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CAUSAL INFERENCE IN MULTILEVEL SETTINGS IN WHICH  
SELECTION PROCESSES VARY ACROSS SCHOOLS 

Junyeop Kim 

Michael Seltzer 

CRESST/University of California, Los Angeles 

Abstract 

In this report we focus on the use of propensity score methodology in multisite studies of the effects 

of educational programs and practices in which both treatment and control conditions are enacted 

within each of the schools in a sample, and the assignment to treatment is not random. A key 

challenge in applying propensity score methodology in such settings is that the process by which 

students wind up in treatment or control conditions may differ substantially from school to school. 

To help capture differences in selection processes across schools, and achieve balance on key 

covariates between treatment and control students in each school, we propose the use of multilevel 

logistic regression models for propensity score estimation in which intercepts and slopes are treated 

as varying across schools. Through analyses of the data from the Early Academic Outreach Program 

(EAOP), we compare the performance of this approach with other possible strategies for estimating 

propensity scores (e.g., single-level logistic regression models; multilevel logistic regression models 

with intercepts treated as random and slopes treated as fixed).  Furthermore, we draw attention to 

how the failure to achieve balance within each school can result in misleading inferences concerning 

the extent to which the effect of a treatment varies across schools, and concerning factors (e.g., 

differences in implementation across schools) that might dampen or magnify the effects of a 

treatment. 

Introduction 

This paper focuses on the use of propensity score methodology in multisite 
studies of the effects of educational programs and practices in which both treatment 
and control conditions are enacted within each of the schools in a sample, and the 
assignment to treatment is not random. The conception of treatment that we are 
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working with in this program would include programs (e.g., instructional programs, 
professional development programs); policies or practices such as retention in grade 
or ability grouping; and events such as dropping out of school. 

Propensity score methodology is an extremely valuable tool in efforts to draw 
sound causal inferences in quasi-experimental settings (Rosenbaum & Rubin, 1983; 
Rubin, 2001, 2004). However, a key challenge in applying propensity score 
methodology in multisite investigations is that the process by which students wind 
up in treatment or control conditions may differ substantially from school to school. 
For example, in the case of certain programs or services, the factors that are strongly 
predictive of treatment group membership in some schools, may be relatively 
inconsequential in others. That is, we may conceive of the selection process as being 
multilevel in nature. In such cases, researchers may consider multilevel models for 
the estimation of propensity scores to properly capture differences across schools in 
how strongly or weakly various pretest covariates are related to the likelihood of 
treatment assignment (Hong, 2004; Kim, 2006; Rosenbaum, 1986).  

One of the advantages of multisite studies is that they facilitate estimating the 
magnitude of treatment effect variation across sites and investigating particular 
factors (e.g., differences in implementation) that might underlie such variability 
(Seltzer, 2004). However, for valid estimation of school specific treatment effect and 
its variation across schools, balance on pretreatment variables should be achieved 
between the treatment and comparison groups within each individual school as well 
as in the overall sample. Therefore, in comparing various options of propensity 
score estimation with multilevel models, the primary criterion should be the balance 
within each school. 

Several options can be considered in estimating propensity scores with 
multilevel logistic regression models, and the differences among these options are, 
in large part, connected with several considerations. The first factor has to do with a 
key difference in the selection process. In some settings, the average log-odds of 
receiving a treatment may vary across schools, but the magnitudes of slopes relating 
student covariates to the log-odds of a student receiving the treatment may not. In 
other studies, both the average log odds and the magnitudes of slopes may vary. We 
term the former random intercept (RI) settings, and the latter random intercepts and 
slopes (RIS) settings.  
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A second factor has to do with the way we use estimated propensity scores 
(matching, stratification or weighting, for example) for treatment effect estimation. If 
we are interested not only in the average effect of treatment but also in the extent to 
which treatment effects might vary across schools and in the possible sources of 
such variation, propensity scores should be used in a way that best achieve balance 
within each school. We consider propensity score based matching within each 
school, when possible, as a superior option in achieving balance within each school 
over others such as matching or stratification that do not consider school 
membership. 

A primary purpose of this paper is to provide a careful examination of key 
considerations in estimating propensity scores using multilevel models to best 
achieve balance within each school. For this, we further examine the two types of 
multilevel selection processes mentioned above (RI and RIS) and discuss 
consequences of ignoring the multilevel nature of selection processes on the results 
of within school matching. Next, under generalized RIS settings, where multiple 
random slopes and school-level predictors of intercepts and slopes are present, we 
compare two options of multilevel propensity score models – RIS models that do not 
include school-level predictors (unconditional shrinkage settings) versus those that 
do (conditional shrinkage settings). Since Empirical Bayes (EB) estimates are 
typically obtained for school-specific intercepts and slopes, the results will differ 
depending on whether or not school-level predictors are included. When included, 
the school-specific estimates for a school will be shrunk toward conditional values 
based on that school’s predictor values; when not included, the school-specific 
estimates will be shrunk toward average values for the entire set of schools in a 
sample. We will explore conditions under which the inclusion of school-level 
predictors is particularly important. Finally, since the primary goal of propensity 
score methodology is to balance treatment and control groups within each school in 
terms of all key observed covariates, we compare the performance of the above 
strategies in balancing covariates through the analysis of data from the Early 
Academic Outreach Program (EAOP). 

A Multilevel Selection Process  
and Propensity Score Estimation 

The idea of propensity score methodology is to summarize a large number of 
confounding variables in a single composite variable, i.e., a propensity score. The 
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estimated propensity scores would then provide the basis for matching (Rosenbaum 
& Rubin, 1985), stratification (Rosenbaum & Rubin, 1984) or inverse probability 
weighting (Hirano & Imbens, 2001). These propensity score based methods will 
provide an estimate of the causal effect of the treatment of interest under the critical 
assumption of ‘strong ignorability’, that is, if there is no hidden bias due to 
unmeasured confounding variables after controlling for observed confounders 
(Rosenbaum & Rubin, 1983).  

Besides the problems typically associated with observational studies, such as 
non-random assignment to treatment and unobserved confounding variables, 
drawing causal inferences is more challenging in educational studies because in 
many cases educational data have a multilevel structure with students nested within 
classes, classes within schools, etc. This nested structure poses certain challenges in 
applying propensity score methodology. Suppose, for example, we are interested in 
the effects of dropping out of high school on subsequent earnings. Students with 
very similar background characteristics may have very different chances of 
dropping out depending on various characteristics of the schools they attend. Also, 
factors that may be highly predictive of dropping out in some schools, for example 
SES, may be far less predictive in other schools (Rumberger, 1995). 

In multisite studies of educational programs or interventions, the use of single-
level models for estimating propensity scores followed by the use of the resulting 
propensity scores as a basis for matching treatment and comparison group students 
within each school, has been considered an effective strategy in RI settings, i.e., 
settings in which the average log odds of receiving the treatment varies across 
schools but slopes relating student-level predictors to the log odds of receiving the 
treatment do not (Hong, 2004; Rosenbaum, 1986). However in nested data settings, 
contributions of covariates to treatment assignment can also vary across schools. For 
example, low-achieving students might be more likely to drop out in schools with 
higher peer academic pressure. Under the presence of this kind of cross-level 
interaction on the probability of receiving treatment, each school has a different 
propensity equation and as a result, within school matching based on a uniform 
equation across all schools can result in misleading matches.  

More specifically, we need to distinguish between two types of multilevel 
models— random intercept (RI) and random intercept and slope (RIS) models. Both 
RI and RIS assume variation in the selection process across schools, but the source of 
variation differs in the two models. RI views the contributions of student-level 
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characteristics on the probability of treatment assignment as fixed across schools and 
the school-level variation comes from school membership. That is, members in the 
same school share the same amount of advantage/disadvantage regardless of their 
individual characteristics, where the amount of advantage/disadvantage may 
depend on school-level characteristics—measured or unmeasured. On the other 
hand, RIS views the school-level variation coming from the interaction between 
school membership and student characteristics, as well as school membership alone. 
Therefore under RIS, the amount of advantage/disadvantage applied to the 
students of the same school may differ depending on their characteristics. Within 
school matching based on a common propensity equation or adding school 
membership dummies to the propensity model is, in fact, an effective way to control 
school-level selection bias under the RI scenario. In the RIS settings, the between-
school variation in student-level slopes must be considered in propensity score 
estimation, even when we are planning within-school matching with the estimated 
propensity score.  

Within-School Matching Under Random Intercepts Settings 

First assume that the true selection process resembles RI. If X is the only 
individual-level confounder, the following random effects model will capture the 
true propensity score under the RI selection process. 
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or in a combined form,  

 00 10 01 0logit( )ij ij j jZ X W uγ γ γ= + + +  

Note that school-specific constant effects of unmeasured school-level predictors 
are absorbed in the random effect, u0j. Therefore, under strong ignorability at the 
individual level, the random effect model specified in (1) will produce the true 
propensity score for each subject. With a large pool of control units within each 
school, within-school matching is desirable for several reasons. First, the resulting 
matched sample from within-school matching preserves the original multilevel 
structure and this facilitates further analysis especially when we are interested in the 
variation of treatment effects across schools and why. Second, under the RI scenario, 
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matching within the same school effectively controls all the observed and 
unobserved school-level covariates (Hong, 2004; Rosenbaum, 1986). Under RI, 
within-school matching can be inexpensively performed by simply using estimates 
of individual-level fixed effects (Rosenbaum, 1986). This becomes clearer when we 
compare the propensity score for a treated subject i and control subject i' in the same 
school, j. The difference between the two subjects will be  

 
 00 10 01 0 00 10 ' 01 0 10 '( ) ( ) ( )ij j j i j j j ij i jX W u X W u X Xγ γ γ γ γ γ γ+ + + − + + + = −  (2) 

This difference is the criteria for matching within school j. The closer γ10(Xij-Xi’j) 
is to zero, subject i and i' will have more of a chance of being matched. Note that 
terms involving school-level characteristics (W and u) cancel out since these 
quantities are constant across individuals within the same school, j. This implies that 
we do not necessarily need to include school-level fixed and random effects to 
perform matching within schools—matching based only on individual level 
covariates will produce the same matched pair as the one based on full model as 
specified in (1), because blocking school membership under an RI selection process 
effectively controls school level-covariates, observed or not.  

Within-School Matching Under Random Intercepts And Slopes Settings 

RIS will be a proper propensity model if the effects of certain individual-level 
characteristics differ across schools. It is helpful to distinguish RIS with a single 
random slope and multiple random slopes to examine the consequences of 
erroneously treating student-level slopes as fixed (i.e., constant). In short, with only 
one random slope, we will see that within-school matching based only on 
individual-level fixed effects will produce, depending on the matching algorithms 
implemented, similar matched pairs to the ones based on within-school matching 
with fixed and random effects. However, if we have two or more random slopes, 
within-school matching can result in very different matched pairs depending on 
whether or not we include school-level random effects. First, under RIS with only 
one random slope settings, the following propensity model will properly capture the 
school-specific selection process:  
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or in a combined form, 

 00 01 10 11 1 0logit( ) ( )ij j j j ij jZ W W u X uγ γ γ γ= + + + + +  

Note that, for simplicity, we assumed no additional fixed slopes and one 
school-level predictor but the result discussed below directly applies to settings with 
other fixed slopes and multiple school-level predictors of intercepts and slopes, as 
long as there exists only one random slope. First, assume that we are performing 
within-school matching with only individual-level fixed effects, that is, the matching 
is based on γ00+ γ10Xij. In this case, the difference between subject i and i' will be d1= 
γ10(Xij- Xi’j). Next, if we perform within-school matching based on the full model 
specified above, the difference will be d2= (γ10+ γ11Wj+u1j) (Xij- Xi’j). Now, the 
difference between i and i’ is a function of school characteristics, as well as 
individual characteristics. However, since we are conditioning on school 
membership, (γ10+ γ11Wj+u1j) is a fixed quantity, given school membership, j. As a 
result, if we compare d1 and d2, even though the magnitudes are different, the rank 
order across control group students does not change, that is, i’ with d1 closest to zero 
also has d2 closest to zero for treated subject i.  

Figure 1 compares matching based on the fixed effect of X and matching based 
on RIS. Suppose we have 2 schools A and B with different regression lines in both 
intercept and slope. The dotted line depicts the common regression line when these 
two schools are combined. We are finding a match for student i in the treatment 
group with X=xi from the control group in the same school. Suppose that we are 
comparing treatment student i with control student i’ with X=xi’. If we perform the 
matching within school A based on the common regression line, our decision will be 
based on d1, whereas the true propensity difference in school A is d2. Since school A 
has a steeper slope, d1<d2 in school A and d1 is negatively biased. In contrast, d1 is 
positively biased in school B since the slope in school B is relatively flat.  
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Figure 1. Comparing within school matching based on two types of propensity 
score differences, d1 and d2. d1 ignores the random slope and d2 incorporates the 
random slope in the estimation of propensity scores. 

The consequences of within school matching based on d1 may differ depending 
on which matching algorithm is used. If we employ a greedy matching algorithm, 
also referred to as nearest available matching (Gu & Rosenbaum, 1993; Rosenbaum, 
1989; Rosenbaum & Rubin, 1985) which selects control group students with the 
closest d, matching based on d1 would produce the same matched pair as the one 
based on d2 since for a given treatment student i, the rank order of d1 among the 
control group subjects is the same as the rank order of d2. Instead, if we use caliper 
matching (Rosenbaum & Rubin, 1985; Rubin, 2001), which first defines ‘matchable’ 
subsets of control units for each treated subject by setting a tolerable range of 
propensity scores for each treated subject, and then find a best match from the 
‘matchable’ subset based on Mahalanobis distance, or by simple random selection, 
matching based on d1 can be different from the result based on d2. In school A, since 
d1< d2, caliper matching based on d2 for treatment student i could exclude i’ whereas 
caliper matching using d1 may include i’. Conversely in school B, i’ may turn out to 
be ‘unmatchable’ with i under d1 where the true propensity score difference (d2) is 
within a tolerable range. The result does not change with additional fixed slopes. 

School A 

School B 

Combined 

 xi xi’ 

Logit (Z) 

d2 in  
School A 

d2 in  
School B 

d1  
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RIS with multiple random slopes shows a different story. Consider the 
following simplest RIS selection process with two random slopes and a single 
school-level predictor. 
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 (4) 

or in a combined form, 

 00 01 10 11 1 1 20 21 2 2 0logit( ) ( ) ( )ij j j j ij j j ij jZ W W u X W u X uγ γ γ γ γ γ= + + + + + + + +  

If we base our within-school matching on individual-level fixed effects, the 
difference between i and i’ will be d1 = γ10(X1ij-X1i’j) + γ20(X2ij-X2i’j). On the other hand, 
the difference between i and i’ under the full model is d2 = (γ10+γ11Wj+u1j)(X1ij-X1i’j) + 
(γ20+γ21Wj+u2j)(X2ij-X2i’j); note the inclusion of the random effects u1j and u2j in the 
terms in parentheses preceding the predictors X1 and X2 , respectively. Both d1 and d2 
can be viewed as weighted combinations of differences in characteristics of two 
subjects, i and i’. However, d1 and d2 differ in relative weightings of (X1ij-X1i’j) and 
(X2ij-X2i’j) and so, for example, d2 might put more weight on (X2ij-X2i’j) where d1 puts 
more weight on (X1ij-X1i’j). Consequently, the fact that a control subject (i’)’s d1 score 
is closest to zero does not necessarily ensure that his/her d2 is also closest to zero. 
Following is an illustrative example for matching a treatment subject with nine 
control subjects with respect to two subject characteristics.  

Table 1 compares the performance of two types of matching indices under RIS 
with two random slopes. The purpose is to find a match for a treated subject (ID=1) 
from the nine control units in a given school on the basis of two individual level 
predictors, X1 and X2. The true selection process is assumed to follow the RIS model 
specified in (4). For illustrative purposes, γ10 and γ20 are set to 0.3 and -0.2, 
respectively. Since we are matching subjects in the same school, the school specific 
increments to each slope, (γ11Wj+u1j) and (γ21Wj+u2j) are arbitrarily set to -0.4 and 0.5, 
respectively. Therefore, d1 = 0.3×(X1ij-X1i’j) -0.2×(X2ij-X2i’j) and d2 = -0.1×(X1ij-X1i’j) + 
0.3×(X2ij-X2i’j). Note again that d1 is the difference in propensity based on individual-
level fixed effects only and d2 is the difference based on the full model, including 
random effects. If we base our matching on d1, then subject ID=2 will be matched to 
the treatment subject since d1 for this subject is the closest to zero. However, 
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matching based on the full model tells us that subject ID=10 is the true match and 
ID=2 is least likely to be chosen since it has the largest d2 value. This simple result 
shows that if we have multiple individual level predictors and the effects of these 
predictors vary across schools, performing within-school matching based on fixed 
effects only can result in matching based on biased propensity scores and may 
produce poor matches.  

 

Table 1 

Comparing the performance of two types of matching indices under RIS with 
multiple slopes: matching based on individual level fixed effects (d1) and matching 
based on fixed and random effects (d2) 

ID Z X1 X2 X1i – X1i’ X2i – X2i’ d1 d2 

1 1 2.0 1.0     

2 0 1.1 -0.5 0.9 1.5 -0.03 0.36 

3 0 1.3 -0.3 0.7 1.3 -0.05 0.32 

4 0 1.5 -0.1 0.5 1.1 -0.07 0.28 

5 0 1.7 0.1 0.3 0.9 -0.09 0.24 

6 0 1.9 0.3 0.1 0.7 -0.11 0.20 

7 0 2.1 0.5 -0.1 0.5 -0.13 0.16 

8 0 2.3 0.7 -0.3 0.3 -0.15 0.12 

9 0 2.5 0.9 -0.5 0.1 -0.17 0.08 

10 0 2.7 1.1 -0.7 -0.1 -0.19 0.04 
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An Illustrative Example: The Effect  
of EAOP on Students’ A-G Eligibility 

Program Overview 

Data used in this example are from the Early Academic Outreach Program 
(EAOP) developed and administered by University of California. EAOP is designed 
to support academic enrichment and informational access for students who have 
potential for higher education. The ultimate goal of EAOP is to promote more 
secondary students who are educationally disadvantaged to post-secondary 
education by providing them with various enrichment services throughout 10th to 
12th grade.  

EAOP provides various services including academic enrichment, information 
dissemination, and motivation. Through academic enrichment services, 
participating students are provided with opportunities to improve their academic 
skills through various academic activities such as weekend study camps and 
summer academics. EAOP counselors provide information on the requirements 
needed to apply to UC campuses, and advice for successful planning and 
completion of these requirements. EAOP also provides activities such as campus 
tours, field trips, and faculty/student meetings to motivate students and their 
families to pursue higher education. For a detailed description of EAOP, refer to 
(Quigley & Leon, 2003) and the EAOP website at http://www.eaop.org. 

Selection Process 

In general, EAOP participation is a highly selective process. Among 17,324 
students in 29 partner schools, only 1,461 are assigned to the EAOP. This 
corresponds to an 8.43% chance to be selected. Overall, students who are assigned to 
EAOP are more academically advanced, have taken more credits, have better school 
attendance records, and are less economically advantaged (See Table 2). Even 
though the key principle is to recruit promising but economically disadvantaged 
students, the actual selection process may differ across schools—that is, a student 
with high probability of being selected in one school may be less likely to participate 
in the EAOP if she attends other schools. This point will be discussed further in a 
later section.  
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As mentioned above, the key purpose of EAOP is to help participating students 
advance to higher education. The outcome variable to monitor the effectiveness of 
this program is students’ coursework eligibility (A-G eligibility) for applying to the 
University of California. To be eligible to apply to UC campuses, students should 
first take and complete a series of UC certified courses, called A-G subjects, with a 
minimum GPA of 2.8. Their A-G GPAs are then combined with their SAT scores. 
Lower A-G GPA students are required to have relatively higher SAT scores than 
students with higher GPAs. Since the EAOP data set does not have students’ SAT 
information, we used students’ A-G eligibility as the outcome variable. Note that 
meeting A-G eligibility is a necessary but not sufficient condition for UC eligibility. 
For more information about the admission criteria, refer to Quigley & Leon (2003) 
and the UC website at 

http://www.universityofcalifornia.edu/admissions/undergrad_adm/pathstoadm.ht

ml  
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Table 2 

Initial Differences Between EAOP and Non-EAOP Students 

 Non-EAOP EAOP Diff. t 95% C.I. 

% Female 0.48 0.62 0.13 9.94  ( 0.11, 0.16) 

% African American 0.10 0.07 -0.03 -3.97  (-0.04, -0.01) 

% Hispanic 0.72 0.74 0.02 1.67  ( 0.00, 0.04) 

% Asian 0.05 0.05 0.00 0.72  (-0.01, 0.02) 

% White 0.10 0.09 -0.02 -2.07  (-0.03, 0.00) 

% Title 1 students 0.46 0.38 -0.08 -6.36  (-0.11, -0.06) 

% Free lunch recipients  0.66 0.74 0.08 6.68  ( 0.06, 0.10) 

% Limited English Proficiency 0.33 0.16 -0.16 -15.81  (-0.18, -0.14) 

% in Magnet program 0.16 0.25 0.09 7.57  ( 0.07, 0.11) 

% Complete Algebra I by 8th grade 0.20 0.51 0.31 23.13  ( 0.28, 0.34) 

% Pass w/ B or better in Algebra I at 9th gr. 0.13 0.58 0.45 33.94  ( 0.42, 0.47) 

% Pass w/ B or better 9th gr. English 0.25 0.77 0.52 44.88  ( 0.50, 0.54) 

8th grade GPA average 2.49 3.29 0.80 55.29  ( 0.77, 0.83) 

8th grade total credits average 1.49 1.97 0.48 48.84  ( 0.46, 0.50) 

9th grade GPA average 2.29 3.42 1.13 89.45  ( 1.11, 1.16) 

9th grade total credits average 1.48 2.05 0.57 67.93  ( 0.55, 0.58) 

Average # of days absent at 8th grade 5.51 2.73 -2.78 -21.07  (-3.04, -2.52) 

% attending schools in their residential area 0.74 0.69 -0.05 -4.21  (-0.08, -0.03) 

 

Table 2 shows that EAOP students are more academically prepared and more 
economically disadvantaged. Also, their racial composition is similar to that of the 
non-EAOP group (i.e., similar proportions of Hispanic, African-American and Asian 
students). However, if we compare EAOP and non-EAOP students school by school, 
the proportions of EAOP participants as well as the EAOP/non-EAOP differences in 
pretreatment covariates fluctuate significantly across schools. The proportions of 
EAOP range from 2.1 to 15.6 percent (Figure 2). The correlation between school size 
and participation rate is 0.354. This indicates that students in larger schools tend to 
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have higher chances to be selected. However, this relationship drops to a non-
significant level once school SES level is controlled for; the partial correlation is 0.15. 
Also, for example, even though the proportion of Hispanic students differs only by 2 
percent between EAOP and non-EAOP students based on the whole sample, it 
fluctuates from -30% to 60% (Figure 3). This fluctuation is related to the schools’ 
racial composition. For example, schools serving exceptionally high proportions of 
Hispanic students (more than 95%, for example, schools 1, 14, 22, 23, 24), it is natural 
that most of the students are Hispanic in both the EAOP and non-EAOP groups. In 
these schools, students’ Hispanic status does not play an important role in 
determining EAOP participation. On the other hand, in schools with smaller 
proportions of Hispanic students (for example, 30% in school 26), the balance in 
proportion of Hispanic students between the EAOP and non-EAOP groups tends to 
be poor. The implication of this between-school variation is that schools may have 
different selection processes to select EAOP recipients.  
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Figure 2  

The proportion of EAOP recipients in 29 partner schools 
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Figure 3 

Differences in proportion of Hispanic students between EAOP and non-EAOP 
group in 29 partner schools 

 

To avoid confusion, we need to be clear about terms such as ‘selection process’ 
or ‘selection criteria’. As discussed above, in schools that serve mostly under-
represented minority students, students’ minority status will not play an important 
role in assigning students to treatment. However, this does not necessarily mean 
that these schools ‘intentionally’ downweight students’ minority status. When we 
use the phrase ‘schools have different selection processes…’ the term ‘selection 
process’ refers to the extent to which various student and school characteristics, 
observed or not, play a role in the assignment of students to a treatment. The source 
of variation in the relative impacts of various characteristics across schools could be 
differences in school resources (e.g., differences in the availability of a program or 
service), or differences across schools in their compositional characteristics (e.g., 
proportions of Hispanic students), or in some cases, because of conscious decisions 
among personnel in particular schools to give certain student characteristics more 
weight in selecting students for a program.  
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Using the student-level pretest variables described in Table 2, their two-way 
interactions and quadratic terms as well as school-level variables, propensity scores 
are estimated using the following multilevel logistic model.  
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Note that in the above model, slopes that do not show significant variation 
across schools are fixed such that βpj=γp0. Since we are particularly interested in the 
variation in slopes, all the student-level variables are group-mean centered because 
the other option, grand-mean centering will generally result in a homogenization of 
the slopes and hence underestimates of their variability (Raudenbush & Bryk, 2002). 
Results of the final propensity model are presented in Table 3 (fixed effects) and 
Table 4 (Random effects). Findings can be summarized as follows: 

First, variables capturing students’ academic achievement are positively related 
to higher probabilities of receiving EAOP. This shows that maintaining good 
academic performance during 8th and 9th grade is a key factor in selecting students 
for EAOP at 10th grade. 

Second, economically disadvantaged and under-represented minorities are 
more likely to be selected. Other conditions being constant, students who receive 
free lunch have 1.23 times higher odds of being in EAOP then those who do not 
receive free lunch. Similarly, the odds ratios of African-American and Hispanic 
students are 2.60 and 2.14, respectively. On the other hand, the odds ratio of Asian 
students is only 0.48.  

Third, slopes of student-level variables are related to school Academic 
Performance Index (API). API is a numeric index developed by the state of 
California to measure the academic performance and growth of California’s public 
schools. For example, Hispanic and African-American students are more likely to 
receive EAOP in schools with higher API scores. Students in magnet programs and 
those who passed Algebra I with an A or B have a higher probability of being in 
EAOP. However, the magnitudes of these slopes decrease as school API scores 
increase.  

Regarding the between-school variation in intercepts and slopes, the results 
suggest that slopes as well as intercepts vary significantly across schools. Table 4 
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summarizes the between-school variation in intercepts and slopes. This between-
school variation in slopes plays an important role in subsequent within-school 
matching. As discussed above, if the relationship between student characteristics 
and assignment to EAOP is constant across all schools and only intercepts vary, 
within-school matching does not necessarily need to involve estimates of school-
specific intercepts. However if slopes are varying across schools, omitting random 
effects from the estimation of propensity scores may result in misleading matches. 
One consequence of this is the potential failure to achieve balance between treatment 
and control students in individual schools.  

To clarify this point, consider the following scenario—the random effect for 
student GPA slopes is highly positive in school A. In this school, consider two 
students, one in EAOP and the other not. The difference in propensity scores 
between two students with GPA difference, d, will be larger when the random effect 
estimate is incorporated in the estimation of propensity scores compared when it is 
omitted. Therefore, the GPA difference, d, may be too large for the two students to 
be matched when the random effect is incorporated but small enough to be matched 
when the random effect is not considered. As a result, the matched sample will be 
more balanced in GPA when the random effect is used in the matching index since a 
smaller difference (d) in GPA is required to achieve the same propensity score 
difference when the random effect is used compared to when fixed effects only 
matching is used. In the next section, four types of common propensity score 
estimates are compared in terms of balancing pretreatment variables within each 
school. 
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Table 3 
Final Propensity Model – Fixed Effects 

Variables in the Model Point Estimate SE p-value Odds Ratio 

School-specific intercept, β0j     

Intercept, γ00 -4.74 0.19 0.00 0.01 

School API, γ01 0.0004 0.002 0.85 1.00 

Income at school location, γ02 -0.02 0.01 0.13 0.98 

Gender (GIRL), γ10 0.14 0.07 0.05 1.15 

African American Slope, β2j     

Intercept, γ20 0.96 0.46 0.05 2.60 

School API, γ21 0.01 0.01 0.06 1.01 

Hispanic Slope, β3j     

Intercept, γ30 0.76 0.37 0.05 2.14 

School API, γ31 0.01 0.00 0.01 1.01 

Asian Slope, β4j     

Intercept, γ40 -0.73 0.32 0.03 0.48 

School API, γ41 -0.01 0.01 0.05 0.99 

Free Lunch, γ50 0.21 0.10 0.04 1.23 

LEP Slope, γ60 -0.48 0.10 0.00 0.62 

Magnet Program, β7j     

Intercept , γ70 1.02 0.30 0.00 2.78 

School API, γ71 -0.01 0.00 0.02 0.99 

 Grade (ALG8C),a I by 8th grade (ALG8C), γ80 0.53 0.09 0.00 1.69 

Letter Algebra I w/ B or better 9th grade (ALG9P), β9j     

Intercept , γ90 0.54 0.13 0.00 1.71 

School API, γ91 -0.01 0.00 0.00 0.99 

Grade English (ENG9P), 9th grade English (ENG9P), γ100 0.34 0.09 0.00 1.41 

8th grade GPA, γ110 0.68 0.16 0.00 1.98 

8th grade total credits, γ120 -0.07 0.24 0.77 0.93 

9th grade GPA, γ130 2.68 0.17 0.00 14.58 

9th grade total credits, β14j     

Intercept , γ140 1.03 0.37 0.01 2.81 

Days absent at 8th grade, γ150 0.02 0.01 0.02 1.02 

Squared, total credits squared, γ160 -1.70 0.27 0.00 0.18 

Hispanic x ALG8C interaction, γ170 0.66 0.20 0.00 1.93 

Credits interaction, total credits interaction, γ180 -1.14 0.33 0.00 0.32 

Credits interaction,total credits interaction, γ190 -1.19 0.36 0.00 0.30 

ALG8C*ALG9P interaction, γ200 -0.70 0.15 0.00 0.50 

 



 

19 

Table 4 

Final Propensity Model – Between School Variances in Intercepts and Slopes 

Random effects Standard deviation p-value Plausible values range* 

Intercept, β0j 0.889 0.00 (-6.48, -3.00) 

African American slope, β2j 2.054 0.00 (-3.07, 4.99) 

Hispanic slope, β3j 1.593 0.00 (-2.36, 3.88) 

Asian slope, β4j 1.073 0.03 (-2.83, 1.37) 

Magnet program slope, β7j 1.018 0.00 (-0.98, 3.02) 

Algebra I slope (9th grade), β9j 0.513 0.02 (-0.47, 1.55) 

9th grade total credit slope, β14j 1.122 0.00 (-1.17, 3.23) 

* Assuming normality, plausible values range represents the likely range of intercept and 
slope values for the schools with average API.  (For example, the expected value of the 
algebra I slope (9th grade) for schools with an average API score is the estimate of the fixed 
effect for γ90  in Table 3 (i.e., .54). The plausible range of values for β9j shown in Table 4 is 
0.54 plus or minus 1.96 * 0.513, where 0.513 is the estimate of the standard deviation in 
random effects connected with Algebra I slopes (9th grade).) 

Within School Matching and the  
Performance of Propensity Score Estimates 

Achieving balance within individual schools is important in proceeding with 
the matched sample because this ensures unbiased estimation of causal effects 
within each school. To examine the consequences of omitting random effects in 
intercept and slopes on achieving balance, four commonly employed single- and 
multilevel models are considered to estimate propensity scores. Subsequently, 
within-school matching is performed using these four types of propensity score 
estimates. To monitor the performance of these propensity scores, we examined how 
well these propensity score estimates balance the treatment and control groups 
within each school. 

Let x , w , iu  and su  denote student pretreatment characteristics, school 

pretreatment characteristics, random effects in intercepts and random effects in 
slopes, respectively. Therefore, iu  and su  capture the contribution of unmeasured 

school level variables on school-specific intercepts and slopes. The first propensity 
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score estimate, as specified in Equation (5) above, models propensity score as a 
function of x , w , iu  and su :  

 1 ( 1| , , , )p prob EAOP= = i sx w u u  (6) 

The second propensity score estimate is a conventional single-level model that 
ignores school membership and random effects: 

 2 ( 1| )p prob EAOP= = x  (7) 

The third type of propensity score is estimated through a random intercept 
model which takes into account school-specific intercepts. Note that in this model, 
all the slopes are assumed fixed and since no school-level variables are entered, the 
impact of w  on intercepts is absorbed in iu : 

 3 ( 1 | , )p prob EAOP= = ix u  (8) 

Finally, a random intercept and slopes model without school-level predictors is 
considered; 

 4 ( 1| , , )p prob EAOP= = i sx u u  (9) 

The distinction between p1 and p4 deserves more attention. The difference 
between p1 and p4 is whether the school-level covariates are entered in the model or 
not. Therefore, p1 is estimated through a multilevel model specified in equation (5) 
whereas p4 is estimated through a model that allows for random intercepts and 
slopes but does not include level-2 predictors, W.  
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Let’s compare pjβ  in Equations (5) and (10). In the sense that both estimate the 
school-specific intercept (p = 0) and slopes (p = 1, … P), pjβ  in (5) and (10) are 
equivalent. That is, iu  and su  in p4 include contributions of w  on intercepts and 

slopes as well as the effects of unmeasured school-level covariates. However, the 
estimates of pjβ  in p1 and p4 will not exactly agree with each other. In fitting 
multilevel models, we typically obtain empirical Bayes (EB) estimates of pjβ . Let us 
denote the EB estimate of pjβ  as *

pjβ . *
pjβ  is a weighted combination of a school’s 

estimate of pjβ  based on school j’s data (i.e., ˆ
pjβ ) and a predicted value of pjβ  based 

on the entire sample of schools. Therefore, *
pjβ  in p1 is the weighted combination of 

ˆ
pjβ  and 0p pq qjWγ γ+ +∑ , where the latter is a predicted mean conditional on a school’s 
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values for the school level covariates in the model, W. In contrast, in p4, *
pjβ  is a 

weighted combination of ˆ
pjβ  and 0pγ , the grand mean of pjβ . If ˆ

pjβ  is unreliably 

estimated due, for example, to a small sample of students in school j, more weight 
will be placed on 0p pq qjWγ γ+ +∑  (in p1) or on 0pγ  (in p4), and the resulting *

pjβ  will 
‘shrink’ toward the predicted value of pjβ . Since school-level predictors (Wqj’s) are 
entered in p1, *

pjβ  will shrink toward a conditional mean based on school j’s Wqj 

values. This is termed conditional shrinkage by Raudenbush & Bryk (2002). On the 
other hand, *

pjβ  in the model for p4 will shrink toward an unconditional mean ( 0pγ  in 

equation 10).  

Focusing first on the p1 setting, if the sampling variance (i.e., the standard error 
squared) of ˆ

pjβ  is very small relative to the variance in random effects (i.e., the 

variance in the upj) in Equation 5, then shrinkage toward the conditional mean for a 
given school will be extremely minimal. Similarly, in the p4 setting, if the sampling 
variance of ˆ

pjβ is very small relative to the variance in random effects in Equation 10, 
the shrinkage toward the unconditional mean 0pγ  will be very minor. In this 
situation, the EB estimates of pjβ obtained under p1 and p4 (i.e., the EB estimates 

based on the fitted models in Equations 5 and 10) will be very similar. 

However, if the sampling variance of ˆ
pjβ  is large in relation to the variance in 

random effects under p1 and p4, then shrinkage will be substantial.  Under p1, 
the ˆ

pjβ will be shrunk appreciably toward conditional means, and under p4, ˆ
pjβ will be 

shrunk toward the unconditional mean 0pγ . Hence the resulting EB estimates of 

pjβ will differ appreciably under p1 and p4. Note that if particular school 

characteristics are in fact related to the magnitude slopes, then omitting these 
characteristics and shrinking toward an unconditional mean can result in misleading 
estimates of the slopes (see, e.g., Rubin [1980]).  

After estimating each type of propensity score, 1,461 treated students are 
matched with 15,863 control students within schools based on the logit of each type 
of propensity score estimate. Caliper matching and nearest available matching are 
combined to find a match for each treated student from the control pool in the same 
school. The matching process proceeds as follows; first, in School 1, treated students 
are randomly ordered. Second, we calculate an admissible propensity range (caliper) 
for the first treated student (i=1) such that 1 ( 1)logit ( ) 0.1 SD(logit( ))i ic P P== ± × , where 
SD(logit( ))iP  is the standard deviation of the propensity scores of the whole sample. 
Next, we select a subgroup of control students in school 1 who have logit( )ip  within 
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the range of 1c . Finally, we find a match with the nearest logit( )ip  from the 

controlled subgroup defined in the previous step and remove the matched pair from 
the sample. This process is repeated until we find a match for the last treated unit. 
The same process is applied in Schools 2 through 29. One advantage of this nearest 
matching within caliper approach is that one can avoid unrealistic matches by 
setting a tolerable limit for each treated unit.  

Through the matching process described above, a matched sample is obtained 
for each type of propensity score. Match_p1 denotes the matched sample based on 
p1, Match_p2 based on p2 and so on. Table 5 shows the mean of the corresponding 
propensity scores in each matched sample. Differences in propensity scores between 
the EAOP and non-EAOP groups in each corresponding matched sample indicate 
that treated units and their matched control units have almost the same probability 
of receiving the treatment. This shows that the matching process worked well with 
each type of propensity score. However, the results are not comparable across 
matched samples since different types of propensity scores are summarized in 
different matched samples. 

Table 5 

Average Propensity Score and Its Difference Between Treatment and Control Groups 

 Non-EAOP EAOP Difference 

P1 in Match_p1 
(N=2,316) 0.349 0.362 0.013 

P2 in Match_p2 
(N=2,454) 0.291 0.298 0.007 

P3 in Match_p3 
(N=2,490) 0.318 0.331 0.013 

P4 in Match_p4 
(N=2,344) 0.350 0.364 0.014 

 

To check the stability of the matched samples across different matching criteria, 
the propensity scores that incorporate student- and school-level covariates as well as 
the between-school variation in intercepts and slopes (P1) are compared across the 
four matched samples. That is, for the non-EAOP and EAOP students in each 
matched sample, we compute the mean of their propensity scores based on p1. Since 
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P1 takes into account the between-school variation in intercepts and slopes, we view 
the model as reflecting the ‘true’ selection process most closely. P2 assumes fixed 
intercepts and fixed slopes across schools and in P3, the slopes of student level 
variables are assumed constant across schools. Therefore, comparing P1 across the 
four matched samples gives insight into the consequences of ignoring the multilevel 
nature of selection processes.  

Table 6 

Mean of P1 in Each Matched Sample by Treatment Group 

 Non-EAOP EAOP Difference 

Match_p
1 

0.349 0.362 0.013 

Match_p
2 

0.297 0.383 0.087 

Match_p
3 

0.304 0.387 0.083 

Match_p
4 

0.350 0.365 0.015 

 

Assuming that P1 most closely estimates the ‘true’ propensity score, Table 6 
provides the performance of each propensity model defined in Equations 6 to 9. 
When matching is based on the selection process that incorporates school-specific 
intercepts and slopes (Match_p1), the EAOP group has 1.3% higher probability of 
being selected. When the variation in intercepts and slopes is ignored in matching 
(Match_p2), the EAOP group shows substantially higher probability (8.7%). More 
interestingly, allowing only the variation in school-specific intercepts (Match_p3) 
does not improve the balance noticeably (8.3%).  

Match_p1 and Match_p4 produced very similar results. The difference in 
propensity scores between the treatment group and matched control group is 1.3% 
in Match_p1 and 1.5% in Match_p4, a difference of only 0.2%. This shows that 
omitting level-2 variables in the RIS model did not have a substantial effect on the 
performance of matching. In connection with the discussion above on conditional 
and unconditional shrinkage, this is due to the fact that the sampling variances of 
the ˆ

pjβ in this application are very small in relation to the estimates of the variances 
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of the random effects based on Equations 5 and 10, and hence substantial weight is 
placed on ˆ

pjβ . 

Next, achieving balance in individual schools is important in the subsequent 
estimation of treatment effects. As discussed above, omitting school-specific slopes 
can cause a failure in achieving balance within individual schools. Tables 7 and 8 
present within-school differences on two key covariates between treatment groups. 
First, Table 7 shows the EAOP/non-EAOP difference in the proportion of Hispanic 
students in 29 schools. Even though the overall initial difference in the full sample is 
small (2%), this initial imbalance fluctuates substantially across schools (see Figure 
3). Especially in schools with large initial differences (Schools 5, 12 and 20, for 
example), including random effects in slopes (Match_p1 and Match_p4) significantly 
reduces the difference. Matching without random slopes (Match_p2 and Match_p3) 
does not improve the initial imbalance and sometimes even magnifies the initial 
difference (Schools 8 and 20, for example). 9th grade GPA (Table 8) shows a similar 
pattern. Initially, EAOP students have significantly higher GPA than non-EAOP 
students on average and in all of the 29 individual schools. Overall, matching 
reduced the initial difference substantially in all the four matched samples. However 
in the case of individual schools, propensity scores with random effects in slopes 
worked better in equalizing the GPA gap (See Schools 7, 10 and 26, for example).  
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Table 7 

EAOP and Non-EAOP Difference in % Hispanic Before and After Matching 

Difference in % Hispanic 
School 

Initial Match_p1 Match_p2 Match_p3 Match_p4 

11 0.01 0.01 0.00 0.00 0.00 

1 -0.02 -0.04 -0.04 -0.04 -0.02 

29 0.02 0.00 0.00 0.14 0.00 

14 0.02 0.04 0.07 0.04 0.00 

25 -0.03 0.00 -0.05 0.00 -0.09 

22 -0.03 0.00 -0.03 -0.04 -0.01 

6 0.04 -0.08 0.08 0.21 0.00 

23 -0.04 0.03 -0.03 -0.04 -0.03 

24 -0.04 0.00 -0.06 -0.07 0.00 

15 0.05 0.04 0.15 0.04 0.04 

9 0.06 0.02 0.04 0.00 0.04 

21 -0.06 0.10 -0.05 -0.08 -0.05 

16 0.11 0.00 0.00 0.00 -0.10 

2 0.12 0.09 0.11 0.09 0.09 

19 -0.12 -0.11 0.00 0.17 -0.17 

17 -0.13 0.10 -0.02 -0.03 0.08 

28 0.13 0.08 0.11 0.08 -0.03 

10 -0.18 -0.13 -0.29 -0.21 -0.08 

18 -0.18 0.04 -0.20 -0.19 -0.01 

3 0.21 0.09 0.00 0.00 0.09 

4 0.27 0.12 0.14 0.26 0.11 

5 -0.23 0.00 -0.17 -0.23 0.05 

13 0.21 -0.04 0.18 0.26 -0.07 

27 -0.22 0.00 -0.29 -0.22 0.00 

8 -0.22 -0.09 -0.31 -0.26 0.00 

12 -0.27 0.08 -0.26 -0.25 -0.02 

20 0.28 0.00 0.32 0.54 0.00 

7 0.40 0.00 0.52 0.57 0.04 

26 0.60 0.00 0.71 0.79 0.00 

Total 0.02 0.02 -0.02 0.00 0.00 
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Table 8 

EAOP and Non-EAOP Difference in 9th Grade GPA Before and After Matching 

School Difference in average 9th grade GPA 

 Initial Match_p1 Match_p2 Match_p3 Match_p4 

7 0.57 -0.08 -0.32 -0.30 -0.13 

6 0.73 -0.10 -0.11 -0.01 -0.05 

26 0.80 0.03 -0.32 -0.13 0.02 

4 0.87 -0.02 -0.01 -0.06 -0.02 

3 0.94 -0.14 -0.06 -0.14 -0.09 

19 0.99 0.01 0.12 0.13 -0.06 

20 1.00 0.06 -0.12 -0.23 0.05 

2 1.01 -0.06 -0.16 -0.14 -0.05 

13 1.01 0.02 -0.20 -0.06 -0.02 

1 1.08 -0.02 -0.03 -0.04 -0.06 

5 1.10 -0.02 0.09 0.03 0.03 

18 1.11 -0.05 0.03 0.02 -0.01 

21 1.11 -0.05 0.06 0.10 0.09 

23 1.11 -0.06 -0.05 -0.06 0.02 

25 1.13 -0.09 0.05 0.01 0.08 

14 1.17 -0.07 -0.07 0.01 -0.07 

27 1.19 -0.01 0.05 0.15 -0.02 

24 1.22 -0.01 0.09 0.02 0.00 

11 1.24 0.01 0.01 0.02 0.00 

12 1.26 0.03 0.16 0.10 -0.04 

17 1.28 0.00 0.02 0.07 0.01 

8 1.28 0.04 0.22 0.19 0.03 

22 1.28 0.02 0.02 0.05 0.00 

9 1.30 0.11 0.11 0.12 0.11 

29 1.31 0.05 0.15 0.05 0.06 

15 1.32 0.06 0.02 0.04 0.02 

10 1.33 0.02 0.37 0.29 0.02 

28 1.35 0.09 0.13 0.11 0.12 

16 1.52 0.15 0.29 0.35 0.09 

Total 1.13 -0.01 0.03 0.03 0.00 
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The following multilevel model is used to quantify pretreatment differences 
between two treatment groups and its between-school variation in the four matched 
samples: 
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 (11) 

The key parameters include 10γ , the average EAOP/non-EAOP difference in X, 
and 11τ , the between-school variance in the EAOP/non-EAOP difference. If the 
estimates of both 10γ  and 11τ  are close to zero, this would indicate that the 

pretreatment variable X is balanced between treatment groups within individual 
schools as well as across schools. Table 9 presents the fitted results based on 
Equation 11 for seven key pretreatment covariates in the four matched samples. The 

10γ ’s are not statistically significant for any of the covariates in all the matched 

samples, indicating no systematic difference between the two treatment groups. 
Overall, Match_p1 and Match_p4, which take into account random slopes, show 
much better balance across schools (smaller 11τ ’s) than within-school matching based 

on fixed slopes (Match_p2 and Match_p3). For example, the difference in the 
proportion of LEP students is only -0.3% in the Match_p1 and Match_p4 samples and 
1.3% in the Match_p2 sample. However, Match_p2 shows much larger dispersion of 
% LEP difference across schools than Match_p1. The % LEP difference in schools 
below 2SD of the average difference is -1.3% in Match_p1 but -20.7% in Match_p2. 
This shows that matching with fixed slope does not balance students’ LEP status in 
individual schools. Most of the covariates are balanced by matching based on a 
random slopes propensity model. However, some variables, such as free lunch 
status still have substantial between-school variation in EAOP/non-EAOP 
differences, suggesting the need for additional adjustment with propensity scores in 
subsequent models for treatment effect estimation.  
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Table 9 

Overall Balance and Between-School Variation in Pretreatment Variables 

Average EAOP/non-EAOP 
difference ( 10γ ) 

Between school variance in 
EAOP/non-EAOP 

difference Variable Matched 
sample 

estimate SE p-value SD ( 11τ ) p-value 

1 0.011 0.020 0.587 0.009 >0.500 
2 0.022 0.020 0.284 0.017 >0.500 
3 0.002 0.020 0.907 0.012 >0.500 

Female 

4 -0.007 0.020 0.719 0.008 >0.500 
1 0.022 0.015 0.161 0.007 >0.500 
2 0.012 0.039 0.761 0.189 0.000 
3 0.044 0.044 0.333 0.221 0.000 

Hispanic 

4 0.000 0.015 0.982 0.004 >0.500 
1 -0.003 0.025 0.903 0.097 0.000 
2 -0.039 0.026 0.148 0.111 0.000 
3 0.023 0.030 0.458 0.138 0.000 

Free Lunch 

4 -0.008 0.022 0.701 0.076 0.004 
1 -0.003 0.016 0.833 0.005 0.379 
2 -0.013 0.024 0.597 0.097 0.000 
3 0.002 0.018 0.929 0.050 0.031 

LEP 

4 0.003 0.016 0.862 0.021 0.439 
1 0.011 0.021 0.591 0.006 0.442 
2 0.010 0.029 0.734 0.104 0.002 
3 0.011 0.026 0.679 0.085 0.009 

GPA8 

4 0.015 0.021 0.496 0.021 0.426 
1 -0.008 0.016 0.636 0.005 >0.500 
2 0.023 0.024 0.352 0.090 0.001 
3 0.030 0.017 0.098 0.030 0.058 

GPA9 

4 0.004 0.016 0.825 0.006 >0.500 
1 0.042 0.165 0.799 0.169 >0.500 
2 -0.198 0.194 0.319 0.518 0.115 
3 0.071 0.166 0.669 0.294 0.364 

# days 
absent 

4 0.167 0.157 0.298 0.111 >0.500 
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The Effect of EAOP on A-G Eligibility and its Variation Across Schools 

Based on the findings in the previous section, treatment effects will be 
estimated using matched sample 1(Match_p1), which is based on the propensity 
model specified in equation (6) and equivalently, in (5). The outcome of interest is 
students’ A-G eligibility at the end of 12th grade where Yij=1 if student i in school j is 
eligible at the end of 12th grade and 0 otherwise. To model the binary outcome, the 
following logit link function is used;  
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where ( 1)ijp Y =  is the probability that student i in school j is A-G eligible at the end of 
12th grade and ijη  is the log-odds of this probability. Following Rubin’s causal 

model, each student could have two potential outcomes – the A-G eligibility if 
assigned to non-EAOP ( 0

ijY ) and the one if assigned to EAOP ( 1
ijY ), and ijη  has two 

potential values 0
ijη  and 1

ijη  accordingly such that; 
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The two potential logits in (13) can be modeled as follows; 
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Where γ represents the average eligibility in the control condition on a log-odds 
scale, and uj is the school-specific increment to γ in the control condition. δT is the 
average causal effect of assignment to EAOP, and uj,δT is the school-specific 
increment to the average causal effect. This potential outcomes model is translated 
to a two-level hierarchical model as follows: 
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Since some pretreatment variables are not sufficiently balanced in individual 
schools even in the matched sample (see Table 9), the strong ignorability assumption 
is suspicious at best. Therefore, the logit of the propensity score estimate is used as a 
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covariate in the Level-1 model. Assuming exchangeability within each treatment 
condition across schools (see Hong, 2004), the distribution of random effects is 
specified as follows: 
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 (16) 

 

A fully Bayesian approach using Markov-Chain Monte-Carlo(MCMC) 
estimation techniques implemented in WinBUGS (Spiegelhalter, Thomas, Best, & 
Lunn, 2003) is used to estimate the model specified in (15) and (16). Among the 
advantages of this approach is that one can obtain the marginal posterior 
distributions of various functions of parameters as well as the posterior distribution 
of parameters specified in the model. This feature is especially useful in non-linear 
models involving link functions such as the logit link because we can monitor the 
posterior distributions of the functions of logit-scale parameters such as the 
probability-scale transformed eligibility in each treatment group and their 
differences, which provides a direct interpretation of the results. Note that non-
informative priors were placed on the fixed effects and variance components in our 
model. 
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Table 10 

Posterior distribution of treatment effect and its variation across schools 

 Mean SD 95% interval 

Logit of A-G eligibility     

Non-EAOP average ( 00γ ) -1.136 0.190 (-1.519,  -0.770)  

Average EAOP effect ( 10γ )  0.871 0.149 ( 0.585,  1.170)  

Logit_p ( 20γ )  0.651 0.047 ( 0.559,  0.745)  

     

Adjusted average probability of being A-G eligible   

Non-EAOP 0.245 0.035 (0.180,  0.317)  

EAOP 0.435 0.037 (0.363,  0.508)  

Difference 0.190 0.031 (0.130,  0.250)  

Odds ratio 2.390  (1.795,  3.221)  

   

Between school variation     

00 01

10 11

0.819 -0.305
-0.305 0.303

τ τ
τ τ
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

, 0 1( , ) -0.583j jCorr u u =  

 

Table 10 summarizes the marginal posterior distributions of parameters of 
interest. Each distribution conveys the posterior probability that a parameter of 
interest takes on various values. The mean and SD of each posterior distribution can 
be viewed as Bayesian analogues of a point estimate and its standard error in the 
frequentist framework. Similarly, the 95% interval in the last column can be viewed 
as a Bayesian analogue of 95% confidence intervals in the frequentist framework, 
though of course interpretations differ.  

In Table 10, we see that the average treatment effect on a logit scale is 0.871 
with a 95% interval of (0.585, 1.170). Note that the lower boundary of the interval is 
substantially larger than 0. Monitoring the posterior distribution of probability-scale 
transformed values of the parameters provides a more direct picture of the EAOP 
effect. Under non-EAOP assignment, students have on average a 24.5% chance of 
being A-G eligible with 95% interval ranging from 18% to 31.7%. This probability 



 

32 

increases to 43.5% if they are assigned to EAOP treatment. The posterior distribution 
of the overall EAOP/non-EAOP difference in probability scale ranges from 13% to 
25% with an average of 19%, which corresponds to the odds ratio of 2.39. 

Also, the between-school variance of the treatment effect, 11τ , is 0.303—

indicating substantial variation in treatment effects across schools. Table 12 displays 
the posterior distributions of prob(A-G eligible) in each treatment group and its 
difference in 29 partner schools. 

Table 11 shows that, depending on schools, assignment to EAOP increases the 
chance of being A-G eligible from 5% (School 6) to 29% (School 8) when compared to 
the assignment to the non-EAOP condition. This between-school variation may be 
systematically related to school characteristics. In connection with this, note that 
there is a substantial negative correlation between u0j and u1j (Corr(u0j, u1j)=-0.583, 
Table 10). This correlation indicates that the effect of EAOP is larger in schools 
where non-EAOP students have a relatively small probability of being A-G eligible. 
Figure 4 shows the estimated probability of A-G eligibility in the non-EAOP group 
(black bar) and in the EAOP group (white bar) within each school. Note that schools 
are ordered by their non-EAOP group A-G eligibility. From this figure, it is clear 
that the EAOP/non-EAOP gap is getting smaller as the non-EAOP group has, on 
average, more chance of being A-G eligible. This decreasing pattern of school-
specific treatment effects implies that there may be a systematic relationship 
between non-EAOP eligibility and treatment effect at the school level. 
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Figure 4  

Estimated A-G eligibility in two treatment groups 
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Table 11 

Treatment Effect and its Distribution an Each School (in Probability Scale) 

School Non_EAO
P EAOP Difference 95% interval of the 

Difference 

1 0.395 0.581 0.186 ( 0.031, 0.335) 
2 0.133 0.379 0.246 ( 0.102, 0.412) 
3 0.281 0.447 0.166 (-0.035, 0.355) 
4 0.220 0.457 0.236 ( 0.087, 0.392) 
5 0.420 0.514 0.094 (-0.081, 0.253) 
6 0.491 0.542 0.050 (-0.167, 0.239) 
7 0.158 0.359 0.201 ( 0.066, 0.350) 
8 0.276 0.568 0.292 ( 0.133, 0.458) 
9 0.255 0.460 0.204 ( 0.058, 0.348) 
10 0.127 0.222 0.095 (-0.033, 0.222) 
11 0.168 0.375 0.207 ( 0.102, 0.314) 
12 0.319 0.456 0.137 (-0.017, 0.282) 
13 0.408 0.528 0.121 (-0.075, 0.294) 
14 0.179 0.343 0.164 ( 0.052, 0.276) 
15 0.113 0.359 0.246 ( 0.112, 0.405) 
16 0.162 0.374 0.212 ( 0.052, 0.396) 
17 0.428 0.652 0.224 ( 0.096, 0.350) 
18 0.074 0.177 0.103 ( 0.031, 0.181) 
19 0.278 0.398 0.119 (-0.083, 0.296) 
20 0.293 0.480 0.187 ( 0.008, 0.356) 
21 0.494 0.625 0.131 (-0.041, 0.294) 
22 0.176 0.414 0.238 ( 0.130, 0.350) 
23 0.352 0.502 0.150 ( 0.009, 0.286) 
24 0.131 0.376 0.245 ( 0.116, 0.389) 
25 0.234 0.395 0.160 ( 0.008, 0.309) 
26 0.088 0.227 0.139 ( 0.023, 0.287) 
27 0.531 0.640 0.109 (-0.065, 0.273) 
28 0.292 0.415 0.124 (-0.039, 0.274) 
29 0.412 0.530 0.118 (-0.091, 0.302) 
 

To address this systematic variation in school-specific EAOP effects, the 
following multilevel latent variable regression model is used. 
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Note that at the student level, the logit of students’ propensity scores are grand 
mean centered. Therefore 0 jβ  and 1 jβ  capture school-specific non-EAOP group A-G 

eligibility and school-specific treatment effect, respectively, holding constant 
propensity scores. Note also that at the school level, school-specific treatment effects 
( 1 jβ ’s) are modeled as a function of school-specific non-EAOP A-G eligibility 
estimates ( 0 jβ ’s). Therefore, b captures the expected difference in treatment effect 
when the logit of non-EAOP A-G eligibility increases by one unit. Since 0 jβ  is also 
centered around its grand mean, 00γ  and 10γ  capture the average control group A-G 
eligibility and the effect of EAOP assignment on A-G eligibility on a logit scale, 
respectively, holding constant propensity scores. The results are shown in Table 12.  

Table 12 

Posterior Distribution of Treatment Effect and its Association With Covariates 

 Mean SD 95% interval 

Logit of A-G eligibility     

Non-EAOP average ( 00γ ) -1.152 0.206 (-1.570, -0.755) 
     
Average EAOP effect ( 10γ ) 0.894 0.163 (0.579, 1.224) 
     
Non-EAOP eligibility on EAOP effect 
(b) -0.489 0.148 (-0.778, -0.196) 

Logit_p ( 20γ ) 0.651 0.047 (0.559, 0.745) 
     
Adjusted average probability of being A-G eligible   

Non-EAOP 0.242 0.037 (0.172, 0.320) 

EAOP 0.436 0.033 (0.370, 0.502) 

Difference 0.194 0.031 (0.131, 0.255) 
Odds ratio 2.478 0.411 (1.785, 3.401) 
    
Between school variation Mean 2.5% Median 97.5% 
In eligibility under control ( 00τ ) 0.953 0.423 0.877 1.926 
EAOP effect on eligibility ( 11τ ) 0.133 0.011 0.112 0.377 
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The average treatment effect is 0.894 on a logit scale, which corresponds to on 
average a 19.4 % higher chance of being A-G eligible if assigned to EAOP. This 
EAOP effect gets smaller in schools where the control group eligibility is relatively 
high. The A-G eligibility for non-EAOP students in a school may indicate the quality 
of the instruction in that school, that is, in ‘good’ schools, students may perform well 
regardless of EAOP assignment. Therefore, in schools that provide high-quality 
instruction, both the EAOP and non-EAOP group will have a higher chance to be A-
G eligible and as a result, their gap (i.e. EAOP effect) will tend to be smaller. 

Consequences of Ignoring Random Slopes in  
Propensity Based Matching on the Treatment Effect Estimation 

As discussed in the previous sections, one consequence of within-school 
matching based on propensity scores that ignore the multilevel characteristics of the 
selection process is a failure to achieve balance in individual schools. In the current 
example, it is clear that matching based on propensity scores that ignore random 
effects results in significant between-school variation in pretreatment differences. 
Failure to achieve balance in individual schools in turn leads to biased treatment 
effect estimates especially in schools with large pretreatment imbalances. 
Consequently, the resulting between-school variation in treatment effect may not 
properly reflect the true variation in treatment effects across schools. Therefore, a 
misspecified propensity model threatens the internal validity of inferences on 
treatment effect and its variation. When we are interested in the school-level 
conditions under which a treatment works more effectively, the lack of internal 
validity becomes especially problematic because, if school-specific treatment effect 
estimates are biased, the relationship between schools’ treatment effect and school 
characteristics will biased, too.  

To examine the consequences of within-school matching based on a 
misspecified propensity model in the estimation of treatment effects and its 
variation, we fit the model specified in (14) and (15) using the four sets of matched 
samples, Match_p1 through Match_p4. Table 13 summarizes the results on a logit 
scale. The average treatment effect estimates are slightly lower when random 
intercepts and slopes (Match_p2) or random slopes (Match_p3) are ignored. 
However, the magnitudes are small enough to be ignored. The differences in logit-
scale treatment effects represent about a 1% reduction on a probability scale. More 
importantly, however, matched samples based on propensity scores that incorporate 
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random intercepts and slopes (Match_p1 and Match_p4) show significantly lower 
between-school variation in treatment effects. This implies that bias in the school-
specific treatment effect estimates caused by misleading matches can result in an 
overestimation of between-school treatment effect variation. 

Table 13 

Treatment Effect and its Variation in Four Matched Samples 

 Match_p1 Match_p2 Match_p3 Match_p4

Fixed effects     

Eligibility under control, 00γ  -1.11 -1.03 -0.87 -1.06 

Eligibility under treatment, 
00 10γ γ+  -0.24 -0.22 -0.11 -0.23 

Average treatment effect, 10γ  0.87 0.81 0.77 0.83 

Between school variation (in SD)     

 in eligibility under control, 
00τ  0.84 0.80 0.92 0.78 

 in treatment effect, 
11τ  0.44 0.71 0.61 0.36 

 

To speculate on the sources of inflated between-school variability under a 
misspecified propensity model, each school’s treatment effect estimates under the 
four matched samples are presented in Figure 5. In Figure 5, the line connects each 
school’s treatment effect estimated from Match_p1 (See Table 11). Match_p1 and 
Match_p4 produced similar treatment effect estimates across all schools. However in 
some schools, the treatment effect estimates from Match_p2 and Match_p3 are 
significantly deviated from the result based on Match_p1 and Match_p4. This 
deviation is closely related to the balance in pretreatment covariates. For example in 
School 7 and 26, treatment effect estimates from a misspecified propensity model are 
significantly lower than those from the propensity model that incorporate random 
intercepts and slopes. At the same time, 9th grade GPA is somewhat over-adjusted 
(the initial difference and difference after matching show an opposite direction; see 
Table 9). Since 9th grade GPA is positively related to the outcome, the fact that 
control group has higher GPA will result in the underestimation of treatment effect. 
Another example is School 8. In School 8, matching based on misspecified models 
actually exaggerated the initial difference in % Hispanic in the same direction (-22% 
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to -31% [Match_p2] and -26% [Match_p3], see Table 8). Since Hispanic students tend 
to be lower in outcomes, more Hispanic students in the control group result in the 
overestimation of the treatment effect. If we add school-specific differences in GPA 
and % Hispanic students between EAOP and non-EAOP groups as school-level 
covariates to model school-specific treatment effects (for example, using matched 
samples Match_p2 and Match_p3, add these variables to predict 0 jβ  and 1 jβ  in 

equation [20]), the variation in between-school treatment effects will be substantially 
reduced. In summary, when random effects are omitted in the estimation of 
propensity score, within-school matching can fail to achieve balance in individual 
schools and inference in schools with poor balance can be biased. This biased 
estimation of school-specific treatment effects will lead to an inflated between-school 
treatment effect variation. 
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Figure 5  

Estimated school-specific treatment effect under four matched samples 
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Comparing Other Options 

In this section, we will discuss several alternatives to the propensity based 
within-site matching that can be considered in crossed multilevel settings. First, for 
the estimation of propensity scores, instead of including random effects for 
intercepts and slopes, one can use school dummy variables to avoid fitting random 
effects models. In terms of individual propensity score estimates, these two 
strategies are equivalent. Including J-1 school dummy variables in the Level-1 model 
is equivalent to fitting a random intercepts model. If we have an RIS selection 
process, including interactions between school dummy variables and student-level 
covariates, as well as the main effects of school dummy variables and student-level 
covariates, will produce equivalent results. One potential problem in this approach 
is that we need (J-1)× (q+1) more predictors in the Level-1 model where q is the 
number of random slopes. In the EAOP example, since we have 6 random slopes, 
(29-1)× (6+1)=196 more Level-1 terms are needed to fit this alternative model. With 
this many random slopes, it may be unrealistic to apply this strategy to the current 
dataset. However, if we have small numbers of random slopes and sufficient within-
school sample size, this approach may be applicable.  

Instead of matching within each site, one can think of allowing cross-school 
matching with estimated propensity scores. With sufficient overlap among 
treatment and control students within each school, it is preferable to perform within-
school matching since it effectively controls for the direct impact of unmeasured 
school-level confounding variables (in RI selection process) and the interaction 
between student-level covariates and unmeasured school-level covariates as well (in 
RIS selection process). However, as the assignment to the treatment becomes more 
selective, the overlap in propensity scores between treatment and control groups 
becomes insufficient and as a result, more and more treated units will not find a 
match from control units in the same school. Cross-school matching is an alternative 
to find a match when within-school matching is not feasible. Under strong 
ignorability, cross-school matching with propensity scores incorporating all the 
relevant student- and school-level pretreatment covariates will properly control for 
all the pretreatment differences both at the student and school level. However, if we 
are interested in treatment effect variation across schools and want to investigate 
why certain schools are more successful than others, cross-school matching should 
be performed with caution because the main purpose of cross-school matching is to 
obtain balance in the whole sample, not within each school. Let’s consider Figure 6 
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for an illustration. We have two treatment units and three control units in each of 
the three Schools A, B and C, and suppose we are trying to match each treated unit 
with one control unit regardless of their school membership. When the matching is 
performed successfully, pretreatment covariates, including propensity scores, will 
be balanced within each of the 6 matched pairs and across the two treatment groups. 
Therefore, subtracting the control unit’s outcome from the treated unit’s outcome 
within each matched pair and averaging them will provide an unbiased estimate of 
the average treatment effect. However, if we are interested in the school-specific 
treatment effects and their variation, estimates of these parameters using a 
multilevel model such as (18) and (19) can be biased because, for example in School 
A, we are comparing (A1, A2) with (A3, A4) where the true match for (A1, A2) is 
(A3, B3). We cannot guarantee that pretreatment covariates, including propensity 
scores, are balanced in (A1, A2) and (A3, A4). One might include propensity scores 
in the analysis model for additional adjustment. However, the inference may heavily 
rely on extrapolation.  
 

 

Figure 6  

An illustration of cross-school matching 

 

One alternative may be using a difference score, ignoring the control unit’s 
school membership. For example, we can use 1 ( 1) ( 3)Ad Y A Y A= −  and 

2 ( 2) ( 3)Ad Y A Y B= −  as an outcome for School A, 1 ( 1) ( 4)Bd Y B Y A= −  and 

2 ( 2) ( 4)Bd Y B Y B= −  for School B, and so on. A simplified multilevel model, such as 
random effects ANOVA or ANCOVA, will produce school-specific treatment effects. 
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However, this strategy still requires strong additional assumptions. For 2Ad to be 
considered as an unbiased treatment effect for A2 in School A, student B3’s potential 
outcome under the control condition in school B should be the same as her potential 
outcome under the control condition in School A. Since it is natural to assume 
school-specific increments in potential outcomes under control conditions in 
multilevel settings (for example, ju  in Equation 16), 2Ad may not reflect the unbiased 

treatment effect of Student A2 in School A. 

If we have a sufficient sample for both the treatment and control groups within 
each school, one might think of fitting a logistic propensity model school by school 
to get estimates of individual propensity scores. This approach may not be 
applicable if the treatment is a rare event. Also, the number of covariates entered in 
the propensity model will be limited compared to the previous approaches. Note 
that the key interest in this approach is to achieve balance within each school, rather 
than overall balance. Therefore, the propensity score estimate from this approach 
may best be used for within-school matching. Matched pairs can be used for the 
estimation of the average treatment effect and its variation using the multilevel 
models such as Equation 15.  

SUMMARY AND FURTHER RESEARCH 

In this paper, we focused on the performance of various propensity score 
estimates when used for within school matching in multisite studies especially when 
the selection process varies across schools. We considered two types of school-
specific selection processes—random intercepts, and random intercepts and slopes. 
Under random intercept selection processes, propensity scores based only on 
student-level fixed effects and propensity scores involving random effects in 
intercepts perform equally well in forming matches within each school. However, in 
random intercept and slope settings, omitting random effects in slopes leads to 
misleading matches. Using data from the Early Academic Outreach Program, we 
found that including random effects in slopes in the propensity model produces 
much improved balance within each school whereas propensity scores that do not 
involve random slopes show significantly poor performance in achieving balance 
within individual schools.  

In terms of treatment effects, using matched samples based on propensity 
scores that properly reflect random intercept and slopes selection processes, we 
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found that assignment to EAOP improves students’ chance of being A-G eligible by 
about 19% on average. Also, this EAOP effect shows substantial variation across 
schools. The EAOP effect tends to decrease in schools with higher baseline eligibility 
(the eligibility under non-EAOP).  

Strong ignorability is a key assumption in the use of propensity scores. That is, 
the underlying assumption in the estimation of propensity scores is that all the 
confounding variables are properly included in the propensity model. This 
assumption will be violated if there are hidden confounding variables even after 
adjusting for the observed ones. Sensitivity analysis is needed to check the 
robustness of our conclusion to hidden confounding variables. An approach to 
sensitivity analysis proposed by (Frank, 2000) and its extension to multilevel settings 
(Seltzer, Kim, & Frank, 2006) will provide an accessible means to address this issue. 
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