of the interviews is:
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I am finding the fractions part [of the programme] excellent. I am overcoming many of
my difficulties. You believe you know fractions but they were never well developed at
school. You bring all those difficulties from the initial grades. ... After we manipulated
the materials | could understand fractions without any fear.

One of the questions of another questionnaire administered at the end of the semester
asked the STs to evaluate the activities in the teaching programme: ‘Write if you
liked or not participating in the activities listed below. Tick your answer in the
appropriate column according to the following code: (a) Much Disliked; (b) Disliked,
(c) Indifferent; (d) Liked; and (e) Much Liked. Item (9) of the list of activities was:
‘to play the trading games with concrete materials on the PVB’. In the first semester,
100% of STs answered that they liked to play these games (13% liked, 65% much
liked). In the second semester, 8% answered that they were indifferent and 92%
answered that they liked to play the games (35% liked, 58% much liked).

During the trading games the classes of STs were as noisy as any children’s class.
After playing the games, it was common to hear comments such as “It was very
good” or “The children will love it”. It was also common to hear one or more of the
STs asking “Are we not playing a game today?” when they noticed that the lecture
was finishing and no games were played in that day. There were many other remarks
about their enjoyment of the games in the interviews and in the end of semester
questionnaires. Some STs explained that the games improved their understanding of,
and liking for, mathematics. Some examples are:

Maria (Interview) Games are great. They represent relaxing moments. When you relax it
seems you broaden your insight. You say: Ah! | understood. It is nice to say: ‘I
understood’. They are not a useless activity. Have you noticed how the child inside you
teaches you about life? What does a child like to do? To play.

Daniela (post-questionnaire about changes in attitudes) | continue to like mathematics as
| did before. The fact is that after this course component I could see mathematics “with
other eyes” because of the association with the playing aspect, games, etc.

Apart from helping STs relate fractions to natural numbers (e.g., % = 1) (Amato,

2005), other important connections were facilitated by the use of the trading games
on the PVB. In particular the connections between the fraction and decimal notations.
During a whole classroom discussion after a trading game was played with quarters, |
asked how many units we had in the number %. Several STs said ‘none’. Then |
asked the class what digit | could write in the units’ place in order to say more clearly
that there were no units in the number %. A ST replied that | could write a large zero
in front of the fraction. Then | wrote on the blackboard a zero in front of the fraction
(i.e., 0%) and asked the class what was the difference between the number written
with the zero and the one written before without the zero. Most STs replied none, but
one ST said jokingly that | was wasting chalk. In other classes the STs enjoyed the
idea of writing a zero in the units’ place and ‘wasting ink on paper’ to transform a
proper fraction in a mixed number with zero units. Writing a zero in the units’ place
became an important link between the notations for fractions and decimals, because
the two notations become visually more similar. Interesting discussions were

2 -46 PME30 — 2006



Amato

provided by asking STs to compare the two ways of writing a number such as 7
tenths (07, and 0.7). One of these discussions were:

T (Teacher): Look carefully at both ways of writing 7 tenths [07%, = 0.7]. What are
differences between writing a number like 7 tenths in these two ways?

ST B (Student Teacher B): We do not write the bar and the 10 when we use the point.
T: Where are the bar and the denominator 10 when we use the decimal point?

ST B: It is hidden in the point.

ST C: It does not make sense to me. The point is too small!

T: By the way, what does the decimal point mean?

ST C: It is used to separate the wholes from pieces such as tenths and hundredths.

T: Then where are the bar and the denominator 10?

ST C: Itis inside our heads. It is in our imagination.

SOME CONCLUSIONS

Relational games proved to be a way of motivating adult learners, such as teachers
and STs, to manipulate concrete materials which becomes the materials used in a
game and not a tool just used by young children to help them understand
mathematics. On the other hand, the knowledge of multiple modes of representation
gained through these games was thought to be one of the most basic pedagogical
content knowledge about teaching mathematics. With time and teaching experience,
STs would be more able to use such knowledge in combination with more
sophisticated teaching strategies. Using relational games was also considered an
adequate strategy in helping STs’ to improve their relational understanding of
mathematics and their liking for the subject. Part of STs’ dislike for mathematics was
perceived as related to their instrumental understanding of the subject. Some STs
suggested the inclusion of even more playing activities in the programme. More
relational games and other children’339s activities involving rational numbers
concepts and operations were included in the third and subsequent semesters. These
changes proved to be quite effective in helping other classes of STs overcome their
difficulties with, and dislike for, fractions.
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AUTODIDACTIC LEARNING OF PROBABILISTIC CONCEPTS
THROUGH GAMES
Miriam Amit, Irma Jan

Ben-Gurion University, Israel

Pupils in grades 6-9 without a formal background in probability performed coin-toss
game tasks, which led to inventing of probability terminology and understanding of
concepts. The pupils were asked to answer questions dealing with the chances that an
event would occur in different situations, and to convince their classmates of the
correctness of their answers. The principal findings point to intuitive development of
probabilistic concepts. Pupils constructed ways to quantify probability using
fractions and percentages. Without the intervention of formal teaching, they created
a linkage between sample size and probability of an event, and constructed a
probabilistic language of their own for mutual communication purposes. This finding
partly contradicts previous finding of others that claim there is a tendency to
intuitively ignore the influence of the size of the sample when estimating
probabilities.

THEORETICAL BACKGROUND

Probability learning among pupils is distracted by primary conceptions, wrong
intuitions and misconceptions; affected by language, beliefs and daily experience
(Amir & Williams, 1999; Van Dooren et al., 2003). When children solved
probabilistic problems, there was a difference between the immediate (primary)
answers and the given justification for the solutions. The meaning of the difference is
that the primary answer expresses instant intuition, however the consequent
justification does not necessarily reflect the rational thinking for choosing the answer,
and it might be a delayed logical interpretation (Fischbein & Schnarch,, 1997).
Learning activities based on games contribute to improvement of probabilistic
understanding, relating decision-making in the context of fairness of games, and
using sophisticated methods to justify and illustrate their thoughts (Alston & Mabher,
2003; Amit, 1999). Tarr and colleagues (Jones et al., 1999) found that there is an
intuitive intention to ignore the effect of the sample size while evaluating
probabilities. The main idea of the "law of large numbers"—the larger the sample
size, the greater the likelihood that a specific experimental result will be closer to the
theoretical one—is misunderstood by pupils. Teaching by simulations can catalyze
comprehension of existing concepts among pupils and develop their stochastic
reasoning. Through simulations, it is possible to develop an understanding of
particularly elementary concepts, and to learn that drawing conclusions should be
based on large samples, whereas small samples usually lead to the wrong conclusions
(Stohl, & Tarr, 2002).
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METHODOLOGY

The aim of this study was to investigate to what extent carefully chosen games, with
"learning potential”, can be an intuitive basis for the acquisition of probabilistic
reasoning. The games were as follows:

Task 1 —""The coin game"

Examine four sets of outcomes of repeated tosses of a colored chip (the chip was
painted white on one side and red on the other): (a) 3 of 4 whites, (b) 6 of 8 whites, ()
12 of 16 whites, (d) 24 of 32 whites.

Questions:

1. Which of these four sets of outcomes do you think is the most likely to occur, or do
you think all four sets are equally likely?

2. Which of these four sets do you think is the least likely to occur, or do you think
all four sets are equally likely?

\ﬁspinwall & Tarr, 2001) J

Task 2— Game "H" or "' T™

1. A fair coin is tossed three times. The chance of getting heads ("H") at least twice
when tossing the coin three times is: (a) less than; (b) equal to; (c) greater than the
chance of getting "H" at least 200 times out of 300 times.

2. Two groups of children play a game tossing a fair coin. The likelihood of getting
tails ("T") when tossing the fair coin is 50%. The first group of children tosses the
coin 50 times, the second group tosses the coin 150 times. Each time the children toss
the coin, they record the outcome. Which group of children is more likely to get 60%
"T" when tossing the coin (explain why)?

(@) Group A, (b) Group B, (c) Neither group: both results will be the same
\@schbein & Schnarch, 1997; Lamprianou & Williams, 2002)

Population: The population consisted of two groups of pupils who had no previous
formal learning of probability. One group consisted of six talented pupils from grades
6-8 who participate in a mathematical club at Ben Gurion University of the Negev,
called "Kidumatica for Youth". A second group consisted of six pupils from grade 9,
who are high achievers but are not defined as talented and do not receive any math
enhancement.

Setting: The pupils, working in triads, actually experienced game tasks. They
documented the solution process and justified and negotiated their results with their
peers.
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During the experiment there was no formal instruction of any type and the pupils
were not told whether their solution or strategies were right or wrong.

Data collection and analysis: The entire experiment, including group discussions,
was videotaped. Classroom notes were taken by the researchers, and the pupils'
notations were collected. Data was analyzed in a qualitative manner: Classroom
observation of the process of "informal learning"” revealed obstacles in the intuitive
probabilistic reasoning process, and witnessed how the pupils' interactions helped
overcome them.

FINDINGS AND INTERPRETATIONS
A. The quantification of chance and probability

One of the most important finding of this study is that in the gaming process pupils
gained the insight and understanding that it is possible to calculate likelihood of
events.

They gave a numerical meaning to probability and built it intuitively, using their
familiarity with fractions and percentage. As stated above, prior to the experiment,
the pupils had not learned that it is possible to calculate or to quantify chance. At the
start of the experiment, the occurrence of an event was described by means of global
comparisons, e.g., a better chance, an equal or smaller chance etc., without giving any
numerical value that would be a measure of chance. This evolved as the experiment
progressed.

From the following quotations, and others, we infer how pupils quantified
chance: The coin game (task 1):

Rachel: "In order to get a situation of 3 whites, how many tossing possibilities have
to be checked?: There's 1 white and 3 red; 2 white and 2 red; 3 white and 1 red; 4
white and 0 red; 0 white and 4 red. There are 5 possibilities and we want on. That's
why the chance is 1/4. Next time there are 8 tosses. | think there are 9 possibilities
and the chance for one option is smaller, 1/8."

For Rachel, the sample space is five for four coin tosses, and, accordingly, nine for
eight tosses. She built a method to calculate the probability of an event as the ratio
between the desired "option™ (3 white and 1 red), and the remaining four
""possible results™. Although she is wrong in her calculation, the idea behind the
step is important since she is intuitively building an idea for calculating chances of
events.

Tamir (see Figure 1) supported this idea and calculated the chance in percentages for
each "result" (event).

Tamir: "With 1 to 4, the chance is 25%. With 8 tosses there are 9 options. The ratio is
1/8 and the chance is 12.5%."
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Robert calculated and compared the chances, then drew conclusions based on his
calculations:

Robert: "When tossing 4 times, there are 5 options and 1 option must be received, so
this is 1/5 which is 20%. When tossing 9 times, there are 9 options and 1 option is
needed, so this is 1/9, which is approximately 11% — (loudly!) And thus | have proved
that not all the options are equally likely."

Gaming task ""H"" or "T"(Task 2):

Shiran (see Figure 2 for tossing the coin three times): "There are 4 options — all are
"H"; 2"H"and 1 "T"; 2 "T" and 1 "H"; all are "T". In this question we are required
to choose 2 of the options: All of them "H" or 2 "H" and 1 "T", so the probability is
1/2. With 300 tosses there are 301 possible options that may occur, 200 of them give
too small a number for "H". So if we omit 200 we have 101 options, which is the
result for "H" out of 200 and more. The estimation for 101/301 is 1/3. Since 1/2>1/3,
here there is a higher chance".

to
a3~ —_——
< =2 0¢
|
‘ o )
~ -—-o.)

Figure 2 — The way Shiran presented and calculated chances (Note: the phrase
"ap3~ “"in the top left corner of Figure 2 means "4 options").

In all the cases we described, the pupils quantified probabilities of different events,
and based on the numerical result, they made conclusions, answered the questions
and tried to convince their colleagues that they were right.

B. Intuitive perception of empirical probability versus numerical probability

From the following quotations it can be assumed that pupils developed an intuition
that enables them to distinguish between the above two types of probability.
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Dan: " the ratio is a constant thing that doesn't change, something (that is)
mathematical, but chance is something else — chance is varying and not constant, it
Is more real and less mathematical.

Ariel: "Mathematically, chances are equal, but in our life not everything is
mathematical. Chances [of getting the results of task 1] can change, becoming
smaller when tossing many more times."

Interviewing the pupils after they performed the game tasks intensified our feeling
that the pupils developed intuition that distinguished between numerical and
empirical probability. Our interpretation is that when a pupil says that ratio is an
unchanging "constant thing"—a mathematical "thing"—he intuitively perceives the
meaning of numerical probability. When he talks about something "varying and not
constant "—something that is "more real and less mathematical"—nhe intuitively
perceives the meaning of empirical probability.

[Note: numerical probability of an event is determined analytically; empirical
probability of an event is based on experimentation or simulation (Jones et al.,
1999)].

C. Linking chance and a sample space — the learning process

A two phase process leading to associating chance with sample space is described
below.

Phase 1 — Acquiring a tool for probability quantification

1. Primary perception: the pupils translated the data: 3 out of 4, 6 out of 8, to a form
of simple fractions, then reduced the results and obtained the equality
3_6_12_24 Thus they determined that a, b, ¢ and d are equally likely events.
48 16 32

2. Primary thinking: In fair coin tossing, both sides have an equal chance of
showing, thus repeated tossing of a coin would be expected to result in red and
white showing an equal number of times.

3. First conflict: From the given condition in task 1, the ratio between red and white
should remained constant (0.75) for any number of tosses. But in reality, all the
trials had different ratios for white and red.

4. Second thinking: This conflict led to the second thought about probability
regarding the number of coin tosses.

5. Wrong but significant attempt to link the number of coin tosses with the number
that quantifies probability.

Phase 2- A repetition and re-examination of the game

In quotations 6 and 7 below, we see a connection forming between sample size,
sample space and probability of a specific event.
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6. "With 4 tosses there are a total number of 5 different options from which only 1 is
the result of the game, in 8 tosses there are 9 options, and so on...".

7. "The smaller the number of different options, the bigger the probability for a
specific result".

8. Second resolution: There is a contradiction again between data obtained from
experience and data given in the task — a real dilemma.

9. Conflict solution: As a result of the dilemma, a separation and distinction
between ratio and probability is made for the first time: "Ratio is like ‘how
many out of how many', how many times in 4 tosses a white was received,;
probability is what is the chance that a white will be received when you toss 4
times".

10.Intuitive concept formed: An intuition-based method for calculating theoretical
probability of an event was formed thus: "It can be expressed as a fraction form,
with the number of options in the denominator and how many did we receive out
of all the options in the numerator™.

D. Invention of probabilistic intuitive lanquage

As a result of experiencing games, the pupils created a probabilistic language of
their own (see next page). They connected words from their daily life to explain their
perception of probability and constructed a probabilistic intuitive language. The
following glossary contains the formal concept, the terminology the pupils used for
this concept and the pupils' quotation with their own terminology in context.

DISCUSSION

Pupils in grades 6-9 without prior background in probability performed game tasks
that included coin tossing in various situations (tasks 1, 2 above). During their
experiences with the first task, a conflict arose from discrepancy between the events
that were given theoretically as a datum in the task (see data for task 1), and the
conclusions of the experiment. The theoretically determined relationship for 3 white
showing among four coin tossing events (0.75) was accepted and the pupils' primary
intuition led them to establish this relationship as the fixed probability for all events,
a through d, in task 1.

The actual outcome of the trials during the game led to results that contradicted their
first intuition. A heated debate ensued among them in a mutual effort to persuade,
leading to surprising results. The pupils first created a way to calculate the probability
using their prior knowledge of fractions and percentages. The most important result
was in the insight that formed that there is a difference between theoretical
probability and experimental probability, and intuitively comprehending the link
between probability and sample size was not long in coming. This understanding can
form the basis for understanding "the law of large numbers™ in the future.
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Glossary of probabilistic concepts:

Concept
Formal created by

pupils in Quotations from pupils
concept gaming

process

"More options of situations"

. "As the number of situations grows/ the chance
Situation or

Event . that one of them will occur is smaller".
specific result

"The larger the number of tosses , the smaller the
chance for a specific toss"

"Option of situations "

Sample Q?fé?eent "All the possible options™

Space possibilities "All the different options for a coin tossed a few
times".

Ratio Few out of few "Ratio is few out of few, e.g., how many times out
of four tosses, a white will be received"

;:nh dance L?ttjr:é'\éﬁ;rfgge "...probability is: what's the chance to receive a

Probability | concept white when you toss a coin four times".

"It is possible to express in fraction form, the
Probability | The chance for | number of options in the denominator on one
of an event | specific toss hand and how many we got from the number of
options, on the other hand".

"The larger the number of tosses the smaller the
chances, because there are more possible
situations".

Sample Number of
size coin tosses

Table 2 — Concepts used by pupils versus formal probabilistic concepts

This experiment adds another layer in the study of probability learning and partly
disputes the findings of previous studies which claim that, although the typical pupil
in junior high school has no awareness of the connection between experimental
probability and the sample size, correct cognitive activity focussing on simulations of
random occurrences can advance the development of this connection (Aspinwall &
Tarr, 2001).

This study is unique in that no formal teaching intervention occurred; instead, the
pupils built their knowledge upon interactions among themselves. Because of this,
they invented their own language for communication purposes, founding it upon
everyday language (see Table 2).
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In conclusion: Games rich in probability potential have added value for building
probability concepts such as sample space and probability quantification, and for
developing means of persuasion and rationalization. More importantly, we should not
forget the pleasure that games and surprising outcomes provide.
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GRADUATE STUDENTS’ PROCESSES IN GENERATING
EXAMPLES OF MATHEMATICAL OBJECTS
Samuele Antonini

Department of Mathematics — University of Pavia, Italy

In this paper we report on a study about experts’ strategies for producing examples
of mathematical objects. Three strategies have been identified: by trial and error, by
transformation and by analysis. These strategies and some related cognitive
processes are analysed in detail. In particular, some meta-cognitive and meta-
cultural remarks by the subject have been identified as fundamental elements for the
activation of strategies as well as for transition between them. Finally we discuss the
possibility of identifying links between the strategies for producing examples we
expose here and processes of production of conjectures, argumentations and proofs.

INTRODUCTION

Generating examples is typical of a mathematician’s work, in different activities and
with many different objectives. The literature has underlined the importance of this
activity also in mathematical education, as a learning and teaching strategy
(Zaslavsky, 1995; Dahlberg & Housman, 1997; Watson & Mason, 2002), with
relation to the construction of concepts (Hazzan & Zazkis, 1997; Zaslavsky & Shir,
2005), to the production of conjectures (Boero et al., 1999; Antonini, 2003; Alcock,
2004), and of proofs (Balacheff, 1987; Harel & Sowder, 1998).

In this paper we focus on the process of generating examples. Our point of view on
examples generation strategies is that of Zaslavsky & Peled (1996) that claim that
“the state of generating examples can be seen as a problem solving situation, for
which different people employ different strategies”. The aim of the research
presented here was identifying some experts’ strategies and related cognitive
processes for producing non-routine examples of mathematical objects.

THEORETICAL FRAMEWORK

In this study, according to Zaslavsky & Peled (1996), we have considered the
construction of examples as a problem solving activity: as observed by Zaslavsky
(1995), generate an example with some properties is an open-ended task, a problem
with many answers that students can solve by various approaches. This point of view
makes the study of both strategies for producing examples and the underlying
cognitive processes meaningful. The protocols are analysed with particular attention
to both strategies and subjects’ control over the efficacy of the strategies, according
to the role of these aspects emphasized in the studies about mathematical problem
solving (see for instance Schoenfeld, 1992). As regards examples of mathematical
objects, we often referred to representations of objects, in terms of the theoretical
framework of registers of semiotic representation (Duval, 1995).
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METHOD

The method used for investigation was that of clinical interviews. Subjects were
asked to express their thinking processes aloud. Interviews were audio-recorded and
subjects’ notes and figures were collected.

The work presented here concerns experts’ processes. We believe that observing
experts’ processes and strategies can be useful in order to identify those processes
that are not activated in cases when non expert subjects get stuck. Seven subjects
were interviewed, all of them postgraduate students in mathematics, with different
research interests.

The following is a list of requested examples (in brackets we put the label identifying
the problem within the paper):

1. Give an example of a real function of a real variable, non constant, periodic
and not having a minimum period (the periodic function example)

2. Give an example of a function f: [a,b]NQ—Q (with a,beQ) continuous
and not bounded (the function on Q example)

3. Give an example of a binary operation that is commutative but not
associative (the operation example, modified from a problem discussed in
Zaslavsky & Peled, 1996)

4. Give an example of three natural numbers, relatively prime, whose sum is a
number which is not prime to any of them (the three numbers example)

In order to stimulate the subjects’ exploratory processes, the requested examples are
either very peculiar or they are typical mathematical objects, whose properties
requested in the task are rarely observed.

STRATEGIES FOR PRODUCING EXAMPLES

From protocol analysis we classified three strategies for producing examples. In order
to make the reading easier we present an example from a protocol before presenting
the related strategy.

Trial and error
Excerpt: Franco, the operation example

Which operations do | know? Sum, multiplication,... but they are no good.... The product
of matrices!... No, no, it is associative ... and it is not commutative at all. Let’s see...
division is not associative. No, it is no good, it is not commutative. ... The exponential!
No, it is not a binary operation. ... Well, if | take a” it is binary... but it does not
commutate, so... Which other operations are there? [...]

In general:

The example is sought among some recalled objects; for each example the subject
only observes whether it has the requested properties or not.
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Transformation

Excerpt: Stefano, the function on Q example

Now... [sketching a graph, figure 1]... where c will
be an irrational. Of course this one does not have
[all] values in Q. Let’s make it have values in Q.

I might take a sequence [in the rest of the interview
it will be clear that the subject means a sequence of
irrational numbers], so... [drawing, see figure 2]... x C }__)

Figure 1

and there, in each little interval, taking a sort of
maximum or minimum. Well, right, any rational
number between the maximum and the minimum
value. Is it continuous? [...] Then on the other side
Q < }__) [meaning in the interval between ¢ and b], the same.

Figure 2
In general:

An object that satisfies part of the requested properties is modified through one or
more successive transformations until it is turned into a new object with all the
requested characteristics.

By transformations we refer here to a very wide class ranging from transformations
made on the graph of a function, to the movement of a polygon’s sides, to
transformations of an algebraic formula into another, not necessarily equivalent, and
SO on.

Analysis
Excerpt: Sandro, periodic function example

It seems to me that if it is continuous it is no good ...or maybe I should make it on Q.
Well, let’s not complicate things... ... The examples | know are continuous enough
periodic functions... and even if | adjust them | cannot get out of there ... no, I must
construct it from scratch. ... Example, a function that every 1/n is the same.
f(1/n)=f(2/n)......

Ah, so f(p/q) gets the same value! Now it will be enough to put another value for non
rational numbers, for instance f(x)=0, if xeQ and f(x)=1, if xzQ.

In general:

Assuming the constructed object, and possibly assuming that it satisfies other
properties added in order to simplify or restrict the search ground, further properties
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are deduced up to consequences that may evoke either a known object or a procedure
to construct the requested one.

We named this strategy analysis due to the analogy with the equally named method
used by ancient Greeks for both geometrical constructions and search for proofs: “in
both cases, analysis apparently consists in assuming what was being sought for, in
inquiring where it comes from, and in proceeding further till one reaches something
already known’ (Hintikka & Remes, 1974, p.1).

ANALYSIS OF STRATEGIES

The interviewed subjects have produced the requested examples following one or
more identified strategies. The trial and error strategy was almost always the first
one, but subjects have promptly enacted other strategies. The transformation strategy
is frequently found in protocols, whereas the analysis strategy seems to be activated
when the other ones are considered as inefficient.

Let us start here a detailed description of the transformation strategy. One initial
remark is that transformations are made on a representation of an object. To make
this point clearer we refer to Duval theoretical framework (Duval, 1995) about
registers of semiotic representation. Duval describes two types of transformations of
semiotic representations: treatments and conversions. The former ones are
transformations of representations within one single register, the latter ones are
transformations of representations consisting of a change of register without changing
the denoted object. Transformations described in this work, concerning strategies for
producing examples, correspond to treatments within one particular register.

Enacting the transformation strategy necessarily requires a representation of an initial
object and a set of transformations (treatments) to be carried out on this object’s
representation. In the examined example of the function on Q, Stefano operates on
the graphical representation of a function: the subject plots the graph of an
unbounded function and modifies it (he performs a treatment) in order to construct
the graph of another function with only rational values. In the subsequent excerpt, in
order to construct the commutative and non-associative binary operation, Sandro uses
algebraic language to transform (treat) the initial operation into a new operation:

[...] So, a non-associative operation is division: a*b=a/b. Well, | should take out O, I will
adjust the definition set later. Now, the problem is that it is not commutative. Can | use it
anyway? ... Ah! | can make it commutative by making it symmetrical! a*b=a/b+b/a ...

Sandro deals with a non-associative and non-commutative operation. Transformation
of the considered operation into a new operation is performed within the algebraic
register and seems to be caused by the fact that the subject translates the commutative
property in this register into symmetry between representation’s symbols and non-
commutative property into non-symmetry. This translation seems to allow the subject
to anticipate the possibility of constructing a new operation having the commutative
property, by means of a treatment within the algebraic register that aims at
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“symmetrising” the symbolic writing so that the operation may become commutative
(*“I can make it commutative by making it symmetrical!™).

A detailed analysis of the processes that seem to guide subjects toward either the
transformation strategy or the analysis strategy is needed. We identified some factors
that seem to play a fundamental role in enacting either of these strategies and that
seem to have a decisive role in the transition between them.

The transformation process seems to be enacted only if the subject has anticipated
that the initial object can be efficiently modified through the available
transformations. For instance, Stefano, constructing the function on Q, considers the
graph of an unbounded function and modifies it so that it takes only rational values. It
seems feasible to believe that through the graphical representation the subject
anticipates the possibility of constructing a new function with the requested
properties (“this one does not have [all] values in Q. Let’s make it have values in
Q”). In a similar way, Sandro, in producing the binary operation, recalls known non-
associative operations which are not commutative and tries to modify one of them to
make it “symmetrical”. The subject seems to have anticipated the possibility to
construct a new commutative operation. The operation’s algebraic representation
allows this anticipation, through a translation of the commutative property into the
“symmetrical” form of a formula.

On the contrary, in the periodic function example, Sandro is convinced that examples
of periodic function known to him are continuous (or “continuous enough”, probably
meaning piecewise continuous) and he conjectures, or knows, that periodic
continuous, or “continuous enough”, not constant functions have a minimum period
and therefore do not have the requested property. The most interesting aspect is that
the subject anticipates that the transformations he might perform on the set of these
periodic functions cannot transform them into non continuous or non “continuous
enough” functions (“... and even if | adjust them | cannot get out of there... no, |
must construct it from scratch’). Sandro’s is a meta-cultural control, since he claims
that it is not possible to transform an initial object to construct another one having the
requested properties. This is probably why he does not enact the transformation
strategy but rather the analysis one. A different reason moves Marco not to activate
the transformation strategy, in the function on Q example:

[...] [It is] of the type ﬁ but it is not in Q. How can | map it into Q? | don’t really

know how | could handle this one. [...] Well, the typical one like this is . But

1
x -2
how can | map it into Q?...... Well, let’s write what the problem asks ...
The subject has an initial object to work on and seems to talk about his intention to
search for adequate transformations. However he does not enact the transformation
process because he thinks he does not have the instruments (i.e. transformations to be
performed on the function) to do it (“I don’t really know how | could handle this
one”). In this case, Marco’s is a meta-cognitive control (“I don’t really know”): the
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subject does not exclude the possibility to carry out transformations he does not know
or he does not think about at the moment. In this case again the subject changes
strategy, moving to analysis.

Based on the previous discussion we may formulate hypotheses on the factors that
favour the activation of the analysis strategy. First of all we observed that this
strategy seems to be enacted when the subject gets stuck with other strategies. In
particular, it seems that the analysis strategy is enacted if transformations on the
potential initial examples are considered insufficient (see Sandro’s protocol) or
rather, at that moment the subject does not have available methods he considers
suitable (see Marco’s protocol). Our hypothesis is that in these cases subjects might
get stuck, as in the following protocol, concerning the periodic function example:

[...] How shall I construct it, don’t know..... [...] starting from one that I know and
modifying it, but how can | do that from scratch, | don’t know where to start from. [...]
Just to have a starting point. How can | make it up from scratch! [...] | am too focused on
sinus. As if it were the typical periodic function, | am always stuck on that. [he gives up]

In this case, the subject claims his will to work by transformations but he does not
have a suitable example to start from, and therefore he does not enact this strategy.
But, differently to Sandro and Marco, in this case the subject does not enact the
analysis strategy either and gives up the problem.

CONCLUDING REMARKS

The study presented here, considering the construction of examples as a problem
solving activity, reports on strategies and cognitive processes in experts’ production
of examples of mathematical objects. Almost all the interviewed experts were able to
manage all the identified strategies and checked in advance their efficacy. These
controls seem to be decisive for a successful solution of the posed problems; in fact,
the fundamental role played by control on strategies’ efficacy in problem solving
situations has been highlighted for example by Schoenfeld (1992).

Further studies on strategies we presented here are possible. For instance, an analysis
from the point of view of embodied cognition (Lakoff & Nufiez, 2000) is extremely
interesting and brings new elements characterising the identified process to the
surface. During the transformation process we can actually observe that subjects
widely use metaphors, like “handle”, “adjust”, etc. Subjects have also made use of
many gestures, which were not recorded though, that seemed to point to a physical
manipulation of objects. In accordance with the embodied cognition theoretical
framework we may claim that for the subjects the initial mathematical example is
conceptualised as an object on which adjustments can be made to transform it for
one’s objectives. Transformations and adjustments are physically carried out on one
of the objects’ representations, which works as provider of the raw material to be
shaped in order to obtain the final object. Conceptualisation of mathematical objects
as entities that can be constructed and modified seem to be crucial for the activation
of the transformation strategy. In the analysis process, instead, we observe metaphors
like “l must see (understand) how it is done”, etc. Analysis of metaphors shows that
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the analysis strategy leads to identifying the object rather than constructing it. These
remarks open up the way to a study on relationships between the strategies we have
described and the conceptualisation of mathematical objects.

Further research is also needed to study how the identified strategies are intertwined
with processes enacted in different situations where subjects produce examples. We
also believe that these strategies may be useful to observe processes of production of
examples in tasks involving a careful exploration in order to produce conjectures and
proofs. The theoretical framework of Cognitive Unity (Garuti et al.,, 1996;
Pedemonte, 2002), set up to study the relations between exploration, argumentation,
and proof construction processes, is particularly suitable for deeper research in this
regard. For example, it seems that the analysis strategy in the attempt to construct a
potential counter-example to a valid mathematical statement may lead to the
construction of a proof by contradiction. A first feedback comes from one of the
interviewed subjects’ words, at the beginning of the solution process for the periodic
function problem: “I don’t know whether it exists, but | suppose it does, so either I
find it or else | prove it does not exist”. The subject is not convinced that the
requested object exists and believes that analysis may allow him to either find the
requested function or prove that it does not exist. In fact, through the analysis strategy
it is sometimes possible to get to deduce a property that may evoke the required
object, but in other cases it might happen to deduce a contradiction. In the latter case,
with analysis strategy one have enacted a process that can reveal elements for
constructing a proof by contradiction: there are no examples having the requested
properties, in fact assuming the existence of such an example one gets to a
contradiction. In cases like this, it is easy to observe cognitive unity (in terms of
Garuti et al., 1996) between exploration and proof construction processes, and
structural continuity (in terms of Pedemonte, 2002) between argumentation and
proof. In an ongoing work we are also dealing with the relationships between
production of a potential counter-example to a mathematical statement through the
transformation strategy and the proof to that statement. In these cases, we hypothesise
that there might be a stop in the transition to proof, that can be explained in terms of
structural gap (see Pedemonte, 2002) between argumentation and a proof. However
deeper research studies are necessary.
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REASONING IN AN ABSURD WORLD: DIFFICULTIES WITH
PROOF BY CONTRADICTION

Samuele Antonini Maria Alessandra Mariotti
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University Pavia, Italy University of Siena, Italy

The study presented in this report is part of a wide research project* concerning
proofs by contradiction. Starting from the notion of mathematical theorem as the
unity of statement, proof and theory, a structural analysis of proofs by contradiction
has been carried out, producing a model to be used in the observation, analysis, and
interpretation of cognitive and didactical issues related to this particular type of
proof. In particular, the model highlights the complex relationship between the
original statement to be proved and a new statement (the secondary statement) that is
actually proved. Through the analysis of an exemplar protocol, this paper discusses
on cognitive difficulties concerning the relationship between the reference theory and
the proof of the secondary statement.

INTRODUCTION

The study presented in this report is part of a research project concerning difficulties
that students encounter when are faced with proofs by contradiction, both at the high
school and the university level. Although it was often observed that students
spontaneously produce indirect argumentst, or, at least with a structure similar to that
of proofs by contradiction (Freudenthal, 1973; Thompson, 1996; Reid & Dobbin,
1998; Antonini, 2003a, Antonini, 2003b), current literature agrees on the fact that
students show much more difficulties with indirect than direct proofs. Different
aspects have been highlighted, from different points of view. First of all, some
authors remarked that this issue does not find an adequate attention, neither at the
high school (Thompson, 1996) nor at the university level (Bernardi, 2002). Some
difficulties were identified in the negation of a statement, commonly required in
proofs by contradiction: because of its peculiarities, this process of negation presents
a specific complexity in the mathematical domain (Thompson, 1996; Antonini,
2003a; Wu Yu et al., 2003). In a historic epistemological study, Barbin (1988) raised
the issue of acceptability, pointing out that students’ attitudes towards this scheme of
proof seem to echo ancient debates in the history of mathematics. According to Leron
(1985) a specific difficulty seems to be related to the need of starting arguments with
false assumptions: through these assumptions one enters a false, impossible world,
and thinking in such an impossible world asks a highly demanding cognitive strain,

* This research study was supported by the Italian Ministry of Education and Research (MIUR)-
Prin 2003 # 2003011072_003

! Polya (1945) describes the role that proof by contradiction can assume in the production of
conjectures.

2006. In Novotna, J., Moraova, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 65-72. Prague: PME. 2-65
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which may explain the difficulties observed. Moreover, at the end of the proof, as
soon as a contradiction is deduced, this world has to be rejected, so that students feel
deceived, and dissatisfied: they are faced with the unexpected destruction of the
mathematical objects on which the proof was based (Leron, 1985). The research
project (Antonini, 2003a), which this contribution is part of, is consistent with this
direction of study and focuses on a cognitive and didactic analysis aimed to describe
and interpret students’ difficulties in proof by contradiction within the broader
context of proving activity in mathematics. In the following, the results of such
analysis will be briefly outlined and subsequently employed to explain specific
difficulties related to developing arguments from false assumptions.

METHODOLOGY

Consistently with its aim, the project developed two main research lines: empirical
and theoretical. Collection of data was carried out through various means, interviews,
guestionnaires, recording and transcripts of classroom activities, and involved
students at the high school (12" and 13" grade) and at the University level (Scientific
Faculties such as Mathematics, Physic, Biology, ...). In both cases, it was reasonable
to assume that students were acquainted, and even familiar, with mathematical proof,
as well as with proof by contradiction. For more details on the experimental design
see (Antonini, 2003a).

THEORETICAL FRAME

The analysis of proof by contradiction started from the general notion of
mathematical theorem introduced in (Mariotti et al., 1997; Mariotti, 2000). According
to the “didactic’ definition formulated by the authors, a mathematical theorem is
characterized by the system of relations between a statement, its proof, and a theory
within which the proof make sense. In particular, the definition refers to “the
existence of a reference theory as a system of shared principles and deduction rules
[...].” (Mariotti et al., 1997, p. 182). As far as deduction rules are concerned, a clear
difference emerges between direct proofs and proofs by contradiction. In fact, direct
proofs, based on deduction rules, lead back to well established argumentation
schema; on the contrary, an intrinsic structural complexity of proofs by contradiction
emerges showing specific aspects that can explain specific difficulties. The following
analysis aims at describing such a complexity.

STRUCTURAL ANALYSIS OF PROOF BY CONTRADICTION

We consider the proof by contradiction of a given statement, that we call principal
statement. Such a proof consists in the direct proof of another statement, that we call
secondary statement. The move from one statement to the other is commonly
introduced by expressions like “prove by contradiction” or “assume by contradiction”
that signal to the reader the change in the type of argument that is going to be
developed. For instance, we consider a proof by contradiction of the following
statement (principal statement):
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let a and b two real numbers. If ab=0 then a=0 or b=0.

Proof: assume by contradiction that ab=0 and that a0 and b=0. Since a=0 and b+0
one can divide both sides of the equality ab=0 by a and by b, obtaining 1=0.

Actually, this proof is a direct proof of the following statement (secondary
statement):

let a and b two real number; if a0 and b0 and ab=0 then 1=0"".

The hypothesis of this statement, “a=0 and b=0 and ab=0", is the negation of the
principal statement (i.e. the conjunction of the hypothesis and the negation of the
thesis of the statement to be proved) and its thesis is a false proposition, i.e. 1=0.

Thus, in order to prove the principal statement, that we indicate with E, one provides
the direct proof of the secondary statement, that we indicate with E*.

Principal statement E Secondary statement E*
a,b real numbers a,b real numbers
If ab=0 then a=0 or b=0 If a0 and b0 and ab=0 then 1=0

Table 1. Principal and secondary statement in a proof by contradiction

From the point of view of logic, a proof by contradiction of the principal statement
can be considered accomplished if the meta-statement E*—>E is valid; in fact, in this
case from E* and E*->E it is possible to derive the validity of E by the well known
“modus ponens” inference rule. But, the validity of the implication E*>E depends
on the logic theory, i.e. the meta-theory, within which the assumed inference rules are
stated. As it is commonly the case, i.e. in the classic logic theory, such a meta-
theorem is valid, but it does not happen in other logic theories, such as the minimal or
the intuitionistic logic.?

This analysis, although very brief, clearly shows the complexity of the argumentative
structure of a proof by contradiction, and in particular highlights key elements of this
complexity, such as the secondary statement E*, its proof in respect to the reference
mathematical theory, the meta-statement E*>E, and its validity in respect to the
assumed meta-theory.

We assume that specific difficulties may be related to each of these key elements and
to their relationships.

In this paper we are going to address the problems related to the proof of the
secondary statement E*; further research have been carried out and are still in
progress, concerning the cognitive and didactic problems related to the validity of the
meta-statement E*>E, and more generally to the acceptability of the proof by
contradiction on the whole (Antonini, 2003a, 2004).

2 For a definition in terms of rules of inference of the classic, minimal and intuitionistic logic, see
Prawitz (1971).
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FALSE HYPOTHESIS AND THE MATHEMATICAL THEORY OF
REFERENCE

Consider statement E*, and the mathematical theorem which has E* as its statement;
according to the definition given above, such a theorem is defined by the triplet (E*,
C, T), where C is a direct proof of E* and T is the mathematical theory within which
this proof is constructed and validated. One of the main characteristic of this theorem
concerns the fact that both the hypothesis and the thesis of the statement E* are
constituted by false propositions; although from the logic point of view this fact does
not present any particular problem, from the cognitive point of view this peculiarity
may have serious consequences. In fact, conflicts may arise between the theoretical
and the cognitive point of view. From the logical point of view, we observe:

e in spite of the falsity of both the hypothesis and the thesis, the statement E* is
logically well formulated. Moreover, in spite of the falsity of its hypothesis (and just
because of it, according to the truth tables) the implication E* results to be true;

e the proof C constitutes a valid proof of the implication E*. That means something
more than the fact that E* is logically true, it means that it is possible to construct a
deductive chain within a mathematical theory, and this despite the fact that both the
hypothesis and the thesis are false;

e deduction in a mathematical theory is independent of the interpretation of the
statements involved, that means that axioms and theorems of a mathematical theory
can be applied to objects which are mathematically impossible, and for this reason,
absurd: for instance, two real numbers a and b different from 0 and such that ab=0,
the rational square root of 2, parallel lines that intersect each other, ....

For example, let us consider the previous theorem and analyse its proof according to
our discussion.

(Principal) statement: let a and b two real numbers. If ab=0 then either a=0 or
b=0.

Proof: assume by contradiction that ab=0 and a=0 and b=0. Since a=0 and b=0
both sides of the equality ab=0 can be divided, respectively, by a and by b,
obtaining 1=0.

This is a direct proof of the secondary statement “let a,b real numbers; if a0 and b0
and ab=0 then 1=0". The hypothesis of this statement is “a=0 and b+0 and ab=0": it is
false because do not exist two real numbers a and b such that a0 and b0 and ab=0;
the thesis is “1=0": it is false because 1#0. The implication expressed by the
statement is true, because the falsity of the hypothesis.

The proof is within the real numbers theory (or more generally the mathematical
fields theory) and is based on the following two axioms:

1. If a number is not zero, it has a multiplicative inverse;

2. If both sides of an equality are multiplied by the same number, the equality
relation is maintained.
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In this proof, these axioms are used to make some deduction on impossible
mathematical objects. Axiom 1 is applied to the non existing real numbers a and b
such that a=0 and b=0 and ab=0; axiom 2 is applied to “ab=0", an equality formulated
with the two non existing numbers.

In summary, while the truth of the secondary statement E* depends on the falsity of
its antecedent, the validity of its proof C is based on the validity of a deductive chain
within the mathematical theory T, that is applied to impossible mathematical objects.

From the didactical point of view, some authors, for instance Durand-Guerrier
(2003), already pointed out students’ difficulties in evaluating or accepting the truth-
value of an implication with a false antecedent; the following discussion will focus on
specific difficulties originated by a proof validating an implication where both the
antecedent and the consequent are false.

ANALISYS OF A CASE

The protocol we are going to analyse clearly shows what kind of difficulties may
emerge when a student is producing a proof by contradiction, and as a consequence
of a “false’ assumption, he/she is required to manage the mathematical theory of
reference in respect to impossible objects.

The subject of the interview, Maria, is an university student (the last year of the
Faculty of Pharmacy) and as it is possible to notice, she is familiar with proof. In the
following an excerpt of the interview is reported; in the transcript “I” indicates the
interviewer, “M” indicates the student, and bold character indicates that the subject in
some way emphasised her words.

Excerpt 1 (from Maria’s interview)
1. I: Could you try to prove by contradiction the following: “if ab=0 then a=0 or b=0"?

2. M: [...] well, assume that ab=0 with a different from 0 and b different from 0... | can
divide by b... ab/b=0/b... that is a=0. | do not know whether this is a proof, because
there might be many things that | haven’t seen.

3. M: moreover, so as ab=0 with a different from 0 and b different form 0, that is
against my common beliefs (ita. contro le mie normali vedute) and | must pretend to
be true, | do not know if | can consider that 0/b=0. | mean, | do not know what is
true and what I pretend it is true.

4. 1. let us say that one can use that 0/b=0.

5. M: it comes that a=0 and consequently ... we are back to reality. Then it is proved
because ... also in the absurd world it may come a true thing: thus I cannot stay in
the absurd world. The absurd world has its own rules, which are absurd, and if
one does not respect them, comes back.

6. |: who does come back?

7. M: ltisas if a, b and ab move from the real world to the absurd world, but the rules
do not function on them, consequently they have to come back ...

8. M: But my problem is to understand which are the rules in the absurd world, are they
the rules of the absurd world or those of the real world? This is the reason why |
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have problems to know if 0/b=0, I do not know whether it is true in the absurd
world. [...]

9. I (The interviewer shows the proof by contradiction of “\2 s irrational”) what do
you think about it?

10. M: in this case, | have no doubts, but why is it so? ... perhaps, when | have accepted
that the square root of 2 is a fraction | continued to stay in my world, | made the
calculations as | usually do, | did not put myself problems like “in this world, a
prime number is N0 more a prime number” or “a number is no more represented by
the product of prime numbers”. The difference between this case and the case of the
zero-product is in the fact that this is obvious whilst | can believe that the square root
of 2 is a fraction, I can believe that it is true and | can go on as if it is true.In the
case of the zero-product | cannot pretend that it is true, |1 cannot tell myself such a
lie and believe it too!

Maria’s arguments are firmly based on what she believes it is “true”; she seems to
refer to numbers relations in a numerical world which she knows and is familiar with
(integers, rationals, or perhaps real numbers). On the contrary, when she has to
construct arguments in what she calls an absurd world, the world where there exist
two numbers, different from zero and such as their product is zero, Maria looses the
control, because in this world she does not know any more what is true and what is
false (8). In Maria’s opinion, when one assumes something false, everything can
happen, it might even occur that 0/b=0 (3).

Maria is not able to control the relationship between her argumentation and the
mathematical theory within which such argumentation should make sense. The
absurdity of the assumption, on which the deduction has to be based, upset the truth
values of statements that for the subject are fundamental (3), so that she suspects that
it might be possible the existence of a different theory, suitable for such an absurd
situation. She opposes the “real world”” and the “absurd world”’, each referring to its
own different rules (5;8).

Thus Maria fails to grasp a fundamental point, which constitutes a key element of the
proof scheme by contradiction: the fact that the secondary statement is valid in the
mathematical theory of reference. She focuses her attention on truth rather than on
validity, and she looks for truth in a world where there are two non zero numbers,
whose product is equal to zero. Our interpretation of Maria’s difficulties finds further
support in her final remark; she states that she has no problems to accept the proof of
the irrationality of +/2, because in that case she finds easy to believe that +/2 is truly a
fraction; although absurd, the world where /2 is a fraction, is acceptable for Maria
and in such a world, what are for Maria the fundamental truths are not upset (10).

CONCLUSIONS

The example discussed above clearly shows the crucial role played by the
mathematical theory of reference in proving statements starting from false
hypotheses. The example and its discussion confirms through empirical evidence
what argued by other researchers, for instance Leron (1985), about the cognitive
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strain needed by reasoning in a false world, i. e. reasoning on the base of false
assumptions.

At the source of the difficulties with proof by contradiction there seems to be the fact
that in the absurd world some of the fundamental properties are upset, so that they no
more can be true. It seems that false hypotheses may produce a shortcut in the system
of beliefs of a subject and induce impasse or doubts on the proving process: the
subject loses the control on the deductive steps of the proof, because he/she does not
know what is or is not true.

This attitude is consistent with the well spread opinion that a theorem expresses the
link between properties that are true, or at least assumed true. Using the words of
Berenice, a 13" grade student of a scientific high school, during the interview:

Excerpt 2 (from Berenice’s interview)

1. I: could you tell me what is a theorem for you?

2. [...]

3. B: generally speaking, a theorem is ... is something ... and ... that ... that is
proved on the base of things that | know for sure that are true and from them | can
start to prove for sure other things, | mean ... more or less

4. .[...]  mean, 1 do ... | must come to say that one certain thing is true, | assume
that one certain thing is true, or | assume one certain thing and ... through some
steps that | know | can do because | know that they are ... are correct, | come to
say that that thing is such as it was assumed.

According to what expressed by Durand-Guerrier (2003), implication with false
antecedent are not accepted or however are considered as false by students: in order
to accept a proof it seems necessary to start from true, or at least potentially true
assumptions. In the real world, as Maria says, or at least in a world that can be
assumed real (as the world where /2 can be expressed by a fraction), the theory and
the rules to be applied are not put into question. On the contrary, assuming false
hypotheses can block the deductive process because it may ask to apply the
mathematical theory to absurd situations.

The structural analysis of a proof by contradiction, presented above, highlighted the
complex system of relationships between key elements, such as the principal, the
secondary statement, and its proof, that were subsequently employed in the
discussion of an exemplar protocol; according to our general assumption, specific
difficulties were interpreted focussing on the proof of the secondary statement.
Further investigation have been carried out and are still in progress in this same
direction; for instance, besides the problems related to the proof of the secondary
statement, we drew our attention on the passage from the principal to the secondary
statement and vice-versa and the problems that this passage can present, besides the
difficulty coming from effect of mathematical negation on the correct formulation of
the secondary statement.
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We claim that this method of research can be generalized: in fact, the structural
analysis provides an effective model for generating specific research hypotheses
concerning students’ difficulties related to different elements involved in a proof by
contradiction.
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Young students working in group have to solve a problem related to Penelope’s
legend. This paper analyses the students’ process to the solution. In particular, it
Investigates the genesis of written signs starting from specific gestures, progressively
shared within the group. These gestures have various functions: understanding the
situation, looking for patterns or rules, anticipating and accompanying productions of
written representations, drawings and symbols necessary to solve the problem.
Gestures are constitutive part of the APC space, a theoretical notion introduced as
crucial element to properly describe what happens in the activity of the group.

INTRODUCTION AND THEORETICAL BACKGROUND

Theoretical issues relative to recent studies conducted in the fields of Psychology,
Neuroscience and Mathematics Education point out the relevance of perceptuo-motor
ways of learning and of their multimodal features. They constitute the starting point
of the present research study, which adopts a semiotic perspective as analysis tool.
The notion of APC-space is introduced as crucial element to properly describe what
happens in the maths classroom.

The existence of two fundamental kinds of learning modality has been pointed out in
Psychology (Antinucci, 2001). The first one normally occurs in an abstract manner,
through the interpretation and transmission of books. It is based on the encoding of
symbols and on the mental reconstruction of what they refer to, and it is called
symbolic-reconstructive. The second one is the so-called perceptuo-motor learning,
which occurs through perception and motor action on the physical world. It “is not
bounded to “practical” knowledge, to learning to do, as it is sometimes asserted”
(Antinucci, 2001; p.12, English translation). The two modalities differ from each
other not in terms of the nature of what is learnt, but in how learning occurs.

The relevance of action and perception has also been considered specifically in
relation to mathematics learning (Arzarello et al., 2005; Nemirovsky, 2003). Taking
into account recent findings in Neuroscience, Nemirovsky (2003) claims that the
processes of thinking and understanding are constituted by perceptuo-motor
activities, e.g. bodily actions, gestures, manipulation of materials or artefacts, acts of
drawing, even eye motions, gazes, tones of voice, and facial expressions. Indeed, he
sees thinking and understanding as perceptuo-motor activities. In his words:

While modulated by shifts of attention, awareness, and emotional states, understanding
and thinking are perceptuo-motor activities; furthermore, these activities are bodily

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 73-80. Prague: PME. 2-73
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distributed across different areas of perception and motor action based on how we have
learned and used the subject itself. This conjectures implies that the understanding of a
mathematical concept rather than having a definitional essence, spans diverse perceptuo-
motor activities, which become more or less active depending of the context.
(Nemirovsky, 2003; p. 108)

An overall question coming from this discussion is then: What is understanding?
Very recent discoveries in Neuropsychology can bring interesting results to such
issue. The main result is that conceptual knowledge is mapped within the sensory-
motor system of the brain (Gallese & Lakoff, 2005). Besides, the sensory-motor
system not only provides structure to conceptual content, but also characterises the
semantic content of concepts in terms of the way in which we function with our
bodies in the world. This is consistent with the assumption of perceptuo-motor
activities as a constitutive part of thinking. The sensory-motor system of the brain is
multimodal rather than modular. Then, language, which exploits the character of the
sensory-motor system, is inherently multimodal in the sense that it uses many
different modalities linked together: sight, hearing, touch, motor actions, and so on.

Our study considers the learning process as a unique integrated system, composed by
different modalities: gestures, oral and written language, symbols, and so on
(Arzarello & Edwards, 2005; Robutti, 2005). In this approach, multimodality appears
as a key-element. The notion of Space of Action, Production and Communication
(APC-space in brief) allows to frame, within a realistic and multimodal-oriented
picture, the learning process in the mathematics classroom (Arzarello, in press;
Arzarello & Olivero, 2005). The APC-space is a ‘space’ in which cognitive processes
develop through social interaction. It is like an integrated and dynamic set, acting as a
whole, possibly fostered and shared in the classroom. Its main elements are: the body,
the physical world and the cultural environment. The three letters A, P, C illustrate its
dynamic features: students’ Actions and interactions (in a situation at stake, with their
mates, with the teacher, among themselves, with tools), their Productions (e.g.
answering or posing a question, a new problem, and so on) and Communication
aspects (e.g. when the discovered solution is communicated to a mate or to the
teacher, using suitable representations). Such dynamic aspects involve the various
components of the APC-space, i.e.: culture, sensory-motor experiences, embodied
templates, languages, signs, representations, etc. These elements merged together
shape a multimodal system, through which describing didactical phenomena.

In the APC-space we find the semiotic representations (Duval, 1999), namely “signs
and rules of use that bear an intentional character” (Duval, 1999, p. 43): as semiotic
means of objectification (Radford, 2003) they play a fundamental role in the
construction of new mathematical knowledge. Typically, the semiotic representations
can be transformed from one into another (Duval, 1993). This can occur within the
same register, e.g. in algebraic manipulations, or from one register to another, e.g.
translating an algebraic representation into a geometric one. Semiotic means of
objectification do not include only written forms but also other elements, as oral and
written languages (including sketches, drawings, graphs), gestures, gazes, and so on.
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Our frame gives an account of this variety of mutually interacting components as a
systemic whole, describing its dynamics and the way it produces new knowledge.
Learning is considered as a result of the multimodal interactions among its different
and lasting elements more than of the transformations of one into another.

The research focuses on the systemic interplay between gestures, speech and written
signs produced during the solution of a problem. We describe how such elements act
as means of objectification in the APC-space during the learning processes.

THE ACTIVITY

The Story. The story told to the pupils comes from the legend of Penelope’s cloth in
Homer’s Odyssey. We modified the original text to get a problem-solving situation
that allowed facing some conceptual nodes of mathematics learning (decimal
numbers; space-time variables). The text of the story, transformed, is the following:

... On the island of Ithaca, Penelope had been waiting twenty years for the return of her
husband Ulixes from the war. However, on Ithaca a lot of men wanted to take the place
of Ulixes and marry Penelope. One day the goddess Athena told Penelope that Ulixes
was returning and his ship would have employed 50 days to arrive to Ithaca. Penelope
immediately summoned the suitors and told them: “l have decided: I will choose my
bridegroom among you and the wedding will be celebrated when | have finished weaving
a new piece of cloth for the nuptial bed. | will begin today and | promise to weave every
two days; when | have finished, the cloth will be my dowry”. The suitors accepted. The
cloth had to be 15 spans in length. Penelope immediately began to work, but one day she
wove a span of cloth, while the following day, in secret, she undid half of it... Will
Penelope choose another bridegroom? Why?

Methodology. When the Penelope’s story was submitted to the students (Dec. 2004-
Feb. 2005) they were attending the last year of primary school (5" grade). One of the
authors (B. Villa) was their teacher of mathematics. Later, in April-May 2005 in the
same school six more teachers submitted the story to their classrooms, as part of an
ongoing research for the Comenius Project DIAL-Connect (Barbero et al., in press).
Students were familiar with problem solving activities, as well as with interactions in
group. They worked in groups in accordance with the didactical contract that foresaw
such a kind of learning. The methodology of mathematical discussion was aimed at
favouring the social interaction and the construction of shared knowledge. As part of
the didactical contract, each group was also asked to write a description of the
process followed to reach the problem solution, including doubts, discoveries,
heuristics, etc. Students’ works and discussions were videotaped and their written
notes were collected.

The activity consisted of different steps we can summarise as follows. First the
teacher reads the story, and checks the students’ understanding of the text; the story is
then delivered to the groups. Different materials are at students’ disposal, among
which paper, pens, colours, cloth, scissors, glue. In a second phase, the groups
produce a written solution. The teacher invites the groups to compare the solutions in
a collective discussion; she analyses strategies, difficulties, misconceptions, thinking
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patterns and knowledge contents to be strengthened. Then, a poster with the different
groups’ solutions is produced. In the final phase, the students are required to produce
a number table and a graph representing the story; they work individually using Excel
to construct the table and the graph of the problem solution. Again, they discuss
about different solutions and share conclusions.

The part of the activity analysed below is a small piece of the initial phase (307); it
refers to a single group in the classroom of B. Villa, composed by five children: D, E,
M, O, S, all medium achievers except M, who is weak in mathematical reasoning.

ANALYSIS: ASTORY OF SIGNS WITHIN THE APC-SPACE

The main difficulty of Penelope’s problem is that it requires two registers to be
understood and solved: one for recording time, and one for recording the successive
steps of the cloth length. These registers must be linked in some way, through some
relationship (mathematicians would speak of a function linking the variables time and
cloth length). At the beginning, these variables are not so clear for the students. So,
they use different semiotic means to disentangle the issue: gestures, speech, written
signs. They act with and upon them; they interact with each other; they repetitively
use the text of the story to check their conjectures; they use some arithmetic patterns.
We see an increasing integration of these components within an APC-space they are
progressively building and enriching. In the end, they can grasp the situation and
objectify a piece of knowledge as a result of a complex semiotic and multimodal
process. We shall sketch some of the main episodes and will comment a few key
points in the final conclusion (numbers in brackets indicate time).

Figure 1 Figure 2 Figure 3 Figure 4

Episode 1. The basic gestures. After reading the text, the children start rephrasing,
discussing, and interpreting it. To give sense to the story, they focus on the action of
weaving and unravelling a span of cloth, which is represented by different gestures: a
hand sweeping on the desk (Fig. 1), the thumb and the index extended (Fig. 2), two
hands displaced parallel on the desk (Figg. 3 and 4). Some gestures introduced by a
student are easily repeated by the others, and become a reference for the whole group.
This is the case of the two parallel hands shown in Figg. 3 and 4.

Attention is focused on the action, and the gestures occur matching either the verbal
clauses, or the “span”, as we can see from the following excerpt:

(6’58°") S: She makes a half (hand gesture in Fig. 2), then she takes some away (she turns
her hand), then she makes... (again, her hand is in the position of Fig. 2) [...]

2-76 PME30 — 2006



Arzarello, Bazzini, Ferrara, Robutti, Sabena & Villa

E: “It is as if you had to make a piece like this, it is as if you had to make a piece of cloth
like this, she makes it (gesture in Fig. 3). Then you take away a piece like this (gesture in
Fig. 5), then you make again a piece like this (gesture in Fig. 3) and you take away a
piece like this (gesture in Fig. 5)”

O: “No, look... because... she made a span (Fig. 4) and then,
the day after, she undid a half (O carries her left hand to the
right), and a half was left... right? ... then the day after...”

D: (D stops O) “A half was always left”

The dynamic features of gestures that come along speech .
condense the two essential elements of the problem: time Figure 5

passing and Penelope’s work with the cloth. Their

existence as two entities is not at all explicit at this moment, but through gesturing
children make the problem more tangible. The function of gestures is not only to
enter into the problem, but also to create situations of discourse whose content is
accessible to everyone in the group. The rephrasing of similar words and gestures by
the students (see the dispositions of the hands in Fig. 4) starts a dynamics for creating
an APC-space, a common substrate made of various interacting elements (gestures,
gazes and speech at the moment), upon which the group starts to solve the problem.

Episode 2. From gestures to written signs. After having established a common
understanding of what happens in Penelope’s story, the children look for a way to
compute the days. S draws a (iconic) representation of the work Penelope does in a
few days, actually using her hand to measure a span on paper. The previous gesture
performed by different students (Figg. 3-5) becomes now a written sign (Fig. 6). As
happened before with words and gestures, the drawing is also imitated and re-echoed
by the others (Fig. 7): even these signs, coming from the previous gestures, contribute
to the growth of an APC space. The use of drawings makes palpable to the students
the need of representing the story using two registers. See the two types of signs in
Figg. 7-8: the vertical parallel strokes (indicating spans of cloth) and the bow sign
below them (indicating time).

is'} e
."r'r.:‘,‘{.{ ] .'I . |

Figure 6 Figure 7 Figure 8

Episode 3. The local rule. In the following excerpts the children further integrate
what they have produced up to now (speech, gestures and written representations)
and use also some arithmetic; their aim is to grasp the rule in the story of the cloth,
and to reason about it. They can now use the written signs as “gestures that have been
fixed” (Vygotsky, 1978; p. 107) and represent the story in a condensed way (see Fig.
8); moreover they check their conjectures reading again the text of the problem:
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(10°30°’) S: From here to here it is two spans (she traces a line, mid of Fig. 8). If | take half,
this part disappears (she traces the horizontal traits in Fig. 8) and a span is left; therefore
in two days she makes a span

O: No, in four days, in four, because...
S: In four days she makes two spans, because (she traces the curve under the traits in Fig.
8)...plus this

O: In four days she makes one, because (she reads the text), one day she wove a span and
the day after she undid a half...

Figure 9 Figure 10 Figure 11

As one can see in Fig. 7, S tries to represent on paper Penelope’s work of weaving
and also of unraveling, which causes troubles, because of the necessity of marking in
different ways time and length. These two aspects naturally co-existed in gestures of
Figg. 1-3. O finds the correct solution (4 days for a span), but the group does not
easily accept it, and O gets confused. The drawing introduced by S (Fig. 8) represents
the cloth, but with holes; due to the inherent rigidity of the drawing, students easily
see the span, but not half a span. A lively discussion on the number of days, needed
to have a span, begins. Numbers and words are added to the drawings (Figg. 9-10),
and fingers are used to compute (Fig. 11). New semiotic means enter the APC space
that is consolidating more and more, not by juxtaposition or translation but by
integration of its elements: they all continue to be active even later, as we see below.

Episode 4. Towards a global rule. Once the local question of “how many days for a
span” is solved, the next step is to solve the problem globally. To do that, the rule of
“4 days for a span” becomes the basis (Fig.12) of an iterative process:

(13°30”’) O, E:... it takes four days to make a whole span (E traces a circle with the pen all
around: Fig. 12)

D: and other four to make a span (D shows his fingers) and it adds to 8 (D counts with
fingers)

S: so, we have to count by four and arrive at 50 days (forward strategy: Fig. 13) [...]
(14°25°") O: no, wait, for 15 spans, no, 4 times 15

S: no, take 15, and always minus 4, minus 4, minus 4 (or: 4 times 5), minus 2, no, minus 1
[backward strategy: Fig. 14]
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Two solving strategies are emerging here: a forward strategy (counting 4 times 15 to
see how many days are needed to weave the cloth) and a backward strategy (counting
“4 days less” 15 times to see if the 50 days are enough to weave the cloth). The two
strategies are not so clear to the children and conflict with each other,

b, e g T
)
-

Figure 12 Figure 13 Figure 14 Figure 15

.

In order to choose one of them, the children use actual pieces of paper, count groups
of four days according to the forward strategy and so they acquire a direct control on
the computation. Only afterwards they compute using a table, and find that 60 days
are needed for 15 spans of cloth. In this way, they can finally answer the question of
the problem and write the final report: Penelope will not choose another bridegroom.

CONCLUSIONS

This is a story of signs, produced by children within a gradually developing
multimodal cognitive environment, the APC-space, in which the signs (gestures
included) live in a complex network of mutual relationships. The story starts with the
gesture of the two hands displaced parallel on the desk (episode 1). This gesture
generates later a written iconic representation (episode 2), successively enriched by
numerical instances (episode 3) and by arithmetic rules (episode 4), expressed
through speech and new and old gestures. Gesture, speech, written signs and
arithmetic representations grow together in an integrated way. In so doing, they
generate a richer and richer APC-space where the students can act and interact to
grasp the problem, to explore it, and to elaborate solutions. All its elements (e.g. the
initial gestures and written signs) are active in a multimodal and holistic way up to
the end. This is even evident when the students discuss how to write the solution in
the final report (Fig. 15: 27" 32”). Gestures and speech intervene first as thought
means for understanding the story of the cloth; later as control means to check the
conjectures on the rule. Information is condensed in gestures, entailing a global
understanding of the story. Written signs make explicit what is condensed in gestures
and perceivable the two registers that allow children to grasp the story separating its
structural elements (time and cloth development). Speech objectifies the structure of
the story, first condensing the local rule in a sentence (episode 3), then exploiting the
general rule as an iterative process (episode 4). The three types of signs (gestures,
written signs and speech) combined together produce the cognitive environment,
within which the children can objectify their knowledge in relation to the problem. It
IS our contention that the semiotic objectification in this story consists mainly of the
mutual interactions among the different registers. These interactions in our view do
constitute an integrated domain rather than a sequence of transcriptions from one
register to the other, as pointed out in other studies (e.g. Duval, 1993). As shown in
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this case study, objectification seems to happen in a holistic and multimodal way.
Within our theoretical frame, the interpretation of the semiotic registers in the APC-
space allows describing the didactical phenomena as a multimodal system developing
in time.
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MOTIVATION AND PERCEPTIONS OF CLASSROOM CULTURE
IN MATHEMATICS OF STUDENTS ACROSS GRADES5TO 7
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This study investigates changes in students’ motivation and in perceptions of their
classroom environment in mathematics across grades 5 to 7. The analysis of 488
students’ responses to a four-scale questionnaire suggests that students’ motivation
in mathematics declines during the transition to secondary school. Elementary school
students endorse more task and effort goals whereas middle school students endorse
performance goals. Differences across grades were also found in students’
perceptions regarding their classroom culture. Sixth grade students perceive their
classroom goal structure to be rather task focused, the teachers to be more friendly
and encouraging investigative processes, cooperation, participation, differentiation
and personalization than seventh grade (middle school) students.

BACKGROUND AND AIMS OF STUDY

The period surrounding the transition from primary to secondary school has been
found to result in a decline in students’ motivation and achievement in mathematics
(see e.g., Eccles et al, 1993, Midgley et al., 1995). Earlier studies have conceptualised
motivation in very different ways, including various motivational constructs. In some
studies motivation was operationalized in terms of a cognitive perspective, i.e.
students’ motivational orientation (Anderman et al., 2001, MacCallum, 1997),
whereas other studies have adopted an affective perspective examining students’ self-
beliefs such as self-efficacy, self-esteem and self-competence (e.g., Pajares &
Graham, 1999, Wigfield & Eccles, 1994).

The decline of students’ motivation in mathematics across the transition from
primary to secondary school was found to be related to certain dimensions of the
school and classroom culture (e.g., Eccles et al, 1993, Midgley, Feldlaufer & Eccles,
1989a, 1989b). These studies suggested that there are developmentally inappropriate
changes in a cluster of classroom organizational, instructional and climate variables.
The dimensions of the school culture that were found to have an effect on motivation
during the transition to middle school include the perceived classroom goal structure
(Midgley et al., 1995, Urdan & Midgley, 2003), teachers’ sense of efficacy and
teachers’ ability to discipline and control students (Midgley et al., 1989a), teacher-
student relations and opportunities for students to participate in decision making
(Midgley et al., 1989Db).

A slightly different analysis of the possible environmental influences associated with
the transition to middle school draws on the idea of person-environment fit. In this
theoretical framework, it is the fit between the developmental needs of the adolescent
and the educational environment that is important (Eccles et al., 1993), that is the fit
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between the preferred and the actual classroom environment. If it is true that different
types of educational environments may be needed for different age groups to meet
developmental needs and to foster continued growth, then it is also possible that some
types of change in educational environments may be inappropriate at certain stages of
development e.g. the early adolescent period during which students move to
secondary school. In fact, some types of changes in the educational environment may
be developmentally regressive. Exposure to such changes is likely to lead to a
particularly poor person-environment fit, and this lack of fit could account for some
of the declines in motivation seen at this developmental period.

The above-mentioned studies examined motivation using either an expectancy-value
model or a goal approach to motivation. In the present study the Personal Investment
Theory (PIT), as a goal approach to motivation, provided the conceptual framework
for examining a number of different facets of motivation such as motivational goals,
goal orientations, self-efficacy and perceived instrumentality of mathematics. PIT
was further developed by a different formulation of the concept of culture
(Mclnerney, Yeung and Mclnerney, 2000), leading to systematic consideration of
whether there was an “optimum school or classroom culture” for personal
development. In the present study classroom culture was operationalized as the
classroom goal structure, teacher academic press, friendliness and personalization,
teacher control (independence) and teacher instructional practices (participation,
investigation and differentiation).

The purpose of the present cross-sectional study was to examine the developmental
changes in students’ motivation and in perceptions of their classroom environment in
mathematics across grades 5-7 and especially across the transition from primary to
secondary school. The transition to secondary school in the specific educational
system where the study is conducted occurs after grade 6. More specifically, we
sought answers to the following research questions:

1) Are there any developmental changes in specific aspects of students’
motivation in mathematics across grade levels (5-7) and especially across the
elementary (grade 6) and secondary school (grade 7)?

2) Are there any statistically significant differences in students’ perceptions of
their classroom environment in mathematics in terms of students’ grade level
(5-7) and especially across the elementary and secondary school?

3) Are there any developmental differences in the fit between the actual and the
preferred classroom environment in mathematics across grade levels (5-7) and
especially across the elementary and secondary school?

METHOD

Participants: The subjects of this study were 488 students from 3 elementary and 1
secondary school; 370 students were in elementary school (98 students in grade 5 and
272 in grade 6) and 118 students were in secondary school (grade 7).

2-82 PME30 — 2006



Athanasiou & Philippou

Instrumentation: Data were collected through a self-report questionnaire comprising
four scales. The first scale was an adaptation of the Inventory of School Motivation
Questionnaire (Mclnerney, Yeung & Mclnerney, 2000); it included 53 items
measuring students’ motivational goals and orientations in mathematics (e.g. “I try
hard to make sure that | am good at my math work” or “I want to do better than the
other students in mathematics”). The second scale was an adaptation of the Patterns
of Adaptive Learning Survey (Midgley et al., 2000) and included 30 items measuring
students’ perceptions of their classroom goal structure, teacher academic press, self-
efficacy and instrumentality of mathematics (e.g. “In our class getting good grades in
mathematics is the main goal”, or “It is important for me to perform well in
mathematics to reach my future goals”). The third scale was an adaptation of the
Student Classroom Environment Measure (Eccles et al., 1993b); it included 17 items
measuring students’ perceptions regarding their teacher friendliness and practices
such as cooperation and interaction, competition and social comparison (e.g. “The
math teacher is friendly to us” or “We get to work in small groups when we do
math”). The fourth scale was an adaptation of the Individualized Classroom
Environment Questionnaire (Fraser, 1990) and included 23 items tapping students’
perceptions on five classroom dimensions: personalization, participation,
independence, investigation and differentiation (e.g. “Students give their opinions
during discussions in mathematics” or “All students do the same work at the same
time in mathematics”). The latter scale was completed by students in two different
forms, measuring the perceived as actual and the preferred classroom environment in
mathematics in each dimension.

The statements were presented at a six-point Likert-type format (1=strongly disagree,
6=strongly agree). The reliability estimates (Cronbach alphas) were found to be quite
high for all scales, ranging from a=.71 to a=.88.

Data Analysis: Data processing was carried out using the SPSS software. The main
statistical procedures used in this study were analysis of variance (ANOVA) and
paired samples t-test.

RESULTS

To answer the first two research questions students’ responses to the scales tapping
motivation were analysed using one-way analysis of variance (ANOVA). Significant
grade-level effects were followed up with the Scheffe multiple comparison procedure
to assess the significance between each pair of means. The .05 level of significance
was adopted for these paired comparisons.

Table 1 presents the means of the students in all the motivation variables. Similar
numeric superscripts within each row indicate that the means in that row are not
different from one another. The analysis of variance revealed that fifth and sixth
graders’ mean ratings in motivational variables (with the exception of praise
motivational goal) are not significantly different. The overall grade difference effects
between students in grade 6 and 7 are significant for effort, task, valuing and
performance-approach motivational orientations and perceived efficacy in
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mathematics. More specifically, the analysis indicated that for effort and task
motivational goals, for valuing/mastery motivational orientation and for perceived
efficacy in mathematics, the sixth graders’ mean ratings are significantly higher than
those of the seventh graders’ (for effort F=3.180, p<0.05; for task F=3.052, p<0.05;
for valuing/mastery orientation F=3.293, p<0.05 and for efficacy F=4.741, p<0.01).

Students in grade 7 performed at a significantly higher level on performance-
approach motivational orientation (F=3.741, p<0.05) than the students in grade 5 and
grade 6, whereas students in grade 5 scored significantly higher on praise
motivational goal (F=4.769, p<0.01) than students in grade 6 and grade 7.

GRADE LEVEL
GRADE 5 GRADE 6 GRADE 7
N M SO N M SD N M SD

Motivational goals

Effort 93 4.43t 0.64 262 4.37* 0.64 115 4.212 0.77
Praise 95 430t 0.67 261 3.992 0.85 112 3.902 0.90
Token 94 2.68' 1.03 364 2.61' 1.06 116 2.51' 1.02
Affiliation 96 3.39t 0.90 206 3.39* 0.89 117 3.21' 0.88
Competition 94 292t 1.00 265 291 1.12 115 2.83* 0.98
Task 97 374+ 127 271 3.82' 1.04 117 3.66% 1.16
Social Concern 98 3.90t 0.98 271 3.83t 0.97 118 3.84* 1.01
Mot. Goal orientations

Valuing/Mastery 97 3.98 0.77 264 4.00* 0.68 116 3.80% 0.78
Performance-

Approach 94 3.18' 0.95 261 3.13t 1.03 116 3.462 1.01
Performance-Avoid 95 3.00t 1.07 257 2.82' 0.98 115 3.03t 0.97
Social 98 3.24t 1.09 263 3.37* 0.93 118 3.16' 0.88
Instrumentality 97 4.40' 0.68 266 4.28' 0.66 115 4.26! 0.69
Efficacy 97 4.15' 0.66 266 4.08' 0.64 117 3.892 0.78

Table 1: Mean level of motivational variables by grade level

Table 2 presents the means of the students’ perceptions in all the classroom variables.
The analysis reveals no statistically significant differences between fifth and sixth
graders’ mean ratings in any classroom variable. The overall grade difference effects
between 6th and 7th grade students are significant for all the classroom variables
except the teacher academic press (F=1.948, p>0.05). More specifically, 6th grade
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students perceive the goal structure of their mathematics classroom as more task
focused (F=5.973, p<0.01) and less performance focused (F=3.998, p<0.05), whereas
7th grade students (middle school) perceive that the goal structure in their
mathematics classroom stresses performance goals more and task goals less.

For personalization, investigation, teacher friendliness, participation, differentiation
and cooperation, the sixth graders’ mean ratings are significantly higher than those of
the seventh graders’, showing that in elementary schools teachers are friendlier
(F=4.628, p<0.01), promote investigation processes (F=3.102, p<0.05), encourage
cooperation (F=6.265, p<0.01), participation (F=3.104, p<0.05), differentiation
(F=4.215, p<0.01) and personalization (F=3.546, p<0.05) rather than the teachers in
middle schools.

GRADE LEVEL

GRADE 5 GRADE 6 GRADE 7

N M SD N M SD N M SD

Classroom goal structure

Mastery 92 427t 0.65 261 423+ 0.63: 116 3.992 0.80

Performance 90 3.07* 0.88 253 3.11' 0.87 106 3.382 0.81
Personalization 95 422t 052 255 4.25' 061 111 3.992 0.78
Teacher academic Press 96 3.44' 0.74 257 3.40* 0.67 113 3.27* 0.77
Investigation 97 35312 (088 267 358 085 116 3.352 0.84
Teacher Friendliness 95 3.232 0.77 264 3.25¢ 0.75 114 2.992 0.82
Cooperation 96 3.27*2 0.83 257 3.26t 0.75 115 2972 0.79
Independence 95 246 097 266 254t 0.95 116 3.012 0.79
Participation 95 3.98t 0.68 264 4.04t 0.70 115 4.292 0.78
Differentiation 96 2.47t 0.71 260 2.56' 0.75 117 2172 0.70

Table 2: Mean level of classroom variables by grade level

Students in grade 7 performed at a significantly higher level on the Independence
variable than the students in grade 6 (F = 11.421, p<0.01), showing that students in
middle school are feeling more free to control their own learning and behaviour in
mathematics than the students in the elementary school.

As far as the developmental changes in the fit between the actual and the preferred
classroom environment between elementary and middle school are concerned (third
research question), paired samples t-test was conducted separately for students in
each grade (5, 6 and 7) regarding students perceptions on the five dimensions of the
classroom environment in mathematics (personalization, participation, investigation,
differentiation and participation).
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The analysis revealed that the differences between the actual and the preferred
classroom environment in mathematics for the students in grade 5 and 6 are not
statistically significant. On the contrary for the students in grade 7 the actual
environment in mathematics that they perceive in their classroom is significantly
different from their preferred classroom environment for personalization (t=2.690,
p<0.01), for differentiation (t=5.307, p<0.01), for participation (t=-2.082, p<0.05)
and for investigation (t=-2.252, p<0.05) but not for independence (t=-.523, p>0.05).

GRADE LEVEL

GRADE 5 GRADE 6 GRADE 7

N t df N t df N t df
Differentiation 94 1138 93 251 1.928 250 114 5.307** 113
Personalization 95 1.178 94 252 311 251 112 2.690** 111
Participation 93 -1.692 92 256 .-183 255 113 -2.082* 112
Independence 89 -1.486 88 256 -1.931 255 112 -.523 111
Investigation 94 -1898 93 262 -1856 261 115 -2.252* 114

*p<0.05, **p<0.01
Table 3: T scores to classroom variables according to grade level

DISCUSSION AND RECOMMENDATIONS FOR FURTHER RESEARCH

The purpose of the present study was to explore the developmental differences in
students’ motivation, in perceptions of their classroom environment in mathematics
and of the fit between the actual and the preferred classroom environment across the
elementary and middle school.

The results confirmed the conclusions of previous studies about the decline in
students’ motivation in mathematics during the transition to secondary school and
about the developmental differences in the way students perceive their classroom
environment in mathematics across the elementary and secondary school (e.g.,
MacCallum, 1997, Urdan & Midgley, 2003). More specifically students in grade 7
endorsed more performance goals than the students in elementary school (grade 6)
who endorsed more task and effort motivational goals and a valuing/mastery
motivational orientation. Further more, 6th grade students perceive their classroom
goal structure to be more task focused and less performance focused, whereas middle
school students perceive that their classroom goal structure stresses performance
goals more and task goals less. Lastly, students in the elementary school perceive that
in their classrooms during mathematics the teacher is friendly, caring and helpful, and
that the teacher encourages cooperation, investigation, differentiation and
participation than students in the seventh grade in middle school. Given these
differences in the perceived school culture, the goals teachers have for their students
and the instructional strategies they use in their classrooms, it is not surprising that
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seventh grade middle school students adopt personal goals that are more performance
focused than do fifth and sixth elementary students.

Seventh graders reported that they perceive their classroom culture as more
independent than students in the elementary school. That is pretty logical taking into
consideration that elementary school classrooms in Cyprus as compared with middle
school classrooms are characterised by a greater emphasis on teacher control and
discipline and fewer opportunities for student decision making, choice and self-
management.

The findings of this study contribute to our understanding of the developmental
differences between the actual and the preferred classroom environment in
mathematics across the elementary and secondary school. Exposure to such changes
is likely to lead to a particularly poor person-environment fit, and this lack of fit
could account for some of the declines in motivation seen at this developmental
period. Therefore, the environmental changes often associated with the transition to
middle school seem especially harmful in that they emphasize ability self-assessment
at a time of heightened self-focus; they emphasize lower level cognitive strategies at
a time when the ability to use higher level strategies is increasing; and they disrupt
social networks at a time when adolescents are especially concerned with close adult
relationships outside of the home (Eccles & Midgley, 1989).

The findings of the present study highlight the developmental changes in students’
motivation in mathematics and the differences in the perceived classroom culture
across the elementary and secondary school. Longitudinal studies addressing these
Issues can assist in unravelling the complexity of motivational change during the
transition from primary to secondary school. In these studies however, motivation
must be studied as a multifaceted construct (with the inclusion of cognitive, affective
and social constructs) and motivational change and its relation to the school and
classroom structure must be viewed in different ways and not only for students as a
whole group. Recent research in the area of students’ perceptions of classroom
environments adds credence to the view that students do not all perceive the same
environment in the same way at least on some of its dimensions (MacCallum, 1997).

There is also a need to understand not only the effects of what is most prevalent in
classrooms but also try to determine what the most facilitative environments are,
even if they are uncommon, in order to test the effects of these environments on the
nature of change in student motivation. Lastly, longitudinal research must address the
developmental changes in the fit between the actual and the preferred classroom
environment in mathematics and provide information of the dimensions of the school
culture that influence motivational change. Such information will be useful for
teachers, educators, counsellors and policy makers to make systemic transitions
easier so that fewer students are lost. These preventive steps can include the
identification of the dimensions of the school culture that have a positive or a
negative impact on students motivation and the strengthening of the support
structures provided to students either by their family or by the school (transition
programs).
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DEDUCTIVE REASONING: DIFFERENT CONCEPTIONS
AND APPROACHES
Michal Ayalon Ruhama Even

Weizmann Institute of Science

This study examines the conceptions of, and approached to, deductive reasoning of
people involved in mathematics education and logic. Data source includes 21
individual semi-structured interviews. Data analysis reveals two different meanings
attributed to deductive reasoning. One approach focuses on the systematic process;
the other on the essence of the inference as based on rules of formal logic. In
addition, three conceptions regarding the relationships between logical rules inside
and outside mathematics were identified, namely, unification, inclusion, and
separation. Interconnections between the meaning attributed to deductive reasoning
and the approach to logical rules inside and outside mathematics are discussed.

It is commonly accepted nowadays that one of the goals of mathematics teaching is to
improve deductive (logical) reasoning. This is stated, for example, in curricula from
all over the world (e.g., Ministry of Education and Culture, 1990; National Council of
Teachers of Mathematics, 2000; Qualifications and Curriculum Authority, 1988).
This study reveals that whereas people involved in various aspects of mathematics
education and logic do believe that learning mathematics develops deductive
reasoning, they have different conceptions and approaches regarding the meaning of
deductive reasoning and its nature in mathematics and outside it.

THEORETICAL BACKGROUND

There are various sorts of thinking and reasoning. Among them are association,
creation, induction, plausible inference, and deduction (Johnson-Laird & Byrne,
1991). Deductive reasoning is unique in that it is the drawing of conclusions from
known information based on logical rules, where conclusions are necessarily derived
from the given information and there is no need to validate them by experiments. A
common type of deductive inferring method is the syllogism. The classic syllogism
includes three statements: Two premises (or claims) and a logical conclusion, which
is deduced from them. A well-known example (taken from Biletzki, 2002) is the
following: It is known that all human beings are mortal (premise 1), and that Socrates
is a human being (premise 2). Therefore, Socrates is mortal (conclusion). This way of
deriving new information and gaining new knowledge is called the activity of
deducing from the general to the individual (Morris & Sloutsky, 1998).

Since the early days of Greek philosophical and scientific work, deductive reasoning
has been considered as a high (and even the highest) form of human reasoning
(Glantz, 1989; Luria, 1976; Sainsbury, 1991). Already Aristotle, who laid down the
foundations to this kind of thinking in the 4th century B.C., perceived a person who
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possesses logical-deductive ability as being able to grasp the universe in more
profound and comprehensive ways. Similarly, more than two thousand years later,
Luria (1976) views deductive ability as necessary for gaining new knowledge and
Henle (1962) argues that without deduction we would not be able to have a dialogue
of any worth. Throughout human scientific development, great scientists, such as
Descartes and Popper, emphasized the importance of this kind of reasoning to
science. A domain, which is mostly identified with deductive reasoning, is
mathematics. And indeed, deductive reasoning is often used as a synonym for
mathematical thinking. It is especially considered to have an essential role in building
mathematical justifications and proofs (Ball & Bass, 2003; Reid, 1995; Yackel &
Hanna, 2003). Still, deductive reasoning is considered important not only in science
and mathematics but also in various other domains. For example, Johnson-Laird and
Byrne (1991) claim that a world without deduction is a world without science,
technology and a legal system. Wu (1996) says that its existence contributes to good
citizenship by facilitating wise decision making related to politics and economy.

As can be seen, deductive reasoning is considered important to various domains in
life, as well as in mathematics. The development of deductive reasoning appears as a
goal of mathematics teaching in many curricula from all over the world. But missing
Is research that examines how different people involved in mathematics education
and logic view deductive reasoning. This kind of research is important because their
conceptions and approaches influence how mathematics is taught, what kind of
teaching and learning materials are developed, and how teachers are prepared to
teach mathematics. The study reported here is part of a larger study that examines the
conceptions that people involved in mathematics education and logic have regarding
the connections between mathematics learning and the development of deductive
reasoning. This paper reports the findings related to their conceptions and approaches
regarding the meaning and nature of deductive reasoning.

METHODOLOGY

The research population includes 21 participants, who belong to at least one of the
following groups: junior-high school mathematics teachers, mathematics teacher
educators, mathematics curriculum developers, researchers in mathematics education,
researchers in science education who study logical thinking, research
mathematicians, and logicians. Individual semi-structured interviews were conducted
with each of the participants. The interviews lasted between one to two hours, and
focused on different issues related to the role of learning mathematics in the
development of deductive reasoning. The interviews were transcribed. Using the
Grounded Theory method (Glaser & Strauss, 1967) we coded the data from the
interviews and generated initial categories, which were constantly compared with
new data from the interviews. Based on refinement of the initial categories, we
identified core categories, and used them as a source for theoretical constructs. Two
of the main aspects that were developed through data analysis are discussed here.
One aspect is the interviewees' approaches to the meaning of deductive reasoning.
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The second aspect is their approaches to logical rules inside and outside mathematics.
After a presentation of each of these aspects their interconnection is examined.

MEANING OF DEDUCTIVE REASONING

Two different approaches regarding the meaning of deductive reasoning were
identified among the interviewees.

Approach 1: Focus on the systematic process

People holding this approach describe deductive reasoning as a process in which one
develops a solution to a given problem in a systematic, step-by-step form. Each step
of this process is derived from the previous one, and leads to the next. For example,
an interviewee was asked what the term "deductive reasoning™ meant for her. She
answered:

Deductive reasoning, | am talking about being systematic in thinking, thinking and
developing ideas in an organized way (interviewee no. 11).

In some point later in the interview she emphasized again this meaning of deductive
reasoning, while connecting it to problem solving:

I think that deductive reasoning is, here, | found the word: being systematic in thinking.
We have some problem that we need to solve; | want the students to have a systematic
way of thinking that is built layer upon layer — he thinks about something, he draws a
conclusion, which brings him to the next thing (interviewee no. 11).

Approach 2: Focus on the logical essence of the inference

People holding this approach describe deductive reasoning as an action of inference
based on the rules of formal logic. A valid argument, according to these interviewees,
is based on formal logic rules and is necessarily deduced from given premises. For
example, an interviewee was asked what the term "deductive reasoning" meant for
him. He answered:

Deductive reasoning is when one starts with assumptions and proves something without
including any additional considerations. Proving the conclusion in an entirely logical way
(interviewee no.17).

Another interviewee responded to the same question:

Inference and derivation are the essence of the work of logic. Deductive reasoning is seen
when we make the transition from assumptions to a necessary conclusion, or when we
examine the validity of an inference (interviewee no. 19).

In summary, Approach 1 focuses on deduction as a process, which is built from
successive steps, and is served as a means for solving a given problem. Approach 2,
on the other hand, focuses on the essence of the inference. It focuses on the
inference's validity as conditional to formal logic rules, and on its necessary
derivation from its premises.
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LOGICAL RULES INSIDE AND OUTSIDE MATHEMATICS

Three distinct conceptions regarding this issue were identified. It is worth noting that
the meaning of the term 'logical rules' is not consistent among all interviewees. Some
refer to logical rules as systematic "rules". For others, logical rules are the system of
laws in formal logic (e.g., modus ponens). In the following we use this term
according to the interviewees' approaches to it.

Approach 1: Unification

People holding this approach consider the nature of logical rules inside mathematics
as identical to those of outside-mathematics deductive thinking. They do not see any
differences in the ways we act according to these rules in the two domains. For
example, an interviewee was asked to explain what she meant by saying earlier in her
interview that deductive reasoning has an important role in our life. She replied:

Look, the western world; it acts according to the same logical rules that are common in
mathematics... The world demands from us the use of mathematical logical rules,
meaning the use of systematic and organized ways of action, in order to make progress
(interviewee no. 6).

Approach 2: Inclusion

People holding this view say that logical rules existing inside mathematics constitute
the basis for the outside-mathematics deductive thinking rules. In real life, they say,
we use the mathematical logical rules when, for example, we build arguments or
validate other people’s claims. However, unlike mathematics, they add, in real life
there exist different kinds of factors, which affect our deductive mechanism.
Therefore we apply other rules, usually 'softer’, in addition to the rigorous ones.
Analysis of the data suggests a distinction between the types of factors that affect
reasoning outside mathematics: Some people talk about internal conditions, such as
emotions and beliefs. Others explain the distractive influence by external conditions,
such as uncertainty and complexity of phenomena in nature and society. For example,
an interviewee was asked whether she thinks learning mathematics contributes to the
development of deductive reasoning. She replies positively, yet points at some
obstacles. One of them is connected to the differences between the nature of
deductions inside mathematics and outside it:

The problem is that in life it is not always possible to use all these logical inferences [that
are used in mathematics]. Sometimes the situations are very complicated and it is
impossible to know for sure if something is correct or wrong. It means that not always
one thing is derived deductively from the other. Besides, in mathematics there is no such
thing as an exception, because then it is actually a counter example that refutes the
argument. In life there are sometimes situations that do not conform to the rule and then
we refer to them as exceptions. This means that it is impossible to apply a deduction to
them... In life we use the mathematical deductive rules, but because it is not always
possible, we use sometimes logic which is less strict, something like common sense
(interviewee no. 12).

2-92 PME30 — 2006



Ayalon & Even
Approach 3: Separation

These people take the former presented approach even further. According to them,
outside mathematical context, we do not or even cannot, use the logical rules existing
in mathematics. This claim is based on three different points of views: a) the essence
of thinking inside mathematics is entirely different from the one outside it, b) in life,
as opposed to mathematics, one barely encounters suitable circumstances for using
logical rules, and c) in life, in contrast to mathematics, the argumentative norms are
such that the logic of an argument one builds is neither a necessary condition for
understanding nor for accepting the argument. Following is a citation illustrating the
last point:

If you had taken segments from an everyday discourse in which people do derive things,
and analyze them according to logical rules that you know from standard mathematics
discourse, you would have said ‘Oh my god'. There are infinite examples. A mother says
to a child: 'If you don't eat, then you won't get sweets'. The child says: 'l ate, so | deserve
some sweets'. It is obvious that that was the mother's intention. She meant to say that if
he eats he would get some sweets. But it is not equivalent. It is a different logical phrase.
And you know what, as a logician, even | could say to my child: 'If you don't do X you
won't get Y'... and | would mean that if she does X she will get Y. These rules are not
those rules... The whole thing is that logical rules are logical rules, but in daily life
people understand each other even in the case of a rule that is wrong in the logical sense;
like the example of the mother and the dessert (interviewee no. 1).

INTERCONNECTIONS BETWEEN ASPECTS

Examination of the different conceptions and approaches across the two aspects
discussed above suggests interconnections between them. The interviewees who
describe deductive reasoning as a systematic step-by-step approach are those who
consider the logical rules inside mathematics to be identical to the rules outside-
mathematics deductive thinking.

Similarly, the interviewees who relate deductive reasoning to an action of inference
or justification using rules of formal logic are those who make a distinction between
logical rules inside mathematics and the ones that are used outside mathematics. Four
interviewees belong to the first group and 17 to the second. According to 13 of the
second group, in daily life situations people indeed use mathematical logical rules,
but different kinds of factors restrict their implementation. Six interviewees (out of
the 13) talk about external conditions of uncertainty in life; seven relate the
distractive influence to internal conditions like emotions and beliefs. The other four
interviewees, from the group of 17 who focuses on the essence of the inference, make
a more extreme distinction between the nature of logical rules inside mathematics and
outside it. According to them, we do not, or even cannot, use the logical rules
existing in mathematics in non-mathematical contexts. The Table below summarizes
these findings.
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Meaning of deductive Logical rules inside and

reasoning outside mathematics
Focus on the systematic, Unification
step-by-step process (n=4) (n=4)
Inclusion
Focus on the essence of the (n=13)
transition fromone stepto | Lo T
. External | Internal
the next, where a step is an |
inference (n=17) (n=6) .  (n=7)
Separation
(n=4)

Table: Summary of findings

Another interesting finding of this study is that the first group, which focuses on the
systematic aspect and unifies the logical rules inside and outside mathematics,
includes only people who are mainly involved in practical work (i.e., schoolteachers,
teacher educators, and curriculum developers). All the theoreticians (i.e., researchers
in mathematics, mathematics education, and logic) belong to the other group, which
focuses on the logical essence of the inference and distinguishes between logical
rules inside mathematics and outside it. Nonetheless, there are several practitioners in
this group as well.

DISCUSSION

The literature usually approaches deductive reasoning as a process of reaching a
conclusion in accordance with the rules of formal logic (e.g., Biletzki, 2002; Johnson-
Laird & Byrne, 1991; Luria, 1976; Morris & Sloutsky, 1998; Simon, 1996). This
common description fits the one suggested by the interviewees who focus on the
logical essence of the inference, and is not compatible with the meaning offered by
the interviewees who focus on the systematical characteristics of deductive
reasoning.

The conception of some interviewees, that mathematical-logical rules are modified
when used in daily life situations, can also be found in recent literature. Whereas in
the past there was a widespread belief that logical rules are relevant to how people
think in general (e.g., Inhelder & Piaget, 1958), reports of studies from the last
decades challenge this claim. For example, there are numerous studies that point to
an effect of subjects' beliefs regarding the production, as well as the evaluation, of a
logical conclusion (Evans & Pollard, 1990; Markovits & Nantel, 1989; Oakhill,
Johnson-Laird, & Gernham, 1989). Because outside mathematical contexts people
tend to have considerably prior beliefs and opinions, the findings of these studies
imply a significant difference between the nature of reasoning in mathematics and the
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one applied outside it. The approach of the 'separation’ group, which distinctly
discriminates between the nature of logical rules inside mathematics and outside it,
emerges also in Leron (2003) and in Cosmides and Tooby (1997). These researchers'
claim, which is also expressed in the 'separation’ group, suggests that mathematical-
deductive thinking is actually in a conflict with our natural thinking.

As opposed to the difference that the ‘logical essence of the inference’ group sees in
the nature of logical rules inside and outside mathematics, the 'systematic’ group
identifies the logical rules inside mathematics with those outside it. This distinction
between the two groups seems to be grounded in the meaning that each group
attributes to deductive reasoning. Systematicness is a concept that people encounter
in diverse situations in daily life. Thus, the interviewees who view the use of logical
rules as acting systematically conceive these rules as identical inside mathematics
and outside it. On the other hand, the strict, formal nature that the interviewees who
focus on the essence of the inference assign to deductive reasoning and to logical
rules could explain the complexity they, as well as the literature, attribute to the
nature of inference in different areas of our life.

Considering the commonly accepted assumption that one of the goals of learning
mathematics is to improve deductive reasoning, it is important to be aware that, as
this study shows, deductive reasoning may not have the same meaning for all
mathematics educators. Furthermore, in light of the finding that all theoreticians hold
similar views, whereas practitioners have diverse views, it seems worthy to study
more thoroughly whether there is a connection between the nature of people’s
occupation and their approaches towards deductive reasoning. Moreover, the findings
of this study support the need for empirical research that will examine the
connections between teaching mathematics and the development of deductive
reasoning.
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THE TENDENCY TO USE INTUITIVE RULES AMONG
STUDENTS WITH DIFFERENT PIAGETIAN COGNITIVE
LEVELS

Reuven Babai

Department of Science Education,
Tel Aviv University, Israel

According to the intuitive rules theory, students are affected by a small number of
intuitive rules when solving a wide variety of conceptually non-related mathematics
and science tasks. The current study considers the relationship between students’
Piagetian cognitive levels and their tendency to use intuitive rules. Hundred and fifty
seventh graders answered two written tasks, each related to one intuitive rule: more
A -- more B or same A -- same B. The findings indicate that the tendency to answer
according to the intuitive rules varies according to cognitive level. Most surprisingly,
a significantly higher rate of incorrect responses according to the rule same A --
same B, was found for the higher cognitive level. Additional findings and important
implications for mathematics and science education are discussed.

INTRODUCTION AND THEORETICAL FRAMEWORK

Over the past decades, researchers, educators and educational psychologists dealing
with mathematics and science education have explored students' conceptions and
reasoning processes in a wide range of content areas (e.g., Fischbein, 1987, 1999;
Greca & Moreira, 2000; Perkins & Simmons, 1988; Vosniadou & loannides, 1998).
These studies highlighted the persistence of students’ preconceptions,
misconceptions, or alternative conceptions (i.e. conceptions that are in variance with
currently accepted scientific notions). Although most of this research has been
content specific and aimed for detailed description of particular misconceptions,
several researchers have looked for common roots and have tried to build an
extensive theoretical framework. One framework is the intuitive rules theory
developed by Stavy and Tirosh (2000). The intuitive rules theory is largely indebted
to Fischbein's pioneering work concerning the role of intuition in mathematics and
science. Fischbein defines intuition as an immediate cognition that exceeds the given
facts, as “a theory that implies an extrapolation beyond the directly accessible
information” (1987, p. 13).

The current work aimed to explore if there is any relationship between students'
Piagetian cognitive levels and their tendency to use intuitive rules when solving
comparison tasks.

The intuitive rule theory

According to the intuitive rule theory, students are affected by a small number of
intuitive rules when solving a wide variety of conceptually non-related mathematics

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 97-104. Prague: PME. 2-97
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and science tasks that share some common, external features. Interviews with
children, adolescents and adults, and a recent reaction time study, suggest that these
responses are immediate, self evident and coercive (Babai, Levyadun, Stavy, &
Tirosh, in press; Stavy & Tirosh, 2000), meeting the major characteristics of intuitive
reasoning (Fischbein, 1987). Responses in line with the intuitive rules are often
correct. However, sometimes they are in variance with concepts and reasoning in
mathematics and science, leading to incorrect judgments and students' mistakes.

So far, three types of responses were identified and, accordingly, three intuitive rules
were defined: two relate to comparison tasks (more A -- more B and same A -- same
B), and one to subdivision tasks (everything can be divided endlessly). The focus of
the current study will be the two intuitive rules related to comparison tasks. An
example and a general description for each one of these intuitive rules will be given
below.

The intuitive rule more A -- more B

In a previous study, Azhari (1998) presented 100 children in grades 1, 3, 5, 7 and 9
(20 from each grade level) with the following rectangle to polygon task (Figure 1),
related to the comparison of areas and to the comparison of perimeters.

i

Shape | Shape 11

Figure 1: The rectangle to polygon (by square removal) task

Two identical rectangles are presented. A small square is removed from the corner of
one rectangle (e.g., from the upper right corner of the rectangle depicted on the right
hand side of Figure 1) to form a polygon (Shape IlI). Participants are asked to
compare the perimeters of the two shapes, Shape | (the original rectangle) and Shape
Il (the derived polygon).

Azhari (1998) found that in each of these grade levels, at least 70% of the students
incorrectly claimed that the perimeter of the rectangle is larger than that of the
derived polygon because “the rectangle has more area”, “no corner was removed”,
etc. These high percentages of more A (area or size of rectangle) -- more B (size of
perimeter) responses at all grade levels suggest that this intuitive rule has a very
strong effect on students' responses.

Responses of the type more A -- more B are observed in many mathematics and
science tasks, including classic Piagetian conservation tasks and tasks related to
intensive quantities. In all these tasks, relationships between two objects that differ in
a salient quantity A are presented or described (A;>A,). The participants are then
asked to compare the two objects with respect to another quantity B (B; is not bigger
than B,). In all the cases examined, a substantial number of participants respond
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incorrectly, according to the rule more A (the salient quantity) -- more B (the quantity
In question), and claim that B;>B, (Stavy & Tirosh, 1996; Zazkis, 1999).

The intuitive rule same A -- same B

In a previous study, Mendel (1998) presented eleventh grade students with the
following rectangle to rectangle task (Figure 2).

a

Shape | Shape I

Figure 2: The rectangle to rectangle (by percentage manipulation) task

Consider the following rectangle (Shape 1), seen on the left hand side of Figure 2.
Side a of Shape | is reduced by 20% and side b of Shape I is increased by 20% to
form Shape 1l (dashed lines represent the shape before the changes). Participants are
asked to compare the perimeters of the two shapes, Shape | (the original rectangle)
and Shape 11 (the derived rectangle).

Mendel (1998) found that only 8% of the students responded that the perimeter of
Shape 11 is smaller because “side a is bigger than b, and decreasing 20% of it, is more
than adding 20% to side b”. The vast majority of the students (72%) claimed that the
perimeter remains the same because “you added 20% and removed the same
percentage, so they compensate each other”. These high percentages of same A (same
percent) -- same B (same perimeter) responses, suggest that that this intuitive rule has
a very strong effect on students' responses.

Responses of the type same A -- same B are observed in many mathematics and
science tasks. In all these tasks the presented two objects (or systems) are equal in
respect to a certain salient quantity A (A;=A,), but differ in another quantity B (B,
differs from B,). In some of the tasks the equality of quantity A is perceptually or
directly given, however in other tasks it may be logically deduced. When participants
are asked to compare the two objects (or systems) with respect to quantity B, a
substantial number of participants respond incorrectly according to the rule same A --
same B, claiming that B,=B; since A,=A; (Tirosh & Stavy, 1999).

The current study

Exploring factors that influence the tendency to respond in line with the intuitive
rules could improve our understanding of the nature of this response. In addition,
identifying such factors is essential when designing ways aimed to assist students in
overcoming the effect of the intuitive rules, when they solve mathematics and science
tasks. So far most of the research involving intuitive rules focused on investigating
the tendency to respond incorrectly according to the rules, with regard to certain ages
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or grade levels. In the current study the relationship between students' Piagetian
cognitive level and their tendency to respond according to the rules was investigated.

Piaget’s theory showed that children’s cognitive development progresses through
well established stages (or levels), i.e., the sensorimotor stage, the preoperational
stage, the concrete operations stage, and the formal operations stage. When they are
at the concrete operations level, children tend to think more systematically and
guantitatively than before. As opposed to preoperational children, children at the
concrete operations level are able to take into account more than one perspective
simultaneously. One of the landmarks of the concrete level is the ability to conserve
in all forms (number, area etc.), which develops during this stage. Although they can
understand concrete problems, children at this stage cannot yet perform on abstract
problems, and they do not consider all of the logically possible outcomes. Only when
they reach the highest level, the formal operations stage, can children apply logical
and systematic thought functions to more abstract problems and hypotheses. The
work of Shayer and Adey (1981) suggested that poor student achievements could be
attributed to fact that the vast majority of high school students have actually not yet
reached the Piagetian formal level. On the basis of these findings they developed a
"cognitive acceleration program™ aimed to improve students’ academic achievements
(for the recent CASE program see: Adey, Shayer, & Yates, 2001).

In the present study the relationship between the cognitive level and the tendency to
respond according to the rules was examined by using two mathematics comparison
tasks, each related to one intuitive rule: more A -- more B or same A -- same B. To
neutralize the effect of age and degree of formal education the examined population
included Grade 7 students (12-13 years old): in this junior-high school grade we can
expect to find diverse cognitive levels - mainly early concrete to early formal,
according to Shayer and Adey (1981).

METHDOLOGY
Participants

One hundred and fifty junior high school students from Grade 7 participated in the
study. The students were from two schools in the center of Israel.

Intuitive rules tasks

To assess students’ tendency to respond according to the intuitive rules two written
tasks, related to comparison of area and perimeter, were constructed, each
corresponding to one of the rules: more A -- more B or same A -- same B. These tasks
were randomly mixed with an additional 15 tasks (not related to this study) to reduce
interference. Students were asked in each task to compare the two shapes depicted
(and described) and to decide in respect to each dimension (area and perimeter),
whether one of the shapes was larger in size or whether it was identical.

More A -- more B: The rectangle to polygon (by square removal) task. The task
studied by Azhari (1998) - described above and illustrated in Figure 1 - was used to
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assess the tendency to respond according to this intuitive rule. In this task the salient
property, A, is the area/size of the shapes, and students responding according to the
intuitive rule claim that the perimeter of Shape Il is larger than that of Shape I,
although the perimeters of both shapes are identical.

Same A -- same B: The square to rectangle (by percentage manipulation) task.
This task had the same scheme as the task studied by Mendel (1998), described above
and illustrated in Figure 2. Here, Shape | was a square (and not a rectangle). From the
square (Shape 1) the same percentage (20%) is added to one side and at the same time
reduced from the other side. In this task there is an equality in the salient quantity A
(same percent and same perimeter), and students responding according to the
intuitive rule claim that the area of Shape Il is identical to that of Shape I, although
the area of Shape | (the square) is larger than that of Shape Il (the derived rectangle
after the percentage manipulation).

Cognitive level assessment test

To determine the cognitive level of each student we used the "Science Reasoning
Task 11" (Adey et al., 2001), described in detail and validated earlier by Shayer and
Adey (1981). Administration of the test and assessment of the results were according
to the instructions given by the test developers. This test incorporates many of the
well-known Piagetian conservation tasks and it is based on Piaget and Inhelder
(1974). The test covers the late pre-operational to early formal cognitive levels.

Procedure

Each student completed the two written tests (intuitive rule test and "Science
Reasoning Task II') each in a different session that took about 45 min. To analyze
the results the students were grouped according to their cognitive levels. In each
cognitive group the rates of correct and incorrect responses, according to the intuitive
rule, were calculated for each intuitive rule task. Statistical analysis was done by Chi-
Square test using SPSS statistical software.

RESULTS

The cognitive level of the studied population extended from early concrete level (2A)
and below, to the early formal level (3A). For the purpose of analysis we grouped the
students into four cognitive levels: early concrete and below (<2A/B; 12 students);
mid concrete, a sub-stage between early and mature concrete (2A/B; 25 students);
mature concrete (2B; 65 students); and above mature concrete (>2B; 48 students).

Figure 3 depicts the rate of students' responses for each task.

The left graph in Figure 3 depicts the results obtained for the rectangle to polygon
task, related to the intuitive rule more A -- more B. In this task the average rate of
correct responses was 47%, similar to the average rate obtained for incorrect
responses according to the intuitive rule. As seen in the graph, the rate of correct
responses rises as cognitive level advances. In the lowest cognitive level (<2A/B) the
rate was 25% climbing to 54% in the highest cognitive level (>2B). However, these
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differences in rates were not statistically significant even between these two extreme
cognitive groups. Likewise, no significant differences were observed between rates of
responses according to the intuitive rule in the different cognitive levels. Still, it was
found that in the studied population, the rate of this type of response dropped down,

from 58% to 42%, as cognitive level advanced.

Rectangle to polygon task (more A --

Square to rectangle task (same A --

more B) same B)
90 90 ~
80 | - CorreCt ) 80 |
o 70 - —e— With IR (incorrect) . 70 -
Z 60 - 2 60 -
8 50 - 8 50 -
S 40 - S 40 - -- - Correct
L 30 9 30 - " —— With IR (incorrect)
20 - 20 - R g
10 10 T -m
0 ‘ 0 ‘
<2A/lB 2A/B 2B >2B <2A/B 2A/B 2B >2B
Cognitive level Cognitive level

Figure 3: The rate of correct responses and incorrect responses according to the
intuitive rule for each studied task

A different response pattern was observed for the square to rectangle task, related to
the intuitive rule same A -- same B (right graph in Figure 3). For this task the rate of
correct responses was very low with an average rate of 14%. At the lowest cognitive
level (<2A/B) the rate was 33% dropping to 8% at the highest cognitive level (>2B).
This more than four-fold decrease in correct responses was found to be statistically
significant (Chi-Square [1] = 5.2; p = 0.02). Statistical differences were also
observed for the rate of responses according to the intuitive rule same A -- same B. At
the lowest cognitive level (<2A/B) the rate was 50% rising to 79% at the highest
cognitive level (Chi-Square [1] = 4.2; p = 0.04). The rate of incorrect responses
according to the intuitive rule at the mature concrete cognitive level (2B) also
differed significantly from the rate observed at the higher cognitive level (60% and
79% respectively; Chi-Square [1] = 4.7; p = 0.03). The average rate of this type of
response was 67%.

DISCUSSION AND CONCLUSIONS

The current research investigated the relationship between the Piagetian cognitive
level of 7" Grade students and their tendency to respond according to the intuitive
rules, related to comparison tasks. It should be noted that since only a single task was
chosen for each rule, we should be careful in generalizing the results and further
study is necessary, including different tasks belonging to other mathematical topics or
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other content domains. However, on the basis of the above findings and the tasks
studied, it seems that cognitive level influences, in a different manner, the tendency
to apply each rule.

In the case of the intuitive rule same A -- same B the rate of correct answers decreases
as cognitive level advances. In addition, at the highest cognitive level the tendency to
respond according to the rule was significantly higher. These observations suggest
that advanced cognitive schemes reinforce the use of this rule. Such a scheme could
be the ability to conserve that develops during the concrete level. In support of this, a
higher tendency to respond incorrectly according to the rule with age was shown,
recently for another task ("area and volume of cylinders" task) related to this rule
(Stavy et al., in press). Furthermore, the rate of these incorrect responses was
analogous to the rate found for answers showing the use of the scheme of
conservation, for the salient property A, suggesting its influence on the use of the
intuitive rule same A -- same B.

In the case of the intuitive rule more A -- more B the results did not supply a clear-cut
picture. Although the results presented in Figure 3 indicate an obvious positive
influence to respond correctly (or overcome the use of the rule) with the advance of
cognitive level, the observed differences were not found to be significant. This could
be attributed to the task itself and/or to the finding that the cognitive levels of the
studied population did not significantly exceed concrete level. In support of the latter
explanation, all three students who were below the early concrete level gave an
incorrect answer according to the rule more A -- more B, and three out of four
students at the early formal level gave a correct response (as opposed to the 54% of
students at the >2B level, most of whom are in a transition stage between concrete
and formal levels). This suggests that in order to clarify the influence of the Piagetian
cognitive level on the tendency to use the intuitive rule more A -- more B, a larger
population with variable cognitive levels (below and above the concrete level) should
be examined.

Overall this paper explores, for the first time, the influence of the Piagetian cognitive
level on the tendency to use two intuitive rules. The results show that this factor
should be taken into account when dealing with incorrect judgments caused by the
use of these rules such as when designing ways aimed to assist students in
overcoming their effect. In addition, the study shows that advancement of the
cognitive level, as suggested for improvement for academic achievements (Shayer &
Adey, 1981), might not by itself be beneficial when considering mistakes related to
the rule same A -- same B. Since this study included seventh graders only, it will be
Interesting to examine other grade levels in order to identify the interaction between
different levels of education and cognitive levels.
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COMING TO APPRECIATE THE PEDAGOGICAL USES OF CAS

Lynda Ball and Kaye Stacey
The University of Melbourne

An interview with one teacher in the early stages of teaching with a computer algebra
system (CAS) demonstrated how his use of CAS moved from functional to
pedagogical. He reflects on a successful lesson to highlight how access to CAS
impacted on his teaching style. The teacher reported an increasing awareness of the
possibility for pedagogical use of CAS. He found that considering CAS outputs
resulted in students’ development of a deep algebraic understanding, which he came
to distinguish from better performance of by-hand algebraic manipulation.

Teachers with technology available in mathematics classrooms begin with views on its
role for teaching, learning and doing mathematics, and these views will change as their
experience of teaching with the technology changes. Their views are likely to be related
to their views about how students learn mathematics, the teachers’ knowledge of the
technology, and their pedagogical content knowledge. Teachers’ own preferences for
solving problems may also impact on their views and teaching approaches. For example,
it has been reported that teachers will privilege particular representations (symbolic,
graphical or numerical) in their teaching (Kendal, Stacey and Pierce, 2005).

This paper reports how one teacher’s classroom use of the technology of a computer
algebra system (CAS) changed as his experience grew. In particular, we follow his
reports of a move from viewing CAS in a purely functional use way (i.e. to solve
problems) to coming to appreciate its potential for pedagogical use of CAS. As such, this
study adds to a series of published case studies that trace teachers’ developing practices
for teaching with technology.

Pierce and Stacey (2001) reported on a four-year study of the teaching of a university
course. In the first two years CAS was taught as a topic, with postgraduate students
providing technical assistance to the mathematics students and little or no input from the
lecturer. Students used CAS functionally to solve problems most likely outside the range
of their by-hand skills. In later years, the lecturer began to make pedagogical use of
CAS. CAS was now used to enhance mathematics learning.

Zbiek (2002) synthesised studies of pairs of teachers from three different counties.
Teachers’ previous experience of teaching with technology influenced the way they
taught with CAS. Teachers lacking personal confidence with CAS restricted their use of
CAS although the forms of restriction varied. They were more likely to focus on
keystrokes and teaching approaches that enabled control of CAS use in their classrooms.

...the combined data from these three teachers suggest more emphasis on CAS syntax
and details may be natural for teachers with minimal CAS competence and with little
experience teaching with technology in students’ hands. (Zbiek, 2002, p. 134)
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Two of these teachers restricted the use of CAS in their classrooms by providing
students’ worksheets. A third teacher, in a study by Heid (1995) controlled the use of
CAS by avoiding CAS in her teaching. Doerr and Zangor (1999) reported on how a
teacher who was confident and competent with graphics calculator also controlled
students’ use of the technology, directing how it would be used in the classroom, but
for different reasons to the three teachers with limited technology skills. Lucy, an
expert CAS user reported in Ball and Stacey (2005) also restricted use of CAS in her
classroom, but her short-term tactical restrictions were based on wanting students to
develop judicious use of technology.

These studies show that there are many individual variations in how teachers develop
appropriate and comfortable teaching practices for new technologies, but that the
general pattern is for novices to focus on using the machine, whereas using it to
enhance and deepen learning comes later. Here is one inspiring example.

CONTEXT AND METHODOLOGY

The data reported here was from an interview with Neil (a pseudonym), an experienced
mathematics department head, who had been teaching with a computer algebra system
(CAS) for about 18 months. Teaching senior secondary school mathematics (Year 12)
with CAS was permitted in this Australian state for the first time on a trial basis in
2001/2002 in three schools, one of which was Neil’s. A new subject had been
accredited, Mathematical Methods (CAS) (MM(CAS)), which allowed CAS for all
mathematical work, including in examinations. Neil taught this subject with CAS to a
Year 11 class in 2001, and to the Year 12 class in 2002. He was therefore a pioneer in
teaching with CAS and was one of four teachers studied in the CAS-CAT research
project accompanying the introduction of the new subject. Further descriptions and
outcomes of the pilot and the CAS-CAT project are available in CAS-CAT (n.d.),
Leigh-Lancaster, Norton & Evans (2003) and Stacey (2003). Neil was in most part a
volunteer in the project, as the inclusion of his school in the first pilot had been
influenced by the general strength of his teaching and his enthusiastic approach to his
work. He was not especially regarded as a “CAS expert”, by others or in his own
opinion, but he had strong skills in teaching with a graphics calculator and reasonable
command of its capabilities. Now, three years later, he is regarded as an expert in
teaching with CAS.

Neil was interviewed by a member of the CAS-CAT project team in July 2002, midway
through the school year, about 4 months before his students sat for the high-stakes end-
of-school examinations. This was one of a series of interviews conducted throughout
2001-2002. His classroom was also observed by the project team (not reported here),
which was in nearly daily contact with all project teachers. Three other project teachers
were also interviewed. They all had individual responses to teaching with CAS, which
will be reported elsewhere. The interview was audiotaped and transcribed. The brand of
CAS used is not revealed here, to preserve Neil’s anonymity.

In this interview, Neil provided comments on his views about use of CAS for teaching
and for doing mathematics, reflecting on his own views from the start of his Year 12
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class (6 months earlier) up to July. The particularly revealing section of the interview
that is analysed in this paper began when Neil responded to the prompt: “Thinking back
over the year, give an example of what has worked well”. He began his response by
describing a classroom episode based on students’ solutions to the problem in Figure 1a.
As will become evident in reading the interview, Neil’s responses are impressive
because he bases them on classroom experiences about which he has reflected himself:
there is no empty rhetoric parroting slogans about teaching with technology.

The problem: MM Exam 2 Qn 1 (abbrev.) | Sample by-hand solution (abbreviated)
(VCAA, 2001)

The temperature, T degrees Celsius, in a
greenhouse at t hours after midnight for a
typical November day is modelled by the | 1 _.,c7(t=3)

23=25_400sZE=3)
12

formula 2 (-3 12 -3
_ z(t— Vs z(t— Vs
T:25_4co3¥,f0r0£tgz4. 12 =§+2k72' or =2kz —=
Use this model to answer the following | t=3+22(%+2kx) or t =3+ 12 (2kz—2)
uestions T3 4 3
g ot o the 1 t || 1=+ 24k or t=—1+ 24k
C. what times wi e temperature equal |, _ .
93007 k=0 = t=7, t=23
Sample graphical solution Sample CAS solution
- Input:  solve(23=25—-4xcos(nx(t—3)/12)
sl Output: )
28} t=24k-1
r t=—24k+7
52: Substituting values for k gives
k=0 = t=7, t=23

241
L T=23
22
21t

20 IIIIIIIIIIIIIIIIIIIIIIIII
2 4 6 81012141613 20 22 24

(22,999 230003

Figure 1 The problem and a sample by-hand, graphical and CAS solution

NEIL’S INTERVIEW

Below is an edited version of Neil’s interview. The original transcript is available
from the authors. We will discuss two aspects of the interview: Neil’s perspectives on
the multiple solutions offered by students to the question in Figure 1 (transcript
Neil19 — Neil26, Neil32), and Neil’s changing views of CAS output and its potential
for teaching (transcript Neil27 — Neil30) which provides evidence of his growing
appreciation of pedagogical power of CAS and a subtle change in his view of the
nature of mathematical understanding.

Interviewer: Thinking back over the year, give an example of what has worked well

Neil19: Probably that trig question [..]. | was amazed at how that worked [...].I
wanted to round off trig. “How will | do this?” And | grabbed from my
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Neil20:

Neil21:

Neil22:

Neil23:

Neil24:

Interviewer:
Neil25:

Neil26:

cupboard last year’s exam (see Figure 1) because 1’d talked to the kids about
the really typical analysis questions that are asked about trig. [...]

[..] And I talked about how these trig questions come up all the time and even
though we are in a CAS course, these trig questions are very typical of what
can be asked. So | grabbed last year’s exam and [...] | wrote it up on the board
and | suppose that is an advantage of being an experienced teacher, you can
think on your feet. | thought as | went along: ‘I’m going to get kids to do it but
I’m not going to give them any advice on what to use’. | did say: ‘This is last
year’s exam (i.e. CAS not permitted). [...] So, | want you to do it how you
would do it by choice. Then | got the students to come up. [ ..]

There was a very strong argument about the three different ways the students
would solve this trig equation. One student came up, and he is the one who
always complains about jumping from the CAS to non-CAS [in another
subject where CAS is not permitted]. He came up and did it by hand, and it
was a lovely solution, did it beautifully, no problems, no mistakes. It was
quite a difficult trig equation to solve, there was a consideration of domain to
look at. There was a translation [of the basic graph of cos function], so it was
quite difficult.

Someone else came up and showed how they would solve it on the graph, [...]
He talked about the fact that it had a decimal answer and [asked] “Did that
matter?”.[...]

And then another student came up, who would be a weaker student [...] and
did a CAS solution (i.e. used symbolic features of CAS). Now the [CAS] does
the parametric solutions very nicely. I’ve talked about saying to the kids “Get
used to writing k as a parameter. Just get used to writing it down because it
shows you’re understanding what the value of k in the general solution is.
Then look at your k values and get a feel for how many solutions you expect”.

And it raised fantastic discussions between the three of them as to which
method they’d choose. And because it didn’t specify an exact answer, each of
the three were equally valid. In the end | got [the students] to vote and it was
split three-ways, equally. | was really, really interested because | always
thought, at the beginning of the year, that my teaching would have been more
directive and that by the end of the year they’d have all chosen one method.

What would that method be?

At the beginning of the year it would have been the by-hand method, but now
I’d be using the CAS method. I’ve probably changed completely in six
months. It’s interesting isn’t it? But then 1I’d probably would have had had the
graph up, in my mind at least, to give me a feel for how many solutions to
expect. | talk to them all the time about this general solution isn’t much use to
them unless you’ve got a real feel for how many solutions to expect. And I get
them to look at how many solutions to expect either by looking at the unit
circle or by visualizing the graph.

| preferred by-hand solutions because I’'m good algebraically. [...] Security,
safety, and familiarity in doing what I’ve always done. But with the CAS it
was much quicker. [..]
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Neil27: [...] There’s stuff that’s come out this year that I’m enjoying too. Like when
you solve a general equation in sin and cos, the [CAS] will give you two
solutions whereas with tan it will only give you one. So I’ve talked to the
students about why that’s the case. And it’s raised lovely, lovely discussions
about the fact that sin and cos repeat themselves every 2z and tan repeats
itself every m. So you can expect less solutions with the tan.

Neil28: [...] It’s not like the calculator’s just going to give you an answer that means
nothing. In fact, the students and | have moved to a feeling that the calculator
gives you something that has got an intuitive feel to it, rather than just
churning out a result that you use with no understanding.

Interviewer: Is the CAS result triggering a mathematical learning situation?

Neil29: Yes, yes. And | didn’t think it was going to. | thought it was going to be just
“This is just an answer, and manipulate it, and don’t understand”. And the fear
is all the time that you’re going to lose your algebraic skills because it’s going
to churn out an answer. | don’t think that’s the case because I think the answer
means so much more when you’ve got the algebraic understanding underneath
what’s happening. And | don’t mean the by-hand skills. I don’t mean that. |
mean that you’ve got the algebraic intuition into what this answer means and
why there’s two answers with sin and only one answer for tan. [...]

Neil31: [...] ’'m fairly teacher-led in the way | teach, which probably reflects my
personality [...]
Neil32: [CAS will] affect my teaching in a totally different way than it’s going to

affect someone else because we’ve got different personalities and | think we’ll
see that across the project. But the fact that [students] voted that [they] were
going to do it in three different ways, it surprised me but | was absolutely
delighted. And I said to them. “This is terrific. Because what this means now
is that teaching has moved from me telling you what to do into you making
your own decisions that suits you and your personality and the way you think
about things. And that each was equally valid. And | thought for me this was
one of those WOW experiences of - “We’ve actually got somewhere” and that
| could almost let them safely into the exam with the feeling of “They’re
making their choices” and they might each come out saying “We’ve done this
different ways”. But it actually doesn’t matter. | was thrilled.

PEDAGOGICAL ADVANTAGES OF EXPLOSION OF METHODS

Neil selected this problem because a similar problem could be on the CAS
examination at the end of the year. Three volunteer students demonstrated a by-hand
algebraic (Figure 1b), graphical (Figure 1c) and CAS solution (Figure 1d). Neil was
pleased that the three different solutions generated considerable discussion and that
students expressed strong views about the different methods (Neil21-Neil24): he
values these aspects of this lesson and places high importance on them. Neil’s
comment that the by-hand solution was ““...a lovely solution, did it beautifully, no
problems, no mistakes. It was quite a difficult trig equation to solve...” reveals his
high regard for by-hand algebra, and perhaps pleasure in seeing these strong by-hand
skills in a student permitted to use CAS. Neil is also pleased with the CAS solution,
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especially since the weaker student is able to work with the parameter. He also seems
pleased that the CAS gave a parameter in the output and that interpretation of this
was required to answer the problem.

Artigue (2002) suggested that an explosion of methods can cause difficulties for
teachers. Neil took advantage of the different methods of solution and made them a
feature of this lesson. He was excited about the explosion of methods and seemed
pleased both that students could create different solutions and also that a variety of
solutions were accepted in formal assessment. Neil used a similar approach to the
teacher reported in the study by Guin and Trouche (1999) where different approaches
were compared with a move towards institutionalisation of accepted approaches.

Neil was pleased that students had made individual choices about solution methods
and his suggestion that he expected students would use the method he privileged at
the start of the year showed a shift in his expectations of how students work. He was
delighted at their growing independence (Neil32).

UNDERSTANDING, BY-HAND SKILLS AND CAS

The section of the transcript from Neil27 — Neil30 provides a self-appraisal of how
Neil’s view of CAS output has changed, how his understanding of how CAS can be
used for pedagogical purposes has grown and how in this process his view of the
“gold standard” for mathematical understanding has changed. Neil’s comments about
the role of CAS show an evolution in his thinking. At the start of the year he said he
used CAS for speed (Neil26) and his comment in Neil29 suggests that he thought that
CAS would be a purely functional tool — for “churning out an answer”. He feared that
students would get answers that they did not understand and maybe lose algebraic
skills. In recalling this (Neil29), he seems to imply that other teachers may still feel
this way — certainly we feel this is a common opinion.

Neil’s comments suggested that as he learned more about CAS, and gained
experience in the classroom, he started to appreciate the possibility for using CAS to
promote students’ understanding. He gives an insightful example about CAS outputs
associated with the solution of trigonometric equations, which had promoted
discussion in the classroom as Neil and his students interpreted the outputs and linked
these to the period of trigonometric functions.

The phenomenon Neil discussed is illustrated in Figure 2. The inconsistencies evident
here make it an instance where CAS output might be regarded as very unpredictable
and maybe incomprehensible, which initial users of CAS, in our experience, often
find very frustrating. Solving an equation sin or cos on Neil’s CAS gives two families
of solutions (see, for example, Fig. 1(d), and also Fig. 2). But solving an equation in
tan gives only one family of solutions. Figure 2 shows different CAS outputs from
the same machine, with the same settings, to effectively the same equation. Although
they are mathematically equivalent they look different. Neil’s strong mathematics has
enabled him and his students to see firstly that both solutions can be correct, and
secondly to understand why the machine might operate in this way. He is not
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frustrated by the unfamiliar and idiosyncratic CAS outputs, but now finds them an
opportunity for “lovely, lovely discussions”.

Input: Solve (tan x =+/3 ,X) Input: | Solve (sinx/cosx=+/3 ,X)
Output: X = 7k +% Output: | x =27k —%”
—2rk +Z%
X TK + 3

Figure 2. Two contrasting CAS solutions to one equation.

Neil enjoyed the discussions about mathematical understanding arising from CAS
outputs such as this and appreciated the fact that CAS outputs acted like a third party
in the classroom, stimulating discussion.

So I’ve talked to the students about why that’s the case. And it’s raised lovely, lovely
discussions about the fact that sin and cos repeat themselves every 2z and tan repeats
itself every =, so you can expect less solutions with the tan. (Neil27)

As well as enjoying the discussions, Neil appears to attribute to such experiences, a
change in what he sees as “understanding” mathematics. It is commonly observed
that most teachers associate “understanding” with being able to solve problems by
hand. Zbiek (2002) cites several examples. Neil came to believe that when students
could use the outputs provided by CAS, this in itself was evidence of mathematical
understanding (Neil29). His description of understanding is linked to an ‘intuitive
feel’ that he and his students have developed for CAS outputs.

The students and | have moved to a feeling that the calculator gives you something that
has got an intuitive feel to it, rather than just churning out a result that you use with no
understanding. (Neil28)

Neil contrasts the view that understanding is associated most with by-hand skills,
with his new view that it can be also seen in the ability to predict and interpret CAS
outputs:

... the answer means so much more when you’ve got the algebraic understanding
underneath what’s happening. And | don’t mean the by-hand skills. (Neil29)

CONCLUDING REMARKS

Initially Neil had few expectations of the capacity of CAS to impact on his teaching
style and values. However, after 18 months, he had developed strong pedagogical use
of CAS. He reflected on the positive way that CAS had impacted on the algebraic
understanding of his students and how it had extended his view of what counted as
understanding. Neil believed that discussion of CAS outputs promoted a deep
understanding of algebraic concepts and he observed this for students of a range of
abilities. For weaker students he noted that CAS had enabled a greater use of algebra,
as they were able to perform algebraic routines successfully and focus on
interpretation of the algebraic output. Neil was a project participant because of his
strength as a teacher, but even so, he began with what he later considered naive views
of the potential of teaching with technology. His obvious pleasure in discovering
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creative ways to use CAS pedagogically was evident to the project team and
beneficial to the mathematical growth of his students.
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STUDENTS’ CONCEPTIONS OF mAND c:
HOW TO TUNE ALINEAR FUNCTION
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This paper explores students’ conceptions of the parameters m and c in the linear
function y = mx+c. The multiple semiotic representations of linear functions lead to
multiple mathematical and real-world meanings for m and c. The links between these
are an important focus of teaching. The paper reports on responses from three
classes of 15 year old students to 7 items requiring interpretation of information
about a real-world context. Results confirmed that ¢ (in all four aspects) is a
conceptually simpler object than m, but identified that it is often omitted from
students’ verbal and symbolic descriptions, and treated as if it is not an integral part
of the function. Interpretations of both ¢ and m were affected by inadequate
distinctions between time (the x variable) as a measure or as a duration of one event.

INTRODUCTION - FOUR DIMENSIONS OF m AND c

The linear function® is a concept particularly favoured in mathematics education, to
support and accommodate a wide range of research. The multiple viewpoints from
which one can tackle this mathematical concept and the diverse semiotic
representations it carries are certainly among the principal reasons for its privileged
use within our community. When considering the introduction of algebra from a
functional approach, for example, linear functions appears to be the stage for many
research studies interested in students’ understanding of functions (see, for example,
Nemirovsky, 1996). This mathematical concept has also been exploited as a
particular case of modelling situations, shedding some light on students’ ability to
interpret and model realistic situations (see Yerushalmy, 2000). Also, there is
abundant literature where this mathematical concept scaffolds research regarding
graphic comprehension, such as in Moschkovich (1999) or Mevarech and
Kramarsky’s (1997) work. And ultimately, it has moulded many studies where the
core is students’ understanding and use of algebraic notation —and in particular of
letters (see, for example, Janvier, 1996).

However, because in the introductory work in algebra what it is really important is to
enable students to perceive one major characteristic of linear functions - namely that

! The authors wish to acknowledge with thanks the contribution of Dr Robyn Pierce and Ms Sandra
Herbert to the design and conduct of this classroom research, and to thank the teachers, students and
school for their willing co-operation. This project has been funded by the Australian Research
Council and the European Union (Marie Curie Outgoing International Fellowship —Université
Paris7/University of Melbourne).

2 A more correct term is affine functions (English), fonctions affines (French) and funcgdes afins
(Portuguese).
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it is a relationship between two variables x and y - whichever domain in which linear
functions appear as a scaffold or frame, the focus has legitimately, mostly been on the
link (and on students’ understanding of the relationship) between x and y. Among the
research interested in students’ conception of function, within the structural-
procedural context for example, linking x and y values of a function is translated into
adopting a process perspective (Knuth, 2000). Also, in research dealing with graphic
comprehension, students” understanding of how x and y are related to each other is
often examined by investigating the phenomenon of fixation -privileging one variable
over another (Bell et al., 1987).

If, on one hand, the study of the relationship between x and y is at the core of multiple
research involving linear functions, few studies seem to have focused on the
relationship regarding its other elements, namely the parameters m and c in the
standard equation y = mx+c. For if making students understand that y and x are
linked variables that take changing values, and if drawing their attention to the effects
of such changes is crucial in the precursory work of algebra, the focus seems to shift
elsewhere in our classrooms. From making students investigate the consequences of
changes operated upon x and y’s, teachers tend to stress what happens when m and ¢
change, instead. And what was originally meant to be a study where the variables x
and y occupied the first role is deviated to a teaching where the emphasis is given to
m and c, therefore swapping the very status of the objects of contemplation. Dealt
with in the first case as unknown numbers, m and ¢ themselves assume the role of
variables. The present study is a response to this relocation of attention and therefore
it will focus on students’ conception of m and c.

A main characteristic that makes linear functions interesting for research in
mathematics education is that several representations are intertwined. The multiple
semiotic representations of linear functions can also help us organise our analysis of
students’ conceptions of parameters m and c. In parallel with work on functions in
general, m and c can be considered from their symbolic, graphical, numerical (S, N,
G) and real-world perspectives. It is from these different perspectives that m and ¢
will here be considered. Study of the links between the 3 intra-mathematical
representations (S, N, G) has been extensive, particularly stimulated by technology
(see, for example, Kaput, 1986), but there has been less study of the links between
the these 3 representations (S, N, G) and real-world contexts. We will extend work
such as that of Moschkovich (1999), to give emphasis to the links between the real-
world contexts and the graph. The seminal work of Janvier (1978) highlighted the
importance of translation between real-world contexts and the graph (i.e.
interpretation of graphs), but it differed from the present focus by dealing with
complex situations without a pre-specified mathematical structure. The focus of the
present study on situations modelled by a linear function is attributable to the desire
of teachers to work on topics specified in the school curriculum.

To identify the different semiotic contents of m and c, each aspect will be labelled by
the associated representation of the function, providing us with a total of eight
“concepts” of m and c to examine. Table 1 summarizes the main features of each of
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these concepts. Note that in all eight cases, the value of m or ¢ can be a number or an
algebraic expression. “Symbolic” refers to work with equations and algebraic
processes, and “Numerical” refers to calculations with values, whether known or
unknown.

SYMBOLIC GRAPHICAL |NUMERICAL CONTEXT

m | ms The coefficient of x| mg The gradient|my The ratio| mc The meaning of m in
in the equation y=mx+c. [of the graph of | Ay/Ax. a real world context (e.g.
It can either be a letter | y=mx+c. a speed, hourly rate of
or a number. pay).

c Cs The constant term|cg The y-|{cn The value |cc The meaning of c in a
of the equation. It can|intercept. It is ajof y when|real world context (e.g.
either be a letter or a|co-ordinate of a|x=0. taxi "flag fall", 32°F in
number. point on the line. temperature conversion).

Table 1: The four dimensions of m and ¢

Reading Table 1 “by rows” or “by columns” gives rise to different questions. First,
looking by columns, notice that belonging to the same representation does not
necessarily mean having similar status. For example, even though mg and cg are both
graphical objects, cg is directly accessible (e.g. a value read from the axis) whereas
Mg IS not (one has to estimate or calculate slope from at least two points). In this
sense, mg IS more complex than cg, as suggested by Moschkovich (1999). In a
physical situation, cy may be an extensive quantity (e.g. 14 kilograms), whereas my is
an intensive quantity (e.g. 6 kilograms per year). One question that then naturally
arises Is whether this hierarchy extends to all representations of m and c,
psychologically as well as epistemologically.

Considering the links across the representations, notice that behaving similarly does
not necessarily make the links - seldom evident - more transparent. For example, the
symbolic ms and cs have similar status (at least if we consider their syntactical
behaviours), which obscures their different graphical status. The question that we
then address here is how, from the students’ point of view, do students “translate” a
change of m and c input in one representation to another? Ultimately, it seems
Important to study students’ understanding of m and c separately and also by
Investigating connections students make between these two elements.

METHODOLOGY

This article analyses answers that Australian high school students provided to a
written test. Three Grade 9 classes (about 15 years old) provided a total of 54
responses. The test was undertaken in the middle of the school year, soon after the
students had been taught linear functions. In two classes teachers followed a real-
world/graphical approach (Asp et al., 1995), where students worked on extended
problems set in real world contexts and used graphics calculators (T1-83) throughout.
The other class followed a “standard” approach, based on a commonly used textbook
(Watson et al., 2001), with a few exercises set in real world contexts. The text
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included some use of graphics calculators at the end of the unit, but this was not
done. The present article does not examine the impact the different approaches but
explores students’ conceptions students of m and c in the linear function.

Data from 7 items (see Figure 1) on the test are examined here. These items are set
within the real-world situation of comparing charges of two plumbers, Bob and Chris.

To hire a plumber, you have to pay 100,

e afixedamount PLUS 50|

e a cost depending on how long it takes to | , ™[

have the work done. 250+

EDD:
Bob and Chris are two plumbers. This graph teal

(Fig. 1a) shows the cost of hiring each of them. Jaok

costin dollars

a) If you have $325, how long can you hire )

Bob for? K 1 2 3 4 58 6 78 910
number of hours

b) Is it cheaper to hire Bob or Chris? Explain

yOour answer Fig. 1a: Cost of hiring Bob and Chris

C) Explain in words how to work out the cost | *[
of hiring Bob if you knew he would be working | *[
for 14 hours, WITHOUT EXTENDING THE | ™[
GRAPH. =

200+
d) Explain in words how to work out the cost | 5!
of hiring Bob if you knew the number of hours | 1|
he would be working, WITHOUT EXTENDING | sl
THE GRAPH.

e) Use algebra to write a rule to work out the
cost in dollars with the number of hours of hiring
Bob.

400+

f) At Christmas, Bob gives all his customers | ==}
a $10 discount but Chris gives all his customers a | awo}
discount of $5 for every hour that he works. Add | 20}
new graphs on the axes below to show the new | 20}
hiring costs for Bob (Fig. 1b) and Chris (Fig. 1c). | "o

100+

Bob’s usual charge

12 3 4 5 6 7 8 5810

Fig. 1b: Graph of Bob’s usual charge

Chris’s usual charge

[Iltem (g) presents piecewise linear graph (not
shown here) for another charging plan, and asks
students to describe in words, calculate a charge

and sketch graph of hourly charge.] Fig. 1c: Graph of Chris’ usual charge

a0r

12 3 4 5 6B 7 8 9 10

Figure 1: First seven items of test, in the context of cost as a function of time.

The charges for each plumber (cost versus time) were provided on a graph, along
with the (implicit) specification of the linear characteristic of each: “To hire a
plumber, you have to pay a fixed amount PLUS a cost depending on how long it
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takes to have the work done”. The items require students to move between symbolic,
graphical, numerical and real-world representations of the situations.

RESULTS AND DISCUSSION

Students” conception of ¢ : A starting element too soon forgotten or a constant
too boring to note?

When looking at c in each of the representations, it seems — and previous research
(Moschkovich, 1999) has suggested — that it can be considered as a fairly simple
object, especially when compared to its “functional partner”, m. However, the data
we have collected seem to indicate that students often do not perceive the genuine
role this multi-faced object plays for the function. Despite the fact that the presence
of a “fixed amount” in the hiring costs was specified in the introduction of the
problem, this element seems secondary to the students, who often tend to focus on the
“multiplicative feature” of the function only.

Regardless of the representation (symbolical, graphical, etc.) that framed the items or
in which students’ answers were provided, ¢ was indeed often omitted. In item (d) of
Figure 1, for instance, set in real-world context, students were asked to explain in
words how to work out the cost of hiring Bob. Many students provided an answer
such as the following, given by Sam: “look at how much he earns an hour and times
it by how long he works”. Omitting c in this item is often consistent with their answer
to the previous item (c) which asked for a numeric cost (for 14 hours, beyond the
graph). Students often consider that “7 hours is $375 and you double and you would
get 14 hours $750”, as Clayton did. These are both instances of false proportionality,
studied in depth by Van Dooren et al (2005).

Also, if we consider ¢ in the graphical context, cg seems secondary for many
students, who often refer only to m (either as m¢ or mg) to decide who is cheaper to
hire for item (b). Anthony, who wrote “Chris is cheeper (sic) because his hourly rate
Is cheeper (sic)” and Clayton who wrote “It’s cheaper two (sic) bye (sic) Chris
because the line is less steeper” gave answers representative of this category.

The above may be attributed to students’ poor language skills and possible
impatience with constructed response items, but it is also evident symbolically. In
item (e), many students, in their algebraic rules linking cost to time, stressed the
multiplication factor, either by totally omitting the constant from the expected rule as
in Sandra’s answer “c=50xx" or, in an even less well-formed answer such as
Jennifer’s “c x”, still making explicit only the multiplicative part. Interestingly, one
should mention that most students who tend to omit ¢ were in the classes that
followed the real-world/graphical approach. Indeed, about 60% of the students for
whom linear functions were taught with the standard approach started their
description by stating the fixed amount, such as the following response given by
Clayton: “The fixed amount is $25 all you have to do is add $50 an hour”. Only 15%
of students having followed the real-world/graphical approach provided this kind of
answer. This leads us to question the imprint of the contexts on students’ conceptions
of c. Students following the real-world/graphical approach often referred to ¢ as a
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“starting fee”, rather than the “fixed amount” mentioned by most of other students.
Would interpreting a fixed amount as a starting fee rather than a characteristic of the
function as a whole cause students to soon forget it?

Evidence from students’ answers to other items of the test showed some consequence
of privileging the real-world interpretation cc when interpreting ¢ and, in particular,
consequences on students” conception of cy. Instead of assigning to cy the value of y
corresponding to x=0, students sometimes considered the value of y when x=1 as in:
“start at $75 for the first hour and then just keep addin (sic) $50”. For these students,
it seems that ¢ was, because of the context of the problem, understood as the cost for
the hiring the plumber for one hour. This confusion between the cost for the first hour
and the cost for one hour will also be seen in the discussion of m.

The data collected indicates that even when students seem to deal quite well with the
different representations of c, the role ¢ occupies in the function is often fuzzy. This
Is evident even for students who can describe in words the graphed functions and
even provide its algebraic rule —which, for many teachers, remains the ultimate proof
of mastering the concept. For example, Kristen wrote for Chris’ cost: “Start at $25.
Then add $50 for each hour” (item (d)) and gave the following rule: “Hx50+25 = C”
for item (e). However, when comparing the costs of the two plumbers (item (b)), she
apparently disregarded c writing: “Chris because every hour Chris only goes up $25,
whereas Bob every hour goes up $50”. It appears that students often don’t realize that
c affects the function as a whole —especially when it is considered as a starting point-
and the role of c in the function remains vague.

m: a rate per hour but for which time?

As with students’ conceptions of c, the context seems also to have misled some
students in their understanding of m, and more precisely of my. However, the
predominance of mc over m is more subtle than the predominance of cc over c. As
noted in the previous section, the cost of hiring the plumbers for the first hour was
interpreted as the fixed amount for some students. This same value is also sometimes
associated with m. There seems to be a “sliding” when interpreting mc, which
generates an incorrect numerical value of m. The cost per hour has sometimes been
understood by students as the cost of one hour, i.e. the value of y (cost) when x (the
number of hours) equals to 1. Lionel’s false proportionality answer is representative:
“He charges 75% one hour so you times the number of hours that you want him for”.

A consequence of interpreting m¢ as the cost of one hour of work can be seen
elsewhere. In the last — and rather challenging - question of the test, students were
asked to graph the hourly charge for a new plan, specified by a piecewise linear
graph. Some students’ sketches stopped at x=1, suggesting that what was relevant to
them was the graphing of the cost for the first hour.

Behind such answers is a matter appearing to be essential for an appropriate
understanding of m within this problem context. It seems that in order to grasp m, one
has to be able to detach himself/herself from the conception of time as duration of
particular work. Instead of considering the time reported in the x-axis for the duration
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of hiring the plumbers as an uninterrupted story, time has to be seen as possibly
atomised (into intervals). Each atom, because it is an element of time, can be
interpreted without giving emphasis on its duration feature. In this way, time is
considered as a unit of measure. “One hour”, when accepted as an element of the
whole (time) can correspond to a unit of measure and the concept per hour can
appropriately be understood. It is then not interpreted as the first hour (not in the
sense of its location on the time stripe) nor as the first part of a story that ended at the
extremity of the x-axis. Not surprisingly, students who show a tendency to perceive
the time as a continuum focus on the extreme values of the graphed interval; e.g. “It
starts at the 50 and ends at 400”. Instead of seeing the graph as simultaneously giving
the charges for many plumbers’ jobs of different lengths, they may see it as depicting
only the accumulating cost during one job.

From situation to graph

The above analysis has been concerned with interplay between real-world context
and graph, linked across to symbolic and numeric representations. Item (f) directly
examined how students interpreted changes in the real-world situation that affected
slope and intercept (i.e. for Bob, changes in cc and m¢ affecting cg but not mg and
for Chris, affecting mg but not cg). The omission rate on this question was high
(44%), especially for the textbook class. Of the 31 students responding, 58%
correctly identified the change in intercept alone for Bob, but only 32% identified the
change in slope alone for Chris (with no students from the textbook class). About 8%
of responses changed both intercept and slope; otherwise the most common error was
to change the intercept cg in both cases. This finding supports the proposition above
that c is a simpler object than m.

CONCLUSION

An important component of instruction on linear functions is to understand and to
link the multiple semiotic representations of the parameters m and c. There are links
to be understood between three intra-mathematical dimensions (symbolic, graphical
and numeric) of m and c, and also links to a wide variety of real-world situations
where linear functions are applicable, of which this paper has explored only one
relatively straightforward cost per unit time situation.

Close examination of students’ responses revealed that c is often seen as an accessory
to the function, rather than a vital organ of it. In both students’ verbal and symbolic
descriptions of the hiring charges, m triumphs over c. This is despite the fact that c, in
all its representations except perhaps the contextual, is a simpler quantity than m, as
noted in previous literature and in the findings reported in this paper.

An interesting finding was the consequences of fuzziness of distinction arising in the
context between the cost per hour and the cost for just one hour (first hour, time when
x=1, during the first hour; unit of measure). Consequences of the confusion were
evident in wrong answers for both ¢ (where it may have been expected) and m. To
understand m, students have to delocalize this interval of one hour. In the context of
cost as a function of time, m and c are far from steady, well-defined concepts in the
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students’ point of view. Investigations using other contexts are recommended. If one
considers the musical meaning of the term “affine” adopted in some languages such
as Portuguese and derived from the Latin affinis — “afinar” means “to tune” — one
could say that linear functions are, in this sense, for many students hard to tune.
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A CONTRADICTION BETWEEN PEDAGOGICAL CONTENT
KNOWLEDGE AND TEACHING INDICATIONS

Ibrahim Bayazit Eddie Gray
Adnan Menderes University, TURKEY Warwick University, UK

Through an analysis of classroom observation and drawing upon Shulman’s (1986)
notion of pedagogical content knowledge, this paper examines a teachers conceptual
indications when teaching the sub-concepts of function and his knowledge of the
difficulties and misconceptions associated with them. The paper provides an
assessment of the teacher’s awareness of, and response to, these issues in the context
of constant, inverse and piecewise functions. The evidence suggests that even if a
teacher possesses a sophisticated understanding of specific conceptual obstacles and
their causes, such awareness may not be prioritised during teaching.

INTRODUCTION

Though the knowledge base for teaching can be examined from a variety of
perspectives the subject matter knowledge of the teacher would appear to make a
fundamental contribution. It is generally agreed, even though there is no readily
available mechanism by which teachers can deliver what they have in mind to the
students, that strong subject matter understanding is essential, although not sufficient,
to facilitate students’ learning (Ball, 1991).

Shulman (1986) suggested that teachers need other types of knowledge to transform
subject matter into a form that can be grasped by students of different ability and
background. He considered that subject matter knowledge *““goes beyond knowledge
of subject matter per se to the dimension of subject matter knowledge for teaching”
and introduced the notion of pedagogical content knowledge (PCK) to embrace “the
amount and organisation of knowledge per se in the mind of the teacher” (p.9). Such
knowledge includes ways of representing and formulating the subject matter to make
it comprehensible to the learners, entails an appreciation of the potential difficulties
and misconceptions associated with a mathematical concept and an understanding of
the possible ways of thinking that may lead to these outcomes.

The notion of PCK has inspired several studies. Marks (1990), for example,
concluded that the teachers’ understanding of their students’ difficulties with
equivalent fractions contributed to their selection of relevant tasks and the provision
of alternative explanations. Hadjidemetriou & Williams (2001) considered students’
difficulties and misconceptions with graphical conceptions through a diagnostic test
which was later given to 12 experienced teachers who were asked to record their
perception of the difficulties of the items on the test and suggest misconceptions that
the students might have that would cause difficulty. An inconsistency between the
hierarchy of difficulties and misconceptions the students revealed on the test and the
easiest to hardest hierarchy, with associated misconceptions and errors, listed by the
teachers, was noted.

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 121-128. Prague: PME. 2 -121
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Part of a wider study exploring the relationship between teaching and learning in the
context of functions (Bayazit, 2005), this paper continues the theme to report on the
relationship between the pedagogic content knowledge and teaching of one teacher.

METHOD

Through a qualitative case study (Merriam, 1988) the paper examines a Turkish
teacher’s awareness of his students’ difficulties and misconceptions with the function
concept and considers whether or not this awareness is evidenced during his
classroom practice. Burak, who had 24 years teaching experience, was deemed to be
a highly qualified teacher of mathematics by his colleagues and his school principal.
His pedagogical content knowledge was explored using semi-structured interviews
and his teaching orientation was identified by observing 14/19 lessons associated
with teaching the function concept. To eliminate possible effects of the interviews on
his classroom practice, Burak was interviewed after teaching the course.

Data was analysed using cross-case analysis (Miles & Huberman, 1994) to allow for
a comparison to be made between Burak’s views of his students’ difficulties and
misconceptions with function and the ways he handled the associated challenges
during his classroom teaching. Content and discourse analysis (Philips & Hardy,
2002) was employed to analyse transcripts of tape recorded interviews and classroom
observations. The intention was not to interpret a specific instructional act in a single
context but to construe the act in the context of the totality of the discourses.

THEORETICAL FRAMEWORK

Literature associated with the epistemology of the function concept provided a
conceptual map for the study. Shulman’s (1986) notion of PCK served as a
framework to investigate the teacher’s awareness of the students’ difficulties and
misconceptions and Breidenbach et al’s (1992) notion of ‘action-process’
conceptions of function provided a framework to investigate classroom practice.
Breidenbach et al suggest that the essence of an action conception of function is the
step-by-step application of an algorithmic procedure with a typical indication being
the ability to insert a number into an algebraic function and calculate the output
through mental or physical manipulations in a step-by-step manner (ibid).

A process conception of function is suggested to be at a higher level of
sophistication. The possessor not only illustrates characteristics associated with an
action conception but is also able to rationalise these actions in terms of the concept
definition, particularly in identifying that a function transforms an input to an output
and at the same time maintaining sight of the univalence property of the function
concept.

RESULTS

The results are presented in two ways. First we consider the teacher’s classroom
practices, and secondly we consider his pedagogical content knowledge.
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Teaching approach in the context of inverse function

A process conception of inverse function entails possessing the idea that ‘an inverse
function undoes what a function does’ without loosing the sight of ‘one-to-one and
onto’ property. However, during the two lessons during which he taught the inverse
function, Burak focused on reversing an algebraic function by going from the end to
the beginning and inverting the operations in a step-by-step manner— an emphasis
on inverse operation rather than inverse function. There was no evidence that he used
conceptually focused and cognitively demanding tasks to encourage his students to
reflect upon a function process and the inverse of that process in the light of the
concept definition. Apart from one example, which involved a set-diagram (a
negative case not meeting the ‘one-to-one and onto’ condition), Burak illustrated
inverse functions through the use of algebraic functions and utilised several strategies
to promote his students’ mechanical skills. His most prominent strategy initially
illustrated the idea of ‘inverse operation’ through functions with single-step
operations, for example f(x)=x-5, and then this notion was given an additional
emphasis through the use of functions containing multi-step operations, such as

f(x)= 3X4_5. His supporting strategies included offering analogies from every day

life and the provision of practical rules. For instance, he gave the following rule and
emphasised it repeatedly when reversing linear functions:

Leave the x alone on the one side of the equation by gathering the others on the other
side, and then replace x and y with each other.

Vidakovic (1996) suggested that a process conception of an inverse function entails
an understanding of why the inverse function can be obtained through the action of
switching the independent and dependent variables in the original function and
solving it for the dependent variable but Burak’s explanation for this action was:

Traditionally we represent a function by the notation y, that is why we should replace x
and y with each other after leaving the x alone on the one side of the equation.

The relationship between the use of analogy, the provision of a practical rule and the
implementation of a step-by-step procedure is seen through Burak’s explanation of
the problem, Given the function f(x)=x%+7; work out the rule of inverse function:

... We got up in the morning; we had a breakfast, put on our clothes; and then we locked
the door when we left home... When we return back to home...first of all we shall open
the door and then take off our clothes...and so on. ... Yes, this is the logic we are going
to implement... The last operation here is addition of 7; therefore in the first step we
should subtract 7 from the x... The operation before the last one is the 3" power of x, so
we should take the 3" root of x-7...

The premise of this episode is the idea of ‘inverse operation’ but the analogy does not
appear to contribute towards understanding that ‘an inverse function undoes what a
function does’. Such a presentation may well constrain understanding to the idea of
‘inverse operation’ and be the source of a misconception for some.
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Teaching approach in the context of constant function
The Turkish curriculum presents a constant function through a sub-definition:

A function is called a constant function if it matches every element in the domain to one
and the same element in the co-domain (Cetiner, Yildiz, & Kavcar, 2000, p: 86).

This is a specific form of the concept definition addressing ‘all-to-one’ matching
(transformation). For a mathematician this is a model of simplicity but for students it
can cause enormous difficulties. Tall & Bakar (1992) indicated that approximately
half of their sample of college students rejected the idea that a line parallel to the x-
axis represents a function claiming that ‘y’ cannot be independent of the value of ‘x’.
They suggest that such a misinterpretation stems from of an implicitly existing idea
within school mathematics: ““the notion of function has variables, and if a variable is
missing, then the expression is not a function of that variable” (p: 109).

A process-oriented teaching approach that promotes students’ conception of the
algebraic and graphical aspects of function as a process transforming every input to
one and the same output could avoid such difficulty. However, Burak’s teaching
emphasised two aspects of factual knowledge more in tune with action conceptions:

e aconstant function does not involve an independent variable, x, and
e agraph of constant function is a parallel line to the x-axis.

Every instructional input, including the reinforcement of his students’ previous
knowledge system, addressed these two points. For example, consider Burak’s
explanation when addressing the problem:

Work out the precise form of the constant function, f(x)=(4n-2)x+(2n+3).

Burak: ... We described it [the constant function] like a fixed minded person; did we
not? [1'] ... Whatever we say; he never changes his mind [2]. Yes, the constant function
is like a fixed minded person; no matter whatever we put into the x we come up with the
same image [3]. ... Let’s remember the algebraic form of the constant function... the
algebraic form of a constant function involves just a number; this number would be an
integer...or a rational number. Have a look at the expression, f(x)=(4n-2)x+(2n+3). In
this expression there are two terms; one is the constant term, 2n+3, and the other is a
term involving x, (4n-2)x. ...So, first of all we should get rid of the term containing x;
because if this is the constant function...it must not involve x(4).

At the beginning of the episode Burak offers an analogy [1] & [2] that does not
communicate the essence and properties of the constant function. Though he provides
a verbal descriptions of the situation, [3] his language is vague: he implicitly refers to
inputs and output but does not explicitly refer to the notion of the function process as
an ‘all-to-one’ transformation. More importantly, as the instruction develops Burak
overemphasises, without meaning, the rule that x must be removed from the
expression because a constant function does not involve x (4).

! Key statement in teacher’s instruction that we refer to while commenting upon the quality of
instruction in the subsequent paragraph.
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During the teaching sequences reference to set-diagrams and ordered pairs were
absent. Consequently the pedagogic power of the former to encourage the acquisition
of “all-to-one’ transformations in algebraic and graphical situations was not utilised
and any connection between these two forms of representation were not established.

Teaching approach in the context of piecewise function

A function described by more than one rule on the sub-domain does not violate the
definition of function; however most students wrongly think that a function should be
described with a single rule over the whole domain (Sfard, 1992). A graph made of
branches or discrete points could represent a piecewise function on a restricted
domain; nonetheless students usually reject such graphs because of their
misconception that a graph of a function should be a continuous line or curve
(Vinner, 1983). Dubinsky & Harel (1992) suggest that if students develop a process
conception of function such difficulties and misconceptions would be overcome. A
process conception of a piecewise function entails seeing a single function process
behind the formulas or the segments of graphs on the sub-domains and interpreting
this process in the light of concept definition.

Burak’s teaching of this topic included no inputs that would support his students’
conceptual growth towards a process conception of piecewise function and there was
no implicit reference to the definition of function. His focus of instruction was on the
selection of the right formula for each sub-domain. Again his teaching strategy
involved analogy and, to reinforce the procedure, the comparison of the inputs with
the extreme points of the sub-domains, features seen within the following example:

3x+4

9

Given the function f: RaR,f(X): x2_5 _2<y<3’ what is the value of

x—4

X< =2

2 3<x

f(-5)+f(0)+f(4)?

Burak: ...the function is described by different rules for different values of x. Look at it;
3X+4
9
use x>-5 when -2<x<3... and we shall use the rule 2** when x>3. Remember the example
I gave at the beginning (of the lesson); we should dress up according to the weather
conditions — if it is sunny and hot we dress up thin and relaxing clothes...; the logic is
the same here ... we are going to choose the formula according to the numbers we give to
X... Let’s find the value of f(0)...0 is bigger than -2 and less than 3; therefore we should

use the formula in the middle...take the square of 0 and then subtract 5...

when the value of x is less than -2 we are going to use this rule ( ). We are going to

Burak’s instructions on the piecewise function did not include the engagement of his
students with the notion of piecewise function in a graph made up branches or
discrete points. All the graphs used were smooth and continuous lines or curves — a
feature of teaching that could encourage the ‘continuity misconception’.
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Burak’s Teaching: A Summary

Burak’s teaching could be described as action-oriented practice. The focus of his
instruction did not appear to be upon function-related ideas but on his student’s
acquisition of rules and procedures. There was generally little evidence of
connections with underlying meaning. Such teaching appeared to suggest that on the
one hand Burak had limited knowledge of his students’ potential difficulties and on
the other that it could lead to the development of misconceptions. However, evidence
from interviewing Burak suggested a contradiction. He appeared to be well aware of
his students’ potential difficulties and misconceptions and to possess a sound
understanding of the thinking that could lead to such obstacles

Burak’s Pedagogical Content Knowledge

To compliment the evidence from his classroom practice, Burak’s views on students’
difficulties and misconceptions with the function concept were considered using three
separate situations associated with inverse, the constant and piecewise functions.

During the interview Burak was invited to provide reasons for the following:

When asked ‘Is it possible to reverse the function f: R—R, f(x)=x*’ a student says ‘yes’
and gives the answer: f *(x) =/ .

Burak identified the student’s error as applying the idea of ‘inverse operation’ to the
task and he interpreted this mechanical act as an indicator of the student’s deficiency
in conceptualising the process of f(x)=x? and the inverse of that process in the light of
concept definition. He said:

As they see the square of x, they automatically carry out the inverse operation and take
the square root of x. ... This student is not able see that this function produces the same
output for two elements of the domain which have the same absolute value. ... In one
sense he/she is not able to move back and forth between the domain and co-domain...

The second task invited him to consider the situation: “Suppose that a student does
not accept the expression y=5 as a function”, and asked him to identify “What it was
the student had in mind and why he/she could have rejected the situation”. In Burak’s
view this was the student’s inability to see the ‘all-to-one’ transformation in the
situation. He also pointed out that the absence of x in the situation was a particular
feature that would cause students to reject the expression as a function:

... He is not able to evaluate an image [expression] and see the meaning behind it. In my
view this student simply looks at the image and when he sees that
there is no x in the situation, he thinks that y=5 does not represent
a function. ... If this student has understood the notion of constant
function, he/she would not make such a mistake. What is the
constant function? It matches all the elements in the domain to a
single element...; this is the point he/she is not able to see [in the Figure 1: A graph

situation]. ... made up four
The third task was associated with the piecewise function. discrete points.
Presented with the graph (Figure 1) Burak was invited to
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consider the statement “a student claimed the graph did not represent a function”.

In Burak’s view it was the discontinuity aspect of the graph that caused the student to
reject the situation. He considered that the student’s reaction was an inability to
interpret the function process defined on the sub-domains and he suggested:

... There are just four points, and they have not been linked with a curve... The student
wants to see a smooth curve passing through the points...; they would join the points
with broken-lines or curves. If they specify the domain set they would see that this graph
does in fact a one-to-one matching from domain to co-domain. Of course the domain
involves just four elements; the projections of the graph on the x-axis. ...

DISCUSSION AND CONCLUSION

We conclude that Burak is well aware of his students’ potential difficulties and
misconception with the functions, and he also indicates a good understanding of the
sources of such obstacles. Burak:

e interpreted the students response to the inverse function as the indicator of an
inability to move back and forth between the elements of domain and co-domain
without loosing the sight of the ‘one-to-one and onto’ condition. This suggests
that in Burak’s opinion the idea of ‘inverse operation’ does not enable one to
handle this concept of inverse function in a more complicated situation.

e considered that the student rejected the constant function because of an inability
to interpret the ‘all-to-one’ transformation behind the expression in the light of
concept definition, explicitly addressing the absence of x as a particular source of
misconception.

e considered that the discontinuity aspect of the graph of the piecewise function was
the particular factor causing the students to reject the situation and predicted that
the student would join the points by broken-lines or curves.

However, Burak made no effort to eliminate these obstacles during his classroom
teaching. Indeed, it is possible that his teaching encouraged their development. He
constrained his teaching of inverse function to inverse operation, emphasised, without
connection to the concept, that a constant function does not involve x and that the
graph of constant function is a parallel line to the x-axis and when teaching the
piecewise function unit gave no illustration that encouraged his students to reflect
upon the notion of piecewise function in a situation made up branches or disjoint
points.

The evidence presented in this paper is in marked contrast with the results from other
studies (Tirosh et al, 1998; Escudero & Sanchez, 2002). In our situation the issue is
what is it that interferes between the teacher’s strong pedagogical content knowledge
and his practice within the classroom? During the teaching observation there were
several instances where Burak indicated to his students that examination or test
success required a particular way of learning:

If you want to succeed in those exams you have to learn how to cope...

Do not forget...simplification. It is crucial, especially...[in] a multiple-choice test.
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It would appear that his perception of success over-rode his deeper conceptions of
thinking to provide an action oriented teaching practice in which his students’
difficulties and misconceptions were peripheral to the rules and procedures that
would lead to success in particular situations. It is an issue worthy of further study.
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IDENTIFYING AND SUPPORTING MATHEMATICAL
CONJECTURES THROUGH THE USE OF DYNAMIC
SOFTWARE

David Benitez Mojica Manuel Santos Trigo
Universidad Autdbnoma de Coahuila Cinvestav, Mexico

This study documents the types of mathematical conjectures that high school students
formulate within a problem-solving environment that promotes the use of dynamic
software. In particular, we are interested in analyzing both questions that led them to
the formulation of a particular conjecture and types of argument used to validate that
conjecture. Results indicated that students consistently examined the viability and
pertinence of a particular conjecture or relationship in terms of using the software to
(i) identify the conjecture visually, (ii) examine whether the conjecture falls within a
family of isomorphic objects (dragging test), (iii) build a macro that reproduces the
construction and verify whether the conjecture was held in objects generated by the
macro, (iv) quantify and verify properties of mathematical objects to detect patterns,
and (v) present formal arguments to prove the emerging conjecture.

Formulating conjectures and developing mathematical arguments to support them are
fundamental activities in mathematical practice. Harel & Sowder (1998) recognize
how important it is for students to participate in the process of conjectures
construction and the need to search for convincing arguments to validate the
conjectures.

The goal [of instruction] is to help students refine their own conception of what
constitutes justification in mathematics: from a conception that is largely dominated by
surface perception, symbol manipulation, and proof ritual, to a conception that is based
on intuitions, internal conviction, and necessity (p. 237).

In this context, it is important to examine the role played by the use of specific tools
in helping students to represent mathematical objects or problems that can be
analyzed mathematically. What type of questions can students formulate and explore
when they represent mathematical objects with the use of computer technology?
What features of mathematical thinking are enhanced when students utilize
computational tools in their mathematical learning experiences? These are relevant
questions that need to be discussed in order to evaluate the actual potential of a
particular tool in helping students to construct their mathematical knowledge
meaningfully. It is recognized that diverse computational tools may offer distinct
opportunities for students to identify, represent and explore relationships and
properties of mathematical objects. Thus, when using a tool it becomes important to
investigate features of mathematical thinking and ways of reasoning that students can
develop as a result of representing and examining mathematical problems with the
use of computational technology. In particular the use of dynamic software (Cabri-
Geometry) seems to facilitate the process of searching for mathematical conjectures
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or relationships embedded in objects and problems that can be represented
dynamically. In this perspective, we are interested in documenting types of
conjectures and relationships that high school students formulate in a problem-
solving environment that promotes the use of dynamic software. What types of
representations of mathematical objects or problems do students construct with the
use of dynamic software? What resources and strategies do students show during the
process of searching for mathematical relationships or invariants embedded in
problem representations? What type of arguments and proofs do students provide in
order to support conjectures or relationships? We argue that the use of dynamic
software not only helps students quantify and explore mathematical attributes of
objects, but also influences the students’ reasoning or thinking about supporting and
presenting relationships or conjectures. In this study, we document the extent to
which students use dynamic software to represent problems dynamically. In
particular, to what extent do students formulate and pursue questions that might lead
them to reconstruct or develop conjectures and basic relationships and to think of
mathematical arguments in order to explain and justify them?

ELEMENTS OF A CONCEPTUAL FRAMEWORK

The development of mathematical knowledge and learning can be traced in terms of
the type of representations used to think of mathematics. “Much of the history of
mathematics is about creating and refining representational systems, and much of the
teaching of mathematics is about students learning to work with them and solve
problems with them” (Lesh, Landau, and Hamilton, 1993, cited in Goldin &
Shteingold, 2001, p.4). In this context, we argue that dynamic representations
(generated with the use of technology) of mathematical objects or problems offer
students the possibility of detecting and examining patterns or invariants that emerge
while quantifying mathematical attributes (lengths, perimeter, area, volume, angle,
slope, etc) and moving particular objects (points, segments, perpendicular bisectors,
etc.) within the representation. In addition, we recognize that a problem-solving
environment provides learning conditions for students to participate actively in the
construction of their own mathematical knowledge and conceptualize their
mathematical learning as a continuous process in which the use of technological tools
IS seen as an opportunity for them to explore and examine problems or conjectures
from distinct angles. Here, some questions or conjectures that are often difficult to
verify with paper and pencil procedures can now be explored via the use of
technological tools. As a consequence, with the use of different tools, students may
be able to identify not only new relationships or conjectures but also, even different
ways to support them. An overarching idea that students need to develop while using
technological tools is that any conjecture or relationship that emerges during their
interaction with the task needs to be supported with a clear mathematical argument.
In this context, it becomes important to recognize not only the type of opportunities
that the use of technology may provide for students; but also the challenges that they
need to resolve while presenting their results to the learning community. As
Schoenfeld stated:
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For the mathematician, dependence on argumentation as a form of discovery is learned
behavior, a function of expertise. ..As one becomes acculturated to mathematics, it
becomes natural to work in such terms. “Prove it to me” comes to mean “explain to me
why it is true,” and argumentation becomes a form of explanation, a means of conveying
understanding (Schoenfeld, 1985, p. 172).

A relevant feature that emerges in students’ ways to represent mathematical problems
with the use of technology is the possibility of tracing “modeling cycles” in which
their description of conjectures, explanations, and predictions are gradually refined,
revised, or rejected — based on feedback from trial testing.

[In problem solving] several levels and types of responses nearly always are possible
(with one that is best depending on purposes and circumstances), and students themselves
must be able to judge the relative usefulness of alternative ways of thinking. Otherwise,
the problem solvers have no way to know that they must go beyond their initial primitive
ways of thinking; and, they also have no way of judging the strengths and weaknesses of
alternative ways of thinking —so that productive characteristics of alternative ways of
thinking can be sorted out and combined (Lesh, and Doerr, 2003, p. 18).

RESEARCH DESIGN, PARTICIPANTS AND GENERAL PROCEDURES

The study took place in a problem solving class with eighteen senior grade twelve
students, all volunteers, who were interested in using dynamic software to work on a
set of problems and to think of different ways to solve and extend the original
problems. The development of the course included two weekly sessions, two hours
each, during one semester. In particular, we were interested in documenting the type
of conjectures and arguments that students formulate during their interaction with the
problems. Thus, students were encouraged to use the software to:

(i)  Work on given problems that appear in regular textbooks, class material or
web page problems and asked them to represent and examine those
problems with the help of the software. The goal here was to encourage
students to represent and solve the problem with the use of the software,
and to pose and explore other questions that may lead them to identify
conjectures or other relationships.

(i)  Construct a dynamic configuration with the software that includes simple
mathematical objects (segments, lines, points, triangles, angles, etc.) and
use it as platform to formulate questions that lead them to reconstruct or
construct mathematical relationships or theorems. In both cases, students
need to provide explanations and mathematical arguments to present and
communicate their results. Thus, they become aware of the importance of
using the software to visualize the behaviors of mathematical objects within
the representation and the need to look for arguments to justify such
behavior or relationships. A pedagogical approach that appeared
consistently during the development of the problem-solving sessions
included individual work, small group participation (group of three),
presentation to the whole group, and general discussion led by the teacher
regarding the distinct approaches and mathematical concepts and ideas that
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appeared during the process of solving the problems. So, our data included
students’ electronic files of their work and comments and explanations of
the approaches, videotapes of students’ small groups work and class
discussions, and observation notes. We document results about problem
solving rather than problem solvers since our examples are taken from
students working individually, as well as from small groups and class
discussions.

PRESENTATION OF RESULTS AND DISCUSSION

To illustrate the work shown by students, we focused on presenting students’ ways to
identify and deal with a conjecture that emerges while working on a problem that
came from a web page (http://www.atm.org.uk/people/kath-cross.html#bear). We
particularly discuss the kind of relationships and arguments that students exhibit
during the development of two problem-solving sessions.

The problem: Cross’s Theorem:
Squares are drawn on the three sides
of a triangle. Show that the areas of
the four shaded triangles are the same
(figure 1).

Figure 1. Are the triangles’ shaded areas
the same?

Faux (2004) posed this problem to readers of Mathematics Teaching Journal and
received responses showing several ways to prove the theorem including those based
on congruence of triangles and those that use rotation of figures (triangles) to explain
the result. Students in the problem-solving sessions had opportunity to review those
proofs and used the software not only to “verify” the theorem, but also to identify and
explore other relationships.

An Emerging Conjecture. What about if we draw rectangles instead of squares on
each side of the given triangle, how are the shaded areas? This was the initial
question that students agreed to explore. However, they noticed that they could draw
many rectangles taken as the base one side on the given triangle and as a
consequence it was difficult to trace the area behavior of the shaded triangles. How
can we relate the construction of the three rectangles based on the sides of the given
triangle? Discussing this question led them to realize that it was important to
introduce another condition to draw the corresponding rectangles. The condition was

that the corresponding sides of the rectangles would share the same proportion. That
IS, they decided that EC_GA_B_1 They drew the rectangles keeping in mind
CB AC BA 2

this condition and observed that the areas of triangles CEF, AGH and BDI were the
same (figure 2) and wondering if this relationship would hold for any triangle.
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Figure 2: Drawing rectangles with proportional sides

At this stage, the goal for students was to first investigate if for other triangles with
the same construction, the area relationship was maintained, and second to look for
arguments to support the conjecture. The software became a powerful tool to explore
both the plausibility of the conjecture and the search for ways to validate it. We
illustrate the ways students showed to deal with this conjecture:

Visual Recognition. An important feature in using dynamic software is that
mathematical figures can be drawn accurately. In this case, students drew triangle
ABC and the corresponding rectangles (with the same constant of proportionality
among their sides) and visualized that for this case, the area of triangles CEF, AGH,
and BDI were the same. By determining the triangles’ areas they confirmed the visual
conjecture (figure 3).

H
Figure 3: Visual recognition of a relationship in triangles CEF, AGH, and BDI

The Dragging Test. Here students explored the validity of the conjecture for a
family of triangles. With the use of the software, they moved the position of the
vertices of the given triangle ABC to generate a family of triangles with the same
construction. They observed that when one vertex is moved, the family of triangles
generated held that the area of triangles CEF, AGH, and BDI was the same (figure 4).
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Figure 4: Verifying the conjecture for different positions of triangle ABC

Constructing a Macro. Another way to verify the conjecture was that students built
a macro to reproduce the construction for any given triangle. That is, students
identified initial objects (triangle ABC and ratio R of rectangle sides) and final
objects triangles CEF, AGH, and BDI in order to reproduce the construction for any
given triangle. By applying this macro to different triangles, students confirmed the
conjecture, that is, in all triangles they applied that macro, they observed that
triangles CEF, AGH, and BDI all have the same area. Figure 5 shows two of those
triangles.

Figure 5: Applying a Macro to verify the conjecture

Quantifying Attributes and Patterns. It is easy with the use of the software to
quantify attributes (lengths, areas, angles, etc.) of the figure and to observe their
behaviors. For example, in addition to observing the behavior of the triangles areas,
students focused on comparing (ration) areas of triangle CEF and triangle ABC for
distinct values of the proportionality coefficient of the sides of the rectangles (figure
6). Based on this information, they notice that:

areaof ACEF _ 2
area of AABC
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AreaACEF [ AreaACEF 1
AreaAABC AreaAABC

Figure
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Figure 6: Looking for patterns

Formal Proof. To prove both conjectures, students followed different approaches
that were discussed with the whole class. Here, we present a proof that was
constructed during the class discussion. The idea is to construct a triangle with one
vertex on the origin of the Cartesian system, another on the X-axis, and the third one
on a point in the first quadrant. That is, the vertices of the triangle will be A(0, 0), B
(c, 0) and C (a, b) as is shown in figure 7.

F [abr, btar)

E fatbr, brcran

HO, e [c. e

Figure 7: Identifying coordinates of vertices of the given triangle

What is the area of triangles AGH, BID, CEF and ABC? Given the coordinates of the
vertices of those triangles, students recalled that the area of each triangle will be:
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0 0 c 0
Area(AAGH) = ; ~br ar 1= ;bcr2 (1); Area(ABID) = ; C —cr = ;bcr2 (2
0 -—cr c+br cr—ar
a b

and Area(ACEF):;a+br b+(c-a)r :;bcr2 (3), in addition, Area(AABC):;bc 4
a—br b+ar

Based on the information given in (1), (2), (3), and (4) they concluded that:
Area(AAGH) = Area(ABDI) = Area(ACEF) = Area(AABC) *r?

Remarks. There is evidence that the use of dynamic software shaped and determined
the way that students thought about the process of formulating conjectures and
methods to examine and validate the conjecture. In particular, the dynamic
representations of the problems and mathematical objects that students generated
with the help of the software became an experience enhancing platform to identify
and explore mathematical relationships. The easiness to quantify mathematical
attributes and the exploration of visual representations of problems were fundamental
activities that permeated the students’ process of formulation of conjectures. To
assess the validity of the conjecture, students relied on the use of the software to
evaluate particular cases visually, to examine families of cases by dragging particular
elements within the representation, to construct a macro in order to examine a family
of cases, and to observe patterns that emerge as a result of exploring invariance in the
behavior of particular data (changing the ratio coefficient of rectangles’ sides, for
example). In this context, the use of an analytical method to prove the conjecture
came out naturally as a way to confirm the validity of the conjecture.

Note: We acknowledge the support received by Conacyt (reference 47850) during the
development of this study.
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STUDENTS CONSTRUCTING REPRESENTATIONS FOR
OUTCOMES OF EXPERIMENTS
Palma Benko and Carolyn A. Maher

Rutgers University

This paper describes the process by which seventh-grade students constructed
representations of outcomes of dice games from experiments. We report on the
verbal, written, and physical representations during their problem solving
investigations. They worked individually and together to produce lists, written
mathematical statements, pictures, and graphs. Their representations were used to
develop arguments for their solutions.

THEORETICAL FRAMEWORK

The building of a representation and mapping of the representation with earlier
knowledge is a crucial step in solving problems (Davis & Maher, 1990, 1997; Kiczek
& Maher, 1998). The representations that are built are frequently checked and
modified by learners themselves as well as by others who collaborate in the learning.
Sometimes, several trials are required to build a representation that is satisfactory and
useful in solving a problem. Revisiting of earlier ideas makes possible opportunities
for learners to reflect on these ideas and to refine, modify, and extend existing
representations (Maher, 1998; Maher & Speiser, 2001). The tasks that are posed to
students should be challenging and engaging to enable them to build on their
previous knowledge (Francisco & Maher, 2005). This research describes the
evolution of the representations produced by a cohort of seventh-graders and shows
how these were elaborated during the problem-solving session. It builds on earlier
work that describes the reasoning of the students who, as sixth-graders, explored
problem tasks concerning the fairness of dice games. (Kiczek & Maher, 1998; Alston
& Maher, 2003; Benko, 2006). The purpose was to investigate how the students used
their representations and negotiated differences to convince themselves of the
reasonableness of their ideas.

BACKGROUND

It has been well recognized for several decades that the learning of probability
concepts is very complex (Fischbein, 1975). Garfield and Ahlgren (1988)
recommended that longitudinal studies be conducted in order to better understand
how students develop probabilistic and statistical concepts. The research reported
here is a component of a longitudinal study of the development of probabilistic ideas
over a seven-year period (Benko, 2006; Kiczek, 2000). Students worked on games of
chance problems in small groups and the representations that they developed were
captured on videotape. In 6™ grade, during two problem-solving sessions, students
worked on problems that involved hexagonal dice. In 7" grade students analyzed
tetrahedral dice games during five sessions.
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A qualitative design methodology was used. The cohort group was videotaped as
they were engaged in probabilistic investigations in grades six, seven and twelve. The
video portfolio includes videotapes of class sessions, smaller group sessions, group
interviews, individual interviews, students’ work and researchers’ notes. Videotape
analysis involved: view and describe video data, identify, transcribe and code critical
events, write analysis, construct storyline and compose narrative (Powell et al.,
2003).

RESULTS

We report here on data from 10/27/1994, which was the fourth session in grade seven
(see http://www.gse.rutgers.edu/rbdil/site/resources/ for a list of the probability
tasks). Shelly, Magda, Robert and Amy worked on the following task:

Contests 1: A hat contains 3 tetrahedral die, one white, one black, and one green.
You win $900 if you roll a white 1 and a black 2 and a green 3

Contest 2: A hat contains 3 tetrahedral die all the same color. You win $900 if you
roll a 1, a 2, and a 3. Is there a difference in your chance of winning for each contest?
Why or why not? Explain.

The report is organized so that the representations are summarized in Table 1. Text
and diagrams accompany the respective episodes. Twenty-six episodes summarize
the development and refinement of representations of group members.

The episodes were divided into clusters. The first cluster describes students trying to
make sense of how to roll a 1, 2 and 3 with three tetrahedral dice (Episodes 1-10).
They started by listing the outcomes verbally (Episodes 1-3); then Shelly justified the
outcomes by holding the first die as constant (Episode 4). Later, following Robert's
attempt to make a chart (Episode 5), Shelly, with Magda's help (Episode 8)
developed charts to represent the 6 outcomes (Episodes 9-10).

In the next cluster, students found 16 outcomes when rolling two tetrahedral dice
(Episodes 11-14). Magda reasoned using the multiplication rule of counting (Episode
14) and Shelly developed a chart that was similar to her previous representation
(Episode 10) to account for all 16 outcomes (Episode 14).

In the third cluster, students found 64 outcomes to roll 3 tetrahedral dice (Episodes
15-18 and 21-26). First Magda used the multiplication rule (Episode 15); then, Shelly
attempted to use her earlier chart representation (Episode 10) to justify the 64
outcomes (Episode 16). Finally, Robert developed a chart representation (Episode 17)
similar to Shelly's earlier representation to justify 6 outcomes of rollinga 1, 2 and 3
(Episode 10). Shelly indicated that she understood Robert's charts. She used her
representation to justify the 64 outcomes and developed a tree representation
(Episode 26) based on her earlier experiences with soccer tournament team pairing
(Episode 21) and the trees of the tower problem (Episode 22).

In the last cluster students had no difficulty to find 256 outcomes of rolling 4
tetrahedral dice (Episodes 19-20). Robert outlined how to use his previous chart
representation (Episode 17) to justify this finding.
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No.

Student

Representation

Magda

Pointed to different corners of the table and listed the following 3 outcomes
to roll a 1, 2, and 3 with three tetrahedral dice: 1-2-3, 2-1-3 and 3-1-2.

Shelly

Found three more outcomes and wrote down 6 possible outcomes in a list:
1-2-3, 2-1-3, 3-1-2, 3-2-1, 2-3-1, 1-3-2.

Magda

Checked Shelly’s list (Episode 2) by saying aloud the outcomes in the
following order: “1-2-3, 1-3-2, ok, now 2-1-3, 2-3-1, 3-1-2, 3-2-1, yeah,
that’s it.”

Shelly

Used Magda’s listing (Episode 3) to justify that she had all of the
outcomes. She explained that if she held the first die constant, the other two
numbers could be switched.

Robert

Wrote out 2 columns with numbers 1 to 4 in each and drew a few lines

Shelly

Followed up on Robert’s idea (Episode 5); she made two

between the columns.
lﬁ columns of numbers of 1, 2, 3 and 3, 2, 1 and connected all of
==L the numbers of the first column with all of the numbers of the

second column. It was her first attempt to represent in the chart 6 outcomes
torollal, 2and 3 with three tetrahedral dice.

Shelly

Rewrote the two columns using the numbers 1, 2 and 3; she now connected
1 from the first column with all the numbers in the second column.

Magda

She suggested making a third row. [Note that Shelly’s diagram (Episode 7)

Shelly

represented using only two dice.]
-L%a%é Made a third column of 1, 2 and 3 and represented with
eV aaata:t o . : : _

connecting lines the following 6 outcomes in her diagram: 1-2-

3, 1-3-2, 2-1-3, 2-3-1, 3-1-2 and 3-2-1 to roll a 1, a 2 and a 3 with three
tetrahedral dice.

10.

Shelly

Made 3 diagrams of 3 columns of 1, 2 and 3
representing those two outcomes in each of the
diagrams that start with the same number,
representing 6 outcomes to roll a 1, 2 and 3 with
three tetrahedral dice.

i% \

a

]3 13 o o o

) AN

3%3‘%\3 3§§>§§
T

?n/'; !
38

| | |

2 'J><Q

3/3 3

11.

Magda

Magda responded to R1’s question of how many outcomes were possible if
two tetrahedral dice were rolled and distinguished between outcomes 1-2
and 2-1 as she started to list them aloud.

12.

Robert

Said that there should be 16 outcomes for rolling 2 tetrahedral dice
“because you can just reverse them around”.

PME30 — 2006

2-139




Benko & Maher

13. [Magda |Agreed with 16 outcomes to roll 2 tetrahedral dice (Episode 12) and
reasoned that 4 times 4 is 16.

14. (Shelly &% Suggested making a diagram similar to the other diagram that
P represented 6 outcomes (Episode 10). She drew four times 2
D columns with numbers from 1 to 4 in each column. In the first
'),% diagram she connected 1 from the first column with 1, 2, 3 and 4
3 131 from second column, etc. Created 4 charts to represent 16
v ,,  outcomes to roll 2 tetrahedral dice.
? éa
3
AN
[ )
aégé
LY /A
4

15. [Magda

Magda responded to R1’s question about how many outcomes 3 dice would
have by saying that there were 64 outcomes when rolling 3 tetrahedral dice.

16. [Shelly

Placed 4™ column of 1, 2, 3 and 4 next to three columns in chart in Episode

10.
17. |Robert |\ V) -

a§:/7§ %ﬁ?a Made two diagrams of 3 columns of 1, 2, 3,
1 l“' :* ;é% and 4. In his first diagram 1 (column 1) was
%@ 1N9%  connected to 1, 2, 3, 4 (column 2) and all those
3N “‘ ;<‘ A were connected to 1 (column 3). In his next
;ﬁ%%’; 0 g?, diagram 1 (column 1) was connected to 1, 2,
L Iq }’é‘?/!’s 3, 4 (column 2) and all those were connected
g§;§g W& to 2 (column 3). Robert continued to list 16
:‘ N \ @; diagrams in such a way that each of the
g<§7‘3\ 2 <4 % diagrams represented 4 outcomes. He found
s o 0o sa od %’“ 64 outcomes to roll 3 tetrahedral dice.
ot BN 8FD \1a0da questioned

Robert’s representation and Shelly explained it to her. All of the students in

the group concurred that there were 64 outcomes.

18. |Robert |Robert explained that his chart proved that there were 64 outcomes since
there were 16 charts and 4 outcomes in each chart. He said: “But this is a
masterpiece. It proves that there is 64...There is 16 different ones and there
is 4 in each one.”

19. |Shelly

R1 asked the group how many outcomes there would be rolling 4 dice.
Shelly multiplied 64 times 4 and the group agreed that there would be 256

outcomes.

20. |Robert |Robert used his previous chart organization (Episode 17) to show how
many different ways it was possible to roll 1, 2, 3, and 4 with 4 dice and he
outlined a plan how to write out the 256 outcomes rolling 4 dice.
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21. |Shelly

Demonstrated that it was important for her to
find her own organization to represent the
outcomes and not only to use Robert’s
organization. She glanced at another group’s
work and saw a different type of diagram.

She said that it reminded her of a soccer tournament pairing that her father
used. She wrote out a horizontal soccer chart pairing starting with 8 teams,
in which 2 winners would play each other; then the winner would be
determined by pairing the winners of the previous games.

22. [Shelly

The soccer pairing (Episode 21) reminded her of trees that they used in the
tower problem, a task from fifth grade.

23. |Robert,
Magda

Reported that they also saw trees.

24. |Robert

Related trees to a problem about rabbits that made offspring and drew lines
from a point. Later in 12" grade Robert again used the rabbit metaphor
while he developed trees to justify the multiplication rule of counting. He
said that he saw trees in his 5" grade science book referring to “rabbits
making children”.

25. |Robert

After Shelly’s explanation about the soccer tournament (Episode 22),
Robert indicated that he a saw similar chart in football team pairing and
produced such a chart.

26. |Shelly

. Shelly developed 4 trees that represented the 64
possible outcomes. In her trees she placed a number
at the root (1, 2, 3 and 4) and 4 branches went out

I from each number (marked with numbers 1, 2, 3 and

4), from each of those numbers 4 new branches branched out (labeled 1, 2,
3and 4).

Table 1. Episodes of different types of representations

CONCLUSIONS

The students worked alone and together to share their ideas from their problem
solving investigations. They contributed to each other’s understanding by questioning
their representations and sometimes using and refining them. For example Shelly
used a similar chart representation in Episode 9 as on 10/26/1994 (a previous session)
and Robert further built on this representation in Episode 17 to develop the sample
space of rolling 3 dice. Robert and Shelly built on their earlier experiences. Shelly
related the problem to a soccer tournament pairing and to the tower problem before
she developed her tree representation (Episodes 21, 22 and 26); and Robert related
trees to football pairing and the rabbit population (Episodes 24 and 25). When they
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found satisfactory representations, they were able to build on these to solve more
complex problems. Shelly first represented, with a chart, the outcomes of rolling a 1,
2 and 3 (Episode 10); then she represented the sample space of rolling two dice
(Episode 14). After Robert found his chart representation satisfactory, he was able to
construct his 16 charts to represent 64 outcomes without any difficulty (Episodes 17)
and he outlined how to use the same representation to find 256 outcomes of rolling 4
tetrahedral dice (Episodes 20). Later, on 10/28/1994, Robert used Shelly’s tree
representation (Episodes 26) to find 256 outcomes rolling 4 tetrahedral dice.

The students had the opportunity to think deeply about games of chance and build
representations of the outcomes of experiments. They cycled back to earlier ideas,
tested them, and explored in greater detail their own representations and those of
others. By sharing, questioning and refining their work, there was a free exchange of
ideas. In so doing, they developed deeper insights into the problem and showed
growth in understanding. They used their representations to justify their solution in
order to make sense of the problems for themselves and to convince others.

This study supports and extends earlier work in building probability ideas. By
collaborating and justifying their solutions, and having the opportunity to think
deeply about their ideas before receiving formal instruction in probability, the
students built meaningful representations while working together on strands of
problem tasks.
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LOGARITHMS: SNAPSHOTS FROM TWO TASKS

Tanya Berezovski and Rina Zazkis

Simon Fraser University

Our study addresses the understanding of logarithms and common difficulties which
high school students encounter as they study this topic. We focus on two tasks: one
standard and one non-standard that involve logarithmic expressions or require the
use of logarithms in a solution. For the purpose of analysis we have modified the
interpretive frameworks developed by Confrey in her study of exponents and
exponential expressions, to the study of logarithms. Our results indicate students’
disposition towards a procedural approach and reliance on rules, rather than on the
meaning of concepts. We conclude with pedagogical considerations.

The miraculous powers of modern calculations are due to three inventions: Arabic
notation, decimal fractions and logarithms (Cajori, 1919). The first two of these
inventions have been investigated in great detail by researchers in mathematics
education, while logarithms have received very limited attention. This is rather
surprising, given the centrality of the concept in applied mathematics, as well as in
the secondary school mathematics curriculum. This article presents a part of an on-
going study that aims to describe and analyse issues involved in the understanding of
logarithms by high school students. It is best described as a series of snapshots
highlighting students’ perceptions, rather than an attempt to draw a comprehensive
picture.

As an introduction, let us consider the following excerpt from a classroom interaction
between a teacher and a group of grade 12 students. The conversation took place as
part of a review after logarithms had been studied for several weeks.

Teacher: Can you find the exact value of 5l0g;9?
Ryan: You should calculate the log, the log is 2.
Teacher: Would anybody explain why logs9 equals 27

Bob: Because it equals log9 divided by log3, and it equals 2 (answer was given
using calculator).

Teacher: Why does logs9 equal log9 divided by log3?
Bob: Because of the change of base law.

Sharon: Somehow | got 1.2756.

Bob: O, you just forgot the bracket after 9.
Sharon: Why do you need that bracket?

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
International Group for the Psychology of Mathematics Education, Vol. 2, pp. 145-152. Prague: PME. 2 - 145
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Bob: If you miss it, then you are finding a logarithm of 9 over log3, not a
quotient of two logs.

Sharon: | see it works now. Thanks.

Ryan: But it is not fair, you've used a calculator!

Teacher: Is it possible to get the answer without a calculator?

Becky: | did. I can show it. First, | took 5 under the log, so it became logs9. Then,

| knew | had to find an exponent of 3 that equals 9 to the power of 5.
Basically, | solved the equation 3*=9°. Converting 9 to 3, | got x = 10.

Students: Cool, nice
Teacher: Can someone suggest a different approach?

Several observations from this exchange are warranted. The immediate and “trivial”
solution — that involves 5x2 once the value of logs9 is recognized — is missing.
Further, there is unnecessary reliance on computational procedure and incompetent
use of a calculator to implement this procedure. We wonder, what influences
students’ choice of approach? What is their understanding of logarithms? How can
their understanding be enhanced beyond pushing the “log” button in a calculator? We
address these questions in our study.

INTERPRETIVE FRAMEWORKS FOR LOGARITHMS AND
LOGARITHMIC FUNCTION

The Frameworks used in this study are developed in analogy to the interpretive
frameworks used by Confrey (1991) in the analysis of students’ understanding of the
exponents and exponential function. The three Frameworks — labelled below as A, B,
and C — attend to logarithms considering numbers, operations and functions. Though
presented in order of increased complexity, these Frameworks are to be viewed as a
system, rather than a linear progression.

Framework A: Logarithms and Logarithmic Expressions as Numbers

In Framework A we investigate to what degree logarithms are understood as numbers
and whether the value of a logarithm influences this understanding. In the traditional
curriculum, the concept of logarithm is presented as an inverse of the exponent. A
novice operating in this framework may correctly interpret, for example, the value of
log,9, by using the definition (3°=9 = log;9=2), but fail to interpret log,1/9, or log,1.

Framework B: Operational Meaning of Logarithms

The main issue explored in our second interpretive framework is the students'
understanding of the operational character of logarithms. While focusing on
operations with logarithmic expressions we were interested in students’ awareness of
the isomorphism between multiplicative and additive structures that determine the
“rules” by which logarithmic expressions are manipulated, as well as students’ ability
to imply the isomorphic relationship in both directions. Furthermore, students’ ability
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to imply the isomorphic relationship in both directions can be examined. For
example, the approach that students take in simplifying log,90-1log,10 or in

expanding log,a’h may provide insight into the operational meaning students assign
to these expressions.

Framework C: Logarithms as Functions.

In investigating students’ understanding of logarithmic functions we consider how
students’ relate the definition of logarithm to logarithmic function, and how they use
its properties and different representations in constructing graphs and solving
problems. In the current analysis, this framework is mentioned only in passing.

RESEARCH SETTING
Participants and course

The participants in this research were 19 secondary school students who were
enrolled in the Principles of Mathematics 12 course. It is important to mention that
the course Principles of Mathematics 12 is not a required course for high school
graduation in our site, so students enrolled in it are a self-selected and motivated
group. Generally, the achievement level of these students ranges from middle to high.
Many of them chose to enrol in this course because of their future plan to attend post-
secondary programs in which this course is required for admission.

The unit Logarithms and Exponents was taught as a part of the course. In terms of
recommended instructional time, this is the second largest unit accounting for about
17% of the course. While exponents and exponential notations were familiar to
students from previous studies, this unit was their first introduction to the concept of
a logarithm. The topics addressed in the unit include algebraic representations of
exponents and logarithms, main laws and applications, logarithmic and exponential
equations, the relationship between the graphs of the exponential and logarithmic
functions, number e and natural logarithms. Further, the curriculum included
modelling situations such as compound interest, radioactivity, continuous growth and
decay.

Tasks
As a snapshot from our research, we focus here on two tasks:
(1) Simplify the following expression: log,54 —log,8+log, 4.

(2) Which number is larger 25°° or 26°°? Explain.

These tasks were chosen as they illustrate a variety of tasks students faced in their
learning of logarithms. Task 1 is considered “standard” as students approached
similar tasks during their class sessions and in their homework. Task 2 is non-
standard; it presents novelty in its level of difficulty and in providing no explicit
reference to logarithms. Students’ work on these tasks resulted in a variety of
approaches and provided insight on how they view logarithms.
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RESULTS AND ANALYSIS
Task 1: Simplify the following expression: log,54 —log,8+log,4.

This task was part of a quiz administered after the students completed the section on
operations with logarithms (n=17). Table 1 presents a quantitative summary of

students’ solutions, where C, IC and PC indicate “correct”, “incorrect” and “partially
correct”, respectively.

#of
C/IC/PC | Examples of Solutions student_s
presenting
this
solution
54 log27
C(1) Iog354—log38+Iogs4=IogS?x4:Iog327: IoggB =3 9
log, 54 —1log,8+log, 4=log (Ej+ log4 =log,(6.75) + log, 4
C(Z) 3 3 3 3 8 3 . 3 3
=log,(6.75x 4)=log,(27)=3
IC(1) log, 54 —log, 8 + log, 4 = log,(54 — 8 + 4) = log, 50 = 3.5609 3
IC(2) 54° +8° x 4° =19683 2

Table 1: Quantitative Summary of Students’ Solutions to Task 1

Students’ responses to Task 1 are best viewed through Framework B — operational
meaning of logarithms. Students’ implementing IC(1) and 1C(2) experienced
difficulty in carrying out the operations. The IC(1) responses can be considered as a
case of “misapplication of linearity” (Matz, 1982) or incorrect application of the
distributive property. This tendency towards linearity is well documented in
mathematics education literature, usually being exemplified with interpreting (a+b)?
as a’+b’ or sin(a+b) as sin(a) + sin(b). According to Matz (1982) these errors may be
explained as reasonable, though unsuccessful attempts of students to adapt previously
acquired knowledge to a new situation. As such, these students performed symbol
manipulation overgeneralizing familiar procedures.

IC(2) can be seen as a misinterpretation of the definition of logarithms. Indeed,
logarithms are defined based on the exponential relation. It could be the case that the
abbreviated phrase “logarithm is the exponent”, which is often used in an attempt to
interpret the definition, was memorized by these students and interpreted literally, by
substituting 54° for logs54. Considering Framework A, it appears that students
presenting this solution did not view logarithms as numbers; as such, they attempted
to isolate what they perceived as numbers in order to carry out a calculation.
Considering Framework B, another interesting feature of IC(2) is the change of
subtraction to division and of addition to multiplication. Though this transformation
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Is appropriate in the context of logarithms, its implementation, as simple substitution,
results in an error.

Students implementing C(1) and C(2) solutions demonstrated proficiency in
manipulating an expression involving logarithms, as such it is reasonable to conclude
that the operational character of logarithms was familiar to these students. In both
cases the expression logs27 appears in students’ solutions, and it is of interest here to
observe how students proceed from this point. In C(2), this expression is followed by
the answer 3. As participants in this research were instructed to record every step in
their solution, we believe that this answer was reached by recognizing that 3°=27. In
C(1), we make a note of unnecessary application of change of base and the use of a
calculator to reach the answer. This approach is similar to the approach recorded in
our introductory vignette. It appears that the ability to manipulate algorithmic
expressions overshadows students’ ability to interpret them as numbers. Symbolic
manipulation followed by calculation, wherever possible, is a preferred choice.
Therefore the optimistic interpretation of the results will point out that 12 out of 17
students who attempted to solve this problem implemented correct procedures and
reached a correct answer. A pessimistic interpretation notes that only three students
were able to apply their understanding of the meaning of logarithm in their solutions.

Task 2: Which number is larger 25°* or 26°°°? Explain.

This task was administered as part of a written questionnaire after the completion of
the instructional unit on logarithms. To answer this non-standard question, students
required a conceptual understanding of logarithms rather than memorization of a
learned algorithm or technique. Table 2 provides a summary of students’ responses.

# of students

C/IC/PC | Examples of Solutions prfesentin_g
this solution
26 is larger because the logarithm of this number is
c() |larger 5
(claim only)

26°° is larger because the logarithm of this number is
c(2) |larger 2
(claim followed by explanation)

26620 = (251.012 jzo = 256326

C(3) 1
25632.6 > 25625

IC(1) | 25°® is larger because it has a larger exponent 10

IC(2) | 25 is larger as it can be written as 52° 1

Table 2: Quantitative Summary of Students’ Solutions to Task 2
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Eight students gave the correct answer: however, only three of them — identified on
Table 2 as C(2) and C(3) — presented mathematically sound solutions. Others
followed their intuition, or just made a lucky guess. Eleven out of 19 students
answered incorrectly.

The solution 1C(1), produced by ten students, was justified by the claim that a larger
exponent determined a larger number. Their guess was based on the premise that the
exponent indicates the number of self-multipliers of 25 or 26, and so the “longer”
product is the larger one. These participants did not connect this problem to the
concept of logarithm whatsoever. Students’ response 1C(1) may be explained as the
intuitive rule of the form “More A — More B” identified by Stavy and Tirosh (2000).
A popular exemplification of this rule is in students’ intuitive beliefs that a shape
with a larger perimeter will also give a larger area, or that a taller container has larger
capacity. “Larger exponent — larger number” is yet another example of this rule.

The result IC(2) was unique in this group. The number 625 attracted the participant's
attention, since it is a power of 5, and the base of the first number is 5°. The student
tried to use this information, but his conclusion has not been justified. We believe
that it was our unfortunate choice of numbers that created this distraction, since
noticing powers of 5 does not help to reach the solution in this case.

Among the eight students who

correctly identified the larger |whichisbigger2s™ or 26 %7 Explain

number, five presented the 635Logas = $73-1

argument exemplified in Figure '

1. They simply found the | é2otog2¢ = 3775 & bigge,

logarithm in base 10 for both 3 SR —
numbers and concluded that a ( 26 e é’/fjfﬁ han QS’éi/
larger logarithm corresponded to e e g

a larger number.
Figure 1. Example of solution C(1)

Since no additional explanation was provided as to why this was the case, it is hard to
know whether the conclusion these students drew was based on their understanding
of an increasing exponential function (within Framework C), or whether it was a
“lucky” implementation of the intuitive “More A — More B” rule. After all, this rule
Is robust in people’s intuition because experience shows that it “works” in a large
number of cases.

As mentioned earlier, three students produced the complete and mathematically
sound solutions that are shown in Figure 2. The solution in C(2) was used by two
participants. Unlike their classmates who produced solution C(1), these two students
explained why a larger logarithm corresponded to a larger number by looking at the
exponents of 10. The solution C(3) was demonstrated by one student only, who
presented both exponential expressions with the same base of 25. From the
perspective of Framework A, these solutions illustrate that the students understand
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not only that logarithms are numbers, but also that any real number can be presented
in the form of a logarithm.

Which is bigger 25 ** or 26 ®° ? Explain
lo0e laS 2 g 2PED0
. J
T
\'}J. i = DA LA
_.-a-'"f'_ J\j‘_ ,_.-a—"""{_'-__- = L P
O_JM {G"sz
Vst = &2 H Pl1)gs =
: -1'_‘;?'-::,_ 8 12 log=377.2% {092526 629
e (a5 i eI
|-||,‘-&|_.Jl:_£__\o-a\ -7 2.2 L lO .o|2|' (,6"-0)
A= Y e ) ‘ 1 25
F_q_h"—._.;__'_—'___-_‘—‘—-h.___-_;_c______:__-——ﬂ-"_'
| BIpeee bhiaglr -+ 625) 625
jeb b e igi N DIge han 25¢*3) , 54326 5 25

Figure 2: Left: Example of solution C(2), Right: solution C(3)
DISCUSSION AND PEDAGOGICAL CONSIDERATIONS

We believe that understanding the challenges students experience in a certain
mathematical content, and determining the source of their difficulties are a necessary
steps in an attempt to overcome these difficulties. In this study, we explored students’
difficulties with logarithms by attending to a limited number of tasks that students
performed. In an attempt to examine several issues involved in students’
understanding, we proposed a system of interpretive frameworks. We also wondered
whether the frameworks are helpful as the means to this end.

In considering Framework B, we observed that the ability to operate with logarithmic
expressions should not be taken as understanding of their operational meaning. The
introductory vignette, as well as solutions for Task 1 (labelled C(2)), provide a clear
indication that operations can be performed successfully when the meaning is
overlooked. The degree to which students’ procedural fluency correlates with the
operational meaning that students constructed requires the attention of further
research. Framework B could be subdivided into “operational fluency” and
“operational meaning”.

Focusing on Framework A, our results suggest that students’ ability to interpret a
logarithmic expression and indicate its value does not indicate that logarithms are
understood as numbers. We have reported instanced of overgeneralised linearity in
working with logarithms, likely derived as an extension of previous experience with
whole numbers. Understanding logarithms as numbers could present a greater
difficulty. So, the pedagogical question is: Is it possible, and if so, how is it possible
to help students understand logarithms as numbers?

It is reported in research that students often consider as numbers only standard
decimal representations, and have difficulties in interpreting different representations
of numbers as numbers. That is, while 25 is definitely a number, 27-2 or 5 are seen
as exercises, operations or instructions to follow (Zazkis and Gadowsky, 2001). In
order to treat a logarithm as number it should be perceived as an object. Treating
mathematical concepts as objects supports the construction of corresponding mental
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objects in the mind of students (Dubinsky, 1991; Sfard, 1991). One possible way to
treat concepts as objects is to involve them as inputs in mathematical processes: that
Is, to act on them or to perform operations on them. However, as our results show,
following the prescribed curriculum and performing operations that implement the
laws (for division, multiplication and change of base) does not necessarily serve this
purpose. We wonder whether additional tasks integrated into students’ experience
could enhance understanding of logarithms as objects. For example, the task of
ordering and placing on a number line the following set of numbers -log2, log>5,
logl/2, logl, -log3/4 may promote the understanding of these expressions as
numbers. A further task may require the ordered placement of logarithms with
different bases. Another example of a task that may support number/object
construction is an equation of the form similar to xlog;15 = (x+2) log20. In our
experience a task like this introduced confusion, and students attempted a variety of
manipulations in order to present the expressions with a common base. However,
once logarithms are perceived as numbers, the task in hand is just a linear equation.

As in any research that explores a novel area, we end up with questions rather than
definite answers. Focusing on a series of snapshots is the first step in identifying the
areas of further attention with the long-term goal of drawing a detailed and
comprehensive account of the learners’ conception of logarithms. As illustrative
snapshots, we described students” work on one standard and one non-standard and
challenging task, and provided several pedagogical considerations. Further research
will examine the effect of implementing these suggestions on the understanding of
logarithms, and will provide a more refined account of what this understanding does
or might entail.
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TRYING TO REACH THE LIMIT - THE ROLE OF ALGEBRA IN
MATHEMATICAL REASONING

Christer Bergsten

Department of Mathematics, Link6ping University

In this paper the role of algebra in students’ mathematical reasoning about limits of
functions in undergraduate mathematics is analysed, considering the students’ edu-
cational setting. Data from a video study where six students worked in pairs to solve
problems on limits of functions, and an analysis of their calculus lectures, indicate
that algebra is at the same time a key and a lock to reach the limit in these problems.
This double effect is related to the mathematical organisation taught, as well as the
students’ sense of authority as internal or external.

INTRODUCTION

The “method” introduced by Descartes significantly expanded the styles of mathema-
tical practice and thinking. Algebra, by its integrated representational and operational
features, became thereafter the dominating language for mathematics communication
and reasoning, along with natural language. However, the Cartesian body-soul
dichotomy in philosophy was thus paralleled by an intuitive-formal dichotomy in
mathematics, turning into a major problematique of present day mathematics
education. As many other false dichotomies, the problems it causes in students
learning mathematics in institutional educational settings are likely due to didactical
reasons. In this paper the role of algebra in students’ mathematical reasoning about
limits of functions in undergraduate mathematics will be analysed, while considering
the educational setting where these students are situated.

There is a large body of research documenting the problems students have bringing
together intuitive and formal conceptions of limits into a functional understanding
(see e.g. Harel and Trgalova, 1996, pp. 682-686), as well as the different concept
images they construct (Przenioslo, 2004). Accounts for the many difficulties refer to
epistemological obstacles (Sierpinska, 1990), issues of language (Monaghan, 1991),
models of infinity (Tall, 2001), APOS theory (Dubinsky et al., 2005), conceptual
metaphors (Nufiez et al., 1999), and epistemological analyses (Barbé et al., 2005).

In a recent study, Alcock and Simpson (2005) found an interplay between students’
visual-algebraic preferences, their ways of working with formal definitions, and their
beliefs about themselves as learners of mathematics. They conclude that ‘visual®
students with an “internal sense of authority, who seek to identify links among all of
the representations, are likely to develop good knowledge of what objects satisfy
certain properties” (p. 97, my italics), while those with an “external sense of authority
tend to interpret the algebraic manipulations as related to procedures, and are unlikely
to give much thought to the links between these and their images” (p. 97, my italics).

2006. In Novotna, J., Moraov4, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
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Critical for the learning of advanced mathematics is also the institutional and
epistemological constraints within which the students are situated: what mathematics
is intended to be taught, and what is actually taught in what didactical organisations?
The consideration of such issues are needed to describe and understand student
behaviour in an educational setting (Barbé et al., 2005).

STUDENTS WORKING ON LIMITS

As part of a larger study on teaching and learning limits of functions in undergraduate
mathematics, six students volunteered for a video study where they were working in
pairs to solve problems on limits of functions, with the presence of the author. Each
session lasted for about 45 minutes. These beginning engineering students were
engaged in their first semester calculus course, organised in large group lectures and
classes with assisted individual work on task solving. At the time of the interview the

lectures had covered the definitions and basic properties of limits and continuity, and
introduced and proved theorems about standard limits such as Iirrgs';'x =1,
fjm "ML+ %) =1, and Iimln—ax =0 (a >0), as well as worked out examples.

X

x—0 X X—>0

Mathematical organisation taught

To analyse these data it is necessary to display the epistemological framework within
which the students were situated, i.e. the organisation of the actual mathematical
work in the course. This is comprised by practical knowledge, i.e. types of problems
under study and methods and techniques used, and theoretical knowledge, i.e. related
technical tools and theory (Barbé et al, 2005). The main teaching format for the
diffusion of this knowledge was large group lectures, while classes focused on
individual task solving. A textbook provided a mathematically rigorous exposition of
an elementary calculus course, based on the standard ¢-¢ definition of limits and
continuity, including solved examples. In particular, standard limits were proved
within this theory and used as theoretical tools to investigate the limit behaviour of
functions given in algebraic form. Thus the type of problems studied were purely
mathematical rather than applied, such as the following example discussed during
one of the lectures (see Bergsten, 2006), also showing methods typically used.

sin7x

sin7x sin7x H
csolvedby & “1_& T TLSINIX o 14727 x50
X sin 7x X

. . €
- Investigate lim

Other methods taught include removing dominating factors, extension by the con-
jugate expression, and change of variable. The approach was algebraic and non-
numerical. Diagrams were used to support an intuitive conceptual reasoning.
Commenting on the goals set up for the lectures, the lecturer said (in Bergsten, 2006):

I want to present, to make things seem true, the most important | think is that students
believe they understand better what a concept means. To exemplify what you can handle
practically, to illustrate the standard way of doing things. (p. 11)
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In the lecture analysed in Bergsten (2006) mathematical rigour was maintained in
proofs and solutions of examples, accompanied by the use of diagrams, metaphorical
language and gestures in line with a more conceptually intuitive approach. Along
with oral messages telling “how to do” when applying the technical tools, the lecturer
thus established socio-mathematical norms within the course. In relation to the two
mathematical organisations algebra of limits and topology of limits, observed as
being disjoint in the Spanish high school curriculum as described in Barbé et al.
(2005, p. 241-243), the lecture made efforts to integrate the algebraic treatment with
basic conceptual ideas about limits and the behaviour of the elementary functions.
The mathematics taught was predefined and presented in a closed and fully
developed form, defining a didactic organisation where everything is there from the
start. There was thus no distinct process of study to construct the target mathematical
organisation (cf. Barbé et al., 2005).

The interview tasks

After an introduction about the concept of a limit and its definition, the task was to
investigate the limits as x>« and x—0, respectively, for the three functions
2
f(x)=— ZX_ : g(x):l—%, and h(x):M. The rationale for the choice of
X +SIn X X X X
these tasks was to use the same type of problems as during work in class, and to
enable an effort from the students. In one case, i.e. the function g, a visual key to the
standard limits taught was deliberately avoided. To solve the tasks an analysis is
needed to use the ideas, tools and techniques included in the mathematical organi-

sation taught. Non-trivial standard limits were thus not directly applicable but
available as technical tools out of the kind of reasoning practiced by the lecturer.

Results

An analysis of the work of each pair across tasks was performed along two dimen-
sions, focusing on the cognitive behaviour and the didactic behaviour, respectively.
In addition, a short epistemological analysis of the work on the tasks is given.

In the opening question all pairs express that the concept of limit is very important,
and use an intuitive ‘getting closer’ description, drawing a standard graph, not
offering a definition in formal algebraic terms. One pair mentions the complexity of
such a definition, with its “many variables” to keep in control.

The style of work of pair A is strongly dominated by algebraic manipulations across
all tasks, where the observed notations are used mainly as keys for performing
procedures that hopefully will lead to a possibility to apply a standard limit. This is
done immediately when starting a new task, without any prior reasoning between the
students about how to attack the problem or what can be seen by considering
properties of the functions involved. As a typical example of their work, after finding

that lim f(x) =0, from f(x) = :
X—>0 X SIn X

they look at the case where x —0:

X
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Adam: Then we can’t do the same thing.

Anne: No, | have to scribble a little on my own [tears off apiece of the paper] for
myself, am also not so sure about what to do.

Adam: You get zero divided by zero, you have to extend by something.

Anne: | don’t think it will help to extend by the conjugate, it will not.

Adam: No, then you would get sine two, but ... can you make it two parts?

Anne: Yes, you’re right, it is two x divided by ... no [writing, rubbing]

Adam: Then you have ... no you don’t, that is not correct. It must be possible to

remove some factor.

The work goes on along the same lines in all tasks, trying to remember what one can
do and trying out different algebraic methods like changing variables, sometimes
ending up in what could be called an algebraic mess: “this is just impossible”.
Typical expressions are “then you get” and “no, that didn’t make it more fun”. They
work this way 16 minutes on the task ITQ h(x) without success. From the protocol it

also shows that this way of working goes together with a need for an external
authority to evaluate the result:

Anne: The question is if it is correct. Now | just want to know the right answer.

Interviewer: You don’t feel confident with the result?

Adam: | can’t say it should be another result, but this is a kind of task where |
feel I could easily make a mistake.

Anne: Yes, me too.

Adam: By some change of variable it can be possible to make it tend to zero. /.../

Anne: | think it is zero in both cases. What was the answer?

For pair B the work proceeds in quite a different manner, dominated by conceptual
reasoning about the sizes of the different parts of the given functions. Frequent
expressions used are “a very small number” and “a very large number”. On the task
lim f (x) they note that the sine function is oscillating between -1 and 1 but after
ending up at “two divided by something very big”, after cancelling S';'X Bob says
that “You can’t do it like this mathematically /.../ It can be done, there is a method”.
But after repeated reasoning keeping the previously cancelled term they conclude:

Benny: Yes, sine x divided by x tends to zero, and x tends to infinity. Two
divided by infinity plus zero is zero. /.../

Bob: Then we got what we were thinking.

This new solution is still as intuitive and non-formal as the previous, and in a more
complex situation, as in the case limh(x), this kind of intuitive method proves insuf-

X—0

ficient to find the limit even after 15 minutes of work:
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Bob: Zero times infinity is ok, almost zero times infinity is more tricky, it is not
really zero but only tends to it. So it can be almost anything. Do we get
anywhere? [looking at Ben]

Ben: No [Bob laughing]

Bob: Yes, but which one goes more, does that one go more to zero than that one
to infinity? No it goes more to infinity than to zero, | think. [silence]

It seems as if algebraic methods, shown in the lectures, here are tried only when the
conceptual approach does not produce an answer. However, when it does these
students do not feel any need to verify the solution formally by the use of proven
theorems on standard limits. They rely on internal authority. This is also evident for
the task limg(x), where the dialogue opens up by Ben:

Ben: Well, this simply must be zero.
Bob: If you think straight on you get zero minus zero.

Somewhat surprisingly then, they make some attempt to “do” something by removing
factors, but still stick to their infinitesimal way of reasoning:

Ben: But here we see that it tends to zero, it is simply so. You don’t need to
remove. Yes, my brain tells me so, very very small minus very very small,
you get zero.

Internal authority is also evident by the use of the words “I think we are done” in the
case limh(x), after identifying and algebraically completing the application of a

standard limit. But again no algebraic manipulations are performed on Iing g(x), where

they reason about approaching zero from the right or from the left. They conclude,
after testing a numerical value, drawing a diagram and comparing infinities, that
g(x) tends to negative infinity. However, Bob is not fully satisfied:

Ben: So this [i.e. when approaching zero from the right] must also be negative
infinity, don’t you think so?
Bob: Yes, but it is kind of delicate when you take infinity minus infinity, it is

kind of vague. But if we accept this way of reasoning with infinities of
different size, then we have found that, if it is correct.

Thus, relying on internal authority may make you question the bases of your
arguments and imply an uncertainty about the correctness of your result.

The students in pair C spend a lot of time thinking silently for each task, not jumping
into algebraic trials and errors without first trying to get a conceptual idea about the
behaviour of the function. The two tasks on f(x) are solved quickly, intuitively as
well as formally with algebraic transformations based on knowledge about the
functions as x — o and, after some pondering, with a standard limit for x - 0. In
both cases the students express internal authority by the words “I’'m fine with this”.
However, for the task lim g(x) they are silent for some time until a common denomi-

nator is used, without giving a reason. It seems that the notation is used as a key for
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applying a known procedure when no conceptual solution is evident. In the same vein
the factor x* is removed and the original expression returns, but they now realise that
both terms tend to zero and express this by internal authority:

Carl: Both terms tend to zero, simply, as x tends to infinity. It feels as you have
nothing in the numerator, it does not feel as if you can do very much.

Chris: | feel the same thing, hopeless. I feel fine with this solution. /.../ That you
always have to make it more difficult than it is!

On the task lim g(x) these students remain silent for a long time, no ideas seem to

show up, and they try some algebraic manipulations but get silent again.

Chris: Most often one can reformulate the expressions to something nicer but
here it does not seem to be that easy. [silence] What do you say?

Carl: | don’t know, | don’t say so much.

Finally they realise that the second term tends to infinity faster than the first and state
the result to be negative infinity, on an intuitive basis only. After some initial silent
thinking on limh(x) Chris asks “What can you do here?” and “Shall we be so clever

that we change the variable?” Instead long discussions about the “speed” of the
logarithmic function lead them to the hypothesis that the limit should be zero.
Meanwhile, Chris tries to work out the case limh(x) by extending the fraction by x to

apply a standard limit, and they both feel confident with the result zero. Returning
again to the other case, they ask for a useful standard limit. When the interviewer
asks what else they can do, Carl immediately responds: “Think! [laughter] To reason.
It is when you shift between these methods that you sometimes can get stuck.” Later,
as the interviewer prompts them to look inside the parenthesis of the logarithm, Carl
remembers an example where the logarithm was split up in two terms, by removing
the dominating factor. By this method they finally solve the problem, and feel
content. Carl concludes it was “good, we got the same result but in a correct way”.

A posteriori task analysis

The tasks on f(x) were problematic only for pair A, who did not realise how to use
the “hidden” standard limit "ngsn:(x =1, despite the fact that they discussed it. For the

others, also in the task limh(x), the notation provided a strong visual cue to success-

fully apply a known standard limit using the algebra of limits. However, when it was
less obvious which algebraic technique to use, as in the case limh(x), the attempts to

use algebra to reach the limit was not guided by a conscious strategy and often ended
up in a non-conclusive situation or an algebraic mess. After setting t =1+ x> pair B

Nt put did not link this to the standard limit tim ™ =0 to find a

Jt-1 et
solution. Neither did any pair apply the squeezing technique for any of the tasks,
though this was frequently used during lectures. Even if especially pair B based their

got the expression
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reasoning on intuitive conceptions, it takes an experience that these students did not
yet have, or a creative mind, to apply the inequality 1<1+x* <x?®, valid for x> 2, to
InL+x?) Inx’ Inx : : :
< =3.—~ >0 as x— . The symbolic notation for the function
X X X

g(x) did not provide a visual cue to any of the standard limits used in the course,
causing the students to either reason intuitively or engage in more or less random
algebraic manipulations. This example turned out to be the most problematic one,
from a formal justification point of view. No pair used the basic rules of the algebra

of limits to give the solution 1—12:1—)1(-)1(—>0—0-0=0 as x — oo. Neither did they

X X X

get 0<

X X 4 2 4

x — 0+. Such basic algebra of limits were not as ‘alive’ in the students as the more
advanced standard limits, highlighted in the lectures.

DISCUSSION AND CONCLUSIONS

The data presented and analysed above indicate that algebra is at the same time a key
and a lock to reach the limit in these problems. This double effect is related to the
mathematical organisation taught, as well as the students’ sense of authority as
internal or external.

2
put t=)1( and u=t—; to find the solution 1—izzt—t2 :1—[t—1J s was

Students in this study showing an external sense of authority tend to use mathe-
matical notations as keys to apply algebraic procedures without first getting a sense
for the mathematical objects involved or of where the manipulations will lead, a
result in line with the study by Alcock and Simpson (2005). This way the algebra
locks them out from reaching the limit. Algebra alone is void unless it takes you to
known patterns, you also need an intuitive feeling for the mathematical objects
involved and the links between these and the algebra.

On the other hand, students showing an intuitive approach, using images and
guantitative reasoning, feel more secure in their work and show an internal sense of
authority. However, knowing what the limit should be and providing conceptually
based arguments for it, algebra is the key to reach it in a mathematically formal way.
These students often “know” (by reasoning) what the limit is but still express a need
to use algebra to really get there.

The technical tools taught are not all used by the students in this study, even when
they would be useful. For example, the reason why the squeezing technique is not
applied may be that it requires a familiarity to work with inequalities that these
students have not yet acquired. The application of standard limits when x — o was
also problematic, possibly due to not well established links between the intuitive and
formal treatment of the concept of infinity within the taught mathematical organi-
sation. When the students try to pave the way for applying a standard limit in the task
limh(x), they get lost in random algebraic manipulations because they have not
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worked enough with tasks that could guide them to use the inequality Inx < x* for

large x with an appropriate value for «, related to the standard limit lim X _ 0.

X—00 Xa

We interpret the observations made in this study as effects of the mix or partial
exclusion of the moments of the didactic process (see Barbé et al., 2005) provided by
the lecture format of presenting the ready made full theory of limits and its tools and
techniques, and the lack of a larger problematic within which the calculus of limits is
taking place. To make students familiar with the behaviour of the elementary
functions, work on algebraic manipulations, numerical tests, and inequalities is
needed before attempting the types of isolated problems considered here. A need to
explicitly teach why formal requirements are necessary is also apparent, as well as
providing questions and problems where the calculation of limits is needed. We also
note that the lecturer always knows what to do and how to do it — what effect does
that have on the students’ beliefs about doing mathematics, supporting an internal or
external sense of authority, when they don’t succeed themselves the same way?
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SEMIOTIC SEQUENCE ANALYSIS -
CONSTRUCTING EPISTEMIC TYPES EMPIRICALLY
Angelika Bikner-Ahsbahs
Flensburg University

Through the semiotic sequence analysis deep and detailed interpretative analyses of
long lasting epistemic processes become manageable. This kind of investigation is
presented by the use of an empirical research example. It consists of three data
compressing steps. First, epistemic actions are reconstructed on the base of Peirce's
sign concept. Secondly, these actions are used to get diagrams about the investigated
episodes. Finally, comparison of these diagrams leads to even shorter phase
diagrams, which can be divided into types of epistemic processes.

INTRODUCTION

Interpretative empirical research reconstructs structures of meaning. This kind of
deep and detailed analyses increases the complexity of investigations considerably, in
particular if comparisons of long lasting learning processes have to be done. The
semiotic sequence is a systematic approach which makes comparisons of long lasting
processes of constructing mathematical knowledge manageable.

This paper presents an example in which the semiotic sequence analysis is used. This
example stems from the research project “interest in mathematics between subject
and situation" (Bikner-Ahsbahs 2005, 2001) which was carried out to investigate
special situations in a 6th grade class where learning about fractions took place. The
following research question guided the analyses: Taking over an epistemological
perspective, how is the emergence of special interest supporting situations in the class
supported, how is it hindered? Focus of the paper is the methodological and
methodical base. The content of research will just be used to explain the course of
action.

METHODOLOGICAL ASSUMPTIONS

Background theory is the interpretative sociology. Its basic assumption is that reality
IS not given per se, but it comes into being by the individuals' interpreted actions
which are mutually orientated among each other (Treibel 2000, p. 113). According to
this assumption, mathematical meanings emerge through interpretations of actions.
These interpretations orientate themselves mutually towards the other participants’
actions and interpretations. Thus, mathematical meaning is a product of social
interactions. Primarily, it is part of the interaction space and not of an individual.
These meanings are the sequential steps which assemble together the process of
social constructions of mathematical meanings. Mathematical meanings are taken as

2006. In Novotna, J., Moraova, H., Kratka, M. & Stehlikova, N. (Eds.). Proceedings 30" Conference of the
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pieces of knowledge if they are accepted. Taking over this view, they are not
something which is true for ever, but they have proved to be viable in the local
situation. Thus, pieces of knowledge are of local and situated existence. They
develop and change in time and sometimes even are false. This is meant by the
expression a mathematical meaning is taken as shared through a process of
negotiation (see Krummbheuer 1993).

THE SEMIOTIC SEQUENCE ANALYSIS - THEORETICAL BACKGROUND
AND HANDLING DATA

Ten years ago, Steinbring (1993) has created a coding system in order to investigate
epistemologically mathematical learning processes. He distinguishes three kinds of
levels of meaning: a level of context, a level of mathematical signs and symbols and a
level, on which students refer to symbols and objects alternately. This coding system
can be applied, when a concept is developed from