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             Abstract 
 

Researchers in education and the social sciences make extensive use of 

linear regression models in which the dependent variable is continuous-valued 

while the explanatory variables are a combination of continuous-valued 

regressors and dummy variables. The dummies partition the sample into groups, 

some of which may contain only a few observations. Such groups may easily 

include enough outliers to break down the parameter estimates. Models with 

many fixed or random effects appear to be especially vulnerable to outlying data. 

This paper discusses the problem at an intuitive level and cites sources for the 

key theorems establishing bounds on the breakdown point in models with dummy 

variables.       
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1. INTRODUCTION 
 
 Researchers in education and the social sciences make extensive use of 

linear regression models in which the dependent variable is continuous-valued 

while the explanatory variables are a combination of continuous-valued 

regressors and dummy (binary) variables. The role of the dummies is to partition 

the data set into two or more groups based on qualitative criteria. However, the 

inclusion of dummies tends to degrade the robustness of linear regression 

estimators when the sample contains anomalous observations. Statisticians have 

been aware of this problem for at least a decade (e. g. Mili and Coakley 1996), 

but researchers in other fields seem not to have focused on it. Their panel-data 

models, often heavily parameterized with fixed effects, are potentially quite 

vulnerable to atypical data. This paper discusses the problem at an intuitive level 

and cites key theorems on the breakdown point of linear regression with dummy 

variables. Robust estimation of these models also raises computational issues, a 

topic that has been examined by Hubert and Rousseeuw (1997) and by Maronna 

and Yohai (2000). 

2. THE BREAKDOWN POINT AND EQUIVARIANCE 
 
 Observations are not anomalous per se, but only with respect to a 

particular regression model. This means, for example, that an outlier may not be 

stand out among the observations on the dependent variable or among the 

observations on any particular regressor; the datum is simply at odds with the 

economic and statistical assumptions of the researcher’s linear model. If the 
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anomalies cannot be resolved, it will usually be prudent to remove those 

observations from data set. Of course, outliers should not be downweighted or 

discarded automatically; they sometimes indicate that the model itself needs to 

be revised. A robust regression method supports this kind of diagnosis because it 

does not hide the outliers but actually reveals them as large residuals.  

An estimator’s robustness can be characterized in several ways. One 

concept that has received a lot of attention in recent years is an estimator’s 

breakdown point (Donoho and Huber 1983; Rousseeuw and Leroy 1987, chap. 

1); it is the smallest fraction of contamination that can produce an infinite bias in 

the estimator.  For instance, in a univariate sample of size n, the average can be 

increased without limit if any single observation is made arbitrarily large; 

accordingly, the breakdown point of the average is 1/n, or zero asymptotically. 

On the other hand, if all the observations that exceed the sample median are 

increased arbitrarily, the median is unchanged; so its breakdown point is 

essentially 50%. In other words, the breakdown point accurately characterizes 

the average’s well-known lack of robustness and the sturdiness of the median.  

Contamination in excess of an estimator’s breakdown point is a sufficient 

condition for an indefinitely large bias, but it is not a necessary condition.  As a 

practical matter, the extent of the bias obviously depends not only on the number 

of outliers but also on their magnitudes. Another important consideration is the fit 

between the uncontaminated data and the model.  In a linear regression where 

the valid observations have a very high R-squared, the bias induced by several 

stray data points may be small even if the estimator itself is not highly robust. 
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Conversely, if the valid observations have a low R-squared, application of a high-

breakdown estimator may not avoid a large (but finite) bias due to a few outliers.  

Accordingly, the breakdown point is similar to estimation criteria like efficiency 

and consistency; its usefulness ultimately depends on its performance in actual 

applications (Zaman et al. 2001). While other concepts, such as the influence 

function (Hampel et al. 1986), can also be used to evaluate robustness, this 

paper focuses on the breakdown point because it greatly clarifies the impact of 

dummy variables on a regression when the sample is contaminated. 

 Another important property of an estimator is equivariance. A linear 

regression estimator is equivariant if it transforms properly when a variable 

(either dependent or regressor) is recentered or rescaled (Rousseeuw and Leroy 

1987, p. 116). For example, if each observation on a particular continuous-valued 

regressor is multiplied by a positive constant c, the estimated regression 

coefficient should change by the factor 1/c. Some widely-used equivariant 

estimators are least squares, the L1 norm (least absolute errors), and least 

trimmed squares (Rousseeuw and Leroy 1987, pp. 132-135). On the other hand, 

orthogonal regression is a method that lacks equivariance because the estimated 

coefficients are changed in a nonlinear way when any variable is rescaled (e. g. 

Malinvaud 1980, chap. 1). 

3. HIGH-BREAKDOWN REGRESSION ESTIMATORS  

This paper deals with linear regression methods that have the desirable 

property of equivariance. With respect to these estimators, an important 

robustness theorem states that “50% is the highest possible value for the 
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breakdown point, since for larger amounts of contamination it becomes 

impossible to distinguish between the good and the bad parts of the sample” 

(Rousseeuw and Leroy 1987, p. 120, italics added). Actually, 50% is an 

asymptotic value for the maximum breakdown point; in finite samples, the value 

is reduced by a degrees-of-freedom adjustment.  

Which linear regression estimators attain the maximum breakdown point ? 

Like the univariate average, least squares regression is quite vulnerable to 

aberrant observations not only in the dependent variable (“regression outliers”) 

but also among the regressors (“bad leverage points”). Either sort of data 

problem can produce a large bias, so least squares has a breakdown point of 

1/n. On the other hand, the L1 norm minimizes the sum of the absolute values of 

the residuals; as such, it estimates the conditional median of the dependent 

variable and might be expected to inherit the robustness of the univariate 

median. The L1 norm is in fact highly resistant to regression outliers, but it 

performs no better than least squares when there are bad leverage points among 

the regressors; so its breakdown point is also 1/n (Rousseeuw and Leroy 1987, 

chap. 1 and 3).  

The maximum breakdown point is attained by least median of squares, 

least trimmed squares, S-estimators, and other procedures that behave like 

multivariate versions of the mode. These estimators are based on the 50% of 

observations that cluster most tightly around the regression plane, and they are 

unaffected by data lying outside that cluster. As a result, the high-breakdown 

methods are quite robust, but they are inefficient when the data set is 
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uncontaminated. A researcher can apply a high-breakdown estimator initially and 

follow up with a more efficient estimator once any anomalous observations have 

been identified, scrutinized, and either reinstated, down weighted, or removed 

(Rousseeuw and Leroy 1987, chap. 1 and 3; Yohai 1987; Yohai and Zamar 

1998).     

4. THE CONTINUITY ASSUMPTION 

 To prove the theorem for the maximum breakdown point, Rousseeuw and 

Leroy (1987, p. 125) assume that all the model’s regressors are continuous-

valued (“in general position”). Since dummy variables obviously violate that 

assumption, the theorem must be modified before it can be applied to the models 

with which this paper is concerned. For some insight on the key role of the 

continuity assumption, it is helpful to examine an algorithm often used to 

compute high-breakdown linear-regression estimates. It must be emphasized 

that this discussion is heuristic since the theorem on the maximum breakdown 

point is independent of any particular algorithm or estimation strategy.  

For the robust estimation of p linear regression coefficients, the elemental-

set algorithm selects at random and without replacement p observations from the 

sample of n data. This elemental set is just sufficient to “estimate” the p 

regression coefficients, which in turn generate n residuals. A robust criterion is 

then applied to the residuals; for example, the median squared residual is 

computed for least median of squares regression. If n is small, this procedure 

can be repeated for all n! / p!(n-p)! elemental sets, after which the coefficients 

with the smallest median squared residual are considered to be the high-
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breakdown estimates. For larger n, it is computationally impractical or infeasible 

to examine every elemental set. It is also unnecessary, since the evaluation of a 

few thousand sets can be shown to locate high-breakdown estimates with near 

certainty (Rousseeuw and Leroy 1987, chap. 5).  

The algorithm assumes that there is no linear dependency in an elemental 

set; for if the p observations are collinear, they cannot produce usable regression 

coefficients. But dependency is essentially precluded if all the regressors are 

continuous valued; a singular set of p equations could occur only as a fluke. In 

other words, the continuity assumption guarantees that all the sample data are 

available for inspection and evaluation.    

 Although dummy variables are designed to have full rank with respect to 

the entire sample, they will be linearly dependent in some sets containing at least 

p observations. In a model with many dummy variables, a lot of sets will be 

useless for generating estimates of coefficients.  Because dummy variables 

reduce the amount of available data, the estimator’s breakdown point necessarily 

deteriorates. Mili and Coakley (1996, p. 2598) give a proof of this conclusion, 

showing how the best breakdown point varies inversely with the amount of linear 

dependency.   

5. DUMMY VARIABLES AND THE BREAKDOWN POINT 
 
 With these concepts in hand, let us examine the linear model 
 
   y = α + Xβ + Dδ + u   ,   (1)  
 
where y is a vector of n observations on a continuous-valued dependent variable; 

X is a matrix of n observations on p continuous-valued regressors; D is an n x k 
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array of dummy variables; u is a vector of n Gaussian variables independently 

and identically distributed with zero expectation and variance σ 2 ; α is a scalar 

intercept parameter; β is a vector of p slope parameters; and δ is a vector of k 

coefficients for the dummies. While y, X and D are data, α, β, δ, σ and u are 

unobserved. X and D are assumed to have full column rank, and the 

expectations of X’u and D’u are assumed to be zero vectors. The object is to 

obtain reliable estimates of α, β, δ and σ (Greene 2003, chap. 7).  

 Contamination enters this conventional model if some elements of u are 

replaced by numbers whose absolute values are arbitrarily large, thereby 

producing regression outliers; in addition, some elements of X may be altered 

without any corresponding changes in y, leading to bad leverage points. Suppose 

that D contains just one dummy variable; for example, a bankrupt enterprise 

might be coded by 1 and a solvent enterprise by 0. Suppose moreover there are 

as many solvent firms as bankrupt firms. Then how much contamination can a 

high-breakdown regression estimator handle ? If more than one fourth of the data 

is corrupted and it all happens to be in the group of solvent firms, then no 

equivariant linear regression estimator can be guaranteed to avoid breakdown 

with respect to the coefficient of the dummy variable since more than one half of 

the solvent group’s data is inconsistent with the model. Of course, the same 

conclusion applies if the contamination happens to be concentrated in the 

bankrupt firms.  

 An equal number of solvent and bankrupt firms is the best case from the 

standpoint of robustness. For example, if just 20% of the firms are bankrupt, then 
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the contaminated observations in that group must be less than 10% of the entire 

sample to guarantee that breakdown can be avoided.  

  Consider now a data set for a cross-section of households. One of the 

variables shows whether annual household income averages less than $15,000, 

or between $15,000 and $50,000, or more than $50,000. To represent these 

categories, a researcher can put three dummies into D, suppressing the intercept 

α; or α can be retained if one of the dummies is omitted. However, the choice of 

parameterization has no effect on the breakdown point: the most robust situation 

still corresponds to an equal number of households in each income category, in 

which case the contaminated observations in any category must not exceed one 

sixth of the whole sample if breakdown is to be precluded. As before, the actual 

breakdown point can be lower than one sixth if most of the contamination 

happens to appear in a single group, an outcome that may be more likely if some 

group contains less than one third of the observations.  

 The preceding examples point to three conclusions about model (1). First, 

the best-case breakdown point depends primarily on the number of groups in the 

most complex categorical variable. The solvency/bankruptcy variable has just 

two groups, and the maximum breakdown point is about one fourth; the income 

variable has three groups, and maximum breakdown point is about one sixth. If 

the most complex categorical variable in a data set has k groups, then the best-

case breakdown point is approximately 1/2k, as Hubert (1997) shows. Second, 

the actual breakdown point can be less than 1/2k, especially if some groups 

contain a small number of observations. And third, if contamination spoils the 
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estimate of a particular dummy-variable coefficient, the estimates of other 

coefficients are also likely to be biased simply because all the coefficients in a 

multiple linear regression are estimated jointly. (It is true that the dummies for a 

particular categorical variable are constructed to be orthogonal, but estimates of 

coefficients for different categorical variables may well be correlated.)  

6. ROBUSTNESS IN MODELS WITH FIXED OR RANDOM EFFECTS 
 
 It is worthwhile to consider the implications of the previous section for 

robust estimation of the fixed-effects models popular in economics and other 

social sciences (Greene 2003, chap. 13). If a panel data set contains several 

years of observations on each of the 50 states of the U. S. A., a researcher might 

want to estimate, among other parameters, a fixed effect for each state. For 

computational reasons, these effects may be represented as group means rather 

than as explicit dummy variables; but again the choice of parameterization has 

no bearing on the breakdown point, which is at best 1/2k = 1/100. So breakdown 

cannot be ruled out if the anomalous observations for any state exceed 1% of the 

whole sample. For many types of economic data, that level of contamination 

does not seem unlikely.  

 While this author is not aware of robustness theorems that deal 

specifically with the random-effects model, the situation appears similar to the 

fixed-effects case. In terms of equation (1), Dδ disappears; and the estimation of 

β depends on the prior estimation of variance components in groups of residuals. 

There exist several high-breakdown estimators of dispersion (e. g. Rousseeuw 

and Croux 1993), but it seems that they may also fail if the contamination in any 
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group exceeds the bound 1/2k mentioned in the previous section. The random-

effects model is routinely applied to panels containing rather short time series on 

several thousand individuals or households. If a variance component is required 

for every such unit, it is hard to see how the robustness of the estimated 

regression coefficients can be guaranteed.   

 Since there is no obvious remedy for the fragility of these estimators, 

researchers may want to be cautious about using models that partition data sets 

into many small groups. To the extent possible, researchers could replace 

dummies with continuous-valued regressors, especially where the goal is to 

control for heterogeneity. In a sample of the 50 U. S. states, for instance, it would 

be worth considering whether continuous-valued regressors measuring 

population, income and territorial extent could substitute for fixed or random 

effects. If so, the application of a high-breakdown linear regression estimator, 

followed by an efficiency improvement of the type mentioned above, would be an 

important element in any strategy designed to produce reliable parameter 

estimates.  
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